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FOREWORD

The Demand and Conservation Program at EPRI is sponsoring an ongoing research 

effort to develop netf methodological approaches for load forecasting. This research 

effort concentrates on developing statistical models that elucidate the long-run 

behavioral and technological determinants of the hourly and seasonal load patterns 

of electricity consumption.

This research report is the first of several studies developing new econometric 

and statistical methods for modeling household level load patterns. The study de­

velops a two-step scheme for estimating both fifteen-minute and hourly household 

electricity demands. These microload curves can be aggregated into a total resi­

dential load curve.

Load modeling studies can only be as strong as the data that support them.

For the present study the Connecticut Peak-Load Pricing Experiment provided a rich 

and fertile proving ground for alternative approaches to household-level load 

modeling. Indeed, the only two significant shortcomings of the Connecticut experi­

ment were its relatively short duration and the use of only one experimental peak 

load rate schedule. The former limits the ability to make statistical inferences 

about the load pattern's long-run response to time-of-day rates as households change 

their appliance and space-conditioning equipment to take advantage of the bargain 

priced off-peak electricity. The latter shortcoming precludes estimation of the 

contemporaneous and noncontemporaneous price elasticities of demand unless highly 

restrictive assumptions are imposed on the econometric demand model specification. 

Thus the nature of available data precludes the study from adequately measuring the 

price-induced responsiveness of the residential load pattern. The model structure 

would be fully applicable to data with a variety of time-of-day rates were they
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available. Applied to such data, it would provide estimates of the price-induced

responsiveness of the load pattern to peak-load pricing rate structures. As such 

experimental data become available, this report should be a valuable foundation 

upon which further work can be developed. Even without time-of-day price data, 

the study has accomplished a useful and inexpensive empirical specification for es­

timating how typical household load curves are affected by the household’s appliance 

ownership and other socioeconomic variables. This, by itself, is a major advance.

Further research projects in progress or planned will deal with alternative 

econometric and statistical methods for modeling residential load patterns. Research 

on commercial and industrial loads by establishment is also under way, as is re­

search on potential transportation loads. When combined with the residential load 

studies, this research will provide a firm basis for both long-term load forecasting 

and conservation analysis. Since the models under development are price responsive 

and have end-use detail, they will be useful for analyzing the effects of load manage­

ment alternatives, including peak-load pricing, load shifts due to new electricity- 

utilizing devices, effectiveness of conservation regulations and efficiency stan­

dards , and the impact of changing economic and social variables.

In the not too distant future these microeconometric models of electricity 

demand will become part of the core of advanced simulation models describing energy 

utilization with end-use detail and enabling both EPRI R&D planners and industry 

forecasters to rigorously analyze and project future electricity uses and load 

patterns.

Copies of Volume 2 of this report, the Statistical Appendix, may be obtained 

from my office at Electric Power Research Institute, 3412 Hillview Avenue, Palo Alto, 

California 94304.

Anthony G. Lawrence 
Project Manager
Energy Demand and Conservation
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ABSTRACT

The main objective of this study was to isolate and 

evaluate the importance of various factors, many of which are 

household characteristics and weather conditions, that 

determine the demand for electricity at different times of day.

A second purpose was to investigate one of the factors in detail, 

namely, prices, which was feasible because half of the 

households in the sample were subjected to time-of-day pricing.

Substantial differences between the load curves of the 

experimental and control groups were found. Households in the 

experimental group significantly decreased electricity usage 

when its price was high, the consumption being shifted partly 

into the early morning hours but more heavily into the evening. 

The importance of certain appliances in shifting the load curve 

is also clearly brought out. For example, households with a 

dishwasher or electric heating appeared to change the timing of 

use of these appliances under peak—load pricing. Other 

appliances were also important in determining the load curve for 

both groups. Swimming pool pumps and air conditioning, for 

instance, were important determinants in the summer, whereas in 

the winter, electric heating and dishwashers substantially 

increased consumption levels.
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Chapter 1

SUMMARY OF RESULTS

Two complete analyses of the data on residential electricity 

usage were undertaken. One used quarter-hourly observations for 

the entire 10-month data period and assumed that various 

parameters were constant throughout the year. The other 

analysis used hourly observations and was computed separately 

for winter and summer. Only the latter results are summarized 

in this chapter because it is felt that the differences between 

winter and summer are sufficient to make this approach more 

appropriate. The quarter-hourly results are, however, rather 

similar in many respects and are described in detail in Chapter 4 

Volume II of this report contains the detailed statistical tables

Using the hourly observations, time-series regressions were 

run for winter and summer months for 135 households in 

Connecticut, of which 85 faced a peak pricing schedule. The 

parameters of these estimated household load curves were then 

explained on the basis of demographic and appliance-stock data 

for the households. The procedure is therefore a two-step 

analysis of a cross section of time series. Considering the 

difficulty of predicting the timing of personal habits, the fits 

were moderate to encouraging. Salient details of the final 

estimates are given below.

Summer Results

The importance of certain appliances is clearly brought out 

in the estimates. For instance, households with an electric 

water heater demand significantly more electricity in hours 7 

through 24 (hour 1 is from midnight to 1a.m.). The dishwasher
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is most significant in the 19th hour, but it also has a 

significant impact during hours 20 through 23. The product of a 

dummy variable for central air conditioning and the living area 

of the house in square feet was used as an explanatory variable. 

This becomes significant at hours 12 and at hours 14 through 23. 

The electric dryer is significant at hour 24, and in the preceding 

two hours it is marginally insignificant. The swimming pool pump 

is important from 4 to 5p.m. (hour 17). Among other variables, 

the number of people under 18 is important during almost all the 

hours, the only exception being hours 5 through 8. The number of 

people in the age group 18-64 is significant in the morning from 

8 to 9 a.m. and during the rest of the day from 5 p.m. to 1a.m. 

(hours 17 through 1). The number of older people (65 or over) 

doesn’t seem to be a significant factor. The dummy variable for 

the experimental group was generally not significant, although it 

came close during the 23d hour. The remaining variables did not 

seem to have any significant effect on the regression 

coefficients for the hourly dummies. During the high-use period 

of 9 a.m. to 9 p.m., (hours 9 through 21) the significant 

variables were number of people under 18, number of people 18-64, 

electric water heating, and central air conditioning times area 

(square feet) being cooled.

To economists, the most interesting variable is the peak 

price. Not surprisingly, the experimental households showed a 

strongly significant negative effect, indicating that they would 

use less electricity during the peak pricing period than the 

control group. The heated pool also has an important negative 

effect; and households with a pool pump are more likely to shift 

out of the peak and reduce electricity consumption during that
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period. The central air conditioning and area seem to interact 

to yield a negative, but not strong, effect. The number of 

people under 18 also reacts negatively; (there is a significant 

shift out of the peak). The remaining variables do not have 

much effect on peak period usage.

In the case of the weather variables (wind speed, 

temperature moving average, and temperature-humidity index), only 

air conditioning (both central and window) times area had a 

significant impact, especially on the temperature variables.

For wind speed, the dehumidifier had a strong effect. The 

experimental group showed a significant effect on wind speed. 

Winter Results

Usage during the winter exhibits interesting patterns 

similar to those in the summer. Electric heating times area is 

important during hours 5 through 10, 15, 18, and 21. The 

effect is generally positive, except from 2 to 3p.m., suggesting 

that less is used than between 1 and 4 a.m. The dishwasher has a 

significant effect from 9 to 11a.m. and again from 6 p.m. to 

midnight. The electric water heater has a noticeable effect 

from 6 to 7 a.m. and again from 9 p.m. to 1a.m. The number of 

people under 18 has a significant effect between noon and 1 a.m. 

(This variable was important at all hours after 8 a.m. in the 

summer.) Presumably the people under 18 tend to be in school 

during the winter, accounting for less consumption during those 

mornings when other variables are held constant. People in the 

age group 18-64 generally had no effect on the usage at specific 

hours, the only exception being from 4 to 5a.m. , when there was 

a significant decrease in consumption compared with that of the 

preceding three hours. Here there is a strong contrast between
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summer and winter. It will be recalled that the age group 18-64 

was significant from 8 to 9 a.m. and from 5 p.m. to 1a.m. The 

activities of this group involving electricity consumption have 

indeed been curtailed in winter.

The experimental group did shift out of the peak hours, as 

evidenced by the significant positive effect for the survey 

group from 9 p.m. to 1a.m. This also is in clear contrast to the 

summer behavior, when the survey group variable was usually 

insignificant. Presumably the extraordinary expense of winter 

heating provided the incentive for the survey households to 

postpone their consumption to the off-peak hours. During the 

high-use period of 9 a.m. to 9 p.m., the dishwasher and the number 

of people under 18 were the significant variables, although the 

electric water heater came close.

The peak price effect was significant for electric heating 

times area, for dishwasher use, and for the survey group, all of 

which has the expected negative sign, that is the higher the 

price the less the usage.

Electric heating times area is significant in all the 

weather variables, and the survey group had a significant effect 

only on temperature squared. The electric water heater came 

close to being significant for wind speed and for temperature 

moving average. The sum of the temperature variables 

(temperature now= temperature moving average) had a very good 

fit, but only electric heating was significant, although 

supplementary electric heating was nearly significant. 

Implications for Peak Load Pricing

As mentioned earlier, the survey group substantially 

decreased its usage at the peak hours. There was a spreading
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of the load, particularly in the evening, but also into the 

morning period before the peak prices are charged. There appears 

to be a shift out of the shoulder-priced hours, particularly in 

the evening. The pattern of cross-elasticities appears to be 

rather complicated. For example, consumption between 8 and 9 a.m. 

in the winter is above that of the control group even though it 

is in a shoulder period. The explanation is that the large shift 

from the peak period, which begins at 9 a.m. , exceeds the 

decrease that would ordinarily be expected from households 

shifting usage to the period before 8 a.m. , when the shoulder 

price begins.

In general, the households facing peak pricing respond in 

the same way to weather conditions as do those with flat-rate 

schedules. The exceptions are the quadratic term in 

temperature in the winter and the response to wind speed in the 

summer. Ordinarily the temperature-squared variable would be 

expected to enter with a positive sign, indicating a convex 

function, with usage increasing faster as the temperature 

decreases. The survey variable enters the explanation of 

temperature squared with a significant negative sign, thereby 

indicating that the households facing peak prices may be more 

likely to have a concave response to temperature than the control 

group. In the summer the experimental households apparently 

decrease their consumption when the wind speed increases. 

Presumably this is due to a discretionary shutdown of air 

conditioners or perhaps other appliances.

In the winter the electric heating variable is 

significantly different between the experimental and control 

groups, indicating that households with electric heating that
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face peak pricing shift out of the peak period more than those 

without electric heat. Another way in which experimental 

households shift usage out of the peak period seems to be to 

change the time at which they use the dishwasher. In the 

summer only the use of the swimming pool pump appears to differ 

significantly between the experimental and control groups. As 

this is a regular use of appliances that can easily be shifted, 

it seems reasonable that it appears to be a mechanism for the 

shift. Notably lacking any differences is the effect of air 

conditioners. Not only is the use of air conditioners not 

significantly different between experimental and control groups, 

but the point estimates suggest that the experimental group 

actually uses them more during the peak hours.

In conclusion, there appears to be a very strong response to 

peak load pricing, with a substantial decrease in the peak hours 

and the load being shifted partly to the early morning but more 

heavily into the evening. This shift is particularly associated 

with households with electric heating but also with those 

having dishwashers and swimming pool pumps.

Bearing in mind the difficulty of predicting personal 

habits, the results seem sensible and persuasive. Further 

analyses along these lines could well help distinguish still 

further the critical determinants of residential load curves and 

their response to time-of-day pricing.
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Chapter 2

THE PROBLEM AND THE APPROACH

The future demand for electricity by residential users 

clearly depends on a large number of factors. The main 

objective of this study is to isolate and evaluate the 

importance of many of these factors and thereby to produce a 

model that, it is hoped, will be useful in forming long-term 

forecasts of time-of-day demand. In so doing, we also believe 

that a model useful for short-term prediction will have been 

produced. The study was made possible by the availability of a 

comprehensive data set of good quality from Northeast Utilities 

for parts of Connecticut, and was initiated and funded by the 

Electric Power Research Institute. The basic approach is 

outlined in this chapter. Later chapters describe the data used 

and the stages of the modeling procedure in more detail and 

outline the results obtained.

If the causes of variations in electricity usage by a single 

household are considered, three main effects can be distinguished.

(1) First there are those resulting from the lifestyle of 

the family. The time that a husband or wife has to be at work 

or a child at school helps determine the start of the active 

part of the day for the household. The types of activities 

enjoyed in the evenings or weekends determine the amount of the 

house that has to be heated, lighted, and so forth. Such 

factors are called lifestyle effects.

(2) Then there are the reactions to changes in the 

environment, either social or physical, such as levels of 

temperature or humidity, seasonal changes in the number of hours
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of darkness, or the occurrence of public holidays. These 

reactions are typically short-term in nature.

(3) The above two sets of factors interact with the basic 

characteristics of the household, such as the number of family 

members and their age distribution; the type, age, and size of 

the house or apartment; and the appliances used. Since most of 

these variables change infrequently, they will both interact with 

the short-run causes and will help explain long-term fluctuations 

in electricity usage.

The modeling approach we use is based explicitly on this 

three-tier breakdown of factors, but it is also conditioned by 

the data available to form the model. At the first stage of our 

analysis, electricity usage values for a household at different 

times of a day were regressed on a group of variables designed 

to capture the basic daily usage shape, plus changes in this 

shape from one day of the week to another, together with a 

number of short-run variables, including weather variables and 

the timing of school vacations. Some experimenting was 

undertaken to help determine precisely what variables should be 

included in these time-series regressions. These models were 

estimated for each household in a sample of 200. To capture 

the effect of individual household characteristics, the 

parameters of all of these time-series regressions were then 

regressed on the household variables. Thus, the final stage of 

the modeling process consists of cross-sectional regressions for 

each parameter of the time-series models, suitably normalized to 

reduce heteroscedasticity problems. The study has been carried 

out in two parts. In the first part, quarter-hourly data were 

used in the first stage of the analysis. The second part deals
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with the same data but aggregated to the hour and using more 

sophisticated econometric techniques.

The resulting models can be used for forecasting by

(1) inserting the household characteristics of a sufficiently 

large random sample of residential users, thereby producing 

estimates of the time-series models for these households,

(2) inserting predicted values of the explanatory variables in 

each equation, such as forecast weather values; and then

(3) aggregating over the whole sample. For short-term 

forecasting, the household characteristics of an actual sample 

can be used, together with actual weather forecasts. For 

long-term forecasting, a prediction is needed of the kind of 

household characteristics. Data on the appliances used by each 

type of household and typical weather values for each day of 

the year can be inserted to achieve an aggregate forecast of 

future daily shape for any day and any region. It is assumed, of 

course, that households in regions other than Connecticut will 

behave in the same way as those actually observed in our sample. 

Some biasing effects may be noticed, so the model's forecasting 

ability would have to be first evaluated on past data before 

true forecasts are attempted. The method by which forecasts are 

formed from the model is described in more detail later.
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Chapter 3

DATA USED IN THE STUDY

The data used in this study were collected by Northeast 

Utilities for approximately 400 households in Connecticut 

during the ten months from November 1975 through August 1976. 

Electricity usage data were collected every quarter hour for 

each household, together with matching weather data that 

included temperature (both wet and dry bulb), wind speed, and 

a measure of solar radiation. A fuller description of the data 

set is given in Burbank [2J. One of the most attractive 

features of these data (to an economist) is that half of the 

sample belonged to an experimental group who were exposed to a 

peak pricing method. The rest of the -sample were a control 

group that had the usual methods of pricing. Thus, one of the 

results of our modeling will be to throw further light on the 

implications of a utility implementing a peak pricing billing 

method.

To an econometrician, the most noticeable feature of the 

data was its quantity, approaching 12 million numbers. This 

abundance meant that complicated regressions could be attempted, 

but it also produced unfamiliar problems. The size of the data 

bank meant that it was not possible to experiment with a large 

proportion of it. To reduce the computational burden, we 

selected several members of each of the experimental and control 

groups to try out various formulations of the models for the 

time-series regressions on portions of the time period. Even 

then, the length of the time series limited our ability to 

experiment because of cost and time constraints. We were also
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doubtful about the level of confidence to use in deciding 

whether an estimated parameter was significant or not. Somehow, 

using a 95% confidence interval with a time series of almost 

30,000 terms did not seem completely appropriate. Kendall and 

Stuart [7J recommend using higher levels of confidence with large 

amounts of data, but as the statistical literature offers no 

precise recommendations on this point, we eventually retained 

the 95% confidence bands for t-statistics to help our decision 

making about which variables to retain in a model.

There were a few problems with the data. Some of the 

weather values were missing, and whenever this occurred the whole 

time period in the regression was ignored. In some months this 

led to a 5% or 6% reduction in the sample. As there was a 

certain amount of attrition of the households included in the 

sample, they could not all be used in the modeling process.

This problem was much worse for the control group, where less 

than 50% of the households had electricity usage data for eight 

or more of the ten months and only 40% or less of the original 

sample were still producing data at the end of the period. The 

experimental group was very much better in this respect, with 

very few dropping out and only a few months of data missing, 

although it seems likely that the "households" involved did not 

necessarily contain the same family throughout. Because of these 

problems we eventually selected 85 households from each group, 

preferring those households with the most complete data. This 

may have resulted in a bias toward the less-mobile families 

living in the region, but it was hoped that the increased 

accuracy of the model would compensate for this acknowledged
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bias. Both the experimental and control groups were divided into 

five subgroups for the experiment, these subgroups being based 

on the level of electricity usage in the year prior to the start 

of the experiment. In our work we used 17 households from each 

of these subgroups to ensure a balanced model. As each subgroup 

does not necessarily represent exactly 10% of the total 

population, some care is needed in adding our models to get an 

aggregate forecast. A correctly weighted sum would be more 

appropriate.

Apart from these problems, the data seem to be of good 

quality, and most variables needed to build a sound model were 

available, except information about when a household was on 

vacation.

It would have been possible to reduce the amount of data

used by converting to hourly usage and weather series. However,

it was felt that the reaction to changes in variables such as

sunlight or temperature could take place within a short time,

and so time-aggregation of the data could result in somewhat

misspecified relationships. The decision to first use quarter-
2hourly data does have the implication that the resulting R 

statistics may well be lower for the time-series regression, as 

much of the very short-term movements in usage may be due to 

causes (such as decisions by family members to turn on or turn off 

various appliances) that may not be reflected by the explanatory 

variables used. As pointed out earlier, the second part of the 

analysis used hourly data. The data used in this part of the 

analysis are described later.

A number of sample plots of the usage data were made, and 

three of them are shown in Figures 3-1 through 3-3. The first
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figure shows the usage for four quarter hours equally spaced

throughout the data for each day from November 1, 1975, to

April 1, 1976, for a selected household (Household A). Figure 3-2

shows daily maximum quarter-hourly usage for the same time period

but using a different household (Household B). Figure 3-3 shows

the plot of usage for each quarter hour during the first seven

days in November for Household B. Although some time patterns

can be seen, the noise-to-signal ratio seems very high and so 
2large R values are not expected to arise from the time-series 

models constructed for each household.

In using the data, care was taken to allow both for missing 

values and for the hour change due to the start of summer season 

in Connecticut on April 25, 1976, at 2:00a.m.
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Chapter 4

ANALYSIS USING QUARTER-HOURLY DATA

Formulation of the Time-Series Model

The variables considered for inclusion in the time-series 

models to be fitted to the quarter-hourly usage data for each of 

the 200 households are described below.

Lifestyle Effects

To try to model the major regularities in electricity usage 

displayed by a household due to the habits or lifestyle 

requirements of its members, a set of daily dummies were used 

together with two alternative methods of representing movement 

with the day. One method is to use sine and cosine terms with 

24-hour periods together with the first few harmonics, and the 

alternative is to use dummies for each hour of the day. The 

advantage of the first method is that it involves fewer 

parameters; but on the other hand, it may not be flexible enough 

to pick up all the details of the daily curve. Furthermore, the 

coefficients for hourly dummies are easily interpretable. The 

full list of variables considered here is then:

Variable 
CONST 
SIN1 
SIN2 
C0S1 
COS 2 

MON-SAT

HR2-HR24

Description
Constant
Sin wt, w = 2tt/12
o • wtSm —
Cos wt 

wtCos -y
Daily dummies for Monday through 
Saturday, so that Tuesday dummy=l 
on Tuesday, =0 on other days
Hourly dummies for each hour of 
the day except the first
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It was necessary to leave out dummies for Sunday and for the first 

hour of the day to prevent exact colinearity, since these effects 

are included in the constant term. The coefficients for the 

hourly dummies measure the differences in usage from the first 

hour (midnight to 1a.m.). The hourly dummies and the sines/ 

cosines have to be alternatives, again to prevent colinearity.

It would have been possible to consider using 96 quarter-hourly 

dummies, but the computing task was too formidable for our 

resources. The possibility of reducing the number of hourly 

dummies by leaving out those not significantly different from 

zero was also considered in the experiments discussed later.

The weekends are allowed to exhibit a different shape through 

four harmonics, which are zero except for weekends.

Besides the daily dummies listed above, two other dummies 

were added, one for public holidays and one for school vacations. 

School vacations included Christmas break, Washington's birthday, 

and Easter break. (In New England these are prime times for 

families to brave the ice and frigid weather to go skiing.) 

Monthly dummies were not used because there seems to be no 

obvious reason why electricity usage should depend on which 

month one is in, apart from reaction to causes such as the 

timing of public holidays and school vacations and changes in 

temperature and other weather variables.

Short-term Causal Variables

The first causal variable considered was a sunlight dummy, 

taking the value 0 between one hour after sunrise and one hour 

before sunset and the value 1 otherwise. Two further dummies 

were used to pick up the effects of the pricing experiment being 

conducted on half of the sample households. The prices used in
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the experiment and the times and days the different prices were 

in effect are given in Burbank [2].

The two dummies used to represent this price effect were:

Peak dummy=1 when peak prices (16<?/kWh) were operating 
= 0 at other times

High dummy= 1 when high-use prices (3c/kWh) were operating 
= 0 at other times

These dummies were used for both the experiment and the control 

groups. If found to be significant for the control group, this 

would not indicate anything about price but would reflect an 

interaction between the daily shape and weekdays or holidays.

The quarter-hourly weather data made available to us were 

as follows:

WINDSP - average wind speed (m/s)
AIRTEMP - average air temperature (°C)
DEWPT - average dew point (°C) 2SOLRAD - solar radiation average (cal/cm /min)

A measure of wind direction was also available, but we did not 

use it. The weather data were collected at two different weather 

stations in Connecticut. For each household the values 

allocated were those of the nearer station, with a constant 

correction factor added to the temperatures on the basis of 

isotherm maps for the state. The weather variables can be 

expected to affect electricity usage in a nonlinear fashion, so 

a review of the literature concerning the effects of weather on 

aggregate electricity demand for a utility is not entirely 

appropriate for a single household. However, the most 

satisfactory simple function for temperature appears to be of the
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form:

f(T) = k (T-T ) for T > Tu u u

= 0 for T < T < T h i

■ vt-v for T < TV h

which has the shape:

f(T)1 1

T = temp

if > 0 and < 0, as expected. Thus, electricity usage will 

increase both when temperature gets low (due to heating) and 

when it is high (due to air conditioning). To capture this 

function, two variables were defined: TMIN, which is the upper 

leg of a piecewise linear temperature function; and TMAX, which 

is the lower leg. The dividing points were taken to be 10°C and 

21.1°C (TMIN is bounded below and TMAX is bounded above).

The official temperature-humidity index is designed to 

measure human discomfort in the summer that results from the 

combined effects of temperature and humidity; it is defined as:

THI = a(wet-bulb+dry-bulb temperatures) +B

for T> 75°F. Thus, adding DEWPT to the list of variables 

together with TMAX should allow for this effect. The widely 

used wind-chill factor (WCF) takes the form
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WCF = (ct/v+g-V) (y-T)

where V is wind speed. This measures the human discomfort of 

combined low temperature and wind speed, but is unclear whether 

a similar function is equally appropriate for both dwelling and 

the human body. The form of the function nevertheless suggests 

the possible use of the following variables in addition to WINDSP:

WINDHALF - the square root of WINDSP
TEMPWIND - the product of TMAX and WINDSP
MIX - product of TMAX and the square root of

WINDSP

Although it was thought unlikely that all of these variables would 

be useful in the final model, they were included in our initial 

modeling experiments.

Some of the literature emphasized the cumulative effect of 

exceptional temperatures. We would have preferred to include a 

variable such as average temperature for the previous two days; 

but since the computing costs would have been too much, the values 

of TMIN and TMAX at the same time on the previous day were 

considered instead.

The above characterization of the weather is rather flexible, 

but it leads to confusion among several of the variables. Dew 

point, for example, behaves sometimes like humidity and sometimes 

like temperature. Furthermore, the specific form of the 

piecewise linear temperature function differs somewhat from the 

more attractive specification described earlier. In these 

regressions, the temperature is not constrained to be continuous. 

Thus we feel that although we are picking up the weather effects 

in the regressions, the coefficients are difficult to interpret.

21



and we plan to change some of these variables in the next phase 

of the analysis.

All of these variables were first used in forming linear 

regressions to try to explain quarter-hourly variations in 

electricity usage for a single household. One obvious problem 

with doing this is that many possible interaction terms are 

ignored. Some interactions seem intuitively to be important, 

whereas others are less' plausible. The linear addition of the 

daily shape represented by the hourly dummies, say, with the 

shape represented by the daily dummies means that it is assumed 

that the swings in usage within the day retain precisely the 

same shape each day but that different levels could occur from one 

day to another. However, it certainly seems likely that the 

shape will be different on weekdays (Monday through Friday) than 

on weekends and public holidays. This is an example of a 

possibly important interaction between the previously defined 

variables. On the other hand, it is not practical to allow 

complete freedom for the daily shape by defining hourly dummies 

differently for each day, say, since the resulting number of 

independent variables would be impractically large. As a 

compromise, the four sine and cosine variables were multiplied 

by a dummy that takes the value 1 on Saturdays, Sundays, and 

public holidays and 0 at other times. When used in conjunction 

with the hourly dummies, these new variables allow for a 

significant change in daily shape for days when members of the 

household do not go to work or to school. Some other interactions 

are less intuitively important, such as that between day dummies 

and the weather variables. Will a household react differently to
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a particularly low temperature on a Monday than on a Thursday? 

Possibly yes, but the number of interactions involving the 

previously defined variables occurring in pairs or in groups of 

three or more soon becomes too large to handle. It was therefore 

decided to exclude all other interactions from the model as 

presently constituted. The number of possible hypotheses and 

alternative models that could be considered is immense because 

of the plentiful data. Opportunities may arise to extend the 

present work, but for now we continue to concentrate on a long­

term forecasting model.

A certain amount of experimentation was undertaken to test 

the relevance of the explanatory variables listed above. To cut 

down costs and time, five households each were selected from the 

experimental and control groups, with one household picked at 

random from each of the subgroups on the basis of previous usage 

levels. Regressions were fitted using a variety of explanatory 

variables both for the first two months of the full sample and 

for all Mondays in the first six months of the sample. The 

significance of individual parameter estimates was considered, 

together with some groups of estimates. The residual series were 

estimated and the residual autocorrelation sequence were 

examined together with averages for each quarter hour in the day, 

these averages being formed over the days used in the experiment. 

These experiments allowed a number of decisions to be made, 

hopefully strengthening the model eventually fitted to the full 

sample of households by improving its specification. The 

important decisions were as follows:

(1) It was decided to use the hourly dummies rather than 

trying to explain the within-day usage shape by sine and cosine
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terms. The latter could not properly represent the shape in its 

full detail. Most of the hourly dummies were significantly 

different from one another, although the first few hours of the 

day were usually similar. It was decided to use all of the 

hourly dummies but also to use the weekend-daily shape 

interaction variables involving sines and cosines as described 

above.

(2) The weather variables were simplified by leaving out 

WINDHALF (square root of wind speed) and MIN (TMAX times 

WINDHALF); these variables were so colinear with other variables 

which were retained that those discarded seemed to be of lesser 

importance.

(3) Sunlight was left out because it was highly colinear 

with solar radiation, which was retained as being a more flexible 

variable.

These changes produced a final list of 46 explanatory 

variables, including a constant. The residuals from experiments 

using these variables generally had quarter-hourly averages that 

were not significantly different from 0, indicating that the 

daily shape in usage was being well captured, as might be 

expected. The autocorrelations of the residuals suggested low- 

order autoregressive models, usually AR(1) with parameters (first 

autocorrelation) in the region 0.3 to 0.6. In a few instances, 

the higher-order autocorrelations were small but showed an 

inclination to be positive, suggesting a (relatively) low 

frequency such as a trend, a long cycle, or possibly a weekly 

cycle. This could have been due to a learning process by the 

experimental group at the start of the pricing equipment, to 

missing interaction variables, or to changes in the household

24



or its appliances. Although the results suggest some model 

misspecification, it should not be of overwhelming importance, 

and further consideration will be given to this property of the 

data. For some households there was a small, but possibly 

significant, autocorrelation at lag 96, corresponding to one day. 

The values of these correlations were under 0.1 and typically 

were about 0.007. They again suggest a minor misspecification in 

the model, probably due to some interaction term being left out, 

but they are likely to be of small economic significance.

Although the residuals are autocorrelated, this was not allowed 

for in the regressions, which were estimated by ordinary least 

squares. We took comfort in the fact that these estimates 

should be unbiased; and although some efficiency was lost, this 

was of little importance given the length of the series being 

used. To improve the estimation procedure, it would have been 

necessary to include a lagged residual in the model, but the extra 

computing cost was prohibitive. The addition of a lagged 

residual would have no long-term forecasting implications, in 

fact virtually no implications beyond an hour or so, and thus it 

was thought reasonable to exclude such a term.

Time-Series Results

The final regression model chosen for the time-series 

regressions had 46 explanatory variables to describe the time of 

day, type of day, instantaneous and lagged weather effects, and 

some interactions. These regressions, which generally had more 

than 25,000 observations, were run for 155 households 

approximately evenly divided between the control and experimental 

groups, where the experimental group faced a three-tier, peak 

pricing structure. Because we chose to use such a large set of
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observations, the actual calculation of these regressions 

severely taxes our computational facilities, both through the 

construction of the cross-product matrix and the matrix 

inversion required for the regression coefficients and standard 

errors. For subsequent calculations we are investigating 

several more carefully optimized numerical procedures and also 

intend to reduce the scope of the sample.

An example of one of the regressions for a moderately large 

user in the control group who does not face peak prices is 

presented in Table 4-1. Notice first that both the peak and 

high variables are negative, suggesting that the user consumes 

less during the peak periods than indicated by the other 

variables in the regression. In particular, this individual uses 

less at the peak hours during the week than on the weekends, 

when the peak variable is turned off. It is, however, not 

surprising that the simple correlations of these variables with 

demand are positive.

The school vacation variable is significantly negative, 

suggesting that the household probably went on a vacation.

Tuesday and Thursday are days on which significantly less 

electricity is used than on Sunday, while more is used on 

Saturday. Three of the harmonics are quite significant.

The hours tell a reasonable story. The household gets up 

before seven but doesn't achieve a morning peak until noon. The 

evening peak occurs at six o'clock and then tapers off until 

midnight, with a secondary peak before nine. The same pattern 

can be seen in the simple correlations between these variables 

and the dependent variable.
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Table 4-1

REGRESSION COEFFICIENTS FOR A TYPICAL HOUSEHOLD 

IN THE CONTROL GROUP*

Variable Coefficient t-stat Variable Coefficient t-stat

PEAK -0.034 -3.8 HR2 0.0007 0.12
HIGH -0.011 -1.4 HR3 0.008 1.4
CONSTANT 0.050 7.5 HR4 0.023 4.0
PUBLIC HOLIDAY 0.001 0.2 HRS 0.024 4.0
SCHOOL VACATION -0.042 -14.2 HR6 0.024 4.0
MONDAY -0.004 -0.7 HR7 0.055 8.8
TUESDAY -0.011 -2.2 HRS 0.055 8.8
WEDNESDAY 0.004 0.7 HR9 0.062 6.5
THURSDAY -0.012 -2.3 HR10 0.050 5.1
FRIDAY 0.009 1.7 HR11 0.083 7.9
SATURDAY 0.014 4.5 HR12 0.105 9.8
SIN1 0.029 6.9 HR13 0.035 3.3
SIN2 -0.000 -0.01 HR14 0.020 1.9
COS1 -0.042 -8.8 HR15 0.048 4.5
COS2 0.046 17.9 HR16 0.052 5.0
WIND SPEED 0.011 35.6 HR17 0.112 10.7
DEW POINT 0.001 10.0 HR18 0.261 25.1
SOLAR RADIATION 0.029 7.0 HR19 0.169 16.5
TMAX 0.009 20.8 HR20 0.169 17.2
TMIN 0.0005 2.3 HR21 0.174 18.4
WIND.TMAX -0.002 -20.7 HR22 0.126 20.4
TMAX (-96) 0.002 8.5 HR23 0.106 17.7
TMIN (-96) -0.002 -9.6 HR24 0.021 3.5

R2 = 0.0257 SER = 0.136

Temperature variables defined slightly different than in
text.

27



The weather variables are frequently significantly 

different from 0; but, as pointed out above, it is hard to 

interpret them.

The analysis of 155 regressions, each with 46 variables, is 

a substantial job. Many of the results follow intuition, but 

there are also a variety of surprises. For example, the daily 

shape of some households is dramatically different from that of 

others, and some have strong peaks on certain days of the week 

while others do not. Whether these differences are systematic or 

merely sampling errors must await the cross-sectional 

regressions where these differences can be explicitly tested.

There are several characteristics of the time-series

regressions that should be mentioned at this point. The

expectation that the explanatory power is quite low is upheld,
_2especially for the small users. In Table 4-2, the mean R are 

given for each use class. Class 1 consists of the smallest users 

in the previous year and Class 5 the largest. The explanatory 

power of the regressions for the small users is substantially 

lower than for the large users. This suggests that the 

nonrepeating or unpredictable component of electricity usage does 

not increase proportionately with use. Large energy-using 

appliances are likely to be used at a systematic time, and 

therefore the demand can be better explained by the regression.

In Table 4-3, the means of each of the regression 

coefficients across individuals are tabulated for the control and 

experimental groups. Notice first that for both groups the peak 

and high variables have negative coefficients. While this is to 

be expected for the experimental group, it might appear
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Table 4-2

MEAN R2 OF TIME-SERIES REGRESSIONS FOR GROUPS

Size Class Control Experimental
1 0.156 0.216

.2 0.176 0.146
3 0.260 0.237
4 0.256 0.305
5 0.351 0.394

Table 4-3

MEANS OF REGRESSION COEFFICIENTS IF[ BOTH GROUPS

Variable Control Experimental Variable Control Experimental

PEAK -0.031 -0.150 HR2 -0.021 -0.058
HIGH -0.034 -0.089 HR3 -0.013 -0.085
CONSTRANT 0.138 0.342 HR4 -0.027 -0.089
PUBLIC HOLIDAY -0.014 -0.050 HR5 -0.018 -0.078
SCHOOL VACATION -0.082 0.016 HR6 -0.0003 -0.046
MONDAY 0.025 0.017 HR7 0.056 -0.020
TUESDAY 0.012 0.018 HRS 0.084 0.116
WEDNESDAY 0.003 0.017 HR9 0.110 0.174
THURSDAY 0.013 0.021 HR10 0.106 0.130
FRIDAY 0.002 0.020 HR11 0.096 0.130
SATURDAY -0.001 0.0007 HR12 0.094 0.157
SIN1 0.004 0.007 HR13 0.080 . 0.140
SIN2 0.027 0.036 HR14 0.060 0.114
COS1 -0.004 -0.020 HR15 0.053 0.094
COS 2 0.038 0.041 HR16 0.074 0.111
WIND SPEED 0.033 0.007 HR17 0.129 0.161
DEW POINT -0.004 -0.008 HR18 0.194 0.212
SOLAR RADIATION 0.035 -0.092 HR19 0.224 0.210
TMAX 0.009 -0.002 HR20 0.225 0.221
TMIN 0.001 0.002 HR21 0.221 0.251
WIND*TMAX -0.002 -0.0003 HR22 0.183 0.229
TMAX (-96) 0.002 -0.0002 HR23 0.129 0.198
TMIN (-96) -0.008 -0.007 HR24 0.059 0.095
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surprising for the control group. The implication, however, is 

simply that the peak is higher on weekends than on weekdays for 

both groups, and thus the peak variable is negative. The 

coefficients are more negative for the experimental group, as 

anticipated. The simple correlations between peak and use are 

generally, but not always, positive, indicating that use in 

peak periods is generally above the average. It is surprising 

that this is not more pronounced. One must wonder if a 

substantial portion of the system load peak is in fact due to 

residential customers.

The daily load shape is mainly captured by the hourly 

dummies. For both groups, this decreases from midnight until 

seven in the morining, reaches a peak between eight and nine, 

and then declines at midday. The evening peak rises at six and 

peaks at eight or nine and then falls off again toward 

midnight. The fact that the two daily shapes are so similar 

supports the notion that all the shift due to the peak pricing 

is captured in the peak and high variables.

Other interesting features are the nearly 0 means of the 

daily dummies, indicated that, on the average, not only are all 

weekdays roughly similar but so are weekends, at least in levels. 

Although some individuals have strong patterns among days, 

these average out in this sample. Public holidays, and 

especially school vacations, are generally negative, probably 

because the family goes away and electricity usage is 

drastically decreased.

The other variables in the regression have less-clear 

interpretations for their coefficients. The full explanation
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for the load pattern, however, rests on the ability of the cross-

sectional regression to explain the variations in these 

coefficients across individuals.

Cross-Sectional Analysis

For each household we were given data on 60 household- 

specific variables, as recorded in September 1976, which was 

just before the complete set of electricity usage data started 

to be recorded. These variables included information on whether 

the house was in the experimental pricing group or not, how many 

of various appliances were owned, the number of members and age 

structure of the household, the type of heating system used, the 

type of structure, and the age and square footage of the home. 

Many of these variables were redundant or unusable because of 

colinearity or very rare occurrence in the sample. As an example 

of colinearity, dummy variables were given for "heating system 

replaced in past year" and "heating system not replaced in past 

year." Care had to be taken in selecting an appropriate set of 

household characteristic variables. The list we decided to use 

in the cross-sectional regressions was:

Variable
0

Description
1 if in experimental pricing group, 0 otherwise 
[For the following variables, the number owned 
by the household was used.]
Electric range
Electric self-cleaning oven
Electric dryer
Self-defrosting refrigerator
Manual-defrosting refrigerator
Freezer (self- or manual-defrosting)
Dishwasher
Black-and-white television 
Color television
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10 Humidifier
11 Dehumidifier
12 Window air conditioner

[The following three variables also are measured 
as numbers.]

13 People in household (age under 18)
14 People in household (age 18-64)
15 People in household (age 65 and over)

[The following three variables are 0-1 dummies;
1 is yes.]

16 Main heating system electric
17 Supplementary heating system electric
18 Electric water heating
19 Age of home
20 Square footage of home
21 Type of strucutre: single-family

For members of the experimental group, data were also 

available for the answers given to a comprehensive survey, 

containing a potential of almost a thousand questions, conducted 

in August 1975. The survey included detailed questions about 

the consumer's attitude to electricity usage and prices, how 

30 different appliances were used, and other topics. Because 

these data were not recent, were very detailed, and were 

available for only half of our sample, we made no attempt to 

include them in the cross-sectional regressions at this point in 

the project.

A number of different strategies could be taken with the 

cross-sectional analysis, depending on how heteroscedasticity of 

the data is dealt with, which explanatory variables are used, and 

whether or not the experimental and control groups are pooled. 

Since the dependent variables are estimated coefficients from 

regression equations, they can be expected to have different
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standard deviations, so heteroscedasticity becomes important.

The estimated standard deviation of a particular coefficient can 

be 10 times greater for some households than for others in our 

sample. The problem can be reduced by dividing both dependent 

and- independent variables by the estimated standard errors while 

performing the cross-sectional regression, but a superior two- 

stage procedure can be based on an article by Hanushek [5J. The 

first stage forms the ordinary least-squares regression estimate, 

and the results can be used to form an Aitken generalized 

least-squares estimate. This procedure was used in Chapter 5, 

but the results presented below involve just ordinary least 

squares. The initial regressions in this part of the project use 

all of the 23 independent variables listed above for each set 

of coefficients coming from the time-series regressions. At a 

later stage we investigate subsets of the explanatory variables, 

including weighted averages of the household appliances. The 

results presented also pool the two types of customer, so that 

the experimental pricing effects appear only as an additive 

dummy. After the set of explanatory variables have been 

further condensed, it is hoped to repeat the cross-sectional 

regression for both groups of customers separately so that more 

sophisticated effects of the pricing experiment on electricity 

usage can be investigated.

Table 4-4 summarizes the results of the first set of cross- 

sectional regressions for selected variables, the dependent 

variables being the sets of time-series regression coefficients 

and the independent variables being the list of household
2characteristics given above. The table shows the adjusted R
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Table 4-4

CROSS-SECTIONAL RESULTS FOR SELECTED VARIABLES

Dependent
Variable Ad j . R2 d Main Significant Independent Variables

CONSTANT 0.53 1.66 Survey,3 people 18-64, people over 65, 
electric heat, square footage

SIN1 -0.05 2.12 Electric heat (?), square footage

SIN2 0.32 1.91 Survey, electric stove, dishwasher, 
color television, humidifier (-), 
people under 18, people 18-64, 
electric water heater

C0S1 0.09 1.94 Electric dryer (-), electric heat (-), 
supplemental electric heat

COS 2 0.16 1.8 Electric stove (?), air conditioner (?), 
people under 18, electric heat

M0NDAYb -0.012 2.18 —

TUESDAY 0.01 2.07 Dishwasher, supplemental electric 
heat (?)

WEDNESDAY 0.00 2.12 Dishwasher, supplemental electric 
heat (?), square footage (-)

THURSDAY 0.04 2.15 Dishwasher, electric heat (?), 
supplemental electric heat

FRIDAY 0.00 2.24 Dishwasher

SATURDAY 0.05 1.84 Dishwasher, electric heat, square 
footage (-)

HR2C 0.196 2.12 Survey (-), people under 18 (-),
people 18-64 (-1), people over 65 (-?)

aSurvey= 1 if in experimental group, 0 otherwise.

^It should be remembered when interpreting these results that 
the time-series coefficient on the day dummies are all relative 
to Sunday.

cWhen interpreting hourly dummies, it should be remembered 
that they are all relative to electricity usage in the suppressed 
variable hour 1 (midnight to 1:00 a.m. ). There is also some 
interaction with the sine and cosine terms on weekends and with 
the peak and high price variables on weekdays.
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Table 4-4 (continued)
Dependent
Variable Ad j. R2 d Main Significant Independent Variables

HR3 0.22 2.13 Survey (-), people under 18 (-), 
perople 18-64 (-), people over 65 (-)

HR4 0.20 2.18 Same as for HR3

HRS 0.16 2.16 Survey (-), people under 18 (-), 
people 18-64 (-1), people over 65 (-?) 
supplemental electric heat

HR6 0.13 2.17 Survey (-), people 18-64 (-), 
supplemental electric, electric water 
heater (?)

HR7 0.12 2.03 Survey (-), Man.-def. refrigerator (?) 
people 18-64 (-), electric water 
heater

HRS 0.14 2.64 Electric stove, people 18-64 (-), 
electric heat, electric water heater

HR9 0.18 1.89 Dishwasher (?), humidifier (-?), 
electric heat, electric water heater

HR10 0.16 1.97 Humidifier (-), electric heat (?), 
electric water heater

HR11 0.17 1.87 Humidifier (-), electric heat (?), 
supplemental electric heat (?), 
electric water heater

HR12 0.15 1.91 Electric heat, electric water heater, 
one-family dwelling

HR13 0.12 1.86 Home (-?), people over 65 (-?), 
electric water heater

HR14 0.08 1.89 People over 65 (-?), supplemental 
electric heat (?), electric water 
heat

HR15 0.04 1.89 People over 65 (-), supplemental 
electric heat, electric water heater

HR16 0.05 1.97 Same as for HR15

HR17 0.08 2.00 Same as for HR15

HR18 0.13 2.03 Electric range (?), dishwasher, 
electric water heater
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Table 4-4 (continued)
Dependent
Variable Ad j . R2 d Main Significant Independent Variables

HR19 0.22 2.09 Dishwasher, color television, people 
over 65 (-?), electric water heater

HR20 0.30 2.10 Electric stove, dishwasher, air 
conditioner (-?), people over 65 (-), 
electric heat, electric water heater, 
square footage

HR21 0.31 2.02 Survey (?), dishwasher, people under 
18, supplemental electric heat (?), 
electric water heater, square footage

HR22 0.25 1.96 Survey, electric dryer, dishwasher, 
dehumidifier (?), people under 18(?), 
electric water heater, square footage

PUBLIC HOLIDAY 0.23 1.94 Survey (-), electric heat (-), 
supplemental electric heat (-)

SCHOOL VACATION 0.49 1.12 Survey, self-def. refrigerator

PEAK PRICE 0.24 2.07 Survey (-), dishwasher (-), people 
18-64 (-), electric heat (-)

HIGH PRICE 0.14 1.97 Survey (-), dishwasher (-), electric 
heat (-)

WIND SPEED 0.62 1.07 Survey (-), dehumidifier (-), electric 
heat, square footage

DEW POINT 0.79 1.70 Survey (-), color television, air
conditioner, electric heat (-), 
supplemental heat (-), square footage 
(-)

SOLAR RADIATION 0.44 1.27 Survey (-) , freezer (?), electric heat
(-)

36



value (henceforth R is always adjusted for degrees of freedom), 

the Durbin-Watson statistic (d) and those independent variables 

which appear to be significant, that is, those with t-values over 

1.96. A variable is underlined in the table if |t| > 3 and is 

given an query if the t-value is suggestive but not strictly 

significant (i.e., |t| >1.6). A negative sign in parentheses 

indicates the coefficient in the cross-sectional regression is 

negative. Although the data are not in time-series form, the 

Durbin-Watson statistic does have some interpretative value, as 

the households were ranked approximately in order of level of 

electricity usage, first in the experimental group and then in 

the control group. Thus, a significant level for d would suggest 

a relationship with level of usage that has not been picked up by 

the independent variables.

In general, the cross-sectional results seem to be very
2promising. For some important variables the R are adequate to 

good, the d-values do not indicate any serial correlation, and 

most of the significant explanatory variables make economic sense. 

Some of the more important interpretations possible from the 

table are as follows:

(1) The sines and cosines come in with mixed significance. 

There is an indication that the within-day shape of aggregate 

electricity usage is different for weekends than for the rest of 

the week, but in our final model we expect to try to pick this 

up by variables specified differently.
2(2) The day dummies come in with very small R values. 

Although the means for these variables suggest that there might 

be day-to-day differences in the aggregate, and there certainly 

are significant differences for individual families, the household
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characteristics being used cannot explain these differences.

(3) The hour dummies contain many interesting results.
2Although the R values are not very high in some cases, there is 

evidence that certain appliances are important at different times 

of the day. Other appliances that might be thought to be of 

importance but did not appear might be due to relatively low 

electricity use by some appliances or to relative low saturation 

levels for some and very high saturation levels for others.

(4) The results for school vacations are difficult to 

explain, and further analysis is planned. The remarkably low 

d-value suggests effects due to level of electricity usage that 

have not been accounted for.
2(5) The weather variables often have very respectable R 

values, but some have low d-values. As we were not satisfied 

with the specification of the temperature variable used in our 

preliminary model, because of multicolinearity and nonlinear 

effects, the time-series coefficients of some of these variables 

are difficult to interpret, as they are for the cross-sectional 

regressions. Alternative specifications were considered and 

incorporated into our final model.

To economists, the most interesting variables are probably 

peak and high prices, and so the cross-sectional results for 

these variables plus "constant" will be discussed in more detail 

than the rest. The results from the full-scale cross-sectional 

regression, as summarized above, suggested that some amalgamation 

or respecification of the explanatory variables was worth 

considering.

To study some possible important cross effects, new variables 

were defined as follows:
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If survey = 1, if household is in experimental group

0, if household is in control group

then:

Sur sq heat = survey xelectric heat dummy x square footage of house

Sur dry =survey*no. of electric dryers

Sur dish = survey * no. of dishwashers

Sur wat = survey * electric water heating dummy

Sur sup = survey x supplementary electric heating dummy

Sq heat = square footage of house * electric heat dummy

People = total size of household

Appliance = weighted average of number of appliances in 
household, weights given by national average 
electricity usage of appliances (in annual 
kilowatt hours)

The detailed definition of this last variable is:

appliance = (electric range x 1200)+ self-defrosting refrigerator 
x 1620) + (manual-defrosting refrigerator x 1200)
+ (freezer 1500) + (black-and-white television x140)
+ (color television x 350)

Table 4-5 shows the estimated coefficients and |t|-statistics 

for the peak price, high price, and constant values from the time- 

series regression for both (1) the original list of household 

characteristics and (2) the revised list after eliminating some 

characteristics.

It is seen that the second formulation of the independent
2variables both improves the R values and explains the methods 

by which members of the experimental group react to the peak 

and high prices. As expected, they reduce appliance use, 

particularly electric heating and dishwashing. The second set of 

regressions indicate that the independent variables could be
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Table 4-5

CROSS-SECTIONAL RESULTS WITH INTERACTIONS

Independent
Variable Peak Price High Price Constant

(1) (2) (1) (2) (1) (2)

CONSTANT 0.16
(1.92)

0.12
(1.73)

0.07
(1.33)

0.05
(0.95)

-0.23
(2.67)

-0.17
(2.20)

SURVEY -0.14*
(4.83)

0.006
(0.10)

-0.06*
(3.37)

0.02
(0.38)

0.22*
(7.4)

0.12
(1.83)

ELECTRIC RANGE -0.003
(0.08)

-0.01
(0.38)

0.03
(0.75)

ELECTRIC STOVE 0.05
(1.22)

0.02
(0.35)

0.02
(0.80)

0.01
(0.16)

-0.04
(1.1)

-0.02
(0.41)

SELF-DEF. REFRIG.. -0.04
(0.75)

-0.01
(0.40)

-0.01
(0.12)

MAN.-DEF. REFRIG. -0.05
(1.1)

-0.02
(0.77)

-0.07
(1.54)

FREEZER -0.01
(0.23)

-0.006
(0.2)

0.004
(0.09)

DISHWASHER -0.07
(-2.28)

-0.02
(0.45)

-0.04*
(2.0)

0.01
(0.34)

0.02
(0.47)

0.02
(0.43)

BLACK AND WHITE 
TELEVISION

-0.01
(0.9)

0.003
(0.18)

-0.005
(0.20)

COLOR TELEVISION -0.03
(0.22)

-0.01
(0.59)

-0.007
(0.21)

HUMIDIFIER 0.008
(0.22)

0.004
(0.18)

0.01
(0.25)

DEHUMIDIFIER -0.03
(1.1)

-0.02
(1.1)

0.005
(0.17)

AIR CONDITIONING -0.01
(0.62)

-0.01
(0.75)

-0.006
(0.51)

-0.01
(0.78)

-0.01
(0.66)

-0.01
(0.54)

PEOPLE < 18 -0.02
(1.66)

0.02
(1.32)

-0.006
(0.80)

0.01
(0.93)

0.02
(1.32)

0.03
(1.51)

PEOPLE 18-64 -0.04*
(2.18)

-0.01
(1.2)

-0.05*
(2.80)

PEOPLE > 65 0.01
(0.37)

0.03
(1.39)

-0.02
(0.64)

0.03
(1.24)

0.08
(2.02)

0.03
(0.88)
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Table 4-5 (continued)
Independent
Variable Peak Price High Price Constant

(1) (2) (1) (2) (1) (2)

ELECTRIC HEAT -0.09*
(2.13)

-0.06*
(2.07)

0.32*
(7.31) -

SUPPLEMENTAL 
ELECTRIC HEAT

-0.09
(1.47)

-0.02
(0.28)

-0.07
(1.5)

-0.05
(0.84)

-0.04
(0.54)

0.02
(0.24)

ELECTRIC WATER 
HEATER

-0.05
(1.60)

-0.03
(0.76)

-0.03
(1.35)

-0.01
(0.46)

0.01
(0.24)

0.01
(0.23)

AGE OF HOUSE -0.0005
(1.14)

-0.0004
(1.22)

0.0001
(0.23)

AREA OF HOUSE 
(SQUARE FOOTAGE)

0.26E-
(1.04)

04 0.86E-
(0.50)

05 0.91E'
(3.34)

-04*

SINGLE-FAMILY HOUSE 0.05
(0.96)

0.03
(0.83)

0.04
(0.77)

SUR SQ HEAT -0.14E-
(3.45)

-03* -0.89E-
(3.24)

•04* 0.20E-03*
(4.55)

SUR DRY 0.02
(0.27)

0.01
(0.18)

0.04
(0.54)

SUR DISH -0.12*
(2.18)

-0.07
(1.75)

-0.01
(0.16)

SUR WAT -0.03
(0.54)

-0.03
(0.70)

0.01
(0.21)

SUR SUP -0.17
(1.46)

-0.05
(0.66)

-0.10
(0.79)

SQ HEAT 0.17E-
(0.57)

-04 0.86E-
(0.44)

-05 0.92E-04*
(2.91)

PEOPLE -0.03*
(2.07)

-0.01
(1.22)

0.05
(3.25)

APPLIANCE -0.24E-
(1.70)

-04 0.15E-
(1.6)

-04 0.34E-04*
(2.26)

R2 0.35 0.43 0.26 0.35 0.60 0.64

Adj . R2 0.24 0.36 0.14 0.27 0.54 0.60

d 2.07 2.42 1.97 2.28 1.66 2.02
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much reduced in number without any appreciable effect on the 

degree of explanation achieved.

Figure 4-1 shows the variation in effect of peak prices on 

the experimental group, as usage levels increase. It shows the 

plots of the estimated time-series regression coefficients for 

peak prices against customer identification number in both the 

experimental and control groups. The identification numbers 

approximately indicate -usage levels: low numbers correspond 

to low usage and high numbers to the highest usage levels. The 

dependent variables clearly exhibit heteroscedasticity, and the 

figure also indicates a great variability in the reaction of 

households to the peak pricing system.

Using the Model to Forecast

The model has been constructed in two stages, which may be 

characterized as follows.

Stage 1:

Ji>t ^j.A.t^j.t (4-1)

where U. is the electricity usage by family j at time t and
J > t

the t are the explanatory time series, such as the hour 

dummies and the weather variables described earlier.

Stage 2:

jk Iy,hi i,3 6j,k (4-2)

where the 1L ^ are the household characteristics for family j 

(such as the number of children, number of color television sets, 

size of the house); they are also dummy variables, taking value 

1 if they have electric heating and 0 otherwise; g^ is a
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Figure 4-1. Peak price time-series coefficients versus household identification number.



disturbance.

The total usage for the sample will then be

u(s) = lu.t

where = Te.t j 3,t

and so

k i j k j

As the conditional expectation of g. , and e will be 0, the best1»^ t
forecast will be obtained by setting the last two terms on the 

right-hand side equal to 0. If the sample contains Ng families 

and represents the average value for the i-^- household 

characteristics variable, the estimated sample usage formula 

becomes

b<s) - vhbucVV1 <4-3)k i

The corresponding estimate for the total residential electricity
(y)use in region U will be as, in Equation 4-3, but with Ng 

replaced by N^, the total number of families in the region.

For short-term forecasting, a sample of families in the 

region will supply the values for the H^, the results of the 

previous section will supply estimates of the Y^j and so only 

forecasts of the t need to be inserted to obtain a forecast 

of residential usage. Most of the ^ can be forecast without 

error, such as the daily and hourly dummy values for peak and 

high prices, the school and public holiday dummies, and the
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weekend cosine terms. Forecasts of weather values will be 

required, but they are usually available from the local weather 

office. It is possible, however, that weather data are not 

available for every quarter hour, as some weather offices supply 

only forecasts of daily low and high temperatures without any 

indication of when in the day they may occur. This leads to a 

weather forecasting question that is outside the scope of this 

paper but not unsolvable. The error series may also contain 

some time-structure and so would need analysis by the usual 

Box-Jenkins single-series modeling techniques, from which 

forecasts can be easily obtained (see, for example. Granger and 

Newbold [3]).

For longer-run forecasting, projected values for the need 

to be obtained and inserted in the model, possibly weighted to 

allow for any changes in efficiency of appliances, say, together 

with long-run forecasts of the time-series variables. For the 

weather variables this will involve using "normal" values for 

each day and hour of the day.

It is planned to evaluate many aspects of the model in the 

final stages of our project. There is, however, one obvious 

problem with using the model for forecasting in regions other 

than that for which the data were collected. It is quite 

possible, for example, that residents in the Midwest react 

differently to low temperatures than those in New England or in 

California, say, because their houses may be insulated more 

efficiently or because they are more used to extreme temperatures. 

This could lead to a bias in the coefficient on temperature in the 

forecasting model, but analysis of "forecasting" errors based on
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past data should allow compensation for such a bias. A further 

problem arises if a peak-load-pricing scheme is implemented in a 

region using a different pricing structure than that used in the 

Northeast Utilities experiment. There are a number of other 

studies looking into aspects of this question, and it is hoped 

that their results can be incorporated into this model.

It might be worthwhile concluding with a discussion of why 

we feel that the modeling procedure that we have used is at 

least potentially better for long-term forecasting than some 

alternatives. The method used attempts to take into account 

many of the causes of changes in residential electricity usage, 

especially over several seasons, and so it is both sophisticated 

and comprehensive, although doubtless many improvements are 

possible and further development is required. The cross-effects 

of appliances on short-term causal variables have been explicitly 

modeled. It would not have been possible to estimate a model 

such as Equation 4-3 by using just a single aggregate use series, 

so the availability of household data has been explicitly 

recognized. An alternative procedure would have been to try to 

model the regular components of the household demand series by 

using Box-Jenkins techniques, say, and then to have related the 

coefficients and residuals from these models to the data on 

household characteristics. Although this may well prove to be 

a feasible and valuable method for short-run forecasting, we 

doubt its usefulness over the longer term. The time-series 

models would try to pick up the daily and weekly usage shapes 

by daily and weekly differencing, or by using autoregressive 

models with very long lags (see, for instance, the paper by Uri
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and Parzen In Boyd [1]). The actual dally and weekly shapes in 

these models are determined by a set of startup values acting 

together with the model. However, our experience is that 

complicated but fairly stable shapes are not well forecast by 

this technique over the middle or long-run, since the forecast 

shape is inclined to drift away from the true shape. The 

procedure is also more disturbed by exceptional periods of usage 

than would be our model and its forecasts. Although by no means 

perfect, we do believe that the model analyzed in this section is 

a sensible one making use of most of the very considerable

amount of data made available to us.



Chapter 5

ANALYSIS USING HOURLY DATA

Introduction

This chapter develops a model of hourly demand for 

electricity by individual households. As before, the main 

objective of the model is to isolate and evaluate the importance 

of various factors and to produce a model that will be useful in 

forming medium-term forecasts of time-of-day demand. A medium- 

term forecast is understood to be for a time period when the 

demographic and appliance stock variables are known and the mean 

weather for that period is also known.

A second purpose of the model is to investigate in detail 

one of the factors: prices. Half of the sample population was 

subjected to time-of-day pricing with very high prices during 

two hours in the morning and two hours in the evening. The model 

endeavors to determine the extent of shift in the load curve, 

whether there is evidence for cross-elasticities between 

different hours, and whether it is possible to distinguish 

between households in their propensity to shift.

It is clear that many of the behavior patterns will not be 

easily described as a function of the demographic variables. For 

example, the time of rising in the morning is a habit that one 

might never expect to predict from the demographic variables.

That a household does the laundry on Thursday would similarly 

be unpredictable. Furthermore, even if all mealtimes are the 

same every day, the fact that for some meals a full dinner is 

prepared (with hours of oven time) while other meals consist of 

takeout foods, casts doubt on the ability of the model to
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distinguish between households with electric and gas stoves.

Only events that are very regular and that are predictable from 

the demographic variables can be observed. In short, the 

expectations for the fits in both the first and the second stage 

are- not very high.

In this second part, two separate analyses were undertaken, 

one for three winter months and one for two summer months. These 

periods were analyzed separately because the determining factors 

are very different. First, the peak pricing times are different, 

and it would be surprising if the response were the same for 

each period. Second, the major response to weather in the winter 

is the use of heating equipment; while in the summer, it is 

cooling. By separating the two it is possible to study 

conditions more like the experiment of the Southwest in the 

summer and that of the North and the East in the winter. Third, 

summer is almost entirely school vacation; while there are only 

two weeks of school vacation in the winter. Finally, swimming 

pool pumps, dehumidifiers, and air conditioners are used only in 

the summer; while electric heating and supplemental electric 

heaters are used only in the winter.

Econometric Considerations

As described earlier, the prediction and estimation of the 

use of electricity by a residential household proceeds in two 

steps, each of which is a linear regression. In the first stage, 

hourly usage for household i, denoted y^, is regressed upon K 

time-series causal variables that reflect the time of day and 

the weather, X.. There are T observations in each vector. Thei
time-series properties of the load curve are therefore summarized
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by the behavior of the mean vector that depends on the K unknown 

regression coefficients 3^. These regressions can be written as

yi = Xi6i+Ei i=l,...,N (5-1)

for the N households in the sample.

The second regression relates the K parameters of the load

curve to its demographic determinants. Let 3^. denote the vector
tilthat is made up of the value of the j regression coefficient

for all N households. Similarly, let represent the N*L matrix 

of demographic determinants of 3j. Then the second-stage cross- 

sectional relationship can be written

6j"ZjYj+T1j j=l....K (5-2)

Once the y are known, then the 3^ can be constructed for a 

household with known demographic characteristics. This then 

allows prediction of usage by this household over time, since 

the X. are known constants or weather variables.i
Several econometric issues arise when estimating such a set

of regression equations. The particular solution of preference

depends on the distributional properties of the disturbances and

on the dimensions of the problems If none of disturbances can

be assumed to have zero variance, the problem can be seen to be

a very large linear regression. The dependent variable would

be the stacked vector of N households with T observations on

each. This generates a vector of dimensions NT which, for our

winter sample period, would be more than 300,000 observations.

If there are L variables in each Z., then there would be LJ
composite variables of dimension NT, each of which is found by
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multiplication of X's and Z's. While this regression problem 

is complicated, the computation difficulty is exacerbated by 

the nonscalar covariance matrix of the disturbances. There 

would surely be different variances in the household regressions 

and there would be components related to the X's.

Because of the particular nature of the variables and the 

dimensions of our problem, a two-step procedure was more 

attractive. This involved estimating Equation (5-1) for each 

household using ordinary least sqaures (OLS) and then using the 

regression coefficients as dependent variables in Equation (5-2). 

Model (5-1) is therefore a random-coefficients model for which 

OLS is unbiased and consistent but not asymptotically efficient 

(see, for example, Hildreth and Houck [6J). This loss of 

efficiency and bias of standard errors may have some 

repercussions, but for our sample sizes these costs seem small.

In the analysis with quarter-hourly data, even the 

evaluation of the least-squares regressions in Equation (5-1) 

posed a substantial computational burden. For each household 

large matrices (X^'X^) had to be constructed and inverted using 

standard least-squares algorithms. Two important by-products 

of the decision to look at winter and summer separately and a 

computational improvement enormously decreased the computational 

effort.

By examining winter and summer separately, it was possible 

to diminish the size of the X. matrices because weather variablesi
could be tailored to the particular season. Also, some variables 

were omitted because of insignificant effects in the previous 

analysis. More important, however, all households included had
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complete records for the sample period and all weather variables 

were complete for the period. Linear adjustments to the 

reported weather were the only corrections necessary to produce 

weather appropriate to a specific location. Hourly dummies, 

school vacations, and peak prices were common; and the matrices 

became the same for all households (i.e., =X). The inversion of 

X'X was needed only once for all 140 regressions. For each 

household, only the X'y^ needed to be constructed. Drawbacks to 

this procedure are : (1) some restriction of the sample to 

households with continuous records and located near the 

principle weather station; (2) some difficulty interpreting the 

constant term, since this would include the temperature 

adjustments; and (3) failure of the nonlinear temperature terms, 

which may be attributed to the ommission of recommended 

locational adjustments.

A substantial computational improvement was achieved by 

solving the normal equations X'XB^X'y^ using the Cholesky 

square-root decomposition of the matrix X'X (Graybill [4]). The 

Cholesky decomposition consists of finding a unique triangular 

matrix T such that T,T = X'X. The solution of the normal 

equations, T'TB^ = X'y^, can then be done in two steps: get 

Tg^ = T' ■'‘X'y^, and then 3^ = T ^T* ‘*'X,y. The advantage of this 

procedure over the conventional method is that inversion of a 

triangular matrix is substantially simpler and more accurate 

than inverting the full matrix X'X.

Estimation of the cross-sectional regressions in Equation 

(5-2) also presents some econometric questions. Even if the 

rij are assumed to have scalar covariance matrices, the dependent 

variables will be measured with error since estimated coefficients
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are used rather than the true coefficients. Since the variances

of these measurement errors are known from the least-squares 

estimates of Equation (5-1), a generalized least-squares 

procedure can be implemented.

Letting E(luation (5-2) becomes

Wj + Vsj J-1.....K (5-3)

Assuming E(rK5j)=0, E(runj) = <L.I, and E(?jC^)=D^ where D^. is

a diagonal matrix with the estimated variance of regression

coefficient j for each of the N households on the diagonal, the
2covariance matrix of the disturbances is simply fi=cr.I + D.. The1 32one unknown parameter a can be estimated from the least-squares 

residuals of Equation (5-3) following Hanushek [_5]. Letting e^ be 

the least-squares residuals from Equation (5-3), it can be shown 

that

E(eje ) = (N-DoJ + trlDj + (ZjlZJ)“1(Z 'D^Z^)] (5-4)

and therefore an unbiased estimator of a. is1

9 ele. - tr[D. + (Z!Z.) 1(Z.’D.Z.)] 
2 _ ,1 1__________ .1 .1 .1 3 3 .1
i ~ n-l (5-5)

This procedure is easy to follow, although evaluation of the 

second term in the trace is not computational trivial.

In this study there are approximately 30 cross-sectional 

regressions in each of the two seasons; hence this procedure 

requires substantial computational effort. However, because of 

the fact that each time-series regression has the same matrix 

of regressors, X, and each cross-sectional regression has been
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chosen to have the same demographic determinants, Z, the
tilprocedure can be vastly simplified. The i element of can be 

rewritten as

(Vii=ajsi (5-6)

where a^. is (X'X)^ and s_^ is the standard error of the regression 
th 2for the i household. Placing s_^ on the diagonal of a matrix S, 

the estimator (Equation (5-5)) can be rewritten as

e.'e. - a.[^s^ +tr(Z,Z)_1(Z,SZ)]
,2 22 J i 1________________
i " N-L (5-7)

For each choice of Z and X, the trace is only evaluated once
*2and the estimation of is simply accomplished.

A 2 AThe matrix a.I + D. =fl. is a consistent estimator of the 111
disturbance covariance matrix, and thus generalized least squares 

(GLS) will be asymptotically efficient.

j=l,...,K (5-8)

The importance of the GLS correction will differ from equation to 

equation, depending on the size of °j/aj relative to S. 

Time-Series Regressions

The data available for the time-series regressions consist 

of quarter-hourly usage figures from 140 households over a 

10-month period, together with matching weather variables. As 

described in Chapter 4, regressions were run using all of the 

data, which ran to several million terms. In the present version, 

all variables have been aggregated to hourly figures and separate 

regressions are run for a winter period, consisting of December 

1973, January and Februray 1976, and a summer period of July and
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and August 1976, excluding periods immediately around major

public holidays. Samples of the hourly usage data were plotted
2and a very high noise-to-signal ratio was apparent, so high R 

values for the time-series regressions were not expected, or 

achieved.

The explanatory variables

To model the major regularities in electricity usage 

displayed by a household due to habits or lifestyle requirements 

of its members, hourly dummies were used, but omitting the hours 

1 a.m. to 4 a.m. The hours omitted are typically minimum-use and 

act as a base period against which other hours can be compared.

In the earlier part, day dummies had also been used, but except 

for weekends the typical daily shape appeared to be constant for 

most households, or at least any differences could not be 

explained by the household characteristics that were available.

To allow for shifts in the curve on weekends, two variables were 

introduced, sine 2 (SIN2) and cosine 2 (C0S2), defined to be 

sin irt/12 and cos Trt/12 respectively, at weekends but 0 on other 

days (the earlier results suggested that additional sine and 

cosine terms were not necessary). To allow for differences in 

level on workdays, a dummy WORK was used, being 0 on weekends or 

public holidays and 1 otherwise.

Since the pricing experiment for part of the sample should 

also alter the shape of the household-demand curve, a further 

dummy was defined to investigate this effect. The variable PEAK 

is defined as follows:
PEAK= 1 9-11 a.m. and 5-7 p.m. for winter weekdays

= 1 10 a.m. to .noon and 1-3 p.m, for summer weekdays
=0 otherwise
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Families in the peak-load pricing experiment were required to 

pay 16<:/kWh during peak periods, 3<?/kWh from 8 a.m. to 9 p.m.

(other than the peak hours), and Iq/kWh for all other hours. On 

weekends and public holidays the peak period was priced at the 

intermediate rate. Since this dummy varies between weekends and 

weekdays, it is not completely colinear with the hour dummies.

It may also pick up part of the weekend change of shape for 

families not in the experiment, so its interpretation is not 

necessarily straightforward.

For the winter period a dummy variable SCHVAC was used to 

investigate the effect of school vacations, taking the value 1 

during the vacation and 0 otherwise. The entire summer period 

was during a school vacation, so this variable was not necessary.

The most important short-term causes of movements away from 

the typical load curve are, of course, the weather variables.

The process whereby outside temperatures, humidity, and wind 

speed change the temperature inside a house or apartment is 

likely to involve a complicated transfer function, possibly 

including nonlinear terms. In an attempt to pick up the delayed 

effect of exceptional temperatures, the moving average of 

temperatures over the preceding 26 hours (denoted TEMPMA) was 

included as an explanatory variable. For the winter period both 

present temperature and this temperature value squared were used 

(denoted TEMPNOW and TEMPSQ) to see if a nonlinear effect was 

discernible. For summer, it is expected that temperature by itself 

is less important than is a measure of discomfort involving both 

temperature and humidity. The measure used was the average of 

wet- and dry-bulb temperatures, which is a convenient proxy for
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the well-known human discomfort index (denoted TEMPHUM). All

temperatures are measured in degrees Celsius. After some

experimentation with alternative formulations it was decided to

include wind speed (denoted WINDSPEED) simply as an additive term

in both the winter and summer periods. Two other weather
2variables were available, solar radiation (cal/cm /min), and wind 

direction, but earlier results did not find these variables to be 

of significance.

The time-series regressions were calculated for a three- 

month winter period, December 1975, January and February 1976, 

but excluding the Christmas and New Year periods, which were 

considered to be exceptional. The summer months were July and 

August 1976, excluding the July 4 holiday. To list the variables 

used in these regressions and to illustrate the type of results 

obtained for an individual household. Table 5-1 shows the 

regression parameters and t-values for household number 3412317, 

which is just above average in the total amount of electricity 

demanded and belongs to the control group. The hour dummy 

parameters show the household beginning to stir in hour 9, a 

midmorning peak in use, an afternoon lull, and the most intensive 

use in the evening. The significance of SIN2 in the winter 

suggests a deviation between weekday and weekend patterns for 

that period. Temperature-humidity (TEMPHUM) is seen to be 

significant in summer, as are several temperature variables 

during winter.

The analysis and interpretation of almost 280 regressions, 

each involving 28 or more explanatory variables, is no simple 

task. Most of the results follow intuition, but there are also 

some surprises. For example, the daily shape of some households
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Table 5-1

TIME-SERIES REGRESSION RESULTS FOR PARTICULAR HOUSEHOLD

Variable Summer Winter Variable Summer Winter

HRl* 0.17 (0.7)--0.29 (-1.8) WORKDAY 0.19 (2.0) -0.04 (-0.5)
HRS 0.27 (1.2)--0.02 (-0.1) PEAK 0.21 (0.8) -0.26 (-1.5)
HR6 0.21 (0.9)--0.21 (-1.3) WINDSPEED--0.016(-0.75) -0.006(-0.6)
HR7 0.22 (1.0)--0.11 (-0.6) TEMPMA 0.18 (5.9) -0.02 (-2.4)
HRS 0.18 (0.8) 0.41 ( 2.5) TEMPHUM 0.08 (3.6)
HR9 1.00 (4.3) 1.20 ( 6.6) TEMPSQ 0.002( 2.4)
HR10 1.80 (7.6) 2.20 ( 9.9) TEMPNOW 0.013( 1.6)
HR11 1.30 (4.7) 2.40 (11.1) SIN2 0.06 (0.4) 0.27 ( 2.9)
HRl 2 0.93 (3.2) 1.60 ( 9.7) COS 2 -0.01 (-0.1) -0.05 (-0.5)
HRl 3 0.79 (3.4) 1.10 ( 6.8) CONSTANT --4.68 (-8.8) 7.90 ( 6.8)
HRl 4 0.31 (1.1) 0.68 ( 4.3) 9
HRl 5 0.54 (1.8) 0.55 ( 3.3) Adj. R 0.203 0.331
HRl 6 0.80 (3.6) 0.66 ( 4.1)
HRl 7 0.86 (3.7) 0.90 ( 5.3)
HRl 8 1.20 (5.1) 2.00 ( 9.2)
HRl 9 1.10 (4.9) 2.30 (10.4)
HR20 1.10 (4.7) 2.00 (12.1)
HR21 1.70 (7.3) 2.60 (15.5)
HR22 1.20 (5.3) 1.20 ( 7.3)
HR23 0.88 (3.9) 0.55 ( 3.6)
HR24 0.52 (2.4) 0.56 ( 3.3)
SCHVAC 0.35 ( 4.7)

Note: t-values are given in parentheses 
■k

HRl is midnight to 1 a.m.

Table 5-2

PERCENTAGE OF SIGNIFICANT COEFFICIENTS
Experimental Group Control Group

Variable Summer

PEAK 57 ( 8)
TEMPNOW
TEMPSQ
TEMPHUM 33 (78)
TEMPMA 49 (93)
WINDSPEED 28 (14)
SCHVAC
SIN2 36 (77)
COS2 38 (76)
WORK 32 (32)

Winter Summer Winter

56 ( 6) 39 (39) 49 (21)
47 ( 0) 55 (12)
29 (32)

50 (79)
24 (66)

57 ( 5) 50 (83) 55 (11)
40 (94) 29 (64) 39 (94)
36 (81) 41 (80)
63 (96) 23 (82) 67 (94)
48 (85) 35 (76) 55 (81)
48 (27) 38 (33) 36 (ID

Note: Numbers in parentheses indicate percent of these positive.
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is dramatically different from that of others. Whether these 

differences are systematic or are merely sampling errors and 

whether or not these shapes can be explained by the available 

data on household characteristics must await the cross-sectional 

regressions (reported in Chapter 6 where these differences are 

explicitly tested).

Table 5-2 summarizes some of the time-series regression 

results. For all variables other than the hourly dummies and 

the constant term, the percentage of coefficients having t-values 

with absolute values greater than 1.9 is shown, and in parentheses 

is given the percentage of these "significant" coefficients that 

have a positive sign.

Many of the results are easily explained, such as electricity 

usage being negatively correlated with temperature (TEMPNOW) in 

winter but positively related in summer (TEMPHUM) and, similarly, 

higher usage being correlated with higher wind speed in winter. 

Other results have less clear-cut explanations. For example, the 

square of present temperature, although infrequently significant, 

is predominantly negative for the experimental group but is 

usually positive for households in the control group. The results 

for SIN2 and C0S2 suggest that the daily shape varies between 

weekends and other days to a greater extent during winter than 

summer, which indicates that analyzing winter and summer 

separately was a correct strategy.

The households were classified into five equal subsamples

according to the previous year's total usage level; class 1

represented those in the lowest 20% of users and class 5 were the
220% heaviest users. Table 5-3 shows the average corrected R
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values achieved in the time-series regressions for the various 

groups.

Table 5-3

AVERAGE R2 VALUES
Class

1 2 3 4 5 Total

Experimental Group
Winter 0.315 0.281 0.360 0.352 0.507 0.363
Summer 0.259 0.235 0.281 0.260 0.272 0.261

Control Group
Winter 0.345 0.301 0.307 0.379 0.404 0.353
Summer 0.281 0.236 0.225 0.214 0.309 0.245

Although the very heaviest users, who typically used electricity
2for heating, have the highest R values, in general there is no

2systematic relationship between the level of usage and R .
2However, the R values are consistently higher in the winter than 

the summer, suggesting either more consistency of the daily 

shape (as picked up by the hourly dummies) in the winter or the 

greater explanatory power of the weather variables during the 

cold months.

Compared with the results achieved when using quarter-hourly 
2data, the R values are now somewhat higher, as might be expected; 

this observation was particularly true for the lower-usage classes 

of households.

Cross-Sectional Analysis

The variables used in the cross-sectional regressions for 

this part are the numbers of electric ranges, self-cleaning ovens, 

electric dryers, self-defrosting refrigerators, manual-defrosting 

refrigerators, freezers, dishwashers, color TV sets, black-and- 

white televisions, humidifiers, dehumidifiers, window air
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conditioners, number of persons in the household in each of 

three age groups (under 18, 18-64, 65 or over), age of house, 

square footage (area) of house, and the following dummy variables: 

one for experimental pricing group, central air conditioning, 

electric main heating system, electric supplementary heating 

system, electric water heater and swimming pool pump; and two 

dummy variables for type of structure, one for single-family and 

the other for mobile homes. Based primarily on the earlier 

experience, a subset was chosen for each season.

Ordinary least squares and generalized least squares 

regressions were estimated for each of the time-series 

regression coefficients in both the summer and the winter. The 

GLS correction was different for each regression, but invariably 

it had little effect. The weights constructed varied by a 

maximum of a factor of 2 over the households, but they frequently 

varied only by a few percent. This occurred because the 

homoscedastic component of the error term that is due directly 

to the "noise" in the cross-sectional relation was much larger 

than the component due to uncertainty in the dependent variable.

Out of 60 regressions, only 13 showed any change in the list 

of significant variables, as measured by t-statistics; and these 

generally were just small changes that made the variable appear

marginally significant rather than marginally insignificant. The
2 2 R fell slightly in the GLS regressions; but R here has a

dubious interpretation, particularly since there is no constant.

Because the results are so similar, only the OLS regressions are

presented. We have, however, indicated the places where the GLS

results differed.
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Tables 5-4 and 5-5 present, respectively, the summer and

winter cross-sectional results using the OLS estimation procedure

The dependent variables are the series of time-series regression

coefficients, and the independent variables are the household

characteristics listed above. The tables also show, for each
2variable, the adjusted R , Durbin-Watson statistic (d), and 

those independent variables that appear to be significant (those 

with t-values over 1.96 in absolute terms). A variable is 

underlined if |t| £3 and is given a query if the t-statistic is 

suggestive but not strictly significant (i.e., |t| >1.6). A 

negative sign in parentheses indicates that the coefficient in 

the cross-sectional regression is negative. Although the data 

are cross-sectional, as the households were approximately ranked 

in order of level of electricity usage (first in the experimental 

group and then in the control group), the Durbin-Watson statistic 

does have some interpretive value. None of the d-values, however 

indicate any serial correlation.

In general, the cross-sectional results seem promising.
2For some important variables the R are adequate to good, and 

most of the significant explanatory variables make economic sense 

Some of the more important interpretations possible from the 

tables are listed below, by season.

Summer Results 2
2The adjusted R values vary from -0.07 to 0.28. For the 

more important variables (hourly dummies, peak price, etc.), 

these values range from 0.10 to 0.28 which is not unreasonable 

for a cross-sectional study, though certainly not spectacular.

The results for individual variables are summarized below.
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Table 5-4

SUMMER CROSS-SECTIONAL RESULTS FOR SELECTED VARIABLES (OLS)

Dependent
Variable Adj . R2 d Main Significant Household Characteristics

CONSTANT 0.15 1.72 Central air conditioning xsquare footage
(-), window air conditioning x square 
footage (-)

HR5a 0.03 2.02 Dehumidifier (-), window air conditioning 
x square footage, people under 18 (-?)

HR6 -0.03 2.02 Electric water heater (?)

HR7 0.02 1.72 Electric water heater

HRS 0.05 1.64 Electric water heater

HR9 0.06 1.69 Electric water heater, people 18-64

HR10 0.10 2.01 Electric water heater, people under 18,
dehumidifier (-?), dishwasher (+?)

HR11 0.18 1.82 Electric water heater, people under 18,
central air conditioning xsquare footage 
(+?)

HRl 2 0.18 1.61 Electric water heater, people under 18,
central air conditioning xsquare footage

HRl 3 0.13 2.11 Electric water heater, people under 18

HRl 4 0.19 1.65 Electric water heater, people under 18,
central air conditioning xsquare footage

HRl 5 0.22 1.61 Electric water heater, people under 18, 
central air conditioning x square footage

HRl 6 0.18 1.95 Electric water heater, people under 18, 
central air conditioning xsquare footage

HRl 7 0.22 2.00 Electric water heater, people under 18, 
central air conditioning xsquare footage.
heated pool, people 18-64 (+?)

HRl 8 0.24 1.95 Electric water heater, people 18-64, 
people under 18, heated pool, central
air conditioning xsquare footage, people
65 or over (+?), dishwasher (+?)

HRl 9 0.28 2.02 Electric water heater, people under 18.
people 18-64, central air conditioning 
* square footage, dishwasher
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Dependent
Variable Main Significant Household CharacteristicsAdj. R2 d

HR20 0.28 1.86 Electric water heater, people under 18.
people 18-64, central air conditioning 
x square footage, dishwasher

HR21 0.26 2.04 Electric water heater, people under 18, 
people 18-24, central air conditioning 
x square footage, dishwasher

HR22 0.25 2.05 Electric water heater, people under 18, 
people 18-64, central air conditiioning 
x square footage, dishwasher, electric 
dryer (+?)

HR23 0.26 1.93 Electric water heater, people under 18, 
people 18-64, central air conditioning 
x square footage, dishwasher, electric 
dryer, survey dummy (+?)k

HR24 0.17 1.94 Electric water heater, people under 18, 
people 18-64, electric dryer

HR4 0.12 1.96 People under 18, people 18-64

PEAK PRICE 0.20 2.01 People under 18 (-), swimming pool pump
(-), survey dummy (-), central air 
conditioning x square footage (-?)

WEEKDAY -0.07 1.84 None

WIND SPEED 0.06 2.07 Dehumidifier (-), survey (-)

TEMPERATURE 0.08 1.73 Central air conditioning xsquare footage.
MOVING AVERAGE window air conditioning xsquare footage

TEMPERATURE 0.16 2.09 Central air conditioning xsquare footage.
HUMIDITY INDEX window air conditioning xsquare footage

SIN2 -0.01 1.80 None

C0S2 -0.01 2.05 People 18-64

HIGH HOURS 0.26 1.76 People under 18, central air conditioning
x square footage, electric water heater.
people 18-64

SUMMER TEMP 0.19 1.79 Central air conditioning x square footage.
window air conditioning x square footage

aWhen interpreting hourly dummies it should be remembered 
that they are relative to electricity usage in the suppressed 
hours 2 through 4 (1 to 4 a.m. ).

^Survey dummy= 1 if in experimental group, 0 otherwise.
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Table 5-5

WINTER CROSS-SECTIONAL RESULTS FOR SELECTED VARIABLES (OLS)

Dependent
Variable Adj. R2 d Main Significant Household Characteristics

CONSTANT 0.68 1.88 Electric water heater, electric heat- 
x square footage

HRS 0.12 2.07 Electric heatxsquare footage, people 
18-64 (-)

HR6 0.11 2.15 Electric heat x square footage, 
supplementary electric heat, electric 
water heater (+?)

HR7 0.14 2.16 Electric heat xsquare footage, electric 
water heater

HRS 0.17 2.33 Electric heat xsquare footage, survey 
dummy (?)

HR9 0.18 2.34 Electric heat xsquare footage, dishwasher 
(?)

HR10 0.18 2.14 Electric heat xsquare footage, dishwasher

HR11 0.09 2.25 Electric heat xsquare footage (?), 
dishwasher (?), electric water heater (?), 
people under 18 (?)

HRl 2 -0.02 2.36 None

HRl 3 0.01 2.05 People under 18

HRl 4 0.02 2.10 People under 18

HRl 5 0.05 2.31 Electric heatxsquare footage (-), 
people under 18

HRl 6 0.03 2.29 People under 18 (?)

HRl 7 0.07 2.41 People under 18

HR18 0.19 2.28 Electric heat x square footage, people 
under 18, dishwasher

HRl 9 0.22 2.17 People under 18, dishwasher, electric 
water heater (?)

HR20 0.17 2.28 People under 18, dishwasher, electric 
water heater (?)
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Dependent
Variable Adj. R2 d Main Significant Household Characteristics

HR21 0.31 2.06 People under 18, dishwasher, electric
heat x square footage, electric water 
heater (?)

HR22 0.31 2.04 People under 18, dishwasher, electric
water heater, survey, electric heat x 
square footage (?)

HR23 0.28 2.19 People under 18, dishwasher, electric 
water heater, survey

HR24 0.18 2.08 People under 18, dishwasher, electric 
water heater, survey

HRl 0.10 2.12 People under 18, electric water heater, 
survey

PEAK PRICE 0.31 1.92 Electric heat x square footage (-),
dishwasher (-), survey (-)

SCHVAC -0.02 1.66 None

WEEKDAY -0.05 2.26 None

WIND SPEED 0.54 2.39 Electric heat xsquare footage, electric
water heater (?)

TEMPERATURE 0.77 1.83 Electric heatxsquare footage (-),
MOVING AVERAGE electric water heater (-?)

TEMPERATURE
SQUARED

-0.00 2.20 Survey (-)

TEMPERATURE 0.74 2.24 Electric heat xsquare footage
NOW

SIN2 0.32 2.30 Electric heat xsquare footage, people
under 18, people 18-64, dishwasher, 
electric water heater (?)

C0S2 0.15 2.48 Electric heat xsquare footage. people
under 18 (?)

HIGH HOURS 0.12 2.24 People under 18, electric water heater 
(?), dishwasher

SUM OF 0.83 2.09 Electric heat x square footage (-),
TEMPERATURES supplementary electric heater (?)
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The hourly dummies contain many interesting results. The 

importance of certain appliances is clearly brought out in these 

variables. For instance, the electric water heater becomes a 

significant appliance in determining the regression coefficients 

for the hours 7 through 24 (Table 5-4). With GLS estimates, 

hour 6 is also significant, with hour 5 coming close. The 

dishwasher is most significant at the 19th hour, but during 

hours 20 through 23 also it has a significant impact. The 

product of a dummy for central air conditioning and the living 

area of the house in square feet was used as an explanatory 

variable. This becomes significant at hours 12 and 14 through 23. 

The electric dryer is significant from 11p.m. to midnight, but 

it has a t-value between 1.6 and 1.96 in the preceding two hours. 

If some of the insignificant variables causing multicolinearity 

problems were eliminated, the dryer might become important in 

these hours too. The pool pump is important from 4 to 5p.m.

Among other variables, the number of people under 18 is important 

during almost all the hours, the only exception being hours 5 

through 8. The number of people in the age group 18-64 is 

significant in the morning only from 8 to 9 a.m. The number of 

older people (65 or over) doesn't seem to matter much, except 

possibly from 5 to 6p.m., during which time the t-value lies 

between 1.6 and 1.96. The dummy variable for the experimental 

group was generally not significant, although it came close 

during the 23d hour. The remaining variables do not seem to have 

any significant effect on the regression coefficients for the 

hourly dummies. During the high-hour period of 9 a.m. to 9 p.m. 

the significant variables were people under 18, people 18-64,
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electric water heaters, and central air conditioning times square 

footage (area).

To economists, the most interesting variable is the peak 
2price, with an R of 0.2. Not surprisingly, the experimental

households showed a strongly significant negative regression

coefficient, indicating that they would use less electricity

during the peak pricing period as compared with the control

group. The heated pool also has an important negative effect,

and households with a pool pump are more likely to shift out of

the peak and reduce electricity consumption during that period.

Central air conditioning and area seem to interact to yield a

negative effect, but its t is only between -1.6 and -1.96. The

number of people under 18 also reacts negatively, that is, it

shifts out of the peak in a significant manner (with GLS

estimates this variable is marginally insignificant). The

remaining variables do not have much effect on the regression

coefficient for the peak price.

The weather variables (wind speed, temperature moving

average, temperature-humidity index, and sum of temperature-which
2is the sum of the other two temperature variables) had R values

ranging from 0.06 to 0.19. Air conditioning (both central and

window) times area was the only variable that had any significant

impact on the temperature variables. For wind speed, the

dehumidifier had a strong negative effect. The experimental group

showed a negative effect on wind speed.
2The adjusted R values for the sine and cosine terms are 

negative, indicating a poor fit in both cases. In the case of 

the sine term, none of the explanatory variables were significant;
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but in the case of cosine wt/2, the number of people in the age 

group 18-64 was significant.

Winter Results
2The values of R ranged, for the winter cross-sectional

regressions, from -0.05 to 0.83 (Table 5-5). As in the case of
2summer, the hourly dummies had reasonable R values, except in 

a few cases. In this case, also, there is no serial correlation. 

The specific results are described below.

The hour dummies exhibit interesting patterns similar to 

those in the summer. Electric heating times area is important 

during hours 5 through 10, 15, 18, and 21. The regression 

coefficient is generally positive except during 2 and 3p.m. , 

which suggests that less is used then than from 1 to 4 a.m. The

dishwasher has a significant effect from 9 to 11a.m. and again 

from 6p.m. to midnight. The GLS estimate was marginally 

insignificant for hour 1. The electric water heater has a 

noticeable effect from 6 to 7 a.m. and again from 9 p.m. to 1a.m.

In addition, the GLS estimates are marginally significant for 

hours 8 and 10. During the hours 5 to 6 a.m. and 6 to 9 p.m., 

the t-values for this variable range from 1.6 to 1.96, suggesting 

possible, although not strict, statistical significance. The 

number of people under 18 has a significant impact on the 

regression coefficients for the hours 12 noon through 1 a.m. It 

will be remembered that this variable was important at all hours 

after 8 a.m. in the summer. Presumably the people under 18 tend 

to be in school during the winter, accounting for less consumption 

during those mornings when other variables are held constant. 

People in the age group 18-64 generally had no effect on the
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hourly dummy regression coefficients, the only exception being 

from 4 to 5 a.m. when they had a significant decrease in 

consumption relative to 1 to 4a.m. In this respect, summer 

and winter exhibit a strong constrast. It will be recalled that 

the age group 18-64 significantly influenced the hourly 

regression coefficients from 8 to 9 a.m. and from 5 p.m. to 1a.m. 

This group's activities involving electricity consumption have 

indeed been curtailed in winter.

The experimental group did shift out of the peak hours, as 

evidenced by the significant positive coefficient for the survey 

dummy during the hours 9 p.m. to 1a.m. This also is in clear 

contrast to the summer behavior, when it was usually insignificant 

Presumably the extraordinary expense of winter heating provided 

the incentive for the survey households to postpone their 

consumption to the off-peak hours. During the high-hour period 

of 9a.m. to 9p.m., the dishwasher and the number of people under 

18 were the significant variables, although the electric water 

heater came close.

The regression coefficient for the peak price was

significantly affected by electric heating times area, dishwasher,

and the survey dummy, all of which had the expected negative 
2sign. The R for this variable was a respectable 0.31. In 

addition, the GLS estimate indicated a t-value of 1.61, 

suggesting near significance of people 18-64.

The weather variables generally had a very high value for
2R (0.54 to 0.77), with the exception of the regression for 

current temperature, for which it was nearly 0. Electric 

heating times area is significant in all these cases. The 

survey had a significant effect only on temperature squared.
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The electric water heater came close to being significant (for 

GLS it was significant) for the wind speed and temperature 

moving average. The sum of the temperature variables

(temperature now+temperature moving average) had a very high R 

(0.83), but only the electric heating was significant; although 

supplementary electric heating was nearly significant, with a 

t-value between 1.6 and 1.96.
2Unlike in the summer, the sine and cosine terms had R 

values of 0.32 and 0.15 respectively. Electric heating times 

area, people under 18, people 18-64, and the dishwasher 

significantly affected the regression coefficient for sine wt/2, 

and the electric water heater was close. For cosine wt/2 only 

the electric heating times area was significant, although the 

number of people under 18 was close.

2
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Chapter 6

IMPLICATIONS FOR PEAK-LOAD PRICING

The previous chapter presented results which indicated that 

households subject to peak load pricing used significantly less 

electricity during the four hours per day during which the peak 

price was charged, in both winter and summer. While it would 

not be sensible to attempt to derive a price elasticity from 

this observation (since there are only two price schedules 

and thus two points on a demand curve), it is possible to infer 

which appliance uses are responsible for the shift and whether 

activities are shifted into neighboring time periods or are 

merely curtailed.

In Figures 6-1 and 6-2 the coefficient of the survey 

variable from the cross-sectional regression is plotted against 

the hours of the day for the summer and winter periods. On the 

same graphs are plotted the price levels at these hours of the 

day. Assuming that the day is a weekday, the peak coefficient 

is included for the relevant hours. These series represent 

the difference in use by two households having the same 

appliances and demographic variables but different pricing. This 

interpretation is correct if the weather remains constant over 

the day or if the survey coefficient is 0 in the weather 

equations.

It can be seen from these graphs that there is substantial 

decrease in usage at the peak hours. There is also a spreading 

of the load, particularly into the evening but also into the 

morning period before the peak prices are charged. There appears 

to be a shift out of the shoulder-priced hours, again particularly
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in the evening. The pattern of cross-elasticities appears to be 

rather complicated. For example, the hour from 8 to 9 a.m. in the 

winter is above the usage of the control group even though it is 

a shoulder period. The explanation is that the large shift from 

the peak period, which begins at 9a.m., exceeds the decrease 

that would ordinarily be expected from households shifting usage 

to the period before 8 when the shoulder price begins.

In general, the households having peak pricing responded in 

the same way to weather conditions as those with flat-rate 

schedules. The exceptions are the quadratic term in temperature 

in the winter and the response to wind speed in the summer. 

Ordinarily one would expect the temperature-squared variable to 

enter with a positive sign, indicating a convex function with 

usage increasing faster as the temperature becomes lower. The 

survey variable enters the explanation of temperature squared 

with a significant negative sign, thereby indicating that the 

households apparently decrease their consumption when the 

wind speed increases. Presumably this is due to a discretionary 

shutdown of the air conditioners, or perhaps other appliances.

It may be possible to infer how the experimental group 

decreases their consumption. If, for example, it is from 

shifting the time when the electric dishwasher is used, then 

separate regressions for the experimental and control groups 

should exhibit the different responses. This is particularly 

useful information, since the elasticity of response to peak 

pricing will therefore depend upon the appliance mix in a region.

The regressions for the peak period are presented separately 

for the experimental and control groups in Table 6-1. A Chow 

test for equality of all coefficients except the constant is
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Table 6-1

REGRESSIONS FOR PEAK BY SUBGROUP
Winter Summer

Variable Control Experimental Control Experimental

ELECTRIC DRYER 0.022 0.219 -0.057 -0.178
(0.125) (0.199) (0.145) (0.116)

DISHWASHER -0.064 -0.410* 0.166 -0.015
(0.094) (0.178) (0.107) (0.103)

ELECTRIC WATER -0.096 -0.183 -0.006 -0.137
HEATER (0.109) (0.189) (0.092) (0.098)

PEOPLE UNDER 18 -0.051 0.008 -0.009 -0.082
(0.052) (0.066) (0.040) (0.039)

PEOPLE 18-64 -0.063 -0.120 -0.139 -0.009
(0.049) (0.085) (0.076) (0.050)

PEOPLE OVER 65 -0.088 0.013 -0.132 0.074
(0.139) (0.226) (0.138) (0.131)

ELECTRIC HEAT x -0.066 -0.511
SQUARE FOOTAGE x 
1000

(0.091) (0.124)

SUPPLEMENTARY 0.224 -0.076
ELECTRIC HEAT (0.216) (0.378)

TEMPORARY STRUCTURE -0.196 -0.116
(0.345) (0.559)

DEHUMIDIFIER 0.056 0.047
(0.094) (0.105)

WINDOW AIR CONDITIONERS -0.012 0.001
x SQUARE FOOTAGE x1000 (0.023) (0.036)

CENTRAL AIR CONDITIONING -0.223 -0.180
x SQUARE FOOTAGE x1000 (0.144) (0.124)

SWIMMING POOL PUMP 0.005 -0.636
(0.138) (0.163)

CONSTANT 0.184 0.089 0.220 0.018
(0.159) (0.227) (0.202) (0.159)

R2 0.150 0.370 0.180 0.300
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easily accepted, with F values of 1.22 and 1.24 in winter and 

summer. There are, however, some interesting differences in the 

coefficients. In the winter the electric heating variable is 

significantly different, judging by the difference in the 

coefficients divided by the square root of the sum of their 

variances. This asymptotically normal ratio is 2.9, indicating 

that peak-pricing households having electric heat shift out of 

the peak period more than those without electric heat. For 

dishwashers, the statistic is 1.7, indicating that a mechanism 

for experimental households to shift usage out of the peak is to 

alter the time at which they use the dishwasher. In the summer, 

only the swimming pool pump appears to differ significantly 

between the two groups, with a statistic of 3. As this is a 

regular use of appliances that can easily be shifted, it seems 

reasonable that it appear to be a mechanism for the shift. The 

dishwasher has a statistic of 1.2 in the summer. Notably lacking 

any difference is the effect of air conditioners; not only are 

air conditioners not significantly different between experimental 

and control groups, but the point estimates suggest that the 

experimental group actually uses them more during the peak hours.

In conclusion, there appears to be a very strong response 

to peak load pricing, with the substantial decrease in the peak 

hours being shifted partly to the early morning but more heavily 

into the evening. This shift is associated particularly with 

households having electric heating but also with dishwashers and 

swimming pool pumps.

Bearing in mind the difficulty of predicting personal habits, 

the results seem sensible and persuasive. Further analyses along
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these lines could well help distinguish still further the 

critical determinants of residential load curves and their 

response to time-of-day pricing.
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