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]. INTRODUCTION
I

Collisionless and dissipative drift waves, driven by gradients in the

plasma density and/or temperatures, are believed Lo dominate or at least
I

influence the transport properties of a variety of plasma confinement devices.

In a study begun in reference to transport in the Field Reversed Configuration

(FRC), we have developed a theory of these waves in a high # (_ plasma
I

pressure/magnetic pressure) plasma, including the effect of perturbed flow in

the direction of the plasma density.

This study was a natural extension of previous calculations; the _ = 1

Q nature of the FRC makes a proper treatmentof high # effects vital to an under-

standing of that device. In the course of this study we have obtained a

comprehensivedispersion relation which shows clearly how the numerical and

I dissipative drift wave instabilitiesevolve in wavenumber as # increases. A

major finding from this is that the effect of finite # begins to dominate long

before # _ 1; the expansion parameter is #f(k, ai, K, _, Ln) where f can be

Q substantiallygreater than ], depending on the wavenumber of the wave parallel

to the magnetic field (K), the wavenumber parallel to the particle drifts (k),

the wave frequency (_), the strengthof the density gradient (Ln), and the ion
0

gyroradius(ai). The fact that finite# effects can onset for quite small # make

this study applicableto confinementschemes such as tokamak in which # - 1-10%

in addition to the natural applicationto the FRC.

Q A second surprisingfact from the study was that includingfinite# could

result in a compressionalflow in the directionof the density gradient,and also

a perturbedelectricfield in that direction,which changesthe perturbedorbits.

Q
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Theseeffectsproveto be lowerorderin kai than the#9= 0 drifteffects. That

I is, finite# effectsset in for # << I for modeswith kai << 1.

In this reportwe deriveand quantifythe resultsquotedin the above

two paragraphs.
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2. ELEMENTSWHICHPARAHETRIZEDRIFT WAVEBEHAVIOR

Q

There are a number of plasma parameters and phenomenawhich can drive or

alter drift wave instabilities. Despite the extensive literature,not all of

I these parametersand phenomenahave been explored. The list of effects includes

the following:

Q Plasma Gradient Drifts: Drifts proportional to VnT are responsible for

virtuallyall drift wave activityand are included

in all theories.

• Magnetic Gradient Drifts: These include magnetic curvature effects. They

have beenmodelled in a limitednumberof examples

as a pseudogravity.

• Finite Larmor Radius Effects- In many cases, drift wave growth is of order

(kai)2. FLR effects are routinely
included in

drift wave calculations.

Finite Collisionality: Particle collisions allow cross field transport,0

but also provide a dissipation which can drive

negativeenergy waves unstable;they are included

• in calculationsof dissipative drift waves.

Finite Beta Effects: These have been largely ignored,with the notable

exception of Ref. I, which included the electro-

Q magnetic component (e-m) of the drift wave

introducedby finite8.I A subsequentcalculation2

has questionedthe existenceof drift instability

Q in the finite_ regime. The presentstudy obtains
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a complete description of the transition from #9

Q = O drift instabilityto higher /9instability.

Nonlocal Effects: In this categorywe combineeffects which operate

in the direction of the plasma gradients. With

Q few exceptions,previousdrift wave theorieshave

been local, in the sense that variations of the

perturbedquantitieswith x, where n = n(x), were

Q neglected,along with perturbedf.ieldsEx. Finite

/9can introduce an Ex and Bz, through the e-m

effectdBz/dt - (dEx/dY- dEy/dX)c. Inthe present

• study we keep these effects, and show that there

is a parameterrange in which they can be strong.

I
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3. NONLOCAL,FINITE /3, ARBITRARYPOLARIZATIONDRIFT WAVES

O

We have derived a general expression for drift waves which retains the

effects of finite #, variations in x, where np = np(X), and electric fields also

I in the x-direction.

We consider a slab plasma as shown in Figure 1, where the plasma is
A

infiniteand uniform in the z-y plane, B = BzZ is the magnetic field, and n is

• the plasma density. The plasma can be described by the distributionfunction

fo = fM (Vz' v2) g(n)

0

77= Vy - jr BzdX

O

O

B (x)
z

n(x) /

• /X/

-O

Figure 1. Plasma geometry for drift waves.

O

0



0

A perturbation6E = E(x)eikYeiKzeiWt, (i_/c)6B= -Vx6E is appliedto the plasma
Q

and the response calculatedfrom the Vlasov and Maxwell equations,

' v' x 6B_
f = - q _ dt eik'r (E + j . Vvf° , (I)mQ le c

V • E = 4_ 7.qe _ fle dv , (2)
I e

4_ 7.q_ ]"VfldV , (x and z components) (3)
Q Vx6B=_- e

I i-_6B = - V x E ,C

where the sums are over particle species e, and r', v' are the particle orbits0

in the unperturbedmagnetic field. Making a small Larmor radius approximation

(ai < Ln = (dln n/dx)-I) the integrand of (i) can be expanded

0

aE I a2E (x' - x) 2 (4)
E(x) = E(x) + _ (x' - x) + 2 ax2

Q
and the orbit integralscarried out in the usual way. The result, after much

algebra, is

0
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ox_ 22k aimci [We _xa2 (1 + _---) X (2 + We)] _ -• i ax2 m

{ oxox{ [ ox ]}• k2x_+k2'2(_+_-) *+ x_ we . (2+we) Ex-l (a

I [ ox_v ox]I K2>,_- I m m (I + We)(1 - _--) We +

I x I ox} km (2 + We) (I _--)_XWe Ez K ' (5)Q We m

k2a2m mx -k2>,2K2c2 EWe mx Te mx
1 ci We(l ___)I dEy + =

I X m - k dx m2 X m (I + T?.)(1- _--) Eyl

• {k2>'2K2c2k2>'2K2c2 d2 _ mx iv (I+ We)]+
_ i + we (1 _--)[1

_2 _2 k2 dx2

• _x EWe _ mx iu }
Wi(1 + _--) X (I ___)2[I +_-(I + We)] k Ez , (6)

Q where _x _ kT 1 afo
-M_ci fo ax ' We is defined below in Eqs. (9)-(10), and X _ I +

_X

Be (I + _--)a(i + We).
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The perturbed field Ex has been expressed in terms of Ey, Ez by

O

1 _ _#___ + (I + _--)Ln EyEx- X _x ikLn _-

I

_ (a× }
- We (I __) k Ez . (7)

• Clearly, Ex is not necessarily negligible for finite small # because the

parameterwhich determines the generationof Ex from finite /9is not /9itself,

but

Q

kLn

Q where kLn = kai(Ln/ai)can be a small parameter even when Ln > ai•

There is a variety of information contained in Eqs. (5)-(7). One

possibility is to solve the differentialequation (4th order) as an eigenvalue

Q problem for _. This requires a specificprofile n(x), B(x). We do not attempt

this solution,on the grounds that the result would be specific to '.heFRC and

probably not worth the time such a device-specificcalculationwould require.

• Two more modest efforts are to:

Delete all a/ax and Ex effects and find _(ex, /_,u, kai, KLn).

I e Write a/ax = ikx and find the effect of Ex aridharmonic spatial

structure in the x-direction.

Q We discuss these in the next two sections.
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4. DRIFT WAVESFORARBITRARY/_; Ex = kx = 0

e

SeLLing Ex - kx = O, Eqs. (5)-(6) reduce to (v is the electron collision

frequency),

I

/3We(_ (w iv iv
k2 2 o (_---+I) ] + - I)

ai _-_ ox K2Ln2 ox ox o x _x We) +

e

/9 (_--+ 1) o I = (_---- l)(° iv ivK2Ln2 ox _-xWi ox ox ox (aR We) We +
@

(_ + I)wi (e)
OX OXI

where ox is the ion drift frequencyand the W's are the limit as E _ 0 of

@
2

r_ ve-v dv , (9)
I

We = J v + [(o- iv)/Kve] - i(

@

o= -V2

W.: I _ ve dv (10)
Q i _ -_ v + (o /Kvi) - iE '

with ve and vi the thermal velocities.
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In the limit /9= O, u = O, and Kvi < _ < Kve, Eq. (8) gives

0

= _x + 2k2a2/We,

Q

2 2k2a_(aX/Kve ,= _x (1 _ 2k2ai _ i _f_ ) (11)

Q

which is the familiar collisionless branch of the drift wave instability

spectrum. When _ = O, v . O, _ > Kve, Eq. (8) gives

0

_x

= _x + 4k2a_P_ (K___)2(_x _ iu) _ (12)
e

Q

which is the drift dissipativebranch of the drift wave spectrum. So Eq. (8)

extends both the collisionlessand dissipative drift waves into the finite

regime.
Q

We first considerthe collisionlessdrift instability• RewritingEq. (8)

gives

0

2 2 _x _x
k ai (w + ) Wi (_---+ I) (13)

_x + k2a_ (_---+ I)We 1 - _--
Q K2Ln2 _x _x

This shows that the appropriate"finite-#"parameter is k2a2i#/K2Ln2.When this

Q parameter is small, Eq. (13) becomes

10
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2 2 2k2a_X/Kve2k ai + i_

• _ _ _x I - 2k2a2. . (14)
I I

K2Ln2

0
2 2 K2Ln2This shows the path that the drift instability follows in k ai and

parameter space as _ increases. From Eq. (13) we see further that as

k2a_/_/K2L..2increases,(o/(ox < 1 extends the _ range of the collisionlessdriftII

• instabiI_ty.

Using a numerical method developed by N. T. Gladd,3 we have solved Eq.

(13) directly for increasingvalues of _I. Figure 2 shows the developmentof the

• collisionlessdrift instabilitywith /9. Equation (13) essentially gives _/_x

2 2 K2Ln2in terms of three parameters,k ai, , _. In reducingthe result to Im_(_),

we varied kai and KLn as well as _ in a manner consistent with the idea that

Q u/Kvi > I and Wi < 2k2a_ would constrain these parameters. Figure 2 is a

qualitativerepresentationof the maximumvalue of Im_i for a given /_. When kai

> 0.7 or KLn > 0.233, the collisionlessdrift instabilitydisappeared for all

Next we turn to the dissipativedrift wave (DDW) branch. Here

_---=I + 4k2 2 sx 2 (____ iv k2a2
l (_

_x ai (°x _) l KLn22 _ _-x_-x(+ I) , (15)

Q (sx iv)/Kve > I. This constraint is a severe limit on k2a_/_/K2Ln2_ =
where

(sX/Kve)(M/m)I/2B,and finite /3quickly forces the mode to s << sx or to the

branch _/sx - -I, both of which are stable. As a practical matter, this means

I
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thattheDDW wouldappearunstableonlyfor/3< (me/mi).However,as /3increases

Q the frequency_/_x decreases,until (_ - iu)/Kve < I. This mode remains

unstable,with

• Figure3 showsthe evolutionof the DDW from the /9= O limitto larger/3,as

givenby Eq. (16). This driftwave branchis discussedin Ref. I.

O
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Figure 2. _i/_x vs. X_for the collisioniessdrift instability.
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5. NONLOCALEFFECTSAT // _ 0

O

When the Ex and kx terms are retained in the general derivation of high

/3 drift waves, an interesting feature is apparent from Eqs. (15)-(16). A new

• parameter,

kx Wci

ky _ ' (17)
O

competes with terms of order 1. While we have not yet explored the consequence

of this new parameter,the physics of its appearance is clear, as follows.

Q The perturbed charge density in the drift wave is determined by the

perturbedvelocities,

• dno
i((a + kVD) nI = - Vlx dx - nov • VI . (18)

Because for low frequencywaves V1x is the same for electrons and ions to order

I k22 22
ai, and dnoe/dX = dnoi/dx, the RHS of Eq. (17) is o(k ai) when only Ey

perturbationsare included. The kx and Ex terms produce a 6Bz, which gives a

VD x 6Bz contributionto 6Vx which is ,)ppositefor electrons and ions. This
0

Ieads to

KVd
• i,7.enov " VI = _c_ikEy +--_ ( Ey - ikEx) ,

dno k2a2E_ci i(a rexc kc ExVd/ ikxVd CEy

7. Vx " d--x- = B +-- [B + +-O i,e _c _ Bo J _c B '

14
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Q

where Ex - (/9/kLn)Ey: /9(ai/Ln)(I/kai)Eyshows that the contributionsfrom kx,

• Ex can be substantialeven for /9<< I. The implicationsof this ordering of /9,

kai, ai/Ln will be explored in the continuationof the present Grant period.

Q
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