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1. INTRODUCTION

Collisionless and dissipative drift waves, driven by gradients in the
plasma density and/or temperatures, are believed to dominate or at least
influence the transport properties of a variety of plasma confinement devices.
In a study begun in reference to transport in the Field Reversed Configuration
(FRC), we have developed a theory of these waves in a high B (= plasma
pressure/magnetic pressure) plasma, including the effect of perturbed flow in
the direction of the plasma density.

This study was a natural extension of previous calculations; the g = 1
nature of the FRC makes a proper treatment of high B effects vital to an under-
standing of that device. In the course of this study we have obtained a
comprehensive dispersion relation which shows clearly how the numerical and
dissipative drift wave instabilities evolve in wavenumber as B increases. A
major finding from this is that the effect of finite B begins to dominate long
before 8 - 1; the expansion parameter is Af(k, ai, K, w, Ln) where f can be
substantially greater than 1, depending on the wavenumber of the wave parallel
to the magnetic field (K), the wavenumber parallel to the particle drifts (k),
the wave frequency (w), the strength of the density gradient (Ln)’ and the ion
gyroradius (ai). The fact that finite B effects can onset for quite small B make
this study applicable to confinement schemes such as tokamak in which 8 ~ 1-10%
in addition to the natural application to the FRC.

A second surprising fact from the study was that including finite 8 could
result in a compressional flow in the direction of the density gradient, and also

a perturbed electric field in that direction, which changes the perturbed orbits.



These effects prove to be lower order in kai than the 8 = 0 drift effects. That
is, finite B effects set in for B << 1 for modes with kai << 1.
In this report we derive and quantify the results quoted in the above

two paragraphs.



2. ELEMENTS WHICH PARAMETRIZE DRIFT WAVE BEHAVIOR

There are a number of plasma parameters and phenomena which can drive or

alter drift wave instabilities. Despite the extensive literature, not all of

these parameters and phenomena have been explored. The list of effects includes

the following:

Plasma Gradient Drifts:

Magnetic Gradient Drifts:

Finite Larmor Radius Effects:

Finite Collisionality:

Finite Beta Effects:

Drifts proportional to VnT are responsible for
virtually all drift wave activity and are included
in all theories.

These include magnetic curvature effects. They
have been modelled in a 1imited number of examples
as a pseudogravity.

In many cases, drift wave growth is of order
(kai)z. FLR effects are routinely included in
drift wave calculations.

Particle collisions allow cross field transport,
but also provide a dissipation which can drive
negative energy waves unstable; they are included
in calculations of dissipative drift waves.
These have been largely ignored, with the notable
exception of Ref. 1, which included the electro-
magnetic component (e-m) of the drift wave
introduced by finite 8." A subsequent calculation®
has questioned the existence of drift instability

in the finite B regime. The present study obtains
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Nonlocal Effects:

a complete description of the transition from B
= 0 drift instability to higher B instability.

In this category we combine effects which operate
in the direction of the plasma gradients. With
few exceptions, previous drift wave theories have
been local, in the sense that variations of the
perturbed quantities with x, where n = n(x), were
neglected, along with perturbed fields Ex. Finite
B can introduce an EX and Bz’ through the e-m
effect dBZ/dt = (dEX/dy - dEy/dx)c. In the present
study we keep these effects, and show that there

is a parameter range in which they can be strong.



3. NONLOCAL, FINITE 8, ARBITRARY POLARIZATION DRIFT WAVES

We have derived a general expression for drift waves which retains the

effects of finite B, variations in x, where np = np(x), and electric fields also

in the x-direction.
We consider a slab plasma as shown in Figure 1, where the plasma is
A
infinite and uniform in the z-y plane, B = Bzz is the magnetic field, and n is

the plasma density. The plasma can be described by the distribution function

2
fo = fy (v, v]) g(n)

- _r
T)—Vy JBZdX

B (x)
n(x)
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Figure 1. Plasma geometry for drift waves.



A perturbation §E = E(x)eikyeiKZeiwt, (iw/c)éB = -Vx8E is applied to the plasma

and the response calculated from the Vlasov and Maxwell equations,

flo= - alate™™ €+ L owe (1)

V-EB=dn2q, ) fla 9V ’ (2)
a

v _47[ ' 3

x 6B = c 2 Ay f VfldV s (x and z components) (3)

o

iw _

- B=-VxE ,

where the sums are over particle species a, and r’, v’ are the particle orbits
in the unperturbed magnetic field. Making a small Larmor radius approximation

(ai < Ln = (dlIn n/dx)_l) the integrand of (1) can be expanded

2
E(x) = E(x) + 5 (x' - x) + 3 :-% x - %%, (4)
X

and the orbit integrals carried out in the usual way. The resuit, after much

algebra, is



‘W . X
W y ici W 1 .
3 T+ 57 = - —Xw [we © (2+we)]ﬁax

T X
2.2 2.2 o, W® e W _
{k Boawda 1+ -8 (1e 8 4 W, - & (2 + we)]} 3

{szg i [1 ; gf v - -—)]

X X
w W', B K
[we S 24 we)] (1-9)8 we} E, & , (5)
2.2 2,2,2 2
k"aSw Wx dE k" ArK"c BW
ici 17y D e w W -
xo Ml - 5) ko * [ Z  xe Ut )(1 )
kz)‘ZKZ 2 kz)\SKz 2 . dz
2 - 5 -5 -5t (1--—)[1-—(1+W)]+
W 7] k™ dx
X BW X K
R I R “’(1+wn},—(Z : (6)
where o* = KT 1—-a~f—°~ W is defined below in Egs. (9)-(10), and X = 2
chi f_ dx o a
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By (1+5-)y (1+W)



The perturbed field Ex has been expressed in terms of Ey, EZ by

_le g et ot o 2]
Ex =X o KL, {[ w T (I+57) bh 5 Ey

X K
-, (1 -3 EZ} : (7)

Clearly, Ey is not necessarily negligible for finite small B because the

parameter which determines the generation of EX from finite B is not B itself,

but
B
kLn

where kLn = kai(Ln/ai) can be a small parameter even when Ln > ay.

There is a variety of information contained in Egs. (5)-(7). One
possibility is to solve the differential equation (4th order) as an eigenvalue
problem for w. This requires a specific profile n(x), B(x). We do not attempt
this solution, on the grounds that the result would be specific to .he FRC and
probably not worth the time such a device-specific calculation would require.

Two more modest efforts are to:

»  Delete all 8/dx and E, effects and find w(w*, B, v, ka;, KL,).
° Write d/dx = ikx and find the effect of EX and harmonic spatial

structure in the x-direction.

We discuss these in the next two sections.
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4. DRIFT WAVES FOR ARBITRARY 8; Ex = kx =0

Setting Ex = kx = 0, Eqs. (5)-(6) reduce to (v is the electron collision

frequency),

2.2
k a;

_B e, 1) Low | =% -1)E -2, Wyuyw +

KZan (wx wx i & o wx o™ e/ Te

W (W 8
X (wx + 1) Ni , (8)

where & is the ion drift frequency and the W's are the limit as ¢ » 0 of

2

W o1 T ve v dv (9)
e o VY [(w - iv)/Kve] - i€ ’
1 T ve-vz dv 10)
W; = ]% £ v+ (0 /Kv,) - i€ ’ (

with v_ and Vs the thermal velocities.
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In the Timit g = 0, v = 0, and Kv, < w < Kv_, Eq. (8) gives

€
]

X 2.2
w" + 2k ai/we

o (1 - 2k%a? - i /7 2k%ale*/ky,) , (11)

which is the familiar collisionless branch of the drift wave instability

spectrum. When 8 =0, v # 0, @ > Kve, Eq. (8) gives

_ 2.2 W~ X 12
© = 0 + 4k%a aj (Kv ) (0" - iv) , (12)

which is the drift dissipative branch of the drift wave spectrum. So Eq. (8)
extends both the collisionless and dissipative drift waves into the finite 8
regime.

We first consider the collisionless drift instability. Rewriting Eq. (8)

gives
2 2 X
(0 + *) W.0
w =+ S RS S) . (13)
2 2 W X
W, [1- — (= +
e K2L 2 K W*
n
This shows that the appropriate "finite-g" parameter is k B/K . When this
parameter is small, Eq. (13) becomes
10




2k2a§ +ifx 2k2a]?wx/Kve
2k2a?

1 - 18
2, 2
| KLn

1

€
n
€

(14)

This shows the path that the drift instability follows in k%’ and K%L 7

parameter space as B increases. From Eq. (13) we see further that as
kzaﬁﬁ/Ksz;2 increases, w/wx < 1 extends the B range of the collisionless drift
instability.

Using a numerical method developed by N. 7. Gladd,®> we have solved Eq.
(13) directly for increasing values of B. Figure 2 shows the development of the
collisionless drift instability with 8. Equation (13) essentially gives w/wX
in terms of three parameters, kzaf, Kanz, B. In reducing the result to Imw(B),
we varied kai and KL, as well as B in a manner consistent with the idea that
w/Kvi > 1 and wi < 2k2a§ would constrain these parameters. Figure 2 is a
qualitative representation of the maximum value of Imwi for a given 8. When kai
> 0.7 or KLn > 0.233, the collisionless drift instability disappeared for all
B.

Next we turn to the dissipative drift wave (DDW) branch. Here
2.2
2 . X -1
w 2.2 [o* W iv 1,0 W
—=1+4k"a; |z (=-—=) 1 -—558=(=+1) , (15)
o~ i [Kv ] X X { 2 ﬁ PR

where (w* - iv)/Kve > 1. This constraint is a severe limit on kzaiﬂ/Kan2 =
(wx/Kve)(M/m)l/zﬁ, and finite B quickly forces the mode to w << w* or to the

branch w/wX = -1, both of which are stable. As a practical matter, this means

11



that the DDW would appear unstable only for B < (me/mi). However, as B increases
the frequency w/wx decreases, until (0 - iv)/Kve < 1. This mode remains

unstable, with

n . n M
kzafﬁ m ﬁvz

k2 2 k2L 212 | k2L 20%2 [ka, 2
n (16)

Figure 3 shows the evolution of the DDW from the g8 = 0 limit to larger B, as

given by £q. (16). This drift wave branch is discussed in Ref. 1.

12
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Figure 2. w]./wx vs. B for the collisioniess drift instability.
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Figure 3.

w/wx vs. B for the DDW.
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5. NONLOCAL EFFECTS AT 8+ O

When the E, and k, terms are retained in the general derivation of high

B drift waves, an interesting feature is apparent from Eqs. (15)-(16). A new

parameter,

Wej

k
X
< , (17)
E; ©

competes with terms of order 1. While we have not yet explored the consequence
of this new parameter, the physics of its appearance is clear, as follows.

The perturbed charge density in the drift wave is determined by the

perturbed velocities,

dno
i(w + kVD) np = - V..o =— -nV .V

1x dx o} 1 (18)

Because for low frequency waves V

1x
2.2 _ . 2.2
k ay, and dnoe/dx = dnoi/dx, the RHS of Eq. (17) is o(k™a}) when only Ey

is the same for electrons and ions to order

perturbations are included. The kX and Ex terms produce a 6BZ, which gives a

VD X 6BZ contribution to 6Vx which is opposite for electrons and ions. This

leads to

KV
d ,d .
T V.V, =2 ke o+ -9 (& E - ke ,
ie 0 1 Wey Y w ‘dx "y X
dn_ k%alE ¢ E.c EV.) kW, cE
ie X dx B W, B W B0 W, B




where Ex ~ (B/kLn)Ey = B(ai/Ln)(l/kai)Ey shows that the contributions from kx’
E, can be substantial even for g << 1. The implications of this ordering of 8,

ka,, ai/Ln will be explored in the continuation of the present Grant period.
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