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Abstract 

In the first of these two lectures the Higgs mechanism is reviewed in 
its most general form, which does not necessarily require the existence of 
Higgs bosons. The general consequences of the hypothesis that electroweak 
symmetry breaking is due to the Higgs mechanism are deduced just from 
gauge invariance and unitarity. In the second lecture the general properties 
are illustrated with three specific models: the Weinberg-Salam model, its 
minimal supersymmetric extension, and technicolor. The second lecture 
concludes with a discussion of the experiment signals for strong WW scat­
tering, whose presence or absence will allow us to determine whether the 
symmetry breaking sector lies above or below 1 TeV. 
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1. In troduct ion 

In these two lectures I will discuss electroweak symmetry breaking from a 

general perspective, stressing properties that are model independent and follow 

just from the assumption that the electroweak interactions are described by a 

spontaneously broken gauge theory. 1 ' This means I assume the Higgs mechanism 2 ' 

though not necessarily the existence of Higgs bosons. 

The Higgs mechanism requires the existence of a new force and new quanta, 

which I refer to generically as 

^•SB = ^-Symmetry Breaking' (1 • 1) 

the lagrangian of the still unknown symmetry breaking sector. We will see that the 

general framework is sufficient to tell us a good deal about the range of possibilities 

for CsB' In particular, general symmetry properties together with unitarity imply 

that the new physics of CSB must emerge at or below ~ 1.8 TeV in the scattering 

of longitudinally polarized gauge bosons, W^Wi, —* W^W^.3 If the quanta of 

CSB are much lighter than 1 TeV, then there are narrow Higgs bosons and CSB 

has a weak interaction strength that is amenable to perturbation theory. If the 

new quanta lie above 1 TeV then CSB is a strongly interacting system with a 

rich spectrum, there are no narrow Higgs bosons and perhaps none at all, the 

theory cannot be analyzed perturbatively, and we say that the Higgs mechanism 

is implemented "dynamically". 

I will argue that the SSC is a minimal collider with the assured capability to 

allow us to determine which possibility is realized in nature. T h e point is that the 

SSC is (just) sufficient to observe the signal c ' .strong WW scattering that occurs 

if CSB lives above 1 TeV. Therefore we will learn from the presence or absence 

of the signal in SSC experiments. If the signal does not occur it means that the 

physics lies below 1 TeV, in contrast to the more typical situation in high energy 

physics where a negative search at a given energy leaves open the possibility that 

still higher energies may be needed. This is the sense in which the SSC is a 

"no-lose" facility for the study of the symmetry breaking mechanism. Of course 

the technical challenges to realize this potential are enormous, both in accelerator 

physics (luminosity of 1 0 i 3 c m - i s " 1 is essential) and especially in the experimental 
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physics of the detectors. In the second lecture (Section 6) I will discuss some of 
the signals and backgrounds that must be mastered. 

The first lecture (Sections 1-4) presents the general framework of a sponta­
neously broken gauge theory: 

• the Higgs mechanism sui generis, with or without Higgs boson(s) (Section 2) 

• the implications of symmetry and unitarity for the mass scale and interaction 
strength of the new physics that the Higgs mechanism requires (Section 3) 

In addition I will review a "softer" theoretical argument based on the "natural­
ness" problem (Section 4) which leads to a prejudice against Higgs bosons unless 
they are supersymmetric. This is a prejudice, not a theorem, and it could be 
overturned in the future by a clever new idea. This is a good place to remember 
the slogan: all theorists to be presumed guilty until proven innocent. 

In the second lecture I will illustrate the general framework by reviewing some 
specific models (Section 5): 

e the Weinberg-Salam model of the Higgs sector 

• the minima] supersymmetric extension of the Weinberg-Salam model 

• technicolor as an example of the Higgs mechanism without Higgs bosons. 

I will conclude the second lecture with a discussion of strong WW scattering 
(Section 6), that must occur if CSB lives above 1 TeV. In particular I will describe 
some of the experimental signals and backgrounds at the SSC. A brief summary 
is presented in Section 7. 

A more complete review and more extensive bibliography can be found in 

reference 4. 

2. The Generic Higgs Mechanism 

In this section we review the Higgs mechanism in its most general form. The 
basic ingredients are a gauge sector and a symmetry breaking sector, 

C — £gauge + CSB- (2.1) 
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£gauge is an unbroken locally symmetric = gauge invariant theory, describing 
massless gauge bosons that are transversely polarized, just like the photon. For 
instance, for SU(2)L X U{V)Y gauge symmetry the gauge bosons are a triplet 
W = W\, Wi, W3 corresponding to the generators TL and a singlet gauge boson „Y 
corresponding to the hypercharge generator Y. If there were no CSB, the unbroken 
SU(2)L nonabelian symmetry would give rise to a force that would confine quanta 
of nonvanishing 7t charge, such as left-handed electrons and neutrinos. 

In the generic Higgs mechanism CSB breaks the local (or gauge) symmetry 
of £gauge- To do so CSB must possess a global symmetry G that breaks sponta­
neously to a subgroup H, 

G->H. (2.2) 

In the electroweak theory we do not yet know either of the groups G or H, 

G = ? (2.3a) 

H = ? (2.36) 

We want to discover what they are and beyond that we want to discover the 
symmetry breaking sector 

C.r-3 = ? (2.4) 

including the mass scale of its spectrum 

MSB = ? (2.5) 

and the interaction strength 
Ass = ? (2.6) 

Eq. (2.4) is the 64 x 108 dollar question (in then-year dollars, more or less). 

We do already know one fact about G and H. The SL'(2)i x L'( 1 )y gauge in-
variance of C — £gauge + £sa ' s a local symmetry, meaning that it is an invariance 
under transformations that depend on space-time, 

ei/U) • fLeifo.(x)Y ( 2 7 ) 

G and / / are global symmetries of Csg, meaning that they are symmetries which 
do not depend on space-time (i.e.. as eq. (2.7) would be if J and /o were constants 
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rather than functions of i = x, t). Therefore G must be at least as big as SU{2)L X 
U(1)Y or CSB would explicitly (as opposed to spontaneously) break the SU(2)L X 
U{1)Y gauge symmetry. Similarly H must be at least as big as U(1)EM or the 
theory after spontaneous breakdown will not accommodate the unbroken gauge 
symmetry of QED. That is, in order to be consistent with the desired pattern of 
breaking for the local symmetry 

SU(2)L x U(l)Y — U(1)BM (2.8) 

the spontaneous breaking of the global symmetry of CSB 

G — H (2.9) 

is constrained by 

GoSU(2)L xU(l)Y (2.10a) 

H D U(1)BM (2.106) 

STEP I; 
There are two steps in the Higgs mechanism. The first has nothing to do 

with gauge symmetry—it is just the spontaneous breaking of a global symmetry 
as explained by the Goldstone theorem. 5 , 6 ) By spontaneous symmetry breaking 
G —> H we mean that 

G= global symmetry of interactions of CSB (2.11a) 

while 
H = global symmetry of the ground-state of CSB- (2.116) 

That is, the dynamics of CSB are such that the state of lowest energy (the vacuum 
in quantum field theory) has a smaller symmetry group than the force laws of the 
lagrangian. Goldstone's theorem tells us that for each broken generator of G the 
spectrum of CSB contains a massless spin zero particle or Goldstone boson. 

# of massless scalars 

= # of broken symmetry axes 

= dimension G — dimension H 

= # of energetically flat directions in field space. (2.12) 
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The last line is the clue to the proof of the theorem: masses arise from terms that 

are quadratic in the fields, 

Anass = - j ^ V , (2.13) 

so a field direction that is locally flat in energy (i.e., goes like 4>n with n > 3) 

corresponds to a massless mode. 

The classic example is the hypersombrero" potential. Consider a triplet of 

scalars 

<?=<?l,<Pt,<P3 (2.14) 

with interactions described by the potential V(<p): 

= \(<f-f - 2\v2p2 4- Xv4 (2.15) 

A is the dimensionless coupling constant and v is a real constant with dimension 

of a mass. The global symmetry group is 

G = 0 (3 ) , (2.16) 

like the symmetry of ordinary space. There are three symmetry axes, i.e., gener­

ators, so 

dimG = 3 (2.17) 

(in general for 0(N) the dimension in jV(iV — l ) /2 ) . Since C -x —V we see 

comparing eqs. (2.15) and (2.13) that our scalars are tachyons, 

m _ = - 4 A u 2 (2.18) 
•P 

However (2.18) is not a true description of the spectrum because we have not 

identified the ground state of the system. Equation (2.18) is expressed relative to 

the stale .p = 0. but we see that (2.15) has its ground s tate (in lowest order) at 

? = v-. (2.19) 
"You would recognize it as a sombrero if you plotted it in four dimensions with three axes 

for the / and the fourtii for V 
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The classical ground state breaks the 0(3) symmetry, since one component of 
9 is singled out to be nonvanishing. We define the axes and that the special 
component is ip3, and the classical ground state is given by 

93 =v (2.20a) 

& = 92 = 0. (2.206) 

The ground state settles (spontaneously) on one of the infinity of possible 
equivalent directions. The fact that it could have equivalently picked any other 
direction means that the potential is locally flat under rotations that would carry 
<p3 into a diiferent direction, i.e., that there are massless modes associated with 
the axes (generators) of those rotations. These latter are precisely the broken 
generators, which are no longer symmetries in the ground state. Goldstone's 
theorem then follows. 

For our hypersombrero the remaining symmetry is 

H = 0(2) (2.21) 

the rotations about the n 3 axis, so 

dimension H = 1 (2.22) 

and from (2.12) we expect 3 — 1 = 2 massless particles. We easily check this by 
redefining 93 to vanish in the ground state: 

93 - 93 + »• (2-23) 

In terms of the new field with 93 = 0 the potential V is 

V"(9) = M-f)2 + 2 A L V 3 9 2 + 4AfVa- (2.24) 

Notice that (2.24) clearly lacks the full 0(3) symmetry because of the last two 
terms but is only invariant under the 0(2) rotations that mix up *px and 92. Notice 
also the absence of mass terms for 91 and 92, so that mi = m 2 = 0 as expected. 
Finally notice that 93 has a mass term with the correct sign (in contrast to the 
tachyonic masses in (2.1-))), given by 

m\ = SXv2 (2.25) 
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PLEASE DO N O T BE DECEIVED by the previous example however. The 

essential features are the symmetries of the lagrangian (G) and the ground state 

(H). Elementary scalars are not essential: if it is necessary to make J. Goldstone 

happy, God makes composite scalars. He has (almost) already done so on at 

least one occasion. Tha t is, we believe on the basis of strong theoretical and 

experimental evidence that QCD with two massless quarks is an example of His 

cooperation in this regard. The initial global (flavor) symmetry is 

G = SU(2)L x SU(2)R (2.26) 

since we can perform separate isospin rotations on the right and left chirality u 

and d quarks. The ground s ta te is believed to have a nonvanishing expectation 

value for the bilinear operator 

(uLuR + dLdR + h.c.)0 ^ 0 (2.27) 

where h.c. = hermitean conjugate. Equation (2.27) breaks the global symmetry 

spontaneously, G —> H, where 

H = SU(2)L+R (2.28) 

is the ordinary isospin group of nuclear and hadron physics. Tha t is, (2.27) is not 

invariant under independent rotations of left and right helicity quarks but only 

under rotations that act equally on left and right helicities. In this example, 

dim G = 6 and dim H = 3 so we expect 6 — 3 = 3 Goldstone bosons. In nature we 

believe they are the pion triplet, 7r+,7r~.7r°, which are much lighter than typical 

hadrons because the u and d quark masses are very small , 7 of order 10 MeV. 

(I refer to the ""current"1 quark masses, the parameters that appear in the QCD 

lagrangian.) 

STEP II: 

In step I we considered only the global symmetry breakdown induced by CSB 

— Goldstone's territory. Now we consider the interplay of CSB w i ( h £<rauge-

The essential point of the Higgs mechanism is that when a spontaneously broken 

generator of CSB coincides with a generator of a gauge invariance of £gauge- t n e 

associate Goldstone boson w and massless gauge boson i t ' mix to form a massive 



gauge boson. The number of degrees of freedom are preserved, since the Goldstone 

boson disappears from the physical spectrum while the gauge boson acquires a 

third (longitudinal) polarization state. We will see how this occurs in general, 

without assuming the existence of elementary scalar particles. 

By assumption the Goldstone boson w couples to one of the gauge currents, 

with a coupling strength / that has the dimension of a mass, 

(OUgmgeMp)) = \f? (2.29) 

/ is analogous to Fw, the pion decay constant. Equation (2.29) means tha t an 

effective representation of the current contains a term linear in w, 

Jgaugp(*) = \fVu>{x) + ••• (2.30) 

In the lagrangian ./gauge is by definition coupled to the gauge boson W " , 

£gauge = ^WVgauge H (2.31) 

where g is the dimensionless gauge coupling constant. Substituting eq. (2.3C) we 

find 

£gauge = \gfWli{d"w)f... (2.32) 

which shows that Wu mixes in the longitudinal (parallel to p) direction with the 

would-be Goldstone boson w. 

We can use (2.32) to compute the W mass. Before symmetry breaking the 

W is massless and transversely polarized. Therefore as in QED we can write its 

propagator in Landau gauge, 

DS" = -g(<r - £f) (2.33) 

In higher orders the propagator is the sum of the geometric series due to "vac­

uum polarization", i.e., all states that mix with the gauge current. The vacuum 

polarization tensor is defined as 

n""(*) = - f d,ke-'kI{TJ"(i)r(Q))0 

= i ^ - ( < r - ^ ) + - (2.34) 
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In (2.34) I have indicated explicitly the contribution from the Goldstone boson 

pole: the factor l/k2 is just the massless propagator and the factor (gf/2)2 can 

be recognized from eq. (2.32). The only subtle point is the g"" in (2.34). It is 

present since gauge invariance requires current conservation, ^II"" = 0. Since 

it is a constant term with no absorptive part, its presence does not change the 

spectrum of the theory. (In theories with elementary scalars it arises automatically 

from the "seagull" interaction given by the Feynman rules.) 

Finally we compute the W propagator from the geometric series (figure 2.1): 

D1" = (Do + D0TID0 + ...)" 

1 + 2 - i - + -4fc2 -4 (•"*£)( 
__.( u u k-k"\ 1 1 

" l [9 ** A 2 , _ sV: 
4fc 2 

kuk" 
= -•' - & - • (2.35) 

4 

The massless Goldstone boson pole induces a pole in the gauge boson propagator, 

Mw = \gf- (2.36) 

From the measured value of the Fermi constant, 

GF = £" , = - i — (2.37) 

we learn that 

/ ~ 2 5 0 G e V . (2.38) 

Customarily instead of / we refer to v = / , the so-called vacuum expectation 

value. This custom, which I will also follow (though it is in general not appro­

priate), derives from theories with elementary scalar fields (see Section 5) where 

r = / is both the coupling strength of the Goldstone boson w to ./gauge, as in 

(2.29), and is also the value of the Iliggs boson field in the ground state as in 

(2.10). However the above derivation shows that there is no need for any physical 
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Figure 2.1: Geometric series for the W propagator corresponding to 
eq. (2 35). 
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Higgs scalar to exist. The condensate that breaks the symmetry may in general 

be of a composite operator, as in (2.27), and may have no simple relationship to 

the parameter / = v defined in (2.29). For instance, in QCD there is no trivial 

relationship between F„ and (uu + dd)o (though there is a nontrivial relation 

involving also the quark and pion masses 8 ) . 

I will conclude this discussion of the Higgs mechanism with two more topics: 

1. The significance of the p parameter for the global symmetries of CSB-

2. The equivalence theorem which allows us to connect the Goldstone boson 

dynamics of CSB with the scattering of longitudinal gauge bosons in the 

laboratory. 

First, what do we learn from the experimental observation that to within a 

few percent 

\Mz cos BwJ 
In deriving (2.36) I was careless with the TZL indices and did not discuss the Z 
mass. More carefully, instead of (2.29) I should have written 

(0|J-|u- 6> = ifj6ab (2.40) 

where a, 6 = 1,2,3. Choosing 

to* = —=(u>i ± iu>2) (2.41) 

we see that U(1)EM rotates the 1 and 2 components into one another, so that 

U{1)EM invariance implies 

/ i = h- (2-42) 

What about fa? Is there an analogy to the isospin symmetry of hadron physics 

that ensures fa = fa = fa? 

As in the derivation of (2.36) we find that 

Uw± = \gfa (2.43) 
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but for the W3 and X bosons (associated with T31, and Y) we find with an anal­
ogous calculation the mass matrix 

iMk-x M% H< 3 
where g and g' are the SU(2)L and U(l)y couplings. The diagonalized matrix is 
then (since it has zero determinant) 

\<r o°) 
so that 

* « =~fi(92+9'2) (2.46) 

My = 0 (2.47) 

are the eigenvalues, the eigenstates being 

Z =W3cos0m + Xsmew (2.48a) 

A =-W3 sin 0„ + X cos 0m. (2.486) 

The mixing angle is 

cos 2 e t t , = — 2 L - (2.49) 
<7J + <7' 

and the /> parameter is then 

P = (fuh?. (2.50) 

Equation (2.50) teaches us that >̂ = 1 is connected with the existence of an 
isospin-like symmetry in CSB- In particular if the global symmetry H of CSB 
encompasses an SU(2) under which w and J£ are triplets, then it guarantees that 
/ j = /1 and that p — 1 to all orders in the (possibly strong) interactions of CSB-
In this sense it functions as a "custodial" SU{2) since it protects p = 1 against 
corrections from CSB-9 Conversely, it can be shown that p = 1 implies that the 
low energy interactions of the Goldstone bosons u; obey an effective custodial 
SU{2)L+R symmetry.1 0 which need not however be an exact symmetry of CSB-

The custodial SL'(2) symmetry also underlies the upper bound on the top 
quark mass from one loop corrections to the p parameter" (or equivalently to a 
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quantity called A r in other renormalization schemes). The mass difference m,—mi, 

breaks the custodial isospin, resulting in a correction to p proportional to Gf-mf 

for m, > > Afvt". Analyses 1 2 of the experimentally allowed deviations from p = 1 

suggest an upper bound of ~ 200 GeV for mt. 

Finally I will describe the equivalence theorem, which relates the Goldstone 

boson physics of CSB to observations that can be made in the laboratory and 

therefore suggests an experimental strategy to study the physics of CSB- The 

complete electroweak lagrangian C, eq. (2.1), is of course SU(2)L X U(\)Y gauge 

invariant, so that physics does not depend on the choice of gauge. In the U 

(unitary) gauge only physical degrees of freedom appear in C and, in particular, 

the Goldstone boson fields vanish, w = 0. In R (renormalizable) gauges, of which 

there are an infinite number, the Goldstone fields w do appear in C and in the 

Feynman rules, though gauge invariance ensures that they do not appear in the 

physical spectrum (i.e., they never generate poles in S-Matrix elements). Since 

they engender the longitudinal gauge boson modes, W^ and Z t , it is plausible 

that WL and Zi, interactions reflect the dynamics of u;. The equivalence theorem 

is the precise statement of this proposition, 

M(WL(Pl), WL(Pi), •••)= M(w(Pl), w(pz), . . . ) « + 0 ( ^ ) . (2.51) 

The theorem was established in tree approximation 1 3 and used in a variety of 

c a l c u l a t i o n s . 1 4 - 1 6 Reference (15) sketches a proof to all orders which is not however 

easily extended to matrix elements with more than one external \\\. A proof to all 

orders in both CSB a n c ' £gauge >s given in reference (3). and alternative treatment: 

have been given for the portion of the proof of reference (3) that is based on the 

BRS identi t ies. 1 7 The suggestion has been made that the theorem may fail at 

higher orders, though not confirmed by an explicit calculation to one loop. ' 8 or 

that it may fail at higher orders in £ g a u g e 1 9 My own view is. coincidentally. that 

of reference (3): that the theorem is valid to all orders in all interactions when 

the Goldstone boson fields are appropriately renormalized. 

The theorem (2.51) tells us that scattering of longitudinal gauge bosons at 

high energy reflects the dynamics of the underlying Goldstone bosons. We will 

use this connection in the next section to learn more about the general properties 
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of CSB-

3. Symmetry and Unitarity 

In this section we continue to extract the general properties of the Higgs 
mechanism. We will use the general symmetry properties of CSB* eq. (2.10), 
and uritarity. The symmetry properties imply low energy theorems for W^W^ 
scattering 3 , 1 0 that correlate the unknown mass and interaction scales of CSB-, (2.5) 
and (2.6), and allow us to estimate the scattering amplitudes if CSB is strongly 
interacting. Unitarity then implies an upper limit on the energy scale at which 
the physics of CSB must become visible and probably also an upper limit on 
the unknown mass scale MSB • Experimental implications of these results will be 
discussed in Section 6. 

Begin by considering CSB in the absence of £gauge- The spontaneous sym­
metry breaking pattern G —» H is sufficient to derive low energy theorems for 
Goidstone boson scattering in terms of the constants fa that characterize the cou­
plings of the Goidstone bosons to the symmetry currents. The earliest example 
is the Weinberg TTTT low energy theorems. 2 0 Assuming the pion isotriplet to be 
the almost-Goldstone bosons associated with SU(2)i x 5(/(2)/j —• SU(2)L+R in 
hadron physics, Weinberg showed for example that 

M{***- -» A 0 ) = -^ (3.1) 

where Fn = 93 MeV is the pion decay constant. Equation (3.1) neglects 0{m\) 
corrections (which are in fact calculable) and is valid for low energy, defined as 

s < < minimum{m^,(-tffFff)2}. (3.2) 

The low energy theorems can be derived by current algebra or effective la-
grangian methods. The proofs have two important features: 

• they are valid to all orders in the Goidstone boson self-interactions. This 
is crucial since those interactions may be strong (as they are for the pion 
example) so perturbation theory is a non-starter. 

• We needn't be able to solve the dynamics or even to know the lagrangian of 
the theory. In fact the rrz low energy theorems were derived in 1966 before 
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QCD was discovered. (And we still don't know today how to compute air 
scattering directly in QCD.) 

The current algebra/symmetry method was important in the path followed in the 
1960"s that led in the early 1970's to the discovery that CJADRON — C-QCD- What 
can it teach us about CSB? 

If G = SU(2)L x SU(2)R and H = SU(2)L+R as in QCD, then we can 
immediately conclude that 3 

M(W*w~ — zz) = 4 (3.3) 

at low energy, 
s « minimum{A/|B,(4ffu)2}, (3.4) 

as in eq. (3.2). Here MSB is the typical mass scale of CSB and v ~ j TeV, eqs. 
(2.37-8). More generally, electroweak gauge invariance requires eq. (2.10) from 
which we can deduce the more general result 1 0 

M{w+w~ - . zz) = -A;. (3.5) 
pv-

Equation (3.5) is arguably more soundly based than (3.1) was in 1966, since (3.5) 
is a general consequence of gauge invariance and the Higgs mechanism while (3.1) 
was based on inspired guesswork as to the symmetries underlying hadron physics. 

We can next use the equivalence theorem, (2.51), to turn (3.5) into a physical 
statement about longitudinal gauge boson scattering. In particular we have 

M{\V£\VZ - ZLZL) = - 4 (3.6) 
pv 

for an energy domain circumscribed by (3.4) and (2.51) as 

M'w « s « minirnum{.\/j s ,(4-r) 2}. (3.7) 

The window (3.7) may or may not exist in nature, depending on whether . \ / 5 s >> 

Mw. 
It is amusing that the low energy theorem (3.6) is precisely the famous "bad" 

high energy behavior that the Higgs mechanism is needed to cure — this emerges 
most clearly in the derivation of (3.6) given in reference 21. CSB must cut off 
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the growing amplitude in (3.6). Unitarity implies a rigorous upper bound on the 

energy at which this must occur. 

The partial wave amplitudes for the Goldstone scalars (or for the zero helicity, 

longitudinal gauge bosons) are 

aj(s) = ~ J d(cose)Pj(cose)M(s,d) (3.8) 

where 6 is the center of mass scattering angle. Partial wave unitarily then requires 

l«j(*)l < I- (3.9) 

Put t ing p = 1, eqs. (3.6-3.9) then imply 

ao(W?W£- - ZLZL) = j g ^ j j < 1 (3.10) 

so tha t the amplitude must be damped at a scale bounded by 

•^Cutoff ^ 4 v ^ a 1-75 TeV. (3.11) 

Tha t is, new physics from CSB must effect the scattering at an energy scale 

bounded by (3.11). 

At the cutoff, 5 = O(A), the J = 0 wave is 

ao(A) = - £ ^ (3.12) 

which implies the promised correlation between the strength of the interaction 

and the energy scale of the new physics. If A & \ TeV then ao(A) & l/4?r, well 

below the unitarity limit; then CSB has a weak coupling and can be analyzed 

perturbatively. For A ^ 1 TeV, we have a0(\) *i 1/3, which is close to saturation; 

this means CSB is a strong interaction theory requiring nonperturbative methods 

of analysis. 

Though it is not rigorous, the most likely case is that Acutoff = -^SB is of 

order the typical mass scale MSB of the quanta of £SB< 

\SB = MSB- (3.13) 

I can't prove (3.12) but can illustrate it with two examples. The first is the 

Weinberg-Salam model, in which ^-channel Higgs exchange provides the contri­

bution that cuts off (3.10). I assume that ran » M\v but that rrin is small 
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+ 

(a) 

w 

(b> 

Figure 3.1: Leading diagrams for W*W~ —> ZZ, including interac­
tions from the gauge sector (a) and the s-channe] Higgs boson ex­
change (b) — see eq. (3.14). 
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enough that perturbation theory is not too bad — say m// ~ 700 GeV so that 

\/4ir2 = m%i/8irv2 2; 1/10 (see section 5 below). Then I can calculate in tree 

approximation, with the result 

a ° ( 5 ) = 7^~~5 - TT~^ —^r ( 3 ' 1 4 ) 
167ru2 loiru 2 5 — mjf 

where the first term arises from £gauge a n d the second from the s-channel Higgs 

boson exchange given by CSB now assumed to be t he Weinberg-Salam Higgs sector 

(see figure (3.1)). For s < < mjj the first term dominates, giving the low energy 

theorem as it must. But for 5 > > m-H the two terms combine to give 

a°\ 2 = jrh- ( 3 - 1 5 ) 
Is » mjf Ibirv2 

Comparing (3.15) with (3.12) we see that (3.13) is indeed verified, i.e., A = m// . 

Consider next a strongly-coupled example. In this case we expect to approx­

imately saturate the unitarity bound, 
-Strong = 4%/™ = 0(2)TeV. (3.16) 

I can ' t solve for A/ss in this case but I can relate the problem to one that has 

been studied experimentally. In hadron physics the saturation scak from (3.1) 

wouid be 

AHadron = U*fn = SoO.MeV. (3.17) 

Experimentally we know this is indeed of the order of the mass of the lightest 

hadrons. e.g., m„ = 770 MeV. This is not surprising: in strong coupling theories 

we expect resonances to form when scattering amplitudes become strong, as they 

do at the energy scale of the unitarity bound. 

So we expect A = MSB for weak or strong CSB- The two generic cases are 

shown in figure (3.2). For weak CSB we expect narrow resonances below 1 TeV 

— these are just the Higgs bosons. For strong CSB we expect broad resonances 

in the vicinity of 1 to 2 TeV and strong I I T , ! ! ^ scattering, both of which can be 

observed at an appropriate collider. 

18 



1__ 
M 

aj 

Figure 3.2: Typical behavior of partial wave amplitudes for WL\VL 

scattering for a weakly coupled model with narrow (Higgs) resonances 
(top figure ) or a strongly coupled model with broad resonances in the 
1-2 TeV region (bottom figure). 
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4. T h e Natura lnes s P r o b l e m 

In this section I will review the so-called "technical naturalness problem" 

that afflicts models with elementary Higgs bosons because of their quadratic di­

vergences. I will also review two possible solutions: supersymmetry and techni­

color. Both eliminate the offending quadratic divergences — supersymmetry by 

guaranteeing their cancellation and technicolor by doing away with elementary 

scalars. Both solutions also require new physics at or below the TeV scale, where 

it can be found at the SSC. The natural scale for technicolor is ~ 0(2) TeV since 

it is a strongly coupled theory which saturates the unitarity bound, eq. (3.11). 

Supersymmetry must also appear at or below the TeV scale if it is indeed the 

explanation of the naturalness problem, since as the SUSY breaking scale grows 

beyond the TeV scale the problem begins to reappear. 

There are two aspects of what is called the "naturalness" or "gauge hierarchy" 

problem. The first is the physical origin of the very small numbers \IW/MGUT — 

1 0 - 1 2 or A/w/A/pionc* = 10~ 1 7 . The second is a technical problem that is specific 

to Higgs boson models: even if the gauge hierarchy problem has a natural solution 

in lowest order, the quadratic divergences associated with scalar fields induce one 

loop corrections that destroy the hierarchy. In ordinary Higgs boson models these 

corrections require an order by order fine tuning of the subtraction constants that 

seems physically unnatural . In this section I will discuss this technical naturalness 

problem. 

Consider the standard Higgs boson model, to be reviewed in Section 5. The 

potential V contains a wrong-sign (tachyonic) mass term for IT? and h, given by 

the coefficient of h(uP + h2) in equation (5.4) , equal to —Air. Because of the 

tachyonic sign, the state of minimum energy has a condensate v. resulting in zero 

mass for the triplet w and a mass + \/2Xv- for h. The one loop quantum correction 

(figure 4.1) is quadratically divergent, 

«*••>-T/ i& inb-
Though expressions like equation (4.1) are shocking to novices in field theory, 

they lose their shock value as the student masters ( i.e.. is brainwashed by) the 

renormalization program, which shows that finite predictions can be extracted at 
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Figure 4.1: QuadraticaJly divergent contribution to Higgs boson self-
energy, as in eq. (4.1). 
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the cost of a small number of subtractions or redefinitions. Most notably in the 
case of quantum electrodynamics this program has been extraordinarily successful. 
The divergence in equation (4.1) can be removed by introducing a counterterm 
that in effect shifts the initial value of Air by an infinite constant cancelling the 
divergence generated in equation (4.1). 

In the renormalization program we renounce any attempt to understand the 
physical origin of those parameters requiring subtraction — their values are sim­
ply fit to experiment — but we are then able to obtain finite predictions for all 
other physical quantities in the theory. To understand the naturalness problem 
it is necessary to go beyond this limited, though powerful, perspective and to 
ask questions about the origins of the subtracted quantities, assuming they will 
eventually be understood and calculable in the context of another theory formu­
lated at a deeper level. The expectation is that the deeper theory introduces 
new physics at high energy that cuts off the divergent behavior of integrals liKe 
equation (4.1). Denoting the energy scale of the new physics by A, equation (4.1) 
would be replaced by 

6(v2\) = C ^ A 2 (4.2) 

where C us a numerical constant of order unity. 

Equation (4.2) tells us that the parameters of Higgs models are hypersensitive 
to the high energy scale of the deeper underlying theory. For example, the Higgs 
boson mass, given in lowest order by m?H = 2Au2, might reasonably range from 
tens of MeV to perhaps the TeV scale. The scale A of the deeper theory might be 
the scale of Grand Unified Theories, MGUT = O(10 1 4) GeV. or even the Planck 
scale suggested by superstring and supergravity models, A/pianck = 0(1O 1 9) GeV. 
Writing the physical mass as the sum of a bare mass plus the one loop corrections 

CX 
m3

H = m2

Hh&ce + —.\2 (4.3) 

we see that the bare mass must be tuned with exquisite precision to make the left 
side much smaller than the two terms on the right side. For instance, if m# = 
1 TeV and A = A/pia,^ then the cancellation on the right sid'? must work to 
one part in 101 7! Of course the renormalization program allows us to arrange 
the cancellation to any desired precision, but viewed from the perspective of the 
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deeper theory such a cancellation seems extremely unnatural — one might even 

say, in the absence of any principle requiring or explaining such a cancellation, 

that it is absurdly implausible. 

Though the term is also used in other ways, this is the naturalness problem 

that uniquely afflicts Higgs boson models. It may be thought of us as an insta­

bility of the energy scale of the theory against quantum corrections that tend 

naturally to drive the scale to violently larger values. The problem uniquely af­

fects Higgs models because in 3 -I- 1 dimensions the only renormalizable theories 

with quadratic divergences are those containing scalar fields. For instance in un­

broken gauge theories like QED or QCD divergences are at most given by powers 

of logarithms. If instead of the quadratic dependence on A in equation (4.3) there 

were a logarithmic dependence. 

CX \ 
m l = m i . b a r e + Z 7 ™ H . b a r e l n ZTT < 4 ' 4 ) 

* m ; ; , ba r e 

then no fine tuning would be needed even for A as large as -Wpianck-

Two strategies have been proposed to deal with the naturalness problem. 

One is to suppose that the symmetry breaking sector, CSB, does not contain el­

ementary Higgs bosons. In particular, in technicolor models 2 2 CSB is presumed 

to be a confining gauge theory like QCD at a mass scale roughly v/F„ ~ 2700 

times greater than the GeV mass scale of QCD. Since QCD is known to undergo 

spontaneous symmetry breaking, with SU{2)L X SU('2)R breaking to S£"(2)£ +/}, 

giving rise to three Goldstone bosons (the pions), it is plausible that a similar the­

ory at a higher mass scale would contain the necessary ingredients for electroweak 

symmetry breaking. 

The second strategy is to provide a principle for the cancellation of the 

quadratic divergences: supersymmetry. 2 3 In supersymmetric theories the quadratic 

divergences due to scalar boson loops are precisely cancelled by fermion loop con­

tributions. The remaining finite difference is proportional to the scale of mipersym-

metry breaking e.g.. the mass differences of the scalar and fermion superpartners. 

The absence of scalars degenerate with the known leptons and quarks tells us 

supersymmetry cannot be exact. Naturalness then implies an upper limit on the 

scale of supersymmetry breaking, since the naturalness problem returns if mass 
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differences of fermlon-boson superpartners are too large. To avoid fine-tuning at 
less than the few percent level, superpartners cannot be heavier than a few TeV. 

Supersymmetry and technicolor are discussed in the next section, it is how­
ever important to recognize that nature- may have found a way to solve the natu­
ralness problem that has not yet occurred to us. 

5. Models 

In this section I will review three specific models of CSBI concentrating on 
how they iEustrate the general features discussed in Sections 2 and 3. The models 
are 

• the Weinberg-Salam model 

• the minimal sup ?rsyr,imetric extension of the standard model 

• technicolor 

5.1 The Weinberg-Salam Higgs Sector 

The Weinberg-Salam model is a minimal model in that it has the smallest 
number of fields needed to break the gauge symmetry from SU(2)L X U{\)Y to 
U(1)EM' Four spin zero quanta are introduced, irr a complex doublet of SU{2)i: 

1 Iwi + iw-2 \ 
* = ~75 (3-D 

The lagrangian is 
CSB = \T>M - V(«) (5.2) 

where T> is the gauge covariant derivative. 

Z>„ = du - igfL • Wu - ig'YX. (o.3) 

The scalar self-couplings are just like the 0(3) model discussed in Section 2 {in 
fact the Weinberg-Salam model is just the extension to 0(4)): 

2 
V = A ( $ + * - y ) " 

= - ( / / - + w3-v3)2. (5.U 
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The global symmetry group of (5.4) is 

G = SU(2)L X SU(2)n (5.5) 

(or equ:"alently 0(4) ) . Defining 7/, and 7/} in terms of vector and axial-vector 

SU{2) generators, 

TL.R =V*A (5.6) 

the infinitesimal SU(2)i, x SU(2)R rotations act on the fields as follows: 

Sv(H.w) =(0,f"v x m ) (5.7a) 

6A(H, w) =(eA-w,-eAH), (5.76) 

i.e., as if w were a pseudoscalar and H a scalar. 

As reviewed in Section 2 for the 0 (3 ) model, the minimum energy configura­

tion chooses a field condensate which we define to be H, 

{H)o = o. (5.8) 

Taking H —• H + v the potential becomes 

V = ^(H2 + w2)2 + \vH(H2 + w2) + \v2H2 (5.9) 

so that 

m2

H = 2\v2 (5.10) 

m,3 = 0 (5.11) 

Inspection of (5.9) reveals that the global symmetry has broken spontaneously 

from 

G = SH2)L x 5£-(2) f l - Hrhe G r o u p = SC(2)L+R 

= >T(2)v (5.12) 

(or equivalently 0(4) —• 0(3) ) . There are then 6 — 3 = 3 Goldstone bosons, the 

w triplet, which become the longitudinal gauge boson modes as in Sectioti 2. The 

only remaining quantum in CSB is then the scalar H. 

Notice that the symmetry structure >£'(2)£, x Sl'(2)n —» .S( ' (2) i + / j is iden­

tical to the symmetry of QC'D with two massless quarks, eqs. (2.26) and (2.2.S). 
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In fact V($) as given in (5.4) is identical to the sigma model 2 4 with the sub­
stitutions H —> <r, w —• #, and v —» F„. The sigma model was developed to 
model the low energy symmetries of hadron physics and played an important part 
in the history of the 1960's that led to the discovery and understanding of the 
underlying quark structure of hadrons. It is amusing that the Weinberg-Salam 
model could play a similar role in the effort to final CSB- In the sigma model the 
surviving S£/(2)£ , + R symmetry is just the ordinary isospin of hadron physics. In 
the Weinberg-Salam model it is the custodial SU(2) discussed in Section 2 that 
protects the p parameter against 0(A) corrections. 

The |2?#| 2 term in (5.2) contains a contribution 

)?gv\% • d»w (5.13) 

which is equivalent to eqs. (2.31-2.32) with f = v. That is, the gauge current 
contains a term zgvd"w. We therefore see immediately from the discussion in 
Section 2 that the mixing of w with W results in a gauge boson mass 

Mw = ^gv. (5.14) 

A more familiar though less general derivation is by inspection of the term quadratic 
in W" that is contained in \VW\ , i.e., 

f9VV\%Wu (5.15) Kf)' 
from which (5.14) may be read directly. 

Taking A/47T2 as the quantity characterizing perturbative corrections, we find 
from (5.10) that 

T ^ 3 — ; = 1 T . , - (o.m) 
•In2 SiTv2 \lTeV / 

which shows that strong coupling sets in at roughly mn > 1 TeV. This estimate 
agrees with the general analysis of section 3, as discussed following eq. (3.12). 
where we identify m// with the cutoff A. as shown in eqs. (3.14-3.15). 

The Higgs boson decay width in lowest order is 

nn - inr + zz) = ~GFm3

H 
S2.7T 

~ \ . T e V . (-%?-) . (5.17 
2 Vl Tt\ 
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For rriH ^ 1 TeV the width is so big that there is no discernible resonance peak. 
Since the theory is strongly coupled for such values of m#, the spectrum need 
not correspond in a simple way to the degrees of freedom in the lagrangian. It 
is in fact widely believed (the buzz word is "triviality") that the theory is incon­
sistent for mjj near or above 1 TeV. This conclusion was based first on a simple 
renormalization group analysis25 and is supported by lattice computations.2 6 

A lower bound on mji follows from requiring the SU(2)L X U(\)Y broken 
vacuum (with (H)o = u # 0) to be the lowest energy configuration in the one 
loop effective potential. The result is 2 T 

64TTJ [™«+^k:M*-Ar4 < 5 ' 1 8 > 
assuming the top quark is the only fermion as heavy as A/w. For mt « Mw the 
bound is m// > 7 GeV but for mt > 80 GeV the bound disappears. New bounds 
are obtained for mt > 86 GeV from the requirement that the vacuum be stable 
against large Higgs field fluctuations, i.e., that the coefficient of H*lnH in the 
effective potential be positive.28 The value of the bound depends on the value of 
a cutoff representing new physics beyond the Weinberg-Salam model. Consider 
for instance the possibility that mt > 120 GeV. Then the renormalization goup 
analysis of Lindner, Sher and Zaglauer28 gives m// k, 50 GeV for A = 10 1 5 GeV 
and mH £ 30 GeV for A = 103 GeV. 

Fermions acquire mass from a Yukawa interaction with the Higgs boson, 

^Yukawa = ! / / # ^ 7 (5.19) 

where y/ is the dimensionless coupling constant. The fermion masses are then 
rrij — yv so that the couplings are 

mi mi 

"> = T = 32M7V- m o ) 

Except for the top quark the yj are extremely small, which makes Higgs boson 
production cross sections extremely small as well. 

This is not a satisfying description since all the mysteries of the quark and 
lepton spectrum are hidden in the yj which are simply introduced by hand. In 
fact, fermion mass generation could prove much more difficult to understand than 
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W and Z mass generation. Fermion and gauge boson masses could be due to 
different condensates rather than the single condensate of the Weinberg-Salam 
model. Unitaxity allows very different scales. For a fermion of mass mj the 
counterpart of the 1.75 TeV bound, eq. (3.11), is 

. „ 16™2 

A £ — (5.21) 

where Q = 1 for leptons and 3 for quarks. The right hand side of (5.21) is much 
larger than the TeV scale, ranging from 5-106 TeV for the electron to ~ 10 TeV 
for a 100 GeV top quark. 

5.2 Supersymmetry 

The only known solution to the naturalness problem (Section 4) that al­
lows elementary Higgs bosons is supersymmetry — that is the principal reason 
to believe supersymmetric partners of the known particles might be found at or 
below the TeV scale. In order to give mass to quarks and leptons of weak isospin 
T3L = ± j the constraints of supersymmetry require a minimum of two complex 
doublet Higgs fields. In this section I will review the Higgs sector of the mini­
mal supersymmetric extension of the standard model, 2 9 which has precisely two 
complex Higgs doublets, 

* a = 4 = ° a = 1,2. (5.22) 

The scalar potential V'($i,$ 2) has its minimum at 

(Ha) = va (5.23) 

The W mass is 

so that 

Mw = TflY1'? + <-'2 (5.24) 

V\ + V\ = V2 = {\/2GF)-1. (5.25) 

We choose H\ to couple to T^i, — +\ and Hn to TZL — — \ fermions. 

The two complex doublets contain eight degrees of freedom, of which three 
become the longitudinal It'* and Z modes. The remaining five particles include 
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three "pseudoscalars", H± and P', which are orthogonal to the "eaten" com­

binations of toj and u?j, and the two Higgs scalars Hi and Hi. In general the 

eigenstates are mixtures with mixing angle a, 

( II \ I cos a sin a \ / Hi \ 

/ / ' H - s i n a c c - a J U J - ^ 

In the Weinberg-Salam model. Ass = A is a free parameter so that the Higgs 

boson mass, mjf = 2Au 2, is also unconstrained. In the minimal supersymmetric 

model, the strength of the Higgs interactions is constrained (because the scalar 

potential arises from a "D-term") to be 

\ = 9 2 + 9 n (5.27) 

where g and g' are the SU('2)t, and U(\)Y gauge coupling constants. This means 

that the model is a weakly coupled CSB in the sense of Section 3. It also means 

that Higgs boson masses are not completely arbitrary, but satisfy sum rules which 

in lowest order are 

m2

H± = nip + M{v (5.28) 

™%.w =l(rnP + Mz)2 (5.29) 

± -\J(mp + m-z) — 4mpM% cos 2 23 

where 3 is defined by the ratio of the vevs. 

tan 3 = IM/L-I. (5.30) 

We then see that 

mH± > Miv (5.31) 

mH < Mz (5.32) 

mw > Mz- (5.33) 

Equations (5.27-5.29) are not generally true for nonmininal supersymmetric 

models. In particular, models containing S't'(2)j. singlet Higgs fields can have 
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arbitrary couplings A. Because they mix with the doublet Higgs fields, all Higgs 

boson masses are then in general arbitrary. 

The one loop corrections to the minimal model sum rules have been computed, 

both for the charged 3 0 (5.28) and neut ra l 3 1 (5.29) bosons. The corrections are 

typically small though they can be large for certain choices of the parameters. 

The search for the lighter Higgs scalar H is similar to the search for the 

Weinberg-Salam Higgs boson below Mz, as discussed by Michael Levy at this 

school. 3 2 Searches for the Weinberg-Salam Higgs boson can be used to exclude re­

gions of the supersymmetric model's parameter space, which can be characterized 

by the angles a , 0 or, equivalently, by the masses of the scalars mn,mff. 

The heavy scalar H' has highly suppressed couplings to WW + ZZ and is 

therefore probably undetectable at the SSC. However at the SSC we will be able 

to search directly for the superparticles, especially the squarks and gluinos which 

should be observable for masses as large as 1 TeV and perhaps even beyond. 3 3 

Charged Higgs bosons are of course pair-produced in e + e ~ annihilation, for 

v s > 2\jMiV + mp. Since mp is an arbitrary parameter, we cannot say what 

energy might be necessary. 

5.3 Techn i co lo r 

Technicolor is the other known solution to the "technical" naturalness prob­

lem. In the context of a grand unified theory the logarithmic variation of the 

technicolor coupling constant might also explain'" the "fundamental" naturalness 

problem, i.e., the origin of the electroweak : G U T or Planck hierarchy. Technicolor 

is a good example of a strongly interacting CSB as denned in Section 3. 

The basic idea is that the Goldstone bosons w and - of £$g are bound 

states of an asymptotically free gauge theory with a confined spectrum at the TeV 

scale. The simplest example is an unbroken SL'(XTC) g a i ' g e theory which would 

resemble closely the familiar dynamics of QCD. For \p massless techniquark 

flavors the global symmetry group is 

G = SC(.\'F)L x SC(\F)R. (5.3-1) 
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As in QCD we expect the ground state to have a condensate 

( £ ? L 9 f l + 9fl<?z.) 5*0 (5.35) 

which breaks G down to the diagonal, vector-like subgroup 

H = SU(NF)L+R. (5.36) 

For NF >2,H includes a custodial 5f/(2)t+fl symmetry so that p = 1 is protected 

against large corrections from strong technicolor interactions. Since there are NF— 

1 broken SU(NF)L-R generators, there are jVjf. — 1 Goldstone bosons, w*, z, {<£,}. 

The 4>i exist if NF > 2; they acquire masses from the SU(3)co\OT x SU(2)L X U{\)y 

gauge interactions and are referred to as pseudo-Goldstone bosons. Choosing the 

"technicolor pion = w, z decay constant" 

Fjc = v^l-TeV (5.37) 

referred to as / in eqs. (2.29-2.38), we obtain the correct value of the W mass as 

shown in the general discussion of Section 2. 

For NTC — 3 the theory is precisely a rescaled version of QCD and we can 

reliably predict (up to small corrections due to the small masses of the QCD u 

and d quarks) the mass and width of the techni-rho vector meson: 

mPT = - | - m p = 2.04 TeV (5.38) 

rPT = ^-Vp = 0.40 TeV. (5.30) 

More generally (and less reliably) in the limit of large A r c and large 3 ( i.e.. the 

large .V limit assumed to be valid for QCD). we have 

-r^-ZTiV (5.40) 

VPT = -T—•0.40TeV. (5,11) 

The techni-rho has a >pertacular though small background free signal at the SSC. 

as discussed in the m-xi <oction. 
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Figure 6.1: Generic W^WL fusion via interactions of the symmetry 
breaking sector CSB-
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and whether the mass scale of its quanta is at the TeV scale or below. We will 

probably also begin to observe the quanta directly as resonance effects in some of 

the 2 —* 2 channels. A general strategy to accomplish this is based on the W^Wi, 

fusion reaction, figure (6.1), that can be studied at a pp or e + e " collider. The 

initial s tate W^s are off-mass-shell and must rescatter to appear on-shell in the 

final s tate . The contribution from rescattering by CSB is 0(g2\sBJ where g is 

the SU(2)L gauge coupling constant and \SB the generic interaction strength of 

CSB- The dominant background from qg —* WW is 0(g3). Therefore WW fusion 

contributes an observable increment if and only if the rescattering is strong, i.e., 

if and only if ASB/4TT = 0(1) or equivalently Ass -^ 1 TeV. 

Other backgrounds are M(gg —• \V+W~,ZZ) ~ c«s<72 via heavy quark 

loops 3 8 (e.g., top), WW bremsstrahlung with gluon exchange between the qua rks , 3 9 

~ asg2. and WW fusion by £st/(5)xt/(i) which is ~ gA. These backgrounds are 

illustrated in figure (6.2). Though the backgrounds (except gg fusion) are domi­

nated by transverse polarizations, polarization is not sufficient to separate them 

from the longitudinally polarized signal, though it can provide corroboration of a 

possible signal as discussed below. 

The SSC is a minimal pp collider for this strategy. A collider of half the 

energy or less is not adequate, even with realistically likely higher luminosity. 

Because both the signal and the signal : background decrease at lower energy 4 0 

and because the most important final states are inaccessible at high luminosity," 

an upgrade in C of two to three orders of magnitude would be needed to offset 

a factor three loss in energy. 4 0 An e+e~ collider of \/s = 2 — 3 TeV is probably 

minimal for the strong Il'IV scattering signal,' ' 3 though more study is needed. See 

figure 6.3 for 1 TeV Higgs boson production cross sections at e+f.~ and pp colliders 

of various energies.'-' ' 

In this section I consider three examples of signals for strong symmetry break­

ing: 

1. The 1 TeV Weinberg-Salam Higgs boson 

2. Strong H ' + U " + and ll'~ll-'~ scattering 

•]. Ti'chni-rho production 
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(a) 

W 

W 

(b) 

^ w 

(c) ^X w 

(d) 

Figure 6.2: Backgrounds to H — WW signal from (a) qq — WW. (bi 
gg — WW via QQ loops, (c'l gluon exchange, and (d) higher order 
0{g4) electroweak interactions including WW fusion as shown. 
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Figure 6.3: Higgs boson production cross sections in picobarns at e + e 
and pp colliders with center of mass energies indicated (from ref. 42a). 
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I will consider purely leptonic final states, since they are experimentally 

cleanest. Larger yields will be possible if detection of WW —» lv + qq proves 

feasible . 4 3 " 4 5 

The signals for examples 1) and 2) are excesses of events with no discernible 

structure. To detect this excess reliably we must understand the background to 

±30%, a goal consistent with the level at which we can expect to understand 

the nucleon structure functions and perturbative Q C D . 4 6 Realization of this goal 

requires an extensive program of "calibration" studies at the SSC, to measure a 

variety of jet, lepton, and gauge boson final states in order to tune the structure 

functions and confirm our understanding of the backgrounds.' 4 ' 

6.1 T h e 1 T e V W e i n b e r g - S a l a m Higgs Boson 

In the VVeinberg-Salam model die generic figure 6.1 is replaced by ^-channel 

Higgs boson exchange, figure 6.-1. I consider the leptonic final state. 

/ / — ZZ — e*e-/n+n- + e+e-/n+f.r/Vi, (6.5) 

for which the branching ratio is 1.1%, of which 6/7 of the events have one Z 

decay to Z7j/.3'4 8 I require any observed Z's to be central, \yz\ < 1-5, and in 

addition require either rnzz > 0.9 TeV or (mzz)T > 0-9 TeV, where (mzz)r is 

the transverse mass, 2 • \jrn\ + pf, computed from the pr of the observed Z when 

the second Z decays to Vv. The cuts are needed in order to see the signal above 

qq —« ZZ background. For this signal they are essentially equivalent to akernarive 

cuts that have been suggested. 1 0 

An idea of the dependence of the signal on collider energy can be gotten from 

figure 6.5, which shows the signal alone. Figure 6.6, showing the signal over the 

background, illustrates the need for the cut on mzz or equivalently on ;>r{Z). 

Here and elsewhere I quote yields in events per 10 ' / )6 _ l . the integrated lumi­

nosity accumulated with 1 0 3 3 o n " : . < c c - 1 for 10' sec. For m, = 50 GeV the signal 

is 3-1 events over a background (from rjq and gg — ZZ) of 16 events i i.e.. 50 

events total). The situation improves with a heavier lop quark due to the addi­

tional production channel gg — II via a It loop. 0 0 For mt = 200 GeV the signal 

is 100 events over a background of 22 events. The 0(a,g2) gluon exchange and 

O(g') qq —• qqZZ backgrounds have not yet been calculated, but will not be very 

important after the mzz or [rn22)T cut is applied. 
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Figure 6.4: Higgs boson production via WW fusion and decay to WW. 
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Figure 6,5: Yield dn/dmzz in TeV" 1 for H — ZZ at 10, 20. 30. and 

40 TeV pp colliders, in events per 10'*p6_1 with \yz', < 1-5 (from ref. 

3). 
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Except for gg —» ZZ, the backgrounds are predominantly transversely po­

larized Z's while the signal is purely longitudinal, resulting in different angular 

distributions for the decays Z —• / / where / is a lepton or quark. Define 6* 

as the angle in the Z center of mass system between the fermion momentum p) 

and the boost axis to the laboratory frame. Then the angular distributions for 

longitudinal and transverse polarizations are 

PL(cos0') = ~ s i n 2 0 # (6.6) 

P T ( c o s 0 ' ) = §{l + c o s 2 0 ' ) (6.7) 
8 

A strong cut against PT throws out most of the Pi baby with the bath, and cannot 

be afforded given the small number of events. On the other hand, there are enough 

events to check that the signal is longitudinal as expected. For instance, a cut at 

|cos#"| < 1/3 reduces XL by about 1/2 while reducing NT by about 1/4 (see e.g. 

reference 51). 

6.2 S t r o n g IV+\V+ & W~W~ S c a t t e r i n g 

The like-charge U ' L U ' L channel is controlled by the / c u s t o d i a l = ^ ' o w e n e r g y 
theorem, 3 

a02 - - g J L - (6.8) 

where 1 have put p = 1. This is analogous to the exotic 1 = 1 channel in QCD, 

in which no resonance structure is observed. A simple model 3 for the continuum 

scattering in this channel is obtained by extrapolating the low energy theorem 

ffi.S) to the unitarity limit at \Z32-r2 = 2.5 TeV. 

|«oil = ^3°{^-'-2 -s)+l- 0(s - 32- .- ' ) (6.0) 

as shown in figure 6.7. We then use the effective II' approximation 5 ' ' lo compute 

the yield from WW fusion. 

The model (6.9) can be thought of as a kind of "insurance policy" against 

the possibility that that the mass scale MSB is much larger than the uni tar iu 

limit Ass- As discussed in Section 3 this is physically implausible though not 

rigorously impossible. ( Ultracolor 5 3 with a Higgs boson above 1 TeV might provide 

an example.) To see how this works, coinpare the analogous ~~ scattering models 

•11 

file:///Z32-r2


1 — 
M 

Figure 6.7: Extrapolated low energy theorem for strong W+W+ scat­
tering, <zq. (6.9). 
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with experimental data. For the three channels, (I, J) = (0,0), (1,1), (2,0), the 
models analogous to (6.9) are labeled by the curves a in figures (6.8), compared 
there with experimental data. 5 3 0 The model for |aoo| describes the trend of the 
data well. For |an| it underestimates the data because it fails to account for the 
p meson peak. For |a02| the model overestimates the data (note that since this 
is an exotic channel, Im a^ = 0 and | a M | = \Re aos| to a good approximation), 
because if fails to include the effects of p exchange in the t and u channels. The 
model (6.9) is then a kind of worst case scenario: it should work best in the 
unlikely event that the resonances are much heavier than the unitarity bound 
for Ass- For instance, if the p were heavier, say > 1 GeV, then curve (a) in 
figure (6.8) would give a better fit (to larger s) than it now does. On the other 
hand, if the resonances are where we naively expect, MSB — Ass, then at least 
some channels will be dramatically enhanced relative to the model. We consider 
a resonant (technicolor) example below. First we consider strong WW scattering 
with no structure as in figure (6.7). 

The signal is defined by two isolated like-charge leptons, 

iy+W+ — e+u/fv + e+v/fi+v. (6.10) 

(Assuming m e > A/»y, the branching ratio is (2/9) 2.) Cuts imposed are \ye\ < 2 
and PTI > 50 GeV where £ = e,p. In addition a "theorist's" cut of AIww > 800 
GeV is imposed to reduce background from <j<jr —» qqWW by gluon exchange, 
0{asg2), and by higher order electroweak interactions, 0(g4). This is a "theo­
rist's" cut since the two v's prevent it from being implemented experimentally. It 
can eventually be replaced by a set of cuts on observables, such as the dilepton 
mass and the transverse mass formed from the dilepton momenta. 

The corresponding signal5 4 for an SSC year (107 sec.) is 53 events, from both 
VV'+PV+ and W~W~. The background is ~ 34 events, of which 1/3 is from gluon 
exchange 5 4 , 5 5 and 2/3 is from 0(g*) processes.56 If instead of (6.9) we used a scaled 
version of the / = 2 u data shown in figure 6.8, the signal would be decreased 
by about a factor 2. 
6.3 Techni-rho meson 

As an example of resonance production I will consider production of the 
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techni-rho meson expected in SU(4) technicolor. From eqs. (5.40-5.41) we have 

mn 2 1.8 TeV (6.11) 

T,T =-0.3TeV. (6.12) 

There are two important production mechanisms: W^Wi, —» pr (ref. (3)) and 

qq —* PT ref. (57)). I consider the easily observed purely leptonic final state 

(4 -* W£ZL -> t^vlfv + e.+e-/fi+fi- (6.13) 

with branching ratio 0.014 (for mt > M\y). With a central rapidity cut, \yw,z\ < 

1.5, and a diboson mass cut Mwz > 1-6 TeV, I find a signal of 13 events and a 

background of 1.7 events. If W —» ru events can also be recovered, signal and 

background both increase by ~ l j to 20 events over a background of 2.5. 

7. Conclus ion 

The Higgs mechanism implies the existence of Higgs bosons below 1 TeV or 

strongly interacting particles above 1 TeV, though probably not much heavier 

than ~ 2 TeV. With the ability to observe strong WW scattering in the 1-2 TeV 

region, we can decide for certain if the symmetry breaking sector is strong or not. 

Unlike the usual situation where a negative result leaves open the possibility that 

we must search at higher energy, the observed absence of strong WW scattering 

would imply that symmetry breaking is due to Higgs bosons below 1 TeV. The 

SSC is a minimal pp collider with this "no-lose" capability. A minimal e + e ~ 

collider probably would need i/s = 3 — 5 TeV and C > 1 0 3 3 c m ~ 2 s e c _ 1 . 

Presently approved world facilities would leave open an "'intermediate mass" 

window for a Higgs boson of mass 70-80 GeV < mn < 120-140 GeV. The gap 

could be closed by an e+e~ collider with ,/s 5; 300 GeV and C ̂  10 3 2 cm~ 2 s e c - 1 . 

Motivation for closing this window would be strengthened by the discovery of 

supersymmetry or by evidence that strong WW scattering does not occur. 

It should be clear from the small yields quoted in Section 6 and from the 

not much bigger yields reviewed by Michael Levy 3 2 for lighter Higgs bosons, that 

discovery of the symmetry breaking sector will not be the end but the beginning 
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of a long process of detailed studies. The handful of events that provide the initial 
discovery will be completely inadequate as we begin our study of a fifth force 
of nature and an associated new world of particles. The experimental facilities 
needed for those studies will be awesome and are difficult for us even to imagine 
today. 
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