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Abstract

In the first of these two lectures the Higgs mechanism is reviewed in
its most general form, which does not necessarily require the existence of
Higgs bosons. The general consequences of the hypothesis that electroweak
symmetry breaking is due to the Higgs mechanism are deduced just from
gauge invariance and unitarity. In the second lecture the general properties
are illustrated with three specific models: the Weinberg-Salam model, its
minimal supersymmetric extension, and technicolor. The second lecture
concludes with a discussion of the experiment signals for strong V1V scat-
teri1g, whose presence or absence will allow us to determine whether the

symmetry breaking sector lies above or below 1 TeV.
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1. Introduction

In these two lectures I will discuss electroweak symmetry breaking from a
general perspective, stressing properties that are model independent and follow
just from the assumption that the electroweak interactions are described by a
spontaneously broken gauge theory.!) This means I assume the Higgs mechanism?
though not necessarily the existence of Higgs bosons.

The Higgs mechanism requires the existence of a new force and new quanta,

which I refer to generically as

Lsp = ‘CSymmetry Breaking> (1.1)

the lagrangian of the still unknown symmetry breaking sector. We will see that the
general framework is sufficient to tell us a good deal about the range of possibilities
for Lsg. In particular, general symmetry properties together with unitarity imply
that the new physics of Lsg must emerge at or below ~ 1.8 TeV in the scattering
of longitudinally polarized gauge bosons, W W, — W, W..2 If the quanta of
Lsp are much lighter than 1 TeV, then there are narrow Higgs bosons and Lsp
has a weak interaction strength that is amenable to perturbation theory. If the
new quanta lie above 1 TeV then Lsp is a strongly interacting system with a
rich spectrum, there are no narrow Higgs bosons and perhaps none at all, the
theory cannot be analyzed perturbatively, and we say that the Higgs mechanism
is implemented “dynamically”.

[ will argue that the SSC is a minimal collider with the assured capability to
allow us to determine which possibility is realized in nature. The point is that the
SSC is (just) sufficient to observe the signal ¢ strong WV scattering that occurs
if Lsp lives above 1 TeV. Therefore we will learn from the presence or absence
of the signal in SSC experiments. If the signal does not occur it means that the
physics lies below 1 TeV. in contrast to the more typical situation in high energy
physics where a negative search at a given energy leaves open the possibility that
still higher energies may be needed. This is the sense in which the SSC is a
“no-lose” facility for the study of the symmetry breaking mechanism. Of course
the technical challenges to realize this potential are enormous, both in accelerator

hysics (luminosity of 10*3cm™2s~! is essential) and especially in the experimental
phy A P M P



physics of the detectors. In the second lecture (Section 6) I will discuss some of
the signals and backgrounds that must be mastered.
The first lecture (Sections 1-4) presents the general framework of a sponta-

neously broken gauge theory:

o the Higgs mechanism sui generis, with or without Higgs boson(s) (Section 2)

¢ the implications of symmetry and unitarity for the mass scale and interaction
strength of the new physics that the Higgs mechanism requires (Section 3)

In addition I will review a “softer” theoretical argument based on the “natural-
ness” problem (Section 4) which leads to a prejudice against Higgs bosons unless
they are supersymmetric. This is a prejudice, not a theorem, and it could be
overturned in the future by a clever new idea. This is a good place to remember

the slogan: all theorists to be presumed guilty until proven innocent.
In the second lecture I will illustrate the general framework by reviewing some

specific models (Section 3):

¢ the Weinberg-Salam model of the Higgs sector
e the minimal supersymmetric extension of the Weinberg-Salam model

® technicolor as an example of the Higgs mechanism without Higgs bosons.

I will conclude the second lecture with a discussion of strong W1V scattering
(Section 6), that must occur if Lsg lives above 1 TeV. In particular I will describe
some of the experimental signals and backgrounds at the SSC. A brief summary
is presented in Section T.

A more complete review and more extensive bibliography can be found in
reference 4.
2. The Generic Higgs Mechanism

In this section we review the Higgs mechanism in its most general form. The

basic ingredients are a gauge sector and a symmetry breaking sector,

L= Cgauge + Lsp. (2.1)



Lgauge is an unbroken locally symmetric = gauge invariant theory, describing
massless gauge bosons that are transversely polarized, just like the photon. For
instance, for SU(2)L x U(l)y gauge symmetry the gauge bosons are a triplet
W =W, W, Wa corresponding to the generators T; and a singlet gauge boson .X
corresponding to the hypercharge generator Y. If there were no Lsg, the unbroken
SU(2)r nonabelian symmetry would give rise to a force that would confine quanta
of nonvanishing T charge, such as left-handed electrons and neutrinos.

In the generic Higgs mechanism Lgp breaks the local (or gauge) symmetry
of Lgauge. To do so Lsp must possess a global symmetry G that breaks sponta-
neously to a subgroup A, -

G—H. (2.2)

In the electroweak theory we do not yet know either of the groups G or H,
G="7? (2.3a)

H=1? (2.3b)
We want to discover what they are and beyond that we want to discover the
symmetry breaking sector

Lr3="7 (2.4)
inclu.ding the mass scale of its spectrum

Msg=7? (2.5)

and the interaction strength
Asg="7 (2.6)
Eq. (2.4) is the 64 > 10% dollar question (in then-year dollars, more or less).
We do already know one fact about G and H. The SU'(2), x U'(1)y gauge in-
variance of £ = Lgauge +Lsp is a local symmetry, meaning that it is an invariance

under transformations that depend on space-time,

eifle) To ifo(z)Y @27)

G and H are global symmetries of Lsg, meaning that they are symmetries which

do not depend on space-time (i.e.. as eq. (2.7} would be if j_'and fo were constants



rather than functions of z = Z,t). Therefore G must be at least as big as SU(2); x
U(1l)y or Lsg would ezplicitly (as opposed to spontaneously) break the SU(2); x
U(l)y gauge symmetry. Similarly 4 must be at least as big as U(1)gar or the
theory after spontaneous breakdown will not accommodate the unbroken gauge
symmetry of QED. That is, in order to be consistent with the desired pattern of
breaking for the local symmetry

SU2) x ULy = U(l)gar (2.8)

the spontaneous breaking of the global symmetry of Lsg

G—H (2.9)

is constrained by
G D SU(2). x Ul)y (2.10a)
HDU(l)eam (2.100)

STEP I:

There are two steps in the Higgs mechanism. The first has nothing to do
with gauge symmetry—it is just the spontaneous breaking of a global symmetry
as explained by the Goldstone theorem.®®) By spontaneous symmetry breaking
G — H we mean that

G = global symmetry of interactions of Lgg (2.11a)
while .
H = global symmetry of the ground-state of Lsg. (2.118)

That is, the dynamics of £35g are such that the state of lowest energy (the vacuum
in quantum field theory) has a smaller symmetry group than the force laws of the
lagrangian. Goldstone's theorem tells us that for each broken generator of & the

spectrum of £sg contains a massless spin zero particle or Goldstone boson.

# of massless scalars

# of broken symmetry axes

= dimension & — dimension H

# of energetically flat directions in field space. {2.12)



The last line is the clue to the proof of the theorem: masses arise from terms that
are quadratic in the fields,
1 2,2
Lmass = —-2-m'd>', (2.13)

so a field direction that is locally flat in energy (i.e., goes like ¢™ with n > 3)
corresponds to a massless mode.
The classic examgle is the hypersombrero® potential. Consider a triplet of
scalars
F = @109 (2.14)

with interactions described by the potential V(¢):
V(p) = XN@ - v?)?
= AMF®)® — 20033 + A0t (2.15)

A is the dimensionless coupling constant and v is a real constant with dimension

of a mass. The global symmetry group is
G = 0(3), _ (2.16)

like the symmetry of ordinary space. There are three symmetry axes, i.e., gener-

ators, so
dimG =3 (2.17)

(in general for O(NV) the dimension in N(V — 1)/2). Since £ x —V we see
comparing egs. (2.15) and (2.13) that our scalars are tachyons,

m{ = =417 (2.18)
P

However (2.18) is not a true description of the spectrum because we have not
identified the ground state of the system. Equation (2.138) is expressed relative to

the state ;3 = 0. but we see that (2.15) has its ground state (in lowest order) at

=2 (2.19)

“You would recognize it as a sombrero if you plotted it in four dimensions with three axes

for the 5 and the fourth tor V7

(1]



The classical ground state breaks the O(3) symmetry, since one component of
@ is singled out to be nonvanishing. We define the axes and that the special

component is 3, and the classical ground state is given by
w3 =V (2.20a)
o1 =2 =0. (2.208)
The ground state settles (spontaneously) on one of the infinity of possible
equivalent directions. The fact that it could have equivalently picked any other
direction means that the potential is locally flat under rotations that would carry
3 into a different direction, i.e., that there are massless modes associated with
the axes (generators) of those rotations. These latter are precisely the broken
generators, which are no longer symmetries in the ground state. Goldstone's
theorem then follows.
For our hypersombrero the remaining symmetry is
H=0(2) (2.21)
the rotations about the nj axis, so

dimension H =1 (2.22)

and from (2.12) we expect 3 — 1 = 2 massless particles. We easily check this by

redefining 23 to vanish in the ground state:
93— 03+ V. (2.23)
In terms of the new field with 3 = 0 the potential V' is
V() = AF%)? + 2hepad® + 40?55 (2.24)

Notice that (2.24) clearly lacks the full O(3) symmetry because of the last two
terms but is only invariant under the O(2) rotations that mix up ,»; and 2. Notice
also the absence of mass terms for ¢; and 23, so that m; = mas = 0 as expected.
Finally notice that ;3 has a mass term with the correct sign (in contrast to the

tachyonic masses in (2.15)). given by

m3 = 8v? (2.25)




PLEASE DO NOT BE DECEIVED by the previous example however. The
essential features are the symmetries of the lagrangian (G) and the ground state
(H). Elementary scalars are not essential: if it is necessary to make J. Goldstone
happy, God makes composite scalars. He has (almost) already done so on at
least one occasion. That is, we believe on the basis of strong theoretical and
experimental evidence that QCD with two massless quarks is an example of His

cooperation in this regard. The initial global (flavor) symmetry is
G = SU(2), x SU(2)r (2.26)

since we can perform separate isospin rotations on the right and left chirality u
and d quarks. The ground state is believed to have a nonvanishing expectation

value for the bilinear operator
(Grup +drdg + h.cho # 0 (2.27)

where h.c. = hermitean conjugate. Equation (2.27) breaks the glopal symmetry

spontaneously, G — H, where
H=SU(2)c+r (2.28)

is the ordinary isospin group of nuclear and hadron physics. That is, (2.27) is not
invariant under independent rotations of left and right helicity quarks but only
under rotations that act equally on left and right helicities. In this example,
dim G = 6 and dim H = 3 so we expect 6 —3 = 3 Goldstone bosons. In nature we
believe they are the pion triplet, #* 7=, x%, which are much lighter than typical
hadrons because the u and d quark masses are very small,” of order 10 MeV.
(I refer to the “current” quark masses. the parameters that appear in the QCD
lagrangian.)

In step I we considered only the global symmetry breakdown induced by £Lsg
— Goldstone's territory. Now we consider the interplay of Lsg with Lgauge.
The essential point of the Higgs mechanism is that when a spontaneously broken
generator of Lsg coincides with a generator of a gauge invariance of Lgauge. the

associate Goldstone boson w and massless gauge boson 11" mix to form a massive
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gauge boson. The number of degrees of freedom are preserved, since the Goldstone

boson disappears from the physical spectrum while the gauge boson acquires a

third (longitudinal) polarization state. We will see how this occurs in general,
without assuming the existence of elementary scalar particles.

By assumption the Goldstone boson w couples to one of the gauge currents,
with a coupling strength f that has the dimension of a mass,

)
<0|Jé‘augelw(P)) = EfP“ (2.29)
f is analogous to Fj, the pion decay constant. Equation (2.29) means that an

effective representation of the current contains a term linear in w,
1
Jgauge(z) = §f6“w(3) +-- (2.30)
In the lagrangian Jgauge is by definition coupled to the gauge boson W*,
Cgauge = g;V“Jé‘auge +--- (231)

where g is the dimensionless gauge coupling constant. Substituting eq. (‘2.30) we
find .
Lgauge = %ngVu(a“w)f .- (2.32)
which shows that W, mixes in the longitudinal (l:;a.rallel to p) direction with the
would-be Goldstone boson w.

We can use (2.32) to compute the W mass. Before symmetry breaking the
W is massless and transversely polarized. Therefore as in QED we can write its
propagator in Landau gauge,

=i kR
Dy = (9™ = 73

) (2.33)

In higher orders the propagator is the sum of the geometric series due to *vac-
vum polarization”, i.e., all states that mix with the gauge current. The vacuum

polarization tensor is defined as

(k) = —/fke"“"(TJ“(r)J"(O))o
252 Fy o
=i”4f (g = =) +- (2.34)



In (2.34) I have indicated explicitly the contribution from the Goldstone boson
pole: the factor 1/k? is just the massless propagator and the factor (gf/2)? can
be recognized from eq. (2.32). The only subtle point is the ¢*“ in (2.34). It is
present since gauge invariance requires current conservation, k,II** = 0. Since
it is a constant term with no absorptive part, its presence does not change the
spectrum of the theory. (In theories with elementary scalars it arises automatically
from the “seagull” interaction given by the Feynman rules.)

Finally we compute the W propagator from the geometric series (figure 2.1):

D = (Dg+ DgllDg + ... )"
BRI YA
= kz(-" k2)(1+4k2+

o RN 1 1
1 g k:) k21 g‘_'j-‘z

ak?
o _ kuku
S I (2.35)
k2 — g'_f2
4

The massless Goldstone boson pole induces a pole in the gauge boson propagator,
1
My = ng (2.36)

From the measured value of the Fermi constant,

2 1

g e
Gr= —%— = —— 237
FEWAG, T i (2:37)
we learn that
F ~ 250GeV. (2.3%)

Customarily instead of f we refer to v = f, the so—called vacuum expectation
value. This custom. which I will also follow (though it is in general not appro-
priate), derives from theories with elementary scalar fields (see Section 3) where
v = fis both the coupling strength of the Goldstone boson w to Jzauge. as in
(2.29). and is also the value of the Iliggs boson field in the ground state as in

{2.19). However the ahove derivation shows that there is no need for any physical
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Figure 2.1: Geometric series for the IV Propagator corresponding to
eq. (2 35).
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Higgs scalar to exist. The condensate that breaks the symmetry may in general
be of a composite operator, as in (2.27), and may have no simple relationship to
the parameter f = v defined in (2.29). For instance, in QCD there is no trivial
relationship between F, and (Zu + dd)o (though there is a nontrivial relation
involving also the quark and pion masses®).

! will conclude this discussion of the Higgs mechanism with two more topics:

1. The significance of the p parameter for the global symmetries of Lsg.

2. The equivalence theorem which allows us to connect the Goldstone boson
dynamics of Lsg with the scattering of longitudinal gauge bosons in the
laboratory.

First, what do we learn from the experimental observation that to within a

few percent

= _ﬂw_\z =
P= (.Mz cosBw/ L (2:39)

In deriving (2.36) 1 was careless with the Ty indices and did not discuss the Z

mass. More carefully, instead of (2.29) I should have written
1 5 —_1 _fﬂ
O ) = ip" - bas (2.40)
where a,b = 1,2,3. Choosing
1
wt = —(w; £ iwy 2.41
we see that [/(1)gys rotates the 1 and 2 components into one another, so that

U(1)gym invariance implies

h=/f (2.42)

What about f3? Is there an analogy to the isospin symmetry of hadron physics
that ensures f, = f, = f3?

As in the derivation of (2.36) we find that

I
.\[Wt = :ngl (243)
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but for the W3 and X bosons (associated with T3, and Y) we find with an anal-
ogous calculation the mass matrix

M2 M2, 1 ./q ’

( " Wazx) =Zf5(g, gi) (2.44)
Mi,_x Mg 99 9

where g and ¢’ are the SU(2); and U(1)y couplings. The diagonalized matrix is

then (since it has zero determinant)

1, (8 +9g7? 0)
- 2.45
7] G (2.49
so that
1
Mz =3 f(e" +97) (2.46)
M, =0 (2.47)

are the eigenvalues, the eigenstates being

Z =Wicosb, + Xsinb, (2.48¢a)
A =-Wssinf, + X coséd,,. (2.48b)

The mixing angle is .
cos’ 6, = ;Ti;g’_z (2.49)

and the p parameter is then
p=(fi/f)% " (2.50)

Equation (2.50) teaches us that g = 1 is connected with the existence of an
isospin-like symmetry in Lsg. In particular if the global symmetry H of Lsp
encompasses an SU(2) under which & and J# are triplets. then it guarantees that
f3 = f1 and that p = | 10 all orders in the (possibly strong) interactions of Lsg.
In this sense it functions as a “custodial” SU/(2) since it protects p = 1 against
corrections from Lsp.° Conversely, it can be shown that p = 1 implies that the
low energy interactions of the Goldstone bosons w obey an effective custodial
SU(2)L+r symmetry.!2 which need not however be an exact symmetry of £s5.

The custodial 5L°(2) symmetry also underlies the upper bound on the top

quark mass from one loop corrections to the p parameter!! (or equivalently to a

12



quantity called Ar in other renormalization schemes). The mass difference m,—m;
breaks the custodial 1sospin, resulting in a correction to p proportional to Ggm?
for m: >> Mu». Analyses!? of the experimentally allowed deviations from p = 1
suggest an upper bound of ~ 200 GeV for m,.

Finally I will describe the equivalence theorem, which relates the Goldstone
boson physics of Lsp to observations that can be made in the iaboratory and
therefore suggests an experimental strategy to study the physics of Lsg. The
complete electroweak lagrangian £, eq. (2.1), is of course SU(2), x U(1l)y gauge
invariant, so that physics does not depend on the choice of gauge. In the U
(unitary) gauge only physical degrees of freedom appear in £ and, in particular,
the Goldstone boson fields vanish, @ = 0. In R (renormalizable) gauges, of which
there are an infinite number, the Goldstone fields i do appear in £ and in the
Feynman rules, though gauge invariance ensures that they do not appear in the
physical spectrum (i.e., they never generate poles in S-Matrix elements). Since
they engender the longitudinal gauge boson modes, V. and Z., it is plausible
that Wy and Zg interactions reflect the dynamics of w. The equivalence theorem
is the precise statement of this proposition,

MW(p1), Wil Pa),...) = M(w(py), w(pa)... )a +0 (‘—g‘i) L @8

The theorem was established in tree approximation'® and used in a variety of
calculations.'4-'® Reference (13) sketches a proof to all orders which is not however
easily extended to matrix elements with more than one external 7. A proof to all
orders in both £sg and Lgauge is given in reference (3). and alternative treatment:
have been given for the portion of the proof of reference (3) that is based on the
BRS identities.!” The suggestion has been made that the theorem may fail at
higher orders, though not confirmed by an explicit calculation to one loop.'® or
that it may fail at higher orders in Cgauge.lg My own view is. coincidentally. that
of reference (3): that the theorem is valid to all orders in all interactions when
the Goldstone boson fields are appropriately renormalized.

The theorem (2.51) tells us that scattering of longitudinal gauge bosons at
high energy reflects the dvnamics of the underlying Goldstone bosons. We will

use this connection in the next section to learn more about the general propertics
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of Lsp.

3. Symmetry and Unitarity

In this section we continue to extract the general properties of the Higgs
mechanism. We will use the general symmetry properties of Lgg, eq. (2.10),
and uritarity. The symmetry properties imply low energy theorems for W Wy,
scattering®!? that correlate the unknown mass and interaction scales of Lsp, (2.5)
and (2.6), and allow us to estimate the scattering amplitudes if £sp is strongly
interacting. Unitarity then implies an upper limit on the energy scale at whizh
the physics of L5 must become visible and probably also an upper limit on
the unknown mass scale Msp. Experimental implications of these results will be
discussed in Section 6.

Begin by considering Lsp in the absence of Lgauge. The spontaneous sym-
metry breaking pattern G — H is sufficient to derive low energy theorems for
Goldstone boson scattering in terms of the constants f, that characterize the cou-
plings of the Goldstone besons to the symmetry currents. The earliest example
is the Weinberg mr low energy theorems.”® Assuming the pion isotriplet to be
the almost-Goldstone bosons associated with SU(2), x SU(2)g — SU(2)L4r in
hadron physics, Weinberg showed for example that

M(rtr™ — 7% = —1:% (3.1)

where F, = 93 MeV is the pion decay constant. Equation (3.1) neglects O{m?)

corrections (which are in fact calculable) and is valid for low energy, defined as
s << minimum{m?, (47 Fr)*}. (3.2)

The low energy theorems can be derived by current algebra or effective la-

grangian methods. The proofs have two important features:

e they are valid to all orders in the Goldstone boson self-interactions. This
is crucial since those interactions may be strong (as they are for the pion

example) so perturbation theory is a non-starter.

e e needn’t be able to solve the dynamics or even to know the lagrangian of

the theory. Iu fact the m7 low energy theorems were derived in 1966 before

14



QCD was discovered. (And we still don’'t know today how to compute mx
scattering directly in QCD.)

The current algebra/symmetry method was important in the path followed in the
1960’s that led in the early 1970's to the discovery that £ 71pron = Lgcp. What
can it teach us about £sg?

If G = SU@2)L x SU(2)r and H = SU(2)L4+r as in QCD, then we can

immediately conclude that®

(3.3)

M{wtw™ — 22) = ]

at low energy,
s << minimum{AZg, (47v)?}, (3.4)

as in eq. (3.2). Here Msp is the typical mass scale of £5p and v = 1 TeV, egs.
(2.37-8). More generally. electroweak gauge invariance requires eq. (2.10) from

which we can deduce the more general result!®

|o

(3.5)

Mwrw™ = zz) =

w

1
pv
Equation (3.5) is arguably more soundly based than (3.1) was in 1966, since (3.5)
is a general consequence of gauge invariance and the Higgs mechanism while (3.1)
was based on inspired giesswork as to the symmetries underlying hadron physics.
We can next use the equivalence theorem, (2.51), to turn (3.3) into a physical
statement about longitudinal gauge boson scattering. In particular we have

1
MWFWE = Z02;) = ;% (3.6)

for an energy domain circumscribed by (3.4) and (2.31) as
M << s << minimum{ Mg, (471)%}. {3.7)

The window (3.7) may or may not exist in nature. depending on whether M.,g >>
Mw.

[t is amusing that the low energy theorem (3.6) is precisely the famous “bad”
high energy behavior that the Higgs mechanism is needed to cure — this emerges

most clearly in the derivation of (3.6) given in reference 21. Lsg must cut off

13



the growing amplitude in (3.6). Unitarity implies a rigorous upper bound on the
energy at which this must occur.
The partial wave amplitudes for the Goldstone scalars (or for the zero helicity,

longitudinal gauge bosons) are
as(s) = 32% [ d(eos 8)P(cos 0)M1(5.6) (3.8)
where @ is the center of mass scattering angle. Partial wave unitarily then requires
las(s)| < 1. (3.9)

Putting p = 1, egs. (3.6-3.9) then imply

_ s
aoWWE = 2020) = 1o < (3.10)

so that the amplitude must be damped at a scale bounded by
Acutofr € 4V7v ~ 1.75 TeV. (3.11)

That is, new physics from Lsg must effect the scattering at an energy scale
bounded by (2.11).
At the cutoff, s = O(A), the J = ( wave is
2
ao(A) & %
which implies the promised correlation between the strength of the interaction
and the energy scale of the new physics. If A $ 1 TeV then ao{A) < 1/47, well

below the unitarity limit; then £sg has a weak coupling and can be analyzed

(3.12)

perturbatively. For A 2 1 TeV, we have ag(:\) = 1/3, which is close to saturation;
this means £sp is a strong interaction theory requiring nonperturbative methods
of analysis.

Though it is not rigorous. the most likely case is that \¢yof = -\sg is of

order the typical mass scale Msp of the quanta of Lsp.
Ass = Msp. (3.13)

[ can’t prove {3.12) but can illustrate it with two examples. The first is the
Weinberg-Salam model. in which s-channel Higgs exchange provides the contri-

bution that cuts ofl (3.10). | assume that my >> My but that my is small
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(b)

Figure 3.1: Leading diagrams for W*W~ — ZZ, including interac-
tions from the gauge sector {(a) and the s—hannel Higgs boson ex-

change (b) — see eq. (3.14).
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enough that perturbation theory is not too bad — say myg =~ 700 GeV so that
A4ar? = m%,/8nv? ~ 1/10 (see section 5 below). Then I can calculate in tree
approximation, with the result

s s s
T 16mv2 167v? s — m¥

ao(s) (314)

where the first term arises from Lgayge and the second from the s-channel Higgs

boson exchange given by L£sg now assumed to oe the Weinberg-Salam Higgs sector

(see figure (3.1)). Fer s << m% the first term dominates, giving the low energy

theorem as it must. But for s >> m¥ the two terms combine to give
my

= ——t 15
S>> mi' 167?1)2 (3 O)

[20]

Comparing (3.15) with (3.12) we see that (3.13) is indeed verified, i.e., A = my.
Consider next a strongly-coupled example. In this case we expect to approx-

imately saturate the unitarity bound,
Astrong = 4VTU 2 O(2)TeV. {3.16)

I can’t solve for Msp in this case but I can relate the problem to one that has
been studied experimentally. In hadron physics the saturation scale from (3.1)

wouid be
AHadron = 4V/7 fr = 6300 eV. (3.17)

Experimentally we know this is indeed of the order of the mass of the lightest
hadrons. e.g., m, = 770 MeV. This is not surprising: in strong coupling theories
we expect resonances to form when scattering amplitudes become strong, as they
do at the energy scale of the unitarity bound.

So we expect A = 1/sg for weak or strong Lsg. The two generic cases are
shown in figure (3.2). For weak Lsg we expect narrow resonances below 1 TeV
— these are just the lliggs bosons. For strong L35 we expect broad resonances
in the vicinity of 1 to 2 TeV and strong IV scattering, both of which can be

observed at an appropriate collider.
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la.]

las]

Figure 3.2: Typical behavior of partial wave amplitudes for W 1V,
scattering for a weakly coupled model with narrow (Higgs) resonances
(top figure ) or a strongly coupled mode! with broad resonances in the

1-2 TeV region (bottom figure).
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4. The Naturalness Problem

In this section I will review the so—called “technical naturalness problem”
that afflicts models with elementary Higgs bosons because of their quadratic di-
vergences. | will also review two possible solutions: supersymmetry and techni-
color. Both eliminate the offending quadratic divergences — supersymmetry by
guaranteeing their cancellation and technicolor by doing away with elementary
scalars. Both solutions also require new physics at or below the TeV scale, where
it can be found at the SSC. The natural scale for technicolor is ~ O(2) TeV since
it is a strongly coupled theory which saturates the unitarity bound, eq. (3.11).
Supersymmetry must also appear at or below the TeV scale if it is indeed the
explaration of the naturalness problem, since as the SUSY breaking scale grows
beyond the TeV scale the problem begins to reappear.

There are two aspects of what is called the “naturalness” or “gauge hierarchy”
problem. The first is the physical origin of the very small numbers My /Mgy =
10712 or Mw /Mpignee = 1017, The second is a technical problem that is specific
to Higgs boson models: even if the gauge hierarchy problem has a natural solution
in lowest order, the quadratic divergences associated with scalar fields induce one
loop corrections that destroy the hierarchy. In ordinary Higgs boson models these
corrections require an order by order fine tuning of the subtraction constants that
seems physically unnatural. In this section [ will discuss this technical naturalness
problem.

Consider the standard Higgs boson model, to be reviewed in Section 5. The
potential V' contains a wrong-sign (tachyonic) mass term for @ and h. given by
the coefficient of %(u')q + k%) in equation (5.1) , equal to —Av®. Because of the
tachyonic sign, the state of minimum energy has a condensate v, resulting in zero
mass for the triplet  and a mass +v/2A¢? for A. The one loop quantum correction

(figure 1.1) is quadratically divergent,

A al4
Ot 1 (4.1)

S = = .
WY =5 | GrrE e

Though expressions like equation (4.1} are shocking to novices in field theory.
they lose their shock value as the student masters ( i.e.. is brainwashed by) the

renormalization program. which shows that finite predictions can be extracted at
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Figure 4.1: Quadratically divergent contribution to Higgs boson self-
energy, as in eq. (4.1).
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the cost of a small number of subtractions or redefinitions. Most notably in the
case of quantum electrodynamics this program has been extraordinarily successful.
The divergence in equation (4.1) can be removed by introducing a counterterm
that in effect shifts the initial value of Av? by an infinite constant cancelling the
divergence generated in equation (4.1).

In the renormalization program we renounce any attempt to understand the
physical origin of those parameters requiring subtraction — their values are sim-
ply fit to experiment — but we are then able to obtain finite predictions for all
other physical quantities in the theory. To understand the naturalness problem
it is necessary to go beyond this limited, though powerful, perspective and to
ask questions about the origins of the subtracted quantities, assuming they will
eventually be understood and calculable in the context of another theery formu-
lated at a deeper level. The expectation is that the deeper theory introduces
new physics at high energy that cuts off the divergent behavior of integrals like
equation (4.1). Denoting the energy scale of the new physics by A, equation (4.1)
would be replaced by A

5(v?A) = CE%A’ (4.2)
where C us a numerical constant of order unity.

Equation (4.2) tells us that the pa.rarﬁeters of Higgs models are hypersensitive
to the high energy scale of the deeper underlying theory. For exampie. the Higgs
boson mass, given in lowest order by m}, = ZAv?, might reasonably rangefrom
tens of MeV to perhaps the TeV scale. The scale A of the deeper theory might be
the scale of Grand Unified Theories, Mgyt = O(10'%) GeV. or even the Planck
scale suggested by superstring and supergravity models, Mpjapck = O(10'°%) GeV.,

\Vriting the physical mass as the sum of a bare mass pius the one loop corrections

. CA .

—\"
Hbare + 72

(4.3)

2
my=m

we see that the bare mass must be tuned with exquisite precision to make the left
side much smaller than the two terms on the right side. For instance, if my =
1 TeV and \ = Mpja,ck then the cancellation on the right sids must work to
one part in 10'"! Of course the renormalization program allows us to arrange

the cancellation to any desired precision, but viewed from the perspective of the
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deeper theory such a cancellation seems extremely unnatural — one might even
say, in the absence of any principle requiring or explaining such a cancellation,
that it is absurdly implausible.

Though the term is also used in other ways, this is the naturalness problem
that uniquely afflicts Higgs boson models. It may be thought of us as an insta-
bility of the energy scale of the theory against quantum corrections that tend
naturally to drive the scale to violently larger values. The problem uniquely af-
fects Higgs models because in 3 + 1 dimensions the only renormalizable theories
with quadratic divergences are those containing scalar fields. For instance in un-
broken gauge theories like QED or QCD divergences are at most given by powers
of logarithms. If instead of the quadratic dependence on A in equation (4.3) there

were a logarithmic dependence.

2 2 Cl\ 2 .’\
My =My hare + 75 Mh.bared ——— (4.4)
’ ' ™ ) 4 bare

then no fine tuning would be needed even for A as large as Mpjaqc-

Two strategies have been proposed to deal with the naturalness problem.
One is to suppose that the symmetry breaking sector, Lsg, does not contain el-
ementary Higgs bosons. In particular, in technicolor models?? Lsg is presumed
to be a confining gauge theory like QCD at a mass scale roughly v/F, ~ 2700
times greater than the GeV mass scale of QCD. Since QCD is known to undergo
spontaneous symmetry breaking, with SU(2), x SU(2)g breaking to SU{2)r,r,
giving rise to three Goldstone bosons (the pions), it is plausible that a similar the-
ory at a higher mass scale would contain the necessary ingredients for electroweak
symmetry breaking.

The second strategy is to provide a principle for the cancellation of the
quadratic divergences: supersvmmetrv.?? In supersvmmetric theories the quadratic
divergences due to scalar boson loops are precisely cancelled by fermion loop con-
tributions. The remaining finite difference is proportional to the scale of supersym-
metry breaking e.g.. the mass differences of the scalar and fermion superpartners.
The absence of scalars degenerate with the known leptons and quarks tells us
supersymmetry cannot be exact. Naturalness then implies an upper limit on the

scale of supersymmetry breaking, since the naturalness problem returns if mass
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differences of fermion-boson superpartners are too large. To avoid fine-tuning at
less than the few perzent level, superpartners cannot be heavier than a few TeV.

Supersymmetry and technicolor are discussed in the next section. it is how-
ever important te recogrize that nature may have found a way to solve the natu-

ralness problem that has not yet occurred to us.

5. Models
In this section I will review three specific mod=:ls of Lsp, concentrating on
how they illustrate the general features discussed in Sections 2 and 3. The models

are
o the Weinberg-Salam model
e the minimal sup:rsyrametric extension of the standard model
e technicolor

5.1 The V/einberg-Salam Higgs Sector
The Weinberg-Salam model is a minimal model in that it has the smallest
number of fields needed to break the gauge syinmetry from SU(2)r x U(1)y to

U(1)gm. Four spin zero quanta are introduced, i a complex doublet of SU(2),:

1 fun + iws
d=— 3.1
\/E(H + iws) D

The lagrangian is
Lsa =|D.8* — V(@) (5.2)

where D is the gauge covariant derivative,
D, =08, —igly - W, —igV X. (3.3)

The scalar self-couplings are just like the O(3) model discussed in Section 2 {in

fact the Weinberg-Salam model is just the extension to O{4}}:
V=A@t - Ly
(@70 — =)
/\ a 3 1,2
-I(H'+u7"—v‘)'. (-)H

24



The global symmetry group of (5.4) is
G = SU(2)L x SU(2)a (5.3)

(or equivalently O(4)). Defining ﬁ, and ZFR in terms of vector and axial-vector

SU(2) generators,
Tor=VFA (5.6)

the infinitesimal SU(2), x SU(2)gr rotations act on the fields as follows:
Sv(H.B) = (0,8 x ) (5.7a)
S4(H, W) = (€4 -w,—€4H), (5.7b)

i.e., as if & were a pseudoscalar and H a scalar.
As reviewed in Section 2 for the O(3) model. the minimum energy configura-

tion chooses a field condensate which we define to be H,
(H)o = v. (5.8)

Taking H — H + v the potential becomes

/\ 2 2,2 2
V= I(H- + %) + AvH(H? + &) + 2P H? (5.9)
so that
my = 2Av? (5.10)
mg =0 (3-11)

Inspection of (5.9) reveals that the global symmetry has broken spontaneously

from

It
s,
~
[©
~
+
x

G=50(2) x SU(2)p — HThe Group

Il
i
~
[
=
o
—
™)

{or equivalently O(1) — O(3)). There are then 6 — 3 = 3 Goldstone bosons. the
¢ triplet, which become the longitudinal gauge boson modes as in Section 2. The
only remaining quantum in £sg is then the scalar H.

Notice that the syvimmetry structure SU(2)p x S{U(2)r — SU(2)L4r is iden-

tical to the symmetry of QCD with two massless quarks. eqs. (2.26) and (2.2%).
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In fact V(®) as given in (5.4) is identical to the sigma model?* with the sub-
stitutions H — ¢, & — 7, and v — F,. The sigma model was developed to
model the low energy symmetries of hadron physics and played an important part
in the history of the 1960’s that led to the discovery and understanding of the
underlying quark structure of hadrons. It is amusing that the Weinberg—Salam
model could play a similar role in the effort to final Lsp. In the sigma model the
surviving SU(2)r+r symmetry is just the ordinary isospin of hadron physics. In
the Weinberg-Salam model it is the custodial SU(2) discussed in Section 2 that
protects the p parameter against O(\) corrections.
The |D®{? term in (5.2) contains a contribution

-

Egvﬂ’, N ) (5.13)
which is equivalent to egs. (2.31-2.32) with f = ». That is, the gauge current
contains a term lgvd“w. We therefore see immediately from the discussion in
Section 2 that the mixing of & with ¥¥'# results in a gauge boson mass

1

A‘IW = Egv. (5.14)
A more familiar though less general derivation is by inspection of the term quadratic
in W* that is contained in |DW|?, i.e.,

1 gv)2 -
=) W .= 5.15
2 ( 2 “ W (3 lf))
from which {5.14) may be read directly.
Taking A\/47? as the quantity characterizing perturbative corrections, we find

from (5.10) that

A myy mp )2
—_— = 5.16
ir?  8mu? 1TeV (5.16)
which shows that strong coupling sets in at roughly my > 1 TeV. This estimate

agrees with the general analysis of section 3, as discussed following eq. (3.12}.
where we identify my; with the cutoff \. as shown in egs. {3.14-3.13).

The Higgs boson decay width in lowest order is

i 3v2
i —-WIW+2zzZy = E_Z-;Gpnl';{
l . mpyr 3 -
= STel ( ) . 5.15
27 T\ Tev (3.17)
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For my = 1 TeV the width is so big that there is no discernible resonance peak.
Since the theory is strongly coupled for such values of mp, the spectrum need
not correspond in a simple way to the degrees of freedom in the lagrangian. It
is in fact widely believed (the buzz word is “triviality”) that the theory is incon-
sistent for mg near or above 1 TeV. This conclusion was based first on a simple
renormalization group analysis®>® and is supported by lattice computations.?®

A lower bound on mpy follows from requiring the SU(2), x U(1)y broken
vacuum (with (H)e = v # 0) to be the lowest energy configuration in the one

loop effective pntential. The result is?”

m > — a2 - 4m3] (5.18)

1
cos? 6,

assuming the top quark is the only fermion as heavy as M. For m; << Mw the
bound is myg > 7 GeV but for m; > 80 GeV the bound disappears. New bounds
are obtained for m; > 86 GeV from the requirement that the vacuum be stable
against large Higgs field fluctuations, i.e., that the coefficient of H*In H in the
effective potential be positive.”® The value of the bound depends on the value of
a cutoff representing new physics beyond the Weinberg-Salam model. Consider
for instance the possibility that m, > 120 GeV Then the rencrmalization goup
analysis of Lindner, Sher and Zaglauer®® gives myg 2 50 GeV for A = 10'5 GeV
and my = 30 GeV for A = 10° GeV.

Fermions acquire mass from a Yukawa interaction with the Higgs boson,
LYukawa nywflr’ (5.19)

where y; is the dimensionless coupling constant. The fermion masses are then
mys = yv so that the couplings are

mg¢ mpy

= = 5.9
Y= T (5.20)

Except for the top quark the y; are extremely small, which makes Higgs boson
production cross sections extremely small as well.

This ic not a satisfying description since all the mysteries of the quark and
lepton spectrum are hidden in the y, which are simply introduced by hand. In

fact, fermion mass generation could prove much more difficult to understand than
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W and Z mass generation. Fermion and gauge boson masses could be due to
different condensates rather than the single condensate of the Weinberg-Salam
model. Unitarity allows very different scales. For a fermion of mass m; the

counterpart of the 1.75 TeV bound, eq. (3.11), is

16mv?

AS Cmy

(5.21)

where ¢ = 1 for leptons and 3 for quarks. The right hand side of (5.21) is much
larger than the TeV scale, ranging from 5-10° TeV for the electron to ~ 10 TeV
for a 100 GeV top quark.

5.2 Supersymmetry

The only known solution to the naturalness problem (Section 4) that al-
lows elementary Higgs bosons is supersymmetry — that is the principal reason
to believe supersymmetric partners of the krown particles might be found at or
below the TeV scale. In order to give mass to quarks and leptons of weak isospin
T5L = :}:% the constraints of supersymmetry require a minimum of two complex
doublet Higgs fields. In this section I will review the Higgs sector of the mini-
mal supersymmetric extension of the standard model,? which has precisely two

complex Higgs doublets,

| W

1(w;+iw
V2\H, + iw

The scalar potential V(®,, ®,) has its minimum at

¢, = ) a=1,2 (5.22)

W

(Ha) = vq (5.23)
The IV mass is
\!W=—g vy + 3 (3.24)
so that
v+ 02 = v = (V2Gr). £5.25)
We choose H) to couple to T3 = +% and H,to T3r = —% fermions.

The two complex doublets contain eight degrees of freedom. of which three

become the longitudinal 11'* and Z modes. The remaining five particles include
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three “pseudoscalars”, H* and FP’, which are orthogonal to the “eaten” com-
binations of w, and w0, and the two Higgs scalars Hy; and H,. In general the

eigenstates are mixtures with mixing angle a,

T cosa sina) Hl) .96
(H’)_<—sina cos @ (Hq ' (526)

In the Weinberg-Salam model, Asg = A is a free parameter so that the Higgs
boson mass, m¥ = 2\v?, is also unconstrained. In the minimal supersymmetric
model, the strength of the Higgs interactions is constrained (because the scalar

potential arises from a “D-term”) to be
A=g+97 (5.27)

where ¢ and ¢’ are the SU'(2); and U/{1)}y gauge coupling constants. This means
that the model is a weakly coupled Lsg in the sense of Section 3. It also means
that Higgs boson masses are not completely arbitrary, but satisfy sum rules which

in lowest order are

mys =mp+ M (5.28)

| =
mi,_,.,; = ‘2'(m7:> + Mz)? (5.29)

l 2 2 £y 5 Yy
* 5\/(”17:» +m3) — 4m% M3 cos? 23

where 3 is defined by the ratio of the vevs,

tan 3 = va/fvy. (3.30)
We then see that

mye > My (3.31)

my < Mz (5.32)

my > Mz. (3.33)

Equations (5.27-3.29) are not generally true for nonmininal supersymmetric

models. In particular. models containing SU(2),, singlet [iggs fields can have
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arbitrary couplings A. Because they mix with the doublet Higgs fields, all Higgs
boson masses are then in general arbitrary. .

The one loop corrections to the minimal model sum rules have been computed.
both for the charged® (5.28) and neutral® (5.29) bosons. The corrections are
typically small though they can be large for certain choices of the parameters.

The search for the lighter Higgs scalar H is similar to the search for the
Weinberg-Salam Higgs boson below Mz, as discussed by Michael Levy at this
school.3? Searches for the Weinberg~Salar: Higgs boson can be used to exclude re-
gions of the supersymmetric model’s parameter space, which can be characterized
by the angles a, 3 or, equivalently, by the masses of the scalars my, mg.

The heavy scalar H’ has highly suppressed couplings to WW + ZZ and is
therefore probably undetectable at the SSC. However at the SSC we will be able
to search directly for the superparticles, especially the squarks and gluinos which
should be observable for masses as large as 1 TeV and perhaps even beyond.®

Charged Higgs bosons are of course pair-produced in e*e~ annihilation, for
v's > 2/ M + m3. Since mp is an arbitrary parameter, we cannot say what

energy might be necessary.

5.3 Technicolor

Technicolor is the other known solution to the “technical” naturalness prob-
lem. In the context of a grand unified theory the logarithmic variation of the
technicolor coupling constant might also explain® the “fundamental™ naturalness
problem. i.e., the origin of the electroweak : GUT or Planck hierarchy. Technicolor
is a good example of a strongly interacting Lsp as defined in Section 3.

The basic idea is that the Goldstone bosons w and = of L55 are bound
states of an asymptotically free gauge theory with a confined spectrum at the TeV’
scale. The simplest example is an unbroken S{(\N7¢) gauge theory which would
resemble closely the familiar dynamics of QCD. For .Vr massless techniquark

flavors the global symmetry group is

G = SU(NF)L x SU(NF)R- (5.34)
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As in QCD we expect the ground state to have a condensate
Ne o
<Z Tugr + ﬁhql> #0 (5.35)
=1 0

which breaks G down to the diagonal, vector-like subgroup
H = SU(NF)L+R. (5.36)

For Np 2 2, H includes a custodial SU(2).+g symmetry so that p = | is protected
against large corrections from strong technicolor interactions. Since there are N2 —
1 broken SU(Np)L—g generators, there are VZ ~ 1 Goldstone bosons, w#, z, {¢;}.
The ¢; exist if Vg > 2; they acquire masses from the SU(3)olor X SU(2) x U(1)y
gauge interactions and are referred to as pseudo-Goldstone bosons. Choosing the

“technicolor pion = w, z decay constant”
TeV (5.37)

referred to as f in egs. (2.20-2.38), we obtain the correct value of the W mass as
shown in the general discussion of Section 2.

For Ny~ = 3 the theory is precisely a rescaled version of QCD and we can
reliably predict (up to small corrections due to the small masses of the QCD u

and d quarks) the mass and width of the techni-rho vector meson:

My = Fi’m, =204 TeV’ (5.38)
T,y = 7__”—1‘,, =040 TeV. (5.39)

More generally (and less reliably) in the limit of large N7~ and large 3 ( i.e.. the

large .V limit assumed to be valid for QCD). we have

3

Mop = —-\'TC 2 Tel (5.40)
3
I'L,T = —\,-?C-: -0.40 Tel" (5.»”)

The techni-rho has a ~pectacular though small background free signal at the SSC.

as discussed in the next section.
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Figure 6.1: Generic W, W, fusion via interactions of the symmetry

breaking sector Lgg.



and whether the mass scale of its quanta is at the TeV scale or below. We will
prebably also begin to observe the quanta directly as resonance effects in some of
the 2 — 2 channels. A general strategy to accomplish this is based on the WV,
fusion reaction, figure (6.1), that can be studied at a pp or ete™ collider. The
initial state W_'s are off-mass-shell and must rescatter to appear on-shell in the
final state. The contribution from rescattering by Lsg is O(g°Asg) where g is
the SU(2). gauge coupling constant and Asg the generic interaction strength of
Lsp. The dominant background from gg — WW is O(g*). Therefore WW fusion
contributes an observable increment if and only if the rescattering is strong, i.e.,
if and only if Asg/4m = O(1) or equivalently Asg 2 1 TeV.

Other backgrounds are .M{gg — W*W~-,Z2Z) ~ asg® via heavy quark
loops®® {e.g., top), IV bremsstrahlung with gluon exchange between the quarks,*®
~ asg®. and WV fusion by Lsyzxu) which is ~ g*. These backgrounds are
illustrated in figure {6.2). Though the backgrounds (except gg fusion) are domi-
nated by transverse polarizations, polarization is not sufficient to separate them
from the longitudinally polarized signal, though it can provide corroboration of a
possible signal as discussed below.

The SSC is a minimal pp collider for this strategy. A collider of half the
energy or less is not adequate, even with realistically likely higher Juminosity.
Because both the signal and the signal : background decrease at lower energy*®
and because the most important final states are inaccessible at high luminosity,*!
an upgrade in £ of two to three orders of magnitude would be needed to offset
a factor three loss in energv.’® An e*e~ collider of /s = 2 — 3 TeV is probably
minimal for the strong IV IV scattering signal,** though more study is needed. See
figure 6.3 for 1 TeV iliggs boson production cross sections at e*e™ and pp colliders
of various energies.'?”

In this section [ consider three examples of signals for strong symmetry break-
ing:

1. The 1 TeV Weinherg-Salam [liggs boson

2. Strong 1WHIV* and W~ scattering

3. Techni-rho production
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(b)
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Figure 6.2: Backgrounds to /f — 11"} signal from (aj §q — 171V, (b
gg — WV via Q loops, (c} gluon exchange. and (d) higher order

O(g*) electroweak interactions including W1 fusion as shown,
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Figure 6.3: Higgs boson production cross sections in picobarns at ete

and pp colliders with center of mass energies indicated (from ref. 12a).
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I will consider purely leptonic final states, since they are experimentally
cleanest. Larger yields will be possible if detection of WW — ¢y + gq proves
feasible. 4348

The signals for examples 1) and 2) are excesses of events with no discernible
structure. To detect this excess reliably we must understand the background to
+30%, a goal consistent with the level at which we can expect to understand
the nucleon structure functions and perturbative QCD.* Realization of this goal
requires an extensive program of “calibration” studies at the SSC, to measure a
variety of jet, lepton, and gauge boson final states in order to tune the structure
functions and confirm our understanding of the backgrounds.*"

6.1 The 1 TeV Weinberg-Salam Higgs Boson
In the Weinberg-Salam model the generic figure 6.1 is replaced by s-channel

Higgs boson exchange. figure 6.4. I consider the leptonic final state.

H— 27 —eve jutp™ +ete jutu[ov

(o]
]
=

for which the branching ratic is 1.1%, of which 6/7 of the events have one Z
decay to Tv.3* I require any observed Z's to be central, |yz| < 1.5, and in
addition require either mzz > 0.9 TeV or (mzz)r > 0.9 TeV, where (mzz)r is
the transverse mass, 2-\/m% + p:},-. comp{ned from the pr of the observed Z when
the second Z decays to Uv. The cuts are needed in order to see the signal above
Gq — ZZ background. For this signal they are essentially equivalent to alternative
cuts that have been suggested.?

An idea of the dependence of the signal on collider energy can be gotten from
figure 6.3, which shows the signal alone. Figure 6.6, showing the signal over the
background, illustrates the need for the cut on mzz or equivalently on pr{Z).

Here and elsewhere | quote vields in events per 10*pb~!. the integrated lumi-
nosity accumulated with 10Pem~2sce™! for 107 sec. For me, = 30 Ge\' the signal
is 34 events over a background (from ¢ and g9 — ZZ) of 16 events (ie.. 50
events total). The sitnation unproves with a heavier top quark due to the addi-
tivnal production channel gg — £ via a it loop.*® For m, = 200 Ge\' the signal
is 100 events over a background of 22 events. The O{a,g?) gluon exchange and

O(g'} qq — qqZ Z backgrounds have not yet been calculated, but will not be very
important after the mzz or (mzz)r cut is applied.
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Figure 6.4: Higgs boson production via WW fusion and decay to WW.
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Figure 6.5: Yield dn/dmzz in TeV~! for H — ZZ at 10, 20. 30. and
40 TeV pp colliders. in events per 104pb~! with lyz' < 1.5 (from ref.

3).
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Figure 6.6: Yields defined as in figure 6.5 for a 40 TeV pp collider. The
short dashed line is the §g — Z Z background while the long dashed
line is the sum of the background and the # — ZZ signal. The solid
line represents the sum of signal plus background for an extrapolation

of the low energy theorem as discussed in Section 6.2 (from ref. 3).
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Except for gg — ZZ, the backgrounds are predominantly transversely po-
larized Z’'s while the signal is purely longitudinal, resulting in different angular
distributions for the decays Z — ff where f is a lepton or quark. Define §*
as the angle in the Z center of mass system between the fermion momentum 7,
and the boost axis to the laboratory frame. Then the angular distributions for

longitudinal and transverse polarizations are
. 3 ...
Pp(cos8") = Zsm'ﬂ (6.6)
Pr(cos8®) = -g-(l + cos® ") (6.7)

A strong cut against Pr throws out most of the Pr baby with the bath, and cannot
be afforded given the small number of events. On the other hand, there are enough
events to check that the signal is longitudinal as expected. For instance. a cut at
|cos 8°| < 1/3 reduces Ny, by about 1/2 while reducing Nt by about 1/4 (see e.g.
reference 31).
6.2 Strong WTH'* & V-1~ Scattering

The like-charge W1V channel is controlled by the [ o1 odial = 2 low energy

theorem.?

(6.8)

s
Qgy = — oo
32mv?

where | have put p = 1. This is analogous to the exotic { = 2 channel in QCD,
in which no resonance structure is observed. A simple model® for the continuum
scattering in this channel is obtained by extrapolating the low energy theorem
{6.8) to the unitarity limit at V32me? = 2.5 Tel'.

jao] = 51;‘4[30(:32:1-1 sy A1 0(s = 3271 (6.9}
as shown in figure 6.7. \We then use the ellective 117 approximation®* 1o compute
the vield from VI fusion.

The mocdel (6.9} can be thought of as a kind of “insurance policy™ against
the possibility that that the mass scale Msg is much larger than the unitarity
limit Agg. As discussed in Section 3 this is physically implausible though not
rigorously impossible. { U ltracolor®® with a Higgs boson above 1 TeV might provide

an example.) To sce how this works. compare the analogous =+ scattering models
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Figure 6.7: Extrapolated low energy theorem for strong W*WW+ scat-
tering, ¢q. (6.9).
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with experimental data. For the three channels, (I,J) = (0,0),(1,1),(2,0), the
models analogous to (6.9) are labeled by the curves a in figures (6.8), compared
there with experimental data.3® The model for |agy| describes the trend of the
data well. For [ay;| it underestimates the data because it fails to account for the
p meson peak. For |agz| the model overestimates the data (note that since this
is an exotic channel, Im agz = 0 and |age| = |Re ags| to a good approximation),
because if fails to include the effects of p exchange in the t and u channels. The
model (6.9) is then a kind of worst case scenario: it should work best in the
unlikely event that the resonances are much heavier than the unitarity bound
for Asg. For instance, if the p were heavier, say > 1 GeV, then curve (a) in
figure (6.8) would give a better fit (to larger s) than it now does. On the other
hand, if the resonances are where we naively expect, Msg = Asp, then at least
some channels will be dramatically enhanced relative to the model. We consider
a resonant (technicolor) example below. First we consider strong WW scattering
with no structure as in figure (6.7).

The signal is defined by two isolated like-charge leptons,
WIW* s etv/utv +etvfutu. (6.10)

(Assuming m, > M, the branching ratio is (2/9)2.) Cuts imposed are |y < 2
and pre > 50 GeV where ¢ = ¢, . In addition a “theorist’s” cut of Mww > 800
GeV is imposed to reduce background from ¢¢ — qqWWW by gluon exchange,
O(a,g?), and by higher order electroweak interactions, O(g*). This is a “theo-
rist’s” cut since the two v's prevent it from being implemented experimentally. It
can eventually be replaced by a set of cuts on observables, such as the dilepton
mass and the transverse mass formed from the dilepton momenta.

The corresponding signal® for an SSC vear (107 sec.) is 33 events. from both
W+W+ and W-W~. The background is ~ 34 events, of which 1/3 is from gluon
exchange®%5 and 2/3 is from O{g*) processes.® If instead of (6.0) we used a scaled
version of the /| = 2 wr data shown in figure 6.8, the signal would be decreased
by about a factor 2.

8.3 Techni-rho meson

As an example of resonance production I will consider production of the
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Figure 6.8: Data for 77 partial wave amplitudes compared with ex-
trapolated low energy theorems (e.g., eq. {6.9)) for the three channels
I1,J =(0,0),(1,1),(2,0). The curves labeled a correspond to the naive
extrapolation as in eq. (6.9) and figure 6.6. The figures are from ref.
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techni-rho meson expected in SU(4) technicolor. From eqgs. (5.40-5.41) we have

My, = 1.8TeV (6.11)

T,. =03 TeV. (6.12)

There are two important production mechanisms: W W — pr (ref. (3)) and
gq — pr ref. (57)). I consider the easily observed purely leptonic final state

PE A WEZ = e*vjuty +ete futu (6.13)

with branching ratio 0.014 (for m; > Mw). With a central rapidity cut, [yw,z| <
1.5, and a diboson mass cut My-z > 1.6 TeV, I.find a signal of 13 events and a
background of 1.7 events. If W — rv events can also be recovered, signal and
background both increase by ~ 1% to 20 events over a background of 2.5.
7. Conclusion

The Higgs mechanism implies the existence of Higgs bosons below 1 TeV or
strongly interacting particles above 1 TeV, though probably not much heavier
than ~ 2 TeV. With the ability to observe strong W W scattering in the 1-2 TeV
region, we can decide for certain if the symmetry breaking sector is strong or not.
Unlike the usual situation where a negative result leaves open the possibility that
we must search at higher energy, the observed absence of strong ww scattering
would imply that symmetry breaking is due to Higgs bosons below 1 TeV. The
SSC is a minimal pp collider with this “no-lose” capability. A minimal e*e~
collider probably would need /s =3 -5 TeV and £ > 10¥cm—2sec™!.

Presently approved world facilities would leave open an “intermediate mass”
window for a Higgs boson of mass 70-80 GeV < my < 120-140 GeV. The gap
could be closed by an e*e™ collider with /s 2 300 GeV and £ 2 103 cm~?sec™!.
Motivation for closing this window would be strengthened by the discovery of
supersyrnmetry or by evidence that strong VW scattering does not occur.

It should be clear from the small yields quoted in Section 6 and from the
not much bigger yields reviewed by Michael Levy™ for lighter Higgs bosons. that

discovery of the symmetry breaking sector will not be the end but the beginning
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of a long process of detailed studies. The handful of events that provide the initial
discovery will be completely inadequate as we begin our study of a fifth force

of nature and an associated new world of particles. The experimental facilities

needed for those studies will be awesome and are difficult for us even to imagine
today.
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