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Abstract: 

The ca t a ly t i c  methanol production on a Cu-Zn-oxide ca t a ly s t  was studied a t  

17 atm and about200C i n  a batch reactor. The i n i t i a l  r a t e  measurement was 

performed f o r  d i f f e r en t  C02/C0 r a t i o s  in the  feed. The r a t e  was found t o  

increase with increasing C02/C0, f o r  a f ixed H2 p a r t i a l  pressure. This 

behavior was observed f o r  c a t a ly s t s  a t  d i f f e r en t  s tages  of deactivation,  and 

from 195 t o  225C. Addition of a small  amount of water vapor great ly .  suppressed 

t h e  r a t e .  \ 

18 When C O2 was used i n  a feed of C02:CO:H2 = 3:10:20, the  i n i t i a l  r a t e  of 

production of m e t h a n ~ l - ' ~ ~  was found t o  be about hal f  the  r a t e  of production of 

methanol-160. I n  view of the  much lower p a r t i a l  pressure of C02 than CO i n  the  

feed, this r e s u l t  suggests t h a t  the hydrogenation r a t e  of C02 on a per-mole  

bas i s  is  f a s t e r  than t h a t  of CO. This is consis tent  with the above i n i t i a l  

16 18 r a t e  data. Production of C 0 0 and cq602 were a l s o  rapid, which indicated . 

rapld  exchange of the l a t t i c e  oxygen with C02. The production of ~ ~ ' ~ 0  was , 
, 

a l s o  rapid, being about twice a s  f a s t  a s  the methanol production rate. Thus 

under the conditions of i n i t i a l  r a t e  measurements, the  water-gas s h i f t  react ion 

i s  rapid.  

The r e l a t i ve  r a t e s  of hydrogenation of COP, and CO were a l s o  determined 

near chemical equilibrium by the  re laxat ion method Nonequilibrium 

thermodynamic theor ies  were applied t o  describe the re laxat ion process. The 

physical  meaning of the  equilibrium exchange r a t e  f o r  a complex react ion was 

discovered A method was developed t o  measure the  equilibrium exchange r a t e s  

of the  simultaneous react ions  i n  methanol synthesis. 



OBJECTIVE 

The objective of t h i s  work is t o  gather k ine t i c  and mechanistic data f o r  

the  ca t a ly t i c  production of methanol from a mixture of CO, C02 and H2 over a 

Cu-Zn-oxide ca ta lys t .  

DESCRIPTION OF THE OVERALL APPROACH -- 
Work performed i n  t h i s  project  can be grouped i n to ' t h r ee  sections. Each 

represents  a d i f f e r e n t  type of k ine t i c  measurement. The f i r s t  type is the  

measurement of i n i t i a l  r a t e  data. These data were gathered f o r  d i f f e r en t  

c0/C02 r a t i o  i n  the  feed, a t  17 atm, and from 195 t o  2256. The second type is 

isotope label ing experiment. cq802 was used as a component of the  feed. The 

t h i r d  type is re laxat ion experiment. I n  t h i s ,  the  theor ies  of nonequilibrium 

thermodynamics were used t o  describe the  re laxat ion toward equilibrium of the 

react ion system, which consis ts  of a .mixture  of CO, C02, Hz, H20, and methanol. 

Equilibrium exchange r a t e s  were calculated from the  relaxation data. These 

th ree  approaches a r e  separately described below. 



I.THE RATE OF METHANOL PRODUCTION ON A COPPER-ZINC OXIDE CATALYST. 
THE DEPENDENCE ON THE FEED COMPOSITION 

Introduction 

Methanol synthesis  on a copper-zinc oxide c a t a l y s t  has been extensively 

s tudied wi th  respect  t o  t h e  s o l i d  state proper t i e s  of the  ca ' talyst  (1-41, the  

adsorption p roper t i e s  (5). the  react ion mechanism (6-9). and the k i n e t i c s  (10- 

2 I n  a very extensive k i n e t i c  study, Klier e t  a 1  meaeured t h e  r a t e  of 

methanol production in  an f n t e g m l  reac to r  a s  a function of the CO/CO;! r a t i o  i n  

the  reac tan t  feed (12). They observed a sharp  maxfmun a t  a C O / C O ~  of 

about 28/2. The data  were in te rp re ted  assuming that the a c t i v e  site of the 

c a t a l y s t  undergoes a redox react ion with t h e  gas phase CO and C02. Yhen the 

C02 content  is too low, the  mduced and inac t ive  form of the  a c t i v e  site 

dominates. When the  C02 content  is too high, t h e  competitive adsorption of C02 

blocks the ac t ive  site. Thus an optimum CO/C02 r a t i o  is observed Using t h i s  

model and the  assumption t h a t  methanol is formed by the  react ion of adsorbed CO 

with adsorbed H2, a r a t e  expression was derived which f i t t e d  the  experimental 

r a t e  data w e l l .  Furthermore, reasonable values of adsorption enthalpies  and 

ent ropies  could be ca lcula ted  using the k i n e t i c  model. 

Because of t h e  use of an  i n t e g r a l  r eac to r  i n  Klierls study, the  carbon 

conversions were r e l a t i v e l y  high, e spec ia l ly  i n  the  experiments a t  higher 

temperatures i n  which t h e  methanol y i e l d  approached t h e  equil ibrium yield. The 

high conversion introduced a number of poss ib le  complications to the  k i n e t i c  

measurement. The r a t e  of t h e  reverse react ion of methanol decomposition could 

be s i g n i f i c a n t  and could contribute t o  the  observed kinetics.  The rate of the 

competing wate-gas shift react ion could be high and r e s u l t  in t h e  production 

of water the effect of which hae to be examined The large change i n  the gas 

phase composition along the  reac to r  also could complicate ana lys i s  of the  data. 

To obta in  the k i n e t i c s  of the  methanol synthes is  react ion without these 

complications, we performed i n i t i a l  r a t e  meaeurements using a batch reactor. 

Results  of the study are reported here. 



Experimental 

A l l  measurements were conducted in  a constant  volume s t a i n l e s s  steel 

r e a c t o r  wi th  a volume of 63 mL. The i n s i d e  of the  reac to r  was made up of two 

connecting concentric  c y l i n d r i c a l  sections. The ins ide  diameter and the  height  

of t h e  bottom s e c t i o n  were 6.5 and 2.6 cm, respectively,  and those of the  upper 

sec t ion  were about 3.5 and 2.7 cm, respectively. The content  of the reac to r  

was s t i r r e d  by a magnetically driven f a n  which had blades a t  two d i f f e r e n t  

levels .  The lower blades were about 1 cm above the  c a t a l y s t  bed, and the upper 

blades w e r e  about 1.5 c m  above the  lower blades. The lower blade8 were 

extended almost  t o  the perimeter'of the  reactor. The ex ten t  of mixing in the 

r e a c t o r  was determined by monitoring t h e  response of the  maaa spectrometer 

s i g n a l  t o  a step change in t h e  gas composition i n  t h e  reac to r  without any 

cata lys t .  Typically, t h e  response was l i k e  an  exponential decay, and t h e  

s i g n a l  relaxed t o  wi th in  t h e  noise l e v e l  of the  measurement i n  about two 

minutes. A t  t h e  top  of t h e  r e a c t o r  was a leak valve (varian Vacuum products) 

which f e d  a smal l  amount of t h e  react ion mixture i n t o  a mass spectrometer 

chamber. A UTI 100 C quadrupole mass spectrometer was u s e d  The s e l e c t i o n  of 

mass numbers and the  co l l ec t ion  of da ta  were performed by an Apple I1 plus  

computer in te r faced  wi th  t h e  mass spectrometer. One maas in tens i ty .was  

co l l ec ted  every f i v e  seconds, and a l l  f i v e  components (CO, W2, H2, (3130H and 

~ ~ 0 )  were, monitored i n  every experiment hy monitorinq masscn Q$, 31i 20i q0, 13 

and 2. Theae i n t e n s i t i e s  were converted t o  mole f r a c t i o n s  in  the  reac to r  a f t e r  

co r rec t ing  f o r  the cracking p a t t e r n s  and t h e  s e n s i t i v i t y  f a c t o r s  which were 

independAntly d e t e r m k e d  I n  a l l  experiments, the  mass 15 i n t e n s i t y  Could be 

accounted f o r  by t h e  cracking of CHJOH. Thus CH4 was n o t d e t e c t e d  a s  a 

, s i g n i f i c a n t  product. 

The e n t i r e  r e a c t o r  was s i t u a t e d  in  a n  oven equipped wi th  forced a i r  



circulation. The temperature gradient  along the reac to r  was l e s s  than 2 C. A t  

the  beginning of each s e r i e s  of experiments, a mixture of CO, COZ, CHgOP and H2 

a t  about 17 atm (1 atm 101.3 k ~ a )  was Introduced i n t o  the reac to r  to  

ca l i b r a t e  the  mass spectrometer s e n s i t i v i t y  factors. This was repeated th ree  

times before r a t e  measurements were made and was done twice a t  the  end of the  

series.  For the  rate measurements, a mixture of the  desired composition was 

prepared i n  a premixer before being expanded i n t o  the reactor. A transducer 

(Viatran) measured the  reac to r  pressure before and a f t e r  the  experiment, and 

was i so la ted  from the reactor  during reaction. A l l  experiments were conducted 

a t  16.8 - + 0.2 atm pressure which decreased by l e s s  than 0.2 atm throughout the  

experiment. Each experiment l a s ted  f o r  30 t o  35 m i n .  The experiments in each 

s e r i e s  were performed one a f t e r  another immediately a f t e r  evacuation of the  gas 

mixture of the previous run, and introduction of the gas mixture f o r  the  new 

run. Between a e r i e s  of experiments, the  c a t a l y s t  was l e f t  i n  contact  wi th  the  

reaction mixture a t  1 atm a t  reaction temperature. 

The c a t a l y s t  was prepared according t o  the  method of Herman e t  a1 (1). 

It was precipi ta ted  from a copper n i t r a t e  (Alfa) and zinc n i t r a t e  (Alfa) 

soluti.on ( t o t a l  ca t ion  concentration was 1 W )  by the  dropwise addi t ion o f - a  1 H 

eodiua carbonate ( ~ l f a )  solut ion a+ 85 t o  90 C te a f i n a l  pH of aboua 7, The 

resu l t ing  mixture was cooled f o r  2 h while s t i r r ing .  The p r ec ip i t a t e  waa then 

f i l t e r e d  and washed with g lass  d i s t i l l e d  water  f i v e  times, dr ied  in  a i r  a t 7 2  

C, t h en  c a l c i n e d  i n  a i r  a t  350 C f o r  3 h. ~ e t w e e n  150 and 350 C,  t h e  

ca lc inat ion temperature was ra ised by 50 C every 30 m i n .  The resu l t ing  

ca t a ly s t  was a black powder of 80-120 mesh. Its BET area  was 21 m 2 d 1 ,  which 

rss reduced t o  18 m2g'l after use. Its CuO/ZnO r a t i o  was 30/70 by weight, 

assuming t h a t  the  p rec ip i t a t ion  of Cu and Z& was complete. The c a t a l y s t  was 

loosely spread ou t  i n  a t e f lon  t r ay  placed a t  the bottom of the  reactor  t o  form 



a bed of l e s s  than 3 m m  thick,  It was reduced with a 296 H2 i n  N2 mixture a t  1 

atm and 250 C. Reduction a t  200 C gave the same results .  Two methods of 

reduction were wed. I n  one, the  reduction was performed i n  a batch system and 

a f r e s h  charge of H2/N2 was introduced .every 30 m i n .  a f t e r  the  previous charge 

was evacuated. This  procedure was repeated e igh t  times. A t  the end of the 

e igh th  time, the  c a t a l y s t  was l e f t  in the  H ~ / N ~  mixture overnight. The 

reduction was considered complete because f o r  one charge of catalyst, t h i s  

reduction procedure fepeated after tha aptalyst  was wed in oxporimonCa. 

The a c t i v i t y  of the c a t a l y s t  a f t e r  the repeated reduction remained the  same. 

I n  t h e  second method, t he  c a t a l y s t  was reduced i n  a flowing stream of H ~ / u ~  

mixture f o r  12 h. This method waa used only once and it produced a ca t a ly s t  

t h a t  was s l i g h t l y  more ac t i ve  than the  first method. Otherwise the  behavior of 

t he  c a t a l y s t s  was independent of the  reduction method. 

H2 ( ~ i r  Products, high puri ty) ,  C02 ( ~ i n d e ,  bone dry), and CO (tinde, 

high pur i ty)  were used without further purif icat ion.  H20 was introduced by 

vaporizing l i qu id  doubly d i s t i l l e d  water t h a t  was pur i f i ed  by pumping. A 

premixed mixture of 4.28% COZt 32.55 CO, and 63.22% H2 ( ~ i r c o )  was used in 

every s e r i e s  of experiments as a test on the  deactivation of the  catalyet .  

Resul ts  
. . . .. 

Since ' the a c t i v i t y  of the c a t a ly s t  depends on its oxidat lon state which 

i n  turn depends on the compoeition of the  gas mixture, preliminary experiment8 

were performed to test f o r  the reproducibi l i ty  of the system by introducing a 

r eac t an t  f eed  of t h e  same composition in  consecutive experiments. It was found 

that f o r  a f r e sh  charge of ca ta lys t ,  reproducible r a t e s  were obtained after two 

o r  t h r ee  experiments. However, a slow deactivation was observed when the  rates 

we= compared from day t o  day. An example is shown i n  Table 1. The a c t i v i t y  

of t h e  c a t a l y s t  decreased by about60k before a steady s t a t e  was reached. 



While the ac t i v i t y  changed, the dependence of the r a t e  on the feed composition 

d id  not change. Such deactivation was not noticed among the  experiments within 

each s e r i e s  ( i n  one day). An example is shown i n  Table 2. I n  these 

experiments, the composition of the  reactant feed was randomly varied, and the 

i n i t i a l  r a t e  of methanol production varied smoothly with the composition (see 

a l s o  Fig. 2). 

A s  described, each se r i e s  of experiments began with three ca l ib ra t ion  

runs f o r  the  mass spectrometer. I n  the first one o r  two r a t e  measurements 

immediately after the calibration; the methanol production r a t e  was found t o  be 

higher than . . the steady s t a t e  rates. The excess methanol was a t t r i bu t ed  t o  the 

displacement of adsorbed methanol by the  feed gases (probably C02).' Once t h i s  

excess adsorbed methanol was displaced, reproducible r a t e s  were obtained a s  is ' 

.shown by the data i n  Table 2. 

Because the ca ta lys t  was placed i n  a t ray  a t  the bottom of the reactor, 

there was no forced convection through the  ca ta lys t  bed. Transport of 

reactants  and products i n  and out of the bed had t o  be by diffusion.   he 

influence.of ca t a ly s t  bed diffusion on the measured r a t e  was minimized by 

making the bed a s  thin aa possible t o  leas than 3 mm thick. The absence of 

suah influenae was confirmed by measuring the  i n i t i a l  rate using d i f f e r en t  

amounts of. ca ta lys t s  (i.e. d i f fe ren t  bed thickness). Such experiments were 

conducted a t  both 198 C and 225 C, I n  both cases, the steady s t a t e  r a t e  of a 

ca t a ly s t  was f i r s t  obtained using a HZ-C02 feed mixture (70130). Then about 

half  of the  ca ta lys t  was removed. The remaining ca ta lys t  was again reduced i n  

a H2/12 mixture, and the r a t e  measurements were performed using the same feed. 

It was found t h a t  the i n i t i a l  r a t e  of methanol production was reduded by about 

602. This proportional decrease i n  r a t e  suggested t h a t  c a t a ly s t  bed diffusion 

was much f a s t e r  than the chemical transformation rate. That the mte wae 



reduced by s l i g h t l y  more than half was a t t r ibu ted  t o  the deactivation of $he 

c a t a l y s t  a f t e r  exposure t o  a i r  and the second reduction. Diffusion l im i t a t i on  

i n  the  ca t a ly s t  pores was not  tested However, w e  believe that pore diffusion 

l imi t a t i on  was no t  important because 1) the  ca ta lys t  used has a low BET area 

and therefore large porea, 2) the ca t a ly s t  was a f i n e  powder, and 3) the rate 

of methanol production was slow. I n  t ac t ,  because of the slow reaction rate, 

the heat  released by the reaction was amall and there wae no temperature 

gradient  in  the c a t a l y s t  be& 

An example of the d a t a  showing the p a r t i a l  pressures of the components 

i n  the  reac tor  is shown i n  Fig* 1. They were calculated from the mass 

spectrometer i n t e n s i t i e s  by first correcting f o r  the  cracking pat tern  and the 

mass spectrometer s e n s i t i v i t i e s ,  and then normalizing the data t o  f i t  the  mass 

conservation equations. The data f o r  a l l  the other experiments were s imi l a r  t o  

these  except f o r  d i f f e r en t  magnitudes and s igns  of the  slopes, The r a t e  of 

change of the H2 p a r t i a l  pressure was always negative because it wan a 

reactant. That f o r  t he  CHjOH p a r t i a l  pressure was always posi t ive  because it 

was a product. That f o r  H20 was posi t ive  i f  it was not being introduced in the 

feed, and could be e i t h e r  negative or  posi t ive  i f  it was introduced in the 

feed, depending on whether the CO/CO, rat40 was high or  law, respectively. 

Similarly,  the  rates of change of CO and Cop p a r t i a l  pressures depended on the  

feed coaposf ti& 

The dependence of the i n i t i a l  r a t e s  of CH30H production on the O) /CO~ 

r a t i o  i n  a70$ by volume of Ha, 30% CO + C02 f e e d  is shown i n F i g .  2. The 

CO/C02 ratios were varied randomly in these experiments. The 225 C data were 

obtained with a f r e sh  charge of cata lyst ,  and t h e  195 C data were obtained with 

a steady s t a t e  catalyst .  The difference shown i n  the r a t e s  between the two 

temperatures were la rger  than the r e a l  difference because of the deactivation 

phenomenon described ear l i e r .  The trend was clear,  however, that independent 



of the degree of deactivation, the r a t e  was higher a t  a higher C02 p a r t i a l  

pressure. S imi la r ly  t o  CH30H, the  i n i t i a l  r a t e s  of H20 production a l s o  

increased with increasing C02 p a r t i a l  pressure. T h i s  is i l l u s t r a t e d  by the 

data i n  Table 2. I t  is due t o  the increased r a t e s  of reverse water gas s h i f t  

and of hydrogenation of C02 t o  methanol and water with increasing C02 pressure. 

The dependence of the  i n i t i a l  r a t e  of methanol production on the  p a r t i a l  

pressure of water in the feed was a l s o  investigated. The r e s u l t s  a r e  shown i n  ;. 

Figs. 3 and 4 f o r  the  195 C and 225 C experiments. The data i n  each of these  

f igures  were obtained in one s e r i e s  of experiments i n  which the  water p a r t i a l  

pressure was varied randomly. The dotted l i n e s  i n  the f i gu re s  show the r a t e s  

i n  the  absence of water. For the 225 C data, experiments with no water were 

performed with 63% H2 ins tead of 70% kit. The r a t e s  thus  obtained w e n  used t o  . 

confirm the normal behavior of the catalyst.  The dotted l i n e  ahown was drawn 

using data from other  a e r i e s  of experiments using 70% H2 feed compositions. 

Discussion 

It has been es tabl ished that the  r a t e  data reported here were f r e e  of 

influence by mass and heat  t r ans fe r  processes. They were initial rates a t  the 

feed compoiritions that were introduced i n t o  the reactor. Over the 30 m i n . .  

i n t e rva l  when the  r a t e  data were gathered, the  conversion was low (< 15%) . 

such tha t  in a l l  cases examined, except when the feed did not  contain 0). the 

p a r t i a l  pressure of methanol increased l inear ly  with time. This indicated t h a t  

the  gaa composition i n  'the reactor  only changed s l igh t ly ,  and tha t  the reve+rse 

react ion of methanol decomposition was no t  important i n  these  measyrements. 

When only C02 and no.CO was used, the methanol formation rate was the highest  . 

and a carbon conversion of 15s was reached. Coupled wi th  the  f a c t  that t h e  , ,, 

equilibrium p a r t i a l  p a s s u r e  of methanol wae the  lowest, the  reverse react ion 



of methanol decomposition was the most l i ke ly  in  these experiments. A s  shown 

i n  Fig. I, however, the methanol pressure increase showed a t  most a s l i g h t  

curvature. 

Since the experiments were performed in a batch reactor, the ca t a ly s t  

might not have reached a t r u l y  steady state. This could be par t icu la r ly  

importent i f  the nature and the ac t i v i t y  of the ca ta lys t  vary sensi t ively  with 

t he  gas phase composition. Results  i n  t h i s  study, however, did not support 

t h i s  possibil i ty.  I n  every sequence of experiments performed, the gas phase 

compositions were varied randomly. After accounting f o r  the ca t a ly s t  

deactivation,  the r a t e s  of' methanol formation f o r  the same feed composition 

were always reproducible, and did not depend on the preceding experiment. 

Therefore w e  believe t h a t  the data represented the t rue  behavior of the 

cata lyst .  

Data i n  Figs. 3 and 4 showed .the inhibi t ion e f f ec t  of water. The extent 

of i nh ib i t i on  increased with increasing water p a r t i a l  pressure. This suggested 

that  water is competitively adsorbed on the  act ive  site of the catalyst. The 

suppression of a c t i v i t y  should not be due t o  deactivation by oxidation by water 

of the  catalyst. This is because C02 is a stronger oxidizing &en t  than water, 

y e t  addi t ion of C02 enhanced and not  suppressed the  reaction. 

The increase of the rate with increasing C02 pressure shown in  Fig. 2 i a  

somewhat surpr is ing i n  view of the r e su l t s  of Kl ie r  e t  a1 (12) who showed that 

on essen t ia l ly  the same cata lyst ,  the methanol formation rate reached a maximum 

a t  a CO/Co2 r a t i o  of about 28/2. There a r e  a number of differences between 

t h e i r  measurements and ours. F i r s t ,  t h e i r  experiments were performed a t  a 

higher preesure of 75 atm. The ca t a ly s t  could behave d i f fe ren t ly  although this 

does not seem likely. A t  higher pressure, condensation of methanol, water and 

C02 i n  the  ca t a ly s t  pores is possible. I f  such condensation did occur, 

diffusional e f fec t  would influence t h e i r  observed kinetics. Second, t h e i r  



experiments were conducted i n  an in tegra l  reactor and t h e i r  conversions were 

much higher than ours. It is possible t h a t  the reverse reaction of methanol 

decomposition occurred i n  their experiments. I n  other words, the decrease i n  

rate beyond the maximum on increasing COp pressure could be a consequence of 

the much lower equilibrium methanol yie ld  a t  a high C02 pressure. This 

equilibrium l imi ta t ion  was not present i n  our experiments. Third, because of 

the  integral  nature of t he i r  reactor, the gas phase composition changed along 

t h e i r  reactor. I n  par t icular ,  because of the  production of water by the  water 

gas shif* reaction, the r a t e  of methanol production they measured did not 

correspond t o  the  feed composition i n  the same way as t h a t  i n  our experiments. 

Since the r a t e  of water production increased with the C02 content i n  the feed 

(see Table 2) and t h a t  water inhibited the reaction, t h i s  could r e s u l t  i n  the 

decrease i n  methanol formation rate with increasing C02 content i n  t h e i r  

experiments. While these a r e  possible explanations of the differences, the  

answer can only be obtained by a deta i led study of the e f f e c t  of the d i f f e r en t  

operating conditions. 

I n  conclusion, w i n g  i n i t i a l  r a t e  measurements, methanol synthesis on a 

Cu-Zn-O ca t a ly s t  was found t o  be enhanced by C02 and suppressed by H20. The 

observation pointed t o  the Important role  of Cop, but it did net provide any 

mechanistic information. The large difference i n  the  dependence of the  r a t e s  

on the feed composition obtained in this study and in an e a r l i e r  study using an 

in tegra l  reactor  pointed t o  the  s ens i t i v i t y  of the  ca t a ly s t  behavior t o  the  gas 

phase environment. It a l so  i l l ue t r a t ed  once again the danger of deriving 

mechanistic information from k ine t ic  data. 
J 
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TABLE 1. SLOW DEACTIVATION OF THE Cu-Zn-0 CATALYST. 

Catalyst weight = 0.4197 g 

Gas campoai tionr H2/c0/cLl2 = 63.22/32.5/4.28 

T = 225 C 

P = 17.0 2U.I atm 

Date 

NOV. 14 
Nov. 16 
1 4 0 ~ .  23 
NOV. 25 
Nov. 29 
Dec. 3 

Ini t ia l  CH30H Production rate 

1.80 (fresh catalyst) 
1 -73 
0.86 
0-74 
0.85 
0.75 



'A'AiLE 20 RATES OF METHANOL AND WATER FORMATION IN ONE SERIES OF EXPERIMENTS. 
Cu-Zn-O (30/70). P = 16.9 - + 0.1 atm, T = 228 C, 0.2810 g catalyst 

Experiment 

I n i t i a l  ges Composition CH- OH ra te  -L -. 
H 0 rate 3- 



Figure Legend 

Fig. 1: The p a r t i a l  pressures of gases in the reactor  a s  a function of time. 
Reaction conditionat 16.65 atm, 198 C, a feed compobitfon of 70% H2, 
30% CO a: H2; b: Wz; c: CO; d: a30H; e t  H20e 0.3578 g of csra lysr  
was uszd. 

Fig. 2: The i n i t i a l  r a t e s  of methanol production aa a function of the  CO/Co2 
r a t i o  i n  the  feed. Feed composition: 70% H 30% CO + C 0 2 m  The 225 C 
data vere  f o r  a f r e sh  charge of catalyst.  K e  195 C data vere f o r  e 
steady s t a t e  cata lys t .  

Fig. 3: The influence of water on the  i n i t i a l  r a t e s  of methanol production a t  
198 C. Other reaction conditions: 17 atm, a feed composition of 705 
H2, 30% CO + C02 + H20m Numbers i n  the brackets denote the  i n i t i a l  
p a r t i a l  Pressures of H20* 0.3578 g of ca ta lys t  was used. 

Fig. 4: The influence of water on the i n i t i a l  r a t e s  of methanol production a t  
225 C. Other reaction conditions: 17 atm, a feed composition of 70% 
H2, 30% CO + C02 + H20. Numbers in the  brackets denote the i n i t i a l  
p a r t i a l  pressures of H20m The dotted l i n e  denotes the  rate i n  the  
absence of water* 0.2810 8 of ca ta lys t  was used. 
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1 c I 8 s  ISOTOPE LABELING EXPERIMENT - - 
Introduction.  

Resu l t s  from the previous sect ion and from other  laborator ies  have 

indicated c l e a r l y  t he  important e f f e c t s  of C02 i n  the  methanol synthesis 

reaction. I n  terms of the  macroscopic reaction mechanism, three reactions can 

be read i ly  ident i f ied:  

CO + 2H2 = CH30H (1 

C02 + 3H2 = CH30H + H20 (2) 

CO + H20 = C02 + H2 (3 j 

It i s  of i n t e r e s t  t o  i den t i fy  the  r e l a t i v e  contributions of CO and C02 t o  the  

methanol formation. Unfortunately, because of the  w a t e r g a s  s h i f t  react ion 

( reac t ion  3), methanol formation from CO o r  C02 cannot be determined d i r ec t l y  

from the  r a t e  of disappearance of the reactants. I t  is, however, possible t o  

ob ta in  the  information by i so top ica l ly  l abe l l i ng  the  reac tan t  species. For 

example, when ~ ' ' 0 ~  i a  used, methanol produced from it w i l l  be C H ~ ~ ~ O ,  while 

methanol produced from CO w i l l  be CH;'OH. Therefore, measuring the  r a t e s  of 

formation of methanol-160 and methan01-~*0 provides d i r ec t l y  the  r a t e s  of 

reac t ions  (1) and (2). This, of course, assumes t h a t  t he  measurements a r e  made 

before subs t an t i a l  i so top ic  exchange between CO and C02 occurs. 

Experimental. 

The same batch reac tor  system, a s  the one used i n  sect ion I, was used. 

The ca t a ly s t ,  and its pretreatment before each reaction,  were a l s o  t he  same. 

For react ion measurements, CI8o2 (98% pure) was first pu t  i n t o  the premirer. 

It was followed by GO, end Hp t o  a desi red composition of C O ~ / C O / H ~  of 2/28/70. 

The mixture was then fed i n t o  the reac tor  a t  200C and measurement was begun. 



Results .  

The i n i t i a l  r a t e s  of production of methanol-' 60 and methanol-180 were 

18 16 determined together  wi th  c1'02, C O 0, and cI6O2. They were determined by 

monitoring the  i n t e n s i t i e s  of the  various m/e peaks l i s t e d  i n  Table 3. These 

i n t e n s i t i e s  were then converted i n t o  t h e  mole f r a c t i o n s  a f t e r  co r rec t ing  f o r  

the  cracking p a t t e r n s  and the  mass spectrometer  s e n s i t i v i t i e s ,  which were 

independently determined. The r a t e  of r eac t ion  ( o r  production) of the  var ious  

species  a s  determined from the  var ious  m / e  i n t e n s i t i e s  a r e  l i s t e d  i n  Table 3. 

The r a t e  of production of C H ~ O H - ~ ~ O  can be taken a s  t h e  r a t e  of change of 

m/e = 33 o r  34, and the  r a t e  of production of C H ~ O H - ~ ~ D  a s  the  r a t e  of change 

of m/e = 31 o r  32. The da ta  in Table 3 show t h a t  depending on t h e  peaks used, 
. , 

t he  production r a t e s  varied. We a t t r i b u t e  t h i s  t o  the  low s i g n a l  i n t e n s i t y  

such t h a t  t h e  background inf luence  on t h e  s i g n a l s  was large. Nonetheless, t he  

r a t i o  of the  r a t e s  of production of C H ~ O H - ~ ~ O / C H ~ O H - ~ ~ O  was es t imated  t o  be 0.3 

t o  1.0. Since these  a r e  i n i t i a l  r a t e  measurements, it can be concluded t h a t  

methanol is produced from C02 about twice a s  f a s t  a s  from CO. 

16 18 The data a l s o  showed that t h e  r a t e s  of production of cI6o2 and C 0 0 

were very rapid.  The process t h a t  l ed  t o  the  appearance of these  products  is 

the  exchange of l a t t i c e  oxygen wi th  gas  phase C02. The r e s u l t s  showed t h a t  

t h i s  exchange process is a t  l e a s t  f i v e  t imes  f a s t e r  than the  methanol 

production r a t e .  

F ina l ly ,  t he  r a t e  of w a t e ~ g a s  shift r eac t ion  was es t imated  from the  

production of ~ ~ ' ~ 0 .  I t  was found t o  be about  t h e  same o r  twice  as f a s t  a s  t h e  

production of methanol. 



Table 3 

18 Relative Reaction Rates with C O2 Corrected for Cracking 

Parent 
Species 

C H ~ ~ ~ O H  

C H ~ ~ ~ O H  

CH~' 8 0 ~  

c1602 

16 18 C O O  

Rate (amps)* 

(-  1.7 x 19-' * 0.7) 
6.2 x 10 *I4 i 5 

- 3.9 x 10 -I2 k 2.8 

(2.6 x looi3 * 0.7) 
(1.5 x 10 -I2 = 0.1) 

- 7.4 x 10 -lo t 0.2 

- 8.9 x 10 -I2 f 0.4 

2.8 x 10 -I1 t 0.5 

6.0 x 10 -I3 t 1.6 

1.2 x 10 -I3 * 0.8 
(6.0 ?s 20 -I3 t 0.3) 

(3.7 x 10 -I3 t 0.3) 

(2.0 x 10 -I2 0.1) 

(8.5 x 10 -I2 i 0.1) 

(-  7.7 x 10 -I2 t 0.7) 

*Values in parentheses are identical to the uncorrected 
values. 



111. THE RELAXATION METHOD FOR CATALYTIC REACTIONS. 

Introduction 

Relaxation towards chemical equil ibriumhas been a useful method t o  

measure the  k ine t i c s  of a chemical reaction (1). The usefulness r e l i e s  on the  

f a c t  that ,  according t o  the  postulate6 of nonequilibriurn thermodynamics (2 ,~) .  

the  n e t  f l ux  of a reaction, J, near chemical equilibrium is l inear ly  

proportional t o  the  Cibbs f r e e  energy difference o f  the  -action, AC: 

J = x(-AG/RT) (1 1 

where X is the proportionali ty constant known-a8 the equilibrium exchange rate. 

For an elementary reaction, it has been shown t h a t  X equals the  forward r a t e  . 

(which equals the reverse ra te)  of the reaction a t  equilibrium (2). Because of 

this physical significance of X, much work has been performed using the  

relaxation method t o  determine the r a t e  constants of very f a s t  reactions (4). 

The simple r e l a t i on  of Eq. (1) o f fe r s  another a p p l i c a t i ~ n  of the  

relaxation method, namely, the determination of the  individual f luxes of 

reactions i n  a reaction network where the  number. of independent chemical 

species is l e s s  than the number of reactions. This appl icat ion could be very 

valuable if equation (1) can be applied t o  nonelementary reactions a s  well, 

This paper explores the physical meaning of X in a nonelementary reaction, and 

presents a method of data analysis  t o  ex t r ac t  ' the values of X's i n  a relaxation 

experiment. 

Mathematical formulation of the relaxation process 

I n  a reaction system t h a t  contains m number of reactions and n number of 

chemical species of uhich g areindependent ( the remaining n-g species may be 

re le ted  by mass conservation equations), the  AC of the  system is given by: 
m n 

where viJ is the  react ion stoichlometry of species i i n  reaction j. Choosing 



chemical equi l ibr ium a s  t h e  standard state, f o r  smal l  devia t ion  from 

equil ibrium, the  chemical p o t e n t i a l  pi can be expressed as: 

* * 
pi  = RTln Ci/C; 2 RT(Ci - ci)/Ci 5 RT A1 (3 1 

where t h e  s u p e r s c r i p t  * denotes equilibrium. Combining equations (1) t o  (3), 

the n e t  f l u x  of r eac t ion  3 ,  J .  is then 3 

Equation (4) can be used t o  describe the  change i n  the  concentrat ion of each 

chemical species  on re laxat ion:  

It can r e a d i l y  be shown tha t  t h i s  system of r a t e  equations can be expressed i n  

t h e  matrix form as: 

where C* is a diagonal matr ix  whose elements a r e  c:) k i s  a vector  (Al, A2, ... An)T 
% 

and X is an  ~1 matrix with elements Xkt I -f vkj vlj Itj. 
Z 

One can see t h a t  Xkll = Xpk, and the  matrix X is symmetric. 

The meaning' of X i n  a nonelementary r e a c t i 0 ~  - . .- . - - -  - 
Consider a series r eac t ion  A - B - C ... - P i n  which the exchange 

. . 
r a t a  of t h i  indiv idual  elementary s t e p s  a r e  X1 f o r  A - B, X2 f o r  B - C, and Xn 

f o r  P-1 - P, etc. The system is allowed t o  r e l a x  the  equilibrium. The 

r e l a x a t i o n  is described by Eq. (5) as: 



Ln order t h a t  the re laxat ion can i e  meaningfully represented by .an overa l l  

reacf ion A - P, it must be assumed t h a t  during. relaxation,  the  time r a t e  of 

change of a l l  intermediate species  a r e  negl ig ib ly  smal l  compared t o  the  r a t e  of 

change of A and P. T h i s  can be ach ieved  when B*, C* ... P-1* are s m a l l  i n  

comparison t o  A* and P*. Under euch conditions, there  is only one nonzero 

eigenvalue A which is much amaller  than t h e  o ther  eigenvalues ( 5 ) ,  and this 

eigenvalue can be obtained by expanding A i n  an asymptotic s e r i e s  and keeping 

the  first t e r m  ( the constant  term is zero because A .: 0 is a so lu t ion  a s  the  

system is governed by one mass conservation equation). It has been shown t h a t  

t h e  so lu t ion  is (5): 

If the  react ion A - P is one s tep ,  the  re laxat ion t i m e  constant  can be 

s imi la r ly  found t o  be: 

1 1  
= x, ( p + 7i*I (8 

Comparison of Eq. (7) and (8) shows t h a t  the  overa l l  exchange ra te ,  Xo, is 

r e l a t e d  t o  the  individual  exchange r a t e s  as: 

This  r e l a t i o n s N p  defines the  analogy between a react ion network and an  

e l e c t r i c a l  c i r c u i t ,  which is present  when the  react ion system is near 

equilibrium, and when there  is no accumulation of react ion intermediates. 

A method t o  e x t r a c t  equilibrium exchange r a t e s  from re laxat ion data - - -- - 
Equation (5) describes i n  general the  re laxat ion behavior of a chemical 

react ion system. The equation can be converted i n t o  an eigenvalue problem with 

the  following manipulation: 

4 I n  this epw Llon, $* ' and a r e  diagonal matrices whose elements are Ci 
% 



and c;- \ respectively. I t  can eas i ly  be shown tha t  the matrix k*-% X %*-$ is 
I, 2 %  

a l s o  a symmetric nxn matrix. If t h i s  system has g independent chemicil 

species, then this matrix w i l l  have a rank of 8, and there are  g nonzero 

eigenvalues and n-g zero eigenvaluea. Furthermore, because t h i s  matrix is 

symmetric, there a r e  n orthogonal eigenvectora. 

The procedure t o  obtain the equilibrium exchange r a t e s  is t o  f i r s t  

iden t i fy  the  n-g eigenvectors of X = 0. They can be constructed from the mass 

conservation equations and then orthogonalized using a standard matrix 

operation. Then experiments are pei.forraed,to f ind  the remaining orkhegonal 

eigenvectors. Once these vectors a r e  found, the corresponding X ' s  a r e  

determined from the relaxation data. Since: 

it follows. &t: 

where 4 is the eigenvalue matrix. This method is s imi l a r  t o  t h a t  of We1 and 
'L 

P r a t e r  for reaction networks tha t  follow f i r s t  order kinet ics  (6). An example 

of this using the  methanol synthesis reaction of a Cu-Zn-0 ca ta lys t  w i l l  be 

given. 
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