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ABSTRACT

Magnetohydrodynanic flows of liquid metals in thin conducting duects of
various geometries in the presence of strong nonuniform transverse magnetic
fields are examined. The interacticn parameter and Hartmann npumber are
assumed to be large, whereas the magnetic Reynolds number is assumed to be
small. Under these assurptions, viscous and inertial effects are confined in
very thin boundary layers adjacent to the walls. At walls parallel to the
magnetic field lines, as at the side walls of a rectangular duct, the boundary
layers (side layers) carry a significant fraction of the volumetric flow rate
in the form of high velocity jots. The presence of these jets strongly
enhances heat transfer performance. In addition, heat transfer can be further
improved by guiding the flow toward a heated wall by proper variation of wall
thickiaesses, duct cross secticnal dimensions and/or shape. Flows in
nonconducting circular ducts are also examined. Experimental results obtained
from the ALEX experiments at the Argonne Nationsl Laboratory are used to

validate the numerical predictions.

*work supported by the U. S. Department of Energy/Office of Fusion Energy

under Contract W-31-109-Eng-38.
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1. INTRODUCTION

In a self-cooled liguid-metal blanket of a magnetically confined fusion
reactor, thne magnetohydrodynamic (MHD) effects are of paramount importance in
the design process [1]. The interaction between the circulating liquid metal
with the strong magnetic fleld necessary for confinement results in large
electromagnetic body forces which determine the flow distribution of the
liquid meotal, and produce large MHD pressure gradients. The resulting MHD
pressure drcp say cause excessive pumping power loss and prohibitively large
material stresses. Also, the MHD flow distribution may atfect drastically the
heat transfer characteristics of the blanket in genersl and the first wall
coolant channels in particular. For these reasons, a predictive capability in
MHD thermal hyderaulics under reactor relevant geometries and conditiong is an
absolute necessity for the development of liquid-metal-cooled blankets and
high heat flux devices. As a first step, capability for treating flows in
single ducts has been pursued. Experience gained in this prooess will be used
to treat aultichannel complex geometriss encountered in a fusion reactor.

This paper presents a susmary of the computer codes developed jointly by
Argonne National Laboratory {(ANL) and the University of Illinois for the
treatment of MHD flows in single ducts. Th2 codes can treat ducts with thin
conducting walls and circular, rectangular, or generalized cross section in a
non-uniform transverse magnetic field. A circular duct with insulating walls
in a non-uniform fiecld has also been treated. The velocity distributions

predicted by the MHD solutions are used as input to the energy equation and



the temperature distribution in the fluid is calculated in heat transfer

modules which are part of the codes.

2. ANALYSIS FOR THIN CONDUCTING DUCTS

2.7 Governing Equations and Conditions
Consider the steady flow of an incompressible liquid metal driver by a

pressure gradient along ¢ conducting duct with thin metal walls and with an
imposed transverse magnetic field whose strength varies along the duct. A
transverse magnetic field variation in the axial direction regquires a non-zero
axial magnetic field. This wealler axial megnetic field is neglected in this
model because the major electromagnetic body foroe in ths liguid metal arises
from the interaction between the fluid flow with ths transverse fisld. The
ratio of the induced to applied fields ie given by ol/2 8,- Here o= a"t/ai.
and Ry = wo UL are the wall conductance ratio and magnetic Reynolds number.
v and o are the magnetic permeability and eleotrical oconductivity of the
liquid metal, o, and t are the electrical conductivity and thickness of the
duct wall, U, is the average axisl veloocily of the fluid and L is »
characteristic transverse dimension of the duct. PFor a sslf-cooled blanket in
a fusion device, cl/2 R, is at most of order 10‘2; therefore, it is
appropriate to neglect the induced magnetic field.

The two important paramaters in any general MHD problem are the
interaction paramster, N, and Hartmann number, M, defined by

2
oB "L
. _0 . 0,1/2
N = o'_uo and M = LB (—w]



where p and v are the fluid's density and kinematic viscosity, and B,, and Uo
are the characteristic magnetic flux density and average velocity. In a
fusion reactor, the values for ¥ and N are typically of the order of 103 - 10°
[1). Under such conditicns, inertial and vizcous effects are confined in thin
boundary and shear layers and are negligible in the core of the flow.

The inertiialess, inviscid, dimensionless equations governing the flow of

a liquid metal in the core of the flow are:
gpp=1xB J=s-9e+yxB,g-y=0,9-3=0. (1a,v,c,d)

Here p, J, ¥, and ¢ are the pressure, electric current density, velocity, and
electric potential, normalized by oUB°L, oUB,i' U,, and U,B.L,
respectively. For B =z By(z);. the x, y, z core velocity components Uar Vg
Wee, and electrio current density components J, ., ch, Jzo» which satisfy the
equaticns (1) and the symmetry conditions, jy =v,=0aty=0, are:

" (1)

uc(:,y.:) =8 ;;9 -6 %E » Wo(%,y,2) = - 8 3;9 - 32 %% (2a, 2b) (Cf. 1b)
" . 2
V(x,y,3) s -y 87 Gt ey L [P 2] oy #° :z
2, 2 ..
sy =L (2 - 1) & (2¢) (Cf. 10)
Lonys) =88y (xy,2)z-62 (24, 2e) (Cf. 1a)
Jye(®y,2) = - y8° %E {2r), (cf. 1d)



where p(x,z) is the pressure which is constant along magnetic field lines by
-1
y
varies along the magnetic field lines according to

virtue of Eg. (la), and 8(x) = B _ (x). The electric potential in the core

oc(x,y,z) = 0, {x,2) - % (fz - y2] 8” %2 ) (2g)

where ¢, (x,2) is the electric potential at the top wall which intersects the
magnetic fleld line at y = €(x,z). Equation {23) is obtained by integrating
the y- component of equation (1b), and uzing equation {2f).

The boundary conditions at the inside surface of a wall which has

conductance ratio c, and is not parallel to the magnetic field lines are

Voo My =0, {Jo - 1) -0, = 0aty = fix,z) (3a, 3b)

2

where ;t is a unit normel to the wall and Ju s -0 ¥ ’t" Conditions {3a, b)

t
neglect the 0("") Jumps in Vo Ja’ and ¢ acrogs the Hartmann layer, which has
O(H"') thickness and saparates the inviscid oore ragion from the wall.

If a uall is parallel to the field lines (side wall), and has oonductance
ratio c,, then the appropriate boundary ocondition is

(o-3) -ny=0 (3¢c)

here ;a is a unit normal to the side wall, and J = - c, !2 ¢,- Condition

(3c) neglects o(m~1/2y Jump across the side wall layer wvhich has o(m~1/2
thickness. LR is the electric potentizl at the side.
The three-dimensional problem with eight variatles (n the core

(p, o, Ugr Vor Woe S N ch' ch) is completely solved onece the functions p,



/6 /

b and ¢; are determined. The coupled partial differential equations {pde's)
governing p, ¢,, and ¢, are derived by applying the boundary conditions (3a-
3c). Special numerical schemes are developed to solve the pde's

simultanecusly.

2.2 Ducts with Circuiar Croas Section

For a straight circular duct duct, all lengths are normalized by the
radius. The duct centerline is along the x- axis and the duct surface is
given by y = f(z) = = (1 - 22)1/2. By virtue of symmetry, only one quadrant
of the duot is considered, i.e. 0 sz <1, 0sys f(z).

The boundary conditions (3a, 3b) require that at y = (1 - 22)1/2,

)1/2

(1-2%)2y & ™, =0,c vzot = (1 -2° 3 (4a,b)

+ 2J

c yo zc

Equaticns (42) and (4b) oonstituts a pair of ooupled pde's in ¢y (x,3) and
p(x,2) to be solved simultanecusly by the finite difference method. Upstreas
(z4) and downstream (x,), where the magnetic field is uniform the flow is
fully-developsd. At = = 1 eQuetions (¥a,b) must satisfy the regularity
conditions (1 - 32)1/2 ap/ax + 0 and (1 - 22172 34,722 + 0 [2). Finaily, at
3 = 0 the syometry oconditions 3p/is = 0, ¢, = O apply.

Expansion and/or oontraotion of a dust with ciroular oross sections can
easily be treated in a similar manner. The wall thickness oan have an
arbitrary varfation in x and z provided symmetry about the y = 0 plane is

presecved,



2.3 Ducts with Rectangular Cross Section

Consider a duct of variable rectangular cross section consisting of a
straight portion, foliowed by a linear increase of the dimension which is
parallel to the magnetic field lines, followed by another straight portion
(Fig. 'a). The duct has a thin side wall, a thick side wall, and thin top and
bottom walls of equal thicknesses. Such an arrangement with a series of
expansions and contractions connected by straight rectangular ducts represents
& Judicious choice for the design of a blanket first wall coolant channel
{3]. As a result of this arrangement, the flow is guided toward the thin side
wall to improve heat transfer performence. The plane of symmetry being at y =
0, solution is sought over half the duct bounded by, -1 €2 < V, and 0 s y <

£(x) whare
2 for 11 £xs50
£{x) = a+bx inexpanding dust O s x s Lo .
. 2 for l.. sxs '2

‘The conductance ratios are c,, ¢y, and o, for the top wall, thin and thick
side wallg, respsctively. The boundary oonditions {3a,b} require that at y =

£{x}
7,=1/2 2,-1 ’2‘1: z‘t
£2u - vy 20, (1et) 5Ly - Iyo) ® ot[(h!" ) 5-] (58,b)
and at 2 = £ 1, oondition (30) gives
2 2 2 2
*e, » e, 3%
1 1 2 2
Iolts =1) = eyl + —lu 4y (x, +1) = - 2|"—2 “ ‘—;l - (5¢,0)
x y

Equations (5a,b,c,d) constitute four ocoupled pde's governing p(x,z}, ¢.(x,2),
#(x,y), and ¢5(x,y) which are solved sisultaneously. At xy, and x,,



sufficiently far from the expansion, the flow is taken to be fully-developed;
at y = 0 symmetry conditions are applied; at the corners z = * 1 and y = f(x),
electric potential and current must be continuous.

At z = - 1, (similar argument applies at z = 1), the transverse core
current j,. flows unchanged across the side layer and enters the side if u-1/2
<< ¢y << 1 [#]. Some of the current entering the side flows up the wall {for
y > 0), resulting in an O(1) electric potential in the side having a specific
variation with y. Because the core potential at z = - ! has a different
variation with y, given by eq. (2g), there is a jump in the 0(1) electric
potential across the side layer, determining the 0(1) volumetric flux in the
side layer. The details of the side layer solution can be ignored provided
that the total volumetric flux in the side layer plus the volumetric flux in
the ocore 1s conserved at every cross section. By doing so a boundary
condition for 3p/93 at = z - 1 can be derived [5). The boundary oconditions
for eqs. (5a-d) are therefore completely defined.

2.8 Dyots with Arbitrary Crose Section
Consider an arbitrary cross section in Fig. b with the plane of symmetry

at y = 0. The waii is divided into 6 segmenits denoted by lietters "a" to

ug*,. The pde’s governing pressuce and slectric potentfial at segment: "a”,
*s", and “{” ars derived by the nethods desoribed in Section 2.3. The

governing equations for segment "d" is derived as follows. The coordinate at

the wall is defined by f(z) = a  + n(z - zd). The boundary conditions (3a,b)

applied to this segment give:

2 2
L) _q 90 -
nu -vy =0, e[t (1 n?) —5E) = (1 e W22 (- Jge + nIz;) (6a,b)

1 9z



where w,, V., ch, and J,. are evaluated at y = f(z). Continuity of electric
potential and current density must be imposed at the junction between "c" and
"d", and between "d* and "e".

Segment "b" is approximated by a series of small linear subsegments. The
governing equations for p and ¢, are again given by Egs. (6a,b) with n

replaced by the slope of each subsegment.

3. ANALYSIS FOR & NOXCONDUCTING CIRCULAR DUCT

The core equations are given by (la, », ¢, d) and (2a - 2g). 1In a
nonconducting duct currents in the core must close ' rough the Hartmann layer
to complete the circuit. As a result, the o(M~') terms which are neglected in
the case of a conducting duct, must be included in the asymptotic expansions,
in order to determine the O(1) solution in the core, Each variable in the

core or in the Hartmann layer, for instance p, is expanded in the form
-1 -2
P=p,+M p,+0M°) .

In the Harta.nn layer, the normal components of velocity and current must
vanish at the wall, and match their counterpart oore variables at the
core/Hartmann layer interface. Matching the O(1) terms gives boundary
oonditions for the core variables and the interfaces. Matching the O(H")
terms gives rise to two ocoupled pde’'s governing the 0(1) pressure, p,(x,z),
and O(1) electric potential, oo(x,z), at the inside surface of the duct.

5. THERWUL HYDRAULIC ANALYSIS
Once the velocity field is known from the MHD solution, the 3-D

temperature profile in the fluid can be solved using the energy eguation



Pe[uc-:%+vc%+ cg :aT 3T 37T (8)
where T(x,y,z) is normalized by q"L/k; Q" is the heat flux at the wall, L is
the transverse characteristic length, k is the thermal conductivity and Pe is
the Peclet number.

The boundary conditions necessary for the solution of Eq., (8) are well
defined for most cases. If a hcated wall has a side layer with significant
mass flow rate, the boundary condition can be defined using either an explicit
treatment or an integral treatment of the side layer. The explicit method
employs an analytical solution for the side layer and a2 solution for the
inviscid inertialess core. Sines analytical solutions for the velocity
profiies in the side layer exist only for uniform sagnetic fields, this method
i3 currently limited to flouws in uniform magnetic fields.

The integral method uses the known mass flow rate in the side layer
(given by the MHD solution; tc calculate the fraction of heat flux convected
in the side layer; the remaining heat flux is conducted into the core across
the layer/core interface. This wmethod approximates the average axlal
temperature gradient in the side layer by the axial temperature gradient at
the interface. The integral sethod applies to flows in uniform and nonuniform
magnetic fields. Although this method does not explicitly sclve for the
temperature distribution at the wall the maxisum wall temperature occurs at

the top and bottom of the side, where there is no flow in the side layer, and

is nearly equal to the temperature at the interface.
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S. HRESULTS AND COMPARISON WITH EXPERIMENTS

An experimental facility, ALEX, has been built and is being operated at
ANL to study liquid metal MHD phenomena relevant to fusion blanket
engineering. Results for round and square test sections and comparison with
numerical predictions have been reported [6]. Here, only 2 couple of
representative results are given. Preliminary results of an ongoing test
series 1involving flows through a rectangular duct with expansions and
contractions are presented in a companion paper [3].

Figure 2 compares measurement3 with code predictions for the transverse
pressure differences for the round duct, the pressure difference measured at z
= 0 and z = 1. Figure 3 shows the axial velocity at y = 0 at the center of
the duct (z = 0) and mear the wall (z = 0.9) for the round duct. In fully
developé& flows, the pressure and axilal velocity are uniform across z.

In uniform magnetic fields, the velocity can be guided toward one side
wall by variation of duet cross sectional dimensions in a duet with unequal
wall thickmesses. As an example, congider the geometry depicted in Fig. 1a.
The conductance ratios are 0.014 for the top, bottom, and thin side walls, and
1.65 for the thick side wall. The top wall is at y, = 0.6 for x < 0; y, = 0.6
+ x/3 for 0 < x < 2.4; and y = 1.4 for x 2 2.4. Figure 4 shows the evolution
of the axial velocity as the liquid metal flows through the expansion. In
addition to the desirable higher veloecity distribution near the thin wall, the
fraction of the total volumetric flow rate in the side layer also increases
drastically (Fig. 5). Notice that the fraction of the flow in the side layer
adjacent to the thick wall is negligibly small, because of the large
conductance ratio there.

In a nonconducting circular duct, when the flow is fully developed, the

velocity peaks at the center and vanishes mnear the wall. The non-uniformity
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of the magnetic field causes the flow to migrate towards 2z = t 1, leaving a
stagnant region in the center. Figure 6 shows such a development of the flow
at Hartmann number of 10".

Figure 7 shows the fluid temperature distribution in a square duct at the
midplane, y = 0, at three cross sections (x = 0.3, 9.5, 17.5). The side wall
at 2 = -1 is heated uniformly from x = 0 to x = 20. The side layer carries
25% of the total flow rate. The Hartmann number {used %o calculate the
velocity in the side layer for the explicit method), the Peclet number, and
the initial temperature are 10“, 400 and 0.654, respectively. Results by the
integral and explicit treatment of the side layer are compsred. The slight
differences in temperature at z = -1 indicate the small temperature drops

across the side layer.
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LIST OF FIGURES

Schematic of (z) a duct of variable ractangular crcss sections, (b)

an arbitrary cross section.

Experimental data and code predictions for tranaverse pressure
difference (12 o'cleck - 3 o'clock) for a round duct which has a
conductance ratio of 0.027. Alsc shown is the normalized magnetic
field distribution.

Experimental data and code predictions for the axial velocity at the
midplane y = 0, at z = O (lower curve) and £ = 0.9 (upper curve) for
the round duct.

Axial veloclity profiles at the midplane y = C, at various cross
sections (See Fig. la Tor the geometry). The transverse magnetic
field is uniform,

Fraction of the total flow rate in the side layers adjacent to the
thin wall {(z = -1) and the thick wall (z = 1).

Axial velocity profiles at the midplane y = 0 at various cross
sections in a nonoonducting round duct. The magnet fleld
distribution is identical to that shown in Fig. 2.

The temperature profiles in a sguare duct at the midplane y = 0 at
three cross sections. Results by the integral method (solid lines)
and the explicit method (dash lines) are compared. The heated wall
is at z = -1, the other walls are adiabatic.
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Figure 3
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Figure 6

(Thanh lua, et al.)
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Figure 7

(Thanh Hua, et al.).

0.76 -

0.74
0.72 —




