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ABSTRACT

Magnetohydrodynamic flows of liquid metals in thin conducting ducts of

various geometries in the presence of strong nonuniforn transverse magnetic

fields are examined. The interaction parameter and Hartmann number are

assumed to be large, whereas the magnetic Reynolds number is assumed to be

small. Under these assumptions, viscous and inertial effects are confined in

very thin boundary layers adjacent to the walls. At walls parallel to the

magnetic field lines, as at the side walls of a rectangular duct, the boundary

layers (side layers) carry a significant fraction of the volumetric flow rate

in the form of high velocity Jets. The presence of these Jets strongly

enhances heat transfer performance. In addition, heat transfer can be further

improved by guiding the flow toward a heated wall by proper variation of wall

thickaesses, duct cross sectional dimensions and/or shape. Flows in

nonconducting circular ducts are also examined. Experimental results obtained

from the ALEX experiments at the Argonne National Laboratory are used to

validate the numerical predictions.

Work supported by the U. S. Department of Energy/Off ice of Fusion Energy

under Contract W-31-1O9-Eng-38.
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1. INTRODUCTION

In a self-cooled liquid-metal blanket of a magnetically confined fusion

reactor, the magnetohydrodynamie (HHD) effects are of paramount importance in

the design process [1J. The interaction between the circulating liquid netal

with the strong magnetic field necessary for confinement results in large

electromagnetic body forces which determine the flew distribution of the

liquid metal, and produce large MHD pressure gradients. The resulting MHD

pressure drop say cause excessive p*jping power loss and prohibitively large

naterial stresses. Also, the MHD flow distribution Hay affect drastically the

heat transfer characteristics of the blanket in general and the first wall

coolant channels in particular. For these reasons, a predictive capability In

MHO thersal hydraulics undtr reactor relevant geometries and conditions Is an

absolute necessity for the development of llquid-me&al-cooled blankets and

high heat flux devices. As a first step, capability for treating flows in

single ducts has been pursued. Experience gained in this process will be used

to treat Multichannel complex geometries encountered In a fusion reaotor.

This paper presents a summary of the computer codes developed Jointly by

Argonne National Laboratory (ANL) and the University of Illinois for the

treatment of MHD flows in single ducts. Tha codes can treat ducts with thin

conducting walls and circulsr, rectangular, or generalized cross section in a

non-uniform transverse magnetic field. A circular duct with insulating walla

in a non-uniform field has also been treated. The velocity distributions

predicted by the MHD solutions are used as input to the energy equation and
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the temperature distribution in the fluid is calculated in heat transfer

modules which are part of the codes.

2. ANALYSIS FOR THIN CONDUCTING DUCTS

2.1 Governing Equations and Boundary Condition*

Consider the steady flow of an incompressible liquid metal driven by a

pressure gradient along s. conducting duot with thin Metal walls and with an

imposed transverse Magnetic field whose strength varies along the duot. A

transverse Magnetic field variation in the axial direction requires a non-zero

axial Magnetic field. This weaker axial Magnetic field is neglected in this

Model because the Major eleotroaagnetle body foroe in the liquid Metal arises

froM the interaction between the fluid flow with the transverse field. The

ratio of the induced to applied fields ie given by o1<f2 1^. Here o • ojt/ol

and H,, » MO UOL are the wall oonduotanae ratio and Magnetio Reynolds nuMber.

v and o are the Magnetic perMsabllity and eleotricttl oonduotivlty of the

liquid Metal, o H and t are the electrical oonduotivlty and thickness of the

duot wall, Uo is the average anial velocity of the fluid and L is s

characteristic transverse dlMenslon of the duot. For a self-oooled blanket In

a fusion device, c 1 / 2 ^ is at Most of order 10~2; therefore, it is

appropriate to neglect the induced Magnetio field.

The two important paraMsteri in any general MHD problen are the

interaction parameter, N, and Hartamnn nuMber, M, defined by



where p and v are the fluid's density and kinematic viscosity, and BQ, and U

are the characteristic magnetic flux density and average velocity. In a

fusion reactor, the values for M and N are typically of the order of 10^ - 10^

[1). Under such conditions, inertial and viscous effects are confined in thin

boundary and shear layers and are negligible in the core of the flow.

The ineriiaiesn, inviscid, dinensionless equations governing the flow of

a liquid metal in the core of the flow are:

EP = J * B . i = - S * * y , K B , g . v = o, v • j = 0 . (1a,b,c,d)

Here p, J, g, and # are the pressure, electric current density, velocity, and

electric potential, normlizcd by oUQBo
2L, oUcBo',' Uo, and UOBOL,

respectively. For B * B (x)y, the x, y, z cora velocity coaponents uQ, v0,

wc, ind electric current density coMponents Jxc, Jyc, Jzo, which satisfy the

equations (1) and the syaMtry conditions, L = vc : 0 it y » 0, are:

uc<i,y,«) - • | T - »
2 |f . wc(*.y.*> = - B j ~ - e2 If <2«, 2b) (Cf. 1b)

v (K,y,t) » -y •'««) ̂  • y fj [i2 ff] • y B2 *v (K,y,t) » -y •««) ̂  • y fj

(2c)(Cf-

|f , Jxe(*,y,») = - « |f <2d, 2e) (Cf. la)

' |f|f C2f), (Cf. id)
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where pjx,z) is the pressure which is constant along magnetic field lines by

virtue of Eq. (la), and 0(JS) = B~ (x). The electric potential in the core

varies along the magnetic field! lines according to

*C<*'V'
Z> = *t (x,z) - i (f

2 - y2) B- |f , (2g)

where +£ (x,z) is the electric potential at the top wall which intersects the

•agnetic field lino at y - f(x,z). Equation (2g$ is obtained by integrating

the y- component of equation (1b), and using equation C2f).

The boundary conditions at the inside surface of a wall which has

conductance ratio ct and is not parallel to the nagnetio field lines are

V "t = °» Uo " JH) ' »t " °
 at y B f(*»s) C3*' 3b>

* 2where n. is a unit normal to the wall find 1 « - ck t •.. Conditions (3a, b)
U "W C •" 1>

n«jl«ot the 0(H"!) Junps in vc, Jo, and « across the HtrtMnn layer, which has

O(ir') thickness and separates the inviscid core raglon from the wall.

If a wall is parallel to the field lines (side wall), and has oonduotanoe

ratio e8, then the appropriate boundary oondition is

tJe " V * "s * ° (3c)

here n. is a unit noraal to the side wall, and 1 * - e. f #_. Condition

(3c) neglects 0(M~1/2} jiwp across the side wall layer which has 0(M~t/2)

thickness. *a is the electric potential at the side.

The three-dimensional problem with eight variables in the core

( P, •» "c. vc, we, Jxc, Jyc, J2c) is completely solved once the functions p,
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and *8 are determined. The coupled partial differential equations (pde's)

governing p, +fc, and +n are derived by applying the boundary conditions (3a-

3c). Special numerical schemes are developed to solve the pde's

simultaneously.

2.2 Ducts with Circular Cross Section

For a straight circular duct duct, all lengths atre normalized by the

radius. Th«* duct centerline is along the x- axis and the duet surface is

given by y * f(i) = ± (1 - z 2 ) t / 2 . By virtue of symmetry, only one quadrant

of the duct is considered, i.e. 0 £ x < 1, 0 s y s f(z).

The boundary conditions (3a, 3b) require that at y = (1 - z 2 ) 1 / 2 .

(1 - x2)1 / 2 vc • z% = 0 , c v \ = (1 - zW2 j y c • xj2 c

Equxticns (4a) and (4b) oonstltubt a pair of coupled pde's in «t(x,s) and

p(a,») to be solved simultaneously by the finite dlfferenoe aethodr Upstreea

(s^) and dotmstreest (*%), where the ssgnetio field is unlfora the flow is

fully-developed. At s * 1 equations (4a,b) oust satisfy the regularity

ooctdltlons (1 - x 2 ) 1 / 2 ip/lx • 0 and (1 - » 2 ) l / 2 »«t/tt • 0 (2]. finally, at

s • 0 the sycsMtry aondltions ip/tt « 0, #t * 0 apply.

Ixpansion and/or oontraetion of a duct with olroular cross seetlons oan

easily be treated in a similar manner. The wall thlekness oan have an

arbitrary variation In x and z provided symmetry about the y = 0 plane is

preserved.
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2.3 Ducts with Rectangular Cross Section

Consider a duct of variable rectangular cross section consisting of a

straight portion, followed by a linear increase of the dimension which is

parallel to the magnetic field lines, followed by another straight portion

(Fig. la). The duct has a thin side wall, a thick side wall, and thin top and

bottom walls of equal thicknesses. Such an arrangement with a series of

expansions and contractions connected by straight rectangular ducts represents

a Judicious choice for the design of a blanket first wall coolant channel

[3]. As a result of this arrangement, the flow is guided toward the thin side

wall to improve heat transfer performance. The plane of symmetry being at y =

0, solution is sought ov«r half the duet bounded by, -1 s z s 1, and 0 £ y s

f(x) where

( a for Xj £ x s 0

a • bx In expanding <tuet 0 s s $ L 0

v a for L 1 I j I,

The conductance ratios are ct, Cj, and e 2 for the top wall, thin and thick

side walla, respectively. The boundary oonrtitlona (3a,bj require that at y *
fix)

*> -1/2 2-1 |2*t |2*t
uc * vo " °» (1 * f } Cf Jxo " V * °t"Uf ^2" * ̂ T»

«n6 i t u i 1, condition (3e) gives

y». »2... v«. A..

Equations (5a,b,c,d) constitute four ooupled pde's governing p(x,z), «t(xtz),

)t and +2^*'*) wh'ch are SOIVIMI simultaneously. At xt and x2.
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sufficiently far from the expansion, the flow is taken to be fully-developed;

at y = 0 syametry conditions are applied; at the corners z = ± 1 and y = f(x),

electric potential and current roust be continuous.

At z = - 1, (similar arguatenk applies at z = 1), the transverse core

current Jzc flows unchanged across the side layer and enters the side if M"
1 / 2

<< Cj << 1 [4]. Some of the current entering the side flows up the wall (for

y > 0), resulting in an 0(1) electric potential in the side having a specific

variation with y. Because the core potential at z = - 1 has a different

variation with y, given by eq. (2g), there is a Jump in the 0(1) electric

potential across the side layer, determining the 0(1) volumetric flux in the

side layer. The details of the side layer solution can be Ignored provided

that the total volumetric flux in the side layer plus the volumetric flux in

the core is conserved at every cross section. By doing so a boundary

condition for tp/ls at a a - 1 can be derived (5). The boundary conditions

for eqs. (5a-d) are therefore completely defined.

2.4 Diiof with Arbitrary Cro— 3—tloa

Consider an arbitrary cross section in Pig. fb with the plane of sysnetry

at y • 0. The mli is divided into 6 segments denoted by letters "a* to

"f". The pde's governing pressure and electric potential at segmsnti "a",
No N, "«", and *f* are derived by the uethods described in Section 2.3. The

governing equations tor segment Nd" is derived as follows. The coordinate at

the wall is defined by f(z) = <*o • n(x - z6). The boundary conditions (3a,b)

applied to this segment give:

4 wc - v = 0, e [ - ^ • (1 • n2)"1 - g * ) = (1 • n 2 r 1 / 2 (- j y c • nJ2c) (6a,b)wc vc = 0, e [ ^ • (1 • n ) g ) (1 • n r ( j y c • nJ2c
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where wc, vc, J , and Jzc are evaluated at y = f(z). Continuity of electric

potential and current density must be imposed at the Junction between "c" and

"d", and between "d" and Me".

Segment "b" is approximated by a series of small linear subsegments. The

governing equations for p and +t are again given by Cqs. (6a,b) with n

replaced by the slope of each subsegoent.

3. ANALYSIS FOR A NOKCWDUCTIIIG CIRCULAR DUCT

The core equations are given by (la, b, c, d) and (2a - 2g). In a

nonconducting duct currents in the core must close • trough the Hartmann layer

to complete the circuit. As a result, the 0(M~') tenu which are neglected in

the case of a conducting duct, must be included in the asymptotic expansions,

in order to determine the 0(1) solution in the core. Each variable In the

core or in the Hartmann layer, for instance p, is expanded In the form

p = p o • M"
1 pt • 0(M'

2) .

In the Hartk-um layer, the normal components of velocity and current must

vanish at th« wall, and match their counterpart core variables at the

oore/Hartaann layer interface. Matching the 0(1) terms gives boundary

condition* for the core variables and the interfaces. Matching the 0(M~1)

terM gives rise to two ooupled pde's governing the 0(1) pressure, po(x,z),

and 0(1) electric potential, +o(x,z), at the inside surface of the duct.

4. T W K M L HYDRAULIC ANALYSIS

Once the velocity field is known from the MHD solution, the 3-D

temperature profile in the fluid can be solved using the energy equation
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I Urt av /» aw /» ao I "* O O O V**/

where T(x,y,s) is normalized by q"L/k; q" is the heat fluH at the wall, L is

the transverse characteristic length, k is the thermal conductivity and Pe is

the Peclet number.

The boundary conditions necessary for the solution of Eq. (8) are well

defined for most cases. If a heated wall has a side layer with significant

Bass flow rate, the boundary condition can be defined using either an explicit

treatment or an integral treataent of the side layer. The explicit method

employs an analytical solution for the aide layer and & solution for the

invlscid inert£aies3 core. Since analytical solutions for the velocity

profiles in the side layer exist only for uniform Magnetic fields, this aethod

is currently limited to flows in unifoni nagnetic fields.

The integral method uses the known K S S flow rate in the side layer

(given by the MHD solution) tc calculate the fraction of heat flux convected

in the side la^er; the regaining heat flux is conducted into the core across

the layer/core interface. This Method approximates the average axial

temperature gradient in the side layer by the axial temperature gradient at

the interface. The Integral method applies to flows in uniform and nonuniform

nagnetic fields. Although this method does not explicitly solve for the

temperature distribution at the wall the maximum wall temperature occurs at

the top and bottom of the side, where there is no flow in the side layer, and

is nearly equal to the temperature at the interface.
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5. RESULTS AMD COMPARISON WITH EXPERIMENTS

An experimental facility, ALEX, has been built and is being operated at

ANL to study liquid metal MHD phenomena relevant to fusion blanket

engineering. Results for round and square test sections and comparison with

numerical predictions have been reported [6]. Here, only a couple of

representative results are given. Preliminary results of an ongoing test

series involving flows through a rectangular duct with expansions and

contractions are presented in a coapanion paper [3].

Figure 2 compares Measurements with code predictions for the transverse

pressure differences for the round duct, the pressure difference measured at z

- 0 and z = 1. Figure 3 shows the axial velocity at y = 0 at the center of

the duct (z = 0) and near the wall (z = 0.9) for the round duct. In fully
>

developed flows, the pressure and axial velocity are uniform across z.

In uniform magnetic fields, the velocity can be guided toward one side

by variation of duct cross sectional dimensions in a duct with unequal

thicknesses. As an example, consider the geometry depicted in Fig. 1a.

The conductance ratios are 0.014 for the top, bottom, and thin side walls, and

D.65 for the thick side wall. The top wall is at yt = 0.6 for x < 0; yt = 0.6

+ x/3 for 0 <, x <, 2.4; and y t = 1.4 for x 2 2.4. Figure 4 shows the evolution

of the axial velocity as the liquid metal flows through the expansion. In

addition to the desirable higher velocity distribution near the thin wall, the

fraction of the total volumetric flow rate in the side layer also increases

drastically (Fig. 5). Notice that the fraction of the flow in the side layer

adjacent to the thick wall is negligibly small, because of the large

conductance ratio there.

In a nonconducting circular duct, when the flow is fully developed, the

velocity peaks at the center and vanishes near the wall. The non-uniformity
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of the magnetic field causes the flow to migrate towards z = ± 1, leaving a

stagnant region in the center. Figure 6 shows such a development of the flow

at Hartmann number of 10 .

Figure 7 shows the fluid temperature distribution in a square duct at the

aidplane, y = 0, at three cross sections (x = 0.3, 9.5, 17.5). The side wall

at 2 = -1 is heated uniformly fron x a 0 to x = 20. The side layer carries

25f of the total flow rate. The Hartmann number (used to calculate the

velocity in the side layer for the explicit method), the Peclet number, and

the initial temperature are 10 , 100 and 0.651, respectively. Results by the

integral and explicit treatment of the side layer are compared. The slight

differences in temperature at z = -1 indicate the small temperature drops

across the side layer.
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LIST OF FIGURES

Fig. 1 Schematic of (a) a duct of variable ractangular cross sections, (b)
an arbitrary cross section.

Fig. 2 Experimental data and code predictions for transverse pressure
difference (12 o*cloak - 3 o'clock) for a round duct which has a
conductance ratio of 0.02?. Rise shown is the normalized magnetic
field distribution.

Fig. 3 Experimental data and code predictions for the axial velocity at the
midplane y = 0, at z = 0 (lower curve) and c s 0.9 (upper curve) for
the round duct.

Fig. 4 Axial velocity profiles at the midplane y = 0, at various cross

sections (See Fig. la Tor the geoaet?y). The transverse Magnetic
field is uniform.

Fig. 5 Fraction of the total flow rate In the side layers adjacent to the
thin wall (z = -1) and the thick nail (s = 1).

Fig. 6 Axial velocity profiles at the midplane y = 0 at various cross
sections in a nonoonducting round duct. The Magnet field
distribution is identical to that shown in Pig. 2,

Fig. 7 The temperature profiles in a square duct at the nidplane y = 0 at
three cross sections. Results by the integral Method (solid lines)
and the explicit Method (dash lines) are compared. The heated wall
is at z = -1, the other walls are adlabatlc.
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