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Abstract: A decaying quantum system, if observed 

very frequently in order to ascertain whether or not it 

is itill undecayed, will not decay at all. The deriva-

tion of this effect--known, e.g., as Zeno's paradox--has 

been criticized recently. It has been argued that meas-

urements performed in a very short time interval ~t pro-

duce states with a very large energy uncertainty ~E, and 

that Zeno's paradox disappears if this is taken into ac-

count. By construction of an explicit counterexample we 

prove, how~ve~, that there is no energy-time uncertainty 

relation of the required kind; therefore, the criticism 

mentioned is unjustified. 
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1. Introduction: Decaying States and Zeno's Paradox 

Consider a decaying state, described by a certain 

unit vector f in the Hilbert space H of the decaying sys-

tern, whose time evolution is described by a Hamiltonian 

H. If left undisturbed, the system at time t is in the 

(Schr6dinger) state e-iHtf, provided it starts in the 

undecayed state f at time t = 0. Therefore the proba­

bility of finding the system still(unde6ayed at timet is 

p ( t) = I ( t, e-; Ht t) I 2 . ( 1) 

If, instead, the system is not left undisturbed, but a 

series of measurements are made at equidistant times 

t 
tl = -n' 

2t t 2 = r1 ... tn = t, each one designed to check 

whether or not the system is still undecayed, one easily 

obtains the expression 

Pn(t) = I (f,e-iHt/nf) 12n= {p(*))n (2) 

for the probability to find the system undecayed at each 

one of those measurementR. Tn order to derive (2), one 

has to assume that the measurements are "ideal" in the 

usual sense; i.e., at each time ti of a measurement the 

-iHt/n 
state is assumed to "collapse" from f(ti) =·e f to 

·- . --------- -

f with the probability I (f,f(ti)) 12 , which is also the 

probability of finding the system undeoaycd. 1 

If the free decay law p(t) is a pure exponential, 

-.At p(t) = e , Eq. (2) leads to the same exponential decay 

law for the system observed at intermediate times, inde-

pendent of the number n of intermittent measurements. 

It is known, however, that the free decay law (1) cannot 

be a pure exponential for all times t > 0, although 
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usually it may be approximated quite well by an exponen-

tial during a time interval of the order of several or 

1 . f . 1 many 1 e-t1mes T = -
:\ 

2 
Deviations from exponen-even 

tiality necessarily occur for very large as well as for 

very small times. For large times they are.a consequence 

of the semiboundedness (positivity) of physically ac-

ceptable Hamiltonians H, which implies that for large t 
( 

· the free decay law (1) is given by some inverse power 

· rather than an exponential of t, and the decay is thus 

slower than exponential. At small times, all phy$ically 

realizable decays will also be slower than exponential,· 

if one tacitly assumes that in any realizable state f 

the average <E> as well as the spread ~E of the energy 

should be finite. 3 This means 4 that f, and consequently 

e-iHtf, is in the domain of'definition DH of the 

Hamiltonian H, implying that p(t) is continuously differ­

entiable for all t, with ~(0) = o~ 

p(t) =ddt [ (f,e-iHtf) (f,eiHtf)] 

= i[(f,e-iHtf) (Hf,eiHtf)- (Hr,e-iHtf) (f,eiHtf)] 

is continuous in t since e±iHt is weakly continuous, and 

p(O) = 0. Therefore p(t), fort+ 0, approaches p(O} = 

1 with zero slope, and is thus bigger than any exponen-

tial for small t. Since Pn(t) ~ p(t} for p(t} -:\t = e 

only, the free decay law p (t) and the "survival p'roba-

bility" Pn(t) are necess~rily different for all physi­

cally realizable decaying states. 

Keeping the time interval 6t between successive 

measurements fixed, one may rewrite the survival 
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probability (2) in the form 

P
0
t(n·ot) = (p(ot))n. (3) 

(As P now depends on ot, we use this as subscript.) If 

ot is neither too large nor too small, so that p(ot) is 

· ->.·ot 
well approximated by an exponential e · with the 

"natural" decay constant A of the state ~ a~ determined 

by H, i.e., the internal dynamics of the decaying system, 

then (3) yields an exponential decay 
. -An~ ot -At. 

P0t(e) = ~ot<n·ot) = e = e (4) 

wiLh U1e natural decay constant A for arbitrarily large 

times t = n•ot. In suitably refined form, with random 

rather than uniformly distributed intermediary measure-

' ments, and a continuous time variable t instead of the 

discrete time t = n·ot considered here, this argument 

has been used to show that the deviations from exponen-

tiality at large times t will not be observed in prac­

tice.2 An unstable charged particle while moving in a 

Wilson chamber, for instance, is indeed not completely 

isolated but produces a recognizable track of droplets, 

each one indicating that it is still present, and thu$ 

constituting an intermittent measurement of the kind con-

sidered above. These mP.n!';lH:-ements are just frRqnent 

enough to replace (1), with its nonexponential "tail," 

by the exponential decay law (4) for all times, includ-

ing arbitrarily large ones .. on the other hand, the in-

tervals ot between successive measurements are still so 

I 

large that the nonexponentiality of p(ot) for small ot 

can be neglected. 
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However, if ot is further decreased, one finally 

reaches the region where p(ot) is no longer given by 

-A·ot 
e , and for sufficiently small ot it becomes strictly 

larger than this, as shown above. Representing p(t) in 

the form 

p (t) 
-v(t)·t 

= e 

for all t, we thus find that 

v(t) =- t log p(t) 

coincides with A for not too small t, while 

1 1 -At 
v(t) ~- t log p(t) < - E log(e ) =A 

for sufficiently small t and, by l'Hospital's rule, 

lim v(t) 
t+O 

= -1 im d ( 1 o g p ( t) ) = 
t+O dt 

EJQl_ -
(0) - 0 • p I 

With (5), Eq. (3) still leads to an ·exponential decay 

law 

Pot<t) = 
-v(ot)·t 

e 

(5) 

( 6) 

(6) 

(7) 

( 8) 

but with a decay "constant" v(ot) which is not fixed by 

the internal dynamics of the decaying system only, but 

also depends on the frequency of observation. By (6), 

the decay (8) proceeds slower than the "natural" decay 

(4) for sufficiently small ot, and· in the limft ot + 0 

of "continuous observation" Eqs. ('7) and (8) imply 

P0 (t) = 1, i.e., there is no decay any more. This phe-

nomenon was discovered several times, more or less in-

dependently, by various authors during the last decades. 

I~ has been in~estigated rigorously and quite extensively, 

under much more general assumptions than those used here, 

in a recent paper by Misra and Sudarshan, 5 who called it 
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the "Zeno's paradox" in quantum theory. 

In actual experiments with decaying systems the mean 

frequency of successive measurements cannot be made ar-

bitrarily large. In the example.of a particle in a 

Wilson chamber mentioned above, this limitation is caused 

by the atomic structure of the vapor, leading to a minimum 

distance d in space, and thus to a minimum time lag ot ( 

d/c, between the successive formation of any two droplets. 

. 1 . 2 i ~i ~ . " Numer1ca es LJ ... l'lld L~:::;- ::;~:t!m tu · nu cate that pract1C::ally 

realizable values of ot are still within or at most 

slig·htly outside the domain for which p (at) coincides 

with e-A·ot. Therefore the dependence on ot of the decay 

"constant" v(ot) in the observed decay law (8), if present 

at all, will be very weak, and thus hardly detectable. 6 

In spite of this difficulty of a direct experimental test, 

Zeno's paradox is certainly of considerable theoretical 

interest, as it belBngs to the many "nonclassical" fea­

tures which, starting with Heisenberg's discovery of the 

uncertainty relations, have peen proved to follow from 

the general assumptions of quantum theory. 

In a recent paper, however, Ghirardi et a1. 7 claim 

to prove that Zeno's paradox is not only difficult to 

observe, but rather that the arguments leading to it are 

in conflict with the very principles of quantum mechanics, 

and that by properly,taking into account these principles-­

roughly speaking, some kind of time-energy uncertainty 

relat~on--the paradox disappears. After reviewing the 

crucial ingredient of this criticism in Section 2, we 
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warit to convince the reader in Section 3 that this 

criticism is unjustified, and 1:hat the above sketchy 

derivation of Zeno's paradox is basically correct. 

2. An Objection Against the Derivation of Zeno's Paradox 

A crucial assumption used to derive Eq. (2) is that 

each one of the measurements at times t. projects out of 
1 

the state f(ti) found at time ti, again the original Ftate 

f, or at least some state f' which is so· close to f 

that it can be replaced by f in the calculation of the 

further behavior of the decaying system. As pointed out, 

e.g., in Ref. 2, the type of measurement which is appro-

priate for this purpose, and which is actually used in 

many experiments, is a suitable localization procedtire. 

Indeed, the undecayed state f differs from the decayed 

states most significantly by the fact that no decay.prod-

ucts are found within a relative distance greater than 

the range R of their mutual interactions in the first 

case, whereas in almost all decayed states this distance 

is greater than R. If one thus chooses for the property 

to be measured at times t. a characteristic function of 
1 

a suitable distance coordinate x between decay products, 

e.g., 

~G for I ?51 < R 
Q (x) 

for I ?51 > R I 

the measurements should in fact have the desired effect. 

In the configuration space n~presen ta tion, vect.ors g E H 

are described by wavefunctions g(x, ..• ), the dots denoting 
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all other coordinates besides ~, whereas Q(~), acting 

multiplicatively on the wavefunct~ons, represents a pro-

jection operator Q on H. (If, for instance, the decaying 

.state is a virtual bound state of two particles inter-

acting via a suitable potential, x is simply the distance 

between the particles, and the remaining coordinate ~ is 

the center of mass.) An ideal measurement of Q in a 

(normalized) state g yields a positive result,, and trans­

forma g into the 11ew ( liy.!t.ill HuLmdllzed) stae.e g' = NUg, 

with the "trancition probability" 

w = (9) 

The new wavefunction is given by 

A slight modification is appropriate, however. There 

will be a contribution to the Hamiltonian H from the rela-

tive motion of decay products as described by the distance 

coordinate x. For relative distances jxj > R this motion 
"' It 

is already free, so that the corresponding part of the 

Hamiltonian acts on wavefunctions in the region 1~1 ~ R 

like a free Hamiltonian, which is a differential operator 

.in x. Due to the discontinuity of Q(~) at 1~1 = R, how­

ever, the new wavefunction g' given ~y (10) will not be 

differentiable even if g is. Thus, a measurement of Q 

will produce states which do not belong to the domain of 

definition of H, and which therefore are at least very in-

convenient as an approximation for the original decaying 

state f. This difficulty is easily circumvented, if 

Q(x) is replaced by a smooth (real) function 
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=e 
for I ~I < R 

A (x) 0 < A (x) < 1 for all X I - f0r lxl > R + E: 

which has to be sufficiently often differ~ntiable, but 

need not be specified further in the transition region 

R < 1~1 < R + E:, which moreover can be chosen arbitrarily 

narrow. Acting multiplicatively on wavefunctions, A(x) 

again defines a Hermitian operator A on H which, however, 

is now no longer a projection operator (A2 ~ A). A "meas­

urement" of A8 gives a positive result, ·and transforms 

the original (normalized) wavefunction g(~, •.. ) into a 

new (normalized) one, 

g I (~I ••• ) = NA ( ~) g (~I ••• ) I 

with the transition probability 

w = ( g I A 
2 

g) = II Ag 11 2 
= IN 1- 2 • 

( 11) 

( 12) 

By comparing (11) and (12) with the corresponding formu-

lae (9) and (10), we see that for small enough E: "approxi-

mate" localization measurements (with A) give almost the 

sarte results for g' and w as "exact" ones (with Q). In 

particular, if the undecayed state f can Re separated at 

all from the decay products by a localization measurement 

of the type considered, a "smooth" localiza-tion like 

(11) can be used as well. 

In order to explain the main argument of Ref. 7 iri 

a most simple way, we first calculate the second time 

derivative of p(t). Using the expression for p(t) al-

ready obtained, we f.ind 

p(t) = (f,He-iHtf) (Hf,eiHtf) - (f,e-iHtf) (Hf,HeiHtf) 

+ (f,HeiHtf) (Hf,e-iHtf) - (f,eiHtf) (Hf,He-iHtf) 
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Putting t = 0 we get from·this 

p(O) = -2[(Hf,Hf) - (f,Hf) 2 ] = -2(toE) 2 

For f E DH, therefore, toE is indeed finite, and p(t) is 

even twice continuously differentiable and behaves like 

p (t) ::: 1 - (toE) 2 t 2 (13) 

for small t. Assuming nm·1 that indeed each measurement, 

with,sufficient accuracy, reproduces the original sta~e 

f, the quantity entering (3) is 

tJ(u·t) ~ 1- (toE) 2 (6e)?. .<14) 

so that, for t = n•ot and toE•ot << 1, (3) leads to 

P0 t(t):::: 1- n(toE) 2 (ot) 2 . {15) 

Keeping t fixed and increasing the frequency of succes­

sive measurements by a factor m, we have to replace 6t 

by ot/m and n by m•n in {15), and thus 

Pot/m{t) ~ 1- m•n{toE) 2 {ot/n)
2 = 1- ~ {toE) 2 (ot)2. 

For m ~ oo we therefore obtain Pot/m(t) ~ 1, which is 

Zeno•s paradox. 

The durat~on ~t of each single measurement is ob­

viously restricted by 

tot 2_ 6t , 

and thus goes to zero if ot does. Suppose now one could 

p~ove that any measurement of finite duration ilt produces 

a state whose energy spread toE is larger than a given func­

tion of tot which goes to +oo for tot ~ 0. Then the above 

reasoning, which assumed toE to be independent of ot, 

would obviously be wrong, as one could no longer conclude 

from {14) that p{ot) ~ 1 for ot ~ 0. For instance, if 

there were an uncertainty relation of the usual type for 
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~K and ~t, 

(16) 

the approximation (1(§) for p (ot), and therefore any con-

elusion drawn from it, would. become completely meani.ng-

less. But even a weaker estimate like 

(~E) 2 
• ~ t 2: cons t. ( 17) . 

would spoil Zeno's paradox since then, for ot ~ 0, (~E) 2 

could grow like /t ' and p ( 0 t) ' according to (1~)' would. 

then go to 1 linearly in ot, so that 

Pot(t) P 0 t(n·ot) (1 a.·ot)n (1 _ a.t)n -at = :::; - = :::; e n 

would be an exponential, entirely independent of ot, for 

sufficiently large n = 0~ • 

Although the authors of Ref. 7 are aware of the fact 

that an uncertainty relation of the form and the physical 

meaning of (16) does·not follow from quantum theory, they 

maintain that at least for localization measurements ·of 

the type (11) described above, an estimate for ~E with 

the required properties can indeed be derived. After a 

somewhat lengthy--and at least partly quite heuristic--

calculation, they actually arrive at an inequality of the 

form (1?) (cf. Eq. (5.18) of their paper), and conclude 

from this that there is no Zeno's paradox for decaying 

·states. We want to show in the following section, how-

ever, that this criticism is unjustified, since theie are 

no principal restrictions whatsoever for the time dura-

tion ~t of localization measurements of the type described 

by Eq. (11). 
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In order to prove our last statement, it is suffi-

cient to construct explicitly a quantum mechanical model 

for the localization experiment described by Eqs. (11) 

and (12), and to show that the duration ~t of this model 

experiment can be made arbitrarily small. 

Since only the coordinate x is involved in the meas-

urement, we shall suppress all other coordinates and take 

the wnvefuncliort~ y,y' ... to be functions of~ only. (To 

make this mathematically rigorous, we have to factorize 

the state space of the decaying system in the form 

2 ~ 2 H = L ( x) ~ L ( ••• ) 

into spaces of square-integrable functions of x and of 

the other coordinates ( ... ), respectively. As the second 

factor L2 ( ... ) will not be affected by the interaction with 

.the measuring apparatus, it can be omitted during the cal-

culations and reinserted afterwards.) We ~ssume, more­

over, that all values of ~t considered here are already 

very small as compared to the internal time scale of the 

decaying system, so that any change of the wavefunction 

due to the Hamiltonian H of ·the isolated system can be 

neglected during time intervals of length ~t. We ~re 

thus dealing, as usual, with (practically) instantaneous 

measurements. 

We take as a quantum mechanical model for the meas-

uring apparatus a very simple quantum system with· two-

dimensional state space H2 and describe its states py 

column vectors as usual. Without interactions, moreover, 
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all apparatus states shall be stationary, so that the free 

Hamiltonian of the apparatus may be chosen as zero. · The 
\ 

state space for system plus apparatus is 

~ = L2(~) @H2. 

A$ is:i well~known·, vectors in H may be represented by column 

vectors of the form 

g = (gl(~)) 
- g2 (~) 

In this representation, operators on H become 2 x 2 opera-

tor matrices 

9 and 

L2 (~) operators on _ 

etc. The interpretation of this formalism is also well-

known and quite obvious; e.g., the state 

(
g(x)). (1) 

~ = . 0..., = g (~) @ 0 ( 18). 

means that the system has the wavefunction g(~), and the 

apparatus is in.the "up" state(~). 
The interaction Hamiltonian ~I on H in chosen to be 

( 

0 -iA

0
s(~)) 

~I = iAS (~) (19) 

-where A is a pusitive coupling constant and s(x) a smooth 
/ 

real "~ensitivity function," acting multiplicatively on 
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L2 (x), with 

for < R e 1~1 
s (x) = 0 < s(x) < l for all,.x. 

1~1 for > R + E 
( 20) 

Clearly Eq. (19) defines a Hermitean operator on H. 

Moreover, one can easily calculate (e.g., by a power 

series expansion) the unitary operators 

_ (cos(;\ts(~)) 

sin(Ats(x)) 
' -

I 

-sin(;\ts(~)))· 
cos(;\ts(x}) 

(21) 

Now choose as initial apparatus state at the time t., 
]. 

at which the measurement begins, the "up" state, and de-

note the wavefunction of the system at that time by g(~), 

so that the initial combined state of system plus appara-
I . 

tus is given by (18) . Assume, moreover, that the interac-

tion (19) l.S "switched on.. in the time interval between 

t. and t. + ~t, with ~t and A related by 
]. ]. 

1T = 2" (22) 

Since the free time evolution of the wavefunction g(x) 

in this short time interval was assumed to be negligible, 

and there is no free time evolution of the apparatus 

state, the state of system plus apparatus at time t. + ~t 
]. 

follows from (18), (21) and (22) to be 

with 

\ 

e-i~r·~tg = (A(~)g(~)) 
B(x)g(x) 

= A(~~g(~~@(~J + B(~)g(~)@(~) , (23) 
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1T 
A(~} = cos(2 s(x}} B(x} =sin(~ s(~}} . ( 24} 

The apparatus, by construction (cf. Eqs. (19} and (20}}, 

was "sensitive" (i.e., ~I~ 0} in the region 1~1 > R only. 

A transition of the apparatus from the original "up" state 

to the "down" state. ( ~) thus means that it has resp·onded 

to some part of g(~} in.that region, i.e., it has regis­

tered the presence of ~decay products." The part of g(~} 

in the region 1~1 < R, on the other hand, does not influ­

ence the apparatus, and thus leaves it. in the initial 

"up" state. Therefore the apparatus state "up" is corre-

lated, in the final state (23}, with that part of the 

original wavefunction g(x} which represents (up to some 

small error, mainly due to the possible presence o.f some 

decay products even inside the region 1~1 < R} the still 

undecayed system. The apparatus remains in the "up" 

state, i.e., the system is found undecayed, with proba-

bility 

w = fiA(~)g{~} 1 2d~ = (g,A2g}L2 ~ ( 25} 

as easily seen from (23}. As the system is already de-

cayed, and will thus not be investigated further, if the 

final apparatus state is "down," the.selection of those 

cases in which the apparatus state is "up" finally leads 

from (23} to the state 

g 1 = NA ( ~} g ( ~} 0 ( ~ ) 
of system plus apparatus, and therefore to the new wave-

function 

g' (X) = NA(x) g (X} (26} - -
of the system, which has to be normalized again. The 
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normalization constant N, obviously, has to satisfy 

1 = ~g'~ 2 = INI 2fiA(~)g(~) 1 2d~ = INI 2
w 

so· 'that IN 1-2 = w, in accordance ~i th ( 12) . The above 

physical interpretation also implies that w is the trah-

sition probability for the change of wavefunction g(~) ~ 

g' (~) during the measurement. 

From Eqs. (20) and (24) we find that A(x) as defined 

here has the properties required in Section 2; vice versa, 

gi vcn any A(.~) with ·those .l:Jl:OfJt:l: L.ie~, uuL· mudel with 

s (x) 
2 = - arc cos A(x) 
Tf 

will just lead to this particular function A(x). Thus 

Eqs. (25) and (26) correspond exactly to Eqs. (12) and 

(11) of Section 2, as they ·should. 

The most important point is, however, that Eq. (22) 

does not imply any restrictions for ~t. A smaller ~t just 

requires a correspondingly larger coupling constant A-~ 

which is indeed what one would intuitively expect. It is 

probably true, of course, that there are no arbitrarily 

strong interactions in nature. But this has nothing to 

do with the basic principles of quantum theory, and in 

particular there is no internal inconsistency of our model 

for arbitrary values of ~· And the proper working of our 

model for arbitrarily small ~twas the only thing we 

wanted to prove. 10 

One could still object that the "apparatus" studied 

here is much too simple as a model for real measuring 

·instruments. In particular, a characteristic feature of 

real instruments is the irreversible "amplification" 
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of the initial microscopic state changes produced by the 

observed system, which finally results in macroscopically 

diffe~ent "pointer readings." However, this may be taken 

into account by considering our model apparatus as de-

scribing some microscopic "trigger" part of the apparatus 

only, which is embedded in the real macroscopic apparatus 

in such a way that the microscopically different states 

"up" and "down" initiate irreversible processes leading 
/ 

to macroscopically different final states. (A discussion 

of models for measuring instruments imitating such kind 
I 

11 of. irreversible behavior will be presented elsewhere. 

In these models, moreover, the "triggering" is not--as in 

the present model--achieved by an explicitly time-dependent 

{artificially "switched") interaction, but rather by suit-

able scattering processes involving the decay products 

and the "trigger" part of the apparatus.) Although the 

time of interaction between the decaying system and this 

enlarged apparatus is still ~t as given by Eq. (22), the 

total duration of the measurement could then.be defined 

so as to include also the duration ~t' of the subsequent 

irreversible processes. Since, however, there is no limit 
I ' 

in principle for the rapidity of irrevers1ble processes 

either, ~t + ~t' can still be made arbitrarily small. 

Summarizing the present discussion, we are inclined 

to answer the question: "Is Zeno's paradox real?" in a 

h . 12 
~omew at caut1ous way "In principle, yes--but ••. !" 

Every reader is invited to replace the dots by arguments 

of pis own, concerning the practical difficulty or 
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impossibility of·an experimental verification. What we 

insist on, however, is the ~irst part of the answer. 
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J. Schroter, Int. J. Theor. Phys. 2, 431-442 (1973). 
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(1977). Most of the earlier work on this problem is 

quoted there. For a very elementary discussion, see 

A. M. Wolsky, Found. Phys. ~' 367-369 (1976). 
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6. The situation might be different in very dense (e.g., 

nuclear) matter, where effects related to Zeno's 

paradox could become important; cf. P. Valanju, E.C.G. 

Sudarshan, C. B. Chiu, University of Texas preprint, 

June 1979. 

7. G. C. Ghirardi, c. Omero, A. Rimini, T. Weber, Inter-

national Centre for Theoretical Physics preprint 

IC/79/43, Trieste, 1979. 

8. In the general framework described in Ref. 1, this 

measurement is a "selective operation" corresponding 

to the "effect" F = A2 . 

9. Scalar products of vectors in L2 (x) are indicated by· 

a subscript L2 . 

10. Contrary to the arguments presented in Ref. 7 (cf. 

Eq. (5.14)), there is also no relation whatsoever 

between t.t and the width£ of the_"smoothing" region 

of A (x) • 

11. K. Kraus, University of Texas Preprint, in prepara-

tion. 

12. Compare Radio Erewan. 
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