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Absfract: A decaying quantum system, if obéerved
very frequently in order to asceftain whether Qr‘pot it
is still undecayed, will not decay at all. The deriva-
tion of this.effect—;known, e.g., as Zeno's paradox--has
been criticized'pécéntly. It has been argued that meas-
urements performed in a very short time interval At pro-
duce states with a very iarge energy uncertainty AE, and
that Zené's paradox disappeafs if this is taken into ac-
éount. By construction of an explicit counterexample we
prove, however, that there is no energy-time uncertainty

relation of the required kind; therefore, the criticism

mentioned is‘unjustified.
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1. Introduction:i: Decaying States and Zeno's Paradox

Consider a decaying state, described by a certain
unit vecfor f in the Hilbert space H of the decaying sys-
tem,Awhose time evolution is described by a Hamiltonian
H. If left undisturbed, the system at time t is in the
(Schroédinger) state e_thf, provided it starts in the
uncdecayed state f at time t = 0. Therefore the proba-

bility of finding the system still, undecayed at time t is

-iHt

p(t) = |(t,e t’)!z- . (1)

I, instead, the system is not left undisturbed, but a

series of measurements are made at equidistant times

£ o o2t

t1=—, 2=n

n S =t each one designed to check

whether or not the system is still undecayed, one easily

obtains the expression

-iHt/n

Ph(t) = |(f,e £) 20 = (p(ENH™ (2)

for the probability to find the system undecayed at each
one of those measurements. Tn order to de:ivc (2), one
has to assume that the measurements are "ideal" in the

usual sense; i.e., at each time ti of a measurement the

-iHt/n
state is assumed to "collapse” from f(tj) ='e / f to

f with the probability |(f,f(ti))|2; which is also the

probability of finding the system undecayed.l

‘ If the free decay law p(t) is a pure exponential,
p(t) = e-xt, Eg. (2) leads to the same exponential decay
law for the system observed at intermediate times, inde-
pendent of the number n of interﬁittent measurements.

It is known, however, that the free decay law (1) cannot

be a pure expoﬁential for all times t > 0, although
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usually it may be,épproximated quite well by an exponen-
tial during a time interval of the order of several or
even many life-times T = %. 2 Deviations from éxponen—
tiality necessarily occur for very large as well as for
vefy small times. For large times they are. a consequénce
6fAthe semiboundedness (positivity) of physically ac- |
‘ceptable Hamiltonians H, which implies that for large t
- the fr;e decay law (I) is given by some inverse power
. rather than an exponential of t, and the decay is thus
slower than exponential. At small times, all physically
realizable decays will also be slower than exponential,
if one tacitly assumes that in any realizable state £
the average <E> as well as the spread AE of the energy

3 4

should be finite. This means  that £, and consequently

e Hts  i5 in the domain of definition Dy of the
Hamiltonian H, implying that p(t) is continuously differ-

entiable for all t, with p(0) = 0=

B(t) = S [(£,e ) (£, )

Ht

Ht

= i0(f,e ey e, o) - (me, e ) (£,e1Mtg

is continuous in t since eith is weakly continuous, and
b(O) = 0. Therefore p(t), for t - 0( approaches p(O) =
1 with zero slope, and ié:thus bigger than any exponen-

- tial for small t. Since Pp(t) = p(t) for p(t) = e—xt
only, the free decay law p(t) and the "survival proba-
' bility" P, (t) are necessgrily different for all physi-
qa;ly.realizable decaying states. A

Keeping the time interval &t between successive

measurements fixed, one may rewrite the survival
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probability (2) in the form
’ Pyy(ne6t) = (p(6£))" . : (3)
(As P now depends on §t, we use this as subscript.) If
6£ is neither too large nor too small, so thatAp(Gt) is
well approximated by an exponential e—>\.‘6t with the
"natural" decay constant A of the state f as determined
by H, i.e., the internal dynamics of the décaying‘system,
then (3) yields an exponential decay

. , -dn+*d8t -t
Pop(t) = Pg (nest) =e = C=e

(4)
wilh Lhie natural decay constant A for arbitrarily large
times t = n*dt. In sﬁitably refined form, with random
rather than uniformly distributed intermediary measure-
menﬁé, and a contihuous time variable t instead of the
discrete time t = n-<8t considered here, this argument
has been used to show that the deviations from exponen-
tiality at large times t will not be observed in prac-
tice.2 An unstable charged particle while'moving in a
Wilson chamber, for instance, is indeed not completely
isolated but produces a recognizable track of dropleté,
each one indicating that it is still present; and thus
constituting an intermittent measurement of the kind con-
sidered above. These measufements are juet freqnent
enough to replace (1), with its nonexponential "tail,"
by the exponential decay law (4) for all times, includ-
ing arbitrarily large ones. On the other hand, the in-
tervals 8t between successive measurements are still so
large that the nonexponentiality of p(dt) for small 8t

can be neglected.
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However, if 8t is further decreased, one finally
reaches the region where p(dét) is no longer given by
e_A'ﬁt, and for sufficiently small 8§t it becomes strictly
larger than this, as shown above. Representing p(t) in
the form
p(t) = e (5)

for all t, we thué find that

vit) = = % log p(t) (6)
coincides with A for not too small t, while
-\t :
v(t) = - i log p(t) < - 1 log (e ) = A (6)

t t

for sufficiently small t and, by l'Hospital's rule,

. . d p(0)
lim v(t) = -lim — (log p(t)) = - =0 . (7)
0 t>p At . p(0),

With (5), Eq. (3) still leads to an exponential decay
law

Psy (t) = e vioBt (8)
but with a decay "constant" v(§t) which is not fixed by
.the internal dynamics bf the decaying system only, but
also depends on the frequency of observation. By (6),
the decay (8) proceeds slower than the "natural" decay
(4) for sufficiently small §t, and in the limit 6t - 0
of "continuous observation" Egs. (7) and (8) imply
Po(t) =1, i.e., there is no decay.any more. This phe-
nomenon was discovered several times, more‘or less in-
dependently, by various authors during the last‘decades.
it has been investigated rigdrously and quite extensively,
under much more geqeral assumptions than those used here,

5

in a recent papér by Misra and Sudarshan,~ who called it
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the "Zeno's paradox" in quantum thegry.

In actual experiments with decaying systems the mean
frequency of successive measurements cannot be made ar-
bitrarily large. In the example of a particle in a
Wilson chamber mentioned}above, this limitation is caused
by the atomic structure of the vapor, leading to a minimum
distance d in space, and thus to a minimum time lag §t >
d/c, betweén the successive formation of any two dréplets.
Numerical esLimdLes2 seem tu lndicate that praCt{cally
réalizable values of §t are still within or at most
slightly outside the domain for which p(8t) coincides
with e—k-&t. Therefore the dependence on §t of the decay
"constant" v(8t) in the observed decay law (8), if present
at all, will be very weak, and thus hardly detectable.§
In spite of this aifficulty of a direct experimental test,
Zeno's paradox is certainly of considerable theoretical
interest, as it belengs to the many "nonclassical" fea-
tures which, starting with Heisenberg's discovery of the
uncertainty relations, have been proved to follow from
the general assumptions of quantum theory.

In a recent paper, however, Ghirardi et al.7 claim
to prove that Zenp's paradox is not only difficult to
observe, but rather that the arguments leading to it are
ip conflict with the very principles of qﬁantum mechanics,
and that by préperly'taking into account these principles--
foughly speaking, some kind of time-energy'uncertainty

relation--the paradox disappears. After reviewing the

crucial ingredient of this criticism in Section 2, we
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want to convince the reader in Section 3 that this
criticism is unjustified, and that the above sketchy

derivation of Zeno's paradox is basically correct.

2. An Objection Against the Derivation of Zeno's Paradox

A crucial assumption used to derive Eg. (2) is that
each one of the measurements at times ti projects out of
the state f(ti) found at time ti’ again the original state
f, or at least some state f' which is so close to £
that it can be replaced by f in the calculation of the
further behavior of the decaying system. 'As pointed oﬁt,
e.g., in Ref. 2, the type of measurement which is appro-
priéte for this purpose, and which is actually used in
many experiments, is a suitable loéalization procedure.
Indeed, the undecayed state f differs from the decayed
states most significantlf by the fact that no decay prod-
ucts are found within a relativg distance greater than
the range R of their mutual interactions in the first
case, whereas in aimost all decayed states this distance
‘is gréater than R. If one thus chooses for the property
to be measured at times t; a characteristic function of
a suitable distance coordinate x between decay products,
e.g.,

1 for |>f| < R

Q(x) =
~ 0 for |x| > R,

the measurements should in fact have the desired effect.
In the configuration space representation, vectors g € H

are described by wavéfunctions g(x;...), the dots denoting

)
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all other coordinates besides X, whereas Q(g), acting
ﬁultiplicatively on £he wavefunctions, represents a pro-
jeétion operator Q on H. (If, for instance, the decayingA
.state is a virtual béund state of two particles inter-
.acting Qia a suitable potential, X is simply the distance
between the particles, and the remaining coordinate R is
the éenter of mass.) An ideal measurement of‘Q in a
(normalized) state g yields a positivé.result,‘and trans-
forms g into the new (ayain uurmalized) state §' = NUg,

with the "transition probability™

5 _ .
w = (9,09 = (5,0°9 = logl? = [n|7% . 9)
The new wavefunction is given by
g' (%,...) = NO(X)g(x,...) . (10)

A slight modification is appropriate, however. There
~will be a contribution to the Hamiltonian H from the rela-
tive motion of decay products as described by the distance
coordinate x. For relative distances |x| 2 R this motion
is already free, so that the corresponding part of the
Hamiltonian acts on wavefunctions in the region [x| 3z R
like a free Hamiltonian, which is a differential operator
in x. Due to the discontinuity of~Q(§)'at |§| = R, how-
ever, the new wavefunction g' given'by (10) will not be
differentiable even if g is. Thus, a measurement of Q
will produce states which do not belong to the domain of
definition of H, and which therefore are at,ieast very in-
cénvenient as an approximation for the original decaying
state f. This difficulty is easily circumvented, if

Q(x) is replaced by a smooth (real) function
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1 for |§| < R

A(x) = +» 0 <A(x) <1 for all x ,
- 0 for |x| >R + € ' ~ ¥

which has to be sufficiently often differentiable, but
need not be specified furthe: in the transition région
R < |x| < R + e, which moreover can be chosen arbitrarily
narfow. ‘Acting multiplicatively on wavefunctions, A(§)
agéin defines a Hermitian operator A on H which, however,
is now no longer a projection operator (A2 # A). A "meas-
urement" of A8 gives a positive result, and transforms
the original (normalized) wavefunction g(x,...) into a
new (normalized) one,

g'(x,...) = NA(X)g(x,...) , (11)
with the transition probability 4

w = (g,8%9) = |agl® = In|7%, . (12)
ByAcomparing (11) and (12) with the corresponding formu-
lae (9) and (10), we see that for small enough € "approxi-
mate" localization measurements (with A) give almost the
same results for g' and w as "exact" ones (with Q). 1In
particular, if the undecayed state f can bhe separated at
all from the decay products by a localization measurement
of the type considered, a "smooth" localization like
(11) can be used as well.

In order to explain the main argument of Ref. 7 in
a most simple way, we first calculate the second time
derivative of p(t). Using the expression for.é(t) al-

ready obtained, we find

-iHt t Ht

£) - (£,e *HY) (uf,met
iHt

B(t) = (£,He  Hbg) (ur, £)

£) - (£,e%s) (uf,He 1HE

+ (f,He 0ty (uf, e” £) .
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|

Putting t 0 we get from-this

5(0) = -2[(HE,HE) - (f,HE)?] = -2(AE)? .

Il

1

For f e Dy, therefore, AE is indeed“finite, and p(t) is
eveﬁ twice continuously differentiable and behaves like

p(e) = 1 - (AE)2¢2 (13)
fér small t. Assuming now that indeed each measurement,
with,sufficient accuracy, reproduces the original state
‘f, the quantity entering (3)'is

p(6t) < 1 - (AE)?(8¢)” | (14)
so tﬁat, for t = n*8t and AE*8t << 1, (3} leads to ‘

Py (t) = 1 = n(AB)2(58)2 . . as)
Keeping t fixed and increasing the frequency of succes-
sive measurements by a factor m, we héve to replace St
By §t/m and n by m*n in (15), and thus |

Poy/m(t) % 1 - men(8E) 2 (st/m? = 1 - B )2 ? .
For m > ® we therefore obtain Pdt/m(t) + 1, which is
Zeno's paradox.

The duration At of each single measurement is ob-
viously restricted by

At < 8t ,
‘and thus goes to zero if 6t does. Suppose now one could
prove that any measurement of finite duration.At produces
a state whose energy spread AE is larger than a given func-
tion of At which goes to += for At - 0. Then the above
reasoning, which assumed AE to be independent of 6t,
would obviously be wrong, as one could no longer conclude

from (14) that p(ét) > 1 for 6t - 0. For instance, if

there were an uncertainty relation of the usual type for

\
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AE and At, .

 MEeAt 21, | | (16)
the approximation (ﬁ@) for p(6t), and therefore any con-
clusion drawn from it, would. become completely meaning-
less. But even a weaker estimate like

(AE)2°At > const, _ | : - A' (17) .

would spoil Zeno's paradox since then, for 6t » 0, (AE)2
g% , and p(8t), according to (1@), would .
then go to 1 linearly in §t, so that

could grow like

Psp(t) = Pg (ne8t) » (1 - arst)™ = (1 - EH7 5 o70F
would be an exponential, entirely independent of 6t, for
t
§t
Although the authors of Ref. 7 are aware of the fact

sufficiently large n =

that an uncertainty relation of the form and thé physical
meaning of (16) does'not follow from gquantum theory, they
~maintain that at least for 1oca1izatioﬁ measurements of
the typé (11) described above, an estimate for AE Qith
the required pfoperties éan indeed be derived. Aftér a
somewhat lengthy--and at least paftly guite heuristic--
calculation, they actually arrive at an inequality 6f the
form (17) (cf. Eg. (5.18) of their paper), and conclude
from this that there is no Zeno's paradox for decaying
‘states. We want to show in the following section, how-
éver, that this criticism is unjustifiéd, since there are
no principal restrictions whatsoever for the time dura-
tion At of localization measurements of the‘type described

" by Eq. (11).



12°

- 3. Localization Measurements in Arbitrarily Short Times

' In order to prove our last statement, it is suffi-
cient to construct éxplicitly a qguantum mechanical'mbdel
for the localization experiment described by Egs. (11)
andx(12), and to show that the duration A£ of this model
experiment can be made arbitrarily small.
| Since only the coordinate §'is involved in the meas-
urement, we shall suppress all 6thef coordinates and take
" the wavefunclions y,y'... to be functions of x only. (To
make this mathematically rigorous, we have to factorize
the state space of the deéaying system in the form .

#=1%(x) ®Lé(...)
into spaces of square-integrable functions of X and of
the other coordinates (...), respectively. As the second
féctor 12(...) will not be affected by the interaction with
. the meésuring apparatus, it can be omittea during the cal-
cul;tions and reinserted afterwards.) We assume, more-
over, that all values of At considered here are already
very small as compared to the internal time scale of the
decaying system, so that any changé of the wavefunctién
due to the Hamiltonian H of ‘the isolated system can be
@eglected during time intervals of length At.. We are
thus deaiing, as usual, with (practically) instantaneous
measurements.

We take as a quantum mechanical model for the meas-
uring apparatus a very simple quantum system with two-
dimensional state'space H2 and describe its states by .

column vectors as usual. Without interactions, moreover,
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all apparatus states shall be stationary, so that the free
Hémiltonian of the apparatus may be chosen as zero. ' The
. : \
state space for system plus apparatus is
H=12(x) ®H; .
As isiwell-known, vectors in H may be represented by column
vectors of the form
9, (%) , 2
g = ' g,/9, € L7(x) .
2 1772 b
g, (x)
In this representation, operators on ﬁ become 2 X 2 opera-

tor matrices

A A
A = < 11 12> ' A;x: operators on L2(§) ,
| By1 B2 .
and9 . A
(g,g") = (97,9702 + (95,9502
(Ay797) () + (A;,9,) (x)
Ag = ’

~ ~

(Ay197) (x) + (B,,9,) (x)

etc. The interpretation of this formalism is also well-

known and quite obvious; e.g., the state

g(x)\ 1\ -
g = ~ g(x) ® : (18).
g o X 0 |

means that the system has the wavefunction g(x), and the

A 1
apparatus 1is in the "up" state (0) .

The interaction Hamiltonian HI on H in chosen to be

0 -iAs(x)
Hp = T (19)
~ iAs (x) 0 '

where X/is a pousiltive coupling constant and s(x) a smooth

real "sensitivity function," acting multiplicatively on

DN
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L% (x), with

0 for |x| < R
s(x) = s , 0 < s(x) <1 for all x.
- 1 for |x| > R + ¢ ~ ~
” (20)
Clearly Eq. (19) defines a Hermitean operator on H.
Moreover, one can easily calculate (e.g., by a power
series expansion) the unitary operators
: 0 —kts(x)> " [cos(Ats(x)) -sin(Ats(x))
JIHTE L . ~T) L ~ ~
e " = @Xp = .
th(g) 0 sin(Ats(§)) cos(kts(§))
(21)

Now choose as initial apparatus state ét the time ti’
at which the measurement begins, the "up" state, and de-
noté the wavefunction of the system at that time by g(§),
so that the initial combined state of system plus appara-
tus isvgiven by (18). Assume, moregver, thaf the interac-
tion'(lB) 1s "switched on" in the time interval between
t, and t, + At, with At and X related by

AsAt = 5 - (22)
Since the free time evolution of the wavefunction g(x)
~in this short time interval was assumed to be negligible,

and there is no free time evolution of the apparatus

state, the state of system plus apparatus at time ti + At

\

~iH *At <A(§)g(§)>

- follows from (18), (21) and (22) to be

e g9
~ B (x)g(x)

1 0
A(§)9(5)C><0) +_B(§)g(§)C)(l) ' (23)
with
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A(x) = cos(z s(x)) ,  B(x) =sin(} s(x) . (24)
The apparatus, by construction (cf. Egs. (19) and (20)),
was "sensitive" (i.e., H; # 0) in the region |x| > R only.
A transition of the apparatus from the original "up" sfafe
to the "down" state‘(g) thus means that it has'responded
to some part of g(x) in that region, i.e., it has regis-
tered the presence of "decay products." The parf of g(x)
in the region |§| < R, on the éther hand, does not influ-
ence the apparatus, and thus Ieaves it in the initial
"up" state. Therefore .the apparatué state "up" is corre-
lated, in the final state (23), with that part of the
original wavefunction g(§) which represents (ﬁp to some
small error, mainly due to the possible presence of some
deéay products even inside the region |x| < R) the still
uﬁdecayed systém. The apparatus remains in‘thg "up"

state, i.e., the system is found undecayed, with proba-

bility
2 .
w = J}A(§)g(§)| dx = (g,AZg)Lz , (25)
as easily seen from (23). As the system is already de-

cayed, and will thus not be investigated further, if the

final apparatus state is "down," the.selection of those
cases in which the apparatus state is "up" finally leads

. from (23) to the state

1
g' = NA(x)g(x) @(0)

~

of system plus apparatus, and therefore to the new wave-
i

function

g'(}f) = NA(x)g(x) : ' | 4 (26)

of the system, which has to be normalized again. The
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normalization constant N, obviously, has to satisfy

1= 19'1% = 81%[laego | %ax = v,
so- that INI—2 = w, in accordance with (12). The above
physical interpretation also implieé that w is the tran-
sition probability for the change 6f wavefunction g(§) >
g' (x) during the measurement.

From Egs. (20) and (24) we find that A(§) as defined
here has the properties required in Section 2; vice vérsa,
given any A(x) with those properLies, vur model with

os(x) = % arc cos A(§)
will just lead to this particular function A(g). Thus
Eqé. (25) and (26) correspond exactly to Egs. (12) and
' (11) of Section 2, as they'should. |

The most importént point is, however, that Eq. (22)
does not imply any restrictions for At. A smaller At justA
requires a correspondingly larger coupling constant A--
which is indeed what one would intuitively expéct. It is
probably true, of course, that there are no arbitrarily
strong interactions in nature. But this has nothing to
do.with the basic principles of quantum theory, and in
particular there is no internal inconéistency of our model
fér arbitrary values of A. And the proper working of our
model for arbitrarily small At was the only thing we
wanted to prove.lo

One could still object that the "apparatus" studied
here is much too simple as a model for real measuring
‘iﬂstruﬁents. in particular, a characteristic feature of

real instruments is the irreversible "amplification"
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of the initial microscopic state changes produced by the
observed system, which finally results in macroscopically
different "pointer readings." However, this may be taken
into account by considering our model épparatﬁs as de-
écribing some microécopic "trigger" part of’the apparatus
only, which is embedded in the real macroscopic apparatus
in such a way that the microscopically different states
"up" and "down" initiate irreversible prbcesseé leading
to macroscopically different fi;al states.' (A discussion
of models for measuring instruments imitating such kind
of irreversible behavior will be presented elsewhere.ll
In these models, moreover, the "triggering" is not--as in
the present model--achieved by an explicitly time-dependent
(&rtificially "switched") interaction, but rather by suit-
bable scattering processes involving the decay products
and the "trigger" part of the apparatus.) Although the
time of interaction between the decaying system and this
enlarged apparatus is still At as given by Eq. k22),'the
total duration of the measurement coﬁld then be defined
so as to include also the duration At' of the subsequent
irreversible processes. Since, howeyer, there is no limit
in principle for the rapidity of irrevérsibleAprocesses
eitﬁer, At + At' can still be made arbitrarily small.

Summarizing the present discussion, we are inc¢lined
to answer the question: "Is Zeno's paradox real?" in a
somewhat cautious waylzz "In principle, yes-=-but...!"
Every reader is invited to replace the dots by arguments

of his own, concerning the practical difficulty or
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impossibility of an experimental verification. What we

insist on, however, is the first part of the answer.
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IC/79/43, Trieste, 1979. \
In the general framework'described in Ref. 1, this
measurement is a "selective operation” corresponding
to the "effect" F = A2. |
Scalar products of vectors in L2(§) are indicated by -
a subscript L2.
Contrary to the érguments preseﬁted in Ref. 7 (cf.
Eq. (5.14)), there is also no relation whatsoever
between At and the width € of the "smoothing" region
of A(g).

.

K. Kraus,_University of Texas Preprint, in prepara-

tion.

Compare Radio Erewan.
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