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ABSTRACT--Streamflow discharge o f  nu t r i en t  elements (N, P, K, Ca, Mg, Na and S) 

has been studied on Walker Branch Watershed f o r  up t o  s i x  years, Annual d is -  

charges o f  N, P and S are less than atmospheric inputs whereas Ca, Mg, K and 
Na dtseharges exceed atmospheric inputs, Seasonal nu t r i en t  discharges are depen- 

dent on water y ie ld .  Concentration behavior of nut r ients  during storms has been 

used t o  i d e n t i f y  processes w i th in  the watershed in f luencing nu t r i en t  release 

from the catchment. During storms, three patterns o f  concentration behavior 

are observed: dPlut ion o f  concentration during stormfl ow (Ca and Mg) ; concen- 

t r a t i o n  increases dur ing storms (N and S] ;  and l i t t l e  change i n  concentration 

Cdissslved K, P, Na) except f o r  some concentration increase during autumn storms. 

These d i f f e ren t  patterns are caused by processes such as bedrock weathering, 

canopy and l i t t e r  leaching, and expansion o f  the stream channel i n t o  var iable 

source areas. Stormf 1 ow discharge i s  especial l y  important i n the transport  o f  

ni t rogen and other elements p r imar i l y  incorporated i n  organic matter. 
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The Hubbard Brook. study of the e f fec ts  of fores t  denudation (Bormann 

and Li'kens 1967; Likens e t  a1 , 1970) o n  nutr ient  cycl ing f i r s t  a1 erted many 

ecosystem sci 'entists t o  the u t i l i t y  of using experimenta1.watersheds for  

nutr ient  dis t r ibut ion and transport  s tudies .  Since tha t  time a number of 
watershed f a c i l i t i e s  have been used t o  quantify nutrient cycles in a variety 

of undisturbed ecosystems (Fredrikson 1972; Henderson and Harris 1975; 

Johnson and Swank 1973). I'n addition, some experimental catchments have 

been ,mani'pulated to  investigate the e f fec ts  of d i f fe rent  harvesting tech- 

ni'ques, f e r t i l i z a t i o n  and vegetation conversion .on water qual i ty  (Aubertin 

and Patrtc 1974; Auberti'n e t  a l .  1973; Johnson and Swank 1973). On Walker 

Branch Watershed the objectives of our nutri'ent cycling research have been to :  

1: Increase the understandjng of the basic factors  controll ing 

nutr ient  cycling processes within a landscape. 

2. Quanttfy nutr ient  cycles f o r  our watershed ecosystem in order 

t o  establish baseline data with which t o  compare patterns of 

nutrTent cycling among di'fferent ecosystem types under differ ing 

cli'mattc, vegetatfon and so i l  regimes. 

3 ,  Compare nutr ient  cycling in d i f fe rent  fores t  types within a given 

1 andscape and establ tsh the re1 a t ive  importance of the various 

cycling processes within these types. 

The t ransfers  (cycling) of nutr ients  between components' a r e  mediated 

by two c a r r i e r  systems - water and biomass. A third ca r r i e r  system, namely 

atmospheric t ransport ,  influences the.import of . . nutrients t o  a landscape. 

By conducting nutrient cycling studies on experimental watersheds, the export 

of nutr ients  from the landscape in '  streamflow can be measured in conjunction 

with deposition from the atmosphere. These data enable the analysis of 

nutr ient  cycling processes within a watershed in relat ion to  the integrated 

landscape behavior. And, in a larger  scope, data on nutr ient  export in 

streamf low a1 low 
' 

the interfacing of t e r r e s t r i a l ,  and aquatic ecosystems. 

In thi's paper we present the behavior of Walker Branch Watershed with regard 



t o  net accumulation o r  lo s s  of nftrogen, phosphorus, calcium, magnesium, 
potassi'um, sodium and sulfur ,  and discuss the physical, chemical and biolo- 
gi'cal.: processes whi'ch control the concentrat-ions of these nutrients in,  
stream water and, therefore,  t h e i r  discharge from the watershed. 

EXPERIMENTAL METHODS 

Nutrient balances f o r  Walker Branch.~atershed a r e  calculated from e s t i -  
mates of atmospheri'c depositton and discharge i n  streamflow. Samples of 
preci'pifation [wetfall) and dry part iculate  fa1 liout (dryfal l  ) were collected 
weekly a t  each o f  f ive  s i t e s .  on the watershed using modified Wong samplers. 
A detai.1 ed description of sampl e col 1 ection and processing techniques i s  
given by Swank and Henderson (1 976) .  Samples of streamfl ow are  . . composi ted 
proporti'onal t o  discharge and collected weekly fo r  each subcatchment urider 

basefl ow conditions. Duri:ng storm events when flow r a t e  increases , separate 

samples a re  .col l  ected a t  15 or  30 minute i'nterval s .  Th.ese samples are  
analyzed individually or  combined over short  time in terva ls  i n  order t o  
assess concentration changes associated w i t h  rapidly increasing and decreasing 

flow ra t e s ,  
Calcium, Mg, K and Na concentrations a re  measured by standard atomic 

absorption spectrophotometry techniques with Lanthanum added to  Ca determina- 
t ions to  eliminate interferences.  Phosphate was determined by the molybdate 
blue method; ammonium by indophenol blue; n i t r a t e  by reduction to  n i t r i t e  
and reaction with sulfamilamide; and su l f a t e  by methyl -thymol blue (Technicon 
Industrial Systems 1971 ; McSwain and Watrous 1974). These analyses (PO:, 

NO;, N H ~ ,  SO:) a re  automated spectrophotometric methods (Technicon Auto- 
analyzer). Total nitrogen ( N H ~  and organic forms) was determined by Kjeldahl . 

digestion and d i s t i l l a t i o n  and analysis of the d i s t i l l a t e  f o r  ammonium as  
above . 



RESULTS AND DISCUSSION 

N u t r i e n t  Input-Output  Balances 

a 

Elements can be c lassed on t h e  b a s i s  o f  t h e i r  behavior  w i t h  respec t  t o  

n e t  r e t e n t i o n  by t h e  landscape. For Wal ke r  .Branch, ' three c lasses o f  behavior  

occur:  1  ) n e t  l o s s  ( i  .e., i n p u t s  < ou tpu ts )  - Ca and Mg; 2) n e t  accumulat ion 

( i .e . ,  i n p u t s  > ou tpu ts )  - N, P, and S; and 3) l i t t l e  n e t  change ( i . e . ,  

i n p u t s  2 outputs )  - K and Na. The annual balances which show these r e l a t i o n -  

shi.ps a r e  presented i n  Tables 1 -4  f o r  C a a n d  Mg; N; P  and S; and K and Na, 

r e s p e c t i v e l y .  

Calcium and Magnesium 

The n e t  annual l o s s  o f  Ca averaged 133 kg/ha f rom 1970-74 (Table 1) .  

I npu ts  t o  t h e  watershed f rom t h e  atmosphere averaged 14.3 kg/ha annua l l y  and 

v a r i e d  l i t t l e  f rom yea r  t o  year.  About t w o - t h i r d s  o f  t he  d e p o s i t i o n  occurred 

as w e t f a l l  , b u t  1  i t t l e  c o r r e l a t i o n  e x i s t s  between the  t o t a l  amount o f  weekly 

p r e c i p i t a t i o n  and Ca concen t ra t i on  (Swank and Henderson 1976). Conversely, 

Ca o u t f l o w  f rom t h e  watershed was c l o s e l y  associated w i t h  hyd ro log i c  y i e l d .  

Annual losses  ranged f rom 120 kg/ha i n  1970-71 t o  183.6 kg/ha i n  1972-73. 

Annual Mg outputs  exceeded i n p u t s  by 75.0 kg/ha du r ing  t h e  1970-74 p e r i o d  

(Table 1) .  To ta l  Mg outputs  were about 50% o f  those f o r  Ca and showed t h e  

same yea r  t o  yea r  v a r i a t i o n  w i t h  lower d ischarges i n  1970-71 and 1971-72, and 

h ighes t  losses  i n  1972-73. Magnesium i n p u t s  f rom t h e  atmosphere averaged 

2.1 kg/ha/year w i t h  very  1  i t t l e  annual v a r i a t i o n .  I n p u t  occurred about e q u a l l y  

as w e t f a l l  and d r y f a l l .  

The l a r g e  losses  o f  Ca and Mg i n  stream water  r e l a t i v e  t o  atmospheric 

i n p u t s  a re  due t o  weathering o f  t h e  d o l o m i t i c  bedrock. The r a t i o  of Ca:Mg i n  

streamflow i s  about 2:1, t h e  same r a t i o  as occurs i n  t h e  do lomi te  (Auerbach 

1971). The amount o f  Ca and Mg discharge du r ing  a  g iven year  i s  a  Tunct ion  

o f  t h e  amount o f  streamflow ( i . e . ,  the  amount o f  water con tac t i ng  the  bed- 

rock)  and t h e  d i s t r i b u t i o n  o f  streamflow ( p r e c i p i t a t i o n )  w i t h i n  any year .  

For  s i m i l a r  amounts o f  annual streamflow, years  w i t h  a  g rea te r  p r o p o r t i o n  o f  

summer d ischarge w i l l  have g rea te r  amounts o f  Ca and M g - l o s s  due t o  h igher  

streamflow concent ra t ions  o f  these elements d u r i n g  t h i s  season. 
. . 



Nitrogen . . .  . , . Phosphorus 'arid . . 'Sir1 . . fu r  . . . 

Nitrogen, P, and S. a r e  accumulating i.n Wal key Branch Watershed, Of 
t h e  8.7 kg/ha annual N tnput i n  p r ec ip i t a t i on ,  only  1 ,8  kg/ha i s  discharged 

i n  streamflow resu l t ing  i n  an annual net  i~nput t o  t he  watershed of 6,9 kg/ha 

(Table 2).  Inputs were measured i,n t he  ni.trate, organic and ammonium forms 
and these  account f o r  45, 32 and 23% of the  to ta l  input ,  respect ively .  The 

proportions of the  d i f f e r en t  forms of i'nput remained e s s e n t i a l l y  the  same 
even though there  was near ly  a 50% d i f fe rence  i'n the  t o t a l  i n p u t  between the  

tvi~ years.  WhTle n i t r a t e  and ammonium a r e  important forms of nitrogen input ,  

they account f o r  only about 20% of t h e  N loss, i n  streamflowj the  bulk of the  
discharge occurs 'n the  ~ r g a n i c  f o m .  

Phosphorus inputs t o  Walker Branch Watershed averaged 0.54 kg/ha over 
the  1970-74 period and about 90% occurred a s  d ryfa l l  (Table 3 ) .  Over 95% of 

these  inputs  were re ta ined w i t h i n  the  watershed. In con t r a s t  t o  P ,  over 80% 

of t h e  annual 18.1 kg/ha SO4-S input occurs a s  wetfal l  (Table 3 ) .  While S 

i s  accumulating w i t h i n  the  watershed, a g rea te r  propor t ion,of  the  annual S 
i n p u t  (65%) i s  being discharged i n  streamflow. The amount of annual S loss  
i n  streamflow i s  d i r e c t l y  re la ted  t o  the  amount of annual streamfl ow (Henderson 

e t  a l .  1977). 
Nitrogen accumulation i s  occurring w i t h i n  the  vegetation on the  watershed 

(Henderson and Harris  1975). Incorporation of phosphorus and su l fu r  i n  the  
annual wood growth (ne t  production) can a l so  account f o r  t he  ne t  annual accumu- 

l a t i o n s  of these  elements on the  watershed. However, t h e  pathways of nu t r ien t  
movement through t he  soil-microorganism-plant system a r e  complex. Transient 
accumulation and subsequent re lease  from each' of these  ecosystem components 

. . 
occurs and i s  important i n  overal l .  element re tent ion by the  watershed. 

Potassium a'nd Sodium 
Potassium and Na discharge from the  watershed were g rea te r  than inputs 

from the  atmosphere f o r  the  period from 1970-74 (Table 4) ; however, the  ne t  
l o s s  was' much l e s s  than' f o r  Ca and Mg. Annual K and Na discharge were g rea tes t  

during years  with l a rge r  amounts of streamflow. Dryfall accounted f o r  nearly 

70% .of t he  t o t a l  K input and both d ryfa l l  and wetfal l  accounted f o r  nearly 75% 



of the annual Na input. While dryfall  inputs of  Na varieb 1 i t t l e  from year 
t o  year,, wetfall inputs were greatest  during years w i t h  higher precipitation. 

"Using Ca discharge t o  approixmate bedrock weathering r a t e s  and'concen- 
t ra t ions '  of K and Na i n  the dolomite (Auerbach 1971). the calculated annual 
discharge of K and Na due t o  bedrock weathering amounts to  1.4 and 0.2 kg/ha, 
respectively. These amounts correspond to  20 and 5% of the total  annual loss 
of K arid Na. S0d ium. i~  not found i n  appreciable quant i t ies  i n  watershed 
vegetation'and s o i l s  and mobility within the watershed i s  great ,  resul t ing in 
outputs which closely correspond to  inputs. Potassium, on the other hand, i s  
found in large amounts in the soi l  (32,000 kg/ha in the sur face  60 cm) and 
the weathering of secondary so i l  minerals contribute to  streamflow losses ,  
thereby resul t ing i n  a s l i g h t  net annual loss  of t h i s  nutr ient .  

S t r e a m f l o w ~ ~ t r i e n t  Concentration Patterns 
' 

Changes i n  nutr ient  concentrations i n  streamflow during storms reveal 

processes controllfng discharge from a watershed. These processes may be 

physically and chemically based such as  due to  geology, s o i l s  and meteorology, 
or they may be biological such as  those related to  vegetation and land use. 
Concentration changes during periods of changing streamflow discharge f a l l  
into three classes:  1 )  di lut ion - lower concentrations during high discharge; 
2 )  l i t t l e  o r  only seasonal changes in concentration; and 3) concentration - 
higher concentrations during high discharge. For Walker Branch, Ca and Mg 

concentrations a re  di luted,  N and S concentrations a re  concentrated, K con- 

centrations a re  seasonally concentrated, while Na and P show l i t t l e  change 
i n  concentration during storms. These patterns will be i l l u s t r a t ed  i n  

Figs, 1-3 for  Ca, K ,  and Na, respectively, These streamflow concentration 
data were collected during two storms! one i s  typical of summer precipita- 

t ion (August 9, 3.3 cm of rain in 1.5 hours) and the other i s  representative 
of winter precipitation (November 7, 2.5 cm of ra in  in 4 hours), 

Calcium concentrations a re  predominantly influenced by the residence time 

of water with the dolomite bedrock underlying the catchment (Fig,  1 ). During 

periods of increasing flow, Ca concentration decreases and when flow decreases 

Ca concentration increases, During high flow regimes baseflow, which has a 



1 .  long residence ti'me w i t h  the bedrock, compri.ses a smaller proportion of the 

streamflow and i s  diluted by water arr iving a t  the channel by other routes 
such as  d i rec t  channel i n p u t .  The amount of concentration decrease depends 
on the amount of stormflow re l a t ive  to  baseflow. T h i s  re lat ionship holds 
during a l l  seasons, although during winter storms which produce exceptionally 
high streamflow, Ca concentration reaches a minimum value and does not 
decrease fur ther  even though streamflow continues t o  increase, This minimum 
concentration i s  1040% of normal baseflow concentration and i s  s imilar  to  

values in so i l  water a t  a depth of 75 cm in  the so i l  p rof i le .  T h u s ,  during 

these re la t ive ly  short  periods, soi l  solutlon chemistry i s  more important than 
bedrock dissolution in controll ing streamflow Ca concentrations. 

Potassium concentration patterns in streamflow a r e  influenced by season 

of the year (Fig. 2 ) .  During l a t e  winter, spring and summer (e.g. ,  August 9 

storm), K concentrations remain nearly constant during periods of changing 
streamflow. In contrast ,  during ear ly winter and especial ly  autumn (e.g. ,  
November 7 storm), K concentration increases markedly during the i n i t i a l  
period of storm and then returns to  the basefl ow concentration re1 at ively 
quickly. Streamflow K concentration i s  primarily controlled by leaching through 
the so i l  p rof i le  for  most of the year. However, i n  autumn and ear ly winter, 
vegetation i s  responsible f o r  the higher concentrations associated with i n i t i a l  
streamflow increases. Potassi'um i s  leached from senescent leaves d i rec t ly  over 
the stream o r  from freshly fa l len  l i t t e r  i n  the streambed giving use t o  higher 
streamflow concentrations. 

Nitrogen concentrations in streamflow from Walker Branch Watershed are  

closely associated w i t h  the hydrologic response of the catchment (Fig. 3 ) .  
Concentration changes during storms are  due to  transport  of par t iculate  organic 

and i'norganic materi'al . The pattern observed fo r  individual storms most com- 

monly consis ts  o f , an  i n i t i a l  decrease in concentration followed by an increase 
and then another decrease t o  levels  below those pr ior  t o  storm in i t i a t ion .  

The i nf t i a l  concentration decrease i s  caused by d'i 1 ution from di rec t  'channel 

i n p u t .  The subsequent concentration increase i s  due 'to i ncreased transport  



of organic and inorganic pa r t i cu l a t e s  dislodged by high flow r a t e s  (N03-N 

and N H ~ - N  concentrat ions a r e  l e s s  than 5 ppb). Lower concentra t ions  a t  ' t h e  

end of the  storm a r e  the  r e s u l t  of reduced amounts of pa r t i cu l a t e s  ava i lab le  
f o r  ?ransport because of the  ea r l  i e r  fliishing o f  mater ia ls .  The highest ' 

concentration recorded f o r  the  'two storms i n  F i g .  3.was approximately 0.7 ppm N ;  

however, peak concentrat ions of 2.0 ppm N have been measured f o r  l a rge r  storms. 
O u r  work' f u r t he r  ind ica tes  t h a t  8 0 4 0 %  of t h e  annual pa r t i cu l a t e  nitrogen 1 oss 
occurs during a 5-10 hour.. period d u r i n g  each of t he  th ree  of four  l a rge s t  
storms of t he  year.  Dur ing  ttiese periods 'streams expand i n to  hydrologic 
source areas  and t ranspor t  material from in te rmi t ten t  drainages. Thus, 
hydrologic source areas  a r e  a l s o  important sources of elements which a r e  p r i -  
marily t ranspor ted '  from watersheds i n  pa r t i cu l a t e  form. 

, . 
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Tab1 e 1 . Annual cal  c i  urn .and magnesi urn balances 
on Wal ker Branch Watershed. 

b Inputs -Net Retention j 
outputc TO t a  1 .or ~ o s s d  Water yeara Dryfall  Wetfall i 

CALCIUM . '  

- - - - - - - - -  -, - - . . I.,g/ha:, - - - - - - - - - - - "  
. I 

; . .  ! :  
1'47.5 ., . -133.2' I 'Four-Year Average . . . 5.3 9.1, , . . . 1 4 ; 3  

1 .  
' ! . . .  

. . . . a  i .......... -, .- I.,g/ha ................. : . . . . . . . .  . , 
-d # 

. . . . 
68.7 '  -66.2 i 

1970-71 , .I .4 1.1 , : 2.5' . 

1971-72 1 . 1' 1 .O  2.1 ' 66.1 . -64.0 
......... .1972-73' . . . . . . . .  1.1 . . . . . .  1.0 ....... : 2.1 . . . .  94.4 . . . . . . . . . . . .  ..-92.3 I 

1973-74 .0.8 . 0.9 7 . 79.3 -77.6 
. . . . .  

' Four-Year Average 1 . I  1 . 0  , .  2.1 77.1 -75 .O . ~ 

. . 

. a~ water year  extends from September 1 t o  ~ u g u s t  31 of t h e  fol lowing year.  . .  

b ~ n p u t s  a r e :  Wetfall .  = rain-scavenged; d r y f a l l  = dry p a r t i c u l a t e  sedimentation; 
t o t a l  = w e t f a l l .  p lus  d r y f a l l  . 

I ' ~ o s t  from t h e  watershed dissolved i n  streamflow. 

d ~ o t a l  inpu t  minus output  ("+" = r e t en t i on ;  "-' = l o s s ) .  



, . 

Tab1 e 2. Annual nitrogen balance on blil ker   ranch watershed, 
. . 

. . . . 

j 

; Water yea? 
1nputsb . ~ Ou t p u  t s c  Net Retention 

NO3-N 4, . NO3+ . . N H 4 4  Total N ~ '  or Lo s se  I 

: a~ water year extends from September 1 t d  A u g u s t  31 'of the following year. 
I 

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  .- * 

b ~ a r r i e d  in to  the watershed i n  qrec ip i ta t ion  ( w e t f a l l ) .  . . . . . .  ... 
' 1  

. - , . . . . , j  
- 

. . . . -. I ' L O S ~ .  f roq . the  watershed in streamfl ow. ... i 
, . . . ' ,. 

I 
-- . . . . 

. . . . 
I .  . 

: 
I 

-. d ~ o t a l  nitrogen i s  the sum of NO,-N and Kjel dah1'-N (NH4-N and organic  N )  . ;' ! 

i 
- .  

. . 
.- 

i i . e ~ o t a l  N i 'nputminus to ta l  N o u t p u t  ("+" = retention'; "-It  = 
, 1 .  IOSS). . . 

: . . 
.- . ! 

i 
- . -  . 
C. . , ! - - . . 

: ' . I  
- .  . 

j 
- . . - - . . .' i . . . - 
-. - . . 
-. 

i 
i - - -. - -. . . . :  

I 
. I 

. . ! . . . . . I  . - -. . I - : .  . - . I .  .- 
. . , . 

'I. - I I 

I 
. . - - - i . !  

! 
. . 

i : 

I 
- - . - . . .  , ,  ............................................................. - i. 

.- 

I . '  



I 
Table 3. Annual balances f o r  phosphorus and s u l f u r  

on Walker Branch Watershed.. 
. . 

. . 
Water ~ e a r a  

1nputsb Net Retention i 
Dryfall  Wetfall . ~otal o u t p u t C  o r  ~ o s s ~  ! 

I PHOSPHORUS : I 
I 

1 9.7 3-7 4 .4.0 ' 16.5 . 20.5 16.6 .+3.9 1 
. . . . . . . .  . . .  . . .  . . . .  . . . . .  .1974-75. . . . . . . .  ,2:8 14.. 3 -.. 17; 1 .10;7. 2 +6.; 4 . . 

' 1975-76 ' .2 .9  13.8 . .16.7 7.1 t 9 .6  

. . 
. . 

-Three-year Average . ' 3.2 . . - 14;9 : -- 18.1 '. . 11 . 5  - - -  . - t 6 . 6  --:- -: 
. . 

. . .  

l water yea r  extends from ~ e p t e m b e r  1 t o  August 3 1  of t h e  fol  lowing year .  
. . 

: b~nputs  a r e :  Wetfall = rain-scavenged; d ry fa l l  = dry p a r t i c u l a t e  sedimenta- 
t i o n ;  t o t a l  = wetfa l l  p lus  d r y f a l l .  

. . ' ~ o s t  from t h e  viatel-shed dissolved i n  streamflow. I : . .  

d ~ o t a l  i.nput minus output. ("+" = r e t e n t i o n ;  "-I' = l o s s ) .  



.. ......- ........ - . -- ...... ... .............. - .. .... -. 
. . 

Table 4. Annual balances f o r  potassium and sodium 
I 

on Walker Branch Watershed. 
I 
I 

Water yeara 
1nputsb Net Retention ; 

Dryfall  Wetfall Total o u t p u t C  o r  ~ o s s d  

POTASS I UM I - - . - - - - - - - - - - - k g / h a - - - - - - - - - - - - - i  
i 

i ! 
Four-year Average 2.2 1 . O  3.1 . '.6.8 -3.7 I 

SOD I UM' 
. . i ' 

' ! - - - . - - - - - - - . - - - k g / h a - - - - - - - - - - - - .  i 

. . I 
1970-71 0.9 2.0 . '  2.9 . . 4.1 -1.2 
1971-72 1 .2  . . 2.2 . 3.4 3.3 +O. 1 . . . .  . . . .  . . . . . .  ..'.4:;.l , '  5.*'1." . . '5.5. . . .  . . . : '...1972-73 " . . ' . . .  : 

: ...11Q. . . ' 4 . 4  
. .  . . .  . . . . . . .  ;.1973-74 . 3 . 2 .  - :. 4.3 4 9 -0 . . . . .  . . .  . . .  , . 

Four-year Average 1.1 2.'9 ' . '  . 3.9 '4.4. -0.5 
. . 

a~ water yea r  extends from September 1 t o  August 31 of t he  following year .  
' 

b ~ n p u t s  a r e :  Wetfall = rain-scavenged; d r y f a l l  = dry p a r t i c u l a t e  sedimen- 
t a t i o n ;  t o t a l  = wetfa l l  plus d r y f a l l .  

I " 

' ~ o s t  from t h e  watershed dissolved i n  streamflow. 



'Fig. 1 .  Relationships between cal cium'concen- 
t r a t i o n  in streamflow and discharge r a t e  
f o r  two storms on Walker Branch Water- 
shed. 'Sol id  l i n e s  a r e  stream discharge 
r a t e s  while point,s connected by dashed 
l i n e s  a r e  calcium concentrations and the  
dashed. 1 ines to  time 0 a r e  .the pre-storm 
concentrations.  

Relationships between potassium concen- 
t r a t i o n  i n  streamflow and discharge r a t e  
f o r  two storms on Walker Branch Water- 
shed. Sol id l i nes  a re  stream discharge 
. ra tes .whi le  points '  connected.by,dashed . . . . .  
1 i  nes a r e  potassi uin concentrations and 
.the. dashed l i n e s  . to.  time 0 are.  the pre- 
s.torm concentrati,ons .. . . 

.Fig. 3.  Re1 at ionshi  ps between nitrogen concentra- 
t i o n  i n  streamflow and discharge r a t e  f o r  
two storms oh Wal ker Branch Watershed. 
Solid l i n e s  a re  stream discharge r a t e s  
while points connected by dashed l i n e s  
a r e  .nitrogen concentrations an'd the . . . .  . . . .  . . . . das'hed 1 i nes' t o  ti'me 0 a r e  the pre'lstorm 
concentrations.  
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