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STATUS OF THE GA/MCA 12 TESLA COIL DEVELOPMENT PROGRAM* 

J.S. Alcorn, J.R. Purcell, W.Y. Chen, andY-H. Hsu 
General Atomic Company 

P.O. Box 81608 
San Diego, California 92138 

Abstract 

The current status of the Team One effort of the DOE/ 
OFE/D&T 12 Tesla Coil Development Program is presented. Sub­
atmospheric, helium bath cooled, NbTiTa alloy is employed for the 
test coil, and ETF TF-coil concept. General Atomic is the Team 
One leader, with Magnetic Corporation of America as industrial 
subcontractor. 

The Program ' 

The objective of the Team One effort is to demonstrate the 
feasibility of, and establish an engineering data base for utilizing bath 
cooled NbTi alloy to generate a peak toroidal field of 12 tesla in a 
tokamak reactor. 

This four year effort is being implemented in four closely 
related phases. The present schedule for this program is shown in 
Table I. 

I. Experimental development of a NbTi alloy, compositionally 
and process optimized for 12 tesla operation at bath tem­
peratures below 4 K. 

II. Conceptual design of an ETF reactor compatible toroidal 
field coil system, employing the Nbl\ alloy selected by 
Phase I, and an appropriate bath cooling regime . 

III. Design, construction and testing of a solenoid test coil 
utilizing the selected reactor prototypical conductor and 
bath conditions. This coil will be tested at the LLNL high 
field test facility. 

IV. Tests performed at the GA high field test facility to supple­
ment ~nd ~id interprP.tMinn nf rP.sults frnm thr. Phase TIT 
coil tests at LLNL.. 

TABLE I 
TEAM ONE SCHEDULE 

PARTICI-
TASK PANT FY-79 FY-80 FY-81 FY-82 

PROJECT MANAGEMENT GA 

PHASE I: NbTi ALLOY UOFW ~ 
COMPONENT AND + 
PROCESS MCA 
OPTIMIZATION 

PHASE II: ETF TF.COIL GA ... -· CONCEPTUAL DESIGN + 
MCA 

PHASE Ill: TEST c·OIL 
•CONDUCTOR DESIGN MCA/GA -•COIL DESIGN GA ~ 
•CONDUCTOR FAB. MCA 
•COIL FAB., ASS'Y GA -•TEST AT LLNL GA/MCA 

LLNL HFTF _IT...._.. •ANAL YSIS,REPORT GA/MCA 

AV~ILAB~E T 

*Work supported by Department of Energy, Contract 
DE-AT03-76ET5101 I. 

Phase I: NbTi Alioy Development 

The NbTiTa alloy employed in this program was selected 
during Phase I, completed during FY 79. Dr. David Larbalestier, 
et al., of the Materials Science Center, University of Wisconsin, 
working under subcontract to GA, performed upper critical field 
(Bc2) tests upon a large number of candidate NbTi binary, ternary 
and quaternary alloys with the goal of selecting one or more possess­
ing the best high field performance at temperatures below 4 K. 
Eventually a ternary alloy of NbTiTa, 32/43/25 by weight percent, 
was found to exhibit the most promising Bc2 performance; spe­
cifically, 13.85 tesla at 3 K. This indicated that such material 
would offer acceptable design current densities at 12 tesla and 
practical bath temperatures (2.3-3 K). This study is reported upon 
in Refs. I and 2. 

In order to verify and optimize the selected material's Jc 
performance, and ensure its manufacturing practicality, MCA per­
formed a series of process parameter tests upon a series of composite 
filamentary wire samples. Jc was determined over a range of mag­
netic fields and temperatures, as a function of heat. treatment and 
cold work. No unusual manufacturing difficulties were encountered, 
and as anticipated, cold area reduction of J05 or more is desirable 
for Jc optimization. This work is reported. upon in Ref. 3. 

The MCA performance data upon which the Phase II and III 
designs are based is shown in Fig. I. This data is based upon an area 
reduction of 1.6 X I o5: I from an initial 4 inch diameter billet. 

12 T 

TEMPERATUR( IKI 

MCA DATA 

Wire diameter = 0.025 em 
Critical cuuent measured 

at liJV/cm 

Fig. I. Short sample performance of 32 Nb/43 Ti/25 Ta 

Phase II: ETF TF..Coil Cnnr.11pt 

Fulfillment of Phase II is provided by the General Atomic 
report GA-Al5974: 12 Tesla ETF Toroidal Field Coil, Helium 
Bath Cooled NbTi Alloy Concept.4 This study provides conti­
nuity of the entire Team One effort, ensuring that the prototypical_ 
conductor as developed is reactor compatible, and establishing 
the viability or an actual reactor TF-coil concept employing such· 
conductor. 

Overall Design Parameters. Although this design concept has been 
under development for over a year, it was adjusted in mid-1980 to 
reflect the ETF Design Center Interim "Design No. 1" parameters 
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as regards number (10) and size of TF-coils.S Also, the peak field 
was reduced to 11-1/2 tesla, since it now appears that ETF will not 
require more than this. 

Figure 2 is an elevation view of ETF Design 1 showing one 
TF-coil. The number (10) and overall dimensions of the Team One 
coil shown match those of ETF. However, its 11-1/2 tesla peak field 
(at 2.87 m R) corresponds to a major axis field (Bt) of 6.1 tesla. 

CENTERPDST 
SUPPORT 
CYLINDER 

WITH 
EMBEDDED 
EF-AND DH· 
SOLENOID 

COILS 

!! 

CURRENT LEADS, 
~LIUM PIPING 

COMMON VACUUM 
TANK 

HELIUM 
VESSEL 

! . 
Fig. 2. One Team One TF-coil installed within ETF 

Interim Design I 

The coil shown is 110 em thick in the centerpost region, 
corresponding to its overall coil/helium vessel current density of 
1000 A/cm2. This necessitates embedding the solenoidal OH- and 
EF-coils within the centerpost support cylinder, as shown. This 
concept was employed for the superconducting OH-coils of the 
General Atomic TNS Reactor Study, as described in Ref. 6. 

Conductor. The 10 kA conductor is a three-level, unsoldered, un­
insulated "Rutherford" cable. The conductor consists of ten 1000 
ampere cables, each of which is a six-around-one bundle of similarly 
configured subcables. Four conductor grades are employed, the 
high field grade being shown in Fig. 3. 

Conductor Support. The conductor is housed within a multi-
component stainless steel strip support frame. Collectively, these 
support elements carry almost all of the hoop, radial bearing (center­
post) and circumferential bearing (outer region) loads generated 
within the coil. Allowable combined stress is 80 Kpsi (316 LN, or 
equiv.alent). 

Coil/Cryostat Design. Figure 4 shows (;russ-se(;tious of one coil/ 
helium vessel in both the centerpost and outer region. Each coil 
is independently immersed in liquid helium within its own stain­
less steel helium vessel. However, all. I 0 coil/helium vessels (plus 
the centerj>ost support cylinder, and superconducting OH- and 
EF-coils) share a common vacuum volume. 

The coils are spiral wound, the 22 full height pancakes 
having 58 turns each. The pancakes are wound directly onto the 
weldment consisting of the minimum perimeter wall and the central 
radial spine of the helium vessel. One-half of a coil is wound and its 
side auu uute1· peiimetet wall dement~ in~talled. · The cnil/hclium 
vessel is then ° inverted, and the proocess is repeated for the other 
half. 

t 
.95 

t 

14.25~ 

0.251 r---:-3.751 10025 

Gtl 
+ 
J 

0.28 

oot25 

1. 34 

-·_j 018 

G-10 INSULATION O:;;;J 
0 

• 

• = NbTiTa COMPOSITE STRA NO: 
0.0900 DIAMETER 

U o-
29 

db 

COPPER STRAND: 
0.0900 DIAMETER 

~~:~~~LP~COT~t3 DIAMETER, 1000 AMP CABLE ~ 

ALL DIMENSIONS IN em 

Fig. 3. 10 kA cabled conductor (high field region shown) 

115 

\ 
\ 

294-R 

ALL DIMENSIONS IN em 

Fig. 4. Coil cross-sections 

Figure S is a detail ~ection of the coil/ helium vessel, at the 
inner comer of the outer coil region. 

JILL DIMoNiiDNi IN em 

Fig. S. Coil detail (highfield conductor region) 

L 
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The coil/helium vessel component fractions in tin: centerpost 
region are as indicated: 

Area Fraction 
(cm2) Percent 

Conductor, Net 3,442 20.8 
Support strip 5,447 33.0 
Insulation 698 4.2 
Helium vessel 2,635 16.0 
Helium 4,297 26.0 

16,519 100 

Coil Cooling Method. Bath cooling has been selected in lieu of 
forced flow, based upon considerations of design simplicity and 
operational reliability. 

A bath saturation temperature of 3 K was selected, which 
corresponds to 4/3 x the current sharing temperature of NbTiTa 
superconductor at its design current density of 30 kA/cm2 and 
11-1/2 tesla. The corresponding· operating bath temperature is 
182 torr (0.24 atm, or 3.5 psia). During normal operation, the bath 
is subcooled to a nominal temperature of 2.5 K. This is achieved 
through a heat exchanger located in the outer leg of each TF-coil. The 
coil cooling method is shown in the fielium phase diagram, Fig. 6. 
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Fig. 6. Coil cooling method 

The relatively modest neutron heat load of 5 kW to the 
centerpost region can easily be accommodated; without bubble 
evolution, by natural convection within the coil. . 

In the eyent of a plasma disruption. the total field chanee of 
0.5 tesla will generate about 7.0 MJ of eddy current heating in the 
ten TF-coil helium vessels (only a small amount of heat is generated 
in the cabled conductor). This .:uiiounl of heat can be absorbed by 
the 10 m3 helium volume of each coil without raising its tempera­
ture above the 3 K saturation point. Thus the coil will not quench, 
and the .. bath operating temperature of 2.5 K can be restored in 
four 'hourS by the refrigeration capacity required to absorb the 
neutron heating. 

Alternative Superfluid Helium Operation. A bath cooling alternative 
worthy ofSerious consideration is omp1oyment of supcrtluid helium . 
Preliminary investigation of an ETF-Jike TF-coil, bath cooled with 
saturated He II at 1.8 K is presented in Ref. 7. 
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Fig. 7. Out-of-plane load 

Fig. 8. 
lntercoil struts 

Out-Of-Plane Loads. The out-of-plane (overturning) loads as a func­
tion of perimeter are shown for one coil half in Fig. 7. In the ETF 
Interim Design this load is borne entirely by the upper and lower 
intercoil web structure, and by bending in the outer coil legs. How­
ever, it appears necessary to connect the upper and lower web sup-. 
ported regions with diagonal intercoil struts (or shear panels) in 
order to resist the torsional moment between them. Such a strut is 
shown.diagrammatically in Fig. 8. 

Quench Protection. A magnet quench analysis for the case of a low 
liquid level and a normal region starting in the gas space has been 
performed using the GA developed code QUENCH. This computer 
program accurately accounts. for all the important processes in the 
cryostat during a magnet quench; liquid level, cryostat pressure, coil 
temperature, normal region dissipation, energy depo~ited into the 
helium bath, current decay, etc. The results (Fig. 9) show that the 
magnet will not suffer damage, provided intercoil dump resistors are 
used. The resistive drop of each turn of the quenching coil is almost 
canceled by its inductive voltage rise (Fig. 10). Thus, the net voltage 
to ground is controlled by the 0.25 n dump resistors. 
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Fig. 9. Coil quench data 
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Phase Ill: 12 Tesla Test Coil 

The 12 tesla coil to be tested during FY 82 at the LLNL 
High Field Test Facility has been designed. The NbTiTa super­
conductor ordered from Wah-Chang in February 1980 has been 
received by MCA. Completion of the cabled conductor is now 
anticipated by February 1981. 

Conductor. The 10 kA conductor for the test coil is a three level, 
unsoldered uninsulated "Rutherford" cable, similar to the high field 
conductor for the 12 tesla ETF-TF-coil concept described above. 

Test Coil. A cross section of the test coil is shown in Fig. II. The ; 
coil is wound onto the "bobbin" weldment of the helium vessel as 1 

two double pancakes having 21 turns per layer. After closure, the 
helium vessel is installed within a vacuum tank. Location and sup­
port of the helium vessel is provided by a pattern of insulators, as 
indicated. Thus the coil· can be operated at temperatures down to 
1.8 K without excessive heat leak from the surrounding 4.2 K helium 
bath of the LLNL background field coils ... 

.J 
j f 

19.0 R (REF) ---+ 
10.8---..., 

Fig. II. Test coil: cross section 

I. 

For the test coil, stainless steel hoop load support is pro­
vided by banding around the outer diameter of each coil layer, 
rather than by distributed support as specified for the ETF TF-coil 
·concept. However, the coolant passage geometry of an actual 
TF-~.:oil application is silnulated by the G-10 intertum strip, and 
perforated interlayer insulation. 

In addition to the current leads, the cryostat neck region 
includes a J-T valve· fill line, a heat exchanger, and a pumping line. 

Coil Operation. · The basic mode of operation for the test coil will 
be at a temperature of 2.5 K, subcooled from bath saturation con­
ditions of 3 K and 1/4 atmosphere .. Subcooling will be provided by 
the heat exchanger located within . the coil helium vessel neck. 

The coil and cryogenic system are designed to also peirnit 
operation in the saturated He II regime. This is achieved by pumping 
the coil down to 12.5 torr and replenishing liquid as required through 
the heat exchanger/I-T fill line. 

4 

Phase IV: Tests Performed at the GA HFTF 

A test facility has been established at GA having the capa­
bility of generating I 0 tesla within the 20 em bore of its nested 
solenoid pair. Both background field coils employ NbTi; the 40 em 
bore 8 tesla coil, built by MCA, is intrinsically stable, and without 
internal cooling; the insert coil was "dry" wound by GA using 
"barber pole" wrapped cable, supported by stainless steel strip 
wound on its O.D. A vacuum insulated tube can be inserted within 
the 20 em bore for testing samples at subatmospheric pressure, and 
temperatures down to 1.8 K. 

With this apparatus, heat pulse/recovery data is being ob­
tained on various cable samples which will augment, and greatly 
assist interpretation of the FY 82 LLNL HFTF results. Also, a 
series of saturated superfluid helium tests are being performed to 
better understand the parameters of this bath cooling option. 

Recently, a series of heat pulse/recovery tests have been 
performed on cabled conductor samples installed within the "cold­
finger" insert of this apparatus. Data was obtained for sample 
environments of 8-10 tesla, and temperatures between 1.8 K and 
3 K. Results of these tests are reported in Refs. 8 and 9. 
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