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METHANE OR METHANOL VIA CATALYTIC WOOD GASIFICATIQN 

SUMMARY 

Methane and methanol syn thes is  gas can be produced by  steam g a s i f i c a t i o n  

o f  biomass i n  t h e  presence o f  app rop r i a t e  c a t a l y s t s .  A 5 cm d iameter  r e a c t o r  

has been used t o  determine t he  des i r ed  c a t a l y s t s  and ope ra t i ng  temperature.  A 

process development u n i t  (PDU) has demonstrated steam g a s i f i c a t i o n  o f  biomass 

w i t h  c a t a l y s t s  a t  r a t e s  up t o  35 kg per hour. 

3 Methane y i e l d s  of 0.28 nm per  kg o f  d r y  wood were produced i n  t h e  smal l  

l a b o r a t o r y  r eac to r .  F u r t h e r  methanat ion of t h e  p roduc t  gas m i x t u r e  can i nc rease  
3 methane y i e l d s  t o  0.33 nm /kg. The c a t a l y s t  system i s  n i c k e l  and s i l i c a -  

alumina. The p r e f e r r e d  r e a c t o r  ope ra t i ng  temperature i s  500 t o  550'~. Tests  

have been a t  atmospher ic pressure.  The PDU performance has conf i rmed r e s u l t s  

obta ined i n  t he  1 aboratory .  

Methanol synthes is  gas can be produced i n  a s i n g l e  s tage r e a c t o r  a t  750' 

t o  8 5 0 ' ~  by steam g a s i f i c a t i o n  o f  hood w i t h  s i  l i ca -a l um i  na and n i c k e l  cata-  

l y s t s  present .  From t h i s  gas, up t o  0.6 kg of methanol can be produced pe r  kg  

o f  wood. G a s i f i c a t i o n  o f  the  wood t o  produce syn thes is  gas has been demon- 

s t r a t e d  i n  t h e  l a b o r a t o r y  sca le  r eac to r ,  b u t  remains t o  be success fu l l y  done 

u s i n g  t he  PDU. 

C a t a l y s t  d e a c t i v a t i o n  r a t e s  and regene ra t i on  schemes must be determined 

i n  o rder  t o  determine t h e  economic f e a s i b i l i t y  o f  wood t o  methane o r  methanol 

processes. 

Some advantages o f  c a t a l y t i c  steam g a s i f i c a t i o n  o f  biomass over steam- 

oxygen gas i  f i c a t i  on are: 

no oxygen i s  r e q u i r e d  f o r  methane o r  methanol syn thes is  gas, t he re fo re ,  

no oxygen p l a n t  i s  needed 

l i t t l e  o r  no t a r  i s  produced r e s l ~ l t i n g  i n  s imp le r  gas c l ean ing  equipment 

no s h i f t  r e a c t o r  i s  r e q u i r e d  f o r  methanol syn thes is  

methanat i  on requirements are 1 ow r e s u l t i n g  i n h igh  convers ion e f f i c i e n c y  

y i e l d s  and e f f i c i e n c i e s  are g rea te r  than  ob ta ined  by conven t iona l  

g a s i f i c a t i o n .  



These advantages s i g n i f i c a n t l y  reduce t h e  c a p i t a l  expendi tures f o r  a  commercial 

s ca le  p l a n t .  

INTRODUCTION 

The t r a d i t i o n a l  method f o r  g a s i f i c a t i o n  o f  biomass t o  produce methane o r  

methanol uses pure  oxygen o r  steam-oxygen m ix tu res  t o  produce a syn thes is  gas. 

The syn thes is  gas i s  subsequent ly c leaned and processed f o r  methane o r  methanol 

generat ion.  By-products o f  t h e  g a s i f i c a t i o n  a re  s i g n i f i c a n t  q u a n t i t i e s  t a r s  

and water s o l u b l e  o rgan ic  ma te r i a l s ,  p a r t i c u l a r l y  w i t h  counter f low,  f i x e d  bed 

o p e r a t i  on. 

By g a s f i c a t i o n  o f -  biomass u s i n g  o n l y  steam and app rop r i a t e  c a t a l y s t s  i n  

t h e  g a s i f i e r ,  t h e  p roduc t  gas w i l l  r e q u i r e  l e s s  c leanup and p rocess ing  equip- 

ment t o  prepare t h e  gas f o r  t he  methanator o r  methanol conver te r .  By-products 

o f  t h i s  g a s i f i c a t i o n  scheme are  m a i n l y  char. P roduc t ion  o f  t a r  and water -  

s o l u b l e  o rgan ics  i s  minimized. 

Ex tens ive  g a s i f i c a t i o n  t e s t s  i n  a  5 cm d i  ameter. r e a c t o r  have determined 

c ' a t a l ys t  systems and des i r ed  ope ra t i ng  temperatures f o r  methane p r o d u c t i o n  and 

methanol syn thes is  gas p roduc t ion .  

A process development u n i t  (PDU) has t e s t e d  these c a t a l y s t s  w i t h  wood 

ch ips  ( 1 cm nominal s i z e )  a t  r a t e s  up t o  35 kg/hr  of d r y  wood. Resu l t s  from 

these t e s t s  and f u t u r e  ope ra t i on  w i l l  be used t o  es t imate  t h e  economics o f  

c a t a l y t i c  s teluu gas i f'i c a t i  on o f  wood t o  produce methane and methanol . 

EXPERIMENTAL EQUIPMENT 

Labo ra to r y  s c a l e  experiments have employed t he  q u a r t z  r e a c t o r  dep ic ted  i n  

F i gu re  1. Th i s  r e a c t o r  con t i nuous l y  feeds wood a t  t h e  r a t e  o f  0.3 grams per  

minute. A f i x e d  c a t a l y s t  bed i s  loca ted  below t he  g a s i f i c a t i o n  zone. Product  

gas volume i s  measured i n  a  wet t e s t  meter.  

The PDU r e a c t o r  shown i n  F i g u r e  2 does no t  have separate  g a s i f i c a t i o n  and 

c a t a l y s t  zones as does t h e  l a b  s c a l e  r eac to r .  I ns tead  t h e  c a t a l y s t  and wood 

char are con t i nuous l y  mixed toge ther .  Wood i s  i n j e c t e d  a t  t h e  bottom o f  t h e  
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bed. O r i g i n a l l y ,  the  wood and c a t a l y s t  were mixed w i t h  an a g i t a t o r  extending 

i n t o  the 'bed.  The a g i t a t o r  was be l i eved  t o  be respons ib l e  f o r  c a t a l y s t  a t t r i -  

t i o n  and losses. The a g i t a t o r  was a l so  considered t o  be i m p r a c t i c a l  on a 

l a r g e r  scale.  For these reasons i t  was removed and t he  r e a c t o r  now operates 

i n  a f l u i d i z e d  bed mode a l l o w i n g  i n t i m a t e  m ix i ng  o f  char, gas, and c a t a l y s t ,  

increased heat t r a n s f e r ,  and l e s s  c a t a l y s t  a t t r i t i o n .  I ! 

Heat f o r  the  endothermic r e a c t i o n  i n  the  r e a c t o r  i s  supp l ied  by e l e c t r i c a l  i 

heaters.  To date, many d i f f i c u l t i e s  have been encountered w i t h  hea te r  opera- / 
t i o n .  O f  course on a l a r g e  scale, heat w i l l  be prov ided by o the r  means, e i t h e r  i 
gas f i r e d  h i gh  temperature heat exchangers o r  c i r c u l a t i n g  s o l i d s . ,  I 

i 
The pe r i phe ra l  equipment t o  the g a s i f i e r  i s  shown i n  F igure  3. O r i g i n a l l y  

t h e  gas was cooled and cleaned by a v e n t u r i  scrubber.  Tar and char  o f t e n  c o l -  

l e c t e d  i n  the water c i r c u l a t i o n  l i n e s  making steady opera t ion  ve ry  d i f f i c u l t .  

A heat exchanger f o l l o w e d  by an e l e c t r o s t a t i c  p r e c i p i t a t o r  i s  now used i n  p l ace  

o f  the v e n t u r i  scrubber. 

METHANE PRODUCTION 
I 

Ca ta l ys t  systems developed i n  the  1 abora to ry  f o r  methane p roduc t ion  1 
i 

i n c l ude  combinat ions o f  a l k a l i  carbonates, n i c k e l  o r  n i c k e l  ox ide  on alumina i 
! 

supports, and s i l i ca -a lum ina .  The most p romis ing  c a t a l y s t  system a t  t h i s  t ime  

i s  n i c k e l  and s i l i c a - a l u m i n a  i n  a 3 : l  weight  r a t i o .  The n i c k e l  serves as a 

methanation and hydrogenat ion c a t a l y s t .  The s i l i c a - a l u m i n a  c a t a l y s t  f u n c t i o n  

i s  t o  crack condensib le  organic  compounds. 
i 

Table 1 shows the  r e s u l t s  o f  a methane t e s t  i n  t he  l a b o r a t o r y  w i t h  t he  

n i c k e l - s i l i c a - a l u m i n a  c a t a l y s t  system. The s tandard heat o f  r e a c t i o n  i s  de te r -  
i 
j 

mined f rom heat o f  combustion da ta  a t  25'~. Assuming a steam temperature o f  

650°c, a wood temperature o f  1 0 0 ~ ~ ~  and a wood mo is tu re  con ten t  a t  20% ( d r y  ! 
i 

bas i s ) ,  t h e  t h e o r e t i c a l  heat  requirement of t h e  r e a c t o r  i s  about 998,000 J/kg I 

d r y  wood. A d d i t i o n a l  energy w i l l  be requ i red  t o  coun te rac t  heat losses. 

Studies on ca ta lys t  d e a c t i v a t i o n  and regenera t ion  a re  i n  progress. No 

r e s u l t s  are a v a i l a b l e  a t  t h i s  t ime. 
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T A B L E  1. Laboratory Results on Methanation of Lodgepole Wood 
Catalyst Nickel + Silica-Alumina ( 3 : l )  

Catalyst Nickel+Silica-Alumina ( 3 : l )  

Temperature 

Steam:wood w t .  r a t i o  
Carbon conversion to gas (%) 7 0 

Carbon conversion t o  1 iquid (%) 0 
J gas/J wood x 100 

3 nm CH4/kg dry wood(a) 

Composition 

CH4 20.7 

H2 32.3 

C02 33.6 

CO 13.4 
Standard heat react i  on (J/kg wood) 

( a )  Includes methanation of H2 + CO 

Results from a PDU t e s t  fo r  methane production using the  same ca ta lys t  

system are given in Table 2. A promising aspect of the laboratory scale  stud- 
i e s  has been the  absence of t'ar as a product. The PDU has produced t a r s  in 
small amounts. The reason t a r s  are not completely destroyed in the PDU reactor 
may be explained differences in  the  laboratory and PDU operations. The gas 
residence time in the laboratory scale  reactor bed i s  about 5 seconds whereas 
the residenee time in  the  PDU bed i s  about 0.8 seconds. The gradual loss of 
cata lys t  from the reactor and cata lys t  poisoning appear to  be additional fac- 
to r s  responsible for  incomplete cracking of t a r  products in the  PDU. 

A conceptual flow diagram of wood to  methane process i s  shown in Figure 4. 

Each of the  areas are discussed br ie f ly .  



/ CATALYST 1 
REGENERAT l ON 

I 

FIGURE 4. Block Flow 'Iliagram f o r  Wood t o  Methane P l a n t  

P I  PELINE 
QUALITY' 
METHANE 

GAS 
TREATMENT 

. 

METHANATOR 

WOO'D 
STORAGE 

A 
1 

I I 
I I 
I I 
I I 

4- 4 ' a 

SHIFT 
REACTOR 

I 

) 
WOOD 

PREPARATION 

STEAM 
GENERATION 

GAS 
REMOVAL 

- GASIFICATION 

------I 
+ TAR, CHAR 1 CON DEN SATES 



TABLE 2. PDU Resu l ts  f o r  a  Methanat ion Run 

C a t a l y s t  N icke l+S i l i ca -A lumina  ( 3 : l )  

~ e m ~ e r a t u r e ' ~  

Steam/wood w t .  r a t i o  

Carbon convers'i on t o  gas (%) 6  6  

Carbon convers ion t o  l i q u i d  (%) 6  

J gas/J wood x  100 
3  nm CH4/kg d r y  wood (a )  

Campasiti o." 

CH4 0.233 

H2 0.255 

C02 0.328 

CO 0.166 

( a )  Inc ludes  methanat ion o f  H2 + CO 

Wood p repara t ion .  Th i s  module cons i s t s  o f  equipment f o r  removal o f  meta l -  

l i c  scrap and sand, s i z e  reduc t ion ,  storage, and dry ing.  The t ype  o f  wood 

which i s  a n t i c i p a t e d  as t h e  feedstock i s  f o r e s t  r es i due  w i t h  65 and 100 kg  

mo is tu re  per 100 kg o f  d r y  wood. 

G a s i f i e r .  The g a s i f i e r  w i l l  be designed baseds on PDU r e s u l t s  and expe- 

r ience .  Wood w i l l  be f e d  i n t o  t h e  r e a c t o r  a t  t h e  bottom o f  t h e  bed. 

Gas Cleaning. The gas c l ean ing  system proposed i n  based on commerci a1 l y  ~..."..."~.,.~...z.~~ ..., .>.".., ..-".. 
a v a i l a b l e  u n i t s  and w i l l  c o n s i s t  o f  cyc lone separator ,  a  heat exchanger, and 

e l e c t r o s t a t i c  p r e c i p i t a t o r  

Steam   en era ti on. Char and t a r  w i l l  p rov ide  t h e  energy f o r  steam 

genera t i  on. 

C a t a l y s t  Reqeneration. Requirement f o r  t h i s  area are be ing developed. 



Water Treatment. Water f rom the  process w i l l  be contaminated w i t h  o rgan ic  

ma te r i a l s .  Treatment o f  g a s i f i c a t i o n  wastewater by aerobic  d i g e s t i o n  has been 

demonstrated . (a )  

Water-Gas S h i f t .  The hydrogen:carbon monoxide r a t i o  f rom t h e  g a s i f i e r  

w i l l  need t o . b e  increased t o  a t  l e a s t  3 : l  t o  s u c c e s s f u l l y  methanate t h e  remain- 

i ng carbon monoxi de. 

Compression. ' ~ e ~ e n d i  ng on t h e  g a s i f i c a t i o n  pressure, compression may be 

r e q u i r e d  f o r  C02 removal and subsequent methanation. 

Ac id  Gas Removal. H2S removal i s  r equ i red  t o  preserve t h e  methanat ion 

c a t a l y s t .  H2S i n  p roduc t  gas from the  PDU s tud ies  has been l e s s  than  10 ppm. 

A z i n c  r e a c t o r  may be a l l  t h a t  i s  requ i red .  C02 must be removed t o  make a 

h i gh  p u r i t y  methane product .  

Methanation. Th i s  u n i t  w i l l  conver t  t he  Hz and CO f rom t h e  s h i f t  reac- 

t o r  t o  CH4 by convent ional  methanation. A f t e r  dehydrat ion, t h e  gas can be 

added t o  an e x i s t i n g  na tu ra l  gas p i p e l i n e .  

METHANOL PRODUCTION 

Methanol i s  produced from a syn thes is  gas o f  hydrogen and carbon monoxide 

i n  a 2:l r a t i o .  By steam g a s i f i c a t i o n  o f  biomass i n  t h e  presence o f  appro- 

p r i a t e  ca ta l ys t s ,  a gas o f  t h i s  r a t i o  can be obta ined i n  one vessel, thus  

e l i m i n a t i n g  t he  need f o r  a s h i f t  r eac to r .  O f  course, some C02 removal may 

be requ i  r ed  be fo re  methanol synthes is .  

Labora to ry  sca le  experiments have determined two p romis ing  c a t a l y s t  sys- 

tems. They bo th  con ta in  n i c k e l  and s i l i ca -a lum ina .  One system has t h e  n i c k e l  

p r e c i p i t a t e d  on s i l i ca -a lumina ;  t h e  second system i s  a m ix tu re  o f  s i l i c a -  

alumina and n i c k e l  on alumina. The s i l i c a - a l u m i n a  f u n c t i o n  i s  t o  crack ' t h e  

hydrocarbons. The n i c k e l  reforms methane and hydrogenates h i ghe r  mol ecu 1 a r  

( a )  Wakamlya, W i l l  and J. V. Maxham LY8U. " I r e a t a b i  l i t y  o f  Biomass Gas i f i ca -  
t i o n  Wastewater." Paper presented a t  t h e  1 0 t h  Biomass Thermochemical Con- 
ve rs i on  Cont rac to rs  Meeti ng, February 12-13, 1980, Berkeley,  Cal i f o r n i  a. 



weight  hydrocarbons. Gas p roduc t i on  . increases w i t h  temperature. The maximum 
I 

temperature t e s t e d  has been 850'~.  A l l  t e s t s  have been a t  atmospher ic 

pressure.  

Table  3 l i s t s  t h e  r e s u l t s  o f  four  l a b o r a t o r y  r e a c t o r  exper iments.  The 

f i r s t  t h r e e  t e s t s  were c a t a l y s t  l i f e  s tud ies .  These t e s t s  were con t inued  u n t i l  

t r aces  o f  t a r  appeared i n  t he  p roduc t  condensate. A t  8 5 0 ' ~  v i r t u a l l y  a l l  t he  

wood i s  conver ted t o  gas, and no c a t a l y s t  d e a c t i v a t i o n  was observed. A l l  t h e  

char was converted t o  gas a t  these cond i t i ons .  

TABLE 3. Labora to ry  Scale  Reactor Resu l t s  f o r  Methanol Synthes is  Gas 

Case Number 1 2 3 4 

C a t a l y s t  

TemperatureoC 
Wood/Catal y s t  Wei ght  
R a t i o  a t  D e a c t i v a t i o n  

Carbon Conversion (%) t o  
Gas 
L i q u i d  
Char 

J  gas/J wood x  100 

Steam: Wood wt  R a t i o  

Composi t i  on 
H2 
CO 

Standard Heat o f  
React i on kg wood 

N i :S iA l  N i :S iA l  N i  on S i A l  
1:l 1:l 

750 850 750 
16.1 100 52.5 

(no d e a c t i v a t i o n )  

7  3 99.6 77 
Trace 0 Trace 

2 7  0.4 2  3 

N i  on S i A l  

850 
Not t e s t e d -  

kg P o t e n t i  a1 
Methanol /kg Wood 



Case 4 was o n l y  an 8  hour t e s t .  C a t a l y s t  d e a c t i v a t i o n  and regene ra t i on  

i s  now be ing  s tud ied.  The p o t e n t i a l  methanol p roduc t i on  f rom t h e  gases i n  

Table 3 i s  as h igh  as 0.86 kg o f  methanol per kg o f  d r y  wood. However, energy 

i s  r e q u i r e d  f o r  g a s i f i c a t i o n .  Some o f  t h e  energy w i l l  come f rom combustion o f  

char. I n  cases where t he  char p roduc t i on  i s  low, t h e  a d d i t i o n a l  energy w i l l  

be supp l i ed  by wood combustion. Therefore t h e  ac tua l  y i e l d  o f  methanol w i  11 

be reduced t o  about 0.6 kg per kg of d r y  wood. 

The c a l c u l a t e d  s tandard heat  of r e a c t i o n  i s  ve r y  endothermic. Us ing da ta  

f rom Case 3 and assuming wood feed a t  20% mo is tu re  and 1 0 0 ~ ~  and steam feed  

a t  850°c, t he  ne t  r e a c t o r  heat requirement i s  approx imate ly  6,706,000 J/kg 

d r y  wood. A d d i t i o n a l  energy i s  r e q u i r e d  t o  compensate f o r  heat  losses.  

E l e c t r i c  heaters  i n  ' t h e  PDU r e a c t o r  have no t  been ab le  t o  m a i n t a i n  reacto ' r  

temperatures above 600'~. I n  order  t o  reach 7 0 0 ' ~  i n  t h e  r eac to r ,  pure 

oxygen was added. The oxygen deac t i va tes  and s i n t e r s  t h e  c a t a l y s t .  The t h e r -  

mal e f f i c i e n c y  and syn thes is  gas y i e l d  w i t h  oxygen are much lower than  ob ta ined  

i n  t h e  l a b o r a t o r y  experiments. Table 4 g i ves  r e s u l t s  .from a  PDU t e s t  us i ng  

oxygen f o r  comparison w i t h  the  l a b o r a t o r y  t e s t s .  M o d i f i c a t i o n s  t o  t h e  PDU w i l l  

a l l ow  ope ra t i on  o f  t h e  reac to r .  a t  h i ghe r  temperatures wi . thout oxygen a d d i t i o n .  

A b l ock  f l o w  diagram i n  F i gu re  5 shows t h e  major process u n i t s  f o r  a  

wood-to-methanol p l a n t  us i ng  steam g a s i f i c a t i o n  o f  biomass w i t h  c a t a l y s t s .  

Most modules are . s im i  1  a r  t o  t he  wood-to-methane f l  owsheet discussed e a r l i e r .  

No tab ly  absent f rom schemes us i ng  steam-oxygen g a s i f i c a t i o n  a re  t h e  s h i f t  

r e a c t o r  and oxygen p l a n t .  These absences s i g n i f i c a n t l y  a f f e c t  t he  c o s t  o f  

produc ing methanol by  t h i s  method. The reduced p roduc t i on  o f  t a r  w i l l  a l s o  

r e q u i r e  less s o p h i s t i c a t e d  t a r  hand 1  i ng equipment and water t rea tment  systems. 



TABLE 4. Results From a Synthesis Gas Test on the PDU 
Usi ng Steam Oxygen Gasification 

Catalyst Nickel+Silica-Alumina 

Temperature 690' 

Steam:wood ratio 1.2 

0xygen:wood ratio 0.1 

Carbon conversion to gas ( X )  7 

Carbon conversion to liquid (%) 3 

J gas/J wood x 100 6 1 

Composition 

Potenti a1 kg methanol/kg wood 
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FIGURE 5. B lock  Flow Diagram f o r  Wood t o  Methanol P l a n t  




