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1.0 SUMMARY -- 

The ob jec t i ve  of the  study was t o  es tab l i sh  whether technical  problems 

would be encountered i n  increas ing the i n l e t  temperature o f  the f l u i d  bed 

heat exchanger u n i t  a t  Alcoa above the 1100°F t a rge t  o f  the cu r ren t  contract .  

Spec i f i ca l l y ,  the temperature range of up to,  and p o t e n t i a l l y  above,.1600°F 

were invest igated to' establ  i sh the benef i ts  o f  h igher temperature, t rade o f f s  

required, and plans t o  achieve t h a t  techno1 ogy goal. 

The bene f i t s  are seen tabu la ted on Table 1 and are very s i g n i f i c a n t ,  

p a r t i c u l a r l y  a t  the temperature range o f  1600 - 1800°F. Rela t ive  t o  1100°F 

the heat recovery i s  increased by 24 - 29% a t  1600 and 1800°F respect ively.  

TABLE 1 -.-. - 
BENEFITS AT 1600°F TO 1800°F RELATIVE TO 1100°F 

Size reduced 29 t o  39% (through-f low about same) 

Weight reduced 28 t o  40% 

Lnstal l a t i o n  and acqu i s i t i on  costs reduced 19 t o  27% 

Heat recovery increased 24 t o  29% 

user R O I  improved by about 33 t o  77% 
Figure o f  m e r i t  (heat recovery and average cos t  and 
s ize )  fac to rs  improved 63 t o  96% 

An i n d i c a t i o n  of the ove.ral1 improvement i s  the re tu rn  on investment 

perceived by a po ten t ia l  user who i s  i n t e res ted  i n  saving f ue l  i n  h i s  opera- 

t i ons .  The improvement would be from about 33% t o  77% f o r  the respect ive 

temperature compared t o  1100°F. Another f i q u r e  o f  m e r i t  would be t o  take the 

heat recovery improvement and the average o f  both cos t  and s ize improvement 

c o l l e c t i v e l y  i n t o  one fac to r .  Th is  f i g u r e  of m e r i t  would' show a 63% and 96% 

improvement f o r  both the respect ive temperatures. 



1.0, Summary (cont . )  

As the  temperature o f  t h e  i n l e t  gas i s  increased above approx.imately 

1200°F, t h e  techno1 ogy problems become -much tougher and t h e  payo f f  i s  very 

h igh .  The performance f i g u r e  o f  m e r i t  nea r l y  doubles from 1100°F t o  1800°F. 

A t  t h e  same temperature range, t h e  f o u l i n g  res i s tance  plunlmets d ramat i ca l l y  

because o f  t h e  s t i c k i n e s s  o f  species o f  p a r t i c l e s  i n  the  gas stream. 

Likewi.se c o r r o s i o n  res i s tance  f a l l s  r a p i d l y  f o r  metals t h a t  a re  o f  p o t e n t i a l  

use i n  t h e  hea t  exchanger. The creep s t reng th  o f  stainless s tee l  drops o f f  

l e s s  d r a m a t i c a l l y  b u t  y e t  a t  a  very rap,id r a t e  such t h a t  above 1600°F i t  i s  

reduced by n e a r l y  an o rde r  o f  magnitude. 

Each o f  t h e  pr imary techn ica l  problems w i l l  now be discussed i n  tu rn .  

F i r s t ,  t h e  problem o f  s t i c k y  p a r t i c u l a t e s  t h a t  would c o l l e c t  on t h e  bottom 

s ide  o f  the  d i s t r i b u t o r  p l a t e  and i n  the  s l o t  areas, and being s t i c k y  would 

n o t  be brushable. 

The approach t o  t h e  p a r t i c u l a t e s  problem wovld be t o  conduct labora-  

t o r y  t e s t s  on the  type.s o f  compounds t h a t  would be r e s i d e n t  i n  t h e  p a r t i c l e s .  

Add i t i ona l  ly ,  p o t e n t i  a1 addi t i ves t o  t h e  f u e l  woul d  be i n v e s t i  gated. Thes.e 

i n c l u d e  magnesia which has the  p o t e n t i a l  o f  s i g n i  f i . c a n t l y  i nc reas ing  the  

s o f t e n i n g  temperature of many of t h e  species of p a r t i c l e s  t h a t  a re  seen i n  
.. . 

t h e  A1 coa a1 umi num furnace exhaust. A1 t e r n a t i v e  me.thods o f  c lean ing the  

p a r t i c u l a t e s  have been considered and i n c l u d e  t h e  use o f  soot  b lowing type 

equipment i n  combinat ion w i t h  t h e  bru,sh o r  i n  p lace o f  t h e  brush opera t ing  on 

t h e  b rush  t rack .  A d d i t i o n a l l y ,  concepts suc'h as c e n t r i f u g a l  f b rce  s t l f f e n e d  

brush ing have been considered good approaches t o  t h e  problem. 

Another problem i s  the  thermal s t resses induced i n  t h e  s l o t s  due t o  

t h e  h i g h  temperature around t h e  s l o t s  compared t o  t h e  r e l a t i v e l y  cool  temp- 
e r a t u r e  i n  t h e  p l a t e  adjacent  t o  the  s l o t s  t h a t  i s  cooled by t h e  f l u i d  bed. 

Revised c o n f i g u r a t i o n s  such as 1  i p  type s l o t  i n  p lace of t h e  br idge s l o t  



1.0, Summary (cont.) 

and methods o f  coo l ing o r  i n s u l a t i n g  the s l o t  i t s e l f  have been considered. 

Cooling methods could be from the f l u i d  bed o r  from e i t h e r  water o r  steam 

passages. 

Another technology problem i s  due t o  . the reduced bed area t h a t  comes 

from i ncreasi ng temperature and therefore  reducing d i l  uent a i r  f low. This 

means t h a t  the heat exchange area must be packed w i t h i n  the smal ler  bed area. 

Cyc l ic  temperature e f f e c t s  are a s i g n i f i c a n t  technology l i m i t a t i o n  and 

d i f f e r e n t i a l  thermal expansion and thermal stresses must be c a r e f u l l y  

considered. A po ten t i a l  approach i s  t o  use new design concepts which w i l l  

provide f o rg i v i ng  j o i n t s  t h a t  have expansion compensation for  expansion 

to lerance and considerat ion of methods t o  reduce the temperature r a t e  o f  

change . 

Corrosion ra tes are an important  f ac to r  w i t h  h igher temperatures. As 

temperatures go above 1200" the cor ros ion r a t e  can increase dramat ica l ly  w i t h  

the presence o f  a l k a l i s ,  vanidates, and other  cor ros ive elements. The 

approaches considered best  are t o  use a1 te rna te  mater ia l  s inc lud ing  ceramics 

and other  coat ings and t o  keep metal temperatures down. 

A l ternate  co i~ fSyurat ions and a l t e rna te  mater ia ls  f o r  the bed support 

s t ruc tu re  w i t h  the use o f  i n s u l a t i o n  t o  keep temperatures down and p o s s i b i l i -  

t i e s  o f  coo l ing  t o  keep metal( temperatures down whi le  keeping creep s t rength 

up have been considered. Support beams can be cooled i n  p a r t  by the f l u i d  

bed i t s e l f  and can be insu la ted  t o  some degree from the h igh temperature 

i n l e t  gases. 

High temperature i s  a problem w i t h  the brush system r e l a t i v e  t o  corro-  

s ion resistance, s t i f f n e s s  and s t rength reduction. Approaches t o  be taken 

shoul d i nclude grav i  t y  s t i  f fened r o t a t i n g  brushes o f f  advanced mater ia l  s and 

brushless designs. 



1.0, Summary (cont . )  

The bearings and t r o l l e y  which support the movable brush system must 

use ceramics, coo l i ng  and/or i n s u l a t i o n  i n  the h igh temperature design. 

The conclusions o f  the study are as fo l lows: 

( 1 )  It' i s  n o t  f eas ib l e  t o  p lan t o  conduct t e s t i n g  a t  Alcoa beyond 

1100°F wi thout  laboratory  R&D work. The r i s k s  associated w i t h  r ap id  fou l  i ng 

by molten and s t i c k y  pa r t i cu l a tes ,  which would render the brush system use- 

less,  combined w i t h  r ap id  cor ros ion ra tes  and subs tan t ia l l y  reduced creep 

s t reng th  are too severe. 

(2.) The bene f i t s  o f  technology advancements w i t h  h igher i n l e t  temp- 

e ra tu re  c a p a b i l i t y  t o  over 1600°F are remarkably high. For example, the user 

r e t u r n  on investment, which i s  the gauge o f  accep tab i l i t y ,  shows an increase 

o f  between 53% and 77% a t  1600 and 1800°F, respect ive ly .  

(3 )  Technology payof fs  o f  t h i s  magnitude are seldom obtainable wi th-  

ou t  h igh  r i s k .  Such i s  the  case here; however, there are wel l  thought out  

techn ica l  approaches f o r  each po ten t i  a1 problem area. 

( 4 )  The recommended R&D approach i s  therefore  t o  complete de ta i l  

analyses of the-  probl  ems f o l l  owed by 1  aboratory bench-scal e  t e s t i  ng t o  

es tab l  i sh technical  understandi ng and reSol u t i  on o f  those problems. The 

f i n a l  step. would be t o  r e t r o f i t  the best  advancements i n t o  the  Alcoa t e s t  

u n i t  and t e s t  operat ion a t  gradua.11~ higher temperatures t o  es tab l i sh  the 

1  im i t a t i ons  and repor.1 performance. 



2.0 INTRODUCTION 

A shal low f l u i d  bed waste heat recovery b o i l e r  i s  being developed under 

the  DOEIAerojet Cooperative Agreement which w i l l  be t e s t e d  on an Alcoa aluminum 

m e l t i n g  furnace. The design incorpora tes  s e l f - c l e a n i n g  t o  a l l o w  opera t i on  i n  

t h e  d i r t y  environment . 

Under t h e  cu r ren t  DOE Cooperative Agreement, Aero j e t  w i  11 : (1)  develop 

an advanced f l u i d  bed heat  exchanger f o r  an aluminum m e l t i n g  furnace t h a t  w i l l  

push t h e  s ta te -o f - the -a r t  from 700°F t o  1100°F; (2)  conduct l a b o r a t o r y  t e s t s  on 

ma te r ia l s ;  (3)  conduct l abo ra to ry  t e s t s  on the  heat exchanger; (4)  i n s t a l l  and 

t e s t  ope ra t i on  i n  a  furnace a t  Alcoa; and (5)  study p o t e n t i a l  f o r  f u r t h e r  i n -  

creasing i n l e t  temperature capabi 1  i ty  t o  1600°F and above ( 2  month study)  and 

recommend R&D. Th is  document sumar i zed  the  r e s u l t s  o f  t he  i'tem (2 )  study. 

I t  has been p r e v i o u s l y  shown i n  the  summary s e c t i o n  t h a t  h igher  tempera- 

t u r e  c a p a b i l i t y  g ives a  smal ler  s i z e  u n i t  w i t h  l i g h t e r  we ight  and s u b s t a n t i a l l y  

lower cos t  w h i l e  the  amount o f  energy recovered increases d ramat i ca l l y .  A  

survey o f  over  15 aluminum i n d u s t r y  companies which have a  s u b s t a n t i a l  number 

of furnaces w i t h  h i g h  temperature exhaust was made t o  e s t a b l i s h  the  requirement 

fo r  heat recovery. 

The r e s t r i c t i o n  on space i n  the  areas t h a t  h i g h  temperature furnaces a re  

located i s  severe. Over 80% f e l t  t h a t  t he  s i z e  and we ight  o f  a  u n i t  would be 

very  impor tant  i n  the  dec is ion  on i t s  u t i l i z a t i o n .  

A l l  o f  t h e  surveyed aluminum companies s a i d  t h a t  t h e  energy conservat ion 

e f f o r t  i s  1  i m i  t e d  by equipment cos t  because o f  s h o r t  c a p i t a l  a v a i l a b i l i t y ' ,  f o u l -  

i n g  r i s k s  and maintenance fac to rs .  P r o d u c t i v i t y  i s  o f t e n  l i m i t e d  by maintenance. 

I n d u s t r j a l  p l a n t s  do n o t  want t o  i n t roduce  dddit'lonal equipment t h a t  requ i res  

subs tan t ia l  maintenance. The f l u i d  bed heat exchanger i s  very  appeal ing from 

t h i s  s tandpoint ,  however, f u r t h e r  improvement on t h e  s i z e  weight  and cos t  a re  

very  much o f  i n t e r e s t  and the  h igher  temperature c a p a b i l i t y  makes t h e  needed 

improvements i n  these areas. 



3.0 DESIGN DESCRIPTION 

I n  order t o  acquaint o r  re-acquaint the reader w i t h  the basic concept 

of the  f l u i d  bed waste heat recovery system, the next  few pages w i l l  address 

a b r i e f  descr ip t ion.  F igure 1 i s  a p i c t o r i a l  o f  the concept. 

The concept inc ludes f l u i d  bed heat t r ans fe r  f o r  the waste heat 

recovery which provides u l t r a  h igh heat t r ans fe r  c o e f f i c i e n t s  and a1 lows a 

substar~t;ial po tan t i a l  f o r  technology advancements u t i l  i z i n g  t h a t  capab i l i t y .  

The type o f  heat  t r ans fe r  o f  i n t e r e s t  i s  gas t o  l i q u i d  o r  gas t o  vapor 

i n  t h a t  the l a r y e s t  amount o f  waste heat i s  i n  the gaseous form and the most 

useful form o f  heat .derived i s  i n  the l i q u i d  o r  vapor form such as steam. 

The concept l i m i t s  the f ou l i ng  t o  a s ing le  f l a t  p l a t e  which can be 

cleaned mechanically i n  a p o s i t i v e  manner. The tubes f o r  heat t rans fe r  are 

imbedded i n  the f l u i d  bed and are gent ly cleaned by the pos i t i ve  scrubbing 

ac t i on  of the bed p a r t i c l e .  Heat t r ans fe r  c a p a b i l i t y  i s  extended by the use 

o f  the f l u i d  bed u l t r a  h igh gas f i l m  c o e f f i c i e n t s  and by the f a c t  t h a t  the 

equipment i s  kept  c lean so t h a t  performance i s  no t  degraded w i t h  time. The 

u n i t  has substant ia l  i nheren t  cor ros ion to lerance due t o  the low temperatures 

o f  most o f  the equipment. 

The concept has a substant ia l  extension of c a p a b i l i t y  from cur ren t  

design i n  the fo l low ing  areas. The u n i t  i s  s e l f  c leaning and does not  

regu i  r e  per iod ic  cleaning. A1 though 1 i m i  t e d  1 n temperature o f  the incoming 

waste gas, the present con t rac t  w i  1 1 increase the te~r~peraturc  capabi 1 i ty from 

700°F t o  llOO°F w i t h  po ten t i a l  t o  a t  l e a s t  1800°F w i t h  add i t iona l  R&D. The 

concept t o  be u t i l i z e d  hds a p a s l t i v c  con t ro l  mcthod f ~ r  e l ~ r t r i a t i o n  

developed by F l u i d f i r e  which u t i l i z e s  a screen accordioned and placed over 

the  bed t o  de f lec t  e l u t r i a t e d  bed p a r t i c l e s  back i n t o  the bed. 



3.0, Design Desc r ip t i on  (cont . )  

The concept inc ludes sel f - c o n t r o l  l e d  d r a f t  which - c o n t r o l s  f l o w  pres-  

sure and s h u t o f f  w i t h i n  t h e  u n i t  so t h a t  i t  does n o t  g i ve  a negat ive  impact 

on the  furnace t h a t  i t  i s  at tached to .  

A general l a y o u t  i n  a conceptual form o f  t h e  f l u i d  bed waste heat  

recovery system i s  shown on F igu re  1. The ho t  gas enters  the  u n i t  a t  t h e  

bottom on t h e  r i g h t  and i s  evenly d i s t r i b u t e d  across the  d i s t r i b u t o r  p l a t e  

due t o  the  i nhe ren t  pressure drop o f  several inches o f  water across t h e  s l o t s  

i n  t h e  p l a t e .  The i n l e t  area i s  i n s u l a t e d  and -the brush and brush t rack  

assembly are used t o  c lean  the  bottom sur face of t h e  d i s t r i b u t o r  p ia te .  The 

brush and t h e  bear ing on which t h e  brush r i d e s  are  maintained i n  a heat  pro-  

t e c t e d  compartment except f o r  t h e  small  percentage o f  t ime  i n  which i t  must 

t rave rse  t h e  d i  s t r i  b u t o r  p l a t e .  

The f l u i d i z e d  bed i s  about 5 inches t h i c k  when expanded and covers the  

f inned heat  t r a n s f e r  tube. J u s t  above t h e  f l u i d  bed the  e l u t r i a t i o n  sup- 

pressor screen prevents most o f  t h e  p a r t i c l e s  from c a r r y i n g  over  i n t o  the  

exhaust. 

The gas exhaust i s  cooled from t h e  i n s t a n t  i t  enters  t h e  f l u i d i z e d  bed 

t o  an e q u i l i b r i u m  temperature which i s  on l y  about 100° above t h e  temperature 

of t h e  steam o r  water i n  t h e  heat  t r a n s f e r  tube; t h i s  i s  t y p i c a l l y  about 

500°F. Thus, the bed, eiibes, e l  u tri a t i  on suppressor, upper casing , and 

exhaust fan  a re  a t  a temperature of approximately 500°F o r  less. The induced 

d r a f t  f an  a t  t h e  top o f .  t h e  u n i t  draws t h e  cool  gas exhaust o u t  and e i t h e r  

d i r e c t s  i t  back i n t o  t h e  stack o r  becomes i t s  own stack. 

The components t h a t  a re  t o  be r e t r o f i t t e d  f o r  t h e  h igher  temperature 

f i e 1  d t e s t s  art! marked w i t h  an a s t e r i s k .  These are  t h e  on ly  components t h a t  

a re  e f f e c t e d  by t h e  h igher  temperature. 
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Figure 1. FBWHRS Concept - General Layout 



3.0, Design Descr ipt ion (cont.) 

The bottom side o f  the d i s t r i b u t o r  p l a t e  and the s ta in less steel  brush 

mechanism w i t h  i t s  t rack and t r o l l e y  arrangement and w i th  i t s  p u l l  chain are 

shown on the photograph below, Figure 2. 

This equipment w i l l  be f u r t he r  developed t o  increase i t s  operating 

temperature capabi 1 i ty, especi a1 l y  the par ts  t h a t  are exposed d i  r e c t l y  t o  the 

ho t  gas. bluch o f  the discussion t h a t  fo l lows w i l l  be per ta in ing  t o  the 

equipment shown i n  t h i s  photograph. 

Figure 2. Brush Cleaning Mechani sn 



4.0 TECHNOLOGY APPROACHES FOR 1100°F CAPABILITY 

Table 2 below i s  a compilation summary o f  the s tate o f  technology and 

areas o f  development needed t o  achieve 1100°F capabi l i ty .  

TABLE 2 

PRELIMINARY YEW0 GRID ANALYSIS 
(AT 1100°F) 

TECHNOLOGY 
ESTABLISHED? REMARKS 

1. I n l e t  Section (Windbox) 

2. Brush System 

A. St ructura l  

B. Brushing A b i l i t y  

3. D is t r i bu to r  P la te  

A. Plate 

B. Support Strength 

C. Corrosion 

4. G r i t  Arrestor 

5, Fan and Gas-e 

Yes Same as Ducting 

Yes (Dry) 

No-+Yes 

1cs 

NwYes 

Yes 

Yes 

Bear i ng Protected 
Plus Creep Strength/ 
Corrosi on/Foul i ng are 
OK a t  l lQO°F 

OK t o  1200°F Metal 
fcsmfr. 
Creep Strength Good 
t o  1100°F 

Dry Par t i c les  + 
FJORDSHELL 700°F 

Check HX Surface Dr iv ing 
Ekd Temp. 

Sm as Arrestor 

The technology i s  established i n  the areas o f  the i n l e t  section, brush- 

i n g  a b i l i t y ,  d i s t r i b u t o r  p la te  support strength, g r i t  arrestor, and fan and 

case. 

The areas o f  development are as follows. The s t ruc tura l  aspects o f  

the  brush system are needed t o  be developed fu r ther  by protect ing the bearing 

t h a t  the brush system r ides  on. 



4.0, Technology Approaches f o r  1100°F Capabi 1  i t y  (cont. ) 

The d i s t r i b u t o r  p l a t e  has not  been operated a t  1100" i n  a  f o u l i n g  

environment, however, t e s t s  have ind ica ted  t h a t  a  metal temperature o f  up 

t o  1200°F i s  sa t i s fac to ry .  Corrosion ra tes  have no t  been measured a t  these 

temperatures. However, the experience o f  the F jo rdshe l l  i n s t a l l a t i o n  a t  700°F 

under cor ros ive condi t ions i s  one i n d i c a t i o n  t h a t  the equipment i s  t o l e r a n t  o f  

corrosion. 

The c ruc ia l  f a c t o r  i s  t h a t  the p a r t i c l e s  are an t i c ipa ted  t o  be d ry  a t  

temperatures o f  up t o  llOO°F and thus the cor ros ion i s  expected t o  be small. 

Corrosion t es t s  a t  ORNL are a  key f a c t o r  i n  p ro j ec t i ng  success. 



5.0 HIGH TEMPERATURE PROBLEMS 

The. various technical problems tha t  are imposed by increasing i n l e t  

temperature above 1 1 0 0 ~ ~  w i l l  be reviewed i n  t h i s  section. 

One o f  the main problems w i th  increasing temperature i s  t ha t  there 

are par t i cu la tes  i n  the aluminum furnace exhaust stream t h a t  become s t icky  

and molten a t  temperatures above 1 1 0 0 ~ ~ .  Brush systems previously used 

for  cleaning the d i s t r i b u t o r  p la te  are not designed t o  remove par t icu lates 

t h a t  are st icky. Rather the design i s  or iented towards brushing dry part icu- 

l a t e s  t h a t  are loosely .  attached t o  the d i s t r i b u t o r  plate. 

The prfmary source o f  these par t icu lates are from ash and chemicals 

i n  the fue l  . Those e l  ements i ncl ude vanadium, sul phur , chl orine, potas- 

sium, and sodium. The par t icu lates 1 i s t e d  be1 ow are known t o  become softened 

and p a r t i a l l y  o r  f u l l y  molten a t  temperatures between 1100~ and 1 6 0 0 ~ ~ .  

A1 though other compounds are potent ia l  problems, these are the primary ones 

t h a t  are i n  enough quant i ty t o  cause a brushing problem. Eutectics o f  these 

elements can a lso be formed which can modify the temperatures a t  which they 

i n i t i a l l y  become st icky.  

POTENTIAL STICKY PARTICULATES 

VANADIUM PENTOZIDE 

ALUMINUM CHLORIDE 

ALUMINUM SULPHATE 

POTASSIUM CHLORIDE 

SODIUM SULPHATE 

POTASSIUM SULPHATE 

SOD I UM CHLORIDE 

POTASS I UM OX I DE 

Another key problem wi th  higher temperatures i s  the thermal stresses 
on the s l o t s  o f  the d i s t r i bu to r  plate .  This problem has been established 

i n  laboratory tests  and i s  due t o  the fact  t ha t  the s l o t  bridge sees the 

i n l e t  gas f low on both sides o f  the metal bridge. 



5.0, High Temperature Problems (cont . ) 

Since the bridge i s  essent ia l l y  uncooled and i s  very nearly a t  the 

f u l l  in1  e t  gas temperature and y e t  the d i s t r i b u t o r  p la te  i s  wel l  cooled 

by the f l u i d  bed, then i t  stands t o  reason tha t  very severe d i f f e r e n t i a l  

thermal expansion w i l l  induce heavy loca l  stresses a t  the edges o f  the s lo t .  

It has been found i n  1 aboratory tes t i ng  tha t  a temperature of 1 2 0 0 ~ ~  

i s  c r i t i c a l  i n  t h i s  respect as 1 ong as the s lo t s  are pointed downward. 

It was also found, as mentioned above, t h a t  the s lo t s  must be pointed downward 

i n  order t o  be brushed. 

Higher i n l e t  temperature reduces the amount o f  a i r  d i l u t i o n  and there- 

fo re  the throughflow and the bed plan area. Since the amount o f  heat transfer 

increases a t  the same time, the amount o f  heat exchange surface per bed 

p l  an area i ncreases s i  gni f i cant1 y . This requi res c l  oser spacing o f  the 

heat t ransfer  surfaces and higher packing density . 

Increased temperatures generally increases corrosion rates. The 

a1 ternat ives are t o  (1) reduce the temperature by cool ing o r  insulat ion; 

(2) use a material more res is tan t  t o  corrosion; o r  (3)  make no change if 
the corrosion rates are acceptable. 

Another key problem w i th  high temperature i s  the creep strength reduc- 

t t o n  f o r  the d i  s t r i  butor p l  ate supports. The d i s t r i b u t o r  p la te  i s  supported 

necessari ly on a long span o f  approximately 12 feet. The p la te  supports 

must be exposed t o  the f u l l  i n l e t  gas temperature w i th  the current design. 
Creep strength i s  reduced substant ia l ly  as temperature increases and, there- 

fore, an increased section must be used. Methods t o  l i m i t  the temperature 

of the metal have been explored and w i l l  be discussed 1 ater.  

The brush bearings and t r o l l  ey arrangement which provide the c l  eanf ng 

system f o r  the d i s t r i bu to r  p la te  are exposed t o  the hot gas temperatures. 

It i s  possf b l e  that  they could be shielded f o r  the per iod o f  t h e i r  i n a c t i v i t y  

which i s  over 99% o f  the time; however, they w i l l  be per iod ica l l y  exposed 

t o  the high temperatures. 
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5.0, High Temperature Probl ems (cont. 

The present design uses molybdenum d isu l f i de  lubr icated bearings 
and the proposed temperatures would be too high f o r  t ha t  design. More advanced 

bearing designs which can to le ra te  the temperature, but are not excessively 

heavy, must be investigated. Bearings used i n  tunnel k i l n s  would be applicable 

except f o r  the.i r excessive weight . Consideration o f  ceramic type bearings 

must. be taken. 

There are, of course, r i s k s  o f  unknown factors which are not now 
predicted. Laboratory t e s t i n g  must be conducted i n  order t o  establ ish these 

fac to rs  and f i n d  acceptable sol ut ions. 



6.0 FOULING CONSIDERATIONS 

6.1 GENERAL 

The next  sect ion w i l l  deal w i t h  the f ou l i ng  aspects o f  concern as 

temperature i s  increased above 1100°F. The amount o f  data ava i lab le  on 

par t i cu la tes  i n  aluminum me1 t i n g  furnaces i s  qu i t e  l im i t ed .  This i s  t r ue  o f  

Alcoa furnaces as wel l  as those o f  other companies i n  the business. One pro- 

blem i s  t h a t  there i s  substant ia l  v a r i a t i o n  from furnace t o  furnace due t o  

wide var ia t ions  i n  scrap loading. scrap content, f l ux ing .  and f ue l  type. 

Alcoa has taken measurements on a la rge  furnace a t  t he  Massena, 

New York p l a n t  and the r e s u l t s  are  cu r ren t l y  being analyzed. A r epo r t  w i l l  

be ava i lab le  i n  the near fu ture ,  

The Alcoa experience t o  date shows t h a t  the exhaust i s  q u i t e  

d i r t y  and t h a t  general ly  the p a r t i c l e s  a re  f a i r l y  dry  when proper add i t i ves  

are used. The f ue l  add i t i ves  which have been t r i e d  i n  the  past render the  

vanadium pentoxide pa r t i cu l a tes  mostly dry. When a Corepak @ heat  exchanger 

was used i n  the exhaust as a convective recuperator i t  was plugged up i n  a 

matter  o f  a few days due t o  the d i r t y  exhaust. 

A survey o f  the sources o f  pa r t i cu l a tes  from the Alcoa furnace 
' 

d iv ides the sources between the f ue l  and the melt. Fuel sources are: ash ' 

comprised o f  minerals which are not  combust,ible, su l furous oxi.des, unburned 

hydrocarbons and char. and mineral add i t ives which have been s l u r r i e d  i n  the 

fue l  . 

p a r t i c u l a t e  sources fr& t h e '  me1 t i t s e l f  a re  p r i m a r i l y  alumina; 

It i s  generated by the  severe turbulence o f  the- combustion products h igh  

ve loc i t y  f low over the top o f  the melt.  Aerosol s i ze  p a r t i c l e s  o f  al'umina 

are generated. There are  d l  so t races o f  ch lor ides ( p r i m a r i l y  aluminum 

ch lor ides)  and magnesia from the magnesium i n  the metal i n  very small 

amounts . 
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6.1, General ( c o n t  . ) 

The o t h e r  main source o f  p a r t i c u l a t e s  i s  from the  i n t e r a c t i o n  of 

t h e  products o f  combustion and t h e  mel t .  Th is  generates aluminum su l fa tes ,  

magnesium s u l f a t e s ,  a l k a l i  oxides, a l k a l i  ch lo r ides .  and a l k a l i  s u l f a t e s  i n  

small  amounts. The t y p i c a l  p a r t i c l e  s i z e  i s  several microns. 

6 . 2  FUEL SOURCES 

Since a  major  p a r t  o f  t h e  p a r t i c u l a t e s  come from l i m i t s  w i t h i n  

t h e  f u e l ,  t he  f u e l  s p e c i f i c a t i o n  t h a t  Alcoa uses was surveyed. Key data on 

t h e  f u e l  s p e c i f i c a t i o n  a r e  shown on Table 3. 

TABLE 3 
ALCOA FUEL SPEC 

PITTSTON PETROLEUM I NC . 
NO. 6  FUEL OIL (2.8% SULFUR) 

Cont ro l  .~ -. Typ ica l  

Min. Max .  

Visc.. SSF @ 12Z°F 131 200 19 6  

Su l fu r .  ASTM - 2.8% 2.70% 

Ash - 0.10% - 
Pour Po in t .  ASTM Deg. F  - 600 450 

Alcoa uses No. 6  f u e l  o i l  f o r  most o f  t he  yea r  w i t h  the  

c a p a b i l i t y  o f  s h i f t i n g  t o  n a t u r a l  gas f o r  b r l 'e f  periods. The o i l  i s  h i g h  

s u l f u r  and h igh  vanadium content  f u e l  t h a t  w i l l  meet the  c o s t  requirements o f  

t h e i r  process. 



6.2, Fuel Sources (cont.) 

The al lowable s u l f u r  i s  2.8% and t y p i c a l l y  i t  i s  near the maximum 

leve l  a t  2.7%. The ash content  i s  t yp i ca l  o f  #6 f ue l  o i l  a t  0.10%. 

It i s  the s u l f u r  ash and vanadium t h a t  are  the  key problem areas 

f o r  f ou l i ng  i n  the heat exchangers f o r  aluminum me1 t i n g  furnaces on No. 6 

o i l .  

6.3 GAS COMPOSITION 

The gas composition i n  the Alcoa melter  exhaust i s  the r e s u l t  o f  

the combustion o f  #6 o i l  w i t h  the add i t i on  o f  d i l  uent a i r  t o  b r i ng  the 

temperature down t o  1100°F as a basel ine value. 

The gas composition f o r  t h a t  temperature i s  shown on Table 4. 

TABLE 4 

ALCOA MELTER EXHAUST 

GAS COMPOSITION (VOL. % AFTER DILmION AND AT 1100°F) 

Traces. o f  : 

c L so3 

AL CL HCL (Sublimes Q 35Z°F) 

The gaseous species t h a t  are of special i n t e r e s t  are t h e  SO2 a t  

1.4% volume and the t races o f  ch lor ine,  SO3. aluminum ch lo r ide ,  and hydro- 

gen chlor ide.  These speci.es are o f  i n t e r e s t  w i t h  respect  t o  po ten t i a l  cor ro-  

s ion a t  h igher temperatures. 



6.3. Gas Composition (cont . )  

As the  temperature i s  increased t h e  di.1 uent  a i r  f l o w  i s  

decreased. The volume percentages o f  t h e  SO2 w i l l  t h e r e f o r e  increase t o  

t h e  p o i n t  where a t  1800°F i t  w i l l  be n e a r l y  double t h a t  a t  11OO.OF. 

6.4 MAJOR CONSTITUENTS 

The major  c o n s t i t u e n t s  o f  t he  p a r t i c u l a t e s  i n  the  exhaust stream 

a r e  i d e n t i f i e d  i n  Table 5. The key c.onst i  tuents  a re  aluminum oxide, aluminum 

s u l f a t e .  and t h e  varSous vanadate forms o f  vanadium pentoxide. 

I ' 

TABLE 5 

ALCOA MELTER PARTICULATES 

MAJOR CONSTITUENTS 

Phase Cond i t ion  a t  
(OF) Gas Temp. (OF) Po ten t i  a1 

Cons t i t uen t  Me1 ti ng Temp. 1100 1600 1800 Problem - 
A1 umi num Oxide 3713 Sol i ri S a l i d  S o l i d  No. w f l l  brush 

A1 umi num Sul f a t e  14 18 S o l i d  Gas Gas Probably, 
Above 1200" 

Vanadium Pentoxi de 120 ?I& Dry S t i c k y  S t i c k y  Probably, 
(Var ious  Vanadates) up S o l i d  S o l i d  S o l i d  Above 1100° 

( 1 ) Me1 t i  ng Poi n t  Examples : Sodi um V'anadyl vanadate 1160°F; Sodi um Meta- 
vanadate 1165OF; Sodium Pyrovanadate 1185'F; 
Sodi um Orthovanada t e  1560°F 

The aluminum ox ide does not  cause a problem w i t h  respect  t o  

becoming s t i c k y  o r  molten i n  t h a t  i t s  m e l t i n g  temperature i s  we l l  above t h e  

temperatures t h a t  w i l l  be experienced i n  the  exhaust. It w i l l  t h e r e f o r e  

brush s a t i s f a c t o r i l y .  



6.4, Major Const i tuents (cont.) 

Aluminum s u l f a t e  w i l l  have a melti.ng temperature and sof tening 

temperature w i t h i n  the  temperature range of i n t e r e s t  and can be a problem a t  

any temperature above 3200°F. Aluminum su l fa te  goes t o  the gaseous form a t  a 

temperature o f  approximately 1400 t o  1600°F. I n  the  prekence o f  other p a r t i -  

culates i t  could  be a problem w i t h  respect t o  s t i ck iness  a t  any temperature 

above 1200°F. 

The vanadates are  p o t e n t i a l l y  a serious problem i n  t h a t  they have 

me1 t i n g  po in t s  rang.ing from 1160" t o  over 1500°F. A t  llOO°F, however, i t  

would be a dry sol  i d  and woul d no t  be a problem i n  t h a t  i t  would be brushed 

read i l y  by the brush system. A t  1600°F and 1800°F, i t  would be i n  the form 

o f  a s t i cky  sol id.  

6.5 MINOR CONSTITUENTS 

The pa r t i cu l a tes  i n  t he  Alcoa melter  exhaust t h a t  are r e l a t i v e l y  

minor const i tuents.  are  li sted i n  Table 6. The me1 t i n g  temperatures and the 

phase condi t ions a t  gas temperatures i n  the range o f  i n t e r e s t  are  given. The 

nature o f  the problem po ten t i a l  i s  a1 so canmented on. 

TABLE 6 

ALCOA MELTER PARTICULATES 

MINOR CONSTITUENTS 

Me1 t i n g  Temp. Phase Cond. a t  Gas Temp. (OF) Potent ia l  
Const i tuent  (OF) - 1100 - 1600 - 1800 Problem 

Sodium Sul f a t e  1623 So l i d  St icky  L i qu id  Probably, 
So l i d  Above 1400" 

Potassium 1429 So l i d  L i qu id  L i qu id  Probably, 
Chl o r i  de Above 1200°F 

Except Only 
Trace Amourit 



6.5. M i  nor Cons t i tuents  (con t  . I  

TABLE 6  (cont.) 

Me1 t i n g  Temp. Phase Cond. a t  Gas Temp. (OF) Potent ia l  
Const i tuent  (OF) 1100 - 1600 - 1800 Problem 

Potas s  i um 
Sul f a t e  

Sod i um 
Carbonate 

Potassium 
Carbonate 

Potassium Oxi de 

Sodium Chlor ide 

Sodium Oxide 

1956 Sol i d  Sol i d  Sol i d ( 2 )  Possibly, 
Above 1700" 

1564 S o l i d  L i qu id  L i qu id  Possibly, 
Above 1400" 

1434 Sol i d  Sol i d (  2 1 Gas( 3 )  Possibly,  
Above 1400" 

6  62 Gas Gas Gas Not L i k e l y  
(Decomp, 

1474 So l i d  L i qu id  L i qu id  Probably, 
Above 1300" 

2  3  27 So l i d  So l id  So l i d  No 

NOTES: (1) Eutec t i c  mixtures of above compounds w i l l  l i k e l y  have reduced 
me1 t i .ng po i  nts.  

( 2 )  Possibly s t i c k y  

( 3)  Decomposes r a the r  than me1 t t r a n s i t i o n .  

The cons t i tuen ts  which are probable po ten t ia l  problems are sodium 

su l fa te ,  potassium ch lo r ide ,  and sodium ch lor ide.  These have sof ten ing 

temperatures t h a t  a re  occurr ing between 1200" and 1600°F. These w i l l  be 

minor cons t i tuen ts  because the sodium and potassium i s  derived from the ash 

i n  the fue.1 and the ch lo r i de  i s  l i m i t e d  t o  ch lo r i ne  i n  the fue l  and t race 

amounts i n  the combustion a i r .  

The possib le problenl pa r t i cu l a tes  a r e  potassium su l fa te ,  sodium 

carbonate. and potassium carbonate. These can be problems a t  temperatures 

above 1400°F. Again, the potassium and sodium are l i m i t e d  by the small 

amounts i n  the fue l  ash. The carbonate and su l fa te  elements are read i l y  

avai 1  able from the products o f  combustion. 



6.5. F l i  nor  Cons ti tuen ts  ( cont  . ) 

The potassium oxide has a very low decomposition temperature and 

i s  n o t  l i k e l y  t o  be a problem. The sodium oxide has a very h i g h  m e l t i n g  

temperature and would n o t  be a problem f o r  t h a t  reason. 

It should be noted t h a t  e u t e c t i c  mix tures  o f  these va r ious  com- 

pounds w i l l  1 i k e l y  have m e l t i n g  p o i n t s  t h a t  a r e  below those o f  t h e  separate 

compounds i ndi v idua l  l y .  

6.6 FUEL ADDITIVES 

A1 coa has used magnesia addi t i v e s  f o r  t he  f u e l  i n  o rde r  t o  con- 

t r o l  t h e  vanadates and i s  w i l l i n g  t o  use those a d d i t i v e s  i n  con junc t ion  w i t h  

the  f l u i d  bed hea t  exchanger. As can be seen from Figu re  3, t h e  a d d i t i o n  o f  

magnesium as an a d d i t i v e  i n  t h e  f u e l  changes t h e  1 iqu idus-so l  idus  i n t e r f a c e .  

temperatures. Flel t i ng temperature i s increased as the  magnesium t o  vanadium 

r a t i o  i s  increased. Below 1200°F i t  i s  dry p a r t i c l e s  under a l l  c o n d i t i o n s  o f  

e u t e c t i c  format ion.  . The magnesium t o  magnesium p l u s  vanadium atomic r a t i o  o f  

0.4 would provide p r o t e c t i o n  a t  up t o  1800°F. 

F igu re  3. Magnesia A d d i t i v e  E f f e c t  on Vanadate M e l t i n g  Temperature 

2 1 



6.0. Fou l ing Considerat ions (cont.) 

6.7 ADDITIONAL DATA 

Various data t h a t  are pe r t i nen t  t o  the i nves t i ga t i on  i s  

summarized on Table 7. 

It i s  c l e a r  t h a t  aluminum furnaces operat ing on #6 o i l  w i l l  fou l  

most types o f  hea t  exchangers f a i r l y  qu ick ly .  It i s a1 so c l e a r  t h a t ,  tempera- 

tu res  above 1200°F a re  the  problem areas. 

Laboratory work t o  es tab l i sh  the temperature "windows" a t  which 

the pa r t i cu l a tes  w i l l  be dry  i s  important  t o  e l im ina t ing  f ou l i ng  problems i n  

exhaust equipment. Key problems w i l l  be i n  t he  a1 k a l i  su l f a tes  and vanadates 

and p a r t i c u l a r  a t t e n t i o n  must be given t o  these compounds i n  t h a t  they not  

on l y  cause foul i ,ng b u t  can cause r a p i d  cor ros ion as wel l .  

TABLE 7 

ALUMINUM FURNACE AND/OR NO. 6 OIL PRODUCTS OF CQMRIISTTQN 

FOULING DATA SUMMARY 

SOURCE 

R&W - Fuel o i l  ash softens. and mel ts  over temp. range dependent 
on composi t i on .  Sel dom has s i  ngle sharp m e l t i  ng .point. 

Progressive fou l  i ng usual l y  on ly  above 1000°F metal temp. 

A1 c oa - Close passage heat exchanger can fou l  i n  days. 

Midland Ross - Heat wheels not  su i tab le  i n  alum. me l te r  dpp l ic .  due t o  
fou l ing.  

K a i  xr - Foul ing i s  chief  l i m i t a t i o n  on alum. heat  recovery. 

Hague I n t l  . - One year l i f e  w i t h  good maintenance - several mos t o  fou l  
I I ~  w/n maint. (convect. recup. 

Ba t te l  l e  - Aluminum f l u e  gas data base ( i n c l .  t r ans ien t )  needed f o r  
scve-re fou l4  ng. Coatings can p ro tec t  f o r  corrosion. 

Aero je t  - Temperature w i  ndow 1 ab determination can he1 p. A1 ka l  i 
sulphates can p lug  d i s t r i b u t o r  p la tes.  



6.7. Add i t iona l  Data (cont . )  

Table 7 (cont . )  

AiResearch - Lab t e s t s  220 hrs,  Na2S04. 200 ppm d i ' f f i c u l t  t o  c lean  
adequately. 

Metals Engrg. - 1100°F t o  1200°F i s  lower  l i m i t  o f  most f u e l  ash depos i t /  
c o r r o s i o n  problems. Rapid c o r r o s i o n  poss ib le  above 1100°F. 

C-E - Corepak has had f o u l i n g  problems w i t h  #6 on me l te r .  

F1 u i d f i r e  - Brush works we l l  i f  p a r t i c l e s  d r y  - no s t i c k y  experience 

ORNL - #6 o i l  ash burden and f u e l  i m p u r i t i e s  can cause problems 
a t  h i g h  temp. 

Pech i ney - Alum. me1 t e r  WHB f o u l  up w i t h  f i n s  even o n  N.G. Kept temp. 
< 800°F. 

Other - Eu tec t i c  sodium s u l f a t e s  c a n ' t  be soot blown we1 1  - 
can be brushed - magnesia helps 

" A1 k a l i  sulphates (NA.K) and v.anadates a re  most common 
problem. 

" Low excess a i r  i s  u s u a l l y  b e n e f i c i a l  (negated by 
d i l  u t i o n ) .  

O Fuel a d d i t i v e s .  can he lp  - t e s t s  needed f o r  s p e c i f i c  
app l i ca t i ons .  

Add i t iona l  data obta ined i s  summarized on t h e  n e x t  page. Th is  

data f u r t h e r  substant ia tes  the  conclus ions.  

The e u t e c t i c  sodium s u l f a t e s  have been found t o  ,be d i f f i c u l t  t o  

handle 'by soot b lowing;  however they can be brushed especi a1 l y  i f  magnesia 

addi t f v e s  a r e  used. Our need t o  have. d i l u e n t  . a i r  goes aga ins t  the .usua l  

advice o f  having low excess a i r  f o r  min imiz ing  ' fou l ing ,  .however- t h e r e  i s  no 

way around.using some a i r  d i ' l u t i o n .  

A b ib l i og raphy  i s  inc luded a t  t h e  back o f  t h i s  . r e p o r t  f o r  f u r t h e r  

reference. 



6.0 Foul i ng Considerations (cont. ) 

6.8 OVERVIEW 

An approximation of re la t ive  values summarizing the fouling con- 
d i t ions  w i t h  increasing temperature are  shown on Figure 4. 

INLET GAS TEMPERATURE (OF) 

RELATIVE 

Figure 4. Relative Fouling Resistance vs. Temperature 

- 

a 

The l ine  sloping downward labeled "reduced dilution ef fec t"  shows 
tha t  the re la t ive  fouling resistance will be reduced as temperature is  in- 
creased. This i s  due to  the f a c t  t h a t - t h e  dilution a i r  introduced has i t s  
flowrate reduced and therefore the concentration of foul i n g  particulates i s  
increased. This l ine  i s  dashed because i t  does not consider the s t ickiness  
of par t iculates  a t  temperatures above 1200°F. 

FOULING 
RESISTANCE 

i L b 1 . L I 
.-C--T.- - 

4 

700 1000 1200 1400 1600 1800 



6.8. Overview (cont.) 

On the bottom o f  the graph the var ious p a r t i c l e s  t h a t  can cause 

fou l ing  by sof tening a t  the  various temperatures are shown as bars repre- 

senting t h e i r  temperatures a t  which they are a t  molten states.  The l i n e  o f  

r e l a t i v e  f ou l i ng  res is tance departs from the s t r a i g h t  l i n e  and shows sub- 

s t a n t i a l  reduct ion due t o  the vanadates and other mater ia l  s  which g rea t l y  

reduce the f ou l i ng  resistance o f  the system. 

Methods o f  c o n t r o l l i n g  fou l i -ng have been reviewed. Between 7D0°F 

and 1100°F gas i n l e t  temperature, the pa r t i cu l a tes  are expected t o  be dry  and 

be brushed by the brush design t h a t  i s  planned t o  be used a t  t h e  Alcoa tes ts .  

Ash products from heavy o i l  have been brushed successful ly  below 700°F on 

F l u i d f i r e  units.. The behavior i s  projected t o  be the  same up t o  1100°F. 

I n i t i a l  t e s t s  a t  Alcoa w i l l  be conducted i n  the  700 - 900°F range 

and a gradual increase made t o  1100°F w i t h  ca re fu l  moni tor ing o f  fou l ing.  

This w i l l  minimize any r i s k s  o f  undue degradation.' 

It i s  concluded from the review o f  the  l i t e r a t u r e  and experience 

o f  other i n  f ou l i ng  c o n t r ~ l  t h a t  any t e s t i n g  a t  Alcoa above llOO°F should be 

proceeded by laboratory  tes ts .  These t e s t s  should es tab l i sh  c r i t i c a l  temper- 

atures and the e f f e c t s  o f  s t i c k y  p a r t i c l e s  on the brushing system. The data 

w i l l  provide cursory type in format ion ra the r  than exact s imula t ion because 

exact s imulat ion i s  not  possib le o r  p rac t i ca l .  

The important  fac tor  i s  t h a t  the f u l l  range o f  chemistry and 

temperatures t h a t  are possib le i n  the exhaust stream be tested. It i s  a lso 

important t h a t  laboratory  t e s t s  be or iented towards f i nd ing  design so lu t ions 

t h a t  are t o l e ran t  o f  the  f u l l  range o f  chernistry/temperature cond i t i on  and 

nnt. be dependent so le l y  on es tab l i  shing temperatures a t  which the design w i l l  

work. 



7.0 THERMAL STRESSES ON DISTRIBUTOR PLATE SLOTS 

The f l  ui.d bed heat recovery system uses a d i s t r i bu to r  p la te  w i th  

a base1 i n e  conf igurat ion o f  punched s lo t s  tha t  are described as "bridge" 

types. This i s  because the t h i n  d l  s t r i  butor plate,  which i s  approximately 

1/16 t o  1/8 inch th ick,  i s  impressed by matching dyes t o  generate a configura- 

t i o n  tha t  resembles a bridge. This i s  shown on Figure 5 below. 

Figure 5. Bridge S lo t  

There have been laboratory tests  conducted'on the f l u i d  bed un i ts  

w i t h  the bridge desi.gn. These tes ts  have indicated tha t  the bridge metal 

temperature must be kept be1 ow 1200'~ approximately. 

Addit ional t e s t  resul ts ,  shown i n  Table 8, indicated tha t  i f  the 

br idge i s  or iented up so t h a t  .it i s  i n  the bed, then i t  i s  adequately cooled 

by the f l u i d  bed so t h a t  the i n l e t  gas temperature can be taken t o  a t  l e a s t  

1 8flf'1°~, 

TABLE 8 

DISTRIBUTOR PLATE SLOT TEST RESULTS 

B r i  dqe 
Orientat ion 

UP 

DOWN 

Bridge 
Metal Temp. 

LOW - COOLED 
BY BED 

HIGH - MIN. 
BED COOLING 

Brush 
C1 ~ a n i  ng 
Abi l  i ty Configuration 

5 

NOGOOD- 5-v +- 
CAN'T CLEAN 
I N  SLOTS. 

CLEANS SLOTS 
VERY WELL. 
- u 

. 



7.0, Thermal Stresses On D is t r i bu to r  P l  a te  S l  o ts  (cont. ) 

There i s  a c r i t i c a l  problem however, i n  t h a t  i n  t h i s  conf igurat ion 

the brush cleaning. mechanism w i l l  not  clean the s lo t s  adequately. I f  the 

bridge i s  i n  a down pos i t ion  so tha t  the s lo t s  can be cleaned adequately, 

there i s  -the dilemna tha t  both faces o f  the bridge, the upward face and 

the downward face, are experiencing high velocdty and turbulent  gas f low 

a t  the f u l l  i n l e t  gas temperature. This combined w i th  the low thermal f l u x  
tha t  can be maintained a t  the ends o f  the bridge gives very hjgh metal tempera- 

tures. ~here f 'o re  the problem i s  tha t  the concept t h a t  i s  adequately cooled 

cannot be adequately c l  eaned. 

There are several R&D approaches t h a t  can provi  de solutions. The 
f i r s t  approach i s  t o  use the bridge i n  the down pos i t ion  so t h a t  i t can 
be cleaned and use an insul  a t i ng  sheath as shown i n  the lower f i gu re  on 

.the facing page. The insu la t ing  sheath w i l l  keep metal temperatures ade- 

quately low t o  prevent inducing cracks. The d i f f i c u l t  p a r t  i s  t o  at tach 

the sheath a t  a s ingle po in t  o r  a t  posi t ions which w i l l  not  induce thermal 
stresses i n  the sheath i t s e l f .  

Another approach i s  t o  use the bridge up arrangement so t h a t  i t  i s  

cool ed adequately and use a1 te rna t i  ve. methods o f  c l  eani ng such as steam 
blast ing. A t h i r d  a1 ternat ive i s  t o  rev ise the conf igurat ion o f  the bri'dge 

down arrangement but t o  change t o  a l i p  type t h a t  has three o f  the four  

faces o f  the s l o t  drawing heat away from the 1 i p. 

Figure 6 shows a combination o f  l i p  s l o t  and sheath. 

Figure 6: Lip-Type S l o t  w i th  Sheath 



8.0 CORROSION 

8.1 GASEOUS CONSTITUENTS 

The gaseous c o n s t i t u e n t s  i n  t h e  gas stream t h a t  represent  

c o r r o s i v e  problems a r e  l i s t e d  i n  Tab1 e  9 be1 ow. The SO, elements a r e  t h e  

f i r s t  on t h e  l i s t  because o f  t h e i r  r e l a t i v e  volume q u a n t i t i e s .  There i s  on l y  

s l i g h t  t r a c e  amounts of c h l o r i n e  from t h e  atmosphere i n  t h e  c a s t  house and 

t h e  f u e l  ash so t h a t  these a re  almost n e g l i g i b l e .  

TABLE 9 

CORROSIVE CONSTITUENTS I N  GAS STREAM 

Gaseous 

S02 1.4% 

S03 TB D 
CL Trace 

AL CC - Trace 

HCL Trace 

P a r t i c u l a t e s  

Vanadates (Cor ros ive  when molten and c a t a l y s t  
f o r  SO2 + SO3). 

The p a r t i c u l  ate-s t h a t  a re  especia l  l y  co r ros i ve  when molten a re  

t h e  vanadates and a l k a l i  su l fa tes .  The vanadates have been s tud ied  w ide ly  

and t h e  a1 k a l  i s u l f a t e s  as we1 1  . The l a t t e r  are . . c u r r e n t l y  beng i n v e s t i g a t e d  

by ORNL and a r e  respons ib le  f o r  what i s  c a l l e d  low-hot 'cor ros ion .  



8.0, Corrosion (cont . )  

8.2 CYCLIC CONDITIONS 

The condi t i o n s  i n  the  exhaust o f  A1 coa me1 t e r  as re1 a t e  t o  cor -  

r o s i o n  inc lude t h e  modes o f  opera t ion  and c y c l i c  c o n d i t i o n s  o f  t he  tempera- 
t u r e  as shown on F igu re  7; 

- 
HIGH l.WUE QEE 

1. SCRAP + MOLTEN 2 1/2 1 1 

2, . MOLTEN 

3, SCRAP 

t- 3 1/3 HR  TO^ 1 
6 HR.  HR TYPICAL (PERIODICALLY 1 DAY) 

F igu re  7. C y c l i c  Exhaust o f  Alcoa M e l t e r  

There are  t h r e e  modes o f  opera t ion  o f  t h e  furnace. These a r e  

h igh  f i r e ,  low f i r e ,  and o f f .  Furnace f i r i n g  r a t e s  are  34, 12, and 0 m i l l i o n  

B.t;u's pe'ri hour*, rsespect i  ve ly .  

There a re  t h r e e  general cond i t i ons  o f  opera t ion  w i t h  respect  t o  

t h e  mater ia l  loaded. These a re  scrap combined w i t h  ml t e n  metal , molten 



8.2, Cyc l i c  Condit ions (cont . )  

metal alone, and scrap alone. These are used i n  various combinations and 

requ i re  d i f f e r e n t  duty cyc l e  times which are shown i n  the fac ing  table.  It 

i s  seen t h a t  the  percentage o f  o f f - t ime  i s  qu i t e  low. 

The other  f a c t o r  i s  the c y c l i c  condi t ions o f  temperatures i n  the 

exhaust. Duri ng the o f f  - t ime the temperature i s reduced d r a s t i c a l l y  be1 ow 

the  peak operat ing temperature o f  1100°F. 

Various me1 t e r s  have d i f f e ren t  shapes o f  curves depending on the 

load ing  condi t ions and f ir i ng range. The Alcoa me1 t e r s  duty cyc le  i s  c loser  

t o  a square wave than most other me1 te rs .  

W i  t h  .respect t o  p ro j ec t i ng  sever i ty  o f  cor ros ion the c y c l i c  con- 

d i t i o n s  are very much o f  i n t e r e s t  and w i l l  be discussed fu r ther .  

8.3 MATERIALS OF CONSTRUCTION 

The mate r ia l s  o f  const ruct ion which have been selected f o r  the  

bzse l ine design are l i s t e d  on Table 10 f o r  the component par ts  whfch are 
expected t o  be a f f ec ted  by i ncreasi ng i n l e t  temperaturi? . 

TABLE 10 

BASEL I N E  MATERIALS 

D i s t r i b u t o r  P la te  RA 330 

Brush System Sta in less Type 384 

O i  s t r i  bu to r  P l  a t e  Support Low Carbon Steel 

Housing I nsu la t i on  Castabl e f iberg lass 



8.3,  ateri rials o f  Construct ion (cont:) 

The components t h a t  are a f fec ted  are the d i s t r i b u t o r  p la te ,  

b.rush system, d i s t r i b u t o r  p l a t e  support, and housing insu la t ion .  

The d i s t r i b u t o r  p l a t e  w i l l  operate a t  a h igher temperature due 

t o  the increased temperature on the lower face, however t h i s  w i l l  be m i t i -  

.gated by the high r a t e  o f  coo l ing  from the f l u i d  bed a t  about 500°F on the 

top face. The mater ia l  which has been planned f o r  use on the base1 i n e  design 

i s  RA330 general ly known as Inca l loy  800. 

The brush system i s  exposed t o  the f u l l  gas temperature f o r  very' 

shor t  durat ion o f  time measured i n  seconds. The basel ine mater ia l  f o r  the 

brush i s  s ta in less  s tee l  type 304. 

The d i s t r i b u t o r  p l a t e  support i s  p a r t i a l l y  cooled by the f l u i d  

bed i n  the same way t h a t  the d i s t r i b u t o r  p l a t e  i s .  It does have t o  provide 

s t r uc tu ra l  support a t  f a i r l y  h igh  temperatures and low carbon s tee l  i s  

planned f o r  temperatures up t o  llOO°F. 

The housing i n s u l a t i o n  on the ins ide  o f  the i n l e t  windbox i s  a 

castable f iberg lass.  I t i s  o f  the type used i n  h igh temperature gas plennum 

chambers and ducts, 

Prel i m i  nary estimates o f  the maximum metal temperatures o f  the 

components t h a t  w i l l  be a f fec ted  by increased gas temperatures are  shown on 

Table 11. 



8.4, Metal Temperatures (cont . )  

TABLE 11 

APPROXIMATE MAXIMUM METAL TEMPERATURES VERSUS GAS INLET TEMPERATURE ( O F )  

Gas Temperature a t  I n l e t  1100 1400 1600 1800 - - - -  
D i s t r i b u t e r  P la te  

" Current Design (80% Surface) 800 1000 1100 1200 

" Current Design (Local ) 1000 1300 1500 1700 

" Advanced Potent i  a1 ( loo%)* 800 1000 1100 1200 

Brush 

" Short Durat ion Peaks 1100 1400 1600 1800 

" Balance o f  Time 700 800 900 1000 

Brush Bearings 

O Peaks 

" Balance 

D i s t r i b u t o r  P la te  Support 

Current Des i gn 900 1200 1400 1600 

Advanced Po ten t i  a1 * 700 800 900 1000 

*With Component Design R&D 

The l . i s t i  ngs are given as a functi.on o f  gas i n l e t  temperature over a range o f  

1100°F t o  1800°F. The f i r s t  component i s  the d i s t r i b u t o r  p l a t e  and 5s broken 

out  i n t o  three separate categories. The f i r s t  category i s  the bulk o f  the 

surface o f  the cu r ren t  design which excludes the s l o t  areas through which gas 

penetrates. The values given are considered t o  be conservative and are below 

1200°F a t  even the h ighest  gas i n l e t  temperature. 



8.4, Metal Temperatures (cont .  ) 

Local temperatures i n  the s l o t  and br idge areas o f  the cu r ren t  

design w i l l  be very near ly equal t o  the f u l l  gas i n l e t  temperature and are 

seen t o  exceed the l i m i t  o f  .the 1200" metal temperature before the gas temp- 

e ra tu re  reaches 1400°F. The l i s t i n g  f o r  advanced po ten t ia l  over 100% o f  the  

d i s t r i b u t o r  p l a te  i s  based on concepts such as the inver ted  br idge o r  the 

sheath br idge o r  cooled s l o t  arrangements. With these i t  i s  pro jec ted t h a t  

the metal temperature o f  1200 can be maintained even a t  gas temperatures of 

1800°F o r  above. 

.The brush i s  operat ing under two thermal regimes. The f i r s t  i s 

the shor t  durat ion peaks t h a t  represent less  than 1% .o f  the duty cyc le  a t  

which the brush i s  taken t o  f u l l  gas temperature immediately. The second 

cond i t i on  o r  regime i s  the balance o f  the time where i t  i s  re t rac ted  out  of 

the gas flow and i s  semi-insulated from the hot  gas flow. Those temperatures 

are much lower. 

The brush bearings have a cond i t i on  s i m i l a r  t o  the brush i t s e l f ,  

however, the temperatures are  m i t iga ted  by the thermal capaci ty o f  the wheels 

and bearing arrangement. Therefore those temperatures are subs tan t ia l l y  

1 ower . 

The d i s t r i b u t o r  p l a t e  support i s  shown w i t h  the est imated temp- 

eratures f o r  the cu r ren t  design and those w i t h  advanced po ten t i a l  which would 

incorporate concepts of i n s u l a t i o n  and/or cool ing.  

8.5 MATERIAL CANDIDATES 

Table 12 shows for  the various components t h a t  are a f fec ted  by 

increased temperature, the mater ia ls  and coat ing candidates t h a t  have been 

selected i n  a p re l  i m i  nary wqy f o r  app l i ca t ion  considerat ion. They have 



8.5, Mater ia l  Candidates (cont. ) 

been d iv ided i n t o  metals and non-metal s plus combinations o f  metal-l i c  and 

non-metal 1 i c  materi  a1 s. 

TABLE 12 

MATERIALS AND COATINGS CANDIDATES PRELIMINARY 

DISTRIBUTOR PLATE 

Current Mater ia l  
Rol led A l l o y  330 
(19% C r .  35% N i )  

/ 

BRUSHES 

Current Mater ia l  : 

Stainless Type 304 

STRUCTURE 

Cur.r.er11 Material 
Low Carbon Steel 

Haynes 188 
RA 333 
C-276 
INCO 601 
A-286 
Hast C 
310 S.S. 

RA 330 
RA 333 
Ni -Chrome 
A-286 
Hast C 
446 S.S. 
310 S.S. 

Hard Chrome Plated 
L.O. Steel 

U l f f us lon  Coating 
(AL-Fe) onto Carbon 
Steel 

Chroml~lng-Carbon Steel 
RA 330 
310 S.S. 

NON-METALS -- COMB IyATIONS.. 

A1 urn4 na Metal ; Ceramic 
M u l l i t e  (AL20+Si02) *ODs Coatin s 
S i l i c o n  Carbide ( w - c R - ~ L j  
Aluminum S i l  l ca te  Plasma Coatings 
Magnesium A1 uminum 
. S i l i c a t e  
Haynes 

Carbon Coated Metals 

Coated Metals 



8.5, Mater i  a1 Candidates (cont .  ) 

For the  d i s t r i b u t o r  p l a t e  there  are  a number o f  metals and non- 

metals and combinations t h a t  can be considered. I t  i s  the  metals and combin- 

a t ions t h a t  are o f  most i n t e res t .  i n  t h a t  non-metal l i c  mater ia ls  have substan- 

t i a l  other problems o f  f a b r i c a b i l i  t y  t h a t  would be too imposing. Mate r ia l s  

combi nat ions look p a r t i c u l  a r l y  a t t r a c t i v e .  

8.6 SLAG CORROSION 

The cor ros ion ra tes  o f  s lag p a r t i c u l a t e s  such as the  vanadates 

are o f  great  concern a t  temperatures above 1100°F. An example o f  t h i s  i s  

data shown on Table 13 where cor ros ion loss  on samples o f  var ious s ta in less  

s tee l  are shown as a f unc t i on  of metal temperature f o r  temperatures a t  1080°F 

and 1530°F. 

TABLE 13 

VANADATE SLAG CORROSION VS TEMPERATURE 

One can see the  near ly two orders of magnitude increase i n  co r -  

ros ion  ra tes  w i t h  the r e l a t i v e l y  small increase i n  temperature. O f  course, 

if the vanadate slags a re  kept  dry by add i t i ves  o r  o ther  means, these cor ro-  

s ion  ra tes  are kep t  i n  check even a t  temperatures above 1500°F. 

Metal Temp (OF) 

1080 

1530 

NOTE: Fuel addi t i  ves can reduce these corrosion rates. 
i 

. -  Corrosion Loss (MGICM~) 
347 SS 

40 

7 50 

321 SS 

10 

8 50 

304 SS 

11 

350 



8.6, S l  ag Corrosion (con t  . ) 

The cu r ren t  brush mater ia l  o f  304 s ta in less  s tee l  has many other 

a l t e r n a t i v e s  w i t h  b e t t e r  cor ros ion resistance and mater ia ls  proper t ies  a t  

h igher  temperatures. It i s  possib le t h a t  non-metals could be used such as 

carbon f i b e r s  if the design i s  a l t e r e d  t o  make use o f  t h e i r  charac te r i s t i cs  

such as t o  have a r o t a t i n g  brush t h a t  w i l l  g rav i t y  load the brush t i p s .  This 

w i l l  get  around the. problem o f  the  g rea t l y  reduced modulus o f  e l a s t i c i t y  and 

g ive a con t ro l l ab le  t i p  loading. Combinations such as coated metals can a lso 

be consi  dered. 

The s t r uc tu ra l  elements are cu r ren t l y  o f  low carbon s tee l  and 

have many other  a l t e r n a t i v e  metals t h a t  can be used. . There are no non-metals 

t h a t  have been i d e n t i f i e d  .as y e t  which are  .good candidates, however coated 

mate r ia l s  could very we1 1 be used. 

8.7 SUMMARY OF CORROSION PROBLEM AREAS 

A summary o f  the problem areas t h a t  could p o t e n t i a l l y  cause con- 

cern above llOO°F w i t h  respect  t o  cor ros ion and the so lu t ion  approaches are 

l i s t e d  on Table 14. 

TABLE 14 

CORROSION FACTORS ABOVE llOO°F 

Potent i  a1 Problems - Solut ion Approaches 

A1 k a l  i Sulphate h t t ack  (Low Hot Corrosion) Use f u e l  add i t i ves  and estab- 
1 i sh temperature windows 
( 1200-1300°F avoid especi a1 l y  ) 

Vanadi um Pentoxide ~ t t a c k  (above 1200°F) Fuel addi t i v e ,  improved d i  s t r i  - 
b u t i  on p l a t e  cl e+ni nq 

Sulphur Oxides Corrosion Reduce n icke l  content, keep 
metal temperatures down 



8.7, Summary of Corrosion Problem Areas (cont . )  

TABLE. 14 (cont. ) 

Potent ia l  Problems Solu t ion Approaches 

Stress Corrosion Cracki ng. Avoid dwell  i ng a t  Q 1200°F 

St ructura l  L i f e  (Time-Temp E f f ec t s )  Keep chrome content o r  metal 
temp. down ( <1200°.F ) 

Thermal Fatigue Limi t peak metal temperatures 

NOTE: I n  a1 1  cases mater ia l  se lec t ion  and advanced design concepts can help. 

The f i r s t  po ten t ia l  problem i s  the. a1 ka l  i su l f a te  a t tack which 

i s  commonly termed low hot  corrosion. A1 though t h i s  problem can be severe i n  

coal combustion the r e l a t i v e l y  low ash and therefore  low amount o f  a1 ka l  i s i n  

the f ue l  can keep t h i s  a t  a  sol vable 1  eve1 . This i s  because there i s  no 

f l u x i n g  agent inc lud ing a l k a l i s  t h a t  are used. That was not  the case w i t h  

the Reynolds Aluminum t e s t s  t h a t  were run on the recuperator a t  the Alabama 

p lan t .  One approach .woul d  include the use o f  f ue l  add i t i ves  t o  increase the 

sof ten ing temperature and a lso t o  e tab l i sh  temperature windows t o  be avoided. 

The l i t e r a t u r e  i n d i c a t e s t h a t  low ho t  corrosion i s  espec ia l l y  o f  concern a t  

the tempratures between 1200°F and 1300°F. 

Vanadium pentoxide a t tack probl  ems have been d i  scussed i n  prev i  - 
ous pages and the approaches are t o  use fue l  add i t i ves  and t o  provide 

improved d i s t r i b u t o r  p l a t e  cleaning. I t  i s  f e l t  t h a t  the d i s t r i b u t o r  p l a t e  

c leaning method should not  be f u l l y  dependent on the p a r t i c l e s  being dry bu t  

should be able t o  t o l e r a t e  a t  l e a s t  a  small percentage o f  the p a r t i c l e s  i n  

the semi-molten state.  

Sul f u r  oxi  des cor ros ion shoul d  be con t ro l  1  ed by mater i  a1 s  sel  ec- 

t i o n  keeping, the n i c k l e  content low and by design concepts which keep metal 

temperatures down. 



8.7, Summary o f  Corrosion Problem Areas (cont . )  

Stress co r ros ion  crack i  ng po ten t i  a1 problems w i  1 1 be attached by 

avo id ing dwell  i ng a t  t h e  1200°F sens i t i za t i on  temperature regime, i f  neces- 

sary. The s t r uc tu ra l  l i f e  aspects o f  cor ros ion which are based on time and 

temperature combination e f f e c t s  w i l l  be at tacked by keeping chrome content 

and/or metal temperatures down as much as possible. 

The thermal fati.gue po ten t i a l  problems w i l l  be 1 i m i  t e d  by 

keepi ng peak metal temperatures 1 ow. 

I n  each o f  the  po ten t i  a1 problem areas the mater ia ls  selectfan 
and advanced design concepts previously discussed can be o f  help. 

g.8 STRUCTURAL STRENGTH AT HIGH TEMPERATURE 

As the metal temperatures o f  the s t ruc tu re  t h a t  i s  support ing 

the  f l u i d  bed d i s t r i b u t o r  p l a t e  are increased above 1100°F there i s  a gradual 

b u t  very s i g n i f i c a n t  reduct ion i n  creep strength. Since the metal 

temperature i s  general ly  below the  gas temperature f o r  most o f  the components 

a p l o t  o f  creep s t rength versus gas temperature i s  not q u i t e  so bad; however, 

i t  i s  c l e a r  t h a t  a t  temperatures approaching 1800°F the  creep strength w i l l  

be approaching 1110th the value a t  room temperatures. The curve on F igure 8 

shows t h i s .  

It i S  c l e a r l y  seen t h a t  above 1200°F the technology hurdles arc  

tougher from the  standpoint  of prov id ing adequate s t r uc tu ra l  strength. This 

w i l l  be f u r t h e r  discussed i n  the next  several pages. 



8.8, St ructura l  Strength a t  High Temperature (cont.) 

CREEP 
STRENGTH 
X 1000 psi  

700 iooo 1200 ' 1400 1600 leoo 
INLET GAS TWERATURE ( O F )  

Figure 8. Creep Strength vs. Temperature 

The s t r uc tu ra l  element o f  most concern w i t h  h igher temperature 

i s  the bed. support design. Having t o  span about 12 f t  and w i t h  v e r t i c a l  

supports precluded because of other design fac tors ,  advanced concepts w i l l '  

have t o  be used. I n  the sketch of Figure 9 the s t r uc tu ra l  support f o r  the 

bed i s  shown i n  cross sect ion w i th  the d i s t r i b u t o r  p la tes  l a y i n g  on it. The 

bed and heat .exchange tubes are a lso shown. 

r COOLED BUT L I M I T S  TUBE REMOVAL 

LOW PROFILE 
FOR BRUSH 

REQUIRES CONST~AINED 
BRUSH DESIGN 6 , 

INSULATION 

Figure 9. .Bed.Support Design Constraints 

.39 



8.8, S t ruc tu ra l  Strength a t  High Temperature (cont.) 

The design cons t ra in ts  on the bed support are shown i n  dashed 

l i nes .  There are  several const ra in ts .  F i r s t l y ,  the bottom sect ion must have 

a low p r o f i l e  t o  a1 low passage o f  the brush arrangement. Secondly, exten- 

s ions i n t o  the bed t o  provide coo l ing  o f  the support l i m i t s  tube removal. 

Some compromi se combi nat ions of  these elements i nc l  udi  ng considerat ion o f  

i n s u l a t i o n  and coo l ing  by water o r  steam must a lso be considered. 



9.0 TECHNICAL RISKS 

The technical  r i s k s  o f  increasing temperature w i l l  be discussed i n  

the next several pages i n  order t o  i d e n t i f y  which areas are o f  major concern. 

The methodology used here i s  the yes-no g r i d  which i d e n t i f i e s  whether tech- 

nologies are cu r ren t l y  establ ished o r  not. 

The var ious subsystems, o f  the waste heat recovery system are l i s t e d  

on Table 15 w i t h  the o ther  dimension o f  the mat r i x  being three selected 

temperatures, 1100°, 1400°, and 1800°F. 

TABLE 15 

PRELIMINARY YES-NO GRID  

1. I n l e t  Section (Windbox) 

2. Brush System 

A. Structura.1 

B. Brushing A b i l i t y  

3. D i s t r i b u t o r  P la te  

A. P la te  

B. Support Strength 

C. Corrosion 

4. G r i t  Ar res tor  

5. Fan and Case 

6. Heat Exchange Surfaces . -- .. - -- 

TECHNOLOGY ESTABLISHED? 

1100°F 1400" F' 1800°F 

Yes Yes Yes 

No-+Ye s No N o 
(Bearing) (Creep Strength) (Creep Strength) 

Yes No N o 
(Dry) (S t i cky?)  (S t i cky?)  

No-tYes No No 
(OK t o  1200) 

Yes No No 

No-cY es No N o 
(Dry Pa r t i c l es  + 
FJORDSHELL 700°F) 

Yes Yes Yes 

Yes Yes Yes 

Yes Yes Yes 
(Higher Heat Transfer 
Surface Packing Density 
Must Be Surveyed) 



9.0, Technical R i  sks (cont  . ) 

It i s  seen t h a t  the i n l e t  sect ion technology i s  establ ished f o r  the 

h igher  temperatures drawing from duct  i n s u l a t i o n  and design data base. The 

brush system i s  d iv ided  i n t o  s t r uc tu ra l  and brushing a b i l i t y  areas. I n  the 

s t r u c t u r a l  area a t  1100" the technology i s  not  establ ished bu t  w i l l  be by 

bear ing modi f ica t ions under the cu r ren t  program. A t  1400" and 1800" the 

technology i s  not  es tab l ished and must be addressed i n  a  separate develop- 

ment. I n  the area of brushing a b i l i t y  a t  1100°, the p a r t i c l e s  are d ry  and 

there fo re  the  estab l ished technology can be used. A t  temperatures above 

1100°F t o  1200°, the s t i c k i ness  o f  the p a r t i c l e s  w i l l  be a  po ten t i a l  problem 

and technology i s  no t  es tab l ished f o r  that .  

On the d i s t r i b u t o r  p l a t e  the p l a t e  i t s e l f  i s  sa t i s f ac to r y  t o  a  metal 

temperature o f  1200°F and therefore  sa t i s f ac to r y  operat ion a t  1100°F under 

the cu r ren t  program i s  ant ic ipated.  A t  temperature above t h a t  the dilema o f  

c lean ing versus coo l ing  o f  the s l o t s  must be addressed. The d i s t r i b u t o r  p l a te  

support s t rength discussed i n  the previous pages, a t  1100°F i s  no t  a  problem. 

However, because o f  the more rap id  f a l l  o f f  i n  creep s t rength a t  higher 

temperatures the 1400 - 1800" must be establ ished by more advanced concepts. 

D i s t r i b u t o r  p l a t e  cor ros ion par ro ts  the brushing a b i l i t y  from the standpoint 

t h a t  d r y  p a r t i c l e s  are much less cor ros ive and can be to le ra ted  therefore  

temperatures o f  1100" would be sa t i s fac to ry ,  however, a t  higher temperatures 

w i t h  s t i c k y  pa r t i cu l a tes  the  cor ros ion would be a  fac to r .  I n  add i t i on  there 

are  a l so  the gaseous cor ros ion elements t h a t  have t o  be considered. A l l  i n  

a l l  the  s p e c i f i c  cor ros ion ra tes a t  the increased temperatures are not  very 

we l l  p red ic tab le  w i thou t  coupon tes t ing .  

Addi t iona l  techn ica l  r i g k  areas which have been invest igated are the 

g r i t  a r res tor ,  fan, case, and heat exchange surfaces. 

I n  each o f  these areas, the operat ing temperature o f  the'.components 

does not  change s i g n i f i c a n t l y  w i t h  increasing i n l e t  .temperature. This i s  



9.0, Technical Risks (cont. ) 

because the f luid bed maintains the necessary heat flux with very low 
temperature d i f fe rent ia l s .  Thus, even though the i n l e t  temperature in- 
creases from 1100" t o  say 1800°F, the bed temperature will  increase only 

approximately 50°F. 

For these reasons, the technology i s  established for  each of these 

components 1 isted fo r  t'he fu l l  temperature range. 



10.0 HIGH TEMPERATURE R&D PAYOFF 

10.1 GENERAL 

Increased temperature capab i l i t y  gives a payoff i n  a number 

o f  very. important areas. 

Performance i s  improved by increased effectiveness due t o  the 

higher d i  f fe ren t i  a1 temperature t h a t  i s  obtained between i n l  e t  and out1 e t  . 
Thus the heat recovery i s  great ly  improved. A secondary factor,  but an 

important one i s  t ha t  the 1 ower mass flow ra te  caused by reduced d i l  uent 

a i r  reduces the fan power requfred. 

L i f e  cycle cost i s  s i g n i f i c a n t l y  decreased. Capital costs are 
reduced because the 1 ower f l  ow rates g i  ve small er  bed areas and correspondi ngl y 

small e r  t o t a l  vol  ume and component sizes. Operating costs are reduced because 

o f  the smaller fan power and i t s  impact on e l e c t r i c a l  costs. I n s t a l l a t i o n  

i s  easier and l ess  cos t l y  w i t h  a smaller un i t .  

Increased i ndustr i  a1 i ncenti ve (ROI ) i s  very important t o  achi ev- 

i n g  heat recovery implementation and i s  the u l t imate payoff i n  terms o f  

energy saved. This incent ive i s  increased by higher performance and be t te r  

re tu rn  on investment from the reduced cost. 

Conducting R&D t o  achieve higher temperature i s  very cost effec- 

t i v e  as a par t  o f  t h i s  p ro jec t  f o r  several reasons. F i r s t  o f  a l l  , ex is t ing  

t e s t  f a c i l  i t i e s  can be used for both 1 aboratory and f i e 1  d test ing. I n  addit ion, 

the program can move ahead quickly w i th  minimal delay and cost. 

10.2 HEAT RECOVERY VS. TEMPERATURE 

The heat recovery I ncrease w i  t h  h i  gher temperature capabi 1 i ty 

i s  one o f  the most important pi lyoff factors.  



10.2, Heat Recovery vs. Temperature, (cont.) 

Heat exchanger e f f i c iency  can be approximated as the temperature 

differences between in1 e t  and out1 e t  div ided by in1  e t  and ambient. 

T i n  - Tout where Tout n = 5 0 0 ~ ~  

T i n  - Tambient and Tambient 70°F 

Out let  temperature i s  generally f i x e d  a t  about 500' f o r  several 

reasons and ambient temperature f s  normally somewhere near 70'~. Data i n  

Tab1 e 16 was cal cul ated d i r e c t l y  g iv ing e f f i c iency  comparisons as a funct ion 

o f  temperature. 

TABLE 16 

HEAT EXCHANGER EFFICIENCY VS. TEMP 

*Energy Savings Ef f ic iency = BTU saved i n  fue l  f o r  every BTU i n  exhaust 

- - rl RECOVERY 
A V t .  F l K t D  n = 0.75 

1800°F 

.75 

1.32 

1.00 

1400°F 

.68 

1.13 

.91 

1 1 OO'F 

.58 

1.00 

-77 

T~~ 

n Recovery 

n Re1 . t o  1100 

*Energy Savi ngs 
Efficiency 

1600°F 

.72 

1.23 

.96 

700'~ 

.30 

.52 

.40 



10.2, Heat Recovery vs . Temperature, (cont . ) 

It can be seen tha t  the e f f i c iency  o f  energy recovery f o r  the 
s ta te  o f  the a r t  o f  700'~ i s  qu i te  low a t  30%. It i s  improved t o  a very 

respectable value a t  58% a t  llOoO; however, i t s  potent i  a1 i s  not nearly 

tapped u n t i l  the temperature i s  increased t o  1600° o r  higher. This i s  a1 so 

shown as efffciency re la ted  t o  110O0 where i t  i s  seen tha t  a t  1600'~ a 23% 

improvement i n  e f f i c i ency  i s  obtained. 

I n  order t o  establ ish an e f f i c i ency  number which i s  an overal l  

p rac t i ca l  value, the energy savings e f f i c iency  i s  defined as BTU saved i n  

fue l  f o r  every BTlJ avai lab le i n  the exhaust. Thfs i s  important because 

the obvious 1 im i ta t i on  i s  the .amount o f  BTU's i n  the exhaust and the bottom 
1 i n e  value i s  the BTU's saved i n  fue l .  The energy savings. e f f i c iency  can 

be simply stated as the energy recovery e f f i c i ency  divided by the average 

f i  red b o i l e r  e f f i c i ency  which i s  usual ly approximately 75%. From the tabu1 a- 

t i o n  o f  energy savings i t  can be seen t h a t  e f f i c i ency  i s  a funct ion o f  tempera- 
ture., and a t  temperatures o f  1600 t o  1 8 0 0 ~ ~ .  the e f f i c iency  approaches 10E.  

This means tha t  the BTU's saved i n  fue l  are very nearly the amount o f  BTU's 

t h a t  are i n  the exhaust. Achieving these condit ions are a very worthwhile 

goal . 
10.3 UNIT SIZE .VS. TEMPERATURE 

I t  can be seen from the assumptions, formulae and tabulat ion 

on Table 17, t h a t  s ize i s  reduced substant ia l ly  as temperature i s  increased. 



10.3, U n i t  S i z e  vs . Temperature (cont  . ) 

TABLE 17 

UNIT SIZE VS TEMPERATURE - ASSUMPTIONS & RELATIONS 

ASSUMPTIONS 

SIZE I S  DIRECTLY PROPORTIONAL TO BED PLAN AREA SB 

- BED AREA I S  ESTABLISHED BY MAX, SUPERFICIAL VELOCITY VS , 
BED TEMP T, AND ACTUAL GAS VOLUME FLOW V,. 

RELATIONS 

- FOR CONSTANT Vs AND TBB SB I S  PROPORTIONAL TO VA. 

WITH TEMP SINCE . LESS D I LUENT USED 

- EXAMPLES AT 1800°F AND l l O O ° F  

EXAMPLES 

- R E U T I V E  VOLUME FLOW AT 1800°F .  COMPARED TO l l O O ° F  

j n .  f TOTAl 18QQ = a 0.59 

A TOTAL GOO 1.97 



10.3, U n i t  Size vs. Temperature (cont. ) 

For the f l u i d  bed heat exchanger, the ver t i ca l  dimensions are 

general ly f ixed by design constraints and the hor izontal  dimensions, which 

es tab l i sh  bed area, are var iable w i th  the i n s t a l l a t i o n  and f low requirements. 

Size i s  d i r e c t l y  proport ional then t o  the bed plan area taken 

as Sb. The bed area i s  established by the maximum super f ic ia l  ve loc i ty  
t h a t  can be allowed and the bed temperature and the actual gas volume flow. 

Since the superf i c i  a1 vel oc i  ty and bed temperature are re1 a t i  vely f ixed, 
the bed area i s  proport ional t o  the gas volume actual flow. 

The volume f low i s  made up o f  the flow o f  the gas and the f low 

o f  the d i l  uent a i r  combined. Since the a i r  f low i s  reduced w i th  increased 
temperature, the t o t a l  volume f low through the u n i t  i s  reduced. Example 

values are shown a t  1800' and 1100~ i n  the table. 

A t  1800' the  t o t a l  f low div ided by the gas . f low i s  1.17, and 

a t  1100~ the value i s  1.97; therefore, the re1 a t i ve  vol m e  f low a t  1800' 

compared t o  1100~ i s  0.59. This means tha t  a 41% reduction i n  s ize can 

be obtained by increasing temperature from 110o0 t o  1800'. 

10.4 RELATIVE COST IMPACT 

There are two key factors i n  the cost impact o f  higher tempera- 

tures. Each w i l l  be t reated i n  a re1 a t i ve  manner. 

The u n i t  acquis i t ion cost i s  very c ruc ia l  i n  the ul t imate users 

decision on whether o r  not t o  implement waste heat recovery. H i  t h  respect 
t o  s ize  for a given output there are several considerations. 



10.4, ~ e i a t i v e  Cost Impact (cont.) 

F i r s t ,  there are cost elements tha t  are proportional t o  s ize 

because o f  being d i r e c t l y  re1 ated t o  material and fabr ica t ion  1 abor. These 

are elements such as sheet metal , other raw material s ,. f abr ica t ion  1 abor , 
we1 d i  ng , etc . Addit ional 1 y , there are e l  ements tha t  are not d i r e c t l y  propor- 
t iona l  t o  size, and these consist  o f  factors such as engineering 1 abor, 

steam condi ti oni ng equipment , and heat exchange tubes. 

Generally, the elements tha t  are not proport ional t o  s ize are 

r e l a t i v e l y  few compared t o  those tha t  are. An approximation can be 'taken 

tha t  sets cost reduction a t  a ra te  o f  about 2/3 o f  the s ize reductions. 

For example, a 10% size reduction w i l l  generally give about a 6% cost reduc- 

ti on. 

The i n s t a l l  a t ion  costs are 1 i kewise important and vary w i th  
size f o r  the same output i n  a manner s imi la r  t o  those w i th  the acquis i t ion 

cost. There are elements t h a t  are proport ional t o  size, i ncl udi ng material s , 
fabr ica t ion  labor,  support columns, crane renta l ,  etc. There are addit ional  
e l  ements tha t  are not proport ional t o  s i  ze , i ncl udi  ng engineering 1 abor , 
water condit ioning equi pment , etc. The approximation o f  cost reductions 
can be taken a t  a ra te  o f  about 2/3 the s ize reduct i  on f o r  i n s t a l l a t i o n  

'costs as we1 1 . 

10.5 OVERALL INLET TEMPERATURE INFLUENCES 

Tab1 e 18 on the fo l lowing page gives the various i n f l  uences 
o f  the i n l e t  temperature f n  terms o f  size, weight, heat recovery and cost. 

Those elements are then i n  tu rn  used t o  derive a f igure  o f  mer i t  and re1 a t i v e  
return on investment data. 



10.5, Overall In1 e t  Temperature (cont. ) 

TABLE 18 

OVERALL INLET TEMPERATURE INFLUENCES 

HX INLET TEMPERATURE 
1 1 0 0 ' F i ' Y ~ - -  - -- 160!JeF l&OObF 

2. RELATIVE WEIGHT 1,1)1) 0,83 9,72 0.60 

3, RELATIVE HEAT RECOVERY (RHR) 1,30 1,17 1.24 1,29 

Y. RELATIVE COST (RC) 
l UNIT COST 1.00 0,88 0,81 0,73 

INSTALLATION COST 1,09 0.38 0,81 0,73 

5, REUTIVE FIGURE-OF-MERIT 

6. APPROX. RELATIVE ROI  1,OO 1,33 1,53 1,77 

AIL R O I  1 s  RC 
REL 

ASSUMES FURNACE GAS EXHAUST 2100eF UNDILUTED AND STACK MINIMUM 500bF, . 



10.5, Overall In1 e t  Temperature I n f l  uences (cont . ) 

The re1 a t i  we s ize i s  proport ional t o  the throughfl ow o f  gas 

and i s  seen t o  reduce dras t i  c a l l  y w i  t h  i ncreasi ng temperature. 

The re1 a t i ve  weight reduces nearly as f a s t  as the re1 at ive, 

but not qu i te  due t o  factors tha t  are not d i r e c t l y  1 i near. 

The re1 a t i  ve heat recovery increases w i th  increasing temperature 

such tha t  a t  1 6 0 0 ~ ~  about 1/4 improvement i s  made, and a t  1 8 0 0 ~ ~  a 29% improve- 
ment i s  achieved.. 

Re1 a t i ve  costs o f  the u n i t  acquisi t i o n  and i n s t a l  1 a t ion  are 
reduced s ign i f i can t l y  because o f  the reductions i n  size. A t  1800'~ the 
costs are over 1/4 less  than a t  1 1 0 0 ~ ~ .  

A r e l a t i v e  f i gu re  o f  mer i t  can be derived from the above data. 
O f  course various a rb i t ra ry  arrangements could be chosen; however, a useful 
one i s  t o  d iv lde the re1 a t i ve  heat recovery by an average value o f  cost 

and size. This allows equal weighting o f  cost and s ize factors. It i s  
seen tha t  the r e l a t i v e  f i gu re  o f  mer i t  nearly doubles f o r  the. high temperature 
appl icat ion and t h i s  i s  s ign i f i can t  w i th  respect t o  the potent ia l  payoff 
i n  terms o f  energy recovered i n  the future. 

Approximate re1 a t1  ve re tu rn  on investment increases w i th  i n l e t  
temperature t o  the point  where a 5m increase i s  achieved a t  less  than 1 6 0 0 ~ ~ .  
and 77% increase achieved a t  1800'~. 

These calculat ions assume tha t  the furnace gas exhaust i s  a t  

2100'~ as i s  typ ica l  o f  a1 umi nun me1 ti ng f urnaccs . A1 so, i t  i s  assumed 
t h a t  the stack minimum temperature woul d be about 500°F, whi,ch i s  1 i kewise 

typ ica l  . 



10.6 PERFORMANCE POTENTIAL ABOVE 1 1 0 0 ~ ~  

From the graph o f  Figure 10 we can see t h a t  the f igure  of mer i t  
i ncreases dramatical 1 y w i t h  i n l e t  gas temperature. 

I f  one looks a t  the increase from 700 t o  l l O o O ,  a d ras t ic  improve- 

ment i s  seen. Likewise, i f  one compares the 1100~ t o  1 8 0 0 ~ ~  improvement, 

a d ras t ic  change i s  seen. 

The concl usion i s  t ha t  the performance potent i  a1 o f  ge t t ing  

t o  1100' i s  a worthwhile ambition; however, i t  i s  only scratching the surface 

o f  the overal l  capab i l i t y  o f  the coilcept. 

Figure 10. 
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11.0 R&D APPROACHES FOR HIGHER TEMPERATURES 

A summary o f  the  performance b e n e f i t s  and the  o f f s e t t i n g  technology 

hurdles a r e  shown v i s u a l l y  i n  t h e  combined graphs o f  F igu re  11. 
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F igu re  11. Key Parameters vs. Temperature 

While performances doubled' over t h e  temperature range o f  1100 t o  

1800°F the  techno1 ogy problems a re  severe. 

Creep s t reng th  reduces d r a s t i c a l  l y  as p rev ious l y  d i  scussed. Fou l i ng  

res is tance has a  s tep change a t  about 1100°F due t o  t h e  s t i c k y  p a r t i c u l a t e .  

The c o r r o s i o n  res i s tance  fa1 1  s  more gradua l ly  than f o u l i n g  res i s tance  

b u t  does have p r e c i p i t o u s  p o t e n t i a l  because o f  i t s  r e l a t i o n s h i p  t o  the  

f o u l i n g  o f  vanadates and su l  fa tes.  



11.0. R&D Approaches f o r  Higher Temperatures (cont.) 

On the fo l lowing pages a  summary o f  the R&D work needed and the 

approach t o  be taken w i l l  be discussed. 

The s i ng le  major r i s k  t o  increase temperature i s  the pa r t i cu l a tes  

exhausting from the aluminum me l te r  being too  s t i c k y  t o  brush. The R&D 

approaches t o  resof ve t h i s  would inc lude i nves t i ga t i on  o f  fue l  add i t i ves  t o  

increase the me l t ing  temperature o f  both the vanadium oxides and the sul-  

fates. ~ d ' d i  t i o n a l  ly,  steam o r  a i r  j e t s  c leaning would be invest igated.  

A1 so method01 ogi es used i n  other s i m i l a r  a n t i  - f ou l  i ng work w i l l  be 

used. These have been used successful l y  a t  Aero je t  f o r  s im i l  a r  appl icat ions.  

They inc lude es tab l i sh ing  temperature windows i n  which the p a r t i c l e s  are less 

s t i cky .  Often these approaches a re  not  f i n a l  soluti 'ons bu t  are  he lp fu l  i n  

f a c i l i t a t i n g  t es t i ng .  

Another approacb i s  t o  inves t iga te  ways t o  brush between f i r i n g  cycles 

a t  which time the pa r t i cu l a tes  have dropped i n  temperature t o  the po in t  where 

they are no longer stScky and can p o t e n t i a l l y  be brushed clean. The approach 

cou ld  .be augmented by a i r  coo l ing  immediately p r i o r  t o  brushing o r  dur ing 

brushing. 

The other approach would be to '  use more advanced brushing concepts 

i nc l ud ing  r o t a t i n g  brushes o r  medium vel  oci t y  b l as t i ng  by par t i cu la tes .  

The problem of l im i , . t ing s l o t  thermal s t resses i n  the d i s t r i b u t o r  p l a t e  

would be approached by tes t4  ng r e v i  sed conf igurat ions i n c l  udi ng the #l i p  and 

sh ie lded  arrangements i n  laboratory  R&D tes ts .  Also. coo l ing methods using 

the  f l u i d  bed i t s e l f  o r  water o r  steam should be invest igated.  



11.0 R&D Approaches f o r  Higher Temperatures ( con t  .) 

The increased heat  t r a n s f e r  sur face dens i ty  w i  t h i n  the  bed shoul d. be 

approached by advanced c o n f i g u r a t i o n  of heat t r a n s f e r  sur faces and c l o s e r  

spacing o f  t he  tubes. Staggered tubes cou ld  a l so  be used i f  necessary. 

The increased co r ros ion  r a t e  a t  t he  h igher  temperatures should be 

approached by a l t e r n a t i v e  m a t e r i a l s  i n c l u d i n g  ceramics and coat ings  o f  cera- 

mics and o the r  mater i  a1 s. Add i t iona l  ly ,  t h e  l i m i  t a t i n g  o f  metal tempera- 

tu res  i s  a l so  important.  

The main ta in ing  o f  adequate support  s t reng th  f o r  t h e  d i s t r i b u t o r  p l a t e  

a t  t h e  h igher  temperatures requ i res  approaches i n c l u d i n g  a l t e r n a t e  conf igura-  

t i o n  f o r  reduced temperature, a l t e r n a t e  mater i  a1 s f o r  h ighe r  creep s t r e n g t h  

a t  temperature and i n s u l a t i o n  f o r  coo l ing .  

High temperature e f f e c t s  on t h e  brush bear ings and t r o l l e y  should be 

approached by advanced c o n f i g u r a t i o n  w i t h  h igher -  temperature res i s tance  and 

con f igu ra t i ons  us ing  thermal capaci t a n t s  t o  minimize peak temperatures f o r  

t h e  sho r t  exposure. t imes. 



12.0 RECOMMENDED R&D APPROACH 

There are  three main elements t h a t  should be incorporated i n  the R&D 

p l an  t o  reso lve the  problems. The f i r s t  i s  t o  complete a de ta i l ed  analysis 

o f  the problems which would include analyses o f  a l t e r n a t i v e  designs. 

The seco-nd element o f  the approach would be t o  conduct bench scale 

t e s t s  t o  es tab l i sh  a techn ica l  understanding o f  the problems and the impact 

o f  the selected design approaches. The bench scale t e s t i n g  must. be designed 

t o  provide a wide range o f  condi t ions t h a t  w i l l  f u l l y  bound the Alcoa opera- 

t i n g  condi t ion.  The chemistry and thermal condi t ions must be espec ia l l y  

bounded. The so lu t ions  obtained from the  bench scale t e s t i n g  must be those 

t h a t  are s a t i s f a c t o r y  under the f u l l  range o f  condi t ions ra the r  than being 

successful on ly  f o r  i s o l a t e d  condi t ions.  

F i na l l y ,  based on the r e s u l t s  o f  the bench scale t e s t s  the best advance- 

ments should be r e t r o f i t t e d  i n t o  the Alcoa t e s t  u n i t  and t e s t s  conducted w i t h  

gradual ly  increas ing temperature t o  es tab l i sh  the performance. 



CONCLUSIONS 

Several conclusions can be drawn from the prev ious ly  described study 

resu l t s .  

F i r s t ,  the r i s k s  o f  pushing beyond 1100°F i n  the Alcoa t e s t i n g  are h igh 

wi thout  an o rde r l y  program t h a t  includes laboratory  R&D and an engineered 

r e t r o f i t  o f  the required component. O f  p a r t i c u l a r  concern are the fou l ing ,  

corrosion, and creep strength reduct ion problems t h a t  are imposed on several 

elements o f  the heat exchange system. 

It can be concluded also t h a t  the bene f i t s  o f  technology advancement f o r  

higher i n l e t  temperature c a p a b i l i t y  are remarkably high. For example, a  53% 

increase i n  the r e t u r n  on investment a t  1600°F and a 77% increase a t  1800°F 

are substant ia l  improvements and worthy o f  tak ing  on h igh r i s k  technology 

advancement. 

It can a lso be concluded t h a t  sound technica l  approaches were estab- 

l ished, t h a t  can be considered f o r  incorporat ion i n t o  the laboratory  development 

and u l t ima te l y  i n t o  the Alcoa tes t ing .  
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