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Abstract: We describe a benchmark parallel version of the Van Slyke and Wets (1969) 
algorithm for two-stage stochastic programs and an implementation of that algorithm on 
the Sequent/Balance. We also report results of a numerical experiment using random test 
problems and our implementation. These performance results, to the best of our knowledge, 
are the first available for the Van Slyke and Wets (1969) algorithm on a parallel processor. 
They indicate that the benchmark implementation parallelizes well, and that even with 
the use of parallel processing, problems with random variables having large numbers of 
realizations can take prohibitively large amounts of computation for solution. Thus, they 
demonstrate the need for exploiting both parallelization and approximation for the solution 
of stochastic programs.
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1. Introduction

Two-stage stochastic programs with recourse1 are a class of optimization problems with 
applications in a wide variety of areas in operations research. See for example Dempster 
(1980), Ermoliev and Wets (1988). The functions that describe these problems involve ex­
pectations with respect to multivariate random variables. The random variable in a problem 
instance that is actually solved usually has a discrete distribution with a finite number of 
realizations. This is either because the random variable has such a distribution naturally, 
or if not, prior to solution, the actual distribution is usually replaced by a sequence of such
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distributions converging to it in some sense. The number of realizations of these random 
variables in meaningful problems is ‘large’ (say, more than 5000).

Many algorithms for two-stage stochastic programs have been proposed. The algorithms 
described by Kali (1979) are good representatives based on large scale linear programming 
(Ip) techniques. The algorithm proposed by Van Slyke and Wets (1969) and extended by 
Wets (1982) is a good representative of those based on decomposition—the other major 
approach used to derive algorithms for stochastic programs.

It is well known (see Wets (1982,85)) that when the number of realizations of the ran­
dom variable describing the problem is large, even for moderate values for dimensions that 
determine the size of the problem, these algorithms take prohibitively large amounts of com­
putation. Due to this, computational experience with algorithms for two-stage programs is 
limited to problem instances with small numbers of realizations.

Dantzig (1985) and Wets (1985) were the first to make the observation that algorithms 
for stochastic programs based on decomposition can take advantage of computers with par­
allel processing capabilities. Wets (1985) made the further point that even with the use of 
parallel processors, algorithms that attempt to solve stochastic programs exactly may take 
prohibitively large amounts of computation, when the number of realizations of the random 
variable associated with the problem is large. (See also the timing results presented in this 
paper.) Wets (1985) then sketched out the rudiments of an approximating scheme, in which 
the given two-stage stochastic program is replaced by an approximate one constructed to 
have the following properties: decomposition algorithms would solve the approximate prob­
lem with considerably smaller amount of computation than the given problem; and the 
possibility of parallelization of decomposition algorithms for the approximate problem is re­
tained or even enhanced relative to the possible parallelization of decomposition algorithms 
for the given problem. The approach, then, is to sacrifice hopefully a little in accuracy to 
gain speed through approximation and parallelization.

Following the work of Wets (1985), Ariyawansa, Sorensen and Wets (1987) have described 
implementable algorithms that generate the approximate problem in the above sense for a 
given two-stage stochastic program. The first author of this paper is involved in a research 
project to design decomposition algorithms for the approximate problem generated by the 
algorithms of Ariyawansa, Sorensen and Wets (1987) and to implement such algorithms as 
well as the algorithms of Ariyawansa, Sorensen and Wets (1987) on parallel processors. One 

of the aims of that project is to carefully assess the performance of these approximation 

procedures. Since these procedures achieve speed through approximation and parallelization 
at the expense of accuracy, the natural basis for evaluation would be relative to the perfor-
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mance of a benchmark implementation of a parallelizable algorithm for the exact problem. 
The natural criteria for comparison would be measures of parallelization for the approximate 
and exact procedures, speed of the approximate procedure relative to the speed of the exact 
procedure, and measures of accuracy of solution returned by the approximate procedure 
relative to the solution returned by the exact procedure.

As mentioned above, published computational results for algorithms for stochastic pro­
grams are limited. Moreover, the little published computational results available do not deal 
with problems with random variables having large numbers of realizations and do not deal 
with implementations on parallel processors. Therefore, in order to meet the need men­
tioned in the previous paragraph we have developed a parallel version of the Van Slyke and 
Wets (1969) algorithm (in the form given in Wets (1982)2). We have also developed an 
implementation of this parallel version on the Sequent/Balance.

After we developed this implementation for use as a benchmark to evaluate the perfor­
mance of the approximation procedures mentioned above, it occurred to us that results of 
a carefully designed, repeatable computational experiment using our implementation would 
be of interest in its own right. The purpose of this paper, then, is to describe our bench­
mark parallel version of the Van Slyke and Wets (1969) algorithm, its implementation on 
the Sequent/Balance, and the results of a computational experiment using this implemen­
tation. Our numerical results, to the best of our knowledge, are the first available on the 
performance of the Van Slyke and Wets (1969) algorithm on a parallel processor.

2 Henceforth in this paper we only quote the paper by Van Slyke and Wets (1969) in connection with this

algorithm.
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2. The Van Slyke and Wets (1969) Algorithm for the Two-Stage Stochastic 
Program with Recourse

The two-stage stochastic program with recourse and with a discretely distributed random 
variable with a finite number of realizations, is the following3:

Find x £ 3£ni such that
z(x) := cTx + Q(x) is minimized, and

Ax = b, x > 0,
where
Q(x) := E[Q(x, h, T)] = E PkQ(x, h\ Tk),

k=0
Q(x, h, T) := ^mfn^{qTy : My = h-Tx,y > 0},

A e b e c G q e $n2, M e 3?m2xn2 are deterministic and

given and h E 3£m2, T E 3fJm2Xni are random with (h,T) having the probability 
distribution F := {((hk, Tk),pk), k = 1,2,..., K}.

(1)

We refer the reader to survey papers by Wets (1982, 88) for general discussions on theory, 
applications and algorithms pertinent to (1) and its extensions. We mention however, that 
(1) arises in decision making contexts that fit into the following general format. Suppose 
that at present a decision x has to be chosen from the set {a: : Ax = b,x > 0} and that at 
a future point in time a realization (hk,Tk) of (h,T) becomes available. At that point in 

time, the decision maker is allowed to take a corrective action y, if necessary, to allow for 
the difference hk — Tkx. The recourse function Q in (1) models this correction process, and 

problem (1) is a well-posed version of this two-stage decision making problem. The solution 
of (1) yields a decision x* that the decision maker can take at present and it hedges against 
the presently unknown realizations of (h,T).

In the rest of the paper we shall make the following assumptions regarding problem (1).

(Al) The set {x : Ax = 6, a: > 0} is nonempty and bounded.

(A2) The set {re : My = u;, y > 0} = 3?m2.

(A3) The set {u : MTv < q} is nonempty.

It is easy to verify that when (Al), (A2) and (A3) hold, problem (1) has a minimizer x* 
with a finite minimum z(x*) — cTx* + Q(x*). If (Al), (A2) and (A3) are not satisfied, then 

it is possible for problem (1) to be infeasible or to be unbounded below. Therefore, we have

We use boldface letters to denote random variables and the corresponding normal-face letters to denote their

realizations.
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assumed that (Al), (A2) and (A3) hold in developing our benchmark parallel implementation 
of the Van Slyke and Wets (1969) algorithm for (1). We hasten to add that it is possible to 
add necessary steps to our implementation so that problems which do not satisfy (Al), (A2) 
or (A3) can be handled, and infeasibility or unboundedness can be detected.

We now state the Van Slyke and Wets (1969) algorithm for problem (1), when assump­
tions (Al), (A2) and (A3) are satisfied.

Algorithm 2.1: (Van Slyke and Wets (1969)) 

input:
mi; ny, m2; n2; K; A; c; f>; M; q] F := ((hk ,Tk),pk), k = 1,2,..., A).

output:
X] z.

begin
/* begin initializations */ 
t := 0;
{solve the Ip

find a: > 0 such that 
crx is minimized, and 

Ax = 6);

call optimality-cut ('m2, n2, K, M, q, F, x, E, e, Q)-, 
t := f -f 1;
E* := E] e* := e;
call lowerbound (m\, n\, t, A, b, (El, t), x, 9, z)-,

call optimality-cut (m2, n2, K, M, q, F, x, E, e, Q);
/* end initializations */ 
while 0 < Q do 

£ := t -f- 1;
El := E- el := e;

call lowerbound (mi, n\, t, A, b, (El,el,l = 1,2,...,£), x, 0, zj; 

call optimality-cut (m2, n2, K, M, q, F, x, E, e, Q);
end while; 

end.



optimality-cut:

input:
m2; n2\ K\ M; q; F; x.

output:
E\ e; Q.

begin
E:=0-e := 0; 
for k := 1 to K do 

w := hk - Tkx- 

{solve the Ip

find y >Q such that 
qTy is minimized, and 

My = w
to obtain dual maximizer u} 
E := E + pK(Tk)Tv, 
e := e + pk(hk)Tv\ 

end do;
<2 := e — ETx-, 

return; 
end.

lowerbound:

input:
mi; ni; t; A\ b; El, el, / = 1,2,

output:
x; 9] z.

begin

{solve the Ip

find x > 0, 0 € such that
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cTx + 0 is minimized, and 

Ax = b,
(E1)tx + 0> ez, / =

z := cTx + 9;

return;
end.

In exact arithmetic, Algorithm 2.1 terminates after a finite number of iterations of the 
‘while 9 < Q do’ loop with 9 = Q. We refer the reader to Van Slyke and Wets (1969) 
for details of Algorithm 2.1 including this finite termination property. We mention however, 
that Algorithm 2.1 utilizes the fact Q has the representation

Q(x) = maxfe* — (El)Tx : / = 1,2,..., T}, x £ {x : Ax = b, x > Q}

so that problem (1) could be written as

find x G 9?”1, 0 G 3? such that 
(?x + 0 is minimized, and 

Ax = b,
(El)Tx + 9> e', /= 1,2,...,T, 

x > 0

for appropriate El G 3£ni, e* G / = 1,2,..., T v/here T is finite. The routine optimality-cut 
generates the ‘cuts’ (E,)Tx + 9 > el one at a time. The routine lowerbound therefore solves 

increasingly less relaxed (i.e. using not all the constraints, (El)Tx + 0 > e*, / = 1,2,..., T) 

versions of (1). Consequently, x, 0 returned by routine lowerbound are such that 0 < Q(x) 
and therefore, if 0 = Q(x) then x must be a minimizer of problem (1). Of course, the hope 
is that we shall satisfy this condition well before generating all T cuts, since T is usually 
large.

3. A Parallel Benchmark Version of Algorithm 2.1

We begin by noting that almost all of the computational work in Algorithm 2.1 is done 

in routines lowerbound and optimality-cut. The work in routine optimality-cut essentially 

involves solution of the K Ip’s in its ‘do loop’. The work in routine lowerbound essentially 
involves the solution of a single Ip. In general therefore, when the number of realizations
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K is large, the computational work in Algorithm 2.1 is dominated by the computational 

work in routine optimality-cut. Routine optimality-cut of course is obviously parallelizable, 
and consequently, when K is large, we may expect to observe good parallel performance of 
Algorithm 2.1, simply by parallelizing routine optimality-cut. The purpose of this section 
is to state a parallel version of Algorithm 2.1, keeping in mind the need of a benchmark 
mentioned in Section 1.

Algorithm 2.1 needs an Ip solver and certain features of the parallel version of Algorithm 
2.1 that we describe here are motivated by the Ip solver DPLO that we have decided to use. 
Before we state the parallel version of Algorithm 2.1, we therefore briefly mention certain 
pertinent features of DPLO. DPLO is a double precision Fortran subroutine for solving linear 

programs using the Revised Simplex Method (see Dantzig (1963)). It is the current version 
of the subroutine DPLP (single precision versions of DPLO and DPLP are named SPLO 
and SPLP respectively), written by R. J. Hanson and K. L. Hiebert. The reader is referred 
to the paper by Hanson and Hiebert (1981) for details on DPLP and SPLP.

The ability to exploit sparsity in the constraint matrix of the Ip, the availability of an 
optional restart procedure (for solving an Ip starting with the information at optimality of 
a related Ip solved previously), robustness, portability and availability of software in public 
domain were the main reasons for our choice of DPLO. Ability to exploit sparsity is important 
for being able to solve problems with large dimensions. DPLO uses the routines of Reid 
(1976) for handling sparse linear programming bases through sparse LU factors. The restart 
procedure is useful for handling the Ip’s solved by routines lowerbound and optimality-cut.

DPLO maintains the constraint matrix of a given Ip, and the LU factors of the current 
Ip basis using certain sparse data structures. Suppose that a user wishes to solve an Ip, and 
after its solution wishes to solve another Ip related to the previous one (of same dimensions). 
He can then use DPLO as follows. He can solve the first Ip from scratch, and then use 
an option of DPLO that allows him to write the sparse data structure representing the 
constraint matrix and the column indices of the optimal basis on to a disk file. He can then 
call DPLO to solve the second Ip, using another option of DPLO that would allow him to 
read the information saved on the disk file and to start the computations with the basis 
specified by the column indices saved.

We wish to emphasize three points regarding the above solution process. First, DPLO 
allows the possibility of the two Ip’s having different constraint matrices, and therefore, as 
part of the solution of the second Ip, the sparse LU factors of the starting basis is formed. 
Of course, if the constraint matrices of the two Ip’s were the same, (as in the context of the 
Ip’s in routine optimality-cut) then this computation is unnecessary, as the LU factors of the
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optimal basis of the first Ip is available at the end of its solution. Secondly, the basis specified 
by the column indices saved may not be feasible for the second Ip. DPLO uses a penalty 
method (see pp. 12, 13 of Hanson and Hiebert (1981)) to handle this situation. Hanson and 
Hiebert (1981) (see p. 13) state that this procedure “almost always will reach an optimal 

solution with fewer iterations”, relative to a solution from scratch. Thirdly, DPLO performs 
disk writes and reads in connection with this restart procedure, partly to save high speed 
memory, and partly to allow the user to use information at optimality of the first Ip, when 
the second Ip is solved in a different program. If one solves the two Ip’s in the same program, 
and high speed memory limitations are not a problem, then the expensive disk writes and 
reads are unnecessary.

We now describe our benchmark parallel version of Algorithm 2.1. Consider the routine 
optimality-cut first. Suppose that we have nprocs processors available. We parallelize the 
routine optimality-cut by dividing the K Ip’s equally among the nprocs processors for solution 
in parallel. We say that a processor would handle a ‘bunch’ of Ip’s. The Ip corresponding 
to the smallest k (loop index) value in a bunch is solved from scratch using DPLO. The 
remaining Ip’s in the bunch are solved using the restart procedure of DPLO, modified as 
follows. Since disk reads and writes are time consuming we introduced a new option to 
DPLO which when turned on will use data in high speed memory to retrieve information 
about the previously solved Ip when the restart procedure is invoked, rather than reading 
that information from disk. Since the Ip’s in routine optimality-cut have the same constraint 
matrix, when using the restart procedure to solve an Ip in the routine, we do not need to 

form the LU factorization of the starting basis. We therefore introduced a second additional 
option to DPLO, which when turned on will make the restart procedure retrieve the LU 
factorization of the starting basis from high speed memory, rather than forming it. Thus, 
the Ip’s in the bunch other than the one corresponding to the least k value are solved using 
the restart procedure of DPLO with both these new options turned on.

Consider now the implementation of routine lowerbound. Prior to the first call to lower- 
bound in Algorithm 2.1, the Ip

find x € 3?”1 such that 

c a; is minimized, and 

Ax - b 

a: > 0

(2)

needs to be solved. Suppose that we decide to place a limit maxcut on the number of cuts
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to be added by Algorithm 2.1. Then (2) may be written as

find x £ 3?ni,0 € such that 

c x + 0 is minimized, and

Ax + 6 = b (3)

(El)Tx + 0 > el, / = 1,2,..., maxcut

x > 0

where = 0, = 0 for / = 1,2,..., maxcut. When a call is made to routine lowerbound
with 1 < f < maxcut, an Ip of the form (3) needs to be solved, where El, e1, l — 1,2,... ,t will 
have values generated by calls to optimality-cut and El = 0, el = 0, l = t+l,t+2,..., maxcut. 

In our implementation we therefore solve the Ip in routine lowerbound, using the restart 
procedure of DPLO as follows. We first solve Ip (2), treating it in the form (3), from scratch. 
Routine lowerbound solves its Ip using the restart procedure of DPLO with the new option 
that prevents disk reads turned on. The fact that the (mi + f)-th row of the constraint 
matrix changes to [(Et)T, 1] from a row of zeros can be specified to DPLO as part of this 

restart procedure. We however, cannot use the LU factorization of the optimal basis of the 
Ip of the form (3) solved prior to this call to lowerbound. We therefore do not turn on our 
new option that prevents DPLO from forming the LU factorization of the starting basis.

For the stopping criterion in Algorithm 2.1 we use the following in our parallel version.

jg-f' < to, 
max{ 1, |<2|}

where tol is a prescribed tolerance, we terminate.

We can now state our benchmark parallel version of Algorithm 2.1.

Algorithm 3.1: (Benchmark Parallel Version of Algorithm 2.1) 

input:
mi; ni; m2; n2; K\ A; c; 6; M; q-, F := ((hk,Tk),pk),k = 1,2,...,K)- 

nprocs; maxcut] tol.

output:
X] z.

begin
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/* begin initializations */ 
t := 0;
/ := 1 to maxcut do 

El := 0; el := 0; 

end do;
{call DPLO to solve the Ip 

find a: > 0, 0 € 3i such that 
(?x -f 0 is minimized, and 

Ax = 0,
(E‘)T x + 0 > e^, / = 1,2,..., maxcut from scratch}; 

call optimality .cut (m2, U2, K, M, q, F, x, nprocs, E, e, QJ;
< := f + 1;
E* := E; ex := e;
call lowerbound (m\, n\, t, A, b, (El,el,l = 1,2,... ,t), maxcut, x, 0, z)-, 

call optimality-cut (m2, n2, K, M, q, F, x, nprocs, E, e, QJ;
/* end initializations */ 
while \Q — 0|/max{l, |Q|} < tol do 

t := t 1;
if t > maxcut then

{report that more cuts than maxcut need to be added and stop}; 
else

Ex := E; e* := e;
call lowerbound (mi, ni, t, A, b, (E1, el,1 — 1,2,..., t), maxcut, x, 0, z) 

call optimality-cut (m2, n2, K, M, q, F, x, nprocs, E, e, Q);
end if; 

end while; 
end.

optimality-cut:

input:
m2; U2! K] M; q; F; x; nprocs.

output:
E; e; Q.
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begin
i? := 0; e := 0;
bnchsz := \_K/nprocs\‘,
for bunch := 1 to nprocs in parallel do

for k := {bunch — 1) • bnchsz + 1 to ma,x{bunch • bnchsz, K} do 
w:=hk - Tkx]

if fc = {bunch — 1) • bnchsz + 1 then 
{call DPLO to solve the Ip 

find y > 0 such that 
qTy is minimized, and 

My = w
from scratch to obtain dual maximizer u); 

else

{call DPLO with restart procedure and with new options to prevent 
disk reads, and to prevent forming LU factorization of initial basis 
to solve the Ip

find y > 0 such that 
q^y is minimized, and 

My — w
to obtain dual maximizer u); 

end if;
E := E + pK{Tk)Tv, 
e := e + pk{hk)Tv, 

end do; 
end do;
Q := e — Etx; 

return; 
end.

lowerbound:

input:
mi] n\] t] b] El] el, l — 1,2, maxcut.

output:
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x\ 0] z.

begin
{call DPLO with restart procedure, and with new option to prevent 
disk reads, and with a specification that (mi + £)-th row of constraint 
matrix changes to [(.E*)^, 1], to solve the Ip 

find a: > 0, # G such that 
cTx + 0 is minimized, and 

Ax = b,
(El)Tx + 0 > e*, / = 1,2 ..., maxcut}; 

z := cTx + 6] 

return; 
end.

4. The Experiment

We have developed a FORTRAN implementation of Algorithm 3.1 on the 
Sequent/Balance. The only portion of the code that needs parallelization, as indicated in 
the statement of Algorithm 3.1, is that portion representing the outer ‘do loop’ in routine 
optimality-cut. That parallelization was done using the ‘doacross’ compiler directive on the 
Sequent, as described in Chapter 4 of Sequent Guide to Parallel Programming (1987).

In the rest of this section we describe a computational experiment that we have performed 

with the implementation on problems of the form (1) satisfying assumptions (Al), (A2) and 
(A3). All computations were done in double precision arithmetic.

The test problems for the experiments were generated using the test problem generator 
GENSLP of Kail and Keller (1985). Once the user specifies the problem dimensions mi, 
ni, m2 and n2, ranges for elements of vectors and matrices, and densities for the matrices, 
GENSLP generates the deterministic data A, b, c, q and M with elements of vectors and 
matrices uniformly distributed in the ranges specified. GENSLP guarantees that M it gen­
erates satisfies (A2), and that the set {a: : Ax = 5, a; > 0} is nonempty. Note that we can 
ensure that {x : Ax = 5, x > 0} is bounded by selecting the range for the elements of A so 
that they are positive. Assumption (A3) can be satisfied by simply selecting the range for 
the elements of q so that these elements are nonnegative. If GENSLP cannot generate A 
and M so that they have the densities specified, it reports the densities it has been able to 
achieve.

GENSLP does not generate the distribution F for (/i,T). However, it has the following
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mechanism so that the user can generate a distribution F for (h,T). GENSLP treats that 
h and T satisfy

h = a0 + J2SJaJ (4.1)
j=l

T = A° + ^2 SML (4.2)

1=1

In (4.1), (4.2), cP G 3?m2, A-7 G 3J7n2X"1 for j = 0,are generated randomly by 
GENSLP once the user specifies the nonnegative integer k, the ranges for the elements of aJ 
and A3, and the density for the matrices A3, j = 0,1,..., /c. (If GENSLP cannot generate 
A3, j = 0,1,..., k so that they have the density specified, it reports the density it has 
been able to achieve.) S3, j = 1,2, ...,k are univariate random variables for which the 
user can specify univariate distributions, thereby inducing a multivariate distributions on 
(h,T). In this experiment two discrete multivariate distributions on {h,T) are generated 
using the univariate binomial and Poisson distributions as follows. (These distributions were 
first described in Lessor (1988) in connection with an experiment on the performance of the 
algorithms of Ariyawansa, Sorensen and Wets (1987).) First a positive integer vector r G 
is selected, where rj is the number of realizations desired for S3, j = 1,2, ...,/c. Let 
be the i-th realization of S3 and let := Pr({S'-? = }); i = 1,2,..., ry; j = 1,2,..., k.
Note that if and Pij; i — 1,2,... ,rj] j = 1,2, ...,/c are available then the following 
multivariate distribution on (h,T) can be described. Suppose that ij is any integer such 

that 1 < ij < rjm, j = 1,2, ...,/c, and let i := [*i, *2) • • • G/cj £ NK. Then the integer /c-tuple 
i defines the unique realization, say (hk,Tk) of (h,T) via (4.1) and (4.2), where S3 := 
j = 1,2, ...,/c, with probability pk = Uj^P^j. There are K := such different

integer /c-tuples and corresponding realizations (hk,Tk) of (h,T). It is not too difficult to 
verify that Ylk=iPk — L 80 that F := ((hk ,Tk),pk), k = 1,2,..., AT indeed is a distribution 

on (h,T). Note also that by appropriately selecting the value of r, the value of K can be 
controlled.

It now remains to specify the way Sij and P,y; i = 1,2,... ,rj\ j — 1,2, ...,/c are 
generated. Suppose that the discrete distributions {or S3, j — 1,2,..., /c are on a common 

range [a:,f3], where a, (3 (E $1, at < (3 are given. Then two distributions are specified by 
selecting and Pij, i = 1,2,... ,rj; j = 1,2,..., k as follows.

(i) Binomial-related distribution on (h,T):
Suppose that p G (0,1) is given and that rj > 1. Then let

Sij --------—(i-l)-t-a and
vj ~ G
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*-= (7:i1)(l-p)"'v'1’

for i — 1,2,..., ry. This is repeated for j = 1,2,...,

(ii) Poisson-related distribution on (h,T):
Suppose that A £ A > 0 is given and that ry > 1. Then let

Sij := ~l) + a for i = 1,2,...,(rj - 1);
vj L)

pij '■= ^ _A^, /or z = 1,2,..., (ry - 1);

srjj := /?; and 

O-1
:= 1 - E Pij-

i=l

This is repeated for y = 1,2,..., /c.

The random number generator used in conjunction with GENSLP is that of Schrage 
(1979). The description of the test problems of the form (1) used in the experiment is now 
complete.

As mentioned in Section 3, the Ip solver used is the subroutine DPLO of Hanson and 
Hiebert (1981). The numerical tolerances pertinent to DPLO that were important in ob­
taining the numerical results reported here are ‘TUNE’, ‘FACTOR’ and ‘TOLABS’. ‘TUNE’ 
and ‘FACTOR’ are used in determining if an Ip is feasible with respect to a relative toler­
ance, while ‘TOLABS’ is used in determining if an Ip is infeasible with respect an absolute 
tolerance if the relative tolerance criteria cannot be met.

The experiment that we have performed consists of four parts: (a), (b), (c) and (d). 
Part (a) may be treated as a base case. Parts (b), (c) and (d) differ from part (a) in a single 
key factor that may affect the performance of Algorithm 3.1. The aim therefore is to be 

able to see whether conclusions on the performance of Algorithm 3.1 can be made with due 
consideration of these factors.

We first describe part (a) of the experiment. It involves four problem sizes: (i), (ii), (iii) 
and (iv). The corresponding values of problem dimensions are indicated in Table 4.1.
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problem
size

problem dimensions random number
seedmi n\ m2 n2

(i) 40 60 10 15 7756915
(ii) 60 88 15 22 5489721
(iii) 80 120 20 30 552119
(iv) 100 148 25 37 82353

Table 4.1 Problem dimensions and random number seeds

For each problem size, we used a binomial-related distribution with K := 100, 1000 and 
10000. Values /c := 3 and p := 0.4 were used for all three K values. Values of a, [3, n, r2 
and ra used are indicated in Table 4.2.

K a P n r2
100 -112.0 128.0 5 5 4
1000 -52.0 68.0 10 10 10

10000 -10.0 26.0 25 25 16

Table 4.2 Distribution parameters that depend on K

For each problem size (i), (ii), (iii) and (iv), and for each value of K 100, 1000, 10000 we 
generated 3 problems of the form (1) using GENSLP. The ranges for elements of A, c, <7, M, 
and a-7, A\ j = 0,1,2, 3 were specified as in Table 4.3 below.

data variable range for elements
A
c
q
M
a0
j # 0
A0

A-7 , j + 0

[0.5,5]
[0.5,1000/m!]

[0.1,10]
[1,50]

[60,180]
[50/k, 150/k] 

[m/n^OO/ni] 
[120/(niK),200/(ni/c)]

Table 4.3 Ranges for problem data elements specified to GENSLP

The densities specified to GENSLP for the matrices ^1, M and A7, j = 0,1,2,3 were 20%, 
40% and 10% respectively. Our aim is to obtain cpu time that Algorithm 3.1 and routine 

optimalityjcut take, when Algorithm 3.1 is run parallely and sequentially with the same
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value of nprocs, on the same problem. It is to allow for the variation of timing results due to 
randomness of data produced by GENSLP that we generated three problems for each case 
specified by problem size and value of K. Cpu time values that we report are average values 
computed using three values observed for the three problems. In Table 4.1 we also indicate 
the random number seed that we specified for each problem size, so that our experiment is 
repeatable. (We did not change this seed for different K values for the same problem size.)

In order to complete the description of part (a) of the experiment, we now specify the 
values of the tolerances TUNE, FACTOR and TOLABS used for DPLO, and the values 
of tol and maxcut used for Algorithm 3.1. The values TUNE := 100e, FACTOR := 1, 
TOLABS := y/e, tol := y/e and maxcut := 15 were used. Here e is the largest relative 
spacing for double precision floating point numbers and is approximately 0.222 x 10-15 for 
the Sequent.

In Tables 4.4 and 4.5 we report the parallel and sequential cpu time values observed when 
nprocs := 7. In Table 4.6 we report the resulting speed-up values. Note that in Algorithm 
3.1, we parallelize only routine optimality-cut, and therefore, more calls to optimality .cut 
would help improve the speed-up values. In order that the reader can put the speed-up 
values reported into proper perspective, in Table 4.6 we also record the number of cuts 
added by Algorithm 3.1 (= number of calls to optimality .cut — 1). As one would expect 
both overall and optimality-cut speed-up values improve as K increases for a given problem 
size. The overall speed-up values around 5.5 achieved for K := 10000 on a 7 processor 
machine are encouraging.

Throughout part (a) of the experiment we kept the densities of the matrices A, M and 
A}, j = 0,1,..., k at the values stated above. Note that decreasing the density of A relative 
to the density of M is likely to improve the speed-up values. In part (b) of the experiment we 
investigated this hypothesis by repeating part (a) with density of A specified as 2.5% with 
all other details unchanged. Tables 4.7, 4.8 and 4.9 respectively indicate the information 
corresponding to Tables 4.4, 4.5 and 4.6, when this change is made. As expected, overall 
speed-up values improve.

Part (c) of the experiment is designed to see the effect of the distribution form on 
the performance. In part (c), we therefore repeated part (a) with the binomial-related 
distribution replaced by a Poisson-related distribution (keeping all other details unchanged) 
as follows. The parameter A of the underlying Poisson distribution was set at 3.0. The 

performance results are as indicated in Tables 4.10, 4.11 and 4.12. Comparing these three 
tables with the corresponding tables for part (a), we observe that the speed-up values for 
parts (a) and (c) are similar.
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Finally, we investigated the effect of the number processors on the performance by re­
peating part (a) with nprocs 14 (but with all other details unchanged). At this point it 
should be mentioned that parts (a), (b) and (c) of the experiment were performed on the 
Sequent/Balance at the Department of Computer Science of Washington State University. 
This computer is configured with 10 processors. Therefore, part (d) was performed on the 
Sequent/Balance at the Advanced Computer Research Facility, Argonne National Labora­
tory, Argonne, Illinois. The latter computer has 24 processors. The results of part (d) are 
tabulated in Tables 4.13, 4.14 and 4.15.

As mentioned earlier, if GENSLP cannot generate a problem with the densities specified 
for A, M and A1, j = 0,1,..., ac, then it reports this fact and the densities it has been able 
to achieve for these matrices in the problem it generated. In all parts of the experiment 
GENSLP was able to achieve the densities we specified for these matrices.



problem
size

overall parallel cpu time (sec) when K is optimality-cut parallel cpu time (sec) when K is
100 1000 10000 100 1000 10000

(0
(ii)
(iii)
(iv)

1.3069 x 102 
6.5846 x 102 
1.1959 x 103 
3.2918 x 103

3.4976 x 102 
1.3522 x 103 
2.1727 x 103 
7.1409 x 103

2.2542 x 103 
6.5616 x 103 
9.5141 x 103 
2.1286 x 104

3.8683 x 101 
1.3253 x 102 
1.8606 x 102 
4.3730 x 102

2.6030 x 102 
8.5357 x 102 
1.1614 x 103 
3.5840 x 103

2.1640 x 103 
6.1249 x 103 
8.5694 x 103 
1.8812 x 104

Table 4.4 Part (a) of experiment: parallel cpu time

problem overall sequential cpu time (sec) when K is optimality-cut sequential cpu time (sec) when K is
size 100 1000 10000 100 1000 10000
0) 3.1102 x 102 1.7040 x 103 1.3315 x 104 2.1906 x 102 1.6146 x 103 1.3225 x 104
(ii) 1.2751 x 103 5.8787 x 103 3.8976 x 104 7.4731 x 102 5.3800 x 103 3.8539 x 104
(iii) 1.9569 x 103 7.9039 x 103 5.1742 x 104 9.8651 x 102 6.9294 x 103 5.0839 x 104
(iv) 5.5268 x 103 2.6114 x 104 1.1802 x 105 2.4847 x 103 2.2263 x 104 1.1539 x 105

Table 4.5 Part (a) of experiment: sequential cpu time

problem overall speed-up when K is optimality-cut speed-up when K is no. of cuts added when K is
size 100 1000 10000 100 1000 10000 100 1000 10000
0) 2.37 4.87 5.91 5.66 6.20 6.11 2, 2, 2 2, 2, 2 2, 2,2
(ii) 1.94 4.35 5.94 5.64 6.30 6.29 6, 4,1 4, 5,2 5, 2,2
(iii) 1.64 3.64 5.44 5.30 5.97 5.93 2, 2, 3 2, 2,3 2, 2,2
(iv) 1.68 3.66 5.54 5.68 6.21 6.13 2, 6,2 2, 10, 2 2,4,2

Table 4.6 Part (a) of experiment: speed-up values and no. of cuts added



problem
size

overall parallel cpu time (sec) when K is optimality-cut parallel cpu time (sec) when K is
100 1000 10000 100 1000 10000

(i)
(ii)
(iii)
(iv)

7.6072 x 101 
1.5943 x 102 
4.7303 x 102 
5.9763 x 102

3.0042 x 102 
1.1306 x 103 
2.6342 x 103 
1.8929 x 103

3.0532 x 103 
1.2295 x 104 
8.6025 x 103 
1.6342 x 104

5.2394 x 101 
1.1391 x 102 
3.1238 x 102 
3.7702 x 102

2.8200 x 102 
1.0553 x 103 
2.4233 x 103 
1.7213 x 103

3.0274 x 103 
1.2186 x 104 
8.5256 x 103 
1.6156 x 104

Table 4.7 Part (b) of experiment: parallel cpu time

problem overall sequential cpu time (sec) when K is optimality-cut sequential cpu time (sec) when K is
size 100 1000 10000 100 1000 10000
0) 3.1583 x 102 1.8145 x 103 1.8953 x 104 2.9228 x 102 1.7962 x 103 1.8927 x 104
(ii) 6.7912 x 102 6.7202 x 103 7.6310 x 104 6.3366 x 102 6.6447 x 103 7.6201 x 104
(iii) 1.9418 x 103 1.6022 x 104 5.6620 x 104 1.7820 x 103 1.5811 x 104 5.6544 x 104
(iv) 2.1976 x 103 1.0621 x 104 1.0084 x 105 1.9743 x 103 1.0448 x 104 1.0065 x 105

Table 4.8 Part (b) of experiment: sequential cpu time

problem overall speed-up when K is optimality.cut speed-up when K is no. of cuts added when K is
size 100 1000 10000 100 1000 10000 100 1000 10000
(i) 4.15 6.04 6.21 5.58 6.37 6.25 5, 2, 2 2, 3, 2 2, 2,6
(ii) 4.26 5.94 6.21 5.56 6.30 6.25 3, 2, 3 2, 9,2 2, 7, 10
(iii) 4.11 6.08 6.58 5.70 6.52 6.63 2, 10, 2 2, 13, 3 2 2 2
(iv) 3.68 5.61 6.17 5.24 6.07 6.23 2, 2,5 9 9 2 3 2 2

Table 4.9 Part (b) of experiment: speed-up values and no. of cuts added



problem
size

overall parallel cpu time (sec) when K is optimality.cut parallel cpu time (sec) when K is
100 1000 10000 100 1000 10000

0)
(ii)
(in)
(iv)

1.3341 x 102 
4.4245 x 102 
1.1315 x 103 
3.5647 x 103

3.5300 x 102 
1.5515 x 103 
2.0047 x 103 
5.6141 x 103

2.2567 x 103 
6.0375 x 103 
1.1561 x 104 
1.7436 x 104

3.8733 x 101 
8.4394 x 101 
1.6858 x 102 
4.9032 x 102

2.6030 x 102 
9.7851 x 102 
1.0478 x 103 
2.7281 x 103

2.1675 x 103 
5.6459 x 103 
1.0483 x 104 
1.5378 x 104

Table 4.10 Part (c) of experiment: parallel cpu time

problem overall sequential cpu time (sec) when K is optimality-cut sequential cpu time (sec) when K is
size 100 1000 10000 100 1000 10000

0) 3.1352 x 102 1.7076 x 103 1.3347 x 104 2.1893 x 102 1.6149 x 103 1.3257 x 104
(H) 8.3443 x 102 6.7179 x 103 3.5868 x 104 4.7706 x 102 6.1442 x 103 3.5473 x 104
(iii) 1.8030 x 103 7.1793 x 103 6.3529 x 104 8.9432 x 102 6.2723 x 103 6.2489 x 104
(iv) 6.0442 x 103 1.9933 x 104 9.5863 x 104 2.7361 x 103 1.6789 x 104 9.3696 x 104

Table 4.11 Part (c) of experiment: sequential cpu time

problem overall speed-up when K is optimality-cut speed-up when K is no. of cuts added when K is
size 100 1000 10000 100 1000 10000 100 1000 10000
0) 2.35 4.84 5.91 5.65 6.20 6.12 2, 2,2 2, 2, 2 2, 2,2
(ii) 1.89 4.33 5.94 5.65 6.28 6.28 3, 2,1 4, 7,2 3, 3, 2
(iii) 1.59 3.58 5.50 5.31 5.99 5.96 2, 2,2 9 9 9 3, 2, 3
(iv) 1.70 3.55 5.50 5.58 6.15 6.09 2, 7,2 2, 6, 2 2, 2, 2

Table 4.12 Part (c) of experiment: speed-up values and no. of cuts added



problem
size

overall parallel cpu time (sec) when K is optimality.cut parallel cpu time (sec) when K is
100 1000 10000 100 1000 10000

(i)
(ii)
(iii)
(iv)

1.1472 x 102 
6.0517 x 102 
1.1223 x 103 
3.1156 x 103

2.2629 x 102 
9.4863 x 103 
1.6211 x 103 
5.4538 x 103

1.2062 x 103 
3.5677 x 103 
5.3568 x 103
1.2063 x 104

2.2361 x 101 
7.5894 x 101 
1.0463 x 102 
2.5897 x 102

1.3662 x 102 
4.4951 x 101 
6.1158 x 102 
1.9179 x 103

1.1159 x 103 
3.1299 x 103 
4.4061 x 103 
9.5813 x 103

Table 4.13 Part (d) of experiment: parallel cpu time

problem overall sequential cpu time (sec) when K is optimality.cut sequential cpu time (sec) when K is
size 100 1000 10000 100 1000 10000

(i) 3.1620 x 102 1.7282 x 103 1.3417 x 104 2.2372 x 102 1.6384 x 103 1.3326 x 104
(ii) 1.3222 x 103 5.9778 x 103 3.9135 x 104 7.9166 x 102 5.4763 x 103 3.8696 x 104
Oii) 2.0152 x 103 8.0491 x 103 5.2092 x 104 1.0423 x 103 7.0697 x 103 5.1194 x 104
(iv) 5.6231 x 103 2.6609 x 104 1.1882 x 105 2.5423 x 103 2.2678 x 104 1.1617 x 105

Table 4.14 Part (d) of experiment: sequential cpu time

problem overall speed-up when K is optimality .cut speed-up when K is no. of cuts added when K is
size 100 1000 10000 100 1000 10000 100 1000 10000
0) 2.76 7.64 11.12 10.00 11.99 11.94 2, 2, 2 2, 2, 2 2, 2, 2
(ii) 2.18 6.30 10.96 10.43 12.18 12.36 6, 4,1 4, 5,2 5, 2, 2
(iii) 1.80 4.97 9.72 9.96 11.56 11.61 2, 2, 3 2, 2,3 2 ? ?
(iv) 1.80 4.88 9.85 9.82 11.82 12.12 2, 6,2 2, 10, 2 2, 4,2

Table 4.15 Part (d) of experiment: speed-up values and no. of cuts added
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5. Conclusion

We have described a simple, parallel version of the Van Slyke and Wets (1969) algorithm 
for two-stage stochastic programs with recourse. We have also described an implementation 
of that algorithm on the Sequent/Balance, and the results of a carefully designed numerical 
experiment with the implementation on random test problems generated by the test problem 
generator of Kali and Keller (1985).

The parallel implementation described in the paper was motivated by the need of a 
benchmark to assess the performance of parallel, approximate algorithms that are being 
developed by the first author. The numerical results presented indicate that the bench­

mark implementation parallelizes well. They also indicate that even with the use of parallel 
processing, meaningful stochastic programs can take prohibitively large amounts of compu­

tation for solution. Thus, they demonstrate the need for exploiting both parallelization and 
approximation for the solution of stochastic programs.

We conclude this paper with the following two comments. First is that an alternative way 
to solve the Ip’s in routine optimality-cut of Algorithm 3.1, is to use the Dual Simplex Method 
(see Dantzig (1963)). An implementation of the Dual Simplex Method is not available as part 
of DPLO and therefore we used the restart procedure described above. The second comment 
we wish to make is that techniques termed ‘bunching’ are described by Wets (1982) for the 
solution of the Ip’s in routine optimality-cut of Algorithm 3.1. The performance of algorithms 
based on these techniques have not been studied carefully, especially on parallel processors. 
We plan to perform a careful study of the performance of such algorithms relative to the 
benchmark implementation described in this paper.
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