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ABSTRACT

The customary time-dependent Hartree-Fock problem is shown to be ambiguous

up to an arbitrary function of time additive to

H

HF?

and, consequently, up

to an arbitrary time-dependent phase for the solution, ®(t). The 'constant

<H>" phase is proposed as the best resolution of this ambiguity.- It leads

to the following attractive features: (a) the Time-Dependent Hartree-Fock

Hamiltonian, WHF R

becomes a quantity whose expectation value is equal to

the average energy and hence constant in time;" (b) eigenstates described

exactly by determinants, have time-dependent Hartree-Fock solutions identical

with the exact time-dependent solutions; (c) among all possible T.D.H.F.

solutions this choice minimizes the norm of the quantity .(H - #3/at) |¢>, and

guarantees optimal time evolution over an infinitesimal period; (d).this

choice corresponds both to the stationary value of the absolute difference

between <H> and <ifid/3t> and simultaneously to its absolute minimal value

with respect to choice of the time-dependent phase. The source of the ambiguity

is discussed. It lies in theAtime—dependent generalization of the freedom to
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transform unitarily among the single-particle states of a determinant at

the (physically'ifreleVant for stationary states) cost of altering only a
factor of unit magnitudé.

KEYWORD ABSTRACT , ) :
NUCLEAR REACTIONS. Phase ambiguity in time-dependent Hartree-Fock method

resolved by constant <> condition for modified

Hartree-Fock Hamiltonian.
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1. CUSTOMARY ‘TIME-DEPENDENT HARTREE-FOCK PROBLEM IS PHASE AMBIGUOUS

The variational principlel_s (where H is the!eiact'Hamiltonian)j
§I =6 [ <y|(H-1Ha/dt")|¥>de" = 0, (1)
t .
1

when resﬁrictedAto single determinantal solutions, leads to the conditions
. + " .
<ad(c)am(t)q>(t).|ﬁ—iha/at|q>(t)> =0, (LeF, 0odF), (2)

where F is the set of single-particle states in the determinant, ®(t). Thence
" — A 7,8-13
the "customary" time-dependent Hartree-Fock problem :
0 e
Fuple (1o (0)> = e (t)> (3)

in which the "customary" Hartree-Fock Haﬁiltonian;:ff;F; is the sum of A
time-dependent singlé—particle Hamiltonians of the form given by Dirac.3 In
particular,JVEF, in second guantized form, is a ﬁure one-body operator involv;ng
no additive C-pumber -function of time.

However,'~the ACOﬁditions (2) are satisfiéd not"only by
solutions ¢ of (3), but also by the solutiéns, ¢, of any equation obtained
by replacing j?gF by | |

| }(HF = j{;F + B(t) B (4)
where B(t) is an arbitrary real C—numbervfuﬁgtion of time. The solutions d(t)
and éo(ty are reléﬁéd by

t .
e(t) = 0. (t) exp{-i/t . [ dt' B(t')} = ¢_(t) explif(t)}  (5)
- . t -

o
so that the freedom to choose B(t) corresponds to the freedom to
select an arbitrary time-dependent C-number as a complex.phase in the solution 9.

For this reason, we refer to the customary T.D.H.F. problem (in which B(t)

is implicitly chosen to be zero) as '"phase ambiguous.'’
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‘We néte (a) that the exact time-dependent échrﬁdinger initial value problem
exhibits no sﬁch time—deéendeﬁt phase ambiguity,14‘ arnd (b) that ;any treatment of a
' time-dependent problem in which two or moreAwave functions. are additively com- ;ef
biﬁétls-is may be affected by the time-dependent phases of those wave functions. It
folioﬁs therefore that fhe resolution of this phase aﬁbiguity in T.D.H.F.
prOmiseé‘praétical cpnsequences; |

The anstruction of the one-body density malrix, p, from the T.D.H.F.
wave fuhction.suppressesthe physicai information containeﬂ in the time—dépen-
dént C—ﬂumbe; phase of the wave function, ¢, This is evident from'the fart’
‘that the reéulting3 éqﬁivalenf of the‘T,D.H.F; equation (3);

| tho = Y2 ol . ()

is unaffected by a transformation of the form (4). It folloﬁs that the density
matrix formulation of T.D.H.F. must "close" the description hy pfpr1nding the
in;ofpofétioﬁ of Qave functions other than the T.D;H.F. solution into the
aescription. Althdﬁghrseveral approximate wave functions can be combined to
yield a unidue dénsity matrix, several approximate deneity matrices can not,

unless an additional statement supplies the information carried by the (relative)

'time—dependent phases of the corresponding wave functions.

2. '‘RESOLUTION OF THE T.D.H.F. PHASE AMBIGUITY FOR AN ETGENSTATE
To resolve the choice of B(t), and of £(t) in Eq. (5), consider a case
. 19
wheré some determinant, Xg is the ground state eigenfunction of -the exact
Hamiltonian, H,
Hxy, = E X, | (7)

Then the exact solution, ¥, of the Schrbdinger time-dependent problem which

reduces at t = to to the) initial value X is



U yiZiey = fems - 1iE - : .
; W(g,t) = {exp 1E0(t to)/ﬁ}xo. (8)
Since the energy of an eigenfunction is certainly stationary with respect
to arbitrary variations of the wave function, X must "be the least energy
solution of the stationary Hartree-Fock problem, and an'eigenfunction of the

Hartree-Fock Haﬁiltohian,zo

o =
HigrXo = €6 %o 2
In the Hartree-Fock approximation the timg—dependent problem becomes
(Hop+B(OIeG, ) = iRd(x, 1) : (10)
with éolqtion'
- ., . t >
d(x,t) =.{exp-1/ﬁ[eo(t-to) +. f B(t')dt']}@(x;to). (110
| A _ A t,
Then the choice
t : )
. LAY U - . -t .
Lo ,tj B(t")dt' = [E -e ]+ (t-t) ‘ (12)
0
or, for the arbitrary function, B(t), the choice .
. i . [o] ’
= o= - = -— . >
B(t) B(to) E0 € H j(HF-’ : (l%)

guarantees that the Hartree-Fock solution to this time-dependent problem is

identically equai to the exact solution2i?22

3. 'GENERAL RESOLUTION OF PHASE AMBIGUITY: CONSTANT <3f> I.D.H.F.
The.choice (l2)—(l3) for B suggests thé following prescription for the
genepél time—déﬁendept Hartree-Fock problem: :
B = <o) G-HoG e lew>. e
Witﬁ this choice the T.D.H.F, probleﬁ becomés

= [%©° o 'A_ g
[Hpple = ¥ pp + <H-F >0 = e, - (15)

[



It is remarkable that there follows the relationship,
< > = <H> = E. . :
HNep H> = E (16)
. . . ' . 3 is <M > t& ¢
Since <H> is conserved during the T.D.H.F. evolution,” so is < HF for this

"constant <F>" choice of B(t). We consider this serendipitous feature to

constitute a strong recommendation for this "constant <X*>" resolution of

@
the ambiguity, (4).

4, MINIMIZATION OF ''HE ERROR NORM AMONG T.N.H.F. & OLUTIONE
A plausible dlternative to (1) as variational principle for T.D.H.F.

is to require that the determinant, ¢, be chosen so that the quantity

(H - iha/at) | &> ' én
. . 23 .
have a minimal norm; that is, that : : ‘
‘ ‘ :
CIoo= <(H-#h8/3t) 8 ()| (H - #13/0t) o(t)> (18)

N

w
be a minimum with respect to variation of ¢(t). Unfortunately, this variational
A A N
3 .

principle does not in general yield the T.D.H.F. formulation, ‘unless applied
in an appropfiately restricted subspace.26 However, as an &hxiliary criterion
for selecting among the set of phase ambiguous TaD.H.F.§£0rmulations,-(4), the
condition (18) seems a'reasohabie optimiéer. For solutions of thelform (11),

P T Y Zz ’
Iy = {B(‘t)+~2-.z an;mn} + [VOT;mnl . (19)

IN hecomes

me F mn € F
' neF ot ¢ F
Thus, its minimization with respect to choice of B(t) selects.
Bt = - 7 z : W )= -2V (), o (20)
-2 Led " 'mn;mn 2 HF ? . ‘ ‘ A

ne F



a cheice which is identically equal to ‘that given by (13), since

Y R S R DR (21)

meF
neF

5. OPTIMAL CORRESPONDENCE WITH EXACT TIME EVOLUTION FOR SHORT INTERVAL

As a final recommendation for the "constant <H>'" T.D.H.F. formulation, we
note that the exact solution specified initially by the determinant, @(Q,to),
can be described at t = to + At by the Taylor series

v = ] HED @G ) (22)

whereas the Hartree-Fock approximant is

0Gt) = [ SEH M Gt ). e

The additive function B(t) in'JVﬁF can be chosen so ‘that the leading non-zero

L3

term (propecrtional to At) in the difference overlap,

> > ' > At 2
<‘P(X,C)|(‘P(X,t) - @(X,t))> =0 + E{ <H - WHF> + 0[ (At )], (24)
vanishes. This leads again to the "constant <¥>" choice specified by Egs. 14,

as

(18), and (21). For an infinitesimal time step, this is the same condition

was applied to the eigenfunction case in Sect. 2.

6. A NEW PRINCIPLE: A STATIONARY, AND MINIMAL, ABSOLUTE VALUE INTEGRAL
Besides the operational advantages already cited, the specific time-
dependent Hartree-Fock Hawiltonian (15), and the corresponding :choice of
the time derivative, invite a reformulation of the variational basis of T.D.H.F. -
In particular, the quantity
<:¢|(,H—_i‘h.a/at)[<1>> = <<1>I(H—’}(HF)I<I>> =0 | (25)
vanishes identically for the choice (14). Thus, if the’variationalfquantityt

(1) were replaced by its absolute value,
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1, = [<e()| @- #K3/at) [e(r)>], Co (26)

this "constant ~<¥¥>" cﬂoice qf phase would guérantee that'IA realizes

its abéofﬁte minimal value (zero). One sees.therefore that the requirements

that the variational quantity IA be (a) stationary with respect to infinitesimal
variations of the determinant, ®, plus the additional condition that (b) it

be minimal with respect to the time-dependent C-number phase of ¢, yields
immediately the~unambigu6ﬁs "constant <H>" ngtree;Fock formulation (15),leadiﬂgto'
the solution (11) with B(t') given by (145. Since the variational quantity

(26) yields a natural ﬁasis to apply the auxiliaf& condition for a minimum,

whereas ﬁrinciple (1) provides a contiquous sét of stationary solqtions.

but offers no basis whatsoever for preferring any particular one of them, the

quantity (26) with the conditions (a) and (b) would appear to provide:a formu-

lation of T.D.H.F. superior to that of variational principle (1).

7. ORIGIN OF THE PHASE AMBLGULLY

Why does the T.D.H.F. system exhibit such a phase .ambiguity? We note
the fac;, well known.ih.stationary state Hartree-Fock theory, that an arbitrary
unitary tran;formation among the single-particle states of a stationary Hartree-
Fock determinant leads to no alteration of the physical description: adding
to any row of a determinan; any linear combination of its other rows effects
no change whatsoever in the determinant, apart from a physically inconsequen-
tial constant multiplicative factor (which must; to preset&e the normalization,
be of unit magnitude).

In the time~dependent framework, this same property of determipants allows
. an arbitrary time-éependent unitary transformation; which leads once again |

to the same determinant except for a (now time-dependent) factor of umit
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magnitude. Thﬁs, the origin of the phase ambiguity of T.D.H.F. is seen to
lie in this same property of determinants, and is therefore, a posteriori,

unsurprising.

8. SUMMARY AND CONCLUSTIONS

The'custbmarf T;D.H.F. fofmulation has been shown tbrbe‘phase ambiguous,
A particular "constant <Tﬂ;" specification of the arbitrary function of time
which defines tﬁe'phase of the T.D.H.F. solution haszbeen suggested. Several
ways in which this choice seems convenient and advantageous are noted, including
a new absoiute vglued variati&nal'quantity whoée'stationary values gives the
customary T.D.H.F;, and whose (unique) minimal value corresponds to the
"constant <X}¥>" choice of the phése. This phase ambiguity arises from a

property of determinants which trivializes in the stationary case.
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