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Abstract 

Using the general expression for the ponderomotive Hamiltonian, 
we obtain the quasi-static quasi-neutral density change caused by the 
ponderomotive force of a cold magnetoplasma wave of arbitrary frequency 
and polarization: 

|2 
6 n ( x ) = - fe>r - i*x)i-

4Tr(Te + T±) 

This formula agrees with and extends previous resul t s for unmagnetized 

and magnetized plasma. 
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In studying the modulation of a finite-amplitude plasma wave, 
a number of authors have calculated the quasi-static quasi-neutral 
second-order density perturbation produced by the ponderometive force 
of the modulation. With the representation 

((i(x,t) = *(x) exp (-ioit) + c.c. (1) 

for a longitudinal magnetoplasma wavt, the result 

Ml) . - w*>r ( 2 ) 
4n(T e + T ±) 

p has been obtained by Itorales and Lee for lower-hybrid waves, and 
by Shukla for electron maghetoplasma waves. The former authors 
remarked on the identity of formula (2) with the familiar expression 
for Langmuir wave modulation in unmagnetized plasma. 

It is natural to inquire into the universality of formula (2). 
In this paper, we show that it does indeed apply to any longitudinal 
cold-plasma wave (for a single ion species ); i. e., the three 

5 ~ A. 

solutions3 u(e) of eL((i),6) = 0, where e L
 s k • g(to) • k. 

More importantly, we show that formula (2) can be simply 
generalized to apply to a cold plasma wave of any polarization, i. e., 
to a rave with non-zero V x E . Here we use a local plane-wave 
representation 
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E_(.x,t) = E ( x ) , e p ( I i • x. - iort) + c . c , (3a) 

with I (xJ = ( c / u ) k x £ . (3b) 

The generalization, derived below, i s 

* , ) = - l i M 2 - 1^ ) ' 2 (4) 
4i t (T e + T±) 

We note f i r s t tha t i t reduces to (2) when B̂  = 0 . Secondly, for the 

transverse unmagnetized case, where 

| B | 2 = (kc/oO 2 | E | 2 = (1 - ( o 2 / U

2 ) | E | 2 , 

formula (4) becomes 6n/n = - (e 2/ma) 2) l E ^ / t T + T J ) , the 
7 

familiar result. 
Formula (4) can be used for any cold-magnetoplasma wave, 

g 
e. g., lower hybrid in the electromagnetic region , fast-magnetosonic-

9 - 10 whistler , Alfven , ordinary and extraordinary, etc., so long as 
(3b) is a valid approximation. (When it is not, use formula (10) 
below.) 

Our derivation begins with the standard expression for the 
quasi-static density perturbation, of species s, caused by the pondero-

12 motive potential energy ¥ (x) of an oscillation center and by the 
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self-consistent electric potential $(x): 

«n_(x) *_(x) + e *(x) 
-lp- = --2-= S _ — . (5) 

s s 

For two species (electrons and singly-charged ions), we impose quasi-
neutrality (6n = Sn., n = n.) to eliminate $, and obtain the re­
lation 

T e * T. 
(6) 

13 Our expression for V (x) is based on a useful relation 
14 for the ponderomotive Hamiltonian of an oscillation center. In 

the cold-species limit, Eq. (3) of Ref. (13) reduces to 

*£*) *a<i) = " U*)" 1 £*<£> " £ < £ > • Si>' ^ 

with the representat ion E(x , t ) = E(jc) exp (-itut) + c. c , 
15 where Y i s the well-known cold-species suscep t ih i l i ty . (We note 

t ha t x i s proportional t o density, so t h a t ""¥ i s density-indepen­

dent; but the dependence of x o n possibly nonuniform magnetic 

f i e ld B (x) appears i n '*.) 
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. Insert ing (7) in to (&)>. we have 

fin (x) = . =2 = ^ - . (8) 
4ir(Te + T ± ) 

Now we use the field equation 

(~C + &,> ' £ ^ = _ I (^ } + ( i c / u ) v x B(x), (9) 

where B(jc) = (c/iw) v *E(x), to obtain 

6n(x) = - !**>! - -lJB(x)r - (c/aQlm V - 1 (x) x B(X) _ ( 1 Q ) 

4ir(Te + ?±) 

Finally, for a local plane wave, with E(x:) = E(jc) exp ii • x_ 
and (3b), one may drop the complex Poynting term in (10), as higher 
order in kvXn E; the result is then Eq. (4). 

Two points should be kept in mind in applying (4): second-
order magnetic perturbations may be of significance ; and the quasi-

17 static assumption may he invalid. 
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