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Abstract. The numerical methods employed in the solution of many scientific computing problems require the computation
of derivatives of a function f ; R n _ Rm. Both the accuracy and the coInputational requirements of the derivative computation

are usually of critical importance for the robustness and speed of the ntunerlcal method. ADIFOR (Automatic Differentiation

In FORtran) is a source translation tool implemented using the data abstractions and program analysis capabilities of the
ParaScope Parallel Progranuning Enviromnent. ADIFOR accepts arbitrary Fortran-77 code defining the computation of a

function and writes portable Fortran-77 code for the computation of its derivatives. In contrast to previous approaches,
ADIFOR views automatic differentiation as a process of source translation that exploits colnputational context to reduce

the cost of derivative computations. Experimental results show that ADIFOR can handle real-life codes, providing exact
derivatives with a running time that is competitive with the standard divided-dlfference approximations of derivatives and

which may perfonn orders of magnitude faster than d.lvided-differences in cases. The computationM scientist using ADIFOFt is
freed from worrying about the accurate and efficient computation of derivatives, even for complicated 'functions,' and, hence,
is able to concentrate on the more important issues of algoritlun design or system modeling.
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The methods employed for the solution of many scientific computing problems require the evaluation of
derivatives of some function f that is usually represented as a computer program not in closed form. 03' C
Probably best known are gradient methods for optimization [13], Newton's method for the solution of .--t
nonlinear systems [13], and the numerical solution of stiff ordinary differential equations [8]. These methods 0
are examples of a large class of methods for numerical computation, where the computation of derivatives is 2:
a crucial ingredient in the numerical solution process. O-n

A conventional compiler extracts from the Fortran source code for computing a function a sequence of -t
unary and binary operations and elementary functions and decisions which can be executed to compute the -:I£(o
function values. More sophisticated compilers extract from the source code information which allows some of tD
the computations to be executed efficiently on vector or parallel computers. Stetter has observed that in many 1:)
applications, high quality scientific computing requires the extraction of more mathematical information OC
than just the function values [34]. For example, Neumaier [27] listed 15 mathematical properties (including
derivative values, Lipschitz constants, enclosures, asymptotic expansions) which might be propagated along 171
with the values of the variable. :7-4

Automatic. differentiation takes advantage of the fact that the source code also contains information about
derivatives of the function. ADIFOP_ (Automatic Differentiation In FORtran) [3] augments the original C
source code with additional statements that propagate values of derivative objects in addition to the values 7"t-
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if x(1) > 2 then

a = x(1)+x(2)
else

a = x(1)*x(2)
endif

doi= i, 2

a = a*x(i)

end do

y(1) = a/x(2)

y(2) = sin(x(2))

Figure 1: Sample program for a function f ' x H y

of the variables computed in the original code. Given a Fortran subroutine (or a collection of subroutines)
for a hmction f, ADIFOR produces Fortran-77 subroutines for the computation of the derivatives of f.

For discussion, we assume that f ' x 6 lt' _ _ y 6 R, and that we want to compute the derivatives of

y with respect to z. We call z the independent variable, and y the dependent variable. While the terms
'dependent', 'independent', and 'variable' are used in many different contexts, this terminology corresponds
to the mathematical use of derivatives. There are four approaches to computing derivatives [16]'

By Hand: As the problem complexity increases, tkis approach becomes i-creasingly difficult and error-
prone.

Divided-differences: The derivative of f with respect to the ith component of x at a part'cular point

z0 is approximated by either one-sided differences or central differences. Computing derivatives by
:livided-differences has the advantage that we treat the function as a 'black box.' The main drawback
of divided-differences is that their accuracy is hard to assess. A small step size h is needed for properly

approximating derivatives, yet may lead to numerical cancellation and the loss of many digits of
accuracy. In addition, different scales of the zi's may require different step sizes for the various
parameters.

Symbolic Differentiation: This functionality is provided by symbolic manipulation packages such as
Maple, Reduce, Macsyma, or Mathematica. Given a string describing the definition of a function,
symbolic ,nanipulation packages provide exact derivatives, expressing the derivatives all in terms of
the intermediate variables. Symbolic differentiation is a powerful technique, but it may derive poor
computational recipes, and may run into resource limitations when the function description is compli-
cated. Functions involving branches or loops cannot be readily handled by symbolic differentiation.

Automatic Differentiation: Automatic differentiation techniques rely on the fact that every function, no
matter how complicated, is executed on a computer as a (potentially very long) sequence of elementary

operations such as additions, multiplications, and elementary functions such as sin and cos. By applying
the chain rule

over and over again to the composition of the elementary operations, one can compute derivative
information of f exactly (up to machine precision, of course), in a completely mechanical fashion that
avoids the potential pitfalls of divided-differences. The techniques of antomatic differentiation are

directly applicable to functions with branches and loops.

We illustrate automatic differentiation with an example. Assume that we have the sample program shown

in Figure 1 for the computation of a function f : l=t2 --. R 2. Here, the vector x contains the independent
variables, and the vector y contains the dependent variables. The function described by this program is

defined except at x(2) = 0 and is differentiable except at x(1) = 2.



it x(1) > 2.0 then
a = x(1)+x(2)

Va = Vx(t) + Vx(2)
else

a = x(1)*x(2)
Va = x(2) * Vx(1) + x(1) * Vx(2)

endi_

f doi=l, 2

temp = a
a = a * x(i)

Va = x(i) * Va + temp* Vx(i)
end do

y(1) = a/x(2)
XTy(i) = 1.0/x(2) * Va- a/(x(2)*x(2)) * Vx(2)
y(2) = sin(x(?))

_y(2) = cos(x(2))* Vx(2)

Figure 2' Sample program of Figure 1 augmented with derivative code

We can transform this program into one for computing derivatives by associating a derivative object
Vt with every variable t. Assume that Vt contains the derivatives of t with respect to the independent
variables x,

Vt --- _ .
ox(2)

We can propagate these derivatives by using elementary differentiation arithmetic based on the chain rule
: [16, 29] for computing the derivatives of y(1) and y(2) as shown in Figure 2. In this example, each assignment

to a derivative is actually a vector assignment of length 2.

This mode of automatic differentiation, where we maintain the derivatives with respect to the inde-
pendent variables, is called the forward mode of automatic differentiation. The reverse mode of automatic

differentiation maintains the derivative of the final result with respect to an intermediate quantity. These
quantities, usually referred to as adjoinls, measure the sensitivity of the final result with respect to some
intermediate quantity. This approach is closely related to the adjoint sensitivity analysis for differential

equations that has been used at least since the late sixties, especially in nuclear engineering [9, 10], weather
forecasting [26], and even neural networks [35].

The reverse mode requires fewer operations than the forward mode if the number of independent variables
is larger than the number of dependent variables. This is exactly the case for computing a gradient, which

can be viewed as a Jacobian m,._trix with only one row. This issue is discussed in more detail in [16, 18, 20].
Despite its advantages from a complexity point-of-view, the implementation of the reverse mode for the
general case is quite complicated, lt requires the ability to access in reverse order the instructions performed

for the computation of f and the values of _heir operands and results. Current tools (see [24]) achieve this
by storing a record of every computation performed. An interpreter performs a backward pass on this
"tape." The resulting overhead often dominates the complexity advantage of the reverse mode in an actual

implementation (see [14, 15]).
We also note that even though we only showed the computation of first derivatives, the automatic

differentiation approach can easily be generalized to the computation of univariate Taylor series or Hessians

and multivariate higher-order derivatives [12, 17, 29].
This discussion is intended to demonstrate that the principles underlying automatic differentiation are

not complicated: We just associate extra computations (which are entirely specified on a statement-by-
statement basis) with the statements executed in the original code. As a result, a variety of implementations

of automatic differentiation have been developed over the years (see [24] for a survey).
Most of these implementations implement automatic differentiation by means of operator overloading,

which is a language feature of several modern programming languages, including C++, ADA, Pascal-XSC,
and Fortran 90. Operator overloading provides the possibility of associating side-effects with the elementary



arithmetic operations. For example, the addition of the derivative vectors that is required in the forward
mode can be associated with each addition '+' in the user's program. Operator overloading also allows for a

simple implementation of the reverse mode, since the "tape" can be created as a by-product of tile evaluation
of f. The only drawback is that for straightforward implementations, the length of the tape is proportional to
the number of arithmetic operations performed by f [20, 5]. Recently, Griewank [18] suggested an approach
to overcome this limitation through clever checkpc inting.

Nonetheless, for all their simplicity and elegance, there are two fundamental drawbacks with operator
overloading approaches:

' Loss of context: Since ali computation is performed as a by-product of elementary operations, it is very
difficult, if not impossible, to perform optimizations that transcend one elementary operation. The
resulting disadvantages, especially those associated with the exploitation of parallelism, are discussed

in [2].

Loss of Efficiency: The overwhehning majority of codes for which computational scientists want deriva-
tives are written in Fortran-77 which does not support operator overloading. While we can emulate

operator overloading by associating a subroutine call with each elementary operation, this slows down
computation considerably, and usually also imposes some restrictions on the syntactic structure of the
code that can be processed. Examples of this approach are DAPI_E [28, 33], GRESS/ADCEN [22, 23],
and JAKEF [21]. Experiments with some of these systems are described in [32],

2 Hybrid Mode of Automatic Differentiation

We believe that the lack of efficiency of previously existing automatic differentiation tools has prevented
automatic differentiation from becoming a standard tool for mainstream high performance computing, even

though there are numerous applications where the need for accurate first and higher-order derivatives has es-
sentially mandated the use of automatic differentiation techniques and prompted the development of custom-
tailored automatic differentiation systems (see [19]). For the majority of applications, however, existing auto-
matic differentiation implementations have provided derivatives substantially slower than divided-difference

approximations, discouraging potential users.
Since the efficiency of computing derivatives is so crucial to the success of automatic differentiation for

large applications, we are developing ADl [;'OR, an automatic differentiation tool for Fortran, with the explicit
goal of computing derivatives efficiently. Due to the demands that ADl FOR. deliver exact derivati yes fast in
order to be considered as a tool for serious high performance computing we have adopted a hybrid approach

to computing derivatives that is generally based on the forward mode, but uses the reverse mode to compute
the gradients of assignment statements containing complex expressions. The hybrid mode is effective because
assignment statements often compute a single dependent variable given the values of multiple independent
variables, an ideal case for the reverse mode, and because, for this restricted case, the reverse mode code
can be implemo.nted entirely as inline code, hence there is no need to construct the "tape."

Let us use an example to illustrate the advantages of the hybrid mode. Consider the statement

w:: -y/(z, z, z),

where y and z depend on the independent variables. We have already computed Vy and Vz and now wish

to compute Vw. By breaking up this compound statement into unary and binary statements and applying
the chain rule to each statement, we get the Forward Mode code shown in Figure 3.

There is another way, though. The chain rule tells us that

Ow Ow

Vw = _ * Vy + _ * Vz.

aw
Hence,ifwe know the 'local'derivatives(_,-gT-) ofw with respecttoz and y, we can easilycompute

Vw, the derivatives of w with respect to x. The 'local' derivatives (_-_-y,_;) can be computed efficiently
using the reverse mode of automatic differentiation. In the reverse mode, let tbar denote the adjoint object

ow aw _ 1.0 Wecorresponding to t. The goal is for tbax to contain the derivative gi-' We know that wbar = o--_



Forward Mode: Reverse Mode:

tl = - y tl = - y
V tl = - _7 y t2 = z • z
t2 = z * z t3 = t2 * z

V t2 = V z * z + z * V z w = tl / t3
t3 = t2 * z tlbar = (I / t3)

V t3 = _ t2 * z + t2 * V z t3bar = (- tl / t3)

= tl / t3 t2bar = t3bar * z

w = (_7 tl - Xy t3 * w) / t3 zbar = t3bar * t2
zbar = zbar + t2bar* z
zbar = zbar + t2bar* z

ybar = - tlbar
x7w = ybar * i7 y + zbar* V z

Figure 3: Forward versus reverse mode in computing derivatives of _ = -y/(z*z*z)

can compute ybar and zbax by applying the following simple rule to the statements executed in computing
_, but in reverse order:

if s- f(t), then tbar +=sbar* (df/dt)
if s - f(t,u), then tbar += sbar * (df/dt)

ubar += sbar * (df/du)

b sing this simple recipe (and some simple optimizations), we generate the Reverse Mode code shown in
Figure 3.

The forward mode code in Figure 3 requires space for three auxiliary gradient vectors and contains four
w, :tor assignments. In contr_t, the reverse mode code requires space for five scalar auxiliary adjoint objects
al I has only one vector assignment.

3 ADIFOR, Design and Implementation

AIL)IIFOI_has been developed within the context of the ParaScope Parallel Programming Environment [11]
tb_tl, combines dependence analysis with interprocedural analysis to support ambitious interprocedural code

ol_timization and semi-automatic parallelization of Fortran programs. While our primary goal is not code
op_i_mization or parallelization of Fortran programs, ParaScope provides us with a Fortran parser, data
ab_;ractio_ls for representing Fortran programs and sophisticated facts derived from Fortran programs, and
toos for constructing and manipulating those representations. In particular, ParaScope tools compute

,:. data flow facts for scalars and regular array sections,

, dependence graphs for array elements,

, ,,:ontrol flow graphs,

,, c, _nstant and symbolic facts, and

• _,call graph.

Th,_' data dependence analysis capabilities are critical for determining which variables need to have
derivat_ _,eobjects associated with them, a process we call variable nomination. Only those variables z whose

values c!epend on an independent variable x and influence a dependent variable y need to have derivative
informal_ion associated with them. Such a variable is called active. Variables that do not require derivative

informat_ion are called passive. Interprocedurally, variable nomination proceeds in a series of passes over

the pro_,_'am call graph using an 'interaction matrix' for each subroutine which represents which input
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parameters or variables in common blocks influence which output parameters or variables in common blocks.
This analysis is also crucial in determining the sets of active/passive variable binding contexts in which each
subroutine may be invoked. Take, for example, the following code for computing y = 3.0 * x * x:

subroutine threexx (x,y)
call prod(3.0,x,t)
call prod(t.x,y)
end

subroutine prod (x, y, z)
z=x*y
end

In tile first call to prod, only tile second and third of prod's parameters are active, wherea+._in the second
call, ali variables are ac.+.ive. ADIFOI_ recognizes this situation and performs procedure cloning to generate

different augmented versiovs of prod for these different contexts. The decision to do cloning based on
active/passive variable context will eventually be b_ed on an assessment of the savings made possible
by introducing the cloned procedures, in accordance with the goal-directed interprocedural transformation
approach being adopted within ParaScope [7].

Another advantage of basing ADIFOR within a sophisticated code optimization framework is that mecha-
nisms are already in place for simplifying the derivative code that we generate by application of the statement-
by-statement hybrid mode translation rules. By applying constant folding and forward substitution, we
eliminate multiplications by 1.0, additions of 0.0, and reduce the number of variables that must be allocated

to hold derivative values [1].
In summary, ADIFOR proceeds as follows:

1. The user specifies the subroutine that corresponds to the 'function' for which he wants derivatives, as
well _ts the variable names that correspond to 'dependent' and 'independent' variables. These names
can be subroutine parameters or variables in common blocks. In addition to the source code for the
'function' subroutine, the user must submit the source code for all subroutines that are directly or

indirectly called from this subroutine.

2. ADIFOR parses the code, builds the call graph, collects intraprocedural and interprocedural depen-
dency information, and determines active variables.

3. Derivative objects are allocated in a straightforward fashion" Derivative objects for parameters are
again parameters, derivative objects for variables in common blocks and local variables are again
allocated in common blocks and as local variables, respectively.

4. The original source code is augmented with derivative statements - the reverse mode is used for

assignment statements, the forward mode overall. Subroutine calls are rewritten to propagate derivative
information, and procedure cloning is performed as needed.

5. The augmented code is optimized, eliminating unnecessary arithmetic operations and temporary vari-
ables.

The resulting code generated by ADIFOR_ can be called by user programs in a flexible manner to be
used in conjunction with standard software tools for optimization, solving nonlinear equations, or for stiff

ordinary differential equations. A discussion of calling the ADIFOR-generated code from users' programs in
included in [4].

4 Using ADIFOR

The issues of 'ease of use' and 'portability' have received scant attention in software for automatic differ-

entiation. In many applications, the 'function' whose derivatives we want to compute is a collection of
subroutines, and ali that really should be expected of the user is to specify which of the variables correspond
to the 'independent' and 'dependent' variables. In addition, the code generated by automatic differentiation
should be easily transportable between different machines.
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ADIFOI% takes those requirements into account. Its user interface is simple, and the AD1FOR-generated
code is efficient and portable. Unlike previous approaches, ADIFOP_ can deliver this functionality because it
views atttomatic differentiation from tile outset as a source transformation problem. The goal is to automate

and optimize the source translation process that was shown in very simple examples of the previous section.
By taking a source translator view, we can bring the many man-years of effort of the compiler community
to bear on this problem.

ADIFOF_ differs from other implementations of automatic differentiation (see [24] for a survey) by being
based on a source translation paradigm, and by having been designed from the outset with large-scale codes

and the need fbr highly efficient derivative computations in mind. ADIFOR provides:

Portability: ADIFOP_ produces vanilla Fortran-77 code. ADIFOl_-generated derivative code does not
require any run-time support and can easily be ported between different computing environments.

Generality: ADIFOR supports ahnost ali of Fortran-77, including nested subroutines, common blocks, and

equivalences.

Efficiency: ADIFOR-generated derivative code is competitive with codes which compute the derivatives by
divided-differences. In most applications we have run, the ADIF'OR generated code is faster than the
divided-difference code.

Preservation of Software Development Effort: The code produced by ADIFOlZ respects the data flow

structure of the original program. That is, if the user invested the effort to develop code that vectorizes
and parallelizes well, then the ADIFOR-generated derivative code also vectorizes and parallelizes well.
In fact, the derivative code offers more scope for vectorization and parallelization.

Extensability: ADIFOR employs a consistent subroutine naming scheme that allows the user to supply
its own derivative routines. In this fashion, the user can exploit domain-specific knowledge, exploit

vendor-supplied libraries, and speed up computational bottlenecks.

Ease of Use: ADIFOR requires the user to supply the Fortran source code for the subroutine representing
the hmction to be differentiated, and for all lower-level subroutines. The user then selects the vari-

ables (either in parameter lists or common blocks) that correspond to the independent and dependent
variables. ADIFOR then determines which other variables throughout the program require derivative

information. A detailed description of the use of ADIFOR-generated code appears in [4].

Imtuitive Interface: An X-windows interface for ADIFOR. (called 'xadifor') makes it easy for the user to

set up the ASCII script file that ADIFOR reads. This functional division makes it easy both to set
up the problem and to rerun ADIFOR, if changes in the code for the target function require a new
translation.

Using ADIFOt{, one then need not worry about the accurate and efficient computation of derivatives,
even for complicated 'functions.' As a result, the computational scientist can concentrate on the more
important issues of algorithm design or system modeling.

5 Experimental Results

In this section, we report on the execution time of ADIFOR-generated derivative codes in comparison with
divided-difference approximations of first derivatives. While the ADIFOR system runs on a Sparc platform,
the ADIFOR-generated derivative codes are portable and can run on any computer that has a Fortran-77

compiler.
The problems named 'camera', 'micro', 'heart', 'polymer', 'psycho', and 'sand' were' given to us by Janet

Rogers, National Institute of Standards and Technology in Boulder, Colorado. The code submitted to
ADIFOtZ computes elementary Jacobian matrices that are then assembled to form a large sparse Jacobian
matrix that is used in an orthogonal-distance regression fit [6]. The code named 'shock' was given to us

by Greg Shubin, Boeing Computer Services, Seattle, Washington. This code implements the steady shock
tracking method for the axisymmetric blunt body problem [30]. The Jacobian has a banded structure and the



Problem Jacobian Code Div-Diff ADIFOR ADIFOFt Machine

Name Size Size Run-time I_un-time Improve-

(lines) (seconds) (seconds) ment
'Camera :2 x 13........ 97 1.8:2.... 1.81 0.5% ...... RS6000

Camera 2x 13 97 8.19 13.87" -69% Spare4/490
Micro .L 4x20 i53 6.39 3.35 47% ' RS6000

Micro 4 x 20 153 23.0 16.17 30% Spare 4/490

" ' Polymer 2 x 6 34 3.12 1.20 62% RS6000
Polymer " 2x6 34 .... 9.18 .... 4.84 47% Spare4/490......

Psycho 1 x 5 26 0.70 0.38 46% RS6000

....Psycho ' 1 x5 26 2.95 1.49 .... 49% Spai:c4/490
Sand" ' 1 x 4 _2'4" 0.16 0.07 56% ' RS6000

.......

:_ Sand 1 x 4 . 24 ..... 0:36 0.18 50% Spare 4/490

Table 1: Performance of ADI FOR-generated derivative codes cornpared to divided-difference a.pl_roximations
on orthogonal-distance regression examples

Problem Jacobian Code Div-Diff ADIFOI{ ADIFOR Machine

Name Size Size Run-time Run-time Improve-

(lines) (seconds) (seconds) merit
Reactor 3 x 29 1455 42.34 36.14 15% Sparc 4/490
Reactor 3x 29 1455 i3.34 8.33 38% ' ' P_S6'00cJ"

AdiabatiC" 6 x 6 1'089 0.5,i 0.18' 67% Sparcl

Iteart 1 x 8 1305 11641.1 i39_11.30 -20% Sparcl
Shock 190 x190 '.403 0.041 0.023 44% = RS6000

Shock 190 x i90 1403 0.46 .... 0.31 .... }i3% Sparcl.....

Table 2: Performance of ADIFOR-generated derivative codes compared to divided-difference approximations

compressed Jacobian has 28 columns, compared to 190 for the 'normal' uncompressed Jacobian. The code
named 'adiabatic' is from Larry Biegler, Chemical Engineering, Carnegie-Mellon University and implements

adiabatic flow, a common module in chemical engineering [31]. L_tly, the code named 'reactor' was given
to us by Hussein Khalil, Reactor Analysis and Safety Division, Argonne National Laboratory. While the
other codes were used in an optimization setting, the derivatives of the 'reactor' code are used for sensitivity

analysis to ensure that the model varies gracefully with certain key parameters.
Table 1 and Table 2 summarize the performance of ADIFOR-generated derivative codes with respect to

divided-differences. These tests were run on either a Sparcstation 1 a Spare 4/400 or an IBM 1_$6000/550.l I

The numbers reported in Table 1 are actually for 10000 evaluations of the Jacobian, while those in 'Fable 2

i are for a single evaluation of the Jacobian.

The column of the tables labeled "ADIFOR Improvement" indicates the percentage improvement of the

- running time of the ADIFOR-generated derivative code over an approximation of the divided-difference

i running times. For the 'shock' code, we had a derivative code based on sparse divided-differences supplied to
us. In the other cases, we estimated the time for divided-differences by multiplying the time for one function

" evaluation by the number of independent variables. This is conservative, yet fairly typical in an optimization

where the function value already has been computed for other An improvement greater
setting, purposes.

than 0 % indicates that the ADIFOR-generated derivatives ran faster than divided-differences,
The percentage improvement for the 'camera' problem indicates a stronger than expected dependence

of running times of ADIFOR-generated code on the choice of compiler and architecture. In fact, the 69%
degradation in performance on the 'camera' problem is a result of the Spare compiler missing an opportunity
to move loop-invariant cos and sin invocations outside of loops, as occurs in the following ADIFOR-generated
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code:

C cteta = cos(par(4))

d$0 = par(41
ao 99969 g$!I$ = I, g$p$

g$cteta(gl!_i$) = -sin(aS0) * g$par(g$i$, 4)
99969 continue

cteta = cos(d$0)
!

ADIFOI'%willeventuallymove loop-iilvariantcodeoutsideofthevectorloops.
r .

We see that already in its current version, ADIFOR performs well in competition with divided-differences.
We also see Lhat ADIFOR can handle problems where symbolic techniques would be almost certain to fail
such as the 'shock' or 'reactor' codesi

ADIFOR-generated derivatives cim also outperform hand-code derivatives. Consider, for example, the
swirling flow problem from the MINI_I!ACK-2 test problem collection [25]. The problem consists of a coupled

system of boundary value problems d!_scribing the steady flow of a viscous, incompressible, axisymmetric fluid
between two rotating, infinite coaxia;l disks. The number of variables in the resulting optimization problem

depends on the discretization. Figulle 4 shows the performance of the hand-coded derivative code supplied
as part of the original swirling flowl code and that of the ADIFOR-generated code, properly initialized to
exploit the sparsity structure of the jacobian. On an RS6000/320, the ADIFOR-generated code significantly
outperforms the hand-coded derivatNes. On one processor of the Cray YMP/18, they perform comparably.
The values of the derivatives computed by the ADIFOR-generated code agree to full machine precision with
the values from the hand-coded derivatives. The accuracy of the divided-difference approximations, on the
other hand, depends on the user's careful choice of a step size.

IBMRS6000/320
' ' ''handcod_d ' " ' :; 'I '! /

I..............t._,..-..l...A,::,,_,s_/o_,_,_,..,¢o_,_...........!.............t............._.......
2_- i i i i i i i /'f. .
t..............!.............._................J................!................i...............!...............¢................FS.:. ............

•_ _ J , i J i ,, , l/ I
_1:..............r...............!................!................'.................,............................I":S ......, !.............

t..............i........ .........!.............:i:::::0 ' ' .............. _............ _......... T°'_ ...... '*'_"...... '_
0 200 400 600 800 I000 1200 1400 1600 1800

order of Jacobian

0.04 , , , Cray Y(MP, 1 prvoc_sor , , ,

i _ i i J i i

o.o...........................................i..............
o.oiJ-.. !"_'!i..............i............i-..:::::"2;.;.........._...............i..............i.................j..............,4
oi,, , , , , 1 t , t .!o 200 4o0 600 8oo ,ooo 12oo_40o I_oo ,8oo

ordc'r of Jacobian

Figure 4: Swirling Flow Jacobian

6 Conclusions and Future Work

We conclude that ADIFOR-generated derivatives are a more than suitable substitute for hand-coded or
divided-difference derivatives. Virtually no time investment is required by the user to generate the codes. In

most codes, ADIFOR-generated codes outperform divided-difference derivative approximations. In addition,
the fact that ADIFOR computes exact derivatives (up to machine precision), may significantly increase the
robustness of optimization codes or ODE solvers where good derivative values are critical for the convergence
of the numerical scheme.

There are many improvements that we are planning for ADIFOR. The most important are
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• Generation of code to compute second and higher-order derivatives as required by many applications
in numerical optirnization,

• Automatic detection of sparsity,

• Increased use of _he inline version of the reverse mode for better performance, and

• Integration with parallel programming models such as Fortran-D.
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