‘>

(- 920730 -4

ADIFOR. Working Note #4:

ADIFOR : Fortran Source Translation
for Efficient Derivatives:

Christian Bischof?

Alan Carle! ANL/CP--75260
George Corliss!
Andreas Griewank! DE92 016187

Paul Hovland!

Argonne Preprint MCS-P278-1291

Abstract, The numerical methods employed in the solution of many scientific computing problems require the computation
of derivatives of a function f : R™ — R™, Both the accuracy and the computational requirements of the derivative computation
are usually of critical importance for the robustness and speed of the numerical method. ADIFOR (Automatic Differentiation
In FORtran) is a source translation tool implemented using the data abstracticns and program analysis capabilities of the
ParaScope Parallel Programming Environment. ADIFOR accepts arbitrary Fortran-77 code defining the computation of a
function and writes portable Fortran-77 code for the computation of its derivatives. In contrast to previous approaches,
ADIFOR views automatic differentiation as a process of source translation that exploits computational context to reduce
the cost of derivative computations. Experimental results show that ADIFOR can handle real-life codes, providing exact
derivatives with a running time that is competitive with the standard divided-difference approximations of derivatives and
which may perform orders of magnitude faster than divided-differences in cases. The computational scientist using ADIFOR is
freed from worrying about the accurate and efficient computation of derivatives, even for complicated ‘functions,’ and, hence,
is able to concentrate on the more important issues of algorithin design or system modeling.

Key words., Large-scale problems, derivative, gradient, Jacobian, automatic differentiation, optimization, stiff ordinary
differential equations, chain rule, parallel, ParaScope Parallel Programming Environment, source transformation and optimiza-

tion,

1 Automatic Differentiation

The methods employed for the solution of many scientific computing problems require the evaluation of
derivatives of some function f that is usually represented as a computer program, not in closed form.
Probably best known are gradient methods for optimization [13], Newton’s method for the solution of
nonlinear systems [13], and the numerical solution of stiff ordinary differential equations [8]. These methods
are examples of a large class of methods for numerical computation, where the computation of derivatives is
a crucial ingredient in the numerical solution process.

A conventional compiler extracts from the Fortran source code for computing a function a sequence of
unary and binary operations and elementary functions and decisions which can be executed to compute the
function values. More sophisticated compilers extract from the source code information which allows some of
the computations to be executed efficiently on vector or parallel computers. Stetter has observed that in many
applications, high quality scientific computing requires the extraction of more mathematical information
than just the function values [34]. For example, Neumaier [27] listed 15 mathematical properties (including
derivative values, Lipschitz constants, enclosures, asymptotic expansions) which might be propagated along
with the values of the variable.

Automatic differentiation takes advantage of the fact that the source code also contains information about
derivatives of the function. ADIFOR (Automatic Differentiation In FORtran) [3] augments the original
source code with additional statements that propagate values of derivative objects in addition to the values

*This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. De-
partment of Energy, under Contract W-31-109-Eng-38, through NSF Cooperative Agreement No. CCR~8809615, and by the
W. M. Keck Foundation.

tMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60430.

tCenter for Research on Parallel Computation, Rice University, P. O. Box 1892, Houston, TX 77251.

1 4O NOILNGIYLSIa

H

i
@)
O

WNOo

m
z
.-{
&
C
pa
C
3
L

@ B The submitted manuscript has been authored
‘) by a contractor of the U.S. Government
ﬁ ‘e'.} under contract No. W-31-108-ENG-38.

' ” Accordingly, the L. §. Government retains a

nonexclusive, royalty-{ree licerse to publish

or reproduce the published form of this
contribution, or allow others to do so, for

U. 8. Government purposes.
| -

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal fiability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

if x(1) > 2 then
a = x(1)+x(2)

else

a = x(1)*x(2)
endif
doi=1, 2

a = a*x(i)
end do
y(1) = a/x(2)
y(2) = 8in(x(2))

Figure 1: Sample program for a function f: x — y

of the variables computed in the original code. Given a Fortran subroutine (or a collection of subroutines)
for a function f, ADIFOR produces Fortran-77 subroutines for the computation of the derivatives of f.

For discussion, we assume that f : ¢ € R" = y € R, and that we want to compute the derivatives of
y with respect to z. We call z the independent variable, and y the dependent variable. While the terms
‘dependent’, ‘independent’, and ‘variable’ are used in many different contexts, this terminology corresponds
to the mathematical use of derivatives. There are four approaches to computing derivatives [16]:

By Hand: As the problem complexity increases, this approach becomes ircreasingly difficult and error-
prone.

Divided-differences: The derivative of f with respect to the ith component of z at a part’cular point
zo is approximated by either one-sided differences or central differences. Computing derivatives by
livided-differences has the advantage that we treat the function as a ‘black box.” The main drawback
of divided-differences is that their accuracy is hard to assess. A small step size h is needed for properly
approximating derivatives, yet may lead to numerical cancellation and the loss of many digits of
accuracy. In addition, different scales of the z;’s may require different step sizes for the various
parameters.

Symbolic Differentiation: This functionality is provided by symbolic manipulation packages such as
Maple, Reduce, Macsyma, or Mathematica. Given a string describing the definition of a function,
symbolic manipulation packages provide exact derivatives, expressing the derivatives all in terms of
the intermediate variables. Symbolic differentiation is a powerful technique, but it may derive poor
computational recipes, and may run into resource limitations when the function description is compli-
cated. Functions involving branches or loops cannot be readily handled by symbolic differentiation.

Automatic Differentiation: Automatic differentiation techniques rely on the fact that every function, no
matter how complicated, is executed on a computer as a (potentially very long) sequence of elementary
operations such as additions, multiplications, and elementary functions such as sin and cos. By applying
the chain rule 5

Zre0) = (3216]) (320,

over and over again to the composition of the elementary operations, one can compute derivative
information of f exactly (up to machine precision, of course), in a completely mechanical fashion that
avoids the potential pitfalls of divided-differences. The techniques of automatic differentiation are
directly applicable to functions with branches and loops.

We illustrate automatic differentiation with an example. Assume that we have the sample program shown
in Figure 1 for the computation of a function f : R* — R2. Here, the vector x contains the independent
variables, and the vector y contains the dependent variables. The function described by this program is
defined except at x(2) = 0 and is differentiable except at x(1) = 2.

e i . S—

it x(1) > 2.0 then

a = x(1)+x(2)

Va = Vx(1) + Vx(2)
else

a = x(1)*x(2)

Va = x(2) * Vx(1) + x(1) * Vx(2)
endif
doi=1, 2

temp = a

a=a * x(i)

Va = x(i) * Va + temp * Vx(i)
end do
y(1) = a/x(2)
Vy(1) = 1.0/x(2) * Va - a/(x(2)*x(2)) * Vx(2)
y(2) = sin(x(2))
Vy(2) = cos(x(2)) * Vx(2)

Figure 2: Sample program of Figure 1 augmented with derivative code

We can transform this program into one for computing derivatives by associating a derivative object
Vt with every variable t. Assume that Vt contains the derivatives of t with respect to the independent

variables x,
8t
Vt = (ax(1)) .

3 %(2)
We can propagate these derivatives by using elementary differentiation arithmetic based on the chain rule
[16, 29] for computing the derivatives of y(1) and y(2) as shown in Figure 2. In this example, each assignment
to a derivative is actually a vector assignment of length 2.

This mode of automatic differentiation, where we maintain the derivatives with respect to the inde-
pendent variables, is called the forward mode of automatic differentiation. The reverse mode of automatic
differentiation maintains the derivative of the final result with respect to an intermediate quantity, These
quantities, usually referred to as adjoints, measure the sensitivity of the final result with respect to some
intermediate quantity. This approach is closely related to the adjoint sensitivity analysis for differential
equations that has been used at least since the late sixties, especially in nuclear engineering [9, 10], weather
forecasting [26], and even neural networks [35].

The reverse mode requires fewer operations than the forward mode if the number of independent variables
is larger than the number of dependent variables. This is exactly the case for computing a gradient, which
can be viewed as a Jacobian matrix with only one row. This issue is discussed in more detail in [16, 18, 20].
Despite its advantages from a complexity point-of-view, the implementation of the reverse mode for the
general case is quite complicated. It requires the ability to access in reverse order the instructions performed
for the computation of f and the values of their operands and results. Current tools (see [24]) achieve this
by storing a record of every computation performed. An interpreter performs a backward pass on this
“tape.” The resulting overhead often dominates the complexity advantage of the reverse mode in an actual
implementation (see [14, 15]).

We also note that even though we only showed the computation of first derivatives, the automatic
differentiation approach can easily be generalized to the computation of univariate Taylor series or Hessians
and multivariate higher-order derivatives (12, 17, 29].

This discussion is intended to demonstrate that the principles underlyiug automatic differentiation are
not complicated: We just associate extra computations (which are entirely specified on a statement-by-
statement basis) with the statements executed in the original code. As a result, a variety of implementations
of automatic differentiation have been developed over the years (see [24] for a survey).

Most of these implementations implement automatic differentiation by means of operator overloading,
which is a language feature of several modern programming languages, including C+4, ADA, Pascal-XSC,
and Fortran 90. Operator overloading provides the possibility of associating side-effects with the elementary

arithmetic operations. For example, the addition of the derivative vectors that is required in the forward
mode can be associated with each addition ‘+’ in the user’s program. Operator overloading also allows for a
simple implementation of the reverse mode, since the “tape” can be created as a by-product of the evaluation
of f. The only drawback is that for straightforward implementations, the length of the tape is proportional to
the number of arithmetic operations performed by f [20, 5]. Recently, Griewank [18] suggested an approach
to overcome this limitation through clever checkpcinting.

Nonetheless, for all their simplicity and elegance, there are two fundamental drawbacks with operator
overloading approaches:

*Loss of context: Since all computation is performed as a by-product of elementary operations, it is very
difficult, if not impossible, to perform optimizations that transcend one elementary operation. The
resulting disadvantages, especially those associated with the exploitation of parallelism, are discussed

in [2].

Loss of Efficiency: The overwhelming majority of codes for which computational scientists want deriva-
tives are written in Fortran-77 which does not support operator overloading. While we can emulate
operator overloading by associating a subroutine call with each elementary operation, this slows down
computation considerably, and usually also imposes some restrictions on the syntactic structure of the
code that can be processed. Examples of this approach are DAPRE [28, 33], GRESS/ADGEN [22, 23],
and JAKEF [21]. Experiments with some of these systems are described in [32].

2 Hybrid Mode of Automatic Differentiation

We believe that the lack of efficiency of previously existing automatic differentiation tools has prevented
automatic differentiation from becoming a standard tool for mainstream high performance computing, even
though there are numerous applications where the need for accurate first and higher-order derivatives has es-
sentially mandated the use of autornatic differentiation techniques and prompted the development of custom-
tailored automatic differentiation systems (see [19]). For the majority of applications, however, existing auto-
matic differentiation implementations have provided derivatives substantially slower than divided-difference
approximations, discouraging potential users.

Since the efficiency of computing derivatives is so crucial to the success of automatic differentiation for
large applications, we are developing ADIFOR, an automatic differentiation tool for Fortran, with the explicit
goal of computing derivatives efficiently. Due to the demands that ADIFOR deliver exact derivatives fast in
order to be considered as a tool for serious high performance computing we have adopted a hybrid approach
to computing derivatives that is generally based on the forward mode, but uses the reverse mode to compute
the gradients of assignment statements containing complex expressions. The hybrid mode is effective because
assignment statements often compute a single dependent variable given the values of multiple independent
variables, an ideal case for the reverse mode, and because, for this restricted case, the reverse mode code
can be implemented entirely as inline code, hence there is no need to construct the “tape.”

Let us use an example to illustrate the advantages of the hybrid mode. Consider tle statement

wz= —y/(z*2z%2),

where y and z depend on the independent variables. We have already computed Vy and Vz and now wish
to compute Vw. By breaking up this compound statement into unary and binary statements and applying
the chain rule to each statement, we get the Forward Mode code shown in Figure 3.

There is another way, though. The chain rule tells us that

Vw:a—‘i*Vy+a—w*Vz,

0y dz
Hence, if we know the ‘local’ derivatives (%—‘;, —iz,—‘: of w with respect to z and y, we can easily compute

Vw, the derivatives of w with respect to x. The ‘local’ derivatives g—‘;’, %—‘f) can be computed efficiently

using the reverse mode of automatic differentiation. In the reverse mode, let tbar denote the adjoint object

corresponding to t. The goal is for tbar to contain the derivative %—'f. We know that wbar = g—g =1.0. We

Forward Mode: Reverse Mode:

t1l =~y t1=-y

Vti=-Vy t2 =2 * 2z

t2 =z % 2z t3 = 12 % 2z

Vt2=Vz*x2z+2zx*V 2z v=1t1/1t3

t3 = t2 * z tibar = (1 / t3)

Vt3 =V t2*xz+t2+%V z t3bar = (~ t1 / t3)

vw=1t1/t3 t2bar = t3bar * z

Ve =(Vt1-V t3*xw)/t3 zbar = t3bar * t2
zbar = zbar + t2bar * z
zbar = zbar + t2bar * =z
ybar = - tibar

V w=ybar * V y + zbar * V z

Figure 3: Forward versus reverse mode in computing derivatives of w = ~y/(z*z#*z)

can compute ybar and zbar by applying the following simple rule to the statements executed in computing
w, but in reverse order:

if s =1(t), then tbar += sbar * (df / dt)
if s = 1(t,u), then tbar += sbar * (df /dt)
ubar += sbar * (df /du)

Using this simple recipe (and some simple optimizations), we generate the Reverse Mode code shown in
Figure 3.

The forward mode code in Figure 3 requires space for three auxiliary gradient vectors and contains four
vetor assignments. In contrast, the reverse mode code requires space for five scalar auxiliary adjoint objects
ar. | has only one vector assignment.

3 ADIFOR Design and Implementation

ADIFOR has been developed within the context of the ParaScope Parallel Programming Environment [11]
thiat combines dependence analysis with interprocedural analysis to support ambitious interprocedural code
optimization and semi-automatic parallelization of Fortran programs. While our primary goal is not code
optimization or parallelization of Fortran programs, ParaScope provides us with a Fortran parser, data
absuractions for representing Fortran programs and sophisticated facts derived from Fortran programs, and
too s for constructing and manipulating those representations. In particular, ParaScope tools compute

o data flow facts for scalars and regular array sections,
« dependence graphs for array elements,

+ «ontrol flow graphs,

o constant and symbolic facts, and

e .. call graph.

The data dependence analysis capabilities are critical for determining which variables need to have
derivat: ve objects associated with them, a process we call variable nomination. Only those variables z whose
values c'epend on an independent variable x and influence a dependent variable y need to have derivative
informaition associated with them. Such a variable is called active. Variables that do not require derivative
information are called passive. Interprocedurally, variable nomination proceeds in a series of passes over
the program call graph using an ‘interaction matrix’ for each subroutine which represents which input

parameters or variables in common blocks influence which output parameters or variables in common blocks.
This analysis is also crucial in determining the sets of active/passive variable binding contexts in which each
subroutine may be invoked. Take, for example, the following code for computingy = 3.0 * x * x:

subroutine threexx(x,y)
call prod(3.0,x,t)

call prod(t.x,y>

end

subroutine prod(x,y,z)
zZ=x %y
end

In the first call to prod, only the second and third of prod’s parameters are active, whereas in the second
call, all variables are active. ADIFOR recognizes this situation and performs procedure cloning to generate
different augmented versions of prod for these different contexts. The decision to do cloning based on
active/passive variable context will eventually be based on an assessment of the savings made possible
by introducing the cloned procedures, in accordance with the goal-directed interprocedural transformation
approach being adopted within ParaScope [7].

Another advantage of basing ADIFOR within a sophisticated code optimization framework is that mecha-
nisms are already in place for simplifying the derivative code that we generate by application of the statement-
by-statement hybrid mode translation rules. By applying constant folding and forward substitution, we
eliminate multiplications by 1.0, additions of 0.0, and reduce the number of variables that must be allocated
to hold derivative values [1].

In summary, ADIFOR proceeds as follows:

1. The user specifies the subroutine that corresponds to the ‘function’ for which he wants derivatives, as
well as the variable names that correspond to ‘dependent’ and ‘independent’ variables. These names
can be subroutine parameters or variables in common blocks. In addition to the source code for the
‘function’ subroutine, the user must submit the source code for all subroutines that are directly or
indirectly called from this subroutine.

9. ADIFOR parses the code, builds the call graph, collects intraprocedural and interprocedural depen-
dency information, and determines active variables.

3. Derivative objects are allocated in a straightforward fashion: Derivative objects for parameters are
again parameters, derivative objects for variables in common blocks and local variables are again
allocated in common blocks and as local variables, respectively.

4. The original source code is augmented with derivative statements — the reverse mode is used for
assignment statements, the forward mode overall. Subroutine calls are rewritten to propagate derivative
information, and procedure cloning is performed as needed.

5. The augmented code is optimized, eliminating unnecessary arithmetic operations and temporary vari-
ables.

The resulting code generated by ADIFOR can be called by user programs in a flexible manner to be
used in conjunction with standard software tools for optimization, solving nonlinear equations, or for stiff
ordinary differential equations. A discussion of calling the ADIFOR-generated code from users’ programs in
included in [4].

4 Using ADIFOR

The issues of ‘ease of use’ and ‘portability’ have received scant attention in software for automatic differ-
" entiation. In many applications, the ‘function’ whose derivatives we want to compute is a collection of
subroutines, and all that really should be expected of the user is to specify which of the variables correspond
to the ‘independent’ and ‘dependent’ variables. In addition, the code generated by automatic differentiation
should be easily transportable between different machines.

ADIFOR takes those requirements into account. Its user interface is simple, and the ADIFOR-generated
code is efficient and portable. Unlike previous approaches, ADIFOR can deliver this functionality because it
views automatic differentiation from the outset as a source transformation problem. The goal is to automate
and optimize the source translation process that was shown in very simple examples of the previous section.
By taking a source translator view, we can bring the many man-years of effort of the compiler community
to bear on this problem.

ADIFOR differs from other implementations of automatic differentiation (see [24] for a survey) by being
based on a source translation paradigm, and by having been designed from the outset with large-scale codes
and the need for highly efficient derivative computations in mind. ADIFOR provides:

Portability: ADIFOR produces vanilla Fortran-77 code. ADIFOR-generated derivative code does not
require any run-time support and can easily be ported between different computing environments.

Generality: ADIFOR supports almost all of Fortran-77, including nested subroutines, common blocks, and
equivalences.

Efficiency: ADIFOR-generated derivative code is competitive with codes which compute the derivatives by
divided-differences. In most applications we have run, the ADIFOR generated code is faster than the
divided-difference code.

Preservation of Software Development Effort: The code produced by ADIFOR respects the data flow
structure of the original program. That is, if the user invested the effort to develop code that vectorizes
and parallelizes well, then the ADIFOR-generated derivative code also vectorizes and parallelizes well.
In fact, the derivative code offers more scope for vectorization and parallelization.

Extensability: ADIFOR employs a consistent subroutine naming scheme that allows the user to supply
its own derivative routines. In this fashion, the user can exploit domain-specific knowledge, exploit
vendor-supplied libraries, and speed up computational bottlenecks.

Ease of Use: ADIFOR requires the user to supply the Fortran source code for the subroutine representing
the function to be differentiated, and for all lower-level subroutines. The user then selects the vari-
ables (either in parameter lists or common blocks) that correspond to the independent and dependent
variables. ADIFOR, then determines which other variables throughout the program require derivative
information. A detailed description of the use of ADIFOR-gencrated code appears in [4].

Intuitive Interface: An X-windows interface for ADIFOR (called ‘xadifor’) makes it easy for the user to
set up the ASCII script file that ADIFOR reads. This functional division makes it easy both to set
up the problem and to rerun ADIFOR, if changes in the code for the target function require a new
translation.

Using ADIFOR, one then need not worry about the accurate and efficient computation of derivatives,
even for complicated ‘functions.” As a result, the computational scientist can concentrate on the more
important issues of algorithm design or system modeling.

5 Experimental Results

In this section, we report on the execution time of ADIFOR-generated derivative codes in comparison with
divided-difference approximations of first derivatives. While the ADIFOR system runs on a Sparc platform,
the ADIFOR-generated derivative codes are portable and can run on any computer that has a Fortran-77
compiler.

The problems named ‘camera’, ‘micro’, ‘heart’, ‘polymer’, ‘psycho’, and ‘sand’ were’ given to us by Janet
Rogers, National Institute of Standards and Technology in Boulder, Colorado. The code submitted to
ADIFOR computes elementary Jacobian matrices that are then assembled to form a large sparse Jacobian
matrix that is used in an orthogonal-distance regression fit {6]. The code named ‘shock’ was given to us
by Greg Shubin, Boeing Computer Services, Seattle, Washington. This code implements the steady shock
tracking method for the axisymmetric blunt body problem [30]. The Jacobian has a banded structure and the

IR AR S ik i

Problem | Jacobian | Code Div-Diff | ADIFOR | ADIFOR Machine
Name Size Size | Run-time | Run-time | Improve-
(lines) | (seconds) | (seconds) ment

Camera 2% 13 97 1.82 1.81 0.5% RS6000
Camera 2x 13 97 8.19 13.87 -69% | Sparc 4/490
Micro 4 x 20 153 6.39 3.35 47% RS6000
Micro 4 x 20 153 23.0 16.17 30% | Sparc 4/490
Polymer 2%x6 34 3.12 1.20 62% RS56000
Polymer 2x6 34 9.18 4.84 47% | Sparc 4/490
Psycho Ix5H 26 0.70 0.38 16% RS56000
Psycho I1xh 26 2.95 1.49 49% | Sparc 4/490
Sand 1x4 24 0.16 0.07 56% RS6000
Sand 1 x4 24 0.36 - 0.18 50% | Sparc 4/490

Table 1: Performance of ADIFOR-generated derivative codes compared to divided-difference approximations

oh orthogonal-distance regression examples

Problem Jacobian | Code | Div-Diff | ADIFOR | ADIFOR Machine
Name Size Size | Run-time | Run-time | Improve-
(lines) | (seconds) | (seconds) ment

Reactor 3 x 29 1455 42.34 36.14 15% | Sparc 4/490
Reactor 3 x29 1455 13.34 8.33 38% RS6000
Adiabatic 6x6 1089 0.54 0.18 67% Sparcl
Heart 1x8 1305 11641.1 | 13941.30 -20% Sparcl
Shock 190 x 190 1403 0.041 0.023 44% RS6000
Shock 190 x 190 | 1403 0.46 0.31 33% Sparcl

Table 2: Performance of ADIFOR-generated derivative codes compared to divided-difference approximations

compressed Jacobian has 28 columns, compared to 190 for the ‘normal’ uncompressed Jacobian. The code
named ‘adiabatic’ is from Larry Biegler, Chemical Engineering, Carnegie-Mellon University and implements
adiabatic flow, a common module in chemical engineering [31]. Lastly, the code named ‘reactor’ was given
to us by Hussein Khalil, Reactor Analysis and Safety Division, Argonne National Laboratory. While the
other codes were used in an optimization setting, the derivatives of the ‘reactor’ code are used for sensitivity
analysis to ensure that the model varies gracefully with certain key parameters.

Table 1 and Table 2 summarize the performance of ADIFOR-generated derivative codes with respect to
divided-differences. These tests were run on either a Sparcstation 1, a Sparc 4/400, or an IBM RS6000/550.
The nurmbers reported in Table 1 are actually for 10000 evaluations of the Jacobian, while those in Table 2
are for a single evaluation of the Jacobian.

The column of the tables labeled “ADIFOR Improvement” indicates the percentage improvement of the
running time of the ADIFOR-generated derivative code over an approximation of the divided-difference
running times. For the ‘shock’ code, we had a derivative code based on sparse divided-differences supplied to
us. In the other cases, we estimated the time for divided-differences by multiplying the time for one function
evaluation by the number of independent variables. This is conservative, yet fairly typical in an optimization
setting, where the function value already has been computed for other purposes. An improvement greater
than 0 % indicates that the ADIFOR-generated derivatives ran faster than divided-differences.

The percentage improvement for the ‘camera’ problem indicates a stronger than expected dependence
of running times of ADIFOR-generated code on the choice of compiler and architecture. In fact, the 69%
degradation in performance on the ‘camera’ problem is a result of the Sparc compiler missing an opportunity
to move loop-invariant cos and sin invocations outside of loops, as occurs in the following ADIFOR-generated

o
/
|
|

c cteta = cos(fpar(‘l))
d$0 = par(4)
do 99969 gi = 1, géps
gdcteta(ghi$) = -sin(d$0) * gdpar(gi$, 4)
99969 continue |
cteta = cos(d$0)

code:

ADIFOR will eventually move loop-iflvariant code outside of the vector loops.

We see that already in its current ‘Irersion, ADIFOR performs well in competition with divided-differences.
We also see that ADIFOR can handle problems where symbolic techniques would be almost certain to fail
such as the ‘shock’ or ‘reactor’ codcs:

ADIFOR-generated derivatives c: m also outperform hand-code derivatives. Consider, for example, the
swirling flow problem from the MINPACK-2 test problem collection [25). The problem consists of & coupled
system of boundary value problems describing the steady flow of a viscous, incompressible, axisymmetric fluid
between two rotating, infinite coaxial disks. The number of variables in the resulting optimization problem
depends on the discretization. Figure 4 shows the performance of the hand-coded derivative code supplied
as part of the original swirling flow!code and that of the ADIFOR-generated code, properly initialized to
exploit the sparsity structure of the ;lacolJian. On an RS56000/320, the ADIFOR-generated code significantly
outperforms the hand-coded derivatives. On one processor of the Cray YMP/18, they perform comparably.
The values of the derivatives computed by the ADIFOR-generated code agree to full machine precision with
the values from the hand-coded derivatives. The accuracy of the divided-difference approximations, on the
other hand, depends on the user’s careful choice of a step size.

3 IBM RS6000/320 .
" | hand coded |) iz

o b o |- ADIFOR w/cmnprcgguj JACOBAD e v 4 s ! e
2f i : i h
4 L v

i H H H
i i H ;

! i i

0 200 400 600 800 1000 1200 1400 1600 1800
order of Jacobian

0.04 : : . Cray Y/MP, 1 processor !
bt |
0.03 bhand codéd : Tt
R ‘ADIFOR w/ comptessed Jacobian e
i
0.01
0 i !
0 200 400 600 800 1000 1200 1400 1600 1800

order of Jacobian

Figure 4: Swirling Flow Jacobian

6 Conclusions and Future Work

We conclude that ADIFOR-generated derivatives are a more than suitable substitute for hand-coded or
divided-difference derivatives. Virtually no time investment is required by the user to generate the codes. In
most codes, ADIFOR-generated codes outperform divided-difference derivative approximations. In addition,
the fact that ADIFOR computes ezact derivatives (up to machine precision), may significantly increase the
robustness of optimization codes or ODE solvers where good derivative values are critical for the convergence
of the numerical scheme.

There are many improvements that we are planning for ADIFOR. The most important are

¢ Generation of code to compute second and higher-order derivatives as required by many applications
in numerical optimization, '

o Automatic detection of sparsity,

Increased use of the inline version of the reverse mode for better performance, and

Integration with parallel programming models such as Fortran-D.

References

(1] Alfred V. Aho, Ravi I. Sethi, and Jeflrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

[2] Christian Bischof. Issues in parallel automatic differentiation. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementalion, and Application.
SIAM, Philadelphia, PA, 1991.

[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Generating
derivative codes from Fortran programs. Preprint MCS-P263-0991, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, 1L 60439, 1991. Also appeared as
Technical Report 91185, Center for Research in Parallel Computation, Rice University, Houston, TX
77251,

[4] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians. Technical
Memorandum ANL/MCS-TM-158, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 S. Cass Ave., Argonne, IL 60439, October 1991,

[5] Christian Bischof and James Hu. Utilities for building and optimizing a computational graph for
algorithmic decomposition. Technical Memorandur: ANL/MCS-TM-148, Mathematics and Computer
Sciences Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, 1L 60439, April 1991.

[6] Paul T. Boggs and Janet E. Rogers. Orthogonal distance regression. Contemporary Mathematics,
112:183-193, 1990.

(7] Preston Briggs, Keith D. Cooper, Mary W. Hall, and Linda Torczon. Goal-directed interprocedural
optimization. CRPC Report CRPC-TR90102, Center for Research on Parallel Computation, Rice
University, November 1990.

(8] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations (Runge-Kutta and General
Linear Methods). John Wiley and Sons, 1987.

[9] D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach. J.
Math. Phys., 22(12):2794 - 2802, 1981.

[10] D. G. Cacuci. Sensitivity theory for nonlinear systems. 11. Extension to additional classes of responses.
J. Math. Phys., 22(12):2803 - 2812, 1981.

[11] D. Callahan, K. Cooper, R. T. Hood, Ken Kennedy, and Linda M. Torczon. ParaScope: a parallel
programming environment. International Journal of Supercomputer Applications, 2(4), December 1988.

[12] Bruce D. Christianson. Automatic Hessians by reverse accumulation. Technical Report NOC TR228,
The Numerical Optimisation Center, Hatfield Polytechnic, Hatfield, UK, April 1990.

(13] John Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear
Fquations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[14] Lawrence C. W. Dixon. Automatic differentiation and parallel processing in optimisation. Technical
Report No. 180, The Numerical Optimisation Center, Hatfield Polytechnic, Hatfield, UK, 1987.

10

[15] Lawrence C. W. Dixon. Use of autornatic differentiation for calculating Hessians and Newton steps.
In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, PA, 1991.

[16] Andreas Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical

Programming: Recent Developmentls and Applications, pages 83 — 108. Kluwer Academic Publishers,
1989. '

[17] Andreas Griewank. Automatic evaluation of first- and higher-derivative vectors. In R. Seydel, F. W.
Schneider, T. Kiipper, and H. Troger, editors, Proceedings of the Conference at Wirzburg, Aug. 1990,
Bifurcation and Chaos: Analysis, Algorithins, Applications, volume 97, pages 135 — 148. Birkhauser
Verlag, Basel, Switzerland, 1991.

[18] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse au-
tomatic differentiation. Optimization Methods and Soflware, to appear. Also appeared as Preprint
MCS-P228-0491, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Ave., Argonne, 1L 60439, 1991,

[19] Andreas Griewank and George F. Corliss, editors. Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, PA, 1991,

[20] Andreas Griewank, David Juedes, Jay Srinivasan, and Charles Tyner. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software, to appear.
Also appeared as Preprint MCS-P180-1190, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 S. Cass Ave., Argonne, 1L, 60439, 1990.

[21] Kenneth E. Hillstrom. JAKEF - a portable symbolic differentiator of functions given by algorithms.
Technical Report ANL-82-48, Mathematics and Computer Science Division, Argonne National Labo-
ratory, 9700 South Cass Ave., Argonne, 1L 60439, 1982.

[22] Jim E. Horwedel. GRESS: A preprocessor for sensitivity studies on Fortran programs. In Andreas
Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implemen-
tation, and Application. SIAM, Philadelphia, PA, 1991.

(23] Jim E. Horwedel, Brian A. Worley, E. M. Oblow, and F. G. Pin. GRESS version 1.0 users manual.
Technical Memorandum ORNL/TM 10835, Martin Marietta Energy Systems, Inc., Oak Ridge National
Laboratory, Oak Ridge, TN 37830, 1988.

[24] David Juedes. A taxonomy of automatic differentiation tools. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application.
SIAM, Philadelphia, PA, 1991.

[25) Jorge J. Moré. On the performance of algorithms for large-scale bound constrained problems. In T. F.
Coleman and Y. Li, editors, Large-Scale Numerical Optimization, pages 32 — 45. SIAM, 1991.

[26] 1. Michael Navon and U. Muller. FESW — A finite-element Fortran [V program for solving the shallow
water equations. Advances in Engineering Software, 1:77 — 84, 1970.

[27] Arnold Neumaier. Rigorous recursive calculations with functions. Talk presented at Second International
Conference on Industrial and Applied Mathematics (Washington, DC), July 1991.

[28] John D. Pryce and Paul H. Davis. A new implementation of automatic differentiation for use with
numerical software. Technical Report TR AM-87-11, Mathematics Department, Bristol University,
1987.

(29] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1981.

11

