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1.0 INTRODUCTION AND SUMMARY

The classification or segmentation of images into land cover or object class is one of the 
fundamental remote sensing/image processing tasks. The classification techniques have 
reached a high level of maturity in the forms of statistical pattern recognition techniques 
applied to multispectral images. According to this approach each pixel has a spectral vector 
associated with it and pixels are segmented into the class they most closely resemble 
spectrally. While these techniques are reasonably successful they do not take advantage of 
the brighmess patterns within a class or at object boundaries nor are they readily applicable 
to monochrome images or highly correlated multispectral images (e.g. true color images). 
To overcome these limitations several investigators have suggested the use of image 
derived features as additional factors for use in image classification. Robert (1989) has 
identified over forty textural features that have been suggested by various authors as useful 
for scene classification. Regrettably it is very compute intensive to generate all these 
features for every pixel in an image and to then use them in a classifier. Schott et 
a/. (1988) developed a technique for selecting a small subset of spectral bands from a large 
set based on criteria intended to optimize maximum likelihood classification. Salvaggio et 
a/. (1990) have implemented code to generate 46 image derived textural features and 
applied a two-step feature reduction and optimization process based largely on the band 
selection process of Schott et al. (1988). The current effort drew on this proof-of-concept 
work mentioned above and improved on several limitations noted in the earlier work. 
Specifically; the initial feature set reduction algorithm of Robert (1989) is shown to be 
deficient and an improved method implemented. The spectral band optimization routine of 
Schott et al. (1989) is applied to feature selection and refined to generate a more truly 
optimum feature set, the feature generation algorithms developed on the proof-of-concept 
effort were completely rewritten so that the feature selection and classification process 
could be implemented in reasonable time frames, and finely the techniques were tested for 
classification accuracies and consistency of features selected.

For the four scenes tested the classification accuracies on independent data sets were -96% 
indicating a strong potential for the use of texture based features in classification and scene 
segmentation. Furthermore the optimization technique is shown to have considerable value 
in isolating useful features from the overwhelming number of features which could have 
been suggested for use in segmentation. The optimization and classification tools 
developed here are image and feature independent and can be applied to any classification 
or segmentation problem.
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2.0 THEORETICAL / HISTORICAL BACKGROUND

A review of the historical development leading to this work as well as the underlying theory 
behind image classification is presented in this report. The review here is intended only to 
provide a general framework for this effort. For a more rigorous review, the reader if 
referred to the more specific treatments alluded to throughout this section.

2.1 Image Derived Features

Image data is most often understood to be that collected by some sort of photographic or 
electrooptical device. These images contain a vast amount of information about relative 
brighmesses of objects within a scene, spatial proximity, size and so on. Mathematical 
manipulations of these images can transform much of the information which is stored in 
these images into a form which can aid in a specific application. This effort will look at the 
extraction of such information which will aid in image classification.

2.1.1 What Are Image Derived Textural Features?

Image classification has historically utilized spectral image data to develop the necessary 
statistical pattern recognition metrics with which to assign land cover/class types to 
individual image elements. The human visual system utilizes "color" as a strong key to the 
identification and recognition of objects so this history is a well justified one. The visual 
system also uses "texture" of objects within a field as a key to identification. For example, 
if one perceives a "red" object in an isolated visual field (i.e. with no surrounding clues), 
one would be hard pressed to determine if this object was the side of a fire engine or the 
leaf of a deciduous tree during autumn based on color alone. However, if texture was 
considered, that is the local change in intensity of the color within some defined spatial 
region, then the distinction would become a trivial one since the fire engine would appear 
very homogeneous in its color while the surface of the leaf would have much more 
variation. It is this variation in color, or grey tone as it will be referred to in this report, that 
constitutes the monochromatic image derived features known as textures.

Textures became of interest in the field of image classification in the 1970's with the work 
of HaraUck et al. (1971,1973,1979), Sutton and Hall (1972), Rosenfeld (1975),
Galloway (1975), Keltig and Landgrebe (1976), Weszka et al. (1976), Hsu (1978), and 
Conners (1979). It was found that, when used in combination with the more traditional 
spectral data, classification accuracies could be significantly improved. It may be helpful to 
look at a simple example of the kind of information these derived constructs provide.
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A simple class of textural features known as first-order statistics provide an intuitive feeling 
of the type of information provided by these metrics. Let's look at the local standard 
deviation of a 3x3 collection of pixels. Figure 2.1 shows two isolated areas of a digital 
image. The two-dimensional bar-chart plot shown provides an insight into the amount of 
variation in grey-tone which is occurring (a high level in the left-hand image along with a 
low level in the right-hand image). The relevant digital counts are then shown along with 
the 3x3 computational windows. The center pixel in each of the possible windows is 
replaced with a scaled version of the standard deviation of the digital brighmess levels 
which occur in this window. The resulting images are shown. Notice that although the 
original image data had very similar "colors" (grey-tone levels) that the resulting image 
derived textural feature illustrate very different grey-levels. The highly variant image on the 
left produces a feature with very high brightness while the image segment on the right 
produces very low-levels of brighmess. This illustrates that high texture areas produce 
different image information than the low texture areas. This information can be used in a 
statistical pattern recognition analysis to aid in material identification or classification.

Original image data

Application of a 3x3 
standard deviation kernel 
and scaling to fill dynamic 
range of an 8-bit image 

display

Figure 2.1 Illustration of different textures within isolated sections of image data
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2.1.2 Description Of Features Used In This Study

The monochromatic image derived features used in this study were taken from the work of 
Robert (1989). In this work Robert implemented the features described in the literature by 
Haralick et al. (1973), Weszka et al. (1976), Galloway (1975), Sutton and Hall (1972), 
Weszka et al. (1976), and Hsu (1978) and utilized an optimization approach in order to 
chose those features which best assisted classification of land cover types in a monochrome 
image.

The features implemented by Robert can be broken up into 6 classes. These classes include 
grey-level difference statistics, first-order statistics, run-length statistics, difference 
statistics, grey-level cooccurrence matrix and spectral features. Table 2.1 summarizes 
those features used. Only a brief descriptive account of the features will be presented here. 
For a complete mathematical description of these features, the reader is directed to the 
original works cited as well as a summary provided in Robert (1989).

Grey-level difference statistics as their name indicates are a class of features which derive 
their values from absolute differences between pairs of image elements or from some 
average of these elements (Weszka et al., 1976). Grey-level difference statistics tend to 
indicate the presence and direction of "edges" within an image. The location and presence 
of edge information is a clue to the visual system in the recognition process and has been 
shown to contribute to increased classification accuracy by Sutton and Hall (1972), 
Rosenfeld (1975) and Rosenfeld and Thurston (1971). Similarly, first-order statistics are a 
class of features arising from first-order statistical metrics computed on some finite 
neighborhood of image brighmess values (e.g. mean, standard deviation, variance).

Run-length statistics represent contiguous occurrences of identical grey-level values. 
Galloway (1975) has developed features which indicate the relative magnirndes and 
directions of these "runs" and has demonstrated increased classification accuracy with their 
utilization.

Grey-level cooccurrence matrix derived features tend to contain textural characteristics such 
as homogeneity, grey-level linear structures, contrast, number and nature of object 
boundaries, and image complexity. The mathematical intricacies can be found in Haralick's 
research (1973).

If all the features described were to be used in a classification, the amount of time necessary
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Table 2.1
Listing of the image derived features used in this study

Cooccurence First Order Statistics Run-Lenoth Statistics

Angular Second Moment Average 
Range

Contrast Average 
Range

Correlation Average 
Range

Variance Average 
Range

Inverse Difference Moment Average 
Range

Sum Average Average 
Range

Sum Variance Average 
Range

Sum Entropy Average 
Range

Entropy Average 
Range

Difference Entropy Average 
Range

Information Measures of
Correlation A Average 

Range
Information Measures of

Correlation B Average 
Range

Difference Variance Average 
Range

Maximum Probability Average 
Range

Average of Grey Tone Values Short Run Emphasis Inverse Moment Average
Variance of Grey Tone Values Range

Long Run Emphasis Inverse Moment Average
Range

Grey Level Non-Uniformity Average 
Range

Run-Length Non-Uniformity Average 
Range

Fraction of Image in Runs Average 
Range

Difference Statistics

Textural Edgeness
Contrast
Entropy
Average
Gradient

Spectral Features

Red Grey Level 
Green Grey Level 
Blue Grey Level



for their production and implementation in a classifier is prohibitive in operation. It is not 
necessary to use them all and in some cases may prove detrimental to classification. This 
effort is therefore aimed at the selection of an optimized subset of these features.

2.2 Classification Methodology

Many techniques exist for the classification of image elements into distinct land cover 
classes. These techniques vary in their statistical rigor and each have implied assumptions 
as well as advantages in particular scenarios. The techniques invoked in this study have 
their origin in the maximum likelihood classification schemes described in the literature 
(Richards, 1988 and Duda and Hart, 1973).

2.2.1 Probabilistic Description

The particular classification method used in this study is maximum likelihood classification 
under Bayesian assumptions. This technique as developed here will reference classes, i.e. 
those land cover types chosen for consideration.

If we let the M classes for an image be represented by

cor, r=l,.... M (1)

The decision to determine to which of the M classes a pixel denoted by the feature vector x 
belongs to is based strictly on the conditional probability,

The vector x is simply a column vector of feature values associated with a pixel at position 
(i,j) in a digital image. The classification decision is made based on the vector x being 
assigned to the class cOj for which the conditional probability pCo^lx) is the greatest (most 
probable). This is represented as

All that need be done is to determine the conditional probabilities p(corlx). These values are 
unknown, however, they can be estimated provided a sufficient amount of training data can 
be collected from the image. If training data is collected from the feature imagery for each 
land cover class of interest, the multivariate probability distribution for each land cover type

p(G)rlx), r = 1,..., M (2)

x e (0,. if p(torlx) > p(coslx) for all r * s. (3)
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can be established, p(xlco,.).

The number of these conditional distributions will equal the number of land cover types. 
Knowing these conditional probabilities, probability values can be computed which 
represent the relative likelihood that the feature vector x at a point (i,j) in an image belongs 
to each class established. The Baye's theorem relates these two conditional probabilities as

(4)

where pfcOj) is the probability that a class coT occurs in an image. These are called a priori 
probabilities. The probability p(x) is the probability of finding a pixel from any class at 
location x. The probabilities pCo^lx) are called posteriori probabilities since these are the 
probabilities of a vector x belonging to class g\ after a decision has been made. The 
decision rule above can be rewritten as

x e CQj. if pCxIco,.) p(cor) > p(xlcos) p(cos) for all r * s (5)

where the p(x) is removed as a common factor. This is a more acceptable rule since the 
conditional probabilities can be known from training data and the analyst can make a good 
guess as to the values of pCco,.) from a knowledge of the image (these a priori probabilities 
are often assumed equal). For mathematical convenience, gs(x) is defined as

gs(x) = ln[ p(xlcos) p(cos) ] = ln[ p(xlcos) ] + ln[ p(cos) ] (6)

and the decision rule is again rewritten as

x e <X)r if gr(x) > gs(x) for all r * s (7)

where gr(x) is known as the discriminant function. If the probability distribution of the 
feature vectors corresponding to each class can be assumed to be multivariate normal, the 
conditional probability pCxIci^) can be computed for n features as

PUH) =---------^----- rjr exp( - i (x - m,)‘ I,' (x - mt)) (8)

(2k)"'2 N

where n^ and 2*. are the mean vector and covariance matrix for the training data in class r. 
The discriminant function gr(x) can be written as

-7-



(9)gr(x) = In pK) -y/n 11,1 - y (x - m,)1 E,1 (x - mr)

If no information is known about the a priori probabilities this reduces to

gr(x) = -In IIrl - (x - mr)11;1 (x - mr) (10)

These two values of the discriminant function form the maximum likelihood classification 
methodology using a Bayesian decision rule depending on whether or not a priori 
probabilities are supplied by the investigator.

2.2.2 Mahalanobis Distance

Consider again the case of unknown or equal a priori probability demonstrated in Equation 
10. If the sign of this function is reversed, the quantity can be considered a squared 
distance measure since this is implied by the quadratic term and the logarithmic term is a 
constant for class i. Rewriting Equation 10 in this form you have

where dfom,) is a measure of distance which is sensitive to direction as well as modified 
according to class. The classification decision is then made to assign a pixel with the 
descriptive vector x to class r'if the distance dfom,) is the smallest for all M classes. If we 
then consider the case where all class covariances are equal (E, = E for all r) then the term 
In IE,! no longer contributes to the discriminating ability of the metric and can be ignored 
leaving

the square root of which is referred to as the Mahalanobis distance. This has obvious 
computational advantages over maximum likelihood classification while maintaining a 
sensitivity based upon the covariance metric, E, which is often a class average metric 
referred to as a pooled covariance matrix. However, this approach should be used only 
when the covariance matrices for all classes are statistically equal.

d(x,mr)2 = In IErl + (x - m^1 E^1 (x - mr) (11)

d(x,mr)2 = (x - m^1 E'1 (x - mr) (12)
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2.3 Choosing an Optimum Set of Image Features

In the previous section a large number of feature images were discussed which can be 
derived from a single monochromatic image. The time required to compute all of these 
images and the sheer amount of data that would be present after their production is 
prohibitive to their effective use as classification aids. In addition, many of the features 
may be highly correlated such that their use in a classifier does not add significant 
information and may even degrade classification accuracy. It is therefore necessary to 
choose a subset of these feature images which serve as an optimum classification set.
Many statistical techniques exist which serve as data redundancy reduction tools such as 
factor analysis, principal component analysis, etc., but these techniques do not serve to 
optimize the choice of a subset of data which will aid in a particular classification scenario. 
Schott et al. (1988) and Robert (1989) have presented a technique which attempts to 
produce optimized results within the context of the classification scheme used.

2.3.1 Use of Correlation as a Prescreener

Any technique which attempts to pick the best subset of size n out of a larger data set of 
size k very quickly becomes a large combinatoric problem if k is of any significant size.
The original collection of all features used in this study amounted to 49 monochromatic 
image derived features (including the three spectral bands). This amount of data proved to 
be too large to deal with on the computational facilities available. Initial prescreening of the 
data needed to be performed.

As with spectral image data, it was found that textural features derived from a single 
monochrome image contained a large amount of inter-feature correlation. It was deemed by 
Robert (1989) that highly correlated features need not all be included in the optimization 
analysis since the amount of unique information provided by each was minimal. The 
choice was made to include only one feature of each highly correlated collection.

This choice was made by the following selection criterion. It was assumed that the 
individual class covariances proved equal and a pooled covariance matrix defined. If the 
initial feature space covered k-dimensions for M defined classes then a kxk pooled 
covariance matrix is definable. This pooled covariance matrix in then used to define a 
correlation coefficient matrix of the form

where the o terms indicate individual elements of the pooled covariance matrix E. Once

a
(13)
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this matrix is formulated, an initial subset of features is selected in the following manner.

Correlation coefficients are considered by column (i.e. column 1 of the matrix is looked at 
first) and all those entries whose value for correlation exceed some user defined threshold 
are grouped. This group is then examined and the highest correlation coefficient in this 
group selected. The feature corresponding to the row selected is then entered into the initial 
subset and all other rows are deleted from further consideration. Of the remaining rows, 
the second column is examined in the same manner, a grouping performed, and a selection 
made. This procedure is carried out until all columns are exhausted. Figure 2.2 illustrates 
this procedure on a 4x4 set of correlation coefficients. This initial subset of features is then 
entered as the selection set from which the optimum collection of features will be extracted.

z' N
1.0 0.4 0.3 0.7

0.4 1.0 0.8 0.2

0.3 0.8 1.0 0.9

0.7 0.2 0.9 1.0

Assemble correlation 
coefficient matrix

Set threshold to 0.6

in 0.4 0.3 JlJ
0.4 1.0 0.8 0.2

0.3 0.8 1.0 0.9

0.2 0.9 To)
-----------------y

Consider column #1

p(1.1) = 1-0, p(4,1) = 0.7 
p(1,1) is the greatest

Feature 1 is entered into the initial subset, Feature 4 is eliminated

S \

('0.4 1.0

r~\CMdGOd

(0.3 0.8 1.0 0.9)

\ y

Consider column #2

p(2,2)»1.0, p(3,2)-0.8 
p(2,2) is the greatest

Feature 2 is entered into the initial subset, Feature 3 is eliminated

Initial feature subset chosen contains Features 1 and 2 
for a chosen threshold of 0.6

Figure 2.2 Example of the use of correlation criteria as a prescreener to the optimization 
code
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This prescreening method has a weakness in it's choice of the best feature from the group 
assembled from each column. For each column, more than one feature may produce a 
correlation value of equal magnitude at which point this selection method depends on the 
order of the original data. A method needs to be developed which will not be affected by 
such factors. For this study a prescreening method incorporating an eigenvalue/eigenvector 
transformation of the data was used. This method is discussed in Section 3.1.

2.3.2 Pure Mahalanobis Distance Approach

Since the classification scheme chosen for this study was a Mahalanobis distance based 
implementation, an optimization approach which enhanced separability of classes in the 
context of this classifier is most appropriate. Schott et al. (1988) proposed a method by 
which a class separation metric Z was determined. This metric had the form

where dj j2 are the Mahalanobis distances computed between all class means. This metric 
was computed for all combinations of n features chosen from the original set of size k. The 
subset producing the maximum value of Z was then deemed the optimal set of n features 
(i.e. that set which yields the largest class separability).

A significant problem exists with this approach. The value of Z can be affected very 
heavily by the position of one class mean. Figure 2.3 shows two situations in a two- 
dimensional feature space for simplicity. The first situation shows the relative positions of 
three class mean values arranged in an equilateral-triangular orientation. The second 
situation shows the same three class mean values with a different orientation. This second 
situation obviously produces a larger metric Z however the class separability is not as well 
established for classes 1 and 2 and is over-established for class 3. A modification to this 
approach is implemented in this research as detailed in Section 3.2.

2.3.3 Mahalanobis Distance Approach With Class Weighting Factors

A further refinement to the feature optimization approach was established by Schott et al. 
(1988) which allowed the user to specify relative importances on particular sets of class 
separabilities. For example, it may be important to tell class 1 apart from classes 2 and 3 
however it may seem relatively unimportant to tell classes 2 and 3 apart. A scenario of this

Z = (14)
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Class 1

Class 3

Class 1

Class 2

Class 3

Feature 1 Feature 1

Figure 2.3 Illustration of problems which may occur with the separability metric Z of 
Schott era/. (1989)

sort may exist in isolating a ship on the water apart from the surrounding water and 
landmasses. If the scenario is to establish which pixels in a scene are boat pixels, calling 
all the others background, then this would be the case. This relative weighting of the 
importance of particular separabilities warrants further attention.

The class separation metric defined in Equation 10 can be rewritten as

Z (15)

where the term W; j is an element of a weighting factor matrix W. This matrix W contains 
the relative importances of being able to separate class i from class) with statistical 
directionality implied. For example, if you had the 3-class problem referred to above, the 
matrix W may look like

W

"0 1 r 
1 0 0 

1 0 0

where the only important separability to establish is between class 1 and classes 2 and 3, 
with the separation between classes 2 and 3 carrying no importance at all.
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The weights do not need to be l's or 0's however this is typically the case in 
target/background scenarios.

The methods of Schott et cd. (1988) and Robert (1989) which are drawn on here each have 
some intrinsic limitations. Attempts are made in this implementation to rectify these 
problems.
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3.0 EXPERIMENTAL APPROACH

There are approximately two dozen cooccurrence features which are defined along with 
many run-length features. Most of these are dependent on the angle for which they are 
computed (this is a four time increase for 0°, 45°, 90° and 135° orientation angles). The 
number of features possible for use in classification can rapidly get out of hand (Haralick, 
1979). The main goal of feature selection is to select a subset of n features out of N 
features (n«N) without significantly degrading the classification accuracy obtainable. The 
number of features used in the classification should still give a minimal probability of 
misclassification (Fu, 1976).

Choosing a subset of features is very important when textural features are being used to 
classify an image. The generation of most textural features is computationally intensive, so 
it is advantageous to produce as few feature images as possible. To perform an image 
classification with textural features, full-resolution images of each textural feature must be 
calculated, making a reduction in the entire feature set necessary. Data reduction with 
spectral images using techniques such as eigenvector transformations may be used since a 
linear combination of the spectral bands is sometimes better for classification than the 
individual bands. With textural features, calculating all of the feature images in order to 
form a linear combination would be very slow, defeating the purpose of choosing a subset.

Feature selection algorithms are characterized by a search procedure, a selection criterion, 
and possibly a stopping criterion (Queriros and Gelsema, 1984). In the search procedure, 
combinations of subsets of n features out of N are tested and some measure of their 
classification abilities made. In the selection criterion, the subset with the most potential for 
correct classification is chosen. For the stopping criterion, the effect of including additional 
features would be measured and the addition to the accuracy of the classification is 
weighted against the extra computation. These three steps should lead to the selection of 
the best subset for classification.

3.1 Prescreening Approach (Eigenvector Criteria)

The first step in the optimal selection of features for use in image classification is a 
prescreening of the features. This step serves to eliminate highly correlated features, those 
features which do not contain unique information and bring the number of features being 
compared down to a size which can be quickly analyzed by a more rigorous optimization 
process.
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As mentioned before, the prescreening by analysis of correlation has several problems. By 
examining the correlation between features in the first column and working across to the 
last column, one set of uncorrelated features is chosen. If one were to start in the last 
column and work towards the first, a different set of features would be chosen. Both 
orders of operation would produce sets of uncorrelated features, but a more robust 
selection method is required. A second problem with feature selection by correlation is that 
it only examines combinations of features based on their inter-correlations with no regard 
for information content

A second prescreening method was developed based on eigenvector transformations which 
considers both the information content of the feature and its correlation to the other 
features. A covariance matrix is calculated from the training data representing the 
covariance between all calculated features for each class in the image. These covariance 
matrices for the individual classes are then pooled and the eigenvectors/eigenvalues 
calculated. The eigenvectors represent linear combinations of the features which explain 
the amount of the information in the original matrix proportional to the corresponding 
eigenvalue. The eigenvectors are ranked according to their eigenvalues so the first 
eigenvector represents the most information and so on. The eigenvectors have the 
additional property that they are orthogonal, i.e. each is independent of all others.

To preselect the best k features from the entire set of N, the preselection method examines 
the first k eigenvectors and chooses the features which contributes the most to that 
eigenvector. In this manner, the features which contribute to the most significant 
eigenvectors will be chosen, and the features chosen should be minimally correlated since 
they come from orthogonal eigenvectors. This process provides a reduced set of features 
with reduced correlation and high information content. It is recognized that this is not an 
optimal selection technique, but it should provide an adequate set of initial features from 
which to choose an optimal set.

3.2 Optimization Process

The most common approach for a selection criterion is to define a distance or separability 
measure between the probability distributions corresponding to the classes under 
investigation (Fu, 1976). The separability measure which should best represent distance 
between classes is a function of the Mahalanobis distance. For each subset of features, the 
distances between all possible combinations of two classes can be measured according to 2

2 t 1d(mr,ms) =(mr-ms)E (mr-ms) (16)
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where ntj and ms are the mean vectors for classes r and s, respectively, and X is the pooled 
covariance matrix between all features. If equality of class covariance matrices can not be 
assumed, the distance measure becomes

d(mr,ms)2 = In 12^1 + (mr - ms)1 (mr - ms) (17)

where Xj is the individual class covariance matrix. This defines the statistical distance of 
the mean of class s from the mean of class r in class r's probability space. Because the 
distances are measured from class r to all other classes in r's probability space, the distance 
from class r to class s will be different than the distance from class s to class r in s's 
probability space. Figure 3.1 illustrates a possible example.

Figure 3.1 Illustration of the discrepancy between statistical distance measured between 
points in different 2-dimensional probability spaces

Once the interclass distances are defined the subset providing the largest sum of distances 
between all combinations of classes would seem to provide the greatest separation between 
classes and therefore the best classification results. This is not always the case.

Using the distance measure between two classes (Equation 17), a standard distance was 
defined to improve the separability of classes. Measuring in class r's probability space 
(using r's covariance matrix), the distance between the means of classes r and s needed to 
make the probability of misclassification small was calculated as follows. Given that the 
probability of finding the mean of class s in a sample from class r is defined as

p(mslcor) =-------------- rft exp( -1 (mr- mj1 z;1 (mr - ms)) (18)
(27tr \LX\ ' 1

where p^Jo^) is the probability of misclassification. If this probability is fixed by the 
analyst at some maximum acceptable misclassification probability P and the quantity
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(m,. - ills)1 Z/1 (m,. - ills) replaced by the class dependent constant Dr, Equation 18 can be 
simplified as

P 1
(27t)n/2 IZj.l1/2

exp( * 2"Dr) (19)

The quantity Dr + In IZfl, the distance between the means of the two classes modified for 
the use of individual covariance matrices can be solved for as

Dr +/«IZrl = -2ln(P) - nln(2n) (20)

where n is the number of optimal features chosen from the initial subset of size k. Now 
Dr + In IZ,.! is the distance modified for the use of individual covariances which the mean 
of class s must be from the mean of class r such that they have the probability P of 
misclassification. The probability of misclassification, P, can be set so that its value is 
known and the distance necessary for that probability, defined as the threshold distance, 
can be solved for between the means of classes r and s. This measurement will be used as 
a threshold for the actual distances between classes calculated during the optimal feature 
selection, the steps of which are illustrated in Figure 3.2.

The standardized distance is used to assure adequate separation between two classes. If 
that distance is much greater than adequate (i.e. with a ratio greater than 1.0) the value of 
the ratio is truncated to a maximum of 1.0. By truncating the ratio, a very large separation 
between two classes would not inflate the value of the summed entries of the divergence 
matrix. With this method all classes must be well separated in order for the sum from the 
divergence matrix to be high and the subset of features which produces the highest 
summation is chosen.

3.3 Choosing Training S amples

The training samples were chosen with their textures in mind. Classes must be chosen 
carefully so that the elements may be recognized by a textural feature. The textural features 
derived in this study were calculated over a 5x5 pixel window. Since this was the case, 
each training sample had to be at least 5 pixels square. Problems arose with such classes as 
railroad tracks which are only 5 to 7 pixels wide in the imagery used. At the same time, the 
texture in the training sample must remain fairly constant from one 5x5 pixel block to the
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Calculate the distance between the means of classes r 
and s in r's probability space

Calculate the threshold distance between the mean of clas > 
r and the mean of any other class needed for a probability 
of misclassification P in class r's probability space

Divide the actual distance measured between the means 
of classes r and s by the threshold distance. Is the 
distance greater than 1.0?

The separation of the two classes is good 
enough, set the value of the ratio (i.e. the 
threshold distance) to 1.0

Enter the standardized distance defined as the ratio of 
the actual distance and the threshold distance. 
Continue this process for all combinations of classes 
until a divergence matrix has been formed with the 
standardized distances between all classes recorded.

The subset of features which yields the highest 
sum of divergence matrix entries is the subset 
which best separates the classes

Figure 3.2 Flowchart demonstrating the procedure carried out to choose the optimum set 
of n from k features

next within the training sample. This posed a great problem when training on houses. One 
7x7 pixel area would consist of the house, while there would be large blocks of pixels 
around the house consisting of trees or roads. If training was done for one large area over 
the entire neighborhood, the values calculated for the textural features would vary widely in 
that class since it would have composite values for trees, houses and streets. To overcome 
this problem, training samples were made up of samples of individual houses with some 
surrounding trees. The same was done for a class of suburban roads. By breaking the

-18-



training samples up into sizes and patterns that were recognizable by the textural feature, it 
was possible to greatly increase the overall accuracy of the classifier.

3.4 Determination of the Number of Features to Use

In order to determine the number of features to select, sets of two, three, four,... optimal 
features were chosen and the classification accuracy for a dependent set of pixels 
calculated. The overall classification accuracy for each set of features was calculated by 
weighting the accuracy of each class by the number of pixels in that class. Plots of the 
classification accuracy vs. number of features chosen are shown in Figures 3.3 and 3.4.

Number of Features

Figure 3.3 Classification accuracy as a function of number of optimal features chosen for 
image RR1

The plots shown illustrate that the classification accuracy levels off after six features were 
included in an optimal set. This value was used throughout the rest of this effort although 
it is clear from Figure 3.4 that a smaller number of features should work quite well for 
some scenes.

3.5 Determination of Classification Accuracy

The procedure of determining how good a classifier is performing can only be definitively
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Number of Features

Figure 3.4 Classification accuracy as a function of number of optimal features chosen for 
image ROME2

answered by comparing the land cover map produced with ground control data for every 
point composing the imaged area. This process is not a viable solution to the question due 
to the size of the scenes involved. Also, if you knew the answers before you performed 
the classification, there would be no need to carry it out. Sampling techniques are therefore 
implemented for evaluation of classification accuracy.

The most simple method for evaluating the success of a classifier is defined as a dependent/ 
independent analysis. The training of a classifier involves the collection of "representative" 
pixels which describe classes. One can choose to utilize a certain percentage of the 
collected pixels to compute the necessary statistics for the development of the classifier. 
These data are termed the dependent data since the derived statistical method relies on their 
values. The remaining percentage of trained pixels while still representing unique classes 
within the scene do not have a direct influence on the classifier. Therefore it is possible to 
call these independent data and use them to evaluate the effectiveness of the classification 
scheme.

To accomplish this task a percentage split of 80% to 20% of the trained pixels was 
employed representing the dependent and independent data, respectively. The classifier 
was developed based on the 80% of the training pixels and the theory presented earlier. A 
classification of the remaining 20% of the data was then perform and the percentage correct
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classification for each class recorded. This provides a useful "quick-and-dirty" evaluation 
of how well your training data represented the actual phenomena unique to each class. This 
same procedure can also be applied to the dependent data. Repeated refinement of the 
training data can be carried out until the results of classification accuracy for the dependent 
and independent data coincide within reasonable limits.

While seemingly adequate to many researchers as a method for accessing class accuracy, 
the method described has some weaknesses. First, the training samples represent data 
from localized proximity within the scene. That is the data collected for a grass field 
represents a particular kind of grass (e.g. be it in type or in biological condition). Testing 
accuracy in the manner presented is a sort of self-fulfilling prophecy since the classifier 
may be able to do very well only on data similar to that with which it was trained.
Therefore this method lacks robusmess. Second, a statistical test of this sort requires that 
the analysis be random, where in fact the method presented is very structured in it's 
implementation.

A method to address both of these problem was used in this study. The procedure uses 
training data to develop the classifier just as the previous implementation did, however, all 
the data are used. The classification accuracy is then evaluated by a random selection of 
pixels from within each class determined by the classifier (a set number in all classes) and 
presentation of these pixels to the analyst for ground truth identification. For example, if 
the classifier determined a pixel to be grass, the user is blindly asked to supply the class to 
which ground truth indicates a particular pixel belongs. A tally is kept of the correct as well 
as incorrect classifications according to the supplied ground truth and classification 
accuracy determined.

This method is completely random and robust, i.e. it selects pixels from outside as well as 
inside the training population. The accuracy determined therefore represents an 
uncorrelated estimate of the actual accuracy expected from the classifier. This method can 
be time consuming but the confidence in the estimates provided can be much higher. The 
analysis carried out in this endeavor randomly choose 50 points from each class and 
presented them to the user for comparison with ground truth data (which in this case was a 
high-resolution color aerial photograph). Classification accuracies defined by this 
procedure invariably yield lower, more conservative results than other methods. These 
results should, however, more closely resemble actual results on whole image 
classification. Included in this measure of accuracy is error due to mixed pixel 
misclassification as well as misclassification due to failure to include significant classes (or 
sub-classes) during the training process. Since other investigators commonly report only 
dependent and independent classification accuracies for their classifiers, these values are 
also reported here along with the results from the random sampling procedure.
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4.0 RESULTS

The approach presented was applied to two different scene types, the first containing 
railroad systems and the second containing camouflaged targets. Two images with 
approximately 1 meter per pixel spot size were analyzed for each scene type. Figures 4.1 
through 4.4 show the four scenes used in this study. For the railroad system images 
classes of railroad tracks, grass, trees, houses, roads and highway were chosen as cover 
types while for the camouflaged target scenes cover types of grass, trees, camouflage and 
two types of roadways were chosen.

Figure 4.1 Digitized air photo containing railroad system (RR1)
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Figure 4.2 Digitized air photo containing railroad system (RR2)

Figure 4.3 Digitized air photo containing camouflaged targets (ROME1)
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Figure 4.4 Digitized air photo containing camouflaged targets (ROME2)

4.1 Optimal Features Chosen as a Function of Scene Type

As a result of the analysis to determine the number of features to use for classification 
described in Section 3.4, the six optimal features were chosen for each of the four images. 
Table 4.1 lists the names of the features chosen for each of these four images and Table 4.2 
list the relative occurrences of like features across image type. Figure 4.5 illustrates the 
feature set chosen for image RR1. Appendix A contains a mathematical description of all 
the features listed in Table 2.1 and Appendix B contains images of these features derived 
from image RRl as a reference.

4.2 Dependent and Independent Classification Accuracies

Using the features shown in Table 4.1 dependent and independent classification accuracies 
were determined for each of the images. These accuracies represent the ability with which 
the classifier can place the training data (that data used to develop the classifier) into the 
proper coverage categories and the ability with which the classifier properly categorizes a 
selected subset of known pixels, not used in training. The method used to report these data 
is in the form of a confusion matrix. This matrix represents the known categories as rows
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and the classifier assigned categories as columns. In an ideal classification this matrix 
would have values only along the major diagonal with zeros elsewhere. Any deviation 
from perfect classification will place values in these off-diagonal terms. Tables 4.3 through 
4.6 contain the confusion matrices developed for the dependent data of the four images and 
Tables 4.7 through 4.10 contain those matrices developed for the independent data sets.

Table 4.1
List of the features chosen for each scene used in this study

RRl

Sum Variance Range 
Mean Brightness 

Variance
Red Spectral Band 

Green Spectral Band 
Blue Spectral Band

RR2

Contrast Average 
Contrast Range 

Sum Variance Range 
Mean Brightness 

Green Spectral Band 
Blue Spectral Band

ROME1

Sum Variance Range 
Mean Brightness 

Variance 
Contrast

Infrared Spectral Band 
Great Spectral Band

ROME2

Contrast Range 
Sum Variance Range 

Mean Brightness 
Brighmess 

Red Spectral Band 
Green Spectral Band

Table 4.2
Compilation of the occurrence rate of selected features within the optimal set for 

the four images used in this effort - A first-order measure of robustness

Sum Variance Range 4 of 4 Contrast Range 2 of 4
Mean Brighmess 4 of 4 Contrast Average 1 of 4
Green Spectral Band 4 of 4 Infrared Spectral Band 1 of 4
Variance 2 of 4 Brighmess 1 of 4
Red Spectral Band 2 of 4 Contrast 1 of 4
Blue Spectral Band 2 of 4
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Figure 4.5 Chosen optimal monochrome-derived image features for air photo containing 
railroad system (RRl)
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Table 4.3
Confusion matrix developed for the dependent data analyzed in image RRl

Grass Highway Houses Roads Railways Trees
Grass 72 0 0 0 2 0

Highway 0 213 0 0 0 0
Houses 0 0 151 10 0 0

Roads 0 0 4 162 0 0
Railways 0 0 0 2 98 0

Trees 0 0 0 0 0 155

Table 4.4
Confusion matrix developed for the dependent data analyzed in image RR2

Grass
Grass

67
Houses

0
Roads

0
Railways

0
Trees

0
Houses 0 135 8 0 0

Roads 0 1 150 9 0
Railways 0 0 3 175 0

Trees 0 0 0 0 168

Table 4.5
Confusion matrix developed for the dependent data analyzed in image ROME1

Grass
Grass
265

Trees
0

Road(l)
0

Road(2) Camouflage 
0 3

Trees 0 256 0 0 22
Road(l) 0 0 163 0 0
Road(2) 0 0 0 369 4

Camouflage 0 109 0 2 281
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Table 4.6
Confusion matrix developed for the dependent data analyzed in image ROME2

Grass
Grass

186
Trees

0
Road(l)

0
Road(2) Camouflage 

6 0
Trees 0 451 0 0 0

Road(l) 0 0 107 0 0
Road(2) 3 0 0 169 0

Camouflage 0 0 0 0 53

Table 4.7
Confusion matrix developed for the independent data analyzed in image RRl

Grass Highway Houses Roads Railways Trees
Grass 36 0 0 0 1 0

Highway 0 106 0 0 0 0
Houses 0 0 75 5 0 0

Roads 0 0 3 80 0 0
Railways 0 0 0 1 50 0

Trees 0 0 0 0 0 77

Table 4.8
Confusion matrix developed for the independent data analyzed in image RR2

Grass
Grass

33
Houses

0
Roads

0
Railways

0
Trees

0
Houses 0 71 0 0 0

Roads 0 0 75 6 0
Railways 0 0 2 86 0

Trees 0 0 0 0 84
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Table 4.9
Confusion matrix developed for the independent data analyzed in image ROME1

Grass Trees Road(l) Road(2) Camouflage
Grass 133 0 0 0 0
Trees 0 127 0 0 12

Road(l) 0 0 82 0 0
Road(2) 0 0 0 184 2

Camouflage 0 52 0 2 144

Table 4.10
Confusion matrix developed for the independent data analyzed in image ROME2

Grass Trees Road(l) Road(2) Camouflage
Grass 94 0 0 2 0
Trees 0 225 0 0 0

Road(l) 0 0 53 0 0
Road(2) 1 0 0 86 0

Camouflage 0 0 0 0 26

As can be seen from these matrices, both the dependent and independent classification 
accuracies are very high for most classes. Table 4.11 represents overall classification 
accuracies across all classes for each of the images. These values are straight averages of 
the individual class accuracies with no attention given to relative number of pixels trained 
for each class.

Table 4.11
Overall classification accuracy across class for images analyzed

Image Dependent Independent
RRl 97.9 % 97.7 %
RR2 97.1 % 97.8 %

ROME1 90.5 % 91.0 %
ROME2 99.1 % 99.4 %

-29-



4.3 Image Classification

The railroad system image, RRl, and it's accompanying optimal feature set was used as an 
input to a maximum likelihood classifier to produce a land cover map. A priori 
probabilities for this classification were set equal since no information of this sort was 
known. Therefore classification was carried out according to Equation 10. Figure 4.6 
shows the color-coded land cover map produced.

Figure 4.6 Land cover classification map produced from maximum likelihood
classification (red-minor roads, green-trees, olive-grass, white-highway, 
black-railways, yellow-houses)

Visually, this map appears to categorize the original scene content. A more rigorous 
evaluation of the effectiveness of the classification was carried out according to the random 
pixel selection method described in Section 3.5.
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4.4 Classification Accuracies from Random Point Analysis

Using the method of random point analysis the land cover map shown above was 
compared to "ground truth" obtained from air photo data. Fifty randomly selected points 
were chosen from each class shown in Figure 4.6 and presented to the analyst. The 
confusion matrix shown below (Table 4.12) illustrates the accuracy with which the 50 
randomly selected scene elements in each class were categorized. The overall accuracy 
obtained from this analysis is significantly lower than that obtained using the independent 
classification accuracies of Table 4.11. This is expected since the "independent" data used 
to arrive at the value in Table 4.11 was closely associated in proximity with the training 
data. The data in Table 4.12 better describes the actual classification accuracy of the scene 
since no proximity ties with the training data are implied. The second overall accuracy 
figure shown is a weighted value incorporating percentages of the entire scene classified 
into each class and will provide a better feel for the overall image classification accuracy.

Table 4.12
Confusion matrix developed for the random point analysis of image RRl

Grass Highway Houses Roads Railways Trees
# of pixels 

in final map
Grass 29 0 1 2 3 15 17230

Highway 5 35 5 4 0 1 12148
Houses 2 3 21 6 0 18 37706

Roads 10 5 6 15 0 14 41065
Railways 16 5 6 9 6 8 22396

Trees 1 0 2 0 0 47 131599

Overall Accuracy = 51% 
Overall Accuracy Weighted by #'s in Final Map = 66%
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5.0 CONCLUSIONS AND RECOMMENDATIONS

This effort has demonstrated how large families of image-derived textural features can be 
reduced to a small number of useful images needed to perform scene segmentation. The 
emphasis on this effort was not on overall classification accuracy but rather on the 
development and testing of tools for the selection of the most appropriate features for scene 
segmentation. This effort demonstrated that a small set of image derived features could be 
selected from a candidate set of nearly 50 and used to achieve high classification accuracy 
on independent data sets (approximately 96%). This reduction in the number of features 
required is a significant since feature generation can be very compute intensive therefore 
shortening run times.

The approach pursued here required user-assisted training procedures to facilitate the 
selection of classes and the isolation of appropriate features for performing scene 
segmentation. However, one of the objectives of this effort was to determine whether any 
of the image-derived features were robust enough to be pre-identified as useful in scene 
segmentation. If this were the case then these features might be useful in the development 
of unsupervised or automated scene segmentation algorithms. While a rigorous treatment 
was beyond the scope of this study, the results for the four scenes studied are very 
encouraging. It was observed that three features proved optimal on all four images used. 
These results must be interpreted as preliminary due to the small data set, however, they 
suggest that at least within some confines of content and scale a robust family of image- 
derived textural features may be identifiable for use in scene segmentation.

Future efforts should consider an expanded set of image-derived features including the 
effects of varying radiometric resolution (e.g. number of grey levels in cooccurrence 
feature calculations) and kernel size. Also the effects of image type (scale, orientation and 
content) should be more rigorously evaluated. A particularly promising use of the tools 
developed here would be in evaluation of the trade-offs between spectral and spatial 
resolution. The need for multiple spectral channels when high resolution texture data are 
available from a monochrome images could be evaluated.

In summary, an image processing tool has been developed to facilitate the selection of an 
optimized set of image-derived features for scene segmentation. Efforts should be made to 
attempt to identify improved features so that better classifiers can be built. The tool can be 
effectively used to determine whether a new feature or family of features is of value for the 
image types of interest. We believe that this approach can be a powerful tool in developing 
improved image classification procedures for both supervised and unsupervised classification.
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APPENDIX A Mathematical Description of Textural Features Used in this Study

SPECTRAL FEATURES
These features consist of the grey levels of individual pixels from the different bands of the 
digital image.

TEXTURAL FEATURES
These features are measures of the interaction between neighboring pixels in a single band. 
They can be calculated according to several different methods as explained below.

COOCCURRENCE MATRIX FEATURES
Fourteen textural features are defined below as calculated from gray-level cooccurrence 
matrices. Specifications that go along with this feature are the distance between the two pixels 
compared, the orientation between the comparison and the size of the window (which decides 
how many pixels will be compared). Because these features are dependent on the angle over 
which they are calculated, the actual features values calculated will be the average over all four 
angles (0,45,90, 135 degrees) and the range over all four angles. Therefore, 28 out of the 
final 46 textural features are calculated from gray-level cooccurrence matrices.

The notation used to describe the calculation of these features is as follows.

Ng is the number of gray levels in the quantized image.

R is the number of gray levels after quantization (also the dimension of the cooccurrence

p(i,j) is the (i,j) the entry in a quantized gray-tone spatial dependence, matrix, it is equal to
P(i,j)/R.

px(i) is the ith entry in the marginal-probability matrix which is obtained by summing the 
rows of p(i,j) where

matrix)

Ng

P(iJ) = X
j=i
Ng

i=l
Ng Ng

for k = 2,3,...,2Ng and i+j = k
i=l j=l
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Ng Ng

Px-y(k) = S S P^O) f°r k = 0,l,...,Ng-l
i=l j=l

1) Angular Second Moment
Ng Ngfi = X X tpoo)]2
i= 1 j=l

2) Contrast
Ng-1 f Ng Ng 1

f2 = ^ n2 | X X P^J) I f°r li-jl=n 
n=0 [_i=l j=l J

3) Correlation

f3

r Ng Ng i
I X S (ij) P(i0) • PxPy I 
1 1=1 j=1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ l

4) Variance
Ng Ng

f4 = X X PCid)
i=i j=i

5) Inverse Difference Moment
Ng Ng

f5 = ZZ
i=l j=l

p(U)

L1+(i-j) J

6) Sum Average
2Ng

f6 = X i ^x+y
i=2

(i)

7) Sum Variance
2Ng

n = £ a-f8)2 P (i)
i=2

and li-jl = k

-36-



8) Sum Entropy
2Ng

f* = -S Px+yW ''’gIPx+yf’)]
i=2

9) Entropy
Ng Ng

f9 = -X 2 Ptfo) ^gtPOJ)]
i= 1 j=l

10) Difference Entropy
Ng-l

fl0 = -X Px-y^) ^gtPx-yCi)]
i=0

11), 12) Information Measures Of Correlation 
fll^ HXY-HXY1 

max (HX, HY)

j e-2(HXY2 - HXY)
1/2

Ng Ng

where: HXY =^ p(ij) log[p(i,j)] 
i=i j=i

Ng Ng

HXYl = -X X pflj) py(i)]
i=l j=l 

Ng Ng

hxy2 = -X 2 px® pyCi) log[px(i) py(j)i
i=l j=l

13) Difference Variance
f!3 = variance of px-y.

14) Maximal Correlation Coefficient
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fl4 = [Second largest eigenvalue of Q]
1/2

p(i,k) p(j,k) 
px(i) py(k)

FIRST-ORDER STATISTICS FEATURES
These are basic features which are simple statistical measures on groups of pixels.

Gradient is a measure of the edgeness in a window defined asr
G(d)

i i.

i.j=N

d = the distance between pixels for the sample 
I(i,j) = point i,j in the image window I 
N = dimension of the window

Mean Brightness is the mean gray value over a window of pixels the same size as was used for 
the cooccurrence calculations.

Variance is the variance of the gray values within the window.

Brightness is simply the gray value of each pixel, or the original monochrome image

RUN LENGTH STATISTICS FEATURES
Given a block of pixels (the same size as the windows over which the cooccurrence features 
were calculated), run length features are based on the lengths and orientations of groups of 
linearly connected pixels of identical gray level. Let p(i,j) be be the number of runs of length j 
and gray level i. A matrix can then be made with i rows and j columns, with its entries being 
the value of p(i,j) for orientations of 0°, 45°, 90°and 135°.

Nr = the number of runs
Ng = the number of gray levels
P = the number of points in the window

The features are as follows
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Short Runs Emphasis =

Ng NrII P(lj)
.2
J

Ng NrX X p^j)
i=l j=l

This divides the number of runs by the length of the run squared and tends to emphasize short 
runs. The denominator is the total number of runs and acts as a normalizing factor.

Long Runs Emphasis =

Ng Nr

X X j2 p<iJ)
i=l j=l

Ng Nr

X Xp^J)
i=l j=l

This multiplies the number of runs by the length of the run squared, emphasizing long runs.

Gray Level Nonuniformity =

Nr

X ptfo)
l_j=l

2

Ng Nr

X X pcj)
i=l j=l

This squares the number of run lengths for each gray level. When runs are equally distributed 
through gray levels, the function has a low value.

Run Length Nonuniformity =
I
j=i

X p^j)
i=l

Ng Nr

X X p^j)
i=l j=l

This squares the number of runs for each length. If runs are equally distributed in length, the 
function takes on its lowest value.
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Run Percentage =

This ratios the total number of runs to the total number pixels in the window. The function has 
its lowest value for a window with highly linear structure.

GRAY-LEVEL DIFFERENCE STATISTICS FEATURES
Another approach to defining features is to use matrices with entries based on pairs of gray 
levels taken d distance apart. The absolute value of the difference between any of these two 
pixels a distance d apart is computed as

The probability p^fi) is the probability density of f^fx.y) where i is the range of values possible 
for fd(x,y)the number of gray-levels -1. Based upon these calculations, the four following 
features are defined.

fg(x,y) = jf(x>y) - f(x+Ax, y+Ay)i

Ng-1

Contrast = ^ pt(i)

Ng-1

Angular Second Moment 

Ng-1

Entropy = -]£ pg(i) log[pg(i)]

Mean
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APPENDIX B Pictorial Description of Textural Features Used in this Study (RRl)

The following pages contain full resolution (512x512 pixels) images of the textural features 
derived on image RRl shown in Figure 4.1. The cover sheets contain a layout sketch 
indicating the position of the particular features on the following page. Consult Appendix A 
for a mathematical description of these features.
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Angular second 
moment average

Angular second 
moment range Contrast average

Contrast range Correlation
average

Correlation
range
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Variance average Variance range Inverse difference 
moments average

Inverse difference Sum average Sum average
moments range average range
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Sum variance 
average

Sum variance range Sum entropy 
average

Sum entropy Entropy Entropy
range average range
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Difference entropy 
average

Difference entropy 
range

Information measure 
of correlation A 

average

Information 
measure of 

correlation A range

Information 
measure of 

correlation B 
average

Information 
measure of 

correlation B 
range
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Difference
variance
average

Maximum
probability

average

Difference 
variance range

Maximum
probability

range
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Gradient

Variance

Mean
brightness

Brightness
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Short run emphasis 
inverse moment 

average

Short run emphasis 
inverse moment 

range

Long run emphasis 
inverse moment 

average

Long run emphasis 
inverse moment 

range

Gray level 
non-uniformity 

average

Gray level 
non-uniformity 

range



n
J *

II
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Run length 
non-uniformity 

average

Fraction of 
image in runs 

average

Run length 
non-uniformity 

range

Fraction of 
image in runs 

range
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Contrast

Entropy

Angular second 
moment



-59-


