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1.0 INTRODUCTION AND SUMMARY

The classification or segmentation of images into land cover or object class is one of the
fundamental remote sensing/image processing tasks. The classification techniques have
reached a high level of maturity in the forms of statistical pattern recognition techniques
applied to multispectral images. According to this approach each pixel has a spectral vector
associated with it and pixels are segmented into the class they most closely resemble
spectrally. While these techniques are reasonably successful they do not take advantage of
the brightness patterns within a class or at object boundaries nor are they readily applicable
to monochrome images or highly correlated multispectral images (e.g. true color images).
To overcome these limitations several investigators have suggested the use of image
derived features as additional factors for use in image classification. Robert (1989) has
identified over forty textural features that have been suggested by various authors as useful
for scene classification. Regrettably it is very compute intensive to generate all these
features for every pixel in an image and to then use them in a classifier. Schott et
al.(1988) developed a technique for selecting a small subset of spectral bands from a large
set based on criteria intended to optimize maximum likelihood classification. Salvaggio et
al.(1990) have implemented code to generate 46 image derived textural features and
applied a two-step feature reduction and optimization process based largely on the band
selection process of Schott et al. (1988). The current effort drew on this proof-of-concept
work mentioned above and improved on several limitations noted in the earlier work.
Specifically; the initial feature set reduction algorithm of Robert (1989) is shown to be
deficient and an improved method implemented. The spectral band optimization routine of
Schott et al. (1989) is applied to feature selection and refined to generate a more truly
optimum feature set, the feature generation algorithms developed on the proof-of-concept
effort were completely rewritten so that the feature selection and classification process
could be implemented in reasonable time frames, and finely the techniques were tested for
classification accuracies and consistency of features selected.

For the four scenes tested the classification accuracies on independent data sets were ~96%
indicating a strong potential for the use of texture based features in classification and scene
segmentation. Furthermore the optimization technique is shown to have considerable value
in isolating useful features from the overwhelming number of features which could have
been suggested for use in segmentation. The optimization and classification tools
developed here are image and feature independent and can be applied to any classification
or segmentation problem.



2.0 THEORETICAL / HISTORICAL BACKGROUND

A review of the historical development leading to this work as well as the underlying theory
behind image classification is presented in this report. The review here is intended only to
provide a general framework for this effort. For a more rigorous review, the reader if
referred to the more specific treatments alluded to throughout this section.

2.1 Image Derived Features

Image data is most often understood to be that collected by some sort of photographic or
electrooptical device. These images contain a vast amount of information about relative
brightnesses of objects within a scene, spatial proximity, size and so on. Mathematical
manipulations of these images can transform much of the information which is stored in
these images into a form which can aid in a specific application. This effort will look at the
extraction of such information which will aid in image classification.

2.1.1  What Are Image Derived Textural Features?

Image classification has historically utilized spectral image data to develop the necessary
statistical pattern recognition metrics with which to assign land cover/class types to
individual image elements. The human visual system utilizes "color" as a strong key to the
identification and recognition of objects so this history is a well justified one. The visual
system also uses "texture” of objects within a field as a key to identification. For example,
if one perceives a "red" object in an isolated visual field (i.e. with no surrounding clues),
one would be hard pressed to determine if this object was the side of a fire engine or the
leaf of a deciduous tree during autumn based on color alone. However, if texture was
considered, that is the local change in intensity of the color within some defined spatial
region, then the distinction would become a trivial one since the fire engine would appear
very homogeneous in its color while the surface of the leaf would have much more
variation. It is this variation in color, or grey tone as it will be referred to in this report, that
constitutes the monochromatic image derived features known as textures.

Textures became of interest in the field of image classification in the 1970's with the work
of Haralick et al. (1971,1973,1979), Sutton and Hall (1972), Rosenfeld (1975),
Galloway (1975), Keltig and Landgrebe (1976), Weszka et al. (1976), Hsu (1978), and
Conners (1979). It was found that, when used in combination with the more traditional
spectral data, classification accuracies could be significantly improved. It may be helpful to
look at a simple example of the kind of information these derived constructs provide.

2-



A simple class of textural features known as first-order statistics provide an intuitive feeling
of the type of information provided by these metrics. Let's look at the local standard
deviation of a 3x3 collection of pixels. Figure 2.1 shows two isolated areas of a digital
image. The two-dimensional bar-chart plot shown provides an insight into the amount of
variation in grey-tone which is occurring (a high level in the left-hand image along with a
low level in the right-hand image). The relevant digital counts are then shown along with
the 3x3 computational windows. The center pixel in each of the possible windows is
replaced with a scaled version of the standard deviation of the digital brightness levels
which occur in this window. The resulting images are shown. Notice that although the
original image data had very similar "colors" (grey-tone levels) that the resulting image
derived textural feature illustrate very different grey-levels. The highly variant image on the
left produces a feature with very high brightness while the image segment on the right
produces very low-levels of brightness. This illustrates that high texture areas produce
different image information than the low texture areas. This information can be used in a
statistical pattern recognition analysis to aid in material identification or classification.

1 5 216 |2 3|2 212 3
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Figure 2.1 Illustration of different textures within isolated sections of image data
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2.1.2  Description Of Features Used In This Study

The monochromatic image derived features used in this study were taken from the work of
Robert (1989). In this work Robert implemented the features described in the literature by
Haralick et al. (1973), Weszka et al. (1976), Galloway (1975), Sutton and Hall (1972),
Weszka et al. (1976), and Hsu (1978) and utilized an optimization approach in order to
chose those features which best assisted classification of land cover types in a monochrome
image.

The features implemented by Robert can be broken up into 6 classes. These classes include
grey-level difference statistics, first-order statistics, run-length statistics, difference
statistics, grey-level cooccurrence matrix and spectral features. Table 2.1 summarizes
those features used. Only a brief descriptive account of the features will be presented here.
For a complete mathematical description of these features, the reader is directed to the
original works cited as well as a summary provided in Robert (1989).

Grey-level difference statistics as their name indicates are a class of features which derive
their values from absolute differences between pairs of image elements or from some
average of these elements (Weszka et al., 1976). Grey-level difference statistics tend to
indicate the presence and direction of "edges" within an image. The location and presence
of edge information is a clue to the visual system in the recognition process and has been
shown to contribute to increased classification accuracy by Sutton and Hall (1972),
Rosenfeld (1975) and Rosenfeld and Thurston (1971). Similarly, first-order statistics are a
class of features arising from first-order statistical metrics computed on some finite
neighborhood of image brightness values (e.g. mean, standard deviation, variance).

Run-length statistics represent contiguous occurrences of identical grey-level values.
Galloway (1975) has developed features which indicate the relative magnitudes and
directions of these "runs" and has demonstrated increased classification accuracy with their
utilization.

Grey-level cooccurrence matrix derived features tend to contain textural characteristics such
as homogeneity, grey-level linear structures, contrast, number and nature of object
boundaries, and image complexity. The mathematical intricacies can be found in Haralick's
research (1973).

If all the features described were to be used in a classification, the amount of time necessary



Table 2.1
Listing of the image derived features used in this study

Average of Grey Tone Values Short Run Emphasis Inverse Moment Average
Angular Second Moment Average Variance of Grey Tone Values Range
Range Long Run Emphasis Inverse Moment Average
Contrast Average Range
Range Grey Level Non-Uniformity Average
Correlation Average Range
Range Run-Length Non-Uniformity Average
Variance Average Range
Range Fraction of Image in Runs Average
Range
Inverse Difference Moment Average
Range
Sum Average Average
Range
Sum Variance Average Difference Statistics Spectral Features
Range
Sum Entropy Average Textural Edgeness Red Grey Level
Range Contrast Green Grey Level
Entropy Average Entropy Blue Grey Level
. Range Average
Difference Entropy Average Gradient
Range

Information Measures of
Correlation A Average
Range
Information Measures of
Correlation B Average
Range
Difference Variance Average
Range
Maximum Probability Average
Range



for their production and implementation in a classifier is prohibitive in operation. Itis not
necessary to use them all and in some cases may prove detrimental to classification. This
effort is therefore aimed at the selection of an optimized subset of these features.

2.2 Classification Methodology

Many techniques exist for the classification of image elements into distinct land cover
classes. These techniques vary in their statistical rigor and each have implied assumptions
as well as advantages in particular scenarios. The techniques invoked in this study have
their origin in the maximum likelihood classification schemes described in the literature
(Richards, 1988 and Duda and Hart, 1973).

2.2.1  Probabilistic Description
The particular classification method used in this study is maximum likelihood classification
under Bayesian assumptions. This technique as developed here will reference classes, i.e.

those land cover types chosen for consideration.

If we let the M classes for an image be represented by
®w, r=1,.,M (D

The decision to determine to which of the M classes a pixel denoted by the feature vector x
belongs to is based strictly on the conditional probability,

p(@Jx), r=1,.,M )

The vector x is simply a column vector of feature values associated with a pixel at position
(1,j) in a digital image. The classification decision is made based on the vector x being
assigned to the class , for which the conditional probability p(w,Ix) is the greatest (most
probable). This is represented as

xe o if p(o/x)>pllx) forallr=s. 3)

All that need be done is to determine the conditional probabilities p(t,/x). These values are
unknown, however, they can be estimated provided a sufficient amount of training data can
be collected from the image. If training data is collected from the feature imagery for each

land cover class of interest, the multivariate probability distribution for each land cover type

-6-



can be established, p(xlo,).

The number of these conditional distributions will equal the number of land cover types.
Knowing these conditional probabilities, probability values can be computed which
represent the relative likelihood that the feature vector x at a point (i,j) in an image belongs
to each class established. The Baye's theorem relates these two conditional probabilities as

p(xlwy,) p(w,) @

e

where p(w,) is the probability that a class w, occurs in an image. These are called a priori
probabilities. The probability p(x) is the probability of finding a pixel from any class at

location x. The probabilities p(w,Ix) are called posteriori probabilities since these are the

probabilities of a vector x belonging to class , after a decision has been made. The
decision rule above can be rewritten as

xe @ if p®Eln)plo)>pEin)p(®w,) forallr=s &)

where the p(x) is removed as a common factor. This is a more acceptable rule since the
~ conditional probabilities can be known from training data and the analyst can make a good

guess as to the values of p(®,) from a knowledge of the image (these a priori probabilities
are often assumed equal). For mathematical convenience, g (X) is defined as

gs(x) = In[ p(xiwy) p(w;) 1 = In[ p(xia) ] + In[ p(w;) ] (6)

and the decision rule is again rewritten as
xew if gx)>g(x) forallr#s 7

where g(x) is known as the discriminant function. If the probability distribution of the
feature vectors corresponding to each class can be assumed to be multivariate normal, the

conditional probability p(xi®,) can be computed for n features as

1

2z 2 cema(-%(x-m,)‘z;l (x-m,)) (&)
em)™” |Z

p(xioy) = T

where m, and X, are the mean vector and covariance matrix for the training data in class r.
The discriminant function g (x) can be written as

-7-



g(x)=In p(a,) - %ln %] - % x-m) = (x-m,) ©)
If no information is known about the a priori probabilities this reduces to

g(x)=-In I£]- (x-m)'Z;' (x-m,) (10)

These two values of the discriminant function form the maximum likelihood classification
methodology using a Bayesian decision rule depending on whether or not a priori
probabilities are supplied by the investigator.

2.2.2  Mahalanobis Distance

Consider again the case of unknown or equal a priori probability demonstrated in Equation
10. If the sign of this function is reversed, the quantity can be considered a squared
distance measure since this is implied by the quadratic term and the logarithmic term is a
constant for class i. Rewriting Equation 10 in this form you have

dxm)’ =In IZ1+&x-m)'E " (x-m) (11)

where d(x,m,) is a measure of distance which is sensitive to direction as well as modified
according to class. The classification decision is then made to assign a pixel with the
descriptive vector X to class rif the distance d(x,m,) is the smallest for all M classes. If we
then consider the case where all class covariances are equal (X, = X for all r) then the term
In 1Z] no longer contributes to the discriminating ability of the metric and can be ignored
leaving

d(x,mr)2 = (X - mr)t st (x-m) (12)

the square root of which is referred to as the Mahalanobis distance. This has obvious
computational advantages over maximum likelihood classification while maintaining a
sensitivity based upon the covariance metric, X, which is often a class average metric
referred to as a pooled covariance matrix. However, this approach should be used only
when the covariance matrices for all classes are statistically equal.



2.3 Choosing an Optimum Set of Image Features

In the previous section a large number of feature images were discussed which can be
derived from a single monochromatic image. The time required to compute all of these
images and the sheer amount of data that would be present after their production is
prohibitive to their effective use as classification aids. In addition, many of the features
may be highly correlated such that their use in a classifier does not add significant
information and may even degrade classification accuracy. It is therefore necessary to
choose a subset of these feature images which serve as an optimum classification set.
Many statistical techniques exist which serve as data redundancy reduction tools such as
factor analysis, principal component analysis, etc., but these techniques do not serve to
optimize the choice of a subset of data which will aid in a particular classification scenario.
Schott ez al. (1988) and Robert (1989) have presented a technique which attempts to
produce optimized results within the context of the classification scheme used.

2.3.1 Use of Correlation as a Prescreener

Any technique which attempts to pick the best subset of size n out of a larger data set of

size k very quickly becomes a large combinatoric problem if k is of any significant size.

The original collection of all features used in this study amounted to 49 monochromatic
image derived features (including the three spectral bands). This amount of data proved to
be too large to deal with on the computational facilities available. Initial prescreening of the
data needed to be performed.

As with spectral image data, it was found that textural features derived from a single
monochrome image contained a large amount of inter-feature correlation. It was deemed by
Robert (1989) that highly correlated features need not all be included in the optimization
analysis since the amount of unique information provided by each was minimal. The
choice was made to include only one feature of each highly correlated collection.

This choice was made by the following selection criterion. It was assumed that the
individual class covariances proved equal and a pooled covariance matrix defined. If the
initial feature space covered k-dimensions for M defined classes then a kxk pooled
covariance matrix is definable. This pooled covariance matrix in then used to define a

correlation coefficient matrix of the form
C..

p.. = — (13)
RN Y

where the o terms indicate individual elements of the pooled covariance matrix . Once

9.



this matrix is formulated, an initial subset of features is selected in the following manner.

Correlation coefficients are considered by column (i.e. column 1 of the matrix is looked at
first) and all those entries whose value for correlation exceed some user defined threshold
are grouped. This group is then examined and the highest correlation coefficient in this
group selected. The feature corresponding to the row selected is then entered into the initial
subset and all other rows are deleted from further consideration. Of the remaining rows,
the second column is examined in the same manner, a grouping performed, and a selection
made. This procedure is carried out until all columns are exhausted. Figure 2.2 illustrates
this procedure on a 4x4 set of correlation coefficients. This initial subset of features is then
entered as the selection set from which the optimum collection of features will be extracted.

4 N
1.0 04 03 07 Assemble correlation
04 1.0 08 02 coefficient matrix

0.3 08 1.0 09 Set threshold to 0.6
0.7 02 09 1.0
N /

Consider column #1

(0] 04 o3 57)

04 1.0 0.8 0.2 p(1,1) = 1.0, p(4,1) = 0.7

03 08 1.0 0.9 p(1,1) is the greatest

0.7] 0.2 0.9 1.0/) Feature 1 is entered into the initial subset, Feature 4 is eliminated

s N | Consider column #2

(oa I':I 08 02) |P@22=10p@2)=08

(0.3 08l 1.0 0_9) p(2,2) is the greatest

q ) Feature 2 is entered into the initial subset, Feature 3 is eliminated

Initial feature subset chosen contains Features 1 and 2
for a chosen threshold of 0.6

Figure 2.2 Example of the use of correlation criteria as a prescreener to the optimization
code
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This prescreening method has a weakness in it's choice of the best feature from the group
assembled from each column. For each column, more than one feature may produce a
correlation value of equal magnitude at which point this selection method depends on the
order of the original data. A method needs to be developed which will not be affected by
such factors. For this study a prescreening method incorporating an eigenvalue/eigenvector
transformation of the data was used. This method is discussed in Section 3.1.

2.3.2  Pure Mahalanobis Distance Approach
Since the classification scheme chosen for this study was a Mahalanobis distance based
implementation, an optimization approach which enhanced separability of classes in the

context of this classifier is most appropriate. Schott er al. (1988) proposed a method by
which a class separation metric Z was determined. This metric had the form

(14)

where d; ;2 are the Mahalanobis distances computed between all class means. This metric
was computed for all combinations of n features chosen from the original set of size k. The
subset producing the maximum value of Z was then deemed the optimal set of n features
(i.e. that set which yields the largest class separability).

A significant problem exists with this approach. The value of Z can be affected very
heavily by the position of one class mean. Figure 2.3 shows two situations in a two-
dimensional feature space for simplicity. The first situation shows the relative positions of
three class mean values arranged in an equilateral-triangular orientation. The second
situation shows the same three class mean values with a different orientation. This second
situation obviously produces a larger metric Z however the class separability is not as well
established for classes 1 and 2 and is over-established for class 3. A modification to this
approach is implemented in this research as detailed in Section 3.2.

2.3.3  Mahalanobis Distance Approach With Class Weighting Factors

A further refinement to the feature optimization approach was established by Schott er al.
(1988) which allowed the user to specify relative importances on particular sets of class
separabilities. For example, it may be important to tell class 1 apart from classes 2 and 3
however it may seem relatively unimportant to tell classes 2 and 3 apart. A scenario of this

-11-



Class 1

Feature 2
Feature 2

Class 1
Class 2 Q@ Class 2

Class 3 Class 3
@)

s —y
Feature 1 Feature 1

Figure 2.3 Illustration of problems which may occur with the separability metric Z of
Schott et al. (1989)

sort may exist in isolating a ship on the water apart from the surrounding water and
landmasses. If the scenario is to establish which pixels in a scene are boat pixels, calling
all the others background, then this would be the case. This relative weighting of the
importance of particular separabilities warrants further attention.

The class separation metric defined in Equation 10 can be rewritten as

Z= 22 W, 4 (15)

j=1 i=1

where the term w;; is an element of a weighting factor matrix W. This matrix W contains
the relative importances of being able to separate class i from class j with statistical

directionality implied. For example, if you had the 3-class problem referred to above, the
matrix W may look like

v
—_ - ©
(=
S O =

where the only important separability to establish is between class 1 and classes 2 and 3,
with the separation between classes 2 and 3 carrying no importance at all.

-12-



The weights do not need to be 1's or 0's however this is typically the case in
target/background scenarios.

The methods of Schott ez al. (1988) and Robert (1989) which are drawn on here each have

some intrinsic limitations. Attempts are made in this implementation to rectify these
problems.

-13-



3.0 EXPERIMENTAL APPROACH

There are approximately two dozen cooccurrence features which are defined along with
many run-length features. Most of these are dependent on the angle for which they are
computed (this is a four time increase for 0°, 45°, 90° and 135° orientation angles). The
number of features possible for use in classification can rapidly get out of hand (Haralick,
1979). The main goal of feature selection is to select a subset of n features out of N
features (n<<N) without significantly degrading the classification accuracy obtainable. The
number of features used in the classification should still give a minimal probability of
misclassification (Fu, 1976).

Choosing a subset of features is very important when textural features are being used to
classify an image. The generation of most textural features is computationally intensive, so
it is advantageous to produce as few feature images as possible. To perform an image
classification with textural features, full-resolution images of each textural feature must be
calculated, making a reduction in the entire feature set necessary. Data reduction with
spectral images using techniques such as eigenvector transformations may be used since a
linear combination of the spectral bands is sometimes better for classification than the
individual bands. With textural features, calculating all of the feature images in order to
form a linear combination would be very slow, defeating the purpose of choosing a subset.

Feature selection algorithms are characterized by a search procedure, a selection criterion,
and possibly a stopping criterion (Queriros and Gelsema, 1984). In the search procedure,
combinations of subsets of n features out of N are tested and some measure of their
classification abilities made. In the selection criterion, the subset with the most potential for
correct classification is chosen. For the stopping criterion, the effect of including additional
features would be measured and the addition to the accuracy of the classification is
weighted against the extra computation. These three steps should lead to the selection of
the best subset for classification.

3.1 Prescreening Approach (Eigenvector Criteria)

The first step in the optimal selection of features for use in image classification is a
prescreening of the features. This step serves to eliminate highly correlated features, those
features which do not contain unique information and bring the number of features being
compared down to a size which can be quickly analyzed by a more rigorous optimization
process.

-14-



As mentioned before, the prescreening by analysis of correlation has several problems. By
examining the correlation between features in the first column and working across to the
last column, one set of uncorrelated features is chosen. If one were to start in the last
column and work towards the first, a different set of features would be chosen. Both
orders of operation would produce sets of uncorrelated features, but a more robust
selection method is required. A second problem with feature selection by correlation is that
it only examines combinations of features based on their inter-correlations with no regard
for information content.

A second prescreening method was developed based on eigenvector transformations which
considers both the information content of the feature and its correlation to the other
features. A covariance matrix is calculated from the training data representing the
covariance between all calculated features for each class in the image. These covariance
matrices for the individual classes are then pooled and the eigenvectors/eigenvalues
calculated. The eigenvectors represent linear combinations of the features which explain
the amount of the information in the original matrix proportional to the corresponding
eigenvalue. The eigenvectors are ranked according to their eigenvalues so the first
eigenvector represents the most information and so on. The eigenvectors have the
additional property that they are orthogonal, i.e. each is independent of all others.

To preselect the best k features from the entire set of N, the preselection method examines
the first k eigenvectors and chooses the features which contributes the most to that
eigenvector. In this manner, the features which contribute to the most significant
eigenvectors will be chosen, and the features chosen should be minimally correlated since
they come from orthogonal eigenvectors. This process provides a reduced set of features
with reduced correlation and high information content. It is recognized that this is not an
optimal selection technique, but it should provide an adequate set of initial features from
which to choose an optimal set.

32 Optimization Process

The most common approach for a selection criterion is to define a distance or separability
measure between the probability distributions corresponding to the classes under
investigation (Fu, 1976). The separability measure which should best represent distance

between classes is a function of the Mahalanobis distance. For each subset of features, the
distances between all possible combinations of two classes can be measured according to

dm,m)’ = (m,-m) =" (m,-m,) (16)
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where m, and m, are the mean vectors for classes r and s, respectively, and Z is the pooled
covariance matrix between all features. If equality of class covariance matrices can not be
assumed, the distance measure becomes

dm,m)’ = In IZJ + (m, - m)' %, (m, - m,) a7

where Z, is the individual class covariance matrix. This defines the statistical distance of
the mean of class s from the mean of class r in class r's probability space. Because the
distances are measured from class r to all other classes in r's probability space, the distance
from class r to class s will be different than the distance from class s to class r in s's
probability space. Figure 3.1 illustrates a possible example.

Q

Figure 3.1 Illustration of the discrepancy between statistical distance measured between
points in different 2-dimensional probability spaces

Once the interclass distances are defined the subset providing the largest sum of distances
between all combinations of classes would seem to provide the greatest separation between
classes and therefore the best classification results. This is not always the case.

Using the distance measure between two classes (Equation 17), a standard distance was
defined to improve the separability of classes. Measuring in class r's probability space
(using r's covariance matrix), the distance between the means of classes r and s needed to
make the probability of misclassification small was calculated as follows. Given that the
probability of finding the mean of class s in a sample from class r is defined as

1

e i

p(myloy) = exp(- 5 (m-m))' = (m, - my)) (18)

where p(mgla,) is the probability of misclassification. If this probability is fixed by the
analyst at some maximum acceptable misclassification probability P and the quantity
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(m, - my)* Z,'l (m, - my) replaced by the class dependent constant D,, Equation 18 can be
simplified as

- 1 _ L
o e g exp(- 3 Dr) (19

The quantity D, + In I, the distance between the means of the two classes modified for
the use of individual covariance matrices can be solved for as

D, +nl%,| = -2In(P) - nin(2m) (20)

where n is the number of optimal features chosen from the initial subset of size k. Now
D, + In IZ| is the distance modified for the use of individual covariances which the mean
of class s must be from the mean of class r such that they have the probability P of
misclassification. The probability of misclassification, P, can be set so that its value is
known and the distance necessary for that probability, defined as the threshold distance,
can be solved for between the means of classes r and s. This measurement will be used as
a threshold for the actual distances between classes calculated during the optimal feature
selection, the steps of which are illustrated in Figure 3.2.

The standardized distance is used to assure adequate separation between two classes. If
that distance is much greater than adequate (i.e. with a ratio greater than 1.0) the value of
the ratio is truncated to a maximum of 1.0. By truncating the ratio, a very large separation
between two classes would not inflate the value of the summed entries of the divergence
matrix. With this method all classes must be well separated in order for the sum from the
divergence matrix to be high and the subset of features which produces the highest
summation is chosen.

3.3 Choosing Training Samples

The training samples were chosen with their textures in mind. Classes must be chosen
carefully so that the elements may be recognized by a textural feature. The textural features
derived in this study were calculated over a 5x5 pixel window. Since this was the case,
each training sample had to be at least 5 pixels square. Problems arose with such classes as
railroad tracks which are only 5 to 7 pixels wide in the imagery used. At the same time, the
texture in the training sample must remain fairly constant from one 5x5 pixel block to the
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Calculate the distance between the means of classes r
and s in r's probability space

Calculate the threshold distance between the mean of clas
1 and the mean of any other class needed for a probability
of misclassification P in class r's probability space

T

Divide the actual distance measured between the means
of classes r and s by the threshold distance. Is the
distance greater than 1.0?7

NO YES
I

The separation of the two classes is good
enough, set the value of the ratio (i.e. the
threshold distance) to 1.0

1

Enter the standardized distance defined as the ratio of
the actual distance and the threshold distance.
Continue this process for all combinations of classes
until a divergence matrix has been formed with the
standardized distances between all classes recorded.

The subset of features which yields the highest
sum of divergence matrix entries is the subset
which best separates the classes

Figure 3.2 Flowchart demonstrating the procedure carried out to choose
of n from k features
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the optimum set

next within the training sample. This posed a great problem when training on houses. One
7x7 pixel area would consist of the house, while there would be large blocks of pixels
around the house consisting of trees or roads. If training was done for one large area over
the entire neighborhood, the values calculated for the textural features would vary widely in
that class since it would have composite values for trees, houses and streets. To overcome
this problem, training samples were made up of samples of individual houses with some

surrounding trees. The same was done for a class of suburban roads. By breaking the



training samples up into sizes and patterns that were recognizable by the textural feature, it
was possible to greatly increase the overall accuracy of the classifier.

3.4 Determination of the Number of Features to Use

In order to determine the number of features to select, sets of two, three, four, ... optimal
features were chosen and the classification accuracy for a dependent set of pixels
calculated. The overall classification accuracy for each set of features was calculated by
weighting the accuracy of each class by the number of pixels in that class. Plots of the
classification accuracy vs. number of features chosen are shown in Figures 3.3 and 3.4.

100

Classification Accuracy

90 1 T T v T T T Y T T
2 4 6 8 10 12

Number of Features

Figure 3.3 Classification accuracy as a function of number of optimal features chosen for
image RR1

The plots shown illustrate that the classification accuracy levels off after six features were
included in an optimal set. This value was used throughout the rest of this effort although
it is clear from Figure 3.4 that a smaller number of features should work quite well for
some scenes.

3.5 Determination of Classification Accuracy

The procedure of determining how good a classifier is performing can only be definitively
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Figure 3.4 Classification accuracy as a function of number of optimal features chosen for
image ROME2

answered by comparing the land cover map produced with ground control data for every
point composing the imaged area. This process is not a viable solution to the question due
to the size of the scenes involved. Also, if you knew the answers before you performed
the classification, there would be no need to carry it out. Sampling techniques are therefore
implemented for evaluation of classification accuracy.

The most simple method for evaluating the success of a classifier is defined as a dependent/
independent analysis. The training of a classifier involves the collection of "representative”
pixels which describe classes. One can choose to utilize a certain percentage of the
collected pixels to compute the necessary statistics for the development of the classifier.
These data are termed the dependent data since the derived statistical method relies on their
values. The remaining percentage of trained pixels while still representing unique classes
within the scene do not have a direct influence on the classifier. Therefore it is possible to
call these independent data and use them to evaluate the effectiveness of the classification
scheme.

To accomplish this task a percentage split of 80% to 20% of the trained pixels was
employed representing the dependent and independent data, respectively. The classifier
was developed based on the 80% of the training pixels and the theory presented earlier. A
classification of the remaining 20% of the data was then perform and the percentage correct
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classification for each class recorded. This provides a useful "quick-and-dirty" evaluation
of how well your training data represented the actual phenomena unique to each class. This
same procedure can also be applied to the dependent data. Repeated refinement of the
training data can be carried out until the results of classification accuracy for the dependent
and independent data coincide within reasonable limits.

While seemingly adequate to many researchers as a method for accessing class accuracy,
the method described has some weaknesses. First, the training samples represent data
from localized proximity within the scene. That is the data collected for a grass field
represents a particular kind of grass (e.g. be it in type or in biological condition). Testing
accuracy in the manner presented is a sort of self-fulfilling prophecy since the classifier
may be able to do very well only on data similar to that with which it was trained.
Therefore this method lacks robustness. Second, a statistical test of this sort requires that
the analysis be random, where in fact the method presented is very structured in it's
implementation.

A method to address both of these problem was used in this study. The procedure uses
training data to develop the classifier just as the previous implementation did, however, all
the data are used. The classification accuracy is then evaluated by a random selection of
pixels from within each class determined by the classifier (a set number in all classes) and
presentation of these pixels to the analyst for ground truth identification. For example, if
the classifier determined a pixel to be grass, the user is blindly asked to supply the class to
which ground truth indicates a particular pixel belongs. A tally is kept of the correct as well
as incorrect classifications according to the supplied ground truth and classification
accuracy determined.

This method is completely random and robust, i.e. it selects pixels from outside as well as
inside the training population. The accuracy determined therefore represents an
uncorrelated estimate of the actual accuracy expected from the classifier. This method can
be time consuming but the confidence in the estimates provided can be much higher. The
analysis carried out in this endeavor randomly choose 50 points from each class and
presented them to the user for comparison with ground truth data (which in this case was a
high-resolution color aerial photograph). Classification accuracies defined by this
procedure invariably yield lower, more conservative results than other methods. These
results should, however, more closely resemble actual results on whole image
classification. Included in this measure of accuracy is error due to mixed pixel
misclassification as well as misclassification due to failure to include significant classes (or
sub-classes) during the training process. Since other investigators commonly report only
dependent and independent classification accuracies for their classifiers, these values are
also reported here along with the results from the random sampling procedure.
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4.0 RESULTS

The approach presented was applied to two different scene types, the first containing
railroad systems and the second containing camouflaged targets. Two images with
approximately 1 meter per pixel spot size were analyzed for each scene type. Figures 4.1
through 4.4 show the four scenes used in this study. For the railroad system images
classes of railroad tracks, grass, trees, houses, roads and highway were chosen as cover

types while for the camouflaged target scenes cover types of grass, trees, camouflage and
two types of roadways were chosen.

Figure 4.1 Digitized air photo containing railroad system (RR1)
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Figure 4.2 Digitized air photo containing railroad system (RR2)

Figure 4.3 Digitized air photo containing camouflaged targets (ROME]1)
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Figure 4.4 Digitized air photo containing camouflaged targets (ROME?2)

4.1 Optimal Features Chosen as a Function of Scene Type

As aresult of the analysis to determine the number of features to use for classification
described in Section 3.4, the six optimal features were chosen for each of the four images.
Table 4.1 lists the names of the features chosen for each of these four images and Table 4.2
list the relative occurrences of like features across image type. Figure 4.5 illustrates the
feature set chosen for image RR1. Appendix A contains a mathematical description of all
the features listed in Table 2.1 and Appendix B contains images of these features derived
from image RR1 as a reference.

4.2 Dependent and Independent Classification Accuracies

Using the features shown in Table 4.1 dependent and independent classification accuracies
were determined for each of the images. These accuracies represent the ability with which
the classifier can place the training data (that data used to develop the classifier) into the
proper coverage categories and the ability with which the classifier properly categorizes a
selected subset of known pixels, not used in training. The method used to report these data
is in the form of a confusion matrix. This matrix represents the known categories as rows
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and the classifier assigned categories as columns. In an ideal classification this matrix
would have values only along the major diagonal with zeros elsewhere. Any deviation
from perfect classification will place values in these off-diagonal terms. Tables 4.3 through
4.6 contain the confusion matrices developed for the dependent data of the four images and
Tables 4.7 through 4.10 contain those matrices developed for the independent data sets.

Table 4.1
List of the features chosen for each scene used in this study

RR1 RR2 ROME1 ROME2
Sum Variance Range Contrast Average Sum Variance Range Contrast Range
Mean Brightness Contrast Range Mean Brightness Sum Variance Range
Variance Sum Variance Range Variance Mean Brightness
Red Spectral Band Mean Brightness Contrast Brightness
Green Spectral Band Green Spectral Band Infrared Spectrai Band Red Spectral Band
Blue Spectral Band Blue Spectral Band Green Spectral Band Green Spectral Band
Table 4.2

Compilation of the occurrence rate of selected features within the optimal set for
the four images used in this effort - A first-order measure of robustness

Sum Variance Range 40f4 Contrast Range 20of4
Mean Brightness 40f4 Contrast Average 1of4
Green Spectral Band 40f4 Infrared Spectral Band 1of4
Variance 20f4 Brightness 1of4
Red Spectral Band 2 of 4 Contrast 1of4
Blue Spectral Band 20of4
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Figure 4.5 Chosen optimal monochrome-derived image features for air photo containing
railroad system (RR1)
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Table 4.3
Confusion matrix developed for the dependent data analyzed in image RR1

Grass Highway Houses Roads Railways  Trees

Grass 72 0 0 0 2 0

Highway 0 213 0 0 0 0

Houses 0 0 151 10 0 0

Roads 0 0 4 162 0 0

Railways 0 0 0 2 98 0

Trees 0 0 0 0 0 155
Table 4.4

Confusion matrix developed for the dependent data analyzed in image RR2

Grass Houses Roads Railways  Trees

Grass 67 0 0 0 0
Houses 0 135 8 0 0
Roads 0 1 150 9 0
Railways 0 0 3 175 0
Trees 0 0 0 0 168
Table 4.5

Confusion matrix developed for the dependent data analyzed in image ROME1

Grass Trees Road(1) Road(2) Camouflage
0 0 3

Grass 265 0
Trees 0 256 0 0 22
Road(1) 0 0 163 0 ‘ 0
Road(2) 0 0 0 369 4
Camouflage 0 109 0 2 281
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_ Table 4.6
Confusion matrix developed for the dependent data analyzed in image ROME2

Grass Trees Road(1) Road(2) Camouflage
0 6 0

Grass 186 0
Trees 0 451 0 0 0
Road(1) 0 0 107 0 0
Road(2) 3 0 0 169 0
Camouflage 0 0 0 0 53
Table 4.7

Confusion matrix developed for the independent data analyzed in image RR1

Grass Highway Houses Roads Railways  Trees

Grass 36 0 0 0 1 0

Highway 0 106 0 0 0 0

Houses 0 0 75 5 0 0

Roads 0 0 3 80 0 0

Railways 0 0 0 1 50 0

Trees 0 0 0 0 0 77
Table 4.8

Confusion matrix developed for the independent data analyzed in image RR2

Grass  Houses Roads Railways  Trees

Grass 33 0 0 0 0
Houses 0 71 0 0 0
Roads 0 0 75 6 0
Railways 0 0 2 86 0
Trees 0 0 0 0 84
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Table 4.9
Confusion matrix developed for the independent data analyzed in image ROME1

Grass Trees Road(l) Road(2) Camouflage
0 0 0

Grass 133 0
Trees 0 127 0 0 12
Road(1) 0 0 82 0 0
Road(2) 0 0 0 184 2
Camouflage 0 52 0 2 144
Table 4.10

Confusion matrix developed for the independent data analyzed in image ROME?2

Grass Trees Road(1l) Road(2) Camouflage
0 2 0

Grass 94 0
Trees 0 225 0 0 0
Road(1) 0 0 53 0 0
Road(2) 1 0 0 86 0
Camouflage 0 0 0 0 26

As can be seen from these matrices, both the dependent and independent classification
accuracies are very high for most classes. Table 4.11 represents overall classification
accuracies across all classes for each of the images. These values are straight averages of
the individual class accuracies with no attention given to relative number of pixels trained

for each class.

Table 4.11
Overall classification accuracy across class for images analyzed

Image Dependent Independent
RR1 97.9 % 97.7 %
RR2 971 % 97.8 %

ROMEI1 90.5 % 91.0 %
ROME2 9.1 % 994 %
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4.3 Image Classification

The railroad system image, RR1, and it's accompanying optimal feature set was used as an
input to a maximum likelihood classifier to produce a land cover map. A priori
probabilities for this classification were set equal since no information of this sort was
known. Therefore classification was carried out according to Equation 10. Figure 4.6
shows the color-coded land cover map produced.

Figure 4.6 Land cover classification map produced from maximum likelihood
classification (red-minor roads, green-trees, olive-grass, white-highway,
black-railways, yellow-houses)

Visually, this map appears to categorize the original scene content. A more rigorous
evaluation of the effectiveness of the classification was carried out according to the random
pixel selection method described in Section 3.5.

-30-



4.4 Classification Accuracies from Random Point Analysis

Using the method of random point analysis the land cover map shown above was
compared to "ground truth” obtained from air photo data. Fifty randomly selected points
were chosen from each class shown in Figure 4.6 and presented to the analyst. The
confusion matrix shown below (Table 4.12) illustrates the accuracy with which the 50
randomly selected scene elements in each class were categorized. The overall accuracy
obtained from this analysis is significantly lower than that obtained using the independent
classification accuracies of Table 4.11. This is expected since the "independent” data used
to arrive at the value in Table 4.11 was closely associated in proximity with the training
data. The data in Table 4.12 better describes the actual classification accuracy of the scene
since no proximity ties with the training data are implied. The second overall accuracy
figure shown is a weighted value incorporating percentages of the entire scene classified
into each class and will provide a better feel for the overall image classification accuracy.

Table 4.12
Confusion matrix developed for the random point analysis of image RR1

# of pixels
Grass Highway Houses Roads Railways Trees in final map
Grass 29 0 1 2 3 15 17230
Highway 5 35 5 4 0 1 12148
Houses 2 3 21 6 0 18 37706
Roads 10 5 6 15 0 14 41065
Railways 16 5 6 9 6 8 22396
Trees 1 0 2 0 0 47 131599

Overall Accuracy = 51%
Overall Accuracy Weighted by #'s in Final Map = 66%
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5.0 CONCLUSIONS AND RECOMMENDATIONS

This effort has demonstrated how large families of image-derived textural features can be
reduced to a small number of useful images needed to perform scene segmentation. The
emphasis on this effort was not on overall classification accuracy but rather on the
development and testing of tools for the selection of the most appropriate features for scene
segmentation. This effort demonstrated that a small set of image derived features could be
selected from a candidate set of nearly 50 and used to achieve high classification accuracy
on independent data sets (approximately 96%). This reduction in the number of features
required is a significant since feature generation can be very compute intensive therefore
shortening run times.

The approach pursued here required user-assisted training procedures to facilitate the
selection of classes and the isolation of appropriate features for performing scene
segmentation. However, one of the objectives of this effort was to determine whether any
of the image-derived features were robust enough to be pre-identified as useful in scene
segmentation. If this were the case then these features might be useful in the development
of unsupervised or automated scene segmentation algorithms. While a rigorous treatment
was beyond the scope of this study, the results for the four scenes studied are very
encouraging. It was observed that three features proved optimal on all four images used.
These results must be interpreted as preliminary due to the small data set , however, they
suggest that at least within some confines of content and scale a robust family of image-
derived textural features may be identifiable for use in scene segmentation.

Future efforts should consider an expanded set of image-derived features including the
effects of varying radiometric resolution (e.g. number of grey levels in cooccurrence
feature calculations) and kernel size. Also the effects of image type (scale, orientation and
content) should be more rigorously evaluated. A particularly promising use of the tools
developed here would be in evaluation of the trade-offs between spectral and spatial
resolution. The need for multiple spectral channels when high resolution texture data are
available from a monochrome images could be evaluated.

In summary, an image processing tool has been developed to facilitate the selection of an
optimized set of image-derived features for scene segmentation. Efforts should be made to
attempt to identify improved features so that better classifiers can be built. The tool can be
effectively used to determine whether a new feature or family of features is of value for the
image types of interest. We believe that this approach can be a powerful tool in developing
improved image classification procedures for both supervised and unsupervised classification.
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APPENDIX A Mathematical Description of Textural Features Used in this Study

SPECTRAL FEATURES
These features consist of the grey levels of individual pixels from the different bands of the
digital image.

TEXTURAL FEATURES
These features are measures of the interaction between neighboring pixels in a single band.
They can be calculated according to several different methods as explained below.

COOCCURRENCE MATRIX FEATURES

Fourteen textural features are defined below as calculated from gray-level cooccurrence
matrices. Specifications that go along with this feature are the distance between the two pixels
compared, the orientation between the comparison and the size of the window (which decides
how many pixels will be compared). Because these features are dependent on the angle over
which they are calculated, the actual features values calculated will be the average over all four
angles (0, 45, 90, 135 degrees) and the range over all four angles. Therefore, 28 out of the
final 46 textural features are calculated from gray-level cooccurrence matrices.

The notation used to describe the calculation of these features is as follows.

N g is the number of gray levels in the quantized image.

R is the number of gray levels after quantization (also the dimension of the cooccurrence
matrix) .

p(,j) is the (i,j) the entry in a quantized gray-tone spatial dependence, matrix, it is equal to
P@.j)/R.

px(i) is the ith entry in the marginal-probability matrix which is obtained by summing the
rows of p(i,j) where

Ng

pGij) = Y, PG,j)
£
Ng

p,@) = 2, PG)
1=1 Ng

Ng
px+y(k) - 21 zlt p(.j) fork =23,..,2Ng and i+j =k
1= J=
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Ng Ng
Pry®) = D, D p(ij)  for k = 0,1,...,Ng-1

i=1 j=1

1) Angular Second Moment
Ng Ng
f1 = ZZmW]
i=1 j=1
2) Contrast
Ng-1 rNg Ng —|
2= n?| p(i,j) | for li-jl=n
n=0 Li=1 j=1

3) Correlation

g 1

(i.j) PALj) - polty |
1 j=1

Q
Z

i

[~
|
_|

GxO'y

4) Variance
Ng Ng

f4= D () plij)

i=1 j=1

5) Inverse Difference Moment
Ne Ng | p(i,j)
fs =
12{ JZ{ { 1+’

6) Sum Average
2Ng

6= D ip,,, (i)
i=2

7) Sum Variance
2Ng

7=, (8)" p,, (i)

i=2
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8) Sum Entropy
2Ng

£8 = 22 Pesy(i) loglp,, ()]

9) Entropy
Ng Ng

£9=-D, >, plij) loglpGi.)]

i=1 j=1

10) Difference Entropy
Ng-1

£10 = - p,,(0) loglpy.,(i)]
i=0

11), 12) Information Measures Of Correlation
£f11= HXY - HXY1
max (HX, HY)

1/2
f12= [1 _ o 2HKY2 - ny)]

Ng Ng

where: HXY = -Z 2 p(i,j) loglp(i,j)]

i=1 j=1
Ng Ng

HXY1=-), ), p(ij) loglpx(i) py()]
i=1 j=1
Ng Ng

HXY2=-Y, Y px(i) py() loglpx(i) py()]

i=1 j=1

13) Difference Variance
f13 = variance of px-y.

14) Maximal Correlation Coefficient
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2
f14 = [Second largest eigenvalue of Q]I/

5 pk) pGK)
Q("”‘zk: < py(K)

FIRST-ORDER STATISTICS FEATURES
These are basic features which are simple statistical measures on groups of pixels.

Gradient is a measuFe of the edgeness in a window defined as
rre on vrsa 4 on) s s N B PR TN
G(d) = 3 | TR+ HIG))-TG-d )| 161G+ A 1)1 ,j-d)
i,j=N
d = the distance between pixels for the sample
I(i,j) = point i,j in the image window I
N =dimension of the window

[ SO

Mean Brightness is the mean gray value over a window of pixels the same size as was used for
the cooccurrence calculations.

Variance is the variance of the gray values within the window.

Brightness is simply the gray value of each pixel, or the original monochrome image

RUN LENGTH STATISTICS FEATURES

Given a block of pixels (the same size as the windows over which the cooccurrence features
were calculated), run length features are based on the lengths and orientations of groups of
linearly connected pixels of identical gray level. Let p(i,j) be be the number of runs of length j
and gray level i. A matrix can then be made with i rows and j columns, with its entries being
the value of p(i,j) for orientations of 0°, 45°, 90°and 135°.

Nr = the number of runs
Ng = the number of gray levels
P = the number of points in the window

The features are as follows
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This divides the number of runs by the length of the run squared and tends to emphasize short
runs. The denominator is the total number of runs and acts as a normalizing factor.

Z

g Nr )
i pij)
i=1 _]

j=1
Nr

Z p(i,j)

i=1 j=1

Long Runs Emphasis =

This multiplies the number of runs by the length of the run squared, emphasizing long runs.

Nr
3 [Z p(i,j)}
i=1 L=l
lNg JNr

PP H)

i=1 j=1

2

Gray Level Nonuniformity =

This squares the number of run lengths for each gray level. When runs are equally distributed
through gray levels, the function has a low value.

Run Length Nonuniformity =

p(i.J)

This squares the number of runs for each length. If runs are equally distributed in length, the
function takes on its lowest value.
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Run Percentage =

This ratios the total number of runs to the total number pixels in the window. The function has
its lowest value for a window with highly linear structure.

GRAY-LEVEL DIFFERENCE STATISTICS FEATURES

Another approach to defining features is to use matrices with entries based on pairs of gray
levels taken d distance apart. The absolute value of the difference between any of these two
pixels a distance d apart is computed as

| |
f(x,y) = f(x,y) - f(x+Ax, y+Ay)!

The probability pq(i) is the probability density of fj(x,y) where i is the range of values possible
for f4(x,y)the number of gray-levels - 1. Based upon these calculations, the four following
features are defined.

Ng-1
Contrast = Z i2 ps(i)

i
Ng-1

2
Angular Second Moment = z P5(1)

1
Ng-1

Entropy = -Z p;(1) loglp,(1)]

Ng-1
Z i ps(i)

i

_ 1
Mean = Ng
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APPENDIX B  Pictorial Description of Textural Features Used in this Study (RR1)

The following pages contain full resolution (512x512 pixels) images of the textural features
derived on image RR1 shown in Figure 4.1. The cover sheets contain a layout sketch
indicating the position of the particular features on the following page. Consult Appendix A
for a mathematical description of these features.
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