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Abstract
In this book we describe how to elicit and analyze expert judgment. Expert 

judgment is defined here to include both the experts' answers to technical questions and 
their mental processes in reaching an answer. It refers specifically to data that are obtained 
in a deliberate, structured manner that makes use of the body of research on human 
cognition and communication. Our aim is to provide a guide for lay persons in expert 
judgment. These persons may be from physical and engineering sciences, mathematics and 
statistics, business, or the military. We provide background on the uses of expert 
judgment and on the processes by which humans solve problems, including those that lead 
to bias. Detailed guidance is offered on how to elicit expert judgment ranging from 
selecting the questions to be posed of the experts to selecting and motivating the experts to 
setting up for and conducting the elicitation. Analysis procedures are introduced and 
guidance is given on how to understand the data base structure, detect bias and correlation, 
form models, and aggregate the expert judgments.
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Preface
In this book we describe how to elicit and analyze expert judgment. Expert 

judgment is defined here to include both the experts' answers to technical questions and 
their mental processes in reaching an answer. It refers specifically to data that are 
obtained in a deliberate, structured manner that makes use of the body of research on 
human cognition and communication.

The book was written at the request of the Nuclear Regulatory Commission. At the 
time, the Risk Analysis Division of the Nuclear Regulatory Commission was breaking 
new ground in gathering and using expert judgment in large probabilistic risk 
assessments. The book's content has been generalized to meet their needs and those of 
others using expert judgments.

Our aim in this book is to provide a guide for lay persons in expert judgment. 
These persons may be from the physical and engineering sciences, mathematics and 
statistics, business, or the military. Alternatively, they may be working in one of the 
fields that have traditionally relied on expert judgment, such as risk analysis, reliability 
analysis, decision analysis, operations research, or knowledge acquisition, a branch of 
artificial intelligence. To illustrate, people working in the sciences and the military have 
often remarked to us that they wish there was detailed information somewhere on how to 
gather or analyze expert judgment. Earlier, there was no source to provide the guidance 
that they, as lay persons, needed to design and conduct their own elicitations or analyses.

There are several reasons for there being little usable literature on how to elicit 
information from experts. First, the way in which these techniques are learned does not 
lend itself to publication. Interviewing techniques in anthropology, psychology, and 
sociology are usually taught in laboratory situations. Students in these fields typically 
learn by watching one of their professors and, then, by doing. Thus, even within these 
specialized fields, there are few sources on elicitation. Second, the sources that do exist 
are specialized for a particular discipline or situation and are not easily generalizable to 
others. Third, it is difficult to communicate elicitation techniques because the written 
medium is not well suited to conveying levels of information that are communicated 
through nonverbal means. Also, most of the mechanics of elicitation become automatic 
in the experienced practitioner and thus inaccessible for retrieval.

The prerequisites for understanding this book are minimal. Generally, the content 
is simple and procedural in orientation. For a few of the statistical sections, an 
understanding of the elementary concepts would be advantageous, but the procedures can 
be followed without this technical background. When jargon is used, it is defined. Also, 
a glossary is provided as an aid. The data sets used in the examples are referenced where 
appropriate. Those data sets that are not referenced have been artificially generated using 
data set structures and values similar to real data.

We gratefully acknowledge the Division of Risk Analysis, Office of Nuclear 
Regulatory Research, Nuclear Regulatory Commission for their financial support (FIN 
A7225) and encouragement of this effort. In particular, we are indebted to Dale 
Rasmussen for suggesting this work, James Johnson for overseeing the research, and

xxm
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Without their contribution of time and expertise, this book would not have been possible. 
In addition, we extend our appreciation to our colleagues, Gary Tietjen and Thomas 
Bement, for their insightful reviews of the early drafts. We are also thankful for the 
constant support and encouragement provided by A. Juan. Finally, we are most grateful 
to Wilma Bunker, our expert in desk-top publishing, for her work in designing and 
editing the book.
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J. M. Booker
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Introduction

In this book we provide guidance on how to gather and analyze expert judgment. 
Such a source has been lacking, particularly for those who are lay persons in the area of 
expert judgment. We have met many people working in the physical sciences, in 
government, or in the military services who were struggling to elicit or analyze expert 
judgment. Their jobs required that they perform these tasks, but there was little 
information available to assist them. This book is our response to their special needs. We 
describe elicitation and analysis procedures, when to use them, and how to perform them in 
a way that allows the lay readers to design methods suited to their own particular 
application. Those more experienced with expert judgment, typically those working in the 
fields of risk analysis, reliability analysis, operations research, decision analysis, or 
knowledge acquisition, may also find the book of interest because in it are mentioned 
techniques and options that could extend or improve their usual methods.

In this chapter we give a general introduction to expert judgment and to the 
situations in which it is used. We define expert judgment as it will be covered in this book 
and provide an overview of the methods that will be presented for eliciting and analyzing 
expert judgment. Lastly, we describe our philosophy of elicitation and analysis as 
background for understanding the methods presented.

What is Expert Judgment?
Expert judgment is data given by an expert in response to a technical problem. An 

expert is a person who has background in the subject area and is recognized by his peers or 
those conducting the study as qualified to answer questions. Questions are usually posed 
to the experts because they cannot be answered by other means. For instance, it may be 
impossible or impractical to measure the quantity of interest, such as the coal reserves in the 
United States, therefore a judgment is needed. Areas for expert judgment can vary from 
being an estimate of the number of homeless in the United States, to the probability of an 
occurrence of a nuclear reactor accident of a particular type, to an assessment of whether a 
person is likely to carry out a threatened act, to a description of the expert's thought 
processes in arriving at any of the above answers. Expert judgment has also been called 
expert opinion, subjective judgment, expert forecast, best estimate, educated guess, and 
most recently, expert knowledge. Whatever it is called, expert judgment is more than a 
guess. It is an informed opinion based on the expert's training and experience.
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When Expert Judgment is Used

Expert judgment data has been used widely, especially in technical fields. It is a 
means of providing information when other sources, such as measurements, observations, 
experimentation, or simulation, are unavailable. Furthermore, it can be employed to 
supplement existing data when these are sparse, questionable, or only indirectly applicable. 
For example, in a new reactor-risk study called NUREG-1150 (U.S. NRC 1989), expert 
judgment was used where "experimental or observational data or validated computer 
models were not available or not widely agreed upon" (Ortiz, Wheeler, Meyer, and Keeney 
1988:4).

Expert judgment has been gathered, specifically, to meet the following needs.
• To provide estimates on new, rare, complex, or otherwise poorly 

understood phenomena. Such phenomena have also been described as 
being fuzzy or of high uncertainty. One example would be estimates of the 
likelihood of the occurrence of rare reactor accidents. Another would be 
estimates of the safety of new automotive fuels as, for example, in the early 
eighties, when fuels such as liquid and compressed natural gas were being 
proposed for automotive use, but little was known about how safe they would 
be. To solve the problem a group of experts were convened to estimate the 
relative safety of the new fuels by considering their physical properties in 
combination with potential accident scenarios (Krupka, Peaslee, and Laquer 
1983).

• To forecast future events. In general, when good actuarial data are 
unavailable, predicting future events or actions requires use of expert judgment. 
The experts are needed in order to adjust, sometimes radically, from the status 
quo or past patterns in making predictions. For instance, businesses often rely 
on expert judgment to forecast the market for their products. What the demand 
for various utilities will be in the United States may also come from experts' 
projections (Ascher 1978). A forecast of Soviet weapon capabilities for the 
year 2000 as a means of determining what the weapon needs of the United 
States will be for this same period can rely on the judgment of experts (Meyer, 
Peaslee, and Booker 1982).

• To integrate or interpret existing data. Expert judgment is frequently 
needed to organize qualitative information or mixtures of qualitative and 
quantitative data into a framework for making decisions. Qualitative data are 
any nonnumeric data, such as text on the expert's reasons for giving the 
answer, or the expert's answer encoded in descriptive categories or preference 
scales like poor, moderate, and good. Quantitative data are numeric data 
such as estimates of probabilities, physical phenomenon such as temperature, 
simple ranks or ratings (1-5), and error bounds on any such estimates of 
probability, physical phenomenon, or ranks or ratings, etc. (0.75 ± 0.25).

For example, an expert might determine how his firm's quantitative data, 
such as on projected cost, and qualitative data, such as on market potential, 
should be modeled in order to make decisions about next year's product line. 
And this data might include other expert's judgments, such as on market 
potential.

\
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Similarly, expert judgment might be employed to interpret existing data, 
even when that data is other expert judgment. For instance, decision makers 
often interpret expert judgment data. They receive multiple and differing 
experts' judgments and have to decide whether or how to use them.

Another situation in which experts interpret data is diagnosis. Medical 
specialists frequently must interpret differing test results in arriving at a 
decision.

• To learn an expert's problem-solving process or a group's 
decision-making processes. Often the experts do not know how they 
solve a problem or reach a decision because their thoughts have become 
automatic and, thus, difficult to recall. Yet, this information on their problem 
solving is needed to improve current practices, to train others, or to create 
systems that provide expert advice.

One project involving learning the expert's problem solving focused on 
discovering the expert's procedures in reaching a decision. In this project, the 
experts were police officers who specialized in resolving hostage-taking events. 
The experts assessed information on the situation and reached decisions on how 
to proceed, such as whether to negotiate or resort to an assault (Vedder and 
Mason 1987).

In another project, the goal was to provide guidance on how the 
organization would make future decisions on the export of munitions. The 
experts, members of different Army offices, divided the problem into parts and 
specified the type of input that they wanted each office to provide in making the 
larger decision (Meyer and Johnson 1985).

• To determine what is currently known, what is not known, and 
what is worth learning in a field of knowledge (Ortiz et al. 1988). In 
the reactor risk study, NUREG-1150, the experts exchanged the most up-to- 
date information in preparation for giving their answers to particular questions. 
As a result, they identified gaps in their field's state of knowledge and 
determined in which areas they would most like to see research. This type of 
information offers several benefits: it can serve as a complement to the current 
state of knowledge or as motivation for further study.

Often expert judgment is used to address more than one of the above-mentioned 
needs. Such was the case in the new reactor risk project, NUREG-1150 (Wheeler, Hora, 
Cramond, and Unwin 1989), where the expert judgment met all of the above-mentioned 
purposes. In addition, the gathering of expert judgment often provides side benefits: one 
of the most common benefits being the facilitation of communication. The experts are able 
to see how their judgments differ and relate to each other's views in an environment of 
openness and objectivity. We have noticed that the synergism of interexpert discussion 
stimulates results that would not have been achieved otherwise.

General Attributes of Expert Judgment

In general, expert judgment can be viewed as a representation, a snapshot, of the 
expert's knowledge at the time of response to the technical question (Keeney and von
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Winterfeldt 1989). As Ascher (1978: 203) notes, "multiple-expert-opinion forecasts, 
which require very little time or money, do very well in terms of accuracy because they 
reflect the most-up-to-date consensus on core assumptions." The expert's judgment 
legitimately can and should change as the expert receives new information. In addition, 
because the judgment reflects the expert's knowledge and learning, the experts can validly 
differ in their judgments.

Frequently, expert's answers are given in quantitative form, such as probabilities, 
ratings, or odds. For instance, an expert's answer to the question could be respectively
0.10, 1 on a scale of 10, or 1 in 10 chances. Quantitative response modes are often 
requested because the numeric data are more easily analyzed than qualitative data.

Much of expert judgment is the product of high-level thought processing, also 
called knowledge-based cognition. By cognition is meant the mental activity that occurs 
when a person is processing information, such as for solving a problem. Knowledge- 
based cognition is the high-level interpretive or analytic thinking that we do when 
confronted with new and uncertain decision situations (Dougherty, Fragola, and Collins 
1986: 4-2) Thus, knowledge-based cognition is often invoked by the situations for which 
expert judgment is sought.

The quality of expert judgment varies according to how the data are gathered, and 
the data can be obtained in a variety of ways ranging from unconscious to deliberate. 
Expert judgment can be gathered unconsciously, as often occurs in technical projects. 
Analysts typically make decisions in defining problems, establishing boundary conditions, 
and screening data without being aware that expert judgment (their own) has been used.

Expert judgment is also gathered deliberately, although even this type of gathering 
varies along a continuum of informal to formal. On the informal end of the continuum, 
experts are asked to provide judgments off the top of their heads. The informal means of 
gathering expert judgment has been a source of current controversies involving expert 
judgment. The most recent controversy involves psychologists and psychiatrists serving as 
expert wimesses in legal proceedings. Recent articles have proclaimed that these expert 
witnesses are no more accurate than lay persons, particularly in predicting an individual's 
propensity for future violence. These situations illustrate that "without the safeguards of 
the scientific method, clinicians are highly vulnerable to the problematic judgment practices 
and cognitive limitations common to human beings" (Faust and Ziskin 1988:33).

Formal means of gathering expert judgment usually involve selecting experts 
according to particular criteria, designing elicitation methods, and specifying the mode in 
which the expert is to respond. The formal approach to elicitation has two advantages over 
its unconsciously or informally gathered counterparts. First, with the formal approach 
more time and care is taken in eliciting the judgments. Because the quality of expert 
judgment is often evaluated in terms of the methods used to gather the judgments, the 
greater time and effort associated with the formal approach is an advantage. Second, the 
formal approach is more likely to be documented than those that used unconsciously or less 
formally. That is, records may be kept of which elicitation methods were used and of how 
the experts arrived at their final judgments. Such a record allows the formal method and 
its results to be scrutinized. Thus the formal approach is more likely to advance through 
the process of reviews (Ortiz et al. 1988).
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Expert Judgment Covered in This Book

Gathering expert judgment in a formal and structured manner is covered in this 
book. An additional focal point is gathering expert judgment according to those methods 
suggested by the research into human cognition and communication. Even the formal 
means of gathering expert judgment have not generally made use of the rapidly emerging 
body of literature on how best to obtain expert’s judgments (i.e., how to avoid biases). 
After all, expert judgment is frequently needed, and its gatherers are not always familiar 
with the biases to which we, as humans, are prone. The result is that experts are asked to 
provide estimates without concern to bias or the benefit of methods shown to improve 
accuracy.

The research on how judgments should be elicited comes from three fields— 
psychology, decision analysis, and more recently, knowledge acquisition, a branch of 
artificial intelligence. Examples of works in the field are Hogarth (1980) for psychology, 
Spetzler and Stael von Holstein (1975) for decision analysis, and Gaines and Boose (1988) 
for knowledge acquisition.

Using the methods suggested by the research usually enhances the quality of the 
expressed judgments. Following are some examples of just a few of the ways that research 
can be applied to improving the gathering of expert judgment.

The use of one such method—breaking a problem into its component parts—has 
been shown to yield more accurate answers (Hayes-Roth 1980 and Armstrong, Denniston, 
and Gordon 1975).

Other research has shown that people have difficulty correctly translating their 
judgments into quantities, such as probabilities. In the state-of-the-art elicitations of expert 
judgment, either probabilities are not required or the experts are given lessons in their use 
(U.S. NRC 1989).

Similarly, people are known to be unable to consider more than approximately 
seven things at once (Miller 1956). To deal with this limitation, the experts may be asked 
to use scales that allow them to compare two, rather than seven or more, things at a time.

In addition to focusing on eliciting expert judgment as suggested by the relevant 
research, in this book we define expert judgment to include more than simply the expert's 
estimates or solutions. We have broadened the traditional meaning of expert judgment 
because we believe that all the data associated with the expert's answer are important to 
understanding his answer. Indeed, many gatherers of expert judgment have begun to 
document the expert's thoughts as well as their answers, perhaps because of the influence 
of artificial intelligence and expert systems. From this point on, expert judgment will be 
defined to include the following:

1. Any of the expert's work in selecting or defining the scope of the 
problem. For example, in the reactor risk study mentioned earlier (U.S. 
NRC 1989), the experts reviewed proposed problem areas—safety issues in 
reactor risk studies—and added or deleted issues. The selected issues that they 
chose and their criteria of selection are considered expert judgment, according to 
this book's definition.

2. Any of the expert's work in refining the problem. In many uses of 
expert judgment, the problem is depicted in some fashion, such as in scenarios, 
tree structures, grids of the pertinent factors, and/or pages of explanatory text.
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In this book, all of these attempts to break the problem into parts and describe 
them are considered to be expert judgment. For example, in the reactor risk 
study, the experts took the questions to a more detailed level by breaking the 
issues into parts—scenarios by which the particular failure could occur. The 
problem—the check valve fails causing a loss-of-coolant accident— was broken 
into three scenarios that could cause an accident occurrence. One failure 
scenario was for both valves to fail independently; a second was for one check 
valve to fail to reclose, and a third was for the valve to randomly rupture (Ortiz 
et al. 1988). In this same study, the key variables were operationally defined 
by the experts. For instance, the experts set independent rupture to mean a 
catastrophic leak, which in turn had been defined to mean a particular flow rate 
per unit time.

3. Any of the expert's mental processes in arriving at a solution. 
This aspect of expert judgment often involves the expert's sources of data, 
definitions, assumptions, and mental procedures for processing the 
information. For example, in the same reactor risk study, some experts used 
information from event trees as their primary source of data in solving the 
problem, others used information from experiments, and still others relied on 
output from computer models. In addition, the expert’s definition of terms are 
considered part of his problem-solving processes. Often experts unconsciously 
assign their own meanings to terms. For this reason, in the reactor risk study, 
variables like catastrophic leak were given definitions by the panel of experts. 
Experts also utilize cognitive techniques for helping them process the problem 
information. One such technique, or shortcut, is to adjust up or down from a 
base line. For example, an expert could evaluate the risk posed by a rare 
accident by setting the frequency of a related but more common risk as his base 
line.

The above-mentioned three categories of data relating to the expert's solving of the 
problem will be referred to as expert data. In a risk analysis application, expert data is 
likely to include the expert's assumptions, his definitions, and his decomposition of the 
problem into its parts. In a knowledge acquisition (artificial intelligence) project, the expert 
data could be the expert's rules or procedures for reaching a solution. Expert data is a 
subset of an even more general class of information that is elicited from the experts. This 
more general class is called ancillary data/information and it includes data gathered on 
the educational background, work history, current job environment, or personality of the 
expert. Additionally, the term estimates will refer to answers such as probabilities or 
ratings that are given in quantified form. Solutions will refer to answers given in 
qualitiative form, such as descriptive text or diagrams. Answers will be used as a general 
term for both estimates and solutions. Expert judgment will be used as a cover term to 
refer to a combination of the expert answers and ancillary information.
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How Expert Judgment is Elicited
How expert judgment has been elicited has differed widely even within a particular 

field, such as risk analysis or knowledge acquisition. The following factors affect how the 
expert judgment can be best gathered in particular situations:

• The type of information that is needed from the experts (answers only or 
ancillary expert data)

• The form (response mode) in which the expert's answers are needed for 
input into a model

• The number of experts available
• The interaction desired among the experts
• Difficulty of setting up the problems
• The amount of time and study needed by the experts to provide judgments
• The time and resources available to the study
• The methodological preferences of the interviewer or knowledge engineer, 

analyst, funder, and experts

Elicitation is the process of gathering the expert judgment through specially 
designed methods of verbal or written communication.

For example, in one situation, a large group of experts is convened for a week to 
interactively construct a problem representation and to provide the estimates. They produce 
a representation of all the factors involved in deciding whether to export an army-developed 
technology (Meyer and Johnson 1985). During the week, the experts separately weight the 
importance of these factors. They test their representation by applying it to an example and 
examining the outcome from the mathematical processing of their estimates through the 
decision framework.

In another situation, the experts are interviewed in depth, separately, to obtain their 
judgment on the performance of their computer code in modeling reactor phenomena 
(Meyer and Booker 1987b). They are asked to work the selected problem in the presence 
of an interviewer and to explain in detail their thinking as they work through it. They are 
requested to rate the computer's performance on a linear scale.

In a third situation, the experts are interviewed separately as well as convened for 
discussions. The experts are first sent seismic-tectonic information and asked to detail 
zones for the United States (Bemreuter, Savy, Mensing, Chen, and Davis 1985). They are 
also asked to provide estimates on the frequency and magnitude of earthquakes by zone. 
The experts are then convened and presented with a combined zone map and estimates of 
earthquake phenomena. They receive the judgments of the other experts after these have 
been made anonymous. They then have the opportunity to discuss this information 
together and to privately and confidentially make adjustments to their estimates.

The above examples illustrate some of the diversity in elicitation processes. 
Elicitation processes can also differ in terms of the following:

1. The degree to which the experts interact
2. The amount of structure imposed by a group moderator or interviewer on the 

elicitation process
3. The number of meetings
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4. The time allotted for structuring the problem, eliciting the expert judgment
5. Who performs these tasks, the experts and/or the analyst
6. The response mode in which the expert estimates are elicited
7. Whether the expert's reasoning is requested or not
8. The level of detail in the expert judgment elicited
9. Whether the expert judgment undergoes some translation in a model and is 

returned to the experts for the next step
10. Whether all or some of the elicitation is conducted in person, by mail, or by 

telephone

Despite this diversity in the elicitation processes, there are only three basic 
elicitation situations and a general sequence of steps. Expert judgment can be elicited 
through the following:

• Individual interviews in which one expert is interviewed in a private, 
usually face-to-face situation, by an interviewer or knowledge engineer. This 
situation is suited to obtaining in-depth data from the expert, such as on his 
means of solving the problem, without having him distracted or influenced by 
other experts.

The individual interview is also called the staticized or nominal-group 
situation when the experts' estimates which have been obtained in private are 
mathematically combined to form one group answer.

• Interactive groups in which the experts are in a face-to-face situation with 
both one another and a session moderator when they give their data. The 
participants' interactions with one another can be structured to any degree: (1) a 
totally unstructured group resembles a typical meeting; and (2) a highly 
structured group is carefully choreographed as to when the experts present their 
views and when there is open discussion to prevent some of the negative effects 
of interaction.

• Delphi in which the experts, in isolation from one another, give their 
judgments to a moderator. The moderator makes the judgments anonymous, 
redistributes them to the experts, and allows them to revise their previous 
judgments. These iterations can be continued until consensus, if it is desired, is 
achieved. This elicitation situation was developed by RAND as a means for 
countering some of the biasing effects of interaction.

The general sequence of steps in the elicitation process is as follows:
1. Selection of the question areas and particular questions
2. Refining of the questions
3. Selection and motivation of the experts
4. Selection of the components (building blocks) of elicitation
5 . Designing and tailoring of the components of elicitation to fit the application
6. Practicing the elicitation and training the in-house personnel
7 . Elicitating and documentating expert judgments (answers, and/or ancillary 

information)
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Philosophy Guiding the Elicitation
The philosophy put forth in this book is that the elicitation be designed to fit the 

experts and the way that humans think rather than forcing the experts to adapt to the 
methods. We propose that the research on human limitations and tendencies toward bias be 
taken into account in selecting the methods. For example, if the interviewer does not 
consider people's limitation in comparing more than seven things at once in selecting 
elicitation methods, the resulting data is less credible. If in the former case the expert 
estimates are being used as inputs into a model or decision process, there is the danger of 
garbage in, garbage out.

Also eliciting as much of the information on the expert’s problem-solving processes 
as possible is advocated in this book. We believe that this data is necessary to the 
understanding of the expert's answers. Expert's estimates have been found to correlate to 
the way that they solve the problem (Booker and Meyer 1988a, Meyer and Booker 1987b). 
Frequently, the definitions or assumptions that the expert used explain why that particular 
answer and not some other answer was reached. In addition, this type of data is valuable 
later if multiple expert's estimates are to be mathematically combined to form a single 
estimate. The expert data can guide the aggregation so that experts who construed the 
problem very differendy will not have their answers combined inappropriately . In general, 
recording information on the expert's thinking allows the judgments to be more easily 
updated as new information becomes available.

Another aspect of the elicitation philosophy is to control for the factors that can 
enter into the elicitation process and influence the expert's problem solving. For example, 
the phrasing of the problem, the interviewer's responses, and other participant’s responses 
can affect the answer an expert reaches. The elicitation methods, mentioned in chapters 7 
and 8, are designed to control these influences. For those influences that can not be easily 
controlled, such as the expert's tendency to anchor to his first impression, we recommend 
gathering as much data as possible to analyze their effects.

Philosophy Guiding the Analysis
The analysis philosophy of this book complements that of the elicitation philosophy 

mentioned above. Just as the elicitation approach allows the experts' capabihties to shape 
the data-gathering methods, the analysis philosophy allows the data to dictate which 
analytic methods are used. Thus, the analyses are data driven. This analysis approach is 
used in the belief that it will produce the highest quality results.

As a part of the analysis philosophy, the analyses avoid assuming particular 
properties of expert judgment. For example, the analyses do not a priori assume that the 
expert judgment data is normally distributed, that the answers of multiple experts are 
independent, or that the experts are perfectly calibrated (unbiased). Instead, the analysis 
sections offer methods that either do not require these assumptions or that can test for the 
existence of such properties. For example, nonparametric statistical procedures and 
data-based simulation techniques are used because they do not depend on an assumed 
distribution of the data.
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The analyses also avoid assuming that the expert’s data are independent or 
dependent (i.e., conditioned on some common factor, such as the expert's education). 
Analysts have been driven into assuming independence in the past because they need to 
combine multiple estimates into a single representative one, and most aggregation schemes 
have required independence. Those aggregation schemes that have not required 
independent data are more complicated and require information on the structure of 
dependence, information which the researcher rarely has. As part of the analysis 
philosophy in this book, simple methods from recent research (Booker and Meyer 1988b; 
Meyer and Booker 1987b) are provided for testing for independence and for handling 
dependence, if it is found.

In addition, the analyses allow the reader to check for biases in the elicitation 
process or in the expert's judgment. Many users of expert judgment have been forced to 
assume that the data was unbiased because they had no way of analyzing biased data. To 
meet this need, the analysis section provides methods for investigating potential sources of 
bias in the data elicited earlier.

A variety of methods are used to address the multivariate nature of expert judgment 
data. The data is multivariate because it often includes answers to multiple problems, data 
on the experts themselves, and mixtures of qualitative and quantitative data. Multivariate 
analysis techniques allow the simultaneous consideration of two or more variables of 
interest (Tietjen 1986). Thus, they can be used to investigate some of the more important 
properties of the data, such as the dependence of experts. Several multivariate techniques, 
such as cluster analysis, discriminant analysis, and general linear models 
(GLMs), are used because no single one is universally applicable to the structure of expert 
judgment data. In addition, methods are given for transforming qualitative data into 
quantitative forms.

How to Use this Book
This book is divided into three parts—Parr I: Introduction to Expert Judgment; Part 

II: Elicitation Procedures; and Part III: Analysis Procedures. Part I consists of three 
chapters. In chapter 1, Introduction, we have presented a description of what expert 
judgment is and our philosophy for its elicitation and analysis. Chapter 2, Common 
Questions and Pitfalls Concerning Expert Judgment, includes many questions asked about 
expert judgment and the hidden traps encountered in eliciting or analyzing it. In the third 
and last chapter. Part /: Background on Human Problem Solving and Bias, information on 
how we as humans think and some of the consequences of those processes, such as 
common biases, is provided. The background provided here is necessary to setting up, 
selecting, and tailoring the elicitation method so as to obtain the best quality data possible. 
Part n, chapters 4 through 10, containing sections on eliciting expert judgment, and Part 
III, chapters 11 through 18 on analyzing results, are outlined by chapter in a flow chart 
below. This chart gives guidance for the best use of these parts of the book, pointing out 
the most efficient sequencing to use in differing situations. Appendices A through D 
document the computer programs we have used. And finally, a glossary is provided as a 
quick reference for the terms that have been highlighted in bold in the text. We expect the
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glossary to be a major aid to those readers who are unfamiliar with the book's terminology 
and recommend that they refer to the glossary heavily at first.

There are several ways for the reader to use this book, depending on needs and 
situation. The book proceeds sequentially from the selection of the problem (Part II) to the 
elicitation procedures and the analysis of results (Part III). The reader can read about each 
phase as he or she is ready to execute it. Reading portions in retrospect will give an 
understanding of the strengths and weaknesses in how the phases were conducted. Most 
of the chapters on the elicitation contain sections on common difficulties and means for 
resolving them.
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2
Common Questions and
Pitfalls Concerning 
Expert Judgment

In this chapter many of the common questions, often arising from misconceptions 
concerning expert judgment, are addressed. In addition, information on those aspects of 
elicitation and analysis that have typically caused problems are discussed under the 
designation pitfalls. We hope that the information on pitfalls will alert the user and prevent 
his falling into the difficulties described.

For the reader's convenience, the information on both the common questions asked 
and the common pitfalls encountered are summarized in the lists below; later 
questions/misconceptions and pitfalls are addressed at length.

Common Questions:
1. What does it mean when the experts disagree? When the experts 

disagree, as they do with irritating frequency, it can mean that they interpreted 
the question differently (i.e., took it to mean different things) or that they solved 
it in using different methods (e.g., used different algorithms or data sources). 
If the data indicates that the expert interpreted the question differently, one 
option is to have the expert, who essentially answered a different question, 
readdress the question as it has been defined by the other experts. His previous 
response may be discarded as being invalid.

2. Is expert judgment scientific? We propose that the type of expert 
judgment advocated in this book is scientific. The methods for gathering and 
analyzing it are based on research that has followed the tenets of science- 
observation, hypothesis formation, and experimentation.

3. Are experts Bayesian? People, in general, do not naturally follow the 
philosophy developed from the application of Bayes Theorem. This philosophy 
assumes that existing information is updated to account for new information as 
it becomes available. In laboratory and real-life settings, experts may fail to 
sufficiently adjust their estimates in view of new information, to grasp the 
effects of sample size and variability, or to follow the axioms of probability 
theory.
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4. Do experts give better data? Whether experts give more accurate or better 
quality data depends on the type of data that they are asked to give. In 
providing predictions, humans are notoriously poor, and the experts have not 
consistently been shown to be better than nonexperts. Experts are considered 
better than nonexperts in providing data on the state of the knowledge in their 
field, on how to solve problems, and on the certainty of their answers.

5. Can experts be calibrated? Experts cannot yet be fully calibrated as some 
technical instruments and processes are. Calibration means the comparison of 
unknown instruments or processes to known or correct ones to adjust the 
unknown ones until they match the known. To improve expert's calibration, 
the feedback from the known procedures must be immediate, frequent, and 
specific to the task (Lichtenstein, Fischhoff, and Phillips 1982), such as in 
weather forecasting. This type of information is unavailable for the majority of 
problems requiring expert judgment, at least in the risk and reliability fields.

Common Pitfalls:
1. Interviewers, knowledge engineers, and analysts can introduce 

bias. These persons can unintentionally introduce bias—that is cause an 
altering of the expert's thinking or answers—in two ways. First, interviewers 
or knowledge engineers, are likely to misinterpret the expert's data by 
perceiving it to be the type of data that their training ideally equipped them to 
handle (training bias). Second, analysts are likely to misrepresent the expert 
data by forcing it to fit the models or analytic methods with which they are most 
comfortable (tool bias).

2. Experts are limited in the number of things that they can mentally 
juggle. The limit to the amount of information that humans can process in 
their short-term memory is seven plus or minus two (Miller 1956). This 
information-processing limit is something to consider in designing the elicitation 
situation.

3. The level of detail in the data affects the analyses. The granularity 
is the level of detail in a chunk of information (Waterman 1986). An example 
of coarse granularity could be the basic functions of a nuclear power plant; an 
example of finer granularity could be the subfunctions of one such function. 
We have found that the granularity used in gathering the data influences the 
results of the analyses.

4. The conditioning effect poses difficulties in gathering and 
analyzing expert data. The data that the expert gives can be conditioned on 
a variety of factors, ranging from the wording of the problem to the expert’s 
internal mood. The conditioning effect poses problems because many factors 
can intrude without the data gatherer's awareness, overlap with other variables, 
and complicate the analyses.
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Questions
What Does It Mean When the Experts Disagree?

We are all acquainted with instances when the experts have disagreed. This 
disagreement has led some persons to question the credibility of expert judgment. The 
reaction, although natural, is based on a misconception about expert judgment. The 
misconception is that expert judgment is reproducible—that experts, given the same data, 
will reach the same conclusion, otherwise their judgment is questionable. This concept 
comes from experiments in the hard sciences where reproducibility of results is used as a 
yardstick. However, this concept is inappropriate and misleading when applied to expert 
judgment for two reasons.

First, experts do not possess the same data, even if they are given the same 
briefings and information as background to the problem. The expert's body of 
knowledge, the primary reason for consulting him, is something which has been created 
over time through the expert's professional experience (education, on-the-job-training, and 
exposure to data bases or dramatic events in the field). Each expert's knowledge is, 
therefore, different. In addition, what the experts do with their information, how they 
consider the separate pieces, is likely to differ. For example, if two experts possessed the 
exact same information, they would probably differ in their use of the data ( e.g., one 
might consider a datum highly relevant to the case in point and use it whereas the other 
might dismiss it from consideration). Because experts have different bodies of knowledge 
and approaches to solving problems, their answers are likely to differ. The relationship 
between the expert's problem-solving approach and the answer reached has been verified 
by research (Booker and Meyer 1988a, 1988b; Meyer and Booker 1987b).

Second, expert judgment is frequently sought in situations where there are not clear 
standards or well-developed theories as there are in many areas of the physical sciences. 
For example, expert judgment is often sought for prediction, such as the likelihood of an 
individual performing a threatened act, the chances of occurrence of a seismic disturbance 
of a particular magnitude, or the probability of occurrence of a rare sequence of reactor 
events. In the engineering sciences, where many standards are clearly defined, the experts 
have guides to follow in reaching a decision. Such standards tend to reduce expert 
variability in problem-solving approaches. However, in the fields where expert judgment 
is usually elicited, such standards are not in place and therefore do not lead to greater 
uniformity among the experts' solutions.

Thus, when the experts disagree, a valid interpretation would be that they have 
interpreted and solved the problem in differing manners. If records have been kept as to 
their problem-solving processes, one can pinpoint where they differed (e.g., in their 
assumptions, definitions, or algorithms) and justify the later inclusion or exclusion of a 
particular expert’s answers. It may be that some of the expert’s approaches are better 
approximations of the reality (of the problem being posed) and therefore more likely to be 
accurate, as proposed by the Brunswik lens model (Hogarth 1980:8) However, it is 
difficult to select which approach is better when the right answer or approach is not 
known. For this reason, differences among the experts can be interpreted in a positive 
light as evidence that the different perspectives on the problem are being represented. In 
fact, studies have shown that mathematically combining the experts' differing answers
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provides a better chance of covering the right answer than does the use of single expert's 
answers.

Is Expert Judgment Valid Data?

Expert judgment has been called subjective data, subjective judgments, expert 
estimates, and expert (judgment) data. If the data are in the form of probabilities, then 
terms such as subjective probabilities and probability estimates have been used. Other 
times expert judgment is called qualitative data even though the data itself may be in the 
form of numbers rather than words. (The correct use of the term qualitative data is for non­
numeric data, regardless of its source.)

The term data has different meanings for different people. To some, data refers 
exclusively to measured or observed numerical values (cardinal or real numbers). To 
others, data is used in a less restrictive context and refers to information. Historically, 
however, data has been cardinal (real-numbered values), ordinal (numeric or verbal ranks), 
categorical (numeric or verbal classes or categories), or descriptive (words, phrases, 
sentences). In this book the term data is used to refer to information either in a qualitative 
or quantitative form.

Some have questioned whether expert judgment is data, or good data, given its 
source. These individuals consider expert judgment to be lower in quality than hard data 
that has been measured or obtained from observation or from instruments.

In this book, the hypothesis is that expert judgment data is comparable to any other 
data. All data are an imperfect representation of the object they are supposed to represent. 
Data from instruments are not a perfect representation for many reasons: random noise, 
equipment malfunction, operator interference, data selection, or data interpretation. Expert 
judgment data is no less representative of the underlying truth than data from instruments or 
any other source of data.

Expert judgment data, like any other data, must be carefully gathered, analyzed, and 
interpreted. The guidelines given in this book are designed to facilitate the careful handling 
of expert judgment data.

Is Expert Judgment Scientific?

There are differing views as to whether the gathering of expert judgment can be 
considered scientific. To arrive at an answer, one can consider the definition of science: "a 
process or procedure for making inquiries of our world" (Hirely, 1989:25), with the basic 
tenets of observation, hypothesis formation, and experimentation. Expert judgment studies 
follow all these tenets. The large body of research on human judgment and problem 
solving illustrates this point. For example, these topics have been the focus of tightly 
controlled experiments: judgmental processes (Hogarth 1980; Kahneman and Tversky 
1982), effects of problem decomposition (Hayes-Roth 1980; Armstrong, Denniston, and 
Gordon 1975), memory functions (Ericsson and Simon 1980), effects of group dynamics 
(Zimbardo 1983), effects of question phrasing (Payne 1951), probability estimation 
(Spetzler and von Holstein 1975; Hogarthl980), and sources of interexpert correlation 
(Booker and Meyer 1988a).
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In conducting the third tenet of science, experimentation, expert judgment studies 
have faced challenges beyond those characteristic of the physical sciences. These 
challenges stem from the use of human subjects. Human subjects have the capability of 
manipulating the experiment while the typical subject of physical science studies do not. 
For example, a chemist does not have to cope with an element suddenly changing its 
behavior, such as its mass, because it favors a particular outcome in the experiment. In 
addition, with human subjects, the data is generally conditioned on multitudes of unknown 
and uncontrollable factors. An expert’s judgment or descriptions of it can be conditioned 
on attributes of the expert (assumptions and algorithms used in solving the problem, 
training, past experiences, and so on), the interviewer's presence, the phrasing of the 
question, and the responses (verbal and nonverbal, real and imagined) of the interviewer or 
others. Factors such as the expert's mood prior to elicitation and aspects of his background 
are among those that generally cannot be controlled.

In addition, the expert data gathered is often of a predictive nature which cannot be 
objectively verified, at least not in real time. These judgments cannot be evaluated by 
performing additional measurements of some physical property or by referring to some 
authoritative text

These aspects of expert judgment studies pose problems in experimental design. 
Typically, experimental design involves the planning of a study in terms of what will be 
observed for measurement and how it will be observed. In expert judgment studies and 
applications, the investigator cannot totally control the entry of factors for observation 
because the subject brings a variety of unknown ones to the elicitation. Then too, the small 
sample sizes of expert judgment studies do not allow the data to rise above their effect. In 
addition, the type of data gathered makes testing difficult, especially in a scientific tradition 
that holds that "the world is objectively knowable and that deductions about it can be 
tested" (Denning 1988).

In sum, we would argue that the field of expert judgment follows the tenets of 
science and produces scientific studies. Furthermore, it is through the careful gathering, 
use, and examination of expert judgment that this field will make further progress as a 
science.

Are Experts Bayesian?

In the mathematical community, there are many analysts and theorists who advocate 
the Bayesian philosophy of analysis. In the decision analysis and reliability assessment 
communities, this philosophy has come to mean the evaluation of gathered data as they are 
conditioned on other events or circumstances (variables). Given that the data are 
conditioned on other variables, the Bayesian philosophy implies that as these conditions 
change, the data changes. In other words, data are updated with changing conditions. 
However, there is a major problem in applying Bayesian philosophy to expert judgment- 
experts are not naturally Bayesian (Kahneman and Tversky 1982). Human cognitive 
processes do not naturally follow Bayesian philosophy.

Humans are not Bayesian for a variety of reasons demonstrated in both laboratory 
settings and actual applications. The above studies of Kahneman and Tversky have shown 
that that experts fail to change or adjust their estimates in view of new information. 
Mathematically, the failure to update estimates means that P(AIB)=P(AIC), i.e., the
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probability of A is not altered when the conditions governing A are changed from B to C. 
This equation would only be true if P(A) was independent of any conditioning, i.e., 
P(AIC)=P(A) and P(AIB)=P(A). However, in estimating probabilities it is unlikely that any 
event would be so totally independent of conditions.

Other characteristics of human cognition prevent humans, including experts, from 
being Bayesian. Some of these characteristics are the inability to grasp the effects of 
sample size, the frequencies of truly rare events, the meaning of randomness, and the 
effects of variability (Hogarth 1975).

These same failings also contribute to human difficulties in estimating probabilities 
in general (Kahneman and Tversky 1982). The human brain does not follow the axioms 
(rules) of probability, such as all probabilities lie in the [0,1] interval and the sum of 
mutually exclusive event probabilities must be 1. The probabilities elicited from a human 
are not representative of a true, mathematical, probability measure. One of the purposes in 
writing this book is to provide guidance on which inferences and interpretations can be 
applied to expert judgment data.

Do Experts Give Better Data?

The literature differs on whether experts give better quality data than nonexperts. 
Some reasons for this disparity in the literature might be the following:

• Real populations of experts are rarely used for these comparative studies
• Expert-level questions are not usually asked because of the difficulties in 

evaluating the responses when there are no known answers
• A number of factors intervene in the comparison (e.g., the type of data the 

expert is being asked to provide and in what form, or to whom the expert is 
being compared, novices or persons with training in the field)

In other words, the answer to the question "Do experts give better data?" is that it 
may depend on the type of data that they are asked to give. The expert can be asked: (1) to 
make predictions, (2) to provide information on the field, (3) to show how to solve the 
problem, or (4) to assess the accuracy of his responses.

It has been claimed that "there are no experts in forecasting change" (Armstrong 
1981:89). Certainly studies in the social sciences and medicine have not consistently 
shown experts to be better at predictions than lay persons (Armstrong 1981). Most of 
these studies have aimed at predicting human behaviors, such as patients' lengths of stay in 
mental institutions, or the winning scores of sports teams, or economic trends. For 
instance, one highly publicized study of expert witness psychiatrists and psychologists 
found expert prediction of future violence to be highly inaccurate and no better than that of 
lay persons (Faust and Ziskin 1988). Faust and Ziskin noted (1988:33) that experts are 
dependent on the state of their science, which in this case "lacks a formalized, general 
theory of human behavior that permits accurate prediction." They proposed that both the 
lay persons and the clinicians had resorted to using common cultural stereotypes and 
assumptions about potentially violent people in making their predictions. Thus, their 
predictions were similar and inaccurate.
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It should also be noted that prediction questions have been worded (without 
technical jargon) so that they can be understood by novices and answered by guesses, as 
opposed to problem-solving questions that a novice would find difficult to understand. 
Thus, the wording of the questions may minimize the difference between the performance 
of the expert and the novice.

Another reason why the experts do not significantly outperform nonexperts in 
prediction may be because of the response modes that are used. Typically, subjects are 
asked to give their predictions in the form of probabilities. While the experts may be 
knowledgeable in the field of study, this is no guarantee that they will be expert in 
assigning probabilities. (Being knowledgeable in the field of study is sometimes referred 
to as substantive expertise and being knowledgeable in the use of the response mode as 
normative expertise.) In general, people do not estimate probabilities in accordance 
with statistical principles, as mentioned in the previous pitfall.

It is generally thought that experts are both better on knowing the state-of-the-art 
and at providing data on how the problem can be solved. In more detail, this data could 
encompass formulating the problem, interpreting it, determining what additional 
information is needed to solve it, knowing whether and where this data is available, 
knowing how to solve the problem, providing the solution, and estimating how much 
confidence can be placed in the solution. Typically, all of this knowledge is used in an 
artificial intelligence application and has been documented in recent probabilistic risk 
assessments (U.S. NRC 1989). In these uses of expert judgment, the expert's judgment is 
not as frequently encoded in a response mode and, therefore, may more directly reflect their 
substantive expertise.

Armstrong (1981), who has questioned the value of experts in prediction, considers 
problem solving to be a proper area for the use of experts. This view seems to be held 
even more strongly in the expert systems community, where the knowledge engineer is 
likely to be advised to "be sure to pick an expert highly skilled in the target domain" 
(Waterman 1986:192). Use of a true expert is given as the means for "extracting high 
quality data" and for avoiding great difficulties.

There is some evidence that experts think differently than nonexperts when solving 
problems in their area of expertise. Best documented is the expert's ability to recall greater 
amounts of relevant visual information. For example, skilled electronics technicians were 
able to recall more of briefly shown circuit diagrams than the novices (Egan and Schwartz 
1979). It is proposed that experts are able to code, for memory, chunks or groups of 
information that are conceptually related. It is also commonly proposed that experts are 
more abstract, pattern types of thinkers than nonexperts (Denning 1986; Doughterty et al. 
1986). For example, the Dreyfuses (1986) characterize a novice as knowing basic facts 
and context-independent rules; an expert as having little conscious awareness of these rules 
but an ability to visualize and manipulate whole sets of objects and situations.

Another type of data that subjects can give is an assessment of their own accuracy 
or confidence in their answer. The process of trying to assess or improve the accuracy of 
the expert judgment is sometimes called calibration. These assessments are frequently 
given as probabilities. In general, people are very poor at assessing the accuracy of their 
own answers and are usually overconfident; that is, most individuals would estimate the 
chances of their solution being correct more highly than warranted. However, Lichtenstein 
and Fischhoff (1977) have found that those knowledgeable in the field are less prone to this
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overconfidence bias than those who are not. An individual's calibration improves with 
knowledge (as measured by percentage of correct answers) until the individual has over 
80% of his answers correct. Then, those with over 80% of their answers correct become 
less well calibrated because they tend toward underconfidence. It may be that those who 
are very knowledgeable are more aware of the dangers of estimation and thus increasingly 
tend to underestimate their accuracy.

In sum, the quality of expert judgment may depend on the area of questioning, the 
wording of the question, the form in which the expert responds, and the person to whom 
the expert is being compared. However, the current view is that experts provide better data 
in situations requiring their insights into the problem, such as in solving a problem or 
assessing their own accuracy. These situations generally occur in the building of expert or 
knowedge-based systems.

It should also be noted that there are additional benefits, beyond the quality of the 
data, from using experts. Using experts motivates other experts to participate in the study 
and thus increases the study’s credibility.

Can Experts Be Calibrated?
The concept of calibration is a basic part of the scientific method. Calibration is 

used here to mean the comparison of an unknown (instrument or process) with a known, 
defined standard or a correct procedure in order to adjust the unknown until it matches the 
standard. Until recently, calibration was applied only to measuring devices or processes 
for which standards or known quantities were available or defined. Thus, the concept of 
calibrating experts seemed a reasonable approach for getting better expert judgment data.

The conclusions from experimental studies indicate that experts cannot yet be fully 
calibrated. Studies by many such as Lichtenstein, Fischhoff and Phillips (1982) show that 
feedback on the outcome of events can reduce, but not eliminate, the biases which hamper 
calibration. In order for feedback to be effective as a calibration tool, it must be immediate, 
frequent, and specific to the task. Such feedback cannot be given for problems where the 
outcomes are unknown, as is often the case in risk and reliability assessments.

While this situation of uncalibrated experts and unknown outcomes may seem 
problematic, many users of expert judgment, such as decision makers, do not worry about 
biases arising from their experts. Instead, they tend to have faith in experts because they 
perceive them as being very knowledgeable (Morris 1986).

This faith in the expert's judgment is not to imply that the calibration problem is 
being ignored by researchers. On the contrary, many decision analysts are focusing on the 
problems arising from the expert decision-maker interaction in view of calibration issues. 
In many applications, calibration of the expert cannot be defined independently of the 
decision maker (French 1986) because the decision maker factors the expert's thinking into 
his own in reaching a final decision. Ideally, the experts should be calibrated to the 
problem and to the decision maker. (This dependent relationship between the experts and 
the decision maker is further discussed in the section on different application environments 
in chapter 16.)

The decision maker also affects calibration through the evaluation of his own and 
the expert’s calibration. For example, a decision maker who sees himself as miscalibrated 
can induce additional biases and misconceptions by overcompensating for his calibration.
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He may not be able to perceive independence when it actually exits (Harrison 1977). Thus, 
awareness of miscalibration and overcompensation for it, just as ignorance of it, can 
exacerbate calibration problems.

In sum, calibration enters into many aspects of expert judgment and its use. 
However, the means for measuring the degree of miscalibration or preventing it requires 
further research.

Pitfalls
Interviewers, Knowledge Engineers, and Analysts Can 
Introduce Bias

The interviewer, knowledge engineer, or analyst can unintentionally introduce bias 
into expert judgment. The bias referred to here is motivational bias: an altering of the 
expert's responses due to the influence of the interviewer, knowledge engineer, or analyst. 
Specifically the data gatherers and analysts can cause bias through misinterpretation or 
misrepresentation of the expert data.

While the data is being gathered, the interviewers and knowledge engineers can bias 
the expert’s data by misinterpreting it. When interviewers or knowledge engineers listen to 
experts and record their thoughts, they are likely to be influenced by what they already 
know or believe, their training, and their experience. For example, when an engineer, 
economist, and decision analyst met initially with military experts on a manufacturing 
matter, each interpreted the information in terms of her own training. The engineer 
perceived the problem to be an engineering one, the economist a cost/benefit one, and the 
decision analyst a multiattribute decision-theory one. Each questioned the experts to obtain 
the additional information that they needed to apply their orientation in greater depth. Each 
interviewer believed that she had received information that confirmed the applicability of 
her training to treating the matter. For this reason, we also refer to this source of bias as 
training bias.

In the later stages of an expert judgment project when the data must be represented, 
modeled, or analyzed, there is the potential for misrepresentation. In performing analyses, 
we have the tendency to force the data to fit the models or methods with which we are most 
comfortable or familiar. For this reason, misrepresentation is also referred to as tool 
bias. It is as if we had one tool, such as a wrench, and tried to use it on all problems— 
tightening bolts, pounding in nails, and removing nails. This favored tool would work 
well in some tasks and inadequately in others, such as in pounding in nails. However, it is 
likely that in continued use of the tool we would be intent on its use and unaware of its 
shortcomings or of a better alternative. For example, an analyst may wish to use a model 
that requires either independence or a particular distribution. She will probably assume that 
the data meets these requirements (or hope for robusmess) so that the model can be used. 
The validity of these assumptions may not be questioned by the analyst owing to some of 
the social and psychological mechanisms discussed below.

It should be noted that the training and the tool bias are connected. They are 
connected because inherent in our fields are values that predispose us toward particular
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approaches and methods. For example, artificial intelligence (Henrion and Cooley 1987) 
and cultural anthropology have valued the expert's knowledge and viewed it as the gold 
standard to be extracted and emulated. By contrast, the fields of decision analysis, 
statistics, and operations research have viewed particular mathematical and statistical rules 
as the standard (Henrion and Cooley 1987). Expert data is valued if it exhibits these 
standards, such as the axioms of probability and Bayesian philosophy. The methods that 
these two orientations use reflect their values. Artificial intelligence and cultural 
anthropology favor methods that are designed to obtain and represent the expert's natural 
way of thinking. The approaches of decision analysis and statistics correct for what they 
consider to be limitations in human information processing.

Why are we, as humans, prone to these subtle but pervasive biases? Why do we 
selectively take in data that supports what we already know, and believe that it can be 
handled by the approaches, models, or methods that we prefer? First, it should be noted 
that all of human perception is selective and learned. Our perceptions of reality, of what is, 
are conditioned at a cultural, societal, and individual level.

At the cultural level, meaning and structure are imposed and then taken for reality 
by members of that culture. For example, members of this western scientific culture would 
take the color spectrum, such as in a rainbow, and divide it into four to six colors—violet, 
blue, green, yellow, orange, and red. In another culture, the people would not see the 
segmentation that we do. Instead, they might have been conditioned to view the spectrum 
as consisting of wet and dry colors. The members of both of these cultures have been 
conditioned to see color in a particular way and to believe that it objectively exists as they 
perceive it.

At the societal level, our training leads us to define and structure problems in 
particular ways, to use our field's methods, and to value special types of data. Yet, we 
forget that these are learned values and tend to proceed as if they were simply truths that 
were revealed through our learning experiences. For example, many of the hard scientists 
believe that the only true data are the quantitative measurements gathered by instruments 
during physical experiments.

At the individual level, our desire to be able to handle the problem leads us to use 
those tools that we know best, and then believe that they worked. There is a psychological 
mechanism that allows us to avoid becoming aware of when our beliefs and perceptions do 
not match, such as when the use of a favored method was inappropriate. The 
psychological theory of cognitive dissonance (Festinger 1957) predicts that when we have 
either two beliefs or a belief and a perception in conflict, the conflict will be resolved 
unconsciously. Many tests have shown that people selectively pay attention to information 
that confirms their beliefs and discount that which could cause conflict (Baron and Byrne 
1981). Scientists are not immune (Armstrong 1981; Mahoney 1976). For example, 
scientists tend to notice the data that confirms their hypotheses and either miss or discount 
the negative evidence (e.g., the data must be noisy, the equipment probably malfunctioned, 
or there could have been operator interference).

How can we guard against our own tendencies to introduce bias? First, we can 
strive to remain aware of this tendency. Second, we can use elicitation methods that are 
designed to minimize the role of, and hence the opportunity for interpretation of, the 
interviewer or knowledge engineer. These methods (chapter 7) used for obtaining data on 
the expert's answer and/or problem-solving processes, place the emphasis on the expert.
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Because the focus is on learning the expert's thoughts and words and using them to pursue 
questioning, there is less room for the views of the data gatherer to intrude. In addition, 
the data gatherer can adopt the goal of being like a blank slate to avoid translating the 
expert’s data into her own concepts. (See the section in chapter 3, Countering or Reducing 
Bias-More Art Than Science.) Last, we can use analysis methods that require the making 
of minimal assumptions, as described in the section Philosophy Guiding the Analysis in 
chapter 1.

Experts are Limited in the Number of Things that They 
Can Mentally Juggle

There are limits to the amount of information that we can process in solving 
problems. The classic paper by Miller (1956) identifies the number of things that people 
can accurately discriminate. In these studies, the subjects were differentiating things on the 
basis of one attribute, such as the volume of the sound. For example, when subjects were 
played a sound at varying levels of loudness, they could accurately discern about seven 
levels. Experiments were also conducted on differentiating the size of drawn squares, on 
the saltiness of various solutions, and on musical notes. From many such experiments, 
Miller determined that seven is the limit of our processing capacity because the number of 
errors increases greatly after that point.

The number seven is not a strict limit because, under particular conditions, we 
exceed it. We can go beyond the limit when we consider multidimensional data, when we 
perform relative rather than absolute comparisons, and when we make several absolute 
judgments in a row.. Multidimensional data is the input that we receive simultaneously 
from our five senses and assess and act on as functioning human beings. As in our daily 
judgments, the limit of seven was exceeded in experiments using multidimensional 
attributes. For example, in one experiment which produced combinations of six acoustical 
variables, subjects were able to discern, without error, about 150 different categories. 
While we are able to judge more things using multidimensional attributes, this capacity also 
has its limits. In particular, when the total capacity of our information processing is 
increased, our accuracy on any particular item is decreased. In other words, when making 
multidimensional judgments, "we can make relatively crude judgments of several things 
simultaneously." (Miller 1956:88)

We can also exceed the limit of seven when we perform relative comparisons. 
Relative comparisons allow individuals to judge things with respect to one another and are 
frequently done on two things at a time. For example, A could be compared to B, B to C, 
C to A, and so on.

When several absolute judgments are made in a row, the information must be stored 
in short-term memory. Memory has its own limitations, such as the number of things that 
can be retained for short-term consideration. Memory limits can be expanded because 
humans have the capability of grouping or organizing more information per thing. This 
principle is called chunking. For example, a person learning radiotelegraphic code, first 
hears each dit and dat as separate chunks. Later, this person can organize letters, words, 
and even phrases into chunks. Experts have been found to be much more proficient at 
chunking data than novices. For example, skilled electrical technicians, in contrast to
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novices, can briefly view a circuit diagram and immediately reconstruct most of it from 
memory (Egan and Schwartz 1979).

The information mentioned in this section has several implications for expert 
judgment At the very least an interviewer would not want to create an elicitation situation 
where the experts had to mentally juggle more than seven items at a time. Miller's research 
suggests that rating scales with seven or less gradations are the most useful because in 
larger samples finer discriminations are lost. If the project demands that a high number of 
distinctions be made simultaneously, the experts will judge these more crudely than if they 
had considered them separately. In contrast, methods requiring subjects to compare two 
items at a time will avoid the limit of seven and produce more precise judgments. In 
addition, experts, as opposed to nonexperts, may be more capable of receiving and 
handling larger magnitudes of information because of their ability to chunk it.

The Level of Detail in the Data (Granularity) Affects the 
Analyses

The term granularity has its origins in fields such as numerical analysis and artificial 
intelligence. In artificial intelligence, granularity is defined as "the level of detail in a chunk 
of information" (Waterman 1986). An example of coarse granularity might be the basic 
functions of a nuclear power plant; an example of finer granularity could be the 
subfunctions of one such function. In numerical analysis, granularity refers to the 
computational grid size used for defining the level at which the computations are made. 
Granularity is the level of detail at which the data is gathered, processed, and interpreted. 
Therefore, this level establishes the framework of operation for the problem.

The granularity, or level of detail, is an inherent part of the experimental design of a 
study. In most applications, this level is dictated by some limiting aspect of the problem, 
such as the goals of the study or the complexity of the questions asked. Thus, in most 
problems, the selection of the level is done implicitly and not as a separate, conscious 
decision. For example, in the design of a simple voter poll, the goal of the problem 
defines the granularity. If the goal is to determine for which party an individual voted, it 
would not be necessary to gather information on the voter's property holdings. If, 
however, one of the election issues was to determine who would support an increase in 
property taxes, this finer level of property information might become important The latter 
goal is at a more specific level, and the information required must be correspondingly more 
detailed. Generally, providing data to answer the question why requires that a finer 
granularity of data be gathered.

The level of detail is also dependent upon the complexity of the problem. On 
simpler questions, such as those whose answers can be verified (e.g., almanac questions), 
the subject's problem-solving processes tend to be more structured and detailed. Thus, 
they are easier for the interviewer to record and for the analyst to model in full detail. On 
complex problems, the information tends to be more plentiful and less structured or clear. 
The subject and the interviewer may encounter the limitations to information processing 
mentioned in the previous section, Experts are Limited in the Number of Things that They 
Can Mentally Juggle. The subject is driven to using heuristics to simplify the problem 
solving. The subject struggles to report these complex processes, usually simplifying them 
or leaving out parts in the translation. In attempting to follow the interviewee's account,
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the interviewer is likely to further screen and abstract the information. As a consequence, 
even though there is a fine granularity of data associated with solving complex questions, 
this level of detail is not as easy to extract or document as it is on simpler problems.

The level of granularity greatly affects model formation and interpretation and the 
conclusions reached. For example, different models can be formed depending on the 
chosen level of granularity. Typically, the analyst must construct a model whose level of 
detail is dictated by the data content of the subject who has provided the least or the most 
general information.

Granularity is also an issue in the interpretation of the data. The analyst sees data 
from her own perspective, which is not necessarily the same perspective as that of the 
subject from which it was gathered. When the analyst screens, transforms, and constructs 
problem-solving models, the granularity becomes a function of the analyst's thinking. The 
analyst is led, often unconsciously, to force the data into the desired level for fitting a pre­
conceived model or hypothesis (See also the first pitfall under Common Pitfalls: 
Interviewers, Knowledge Engineers, and Analysts Can Introduce Bias.). Thus, the 
analyst's preconceptions can affect the way in which the data is represented. This pitfall is 
especially likely to occur when the data is highly qualitative, with high uncertainties, as is 
often the case with expert judgment.

An example of how granularity affects conclusions can be seen in studies of 
interexpert correlation (Booker and Meyer 1988a, Meyer and Booker 1987b). In the first 
study, (Booker and Meyer 1988a), where the problem-solving of expert statisticians were 
being studied, the technical questions asked of the experts were of simple construction. 
Very specific problem-solving features could be modeled and the statisticians were 
compared using standard general linear models. The conclusion was that experts using 
similar rules of thumb and assumptions reached similar solutions. Therefore, correlation 
among the experts appeared to exist at the detailed level of their problem-solving models. 
In the second study (Meyer and Booker 1987b), the technical questions asked of nuclear 
engineers were more complex in structure. The specific heuristics and assumptions that 
they used were so varied that the design matrix was prohibitively sparse for use in standard 
models. Thus, the problem-solving models had to be constructed at a more general level. 
When these models were constructed at a more general level, which mirrored the ways that 
the experts processed the magnitudes of information, the answers were found again to 
correlate with the expert's problem-solving techniques. If conclusions for the second study 
had been drawn at the same level as in the first study, there would have been no evidence 
for any interexpert correlation. This effect occurs because finding correlation depends on 
having the right data-to-noise ratio, something that the level of granularity determines. 
(Glen Shafer, originator of the Dempster-Shafer theory of belief functions, currently at the 
University of Kansas, is credited with calling this relationship to our attention.) In sum, 
conclusions can differ depending on the granularity of the models chosen.

The Conditioning Effect Poses Difficulties in Gathering 
and Analyzing Expert Data

The data that the expert gives can be conditioned on a wide variety of factors, 
ranging from the wording of the problem, the elicitation site and reference materials that it 
contains, the expert's internal state at the time of questioning, the expert's method of
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solving the problem, the interviewer's or other's responses to the expert's data, to the 
expert's skill at articulating his thoughts. The authors believe that expert data is more 
highly conditioned than other kinds of data and that this attribute complicates the study of 
expert data.

The conditioning effect poses problems for the elicitation and analysis of expert 
judgment. Many of the factors are ones that the researcher has little or no control over. 
For example, in an elicitation session, the interviewer has little control over the state of 
mind that the expert brings to the session, particularly if that state has been affected by 
some event in the expert's private life. Furthermore, the factors often overlap and cannot 
be separated for analysis of their effects on the data (Meyer and Booker 1987a).

The conditioning effect relates to the problem of bias in expert data. Some of the 
conditioning effects could be labeled as causes of bias. That is, they lead to an altering of 
the expert's responses, or they lead to judgments that do not obey mathematical and 
statistical standards. For example, the interviewer's negative response to some aspect of 
the expert's problem solving could alter, or bias, the expert's subsequent problem solving. 
Then too, the expert's use of a shortcut in problem-solving (heuristic), such as using the 
present as a baseline from which to estimate future patterns, could bias his answer 
(Hogarth 1980).

A two-step approach is recommended for handling the conditioning effect and its 
offshoot, bias: (1) control those factors which can be controlled, and (2) gather as much 
data as possible on those factors that cannot be controlled so that the data may be analyzed 
later for their effect. For example, factors that relate to the question or the elicitation 
situation (e.g.,the wording of the question, its timing, the elicitation method, response 
mode, and dispersion measures) are under the discretion of the project personnel and can 
be designed with the conditioning effect in mind. Other factors, such as the expert's 
internal state, personality attributes, and professional background are not as easily 
controlled by project personnel. However, data can be gathered on them through a series 
of demographic questions administered before or after the expert solves the problem. In 
these two ways, the effects of conditioning can be examined, if not reduced.
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3
Background on Human 
Problem Solving and Bias

In this chapter we provide a general background on how humans solve problems. 
In addition, we discuss the effects of bias and propose a program for handling its 
occurrence.

Why Is It Necessary to Have an Understanding 
of Human Problem Solving?

It is a premise of this book that awareness of how people solve problems or of the 
causes of bias is necessary to optimally designing an elicitation method. For example, if 
the interviewer were not aware that an expert's reasoning in solving a problem was only 
briefly available in his short-term memory, she might ask the expert for this information 
hours after it was gone. Similarly, if the researcher were not aware of the potential for 
bias, she would not design measures to detect or counter it. Bias is just beginning to be 
addressed as a problem affecting the quality of expert judgment.

What Is Involved in Solving Problems and 
Responding?

Frequently, those new to interviewing are unaware of the magnitude of the 
cognitive tasks that they are demanding of the expert in problem solving. After all, they 
reason, the experts solve problems every day. However, problem solving is not a simple 
task, and quite often the elicitation methods place additional cognitive burdens on this 
natural process like requesting the expert to answer using difficult response modes, such as 
logarithms.
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The Four Cognitive Tasks
The expert is likely to perform four cognitive tasks during elicitation (Mathiowetz

1987):
1. Understanding the question
2. Retrieving the relevant information
3. Making judgments
4 . Formulating and reporting an answer

The first task can be described as involving the expert’s comprehension of the 
wording and context of the question. The interviewer may use a different nomenclature 
than the expert knows or she may use terms familiar to the expert but the terms may mean 
something different. The expert must also determine the aims of the question and limit his 
analytic frame to focus within that context.

The second task consists of the expert's retrieval of relevant information for 
answering the question. To retrieve this information, the expert must have previously 
received it and stored it in memory.

It should be noted that humans do not perceive and store all the data that is available 
to them. Instead, we tend to selectively notice data that supports information which we 
already possess. This failing is part of the reason why humans are not Bayesians (for 
further information, see Are Experts Bayesian? in chapter 2). For example, studies have 
shown that we pay attention to data that supports our hypotheses but ignore data that 
conflicts (Armstrong 1981). In addition, it is not raw data that is assimilated by a person 
but data that is interpreted in light of what the person has learned either individually or as a 
member of a particular culture. Thus, the expert retrieves data that has had at least one level 
of interpretation above that of objective reality.

Not all information is stored to be later accessed. Then too, mistakes are made in 
accessing memories. Often, the association used to access the memory can impact on what 
is retrieved. For example, if the expert accessed the information through a time frame, a 
different reconstruction of the memory could result than if he accessed it by way of a key 
word. In addition, the expert may not be able to distinguish between similar or related 
events. He may combine memories of separate events, confusing their characteristics and 
the time when they occurred.

The third task, making judgments, involves processing the information. 
Typically, people use mental shortcuts, heuristics, to assist in integrating and processing 
the information (Tversky and Kahneman 1974; Hogarth 1980). In simplifying the 
processing, these heuristics often skew the answer reached. For example, one heuristic is 
termed anchoring and adjustment. This heuristic is defined by Tversky and 
Kahneman (1974) as occurring when an individual reaches a final answer by starting from 
an initial value and adjusting from it. The initial value can be supplied with the question, or 
it can be determined by the expert through his impressions or computations. Usually, the 
final answer reflects, or is skewed toward, the initial value. For example, if an expert were 
trying to evaluate how well a complex computer code predicted experimental results, his 
first impression might be that it did a good job. After considering the problem in more 
depth, he might find a number of places where the code failed to adequately predict the
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experimental results. Yet, the expert would be likely to give a final rating that was closer to 
his first impression than to his second thoughts (Meyer and Booker 1987b).

The fourth task, formulating a response, requires that the subject report an 
answer. If the expert is to use a particular response mode, this task includes his translation 
of his internal answer into the response mode. The expert may use some algorithms in 
selecting the response option that best expresses his concept of the answer. Often, 
response modes, such as probabilities, are governed by logical rules. Thus, the expert may 
also consider these rules. For example, in putting his answer in the desired form he may 
say, "my probabilities need to be values between 0.0 and 1.0."

A Simple Mechanistic Model of Human Information 
Processing

These cognitive tasks can be described mechanistically using the simple model of 
Ericsson and Simon (1980). We chose this model because it makes minimal assumptions 
about these relatively unknown processes.

The expert's thought processes can be described as involving a central processor 
and several types of memory that possess differing capacities and capabilities. For 
example, the short-term memory (STM) is of limited capacity and intermediate duration. 
The long-term memory (LTM) is of large capacity and relatively permanent duration. 
Information recently acquired (by the central processor) relating to the problem is kept in 
the STM for further processing. Only the most recently heeded information is accessible in 
the limited storage of the STM. Thus, in solving a problem, information is moved back 
and forth from the STM to the LTM. The expert's LTM can contain information from 
previous experiences, or it can have by-products of his current efforts in solving the 
problem. For example, if the expert needs the solution to an equation as a step in solving 
the problem, he may pull the equation from LTM. He may solve the equation and proceed 
with its product, relegating the intermediate variables and equation back to LTM. The STM 
has pointers to information in LTM. A portion of STMs are fixated in LTM before they are 
lost and can sometimes be retrieved from LTM.

According to this model, the optimal time for eliciting the expert’s thinking would 
be while these thoughts were still in STM. Later, only a portion of what was in the 
expert's STM will have been fixed in his LTM and only a portion of that fixed in the LTM 
might be successfully accessed and retrieved. Thus, instead of the expert giving a simple 
report of his problem-solving processes at the time, the expert will have to recall what he 
did as a separate problem.

Bias
Another aspect of how people solve problems is bias. Bias is a skewing of the 

expert's judgment from what it is thought that it should be. There are reference points on 
what expert judgment should be: (1) the expert's thinking or answers; and (2) data which 
follows particular norms or standards. These reference points form the two definitions of 
bias—a skewing from the expert's natural way of thinking or from objective standards. The
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two views on what constitutes bias come from the literature on expert judgment, judgment 
theory, decision analysis, and knowledge acquisition.

Two Views of Bias

The first view of bias, sometimes termed motivational bias, proposes that bias 
occurs when the expert's reports of his thoughts or answers are altered by the elicitation 
process. Thus, if the expert gives a different response than he believes because of 
comments from the knowledge engineer, this constitutes bias. This view of bias comes 
from the soft sciences, particularly psychology and ethnology (cultural anthropology). 
Proponents of this view consider the expert's thinking to be the gold standard that they 
wish to capture through the elicitation or the building of a knowledge-based system 
(Henrion and Cooley 1987).

The second view of bias, sometimes termed cognitive bias, defines bias as 
occurring when the expert's knowledge does not follow normative, statistical, or logical 
rules. To illustrate, if an expert would give probability estimates on all outcomes to a 
problem (previously defined as being mutually exclusive) and these probabilities did not 
sum to 1.0, this data would be considered biased. This view of bias comes to knowledge 
acquisition from the fields of decision analysis and statistics (Mumpower, Phillips, Renn, 
and Uppuluri 1987). The goal of this position is not to mimic the expert’s thinking but to 
improve on it (Henrion and Cooley 1987), such as by bringing the bias to the expert's 
attention for correction.

Potential Impact of Bias

Bias can degrade the quality of the data, whether the bias is judged from the 
standard of the expert's problem-solving processes or from the standard of statistics and 
logic. To illustrate how motivational bias can affect the data, suppose that the interviewer 
asks the expert if he mentally models the problem using a decision tree structure. The 
expert may be led to answer "yes" even if he did not use this means of modeling. The 
interviewer than faces the difficulty of resolving the discrepancies that are likely to arise 
between the expert's claim and his answers (Meyer, Mniszewski, and Peaslee 1989). 
Cognitive bias has been found to affect expert judgment and to result in solutions that are 
not mathematically optimal. For instance, in making judgments people often use 
simplifying heuristics that skew the answer reached (Tversky and Kahneman 1974, 
Hogarth 1980).

Because expert data is often used as input to important decisions and computer 
models, bias can contribute to the problem of garbage in, garbage out The same is true in 
building expert systems.

The problem of bias also needs to be addressed because of its impact on the 
credibility of a project. Regardless of whether or not bias was expected to pose problems, 
a study is open to criticism if it has failed to address bias through experimental design. 
Bias needs to be monitored or controlled and analyzed for its impact.

The topic of expert bias has recently come into vogue. In particular, many have 
become aware of how the interviewer or others can lead the expert's thinking. For this 
reason, we have found that outside reviewers are particularly critical of methods where
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there has been no attempt to control for these influences. For instance, one of the first 
criticisms a review panel (Kouts, Cornell, Farmer, Hanauer, and Rasmussen 1987:7) made 
of the expert judgment methods used in a Nuclear Regulatory Commission project, the 
1987 draft version of NUREG-1150, was that "each expert should be free to make this 
characterization [of the problem areas] independently of decisions by others."

Causes of Bias

While the basic cause of both types of bias is the human being, the exact 
mechanisms by which bias is induced differ. Motivational bias is caused by our needs, 
such as for acceptance; cognitive bias is induced by the way in which we process 
information.

Motivational bias
Motivational bias can occur as a result of the following circumstances: (1) the 

expert does not report what his solutions or thought processes actually were, (2) the 
interviewer or knowledge engineer misinterprets the expert’s report, or (3) the analyst 
misrepresents the expert's knowledge.

In the first aspect of motivational bias, altering of the expert's reporting, the 
phrasing of the interview questions could cause the expert to change his descriptions of his 
thinking. For example, if the interviewer asks the expert if he used subgoal x in solving 
the problem, the expert may answer "yes," even if he did not, and then he may begin using 
subgoal x on future problems. The mode in which the expert is asked to respond can also 
bias the expert’s answer if he cannot accurately encode his final judgment in that mode. 
Some common response modes are probability distributions, continuous linear scales, 
Saaty's paired comparisons, ratings, and rankings. Then too, the interviewer's verbal or 
nonverbal responses can influence the expert's thinking. For instance, if the interviewer 
leans forward, displaying intense interest in something that the expert is saying, the expert 
may unconsciously respond by exaggerating his statements on this topic. Other experts, in 
interaction with the expert, can have similar effects on the expert's thinking. Furthermore, 
experts' descriptions of their thinking can be affected by their perception of how those not 
physically present, such as clients or supervisors, might view their responses. For 
example, if an expert judged that his response might irritate his supervisors, he might let 
that fact influence his reporting of his data.

There are several reasons why the expert's thinking can be influenced by others. 
First, most people have an emotional need to be accepted and to receive approval 
(Zimbardo 1983). Second, people are generally unaware of how they make decisions 
(Hogarth 1980:ix), such as in solving problems. Yet, it is difficult for them to admit 
ignorance because western scientific tradition assumes that the problem-solving process can 
be precisely stated (Denning 1986:345). Thus, in elicitation situations, the expert is likely 
to be responsive to what he believes the interviewer, knowledge engineer, or other experts 
wish to hear. Their expectations or wishes are communicated, often unconsciously, 
through their questions, responses to the expert, and body language. The expert is likely 
to acquiesce unconsciously to suggestions of an acceptable answer or to means by which 
he might have solved the problem.
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The expert's thinking can be biased by another source—the interviewer or 
knowledge engineer's interpretation of his thinking. We, as humans, tend to 
perceive and interpret incoming information in a selective way that supports what we 
already believe. Sometimes, this tendency leads to a misinterpretation, or biasing, of the 
information. For instance, when the expert mentions a new term, we tacitly assume a 
meaning based on our experience with similar sounding words. Likewise, we may think 
that we hear the solution that we expect. Knowledge engineers can be particularly prone to 
this bias because of a method that they have used for learning the expert's field. This 
method is to study the expert’s domain, build mental constructs representing the 
knowledge, and then to understand the expert's knowledge structure by comparing to one's 
own. This comparative means of learning the expert's knowledge structure would seem 
prone to bias because the knowledge engineers interpret the expert's thoughts through the 
filter of their own.

The expert's thinking can also be altered by the representation of it.
Expert data is often modeled for analysis or represented in a computer program. The 
individual performing these tasks makes many tacit decisions and assumptions about the 
data's appearance and performance. For example, when an analyst selects a model for the 
data, the model assumes particular properties of the data, such as its distribution. These 
assumptions may not be valid. Then too, an analyst may have to aggregate multiple and 
differing expert judgments to provide one input value. Mathematical aggregation schemes 
often require assumptions, and different ones, like the mean versus the weighted average, 
can produce different answers. The knowledge engineer also makes decisions about the 
organization of the knowledge in the system and its representation that determine how the 
data are implemented.

Cognitive bias
In the definition of cognitive bias, bias is a consequence of the way in which we 

think. The following are some characteristics of the way that we think.
Humans model their world to understand, predict, and control it (Clancy 1989:11). 

It is important to note that there cannot be a perfect match between the model that the expert 
uses in problem solving and the reality being modeled. We selectively take in information, 
often perceiving those data that support rather than contradict our beliefs.

Probably the human mind is limited in how much information that it can process 
and in how much it can remember Hogarth (1980:9). In order to reduce the cognitive 
burden, people tend to take short cuts when solving a complex problem. Thus they start 
with a first impression and integrate the information in a sequential manner, making only a 
few minor adjustments. Later, if additional information is received, they probably will not 
adjust their initial impression to give a more accurate judgment. In other words, if an 
individual who has already reached an initial solution is given contradictory data, he will 
probably not take this data sufficiently into account when generating a final answer. In 
particular, this sequential means of integrating information handicaps us in making 
predictions where large or sudden changes are involved. This limiting effect is called 
anchoring or anchoring bias.

The human mind has limited memory capacity for information processing. As 
Miller (1956) has noted, most individuals can not discriminate between more than seven 
things at a time. This limitation in information processing causes people to be inconsistent
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in working through the problem. For instance, people commonly forget an assumption 
made earlier and contradict it, thus causing inconsistency bias.

Then too, some data is more easily recalled than others. For instance, data 
involving catastrophic, familiar, concrete, or recent events may be easier to recall (Cleaves 
1986, Gold 1987). This effect, termed availability bias, can lead to the overestimation of 
the frequency of some events.

List of Selected Motivational and Cognitive Biases

The following is a brief list of the biases that we have commonly encountered 
during the process of elicitation and analysis. For convenience, they have been separated 
into two categories, cognitive and motivational. Motivational biases, such as those 
produced by social pressure, have as their source the emotional needs and wishes of the 
expert. Cognitive biases have as their source the workings of the human mind. As 
mentioned earlier, experts and people in general can unconsciously conform to other’s 
views because of their need to be accepted and receive approbation. [For a more thorough 
catalogue of biases, particularly of the cognitive variety, see table 9.2 of Hogarth's 
Judgement and Choice (1980)].

Motivational biases
SOCIAL Pressure is the altering of the expert's descriptions of his 

thoughts arising from the desire to be accepted and to see himself in the 
most positive light. This altering can take place consciously or 
unconsciously. The social pressure can come from those physically 
present, such as the interviewer or other experts, or from the expert's 
internal evaluation of others’ reactions.

When the social pressure comes from other experts in a face-to-face 
group situation, the resulting bias is termed group think. Group think 
occurs when an individual alters his thoughts or his reporting of his 
thoughts to conform to the group judgment or to the judgment of someone 
respected in the group. For example, Janis' study of fiascoes in American 
foreign policy (1972) illustrates how presidential advisors often silently 
acquiesce rather than critically examine their own thoughts or those that they 
believe to be the group judgment. Group think is more likely to be a 
problem if the members of the group have worked together before, if they 
have qualms about bringing up conflicting points of view, or if there is a 
dominating leader (Meyer 1984). The tendency toward group think has also 
been called the bandwagon or the follow-the-leader effect.

When the source of the social pressure is the interviewer or persons 
who are not physically present, the bias may be given the general label of 
impression management. The interviewer's verbal and nonverbal 
responses can lead the individual. Even when the interviewer is not 
physically present, the individual may try to answer in such a way as to 
bring the most approbation (e.g., from the person who has written the
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questions). Then too, he may try to respond in such a way as would be 
acceptable to his employer or to society in the abstract.

Misinterpretation is the altering of the expert's thoughts as a result of 
the methods of elicitation and documentation. (See chapter 2, Pitfalls: 
Interviewers, Knowledge Engineers, and Analysts Can Introduce Bias.) 
While this effect is prevalent, it has not received much attention. 
Misinterpretation occurs when the elicitation is done from the interviewer's, 
rather than the expert's, viewpoint. For example, we have all had the 
frustrating experience of trying to force fit our views into the limited 
response options of a mail survey. Additionally, misinterpretation 
frequently occurs as a result of the response mode. If the expert can not 
adequately translate his judgment into the response mode, misinterpretation 
will result. We have noticed that experts seem to have more difficulty with 
the response modes of probability distributions, ranks, and percentiles.

Misrepresentation is the altering of the expert's thoughts or answers as 
a result of modeling or analyzing this data. The person who is modeling the 
expert data for entry into a computer program or for analysis makes tacit 
assumptions about the data's appearance and performance. For example, 
the analyst might assume that the expert data were normally distributed. If 
these assumptions are not warranted, the expert data will be misrepresented.

WISHFUL Thinking is caused when the expert's hopes or involvement in 
the area on which he is being questioned influence his response (Hogarth 
1980). For example, people frequently give overly optimistic estimates of 
what they can accomplish in a given amount of time because of wishful 
thinking (Hayes-Roth 1980). The wishful thinking effect is strongest when 
the subjects are personally involved or would somehow gain from their 
answers. Hence, this bias is also called conflict of interest. For example, 
conflict of interest could occur if an expert was asked to evaluate the 
services provided by several companies, one of which employed him or had 
offered him money for a good evaluation.

Cognitive biases
INCONSISTENCY is the inability to be consistent in solving a problem, 

especially through time. Of all of the biases mentioned here, this is the most 
common. Individuals often unintentionally change definitions, 
assumptions, or algorithms that they meant to hold constant throughout the 
problem. These inconsistencies may result in answers that do not make 
logical or Bayesian sense. For example, a series of answers proposing that 
factor A was more critical than B, B more than C, and C more than A would 
not make logical sense. Similarly, if an expert gave the same probability of 
A for two situations, one of which involved an influential factor C and one 
which did not, his answers would not be coherent from the Bayesian 
viewpoint.

ANCHORING is the failure to adjust sufficiently from a first impression in 
solving a problem. For example, members of a group of experts often 
discuss the issue before giving their final estimates. A member's last
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estimate is likely to be closer to his initial impression than it would be had 
he fully taken into account the factors discussed.

AVAILABILITY refers to the differing ease with which events can be retrieved 
from LTM. Data involving catastrophic, familiar, concrete, or recent 
events may be easier to recall (Meyer 1986). Availability bias affects 
people's ability to accurately estimate frequencies and recall other aspects of 
the event. For example, the incidence of severe accidents in reactors tends 
to be overestimated, in part, because of its catastrophic and newsworthy 
nature.

Underestimation of Uncertainty is the failure to account for the 
actual amount of uncertainty in the answers given. For example, when 
people are asked to put a range around an answer such that they are 90% 
sure that the range encompasses the correct answer, their ranges only cover 
30 to 60% of the total (Capen 1975). Even when people are given quizzes 
and feedback on their performance, they cannot break the barrier of 
covering only 70% (Capen 1975:846). A popular explanation for this effect 
is that we are uncomfortable with the amount of uncertainty in life, and thus 
minimize it. In particular, we may avoid confronting the large uncertainties 
in our judgments.

In summary, it is difficult to judge the impact of these and other biases on expert 
data because there are few bases of comparison. One cannot compare the expert’s data to 
what it would have been before the bias occurred. Similarly, one cannot judge the degree 
of bias by comparing the expert's judgment to the right answer because generally the right 
answer is not known. While the impact of such biases may not be discernible, the relative 
frequency of particular biases is more obvious. The biases most likely to be encountered 
are those resulting from the expert's inconsistencies. The next most common bias, in our 
experience, has been that of anchoring. We have observed experts using the anchoring and 
adjustment heuristic to allow them to solve complex problems. By contrast, we have not 
found group think bias to be as common in our research as the literature would have led us 
to expect. Similarly, wishful thinking has only emerged in a few projects where the 
experts were managers having to forecast whether their projects would reach various 
milestones on schedule (Meyer et al. 1981).

Countering or Reducing Bias-More Art Than Science

Approaches to handling bias are rare and in their early stages. They are perhaps as 
much art as they are science. While research on judgment has drawn attention to the 
presence of expert bias, little has yet been done to deal with its occurrence during elicitation 
(Cleaves 1986:9-9). Typically, practitioners have developed their own means for dealing 
with the biases they commonly encounter. The program proposed here is no exception. 
This section and discussions in later chapters on handling bias should be viewed as 
reflecting the authors' experiences.

One reason that there are not more programs for handling bias is that bias is a 
difficult topic to study. Studying, much less trying to counter bias, is complicated by not 
having a readily available baseline by which to determine the direction and magnitude of the
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bias. For the questions that expert knowledge is elicited, there are frequently no known 
single right answers or empirical data. Thus, the expert's data cannot be simply compared 
to an answer looked up in a reference or to the result of modeling data. Measurement of 
motivational bias is further complicated by the absence of objective standards for 
comparison. At least with cognitive bias there are traits of the expert's answers that can be 
compared to standards. For example, do the expert's exclusive but dependent probabilities 
sum to zero as they should? With motivational bias, the baseline of the expert's 
knowledge, had its description not been altered, is difficult to determine, especially because 
expertise is not static. As Rosenfield (1988:194) argues in his book on memory, higher 
mental functions are not fixed procedures but subject to constant reconstruction. While we 
recognize that both biases are difficult to detect, we believe that for progress to occur 
programs like this one must be proposed and applied to expert judgment

Our approach differs from the one presented by Cleaves (1986). First, Cleaves' 
proposal focuses on cognitive bias; second. Cleaves tries to anticipate biases by the 
judgment processes in which they are likely to occur—namely, hypothesis and solution 
generation, decision rule articulation, uncertainty assessment, and hypothesis evaluation. 
While we agree that biases occur during these processes, we try to anticipate the biases by 
the elicitation components that are likely to exhibit them. We assume that many readers will 
be lay persons in the areas of human cognition and that this approach may be easier for 
them, at least as a starting point.

Another major difference in our program is its real-time emphasis. Given the 
evolving nature of expertise, bias is best detected when it is being elicited. This program 
stresses monitoring for bias, particularly motivational bias, in real time rather than 
mathematically compensating for it afterwards. It is much more difficult to determine that 
motivational bias has occurred after the elicitation because the baseline—the expert's 
knowledge—is likely to have changed. For this reason, we consider each elicited datum to 
be a snapshot that can be compared to a snapshot of the expert's state of knowledge at the 
time of the elicitation.

Steps in a program for handling bias

Our program (Meyer and Booker 1989) consists of these general steps:
1. Anticipate the biases to which the planned elicitation is prone and 

redesign the elicitation, as needed. We have provided lists of selected 
biases and the situations in which they are likely to occur (see chapter 8). These 
biases were selected because they represent a range of bias within the two 
definitions. Certainly these are not the only sources of bias, but they are ones 
that we have most frequently encountered.

To anticipate bias, the interviewer determines the parts of her planned 
elicitation and searches the Index of Selected Biases (see the table at the end of 
chapter 3) for the biases to which they are prone. For instance, if the researcher 
planned to use the interactive group method, she would see that it was prone to 
the following biases: social pressure from group think, wishful thinking, and 
inconsistency. The interviewer then turns to the section following the table 
Definitions of Selected Biases to look up the definitions and causes of the
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selected biases. The definition section can further be used to redesign the 
elicitation, if the researcher, as a result of anticipating bias, wishes to do so.

Through the process of looking up these biases in the Index and 
Definitions, the data gatherers will become aware of the biases existence and of 
their own tendencies to introduce or acerbate them. In addition, the section 
entitled Pitfalls: Interviewers, Knowledge Engineers, and Analysts Can 
Introduce Bias (chapter 2) can be read to enhance the project personnel's 
awareness of bias.

2. Make the experts aware of the potential for introducing bias and 
familiarize them with the elicitation procedures. The experts need to 
be informed (as described in chapter 10) about the biases that they are likely to 
exhibit given the elicitation situation. In particular, they need to know the 
definitions and causes of these biases. Without this information, the experts 
will not be able to combat their own tendencies toward bias. The interviewers 
can use the Index and Definitions provided for step 1 as a base for informing 
the experts about bias.

It should be noted that making the experts aware of the biases helps but 
does not completely alleviate the problem. In some cases, the cause of the bias, 
such as with the underestimation of uncertainty, is too ingrained to be 
completely overcome. In other cases, the experts will not make the needed 
effort to counter the natural tendency toward bias. People typically believe that 
others, not themselves, will suffer from the biases described. With some 
biases, such as anchoring and underestimation of uncertainty, the experts can 
participate in tests designed to evoke the bias. Frequently, almanacs are used to 
construct test questions, such as: How much rain fell in St. Paul, Minnesota in 
1987? While the experts will not know the answers to such questions, the 
interviewer can look up the correct answer. The interviewer can read the 
answers and allow the experts to score their own. (This procedure is described 
further in chapter 10, Introducing the Experts to the Elicitation Process: For an 
Interactive Group Situation.) Such a demonstration is often necessary to 
convince the expert that he too is prone to the bias.

The experts also need to be made aware of the elicitation procedures. If 
they are confused about how and when they are to respond, the data gathered as 
well as the expert's cooperativeness is negatively affected. One aspect of 
elicitation that is often confusing is the response mode, if the expert is not 
accustomed to using it. The use of unfamiliar response modes should be 
rehearsed by the experts during the training session. Information on how to 
familiarize the expert with the elicitation procedures is given in chapter 10.

3. Monitor the elicitation for the occurrence of bias. Prior to the 
elicitation sessions, the data gatherer looks up the signs that the biases may be 
occurring in Signs of Selected Biases below. For instance, if group think bias 
was anticipated, the data gatherer would look up this bias in the Signs section 
and read about indications of its presence. One sign of group think is that the 
experts appear to defer to another member of the group or to each other. The 
interviewer, knowledge engineer, or a trained observer then watches for this 
sign of group think during the elicitation. In general, monitoring biases, as
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described here, requires that the experts verbalize their thoughts and answers. 
Without this feedback, we have found the monitoring to be much more difficult.

4. Adjust, in real time, to counter the occurrence of bias. In this step, 
the interviewer looks up the suggestions for preventing a particular bias in 
Suggestions for Countering Selected Biases. These suggestions vary because 
we have used two approaches: (1) controlling those factors contributing to a 
particular bias, or (2) employing the opposite bias. The first approach involves 
controlling the factors that contribute to the bias. For instance, fatigue is a 
factor that leads to increased inconsistencies in expert judgment. The 
interviewer can stop the elicitation sessions or schedule breaks before the 
experts become fatigued as a means of controlling this contributor to 
inconsistency. The basis of the second approach, fighting bias with bias, 
comes from Payne (1951), the grandfather of survey design. Payne believed 
that all interviewing was biased and that one should therefore aim for equal but 
opposite biases. An example of this technique is to try to have experts anchor 
to their own judgments in attempts to counter a group-think situation. Having 
the experts write their judgments encourages them to form and keep their own 
opinions even when they hear the opinions of others.

5. Analyze the data for the occurrence of particular biases. 
(Suggestions on how to test for bias are given in chapter 16.) If step 5 is the 
only step of the program being followed, the analysis will necessarily be 
simpler than if step 4 were also followed. If the steps 3 and 4 were followed, 
they would provide the additional data needed for performing more complex 
analyses. In general, adequately testing for one of the motivational biases 
requires this more complex testing. Occurrence of a cognitive bias, such as the 
underestimation of uncertainty, can often be determined by simple mathematical 
tests. For example, we analyzed the expert's ranges on their likelihoods of 
reaching particular magnetic fusion milestones. Their ranges were within one 
standard deviation of their pooled answers. This result indicated that the 
experts thought that they were adequately accounting for all of the uncertainty 
when they were only accounting for about 60% or less of it (Meyer et al. 1982).

Determining which steps to apply

The steps of the program above can be applied in sequence or singly, depending 
on the needs of the project. For example, if information on bias was not important to the 
project, none of the steps or only step 5, analyzing for bias, would be necessary. If on the 
other hand, the interviewer wished to follow some but not all of the steps, she could 
perform steps 1 and 5, or 1, 2, and 5, or 1, 3, and 5, or 1, 2, 3, and 5. We suggest that 
step 5 always be done regardless of the other steps because it provides a general check on 
the expert data.

To pick steps for use in a project, consider the following: (1) the reason for 
addressing the problem of bias; which view of bias, motivational or cognitive, will be 
employed; and (3) which biases are of special interest
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The reason for focusing on bias
The reason for focusing on bias can provide a criteria for determining which steps 

of the program to implement. For example, if the project personnel's interest in bias stems 
from a desire to avoid having reviewers criticize aspects of the project, their selection of 
steps would probably differ from those whose goal is to study the occurrence of bias. In 
the first example, all the steps might be used. In the second, steps 1, 3, and 5 might be 
used to anticipate which biases are likely, to design the study around the factors likely to 
affect their occurrence, to monitor the elicitation sessions for their appearance, and to 
analyze the data for their occurrence.

The steps are suited to accomplishing different aims. For instance, steps 1, 
anticipate the biases, and 2, make the experts aware of the potential for bias and familiarize 
them with the elicitation procedures, accomplish educational goals. Performing them gives 
the data gatherers and the experts a preview of how the data will be elicited and an 
understanding of why it will be conducted in a particular manner. Thus, these two steps, 
especially 2, are often used as practical steps for introducing the participants to the 
elicitation process and making them comfortable with it. Step 3, monitoring for the 
presence of bias, does not interfere with the elicitation or the results, so it suited to 
researching the presence of bias, as is step 5, analysis. In contrast, step 4, adjusting in real 
time to counter bias, affects the elicitation and, thus, is more appropriate to situations where 
the intent is to control, rather than study, bias.

The selection of the view of bias, motivational or cognitive
The selection of the view of bias, motivational or cognitive can also identify which 

set of steps will be most effective.
We ask the reader to select one view of bias because, while both views are equally 

valid definitions of bias, one way of construing bias may be more useful for a particular 
project. For example, if the focus of the project is learning the expert's problem solving in 
order to emulate it, the motivational definition of bias would be more appropriate. If the 
project involves estimating the likelihood of future events, the cognitive definition would be 
a natural choice. People are inaccurate in making predictions and the cognitive view of bias 
would help to combat this weakness. We suggest that the reader select and use only view 
of bias at a time to avoid being contradictory. For example, use of the cognitive definition 
would propose that a mathematically incorrect judgment be modified. This act would cause 
a misrepresentation of the expert's data, a bias, according to the motivational definition of 
bias.

As a general rule, if the motivational definition of bias is selected, steps 1 and 2 will 
be most helpful. Following step 1, anticipating the biases and redesigning the elicitation, 
would allow the project personnel to tailor elicitation methods (as described in chapter 8) to 
reduce their tendency to lead the expert or to misinterpret his data. Use of steps 1 and 2 
(making the experts aware of the potential for bias and familiarize them with the elicitation 
procedures) would inform the data gatherers and experts about bias, and hopefully make 
them less prone to it. In this book, we have focused on presenting methods of elicitation 
and analysis which we believe minimize influencing the experts and force fitting their data. 
Thus, just using the methods suggested in this book, regardless of any program for 
handling bias, should provide some protection from motivational bias.

43



Chapters

If the cognitive definition of bias is selected, step 5, analysis, is particularly 
effective. Analysis is generally more effective with cognitive than motivational bias 
because cognitive bias can be determined mathematically or statistically. Cognitive bias can 
usually be measured because it is defined as a violation of logical or statistical standards. 
Thus, one of the cognitive biases, underestimation of uncertainty, can be analyzed using 
the experts' ranges on their estimates (as described in chapter 17).

Interest in particular sources of bias
Interest in particular sources of bias will favor the use of some steps over others. 

The reader will have to identify which biases he or she is most interested in and then select 
those steps that address these biases. For example, if social pressure by the interviewer 
was a concern, use of steps 1 and 2 would be helpful. In step 1, the interviewer would be 
led to select elicitation methods (as described in chapter 7) that were nondirective, like the 
verbal protocol, to minimize her tendency to influence the expert. In step 2, the expert 
would be made aware of this bias so he would be able to guard against it. Another bias that 
people commonly worry about is wishful thinking. The step that we have used to deal with 
wishful thinking is step 1. In anticipating this bias, we have redesigned the elicitation to 
select those experts less likely to exhibit wishful thinking, those who had less at stake in 
the judgments. Additionally, we required that the experts explain their reasoning for their 
estimates to make it more difficult for them to give highly optimistic estimates. A third bias 
that often draws attention is group think. All of the steps would be helpful in countering 
group think. However different steps could be used depending on the project personnel's 
reason for focusing on this bias. If the intent was to study group think bias, the following 
steps might be used: step 1 to design the experiment, step 3 to monitor the presence of the 
bias, and step 5 to analyze its occurrence. On the other hand, if the purpose was to try to 
eliminate group think bias, more steps could be used. For instance, use of step 1 could 
lead the project personnel to redesign the elicitation situation (as described in chapter 8) to 
preclude expert interaction. In a less extreme case, step 1 might simply be used to 
anticipate the occurrence of this bias in an interactive group setting, step 2 to alert the 
experts to this danger, step 3 to look for the signs of its occurrence, and step 4 to take the 
suggested actions.
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Index of Selected Biases

Elicitation Component View of Bias Source

Elicitation Situations:
Individual Interview Motivational Social pressure from interviewer

Motivational Wishful thinking
Cognitive Inconsistency

Delphi Motivational Wishful thinking
Cognitive Inconsistency
Cognitive Anchoring

Interactive Group Motivational Social pressure, group think
Motivational Wishful thinking
Cognitive Inconsistency

Response Modes
Complex ones such as Motivational Misinterpretation by expert

probabilities, Bayesian Cognitive Inconsistency
updating, and uncertainty Cognitive Underestimation of uncertainty
measures

Aggregation
Behavioral Aggregation Motivational Social pressure, group think

Mode of Communication View of Bias ________ Source

Face-to-Face Motivational Social pressure from interviewer
Motivational Wishful thinking
Cognitive Underestimation of uncertainty

Telephone Motivational Social pressure from interviewer
Motivational Wishful thinking
Cognitive Availability
Cognitive Anchoring
Cognitive Underestimation of uncertainty

Mail Motivational Social pressure, impression 
management

Motivational Wishful thinking
Motivational Misinterpretation by analyst
Cognitive Inconsistency
Cognitive Availability
Cognitive Anchoring
Cognitive Underestimation of uncertainty
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Definitions of selected biases
Motivational Bias-Altering of the expert's thoughts through social pressure, wistful 

thinking, or misinterpretation.
Social pressure. Social pressure is the altering of the expert's thought 

processes or descriptions of those thoughts arising from the desire to be accepted and be 
seen in the most positive light possible. This altering can take place consciously or 
unconsciously. The social pressure can come from those physically present, such as the 
interviewer or the other experts, or from the expert's own internal evaluation of others' 
reactions.

Social pressure from the interviewer is most likely to occur in those methods where 
the interviewer is meeting in a face-to-face situation with the experts, such as in the 
individual interview and the interactive group. In face-to-face situations, the interviewer 
can intentionally or unintentionally influence the expert through body language, facial 
expression, intonations, and choice of words. We expect this source of bias to be weaker 
in telephone conversations and weaker still in communications by mail. These last two 
modes do not allow some of the above-mentioned means of expression that the face-to-face 
mode does. In addition, social pressure bias is more pronounced when the interviewer is 
asking leading questions. Thus, it is weaker when the interviewer is using the verbal 
protocol, verbal probe, or ethnographic technique. The verbal protocol avoids leading the 
expert because it does not involve questioning him; the verbal probe uses general, 
nonleading phrases; and the ethnographic techniques uses the expert's own words in 
formulating questions.

Social pressure from others in the group induces individuals to slant their responses 
or to silently acquiesce to what they believe will be acceptable to their group (Meyer 1986: 
89). The psychologist Zimbardo (1983) explains that it is due to the basic needs of people 
to be loved, respected, and recognized that they can be induced or choose to behave in a 
manner that will bring them affirmation. There is abundant sociological evidence of 
conformity within groups (Weissenberg 1971). Generally, individuals in groups conform 
to a greater degree if they have a strong desire to remain a member, if they are satisfied with 
the group, if the group is cohesive, and if they are not a natural leader in the group. 
Furthermore, the individuals are generally unaware that they have modified their judgment 
to be in agreement with the group.

Group think. One mechanism for this unconscious modification of opinion is 
explained by the theory of cognitive dissonance. Cognitive dissonance occurs when an 
individual finds a discrepancy between thoughts that he holds or between his beliefs and 
actions (Festinger 1957). For example, if an individual holds an opinion that conflicts with 
that of the other group members and he has a high opinion of the other's intelligence, 
cognitive dissonance will result. Often the individual's means of resolving the discrepancy 
is by unconsciously changing his judgment to be in agreement with that of the group 
(Baron and Byrne 1981). For example, Janis' study of fiascoes in American foreign policy 
(1972) illustrates how presidential advisors often silently acquiesce rather than critically 
examine what they believe to be the group judgment. This phenomena has also been called 
group think bias, the follow-the-leader or bandwagon effect.

Group think is only likely to be a concern in an interactive group situation. It is 
further likely to occur in situations where behavioral aggregation is used because this type 
of aggregation requires that pressures toward conformity be encouraged.
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Impression management. Another type of social pressure can occur as the 
expert imagines the reactions of those not physically present. This effect can occur in any 
elicitation situation. However, it seems to be more noticeable when it is not covered by 
other effects, such as social pressure caused by the interviewer. For this reason, its 
occurrence is most noted in mail surveys. The individual may try to answer in such a way 
as to bring the most approbation, such as from the person who has written the questions. 
Then, too, he may try to respond in a way that would be acceptable to his employer or to 
society in the abstract. For this reason, this source of social pressure has been termed 
impression management (Goffman 1959). Payne (1951) has found evidence of individuals 
giving the responses that they perceived to be the most socially acceptable rather than those 
which accurately portrayed their thoughts or actions. For example, on surveys, people 
claim that their educations, salaries, and job titles are better than they are. Often there is a 
10% difference between what is claimed for reasons of prestige and what objectively is 
(Meyer 1986: 90).

Wishful thinking. Wishful thinking occurs when an individual’s hopes 
influence his judgment (Hogarth 1980). What the subject thinks should happen will 
influence what he thinks will happen. To illustrate, presidential election surveys show that 
people predict the winner to be the candidate that they expect to vote for (Armstrong 1981: 
79). The above instance is one where the subjects stand to gain very little personally from 
their answer. The wishful thinking effect is stronger where the subjects are personally 
involved or would gain from their answers. Hence, this bias is also called conflict of 
interest. In general, people exhibit wishful thinking about what they can accomplish in a 
given amount of time: they overestimate their productivity (Hayes-Roth 1980).

Wishful thinking is not particular to any elicitation method. Instead it relates to 
selection of experts and the assignment of them to specific questions or problems. If they 
have a special interest in the answer, wishful thinking is likely to occur whether the 
individual interview, interactive group or Delphi elicitation method is used or whether the 
communication is face-to-face, by telephone, or mail.

In general, wishful thinking effects will be most pronounced when the expert does 
not have to explain his reasoning. The experts’ highly optimistic responses are checked by 
having him disaggregate the problem and explain his problem solving. For example, 
Hayes-Roth (1980) found that having people break down the tasks that they had earlier 
thought they could accomplish in a given time led to more realistic estimates.

Misinterpretation. Misinterpretation is the altering of the expert's thoughts 
as a result of the methods of elicitation and documentation. While this effect is prevalent, it 
has not received much attention. (For further information, see the pitfall, Interviewers, 
Knowledge Engineers and Analysts Can Introduce Bias). Frequently misinterpretation 
occurs as a result of the response mode. If the expert can not adequately translate his 
judgment into the response mode, misinterpretation will result. We have noticed that 
experts seem to have more difficulty with the following response modes: probability 
distributions, ranks, and percentiles.

Misinterpretation is also more likely with elicitation and documentation methods that 
are written from the interviewer's, rather than the expert's, viewpoint. For example, we 
have all had the frustrating experience of trying to force fit our views into the limited 
response options of a mail survey.
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Cognitive bias-Data failing to follow mathematical and logical standards because of 
inconsistency, anchoring, availability, or underestimation of uncertainty.

Inconsistency. Inconsistency is the inability to be consistent in solving of 
problems, especially through time. Of all of the biases mentioned here, this is the most 
common. Individuals often unintentionally change definitions, assumptions, or algorithms 
that they meant to hold constant throughout the problems. Inconsistency in an individual's 
judgment can stem from his remembering or forgetting information during the elicitation 
session. For example, the individual may remember some of the less spectacular pieces of 
information and consider these in making judgments later in the session, or the individual 
may forget that particular ratings were only to be given in extreme cases and begin to assign 
them more freely toward the end of the session.

As Dawes, Faust and Meehl (1989:1671) have noted, such factors as fatigue, recent 
experience, or seemingly minor changes in the ordering of the information or in the 
conceptualization of the task "can produce random fluctuations in judgment. Random 
fluctuation decreases judgmental reliability and hence accuracy." These inconsistencies 
may result in answers that do not make logical or Bayesian sense. For instance, a series of 
answers proposing that factor A was more critical than B, B more than C, and C more than 
A would not make logical sense. Similarly, if an expert gave the same probability of A for 
two situations, one of which involved an influential factor C and one which did not, his 
answers would not be coherent from a Bayesian viewpoint.

The natural tendency toward inconsistency is acerbated by several conditions such 
as memory problems, confusion, and fatigue. During elicitation sessions of more than 30 
minutes, people often forget the instructions, definitions, or assumptions that they were 
requested to follow. For example, the experts may forget that a rating of nine meant a near 
certainty and assign it more easily than the definition specified. Thus, unstructured 
elicitations, which do not have periodic reviews of the question information, are more 
likely to have high inconsistency. This inconsistency can be between experts' answers 
(e.g., the experts meant different things by the same numerical answer) or within an 
expert's answer (e.g., sometimes the expert gave a specific rating more easily than at other 
times). Also, situations where the expert's understanding through time cannot easily be 
monitored are more prone to inconsistency. These situations include the Delphi or mail 
survey.

Confusion can also lead to inconsistency. Thus, any of the more complicated 
response modes, such as probability distributions and percentiles, are more prone to this 
problem. This confusion is why training the expert in the use of these modes is 
recommended. In addition, if the experts must mentally juggle more than five to seven 
things, such as in rating them, they are likely to become confused and inconsistent. It is 
for this reason that the Saaty paired-comparison mode is used even though it is more time 
consuming than some of the other response modes.

Anchoring. Anchoring is the failure to adjust sufficiently from one's first 
impression in solving a problem. We would rate it next to inconsistency in terms of 
frequency of occurrence. Sometimes this tendency is explained in terms of the Bayesian 
philosophy as peoples' failure to adjust a judgment in light of new information in the 
manner specified by Bayes Theorem (Meyer 1986:88). Spetzler and Stael von Holstein 
(1975) and Armstrong (1981) describe how people tend to anchor to their initial response, 
using it as the basis for later responses. Ascher (1978) has found this problem to exist in
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forecasting where panel members tend to anchor to past or present trends in their projection 
of future trends. Ascher determined that one of the major sources of inaccuracy in 
forecasting future possibilities, such as markets for utilities, was the extrapolation from old 
patterns that no longer represented the emerging or future patterns. Another example of 
anchoring occurs when a member of a groups last estimate is closer to his initial impression 
than it would be had he fully taken earlier group discussions into account.

Anchoring is most prevalent in situations where the expert is not likely to 
experience the opposite bias of being influenced by the interviewer or the group, such as in 
the Delphi method. In addition, those modes, such as mail or telephone communications, 
where the expert's thoughts cannot be easily monitored by having the expert think aloud, 
are prone to this bias. In addition, we have noted that experts are more likely to stick with 
their anchor if they have either described it orally or in writing and fear losing face for 
changing their mind.

Availability. Availability bias arises from the differing ease with which 
events can be retrieved from long-term memory. Data involving catastrophic, familiar, 
concrete, or recent events tend to be easier to recall. Availability bias affects people's 
ability to accurately estimate frequencies and recall other aspects of the event. For example, 
the incidence of severe accidents in reactors tends to be overestimated in part because of 
their catastrophic and newsworthy nature.

Availability bias is more common when the expert does not receive any information 
from others and, thus, does not have a chance of triggering other, less accessible, memory 
associations. For this reason, the individual interview is the most prone to availability bias, 
and the interactive group, the least. With individual interviews, a series of different 
scenarios is often used to help the expert enlarge on the sample of things contributing to his 
final answer.

Availability bias is also more common with telephone and mail modes of 
communication because the expert is usually not given much background before being 
asked point blank for the answer. A structured hierarchical presentation of the information, 
such as from the general to the specific, can alleviate this weakness.

Underestimation of Uncertainty. People will underestimate the amount of 
uncertainty in the answers that they give. For example, when people are asked to put a 
range around an answer such that they are 90% sure that the range encompasses the correct 
answer, their ranges only cover 30-60% of the dispersion (Capen 1975). Even when they 
are given quizzes and feedback on their performance, they cannot break the barrier of 
covering only 70% (Capen 1975:846). A popular explanation for this effect is that we are 
uncomfortable with the amount of uncertainty in life, and thus, minimize it. In particular, 
we may avoid confronting the large uncertainties in our judgments.

Although this effect is very widespread, Martz, Bryson, and Waller (1985:72) have 
noted that it is more pronounced with probability and chance estimates than with some of 
the other response modes. Chance estimates, also called odds, are given as 1 chance in a 
total, such as 1 in 1000.

Signs of selected biases
Group think. There are several signs that a group-think situation may be 

developing. Generally, no difference of opinion is voiced, and the experts appear to defer 
to another member of the group or to each other (Meyer 1986:95).
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Wishful thinking. Wishful thinking is indicated if the experts were 
previously judged to have something to gain from their answers and if the answers were 
given quickly with very little thought

Inconsistency. A number of signs can indicate inconsistency. The 
interviewer can hear many of these, if the experts are verbalizing their thoughts and 
answers. In particular, she can detect when a response mode or rating is being applied 
more easily through time (Meyer 1986:94). Experts tend to apply the extremes of a rating 
scale more easily as they become fatigued. The interviewer can also hear when the expert 
is contradicting an assumption that he made earlier. For example, a tank expert chose two 
very different routes through the mapped terrain because the second time he unconsciously 
assumed that his company was the main effort and had to push hard.

Inconsistency can also be monitored by the use of Bayesian-based scoring and 
ranking techniques. During the elicitation, the expert's judgments can be entered into a 
scoring and ranking program, such as that of Saaty's Analytical Hierarchical Process 
(1980), to obtain a rating of their consistency. Then, if the inconsistency index from this 
method is too high, indicating significant inconsistency, the experts can redo their 
judgments as described in step 4.

Availability. A potential problem with availability bias is indicated if the 
expert does not mention more than one or two considerations in giving his answer. If the 
expert only considers a few things, these were probably the most easily remembered and 
the answer is likely to be skewed to reflect these few.

Anchoring. Anchoring bias can be suspected if the experts receive additional 
information from experts or other sources during the elicitation but never waiver from their 
first impression. For example, reactor code experts were asked to compare the 
performance of their computer codes to plots of experimentally generated data. Often they 
commented on their first impression. When they examined the plots more closely, they 
typically found places where the computer code did not capture the experimental 
phenomena. However, the experts usually simply adjusted upward or downward of their 
initial assessment rather than revising it completely (Meyer and Booker 1987b).

Suggestions for countering selected biases
Group think. Social pressure from group think can be countered using 

techniques from two approaches (Meyer 1986:95-96). Using the first approach, the 
interviewer can try to prevent those factors that contribute to group think. For instance, the 
interviewer can stop the elicitation and warn the group members about group think. If there 
is an official or even a natural ex officio leader in the group, that individual can be asked to 
give his responses last, or privately, so as not to influence the other group members. In 
addition, if someone other than the interviewer has been leading the group meeting, he can 
be encouraged to be nondirective during the meetings. An explanation of the group-think 
phenomena usually convinces the leader that better discussions and data will result from 
their avoiding leading.

The other approach is to try to counter the effects of group think with an opposite 
bias—anchoring. One technique for fostering anchoring is to require the group members to 
write down their judgments and reasoning. In this way, they are more likely to anchor to 
their own judgments rather than silently acquiesce to someone else's. If the experts are to 
discuss their judgments, each person can record and report his before the floor is opened to
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discussion. Once individuals have publicly announced their view, they are unlikely to 
spontaneously modify it. (They will still modify their view if someone raises a valid point 
that they had not previously considered.)

Wishful thinking. The tendency toward wishful thinking can be countered 
by making it more difficult for the expert to indulge in it. If the expert must explain his 
answer in detail, it will become apparent whether there was any objective basis for his 
response.

Inconsistency. Inconsistency can be reduced by using two techniques.
The first technique is to address the aspects of the elicitation that are contributing to 

the inconsistency.
As mentioned earlier, fatigue is a contributor to inconsistency. If the interviewer 

has noted that the experts are becoming more inconsistent with time, she can quickly end 
the meeting or schedule a break. In general, two hours is the maximum amount of time that 
experts participate in discussion or problem solving before becoming tired. (Experts often 
signal their fatigue either by briefer responses or by leaning way forward or back in their 
chairs.)

Another contributor to inconsistency is faulty memory. If at the beginning of every 
session the statement of the question, definitions, assumptions, and response mode are 
reviewed, the experts will be more consistent in their judgments (Meyer 1986: 96). They 
will be more consistent between and within themselves. In addition, if there is much time 
between this first review and when the experts' judgments are requested, the question can 
be worded to include some of the above information. For example. What rating would you 
give to the importance of element X over Y to the reaching of goal Z? If they are using a 
response mode, in this case a Saaty paired comparison, they will need to have the 
definitions of the scale available in front of them.

A second technique for reducing inconsistency is to have the group members 
monitor their own consistency (Meyer 1986:96). This techniques was successfully used in 
a simple interactive group elicitation where the experts were able to watch the interviewer's 
monitoring of inconsistency and then mimic it. (Meyer, Peaslee, and Booker 1982). The 
experts were given copies of a matrix of the elements being judged, the criteria on which 
these elements were being judged, and their past judgments. When experts monitor their 
own consistency they may wish to change an earlier judgment to be in line with their 
current thinking. If their reasoning does not violate the logic of the model or the 
definitions, they can be allowed to make the change. Often in this process the expert may 
discover that he had forgotten to include some pertinent information. After this addition, 
some of the judgments may need to be redone.

If Saaty’s Analytic Hierarchy Process (1980) had been used and its results indicated 
high inconsistency, the experts could review and redo the affected judgments.

Availability. Availability bias can be countered by stimulating the expert's 
memory associations. In general, group discussion will cause the expert to think of more 
than just the first readily accessible information. In addition, free association can be 
introduced to single experts or those in groups. (Free association is having the expert or 
experts quickly generate any and all elements that might have bearing on the question 
(Meyer 1986:94)). Free association is similar to brainstorming or the Crawford Slip 
method (Boose and Gaines 1988:38). The experts are asked to refrain from being critical 
in order to generate the widest possible pool of ideas. (The number of ideas is later
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narrowed to those judged to be most pertinent to the question.) A related technique is to 
hierarchically structure the presentation of question information so that it flows from the 
general to the specific. In this way, the expert is able to consider the pertinent information 
before having to reach a solution. Again this strategy is to fire as many memory 
associations as possible so that the maximum number of relevant ones will enter into the 
expert's final judgment.

Anchoring. Techniques similar to those used to counter availability bias are 
used to counter anchoring. In particular, giving the expert input from other experts as in a 
Delphi situation or an interactive group makes it more difficult for the expert to anchor to 
his first impression. Another technique is to ask the expert for extreme judgments before 
getting his likely ones (Cleaves 1986:9-10).
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4
Selecting the Question 
Areas and Questions

The process of selecting questions that will be asked of the expert is a slow and 
evolutionary one. But, as the question list evolves, the selection process seems clearer in 
retrospect. The purpose in this chapter is to illustrate the steps involved in selecting the 
questions: (1) definition of the project's purpose, (2) selection of the general question 
areas, and (3) identification of the specific questions. In particular, information is given on 
which persons—clients, data gatherers (interviewers and knowledge engineers), analysts, 
or experts—can help with each of these steps and how. In addition, in this chapter we 
cover when selecting and motivating the external experts need to be done in parallel with 
the steps mentioned below. Following on with the process, how to refine the questions is 
the subject of chapter 5.

Steps Involved in Selecting the Questions
Selecting the questions to be asked of the expert is one of a sequence of steps where 

the information from one step is needed to accomplish the next, more detailed step. The 
steps are summarized as follows.

Step 1: Defining the project's purpose or goals 
The project’s purpose is simply what the project is to accomplish. For instance, the 

purpose of the reactor risk project, NUREG-1150, was to examine the risk of accidents in 
a selected group of nuclear power plants. The purpose of the project is not always as clear 
as the one stated in the above-mentioned project. Sometimes, the persons in charge of the 
project have only a vague idea as to the project's aims, or they are unable to express what 
they envision the project accomplishing.

Step 2: Selecting the general question areas 
A question area is a specific issue for investigation. For example, from the 

above-mentioned reactor risk project, nine question areas were formed. These areas were 
internal events that could lead to core damage, such as the failure of the emergency core 
cooling system due to venting or containment failure.
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Question areas are developed by considering such information as the goal of the 
project, the client's directives, and the practicalities of gathering expert judgment on this 
topic (e.g., whether experts exist and whether their expert judgment would be considered 
proprietary information). Of the question areas initially considered, only a few may emerge 
as the final areas.

Step 3: Identifying the questions
Questions are concrete, detailed points within question areas that the experts are 

asked to answer. The test for whether something qualifies as a question is if the expert 
finds it sufficiently specific to be answered. If an expert cannot address the question in its 
present form, it probably resembles a question area more than a question. To illustrate, the 
question area on an emergency core cooling system failure can be broken into different 
accident scenarios, each of which could lead to a cooling system failure. The experts can 
answer the specific questions on the probability of one of the scenarios occurring within a 
particular nuclear plant.

Sometimes the questions are technical problems that the expert is to solve to allow 
the data gatherers to examine his problem-solving processes. For example, experts in 
statistics could be asked to judge whether lists of numbers are random or not as a means of 
learning their mental rules for determining randomness.

The reader needs to assess which of the above three steps has already been 
accomplished. Frequently, the defining of the project's goals has already been made by the 
person who is sponsoring the project. Then too, the reader may have previously decided 
on the question areas. If one or more of the above steps has been completed, the reader 
may wish to skip ahead to the next step, Executing the Steps with the Assistance of Clients, 
Project Personnel, and Experts. The section below illustrates the possible variety in project 
goals, question areas, and questions.

Illustrations of the Variation in Project Goals, Question 
Areas, and Questions

The project goals, question areas, and specific questions can vary tremendously. 
The three examples below—on reactor risk, sources of interexpert correlation, and army 
exports-illustrate what the project goals, question areas, and questions could be in 
different projects. In particular, these examples can provide assistance in formulating the 
goals, question areas, and questions for a particular application.

In the first example, the reactor risk project (NUREG-1150) mentioned above, the 
goal was to perform risk analyses of five different U.S. light water reactors to provide data 
on the likelihoods of severe accidents and their consequences. The data requirements for 
this application were large and complex. The areas selected for receiving expert judgment 
were a reduced set that met the following criteria: (1) they were within the scope of 
NUREG-1150; (2) they were areas of significant importance to the estimation of risk or the 
uncertainty of risk; and (3) there were no other sources of data available (Wheeler, Hora, 
Cramond, and Unwin 1989). Questions were developed for each area. For example, an 
area of investigation in the risk project was the failure of a Westinghouse reactor coolant 
pump's shaft seals under station blackout conditions. A question asked in this area: "What
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is the failure probability per year for severe seal leakage?" This question included 
definitions of severe leakage and the sequence of events leading to this failure.

In the second example, a study of interexpert correlation, the goal was to determine 
if expert's answers correlated, and, if so, what caused the correlation. Given this general 
goal, the question areas, even the field of expertise from which the experts could be drawn, 
were completely open. The areas selected were those that would be comprehensible to the 
researchers, have readily available experts, and have nonproprietary data. One of the areas 
selected included the type of questions encountered in walk-in statistical consulting 
situations. For example, one question gave the sample correlation coefficient, r, between 
two measurements of geologic core samples as 0.70 and asked for the sample size at which 
this value of r would be significant at the 5% level for a one-tailed test.

In a third example, an army export project, the object was to extract from experts 
those factors that impacted on decisions to transfer militarily critical army technologies, 
services, or data to foreign countries or persons. The purpose was to represent these 
factors in a stractured manner that would promote better, more defensible decisions. The 
question areas were the perspectives of the various army offices (intelligence, political, 
military, and technical) in viewing potential technology transfers. For example, one 
question area was the factors that the intelligence office representatives would consider in 
making their decisions. The first question in the intelligence area was to evaluate whether 
the requesting country was vulnerable to having the particular technology compromised. 
This question included a definition of the concept of technology compromise and a 
description of the technology being considered.

Sources of Variation
The major sources of variation in projects' purposes, question areas, and questions 

are noted below to allow the reader to compare his or her situation to other situations. The 
reader is asked to do the following:

• Determine whether the objective is to gather the experts' answers 
or to gather their problem-solving processes. While both the expert's 
answers and problem-solving processes are frequently gathered for an 
application, one is considered to be of the first priority. For example, for most 
applications, especially in risk or reliability analyses, obtaining the expert's 
answer is the primary aim. There may be some attempt to document the 
expert's reasoning, but this is done to support the answer and is not usually the 
main focus. Obtaining problem-solving data is more common to artificial 
intelligence projects or to research into human cognition. While the experts' 
answers are usually gathered in these studies, they are considered only part of 
the problem-solving data.

• Compare the complexity of the areas and the questions. For 
instance, the questions of the reactor risk application mentioned above were 
more complicated than those classical statistical problems asked in the study of 
correlation because of the former's subject matter—reactor phenomenology. 
The reactor risk questions were extremely complex because they involved a 
variety of physical systems, components, and things happening to these
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systems. As a general rule, complex question areas require more honing to 
form questions than simpler areas do.

• Assess the magnitude of the data required. For example, in the reactor 
risk application, a tremendous amount of data was gathered because the 
complex questions had to be broken into numerous scenarios, and the 
questions, the experts' reasoning, and their answers had to be documented.

• Further assess the level of detail that will be needed in each chunk 
of data. For the most part, applications where the goal is to gather problem­
solving data (such as for building an expert system) require more detailed 
information than their answer-gathering counterparts. In general, gathering 
more detailed data coincides with fewer experts and longer elicitation sessions. 
In addition, the level of detail varies according to how difficult the problems are 
to solve. For example, in the second example above of the study of interexpert 
correlation, the solving of the statistical questions was straightforward 
compared to the solving of the questions in the follow-on study where the 
experts were asked to evaluate how well computer-modeled results matched 
experimentally obtained results. The expert's interpretation was involved to a 
greater degree in answering the questions on the computer-modeled results than 
in answering the statistical questions of the first study. The follow-on study 
yielded more detailed data on the expert's problem-solving processes than the 
first study. The level of detail in questioning affects later analyses, especially 
involving the detection of correlation and bias (chapter 14), the aggregation of 
experts' answers (chapter 16), and the drawing of conclusions (chapter 18).

• Evaluate the scope of the application as illustrated by the number 
of experts that are likely to be used, the personnel available to 
elicit, and the amount of time needed to produce the product. For 
instance, the reactor risk study, NUREG-1150, had the largest scope of any of 
the expert judgment applications that we have encountered; it had the greatest 
number of question areas (over 15), of questions per area (3 or more), of 
experts (50), and of project personnel from different organizations (40 or more 
persons).

Executing the Steps with the Assistance of Clients, 
Project Personnel, and Experts

The generic roles of persons who are likely to be working on expert judgment 
projects and who could assist in developing the questions follow.

Clients are the persons requesting the gathering of expert judgment. The client 
may also be the person funding the project or a decision maker who may 
eventually use the project results.

Project personnel include the in-house managers, data gatherers, and analysts. The 
data gatherers may be interviewers or knowledge engineers. 
Interviewers are sometimes referred to as elicitors.
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Advisory experts are outside consultants or in-house personnel who are 
considered expert in the subject matter. They can assist the project personnel in 
the design of the elicitation methods. Generally, they do not serve as the 
experts for the final elicitation but assist in developing the elicitation methods by 
helping to select question areas, create the questions, and test each step for 
possible difficulties.

Experts, sometimes called the external experts to distinguish them from the 
advisory experts, are the ones who will later answer the questions. The 
external experts can fulfill the function of the advisory experts by selecting and 
refining those questions that they will later answer. Whether or when the 
external experts will help in developing the questions is a critical decision. For 
more information on making this decision, see the later section Determining in 
Which Steps the Advisory or External Experts Will Assist.

Recognize that these categories of persons are not mutually exclusive. For 
example, if the project were self-instigated, the client could be one of the project personnel. 
Then too, the advisory expert could be from in house and thus, a member of the project 
personnel.

Step 1: Defining project purpose
The client determines what, in general, needs to be investigated and should know 

what information will be needed from the experts and what resources can be provided. For 
example, the client may be able to state what is expected as a final project, when it is due, 
and what level of funding will be available. In addition, the client may be able to provide 
direction on the scope of the project (number of experts, question areas, time frame), the 
data to be gathered (primarily answers or problem-solving), and the level of detail needed 
in the data.

Step 2: Selecting question areas
Project personnel generally work with the client, advisory experts, and external 

experts in selecting the question areas. Occasionally, the project personnel are experts in 
the question areas and could forego receiving the input of the client and experts. However, 
even if this is the case, we recommend the involvement of the client and the experts for two 
reasons. First, with more persons working on selecting the areas, there is less chance of 
overlooking an area or having the areas reflect one narrow viewpoint. Second, people who 
were involved in the selection process are more likely to be supportive of the final selection 
than those who were not. Indeed, for this reason the external experts should participate in 
question selection, whenever this is possible. Sometimes this option is not possible 
because the experts cannot be selected until the areas of expertise as delineated by the 
question areas are decided.

Sometimes the client is not able to help in this step because he has not thought as far 
as the question area or has difficulty articulating his ideas for question areas. If this is the 
case, the project personnel can interview the client to determine what the areas should be 
(e.g., what is the purpose of this project, what are its constraints in terms of time and 
funding, and so on).
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In our experience, the project personnel have usually set the criteria for the selection 
of question areas either by themselves or in combination with the client. Some examples of 
criteria were given in the earlier section Steps Involved in Selecting the Questions. 
Regardless of whether time is specified as a criteria, we have noticed that time limitations 
are often responsible for paring down the list of areas. The advisory and external experts 
can also assist in determining the question areas. The following are critical points best 
addressed by the experts.

• The potential question areas possible, given the purpose of the project
• The approximate number of those who are experts in each area.
• Ideas on what would motivate the external experts to participate in the project
• How much the question areas would need to be broken into their parts to 

become questions later answerable by the experts.
• Whether the question area has been sufficiently defined to proceed to the next 

phase—creation of its component questions.

While the advisory experts often address any of the above points, the external 
experts usually only assist on the last two. This difference exists because the external 
experts typically enter the project later than the advisory experts. When the question areas 
involve different and specialized expertises, the question areas must be selected before the 
project personnel can identify any experts for consideration.

Step 3: Identifying the questions
The project personnel and experts, advisory or external, often work together to 

develop questions from the question areas. If the client is qualified in this subject matter, 
he or she may also be of assistance.

After the experts have assisted in creating some questions, they can be asked the 
following:

• Whether the questions are answerable (e.g., is there any datum, reference, or 
experience relevant to the question)

• Whether there is likely to be much diversity of opinion among external experts 
in answering the questions

• Whether any of the expert judgment data would be considered proprietary
• The number of questions that an expert could answer in a particular period of 

time

Determining in Which Steps the Advisory or 
External Experts Will Assist

Experts are needed to select the question areas, identify the questions (steps 2 and 3 
in chapter 4) and refine the the questions (chapter 5). Either advisoty or external experts 
can work with the project personnel to perform these tasks. However, when the external 
experts become involved in the project is a critical consideration because it affects the order
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in which chapters 4, 5 and 6 should be applied. We recommend that the three following 
options be considered and one selected.

The external experts are not involved in question area selection, 
question identification, or refinement, except minimally just prior to having 
their judgments elicited. In this option, the advisory experts do the majority of the 
work, in combination with the project personnel, in selecting the question areas and 
identifying and refining the questions. Then, the advisory experts are used to pilot test the 
questions for clarity and ease of use. (Pilot testing is discussed in chapter 9.) Surveys or 
questionnaires are frequently developed in this manner. Later when the external experts 
respond to the questions, their interpretations of the meaning of the questions are recorded 
and constitute their refinement of them.

The advantages of this option are as follows.
• The development of the questions is controlled by the project personnel (e.g., 

either they make the choices or they direct the advisory experts in making 
them).

• The external experts do not have to be selected until after the questions are 
finalized (as described in chapter 5).

There are three disadvantages of this option:
• The external experts will not be as motivated to address the questions as they 

would have been if they had helped develop them.
• The external experts will have a more difficult time understanding the questions 

than if they had developed them. In particular, experts often have problems in 
encoding their responses into the response modes that the project personnel 
have picked and with which the expert has no familiarity.

• Those who review the project may believe that the experts were led because the 
experts did not develop the questions.

If this option is chosen, read and/or apply chapters 4,5, and 6 in sequence.

The external experts are presented with the question areas and 
identify the questions and refine them, or they are presented with the 
questions and refine them. Frequently, as in the NUREG-1150 reactor risk study, 
the project personnel select the question areas or questions and the experts modify them 
(e.g., add, delete, or reword them). If more than one expert will be addressing a question, 
they will need to come to agree on its revision. Otherwise, their later responses cannot be 
compared because they will be answers to essentially different questions. For this reason, 
the project personnel usually monitor the experts' work in arriving at the final wording of 
the questions. This option of partial involvement by the external experts is favored when 
the project personnel want some control over the questions. One situation where the 
project personnel would wish to have some control over the final questions is when the 
client has specified which question areas he wants covered.

The advantage of this approach follows.
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• The project personnel can specify the criteria that they wish met in the 
development of the questions and let the experts do the work.

The disadvantage of this approach follows:
• Those who review the project may believe that the experts were led because the 

experts did not develop the questions.

If this option is chosen, skip to chapter 6 on selecting the external experts.
The external experts are involved in the question area selection and 

in the identification and refinement of the questions. This approach works best 
when the experts can be gathered together over time to develop the questions. Frequent 
meetings require that the experts be located in the same geographical area or organization. 
This option is also applied when the experts are not located in the same place but can meet 
for a concentrated period of at least a week. For example, on the army export project, 
experts from different army offices met for one week to select the question areas, identify 
and refine the questions, and answer them for a test case. Another possibility is for the 
experts to meet to review and modify those question areas earlier proposed by the project 
personnel. Occasionally, the experts do not physically meet until later in the question 
refinement but work on the question areas through mail correspondence.

Early expert involvement is used if the external expert's cooperation or views of the 
project are critical to the success of the project. For instance, if there were very few 
experts in the field, the participation of each would become more important than if there 
was an unlimited pool of experts. Additionally, if the client or project funder would 
interpret any expert's reluctance to participate as a sign that the project was a failure, expert 
participation becomes critical.

The following are two advantages of early expert involvement:
• Early involvement has a positive effect on experts' willingness to participate in 

the study and later provide their judgment.
• Experts will be more supportive of the product of the project because they will 

view it as the fruit of their labors.

The following are the disadvantages of this approach:
• The project personnel will not have complete or direct control of the 

development of the questions.
• Working with a group of experts to develop the questions requires special skills 

(tact and ability to keep things rolling), and even then it sometimes resembles a 
three-ring circus.

• Having the experts meet and proceed to develop the questions requires more 
advance planning than the other options. (See How to Set Up for a Delphi 
Situation or How to Set Up for an Interactive Group Situation in chapter 10).

If the external experts will do the bulk of the question development, read chapter 6, 
Selecting and Motivating the Experts, before continuing with this chapter and chapter 5.
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Checklist for Selected Questions
After the questions have been formulated, they need to be evaluated for their 

suitability. The following is a checklist for that purpose.
1. Will the questions provide the data necessary to meeting the goals 

of the project? Sometimes the creation of the questions takes on a life of its 
own and moves in a direction that has little bearing on the goals of the project. 
Frequently, it is helpful to outline on paper the project goals; that is, the type of 
expert judgment, answers, problem solving, or ancillary data that is needed for 
the project; and the questions that are being considered.

2. Will the questions be within the scope of the project? In particular, 
time, funding, and logistics are critical considerations.

Time. A major consideration is whether there are the appropriate number 
of questions for the time allotted. Rough estimates of how much time a 
question will take can be obtained by considering the type of data {answer only 
or answer plus ) it is to gather and the level of detail needed. The chart below 
illustrates the amount of time that it takes to elicit an expert's response to 
different types of questions. Note that the level of detail usually corresponds to 
whether answers only or answers plus will be gathered. When answers plus 
problem-solving processes are gathered, the amount of data being gathered 
multiplies and each datum becomes more complex.

Rough Time Estimates for Eliciting Expert Judgment in Different Situations

Elicitation Situation Tvpe of Data Level of Detail Approximate Time

Experts in a group Answer only Very low A few minutes

Answer plus a few 
sentences on their 
rationale

5-10 minutes

Expert alone Answer only Medium 30 minutes

Answer plus problem- High 1-2 hours
solving data

Funding. The amount of personnel costs for advisory and external 
experts is a second consideration For example, on one large project, the costs 
per external expert averaged $10,000. The experts traveled to two meetings and 
provided in-depth answers and problem-solving data on the questions to which 
they were assigned.

Logistics. Will the logistics of eliciting the expert's judgments be 
reasonable? For instance, in a problem-solving application where a few experts 
are needed for long periods of time, are there experts located nearby? 
According to Waterman (1986:192), the availability of experts is crucial in this
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situation. If the experts are not located nearby, could either the project 
personnel or the external experts be relocated to be together for the necessary 
period of time?

3. Can the expert judgment data be obtained without extreme effort?
For example, will the data be classified or proprietary? We have found 
proprietary data to be more difficult to handle than classified. The procedures 
for handling classified data are clear, and although time consuming, do not deter 
the project. With proprietary data, however, experts may be unwilling to 
participate for fear of providing data to their competition. An example of an 
application containing proprietary data would be the failure rates of different 
manufacturer's pipes in nuclear reactors. If the data is likely to be proprietary, 
does the the client or the project manager have enough influence to overcome 
the objections to participation? Can the project personnel guarantee that access 
to the data will be protected and limited?

Common Difficulties--Their Signs and Solutions
Difficulty: Client can not provide clear information on the project's goal, 

the information that is to be gathered, or the question areas. The client 
may be uncertain about the project, as many are when it is in a conceptual stage, or 
unable to communicate a view of the project. This same sort of difficulty occurs in 
most consulting applications-the analyst must extract what it is that the client wants and 
needs.

Solution: First, determine at which point the client's conception of the project becomes 
unclear. Then, elicit from the client the information that is necessary for the project to 
proceed. For example, if the client has only vague ideas on what the project should be, 
this basic information needs to be elicited, clarified, and recorded. More frequently, the 
client will be able to specify the project’s goals but not how those goals are to be 
accomplished; the client's reasoning being that the implementation of the goals is your 
job, that is why you have been hired. Again, the solution is to interview the client to 
obtain as much information as possible on how to proceed within the project scope as 
the client has viewed it. Two of the interviewing techniques outlined in chapter 7, the 
verbal probe and the ethnographic method, may be helpful in questioning the client. 
For instance, the client could be informally questioned using these two techniques and 
then interviewed in more depth using the ethnographic technique (chapter 7). The 
ethnographic technique allows the client's own words to be used in the questioning; in 
this way the exact meaning of his responses can be extracted.

Difficulty: The question developed from the question area is still too
broad. One sign of a too-broad question is when the advisory expert or external 
expert has to break the question into smaller parts or request additional information 
before being able to answer. For example, the following question was asked about a 
particular nuclear plant in a reactor risk analysis study (Amos et al. 1987): "What is the 
frequency of ignition of the hydrogen given that there has been a station blackout
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causing uydrogen accumulation?" One expert felt that the frequency of ignition would 
depend on whether there was high or low pressure in the vessel and therefore broke the 
question into those two possibilities. Additional information that might have been 
necessary to answer the question was an illucidation of the use of the term ignition.

Solution: Ask an expert to solve the question and use his decomposition of it as a starting 
point in narrowing the question. For instance, in the above example the question could 
have been decomposed into high or low pressure, and ignition could have been 
explained as stopping short of detonation. As another check, the expert can be asked if 
the questions, in their present form, are basically answerable. If the expert replies that 
the questions are still too vague, ask the expert to think aloud about how to make the 
questions more manageable. (See chapters 7 and 10 on how to use this method, the 
verbal protocol, of interviewing.)

Difficulty: Too many questions have been selected for the amount of time 
available. Selecting too many questions to be answered in the available time is a very 
common difficulty. An early sign of this difficulty is people’s unwillingness to discuss 
the number of questions and the amount of available time. Perhaps because most 
persons are not aware of how time consuming it is to do an in-depth elicitation, they 
tend to estimate time from how long it would take someone to give an off-the-top-of- 
the-head answer. Because of wishful thinking, even persons experienced in elicitation 
tend to underestimate the amount of time a particular number of questions will take.

Solution: The advisory expert should be asked to provide rough estimates of how long 
an expert would need to respond, given the elicitation procedure being considered and 
the level of detail needed in the data. This amount of time can be examined in light of 
the numbers of experts, the questions planned, and the total amount of time available. 
If this rough estimate indicates that there are too many questions, there are several ways 
for reducing their number: fewer questions can be selected from each question area, the 
number of question areas can be cut, fewer experts can be sampled, the elicitation 
method can be made simpler and faster, or less detailed data can be gathered. In 
addition, it may be possible to extend the project's deadlines and to avoid any of the 
above measures.

The time-estimate chart shown in the previous section can also be used in 
approximating the amount of time that each question will take. As a general rule, 
elicitations of individual experts last longer than those done in groups because 
individual interviews are used when detailed data are needed. In addition, elicitations 
that gather problem-solving data tend to be more lengthy than those which just gather 
answers. The greater the amount or detail of problem-solving data that is gathered, the 
more time the elicitation will take. For example, it takes less time to obtain the experts' 
general rationale—a few sentences documenting their reasoning—than it does to obtain 
their definitions, assumptions, heuristics, references, and calculations.
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5
Refining the Questions

In this chapter we describe how to refine the questions selected in the previous 
chapter. The aim in refining the questions is to take human cognitive limitations into 
account and create questions whose information can be more easily assimilated and 
processed by the expert. We believe that trying to minimize the occurrence of factors 
negatively affecting cognition will lead to better quality expert judgment. Chapter 5 
includes suggestions for presenting the information necessary to understanding the 
question (background, definitions, and assumptions), for ordering this information, and 
for breaking the question into more easily understood parts. Finally, the reader is asked to 
consider the wording of the question in terms of clarity and bias. In addition, this chapter 
describes when the experts should be involved in refining the questions, and when the 
stage of selecting and motivating the experts (chapter 6) needs to precede this chapter.

Reasons For Structuring the Questions
The questions are refined through structuring. Structuring questions, asking them 

in an organized and controlled manner, is done with the aim of obtaining the best quality 
data. Some means of structuring the question include presenting its information in an 
orderly way, breaking it into more easily answered parts, representing it in a pictorial or 
mathematical way, phrasing it in a careful, nonleading manner, and defining the key 
words.

Structuring the questions provides the following benefits:
• It focuses the expert's attention on what he is to provide.
• It lessens the cognitive burden of solving the question by presenting it in a more 

assimilable and processed form.
• It delimits the question so that the experts are not interpreting it differently and 

thus answering separate questions.
• It makes the question more acceptable to the experts because it has been refined 

to encompass their views and use their terminology.

Which of the structuring techniques will be used and to which degree depends on 
the questions, particularly their complexity. By complexity is meant the amount of 
information required to solve the question and whether there is any means of verifying the 
correctness of the answer. With simpler questions, there is less information involved and
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often some means of determining the right answer. An example of a simple question 
would be: "At what value would a chi-square statistic of 5.74, with 3 degrees of freedom, 
be significant?" (Meyer and Booker 1987b:40). A complex question would be: "What is 
the fraction of inventory of radionuclide group present in melt participating in pressure- 
driven melt expulsion that is released to containment as a result of melt expulsion?" 
(NUREG-1150 source-term elicitations, 4/13/88). The table below summarizes the degree 
to which the structuring techniques are likely to be needed, given the question's 
complexity.

Need for Structuring Techniques

Question Question Breaking It Represen- Question
Complexitv Information Into Parts tation Phrasine

Simpler Little (e.g.. Little (e.g.. Little High
definitions/ textual
assumptions) description)

More High High High High
complex

With simpler questions, less information needs to be provided to the experts. 
Typically, only those data, definitions, and/or assumptions that the experts are supposed to 
consider need to be provided. For example, on the simple question mentioned above, the 
observed, the expected values, and the chi-square statistic were provided as question 
information. In addition, the options for response were provided in a form that was 
standard for the experts. For example, the value of 1% was defined as meaning at or 
greater than 0.01; 5% meaning greater than 0.01 but less than or equal to 0.05; and so on. 
The magnitude of this information can be judged by the space it occupied—less than half a 
page. With the complex example, the experts not only needed pages of background 
information, but information from each other concerning the question. They shared their 
information during briefings before their elicitation sessions.

In addition, simpler questions are not as likely as complex questions to need 
breaking into parts because they are already at an answerable level. If a simple question is 
partitioned, it is likely to include only a few parts. Because of this simplicity, such 
questions are not likely to require a pictorial or mathematical representation. By contrast, 
complex questions are frequently diagrammed with trees and charts representing their many 
parts and the interrelationships between those parts.

Regardless of the question's complexity, careful phrasing is always critical to the 
experts' understanding of the question.
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Techniques for Structuring the Questions 

Presentation of the Question Information

It is extremely likely that information beyond the current statement of the question 
will need to be given, no matter how simple the question is. The more elaborate the 
question, the more information needed, and the more time consuming the planning of this 
presentation. Planning the presentation can be divided into two aspects: (1) determining 
the types of information needed, such as question background, assumptions, and 
definitions; (2) determining the optimal order for their presentation, and (3) roles of project 
personnel and experts.

Types of question information needed
Background. One of the first steps is determining the types of information 

that will be needed by the experts. Frequently, the experts request information on the 
background to the question (i.e., what events have occurred, what events are supposed to 
occur, and what the current status is of the thing being evaluated). For instance, in a 
project for determining how tank platoon leaders plan their routes, the experts needed 
background information on their mission. This background information included maps of 
the terrain, the point at which the experts were to start, the general area in which they could 
travel, their objective, and the probable location of enemy tanks.

Background can also be given on a physical process, if this is the focus of the 
question. For example, when the nuclear engineers were questioned about the performance 
of their code in predicting experimental results, they were given background information on 
the experiment. In particular, during the elicitation sessions, they were provided with text 
on the experiment's procedures, its equipment (lists and schematics), and boundary and 
initial conditions (temperatures and pressures). For the more complex questions on severe 
accidents occurring in nuclear reactors (NUREG-1150), the experts were sent thick 
packages of the latest references, prior to the elicitations.

Background information can also include representations of the question 
broken into parts. For example, in complex risk analyses, the possible combinations of 
events are depicted with tree diagrams, and the experts give estimates on the likelihood of 
the occurrence of the branches. These representations may have been developed previously 
by the project personnel and/or by the experts themselves. For example, in a simple 
decision analysis project on the relative safety of new automotive fuels, the experts 
developed possible accident scenarios (Krupka et al. 1983). The scenarios provided the 
framework in which the experts judged the likelihoods of particular accidents occurring for 
vehicles run on the different fuels.

Assumptions. Assumptions are another type of information provided to the 
expert. It is necessary to present the experts with the assumptions that they are to make in 
answering the question. If these assumptions are not specified, the experts are likely to 
make varying ones of their own, sometimes completely altering the question’s meaning. 
(Thus, the original question may pass unaddressed and the experts may have answered 
totally different questions). The tendency for experts to make assumptions that conflict 
with the question’s original meaning is more pronounced on complex questions. On
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complex questions, it is difficult to provide the experts with all the details that they believe 
they need. They make their own assumptions as a means of filling in the gaps. For 
instance, on the question of whether a particular army technology should be exported, the 
experts wanted to know how many of the technologies were being requested. They said 
that the number being requested would affect their answers. To allow them to proceed in 
answering the question, they were asked to make the same assumption--that the request 
was for four to six of the technologies (Meyer and Johnson 1985).

Assumptions are also used when the information requested can not be provided, 
such as when concerning a rare physical process, but some common base must be 
established to allow the experts to continue.

Definitions. Definitions of terms are another type of information commonly 
used to refine a wide range of questions. For example, in the export study mentioned 
above (Meyer and Johnson 1985:7), it was necessary that the experts define technology 
transfer in the same way, so they were asked to agree upon and use a definition (e.g., 
technology transfer is the means by which technologies, goods, services, data, and 
munitions that are deemed militarily critical by the Department of Army are transferred to a 
foreign country, international organization, firm or individual).

Ordering of information
The next step is to determine the order in which the experts will need this 

information. One means of doing this is to consider the logical flow of the information. At 
each point in the planned elicitation, at each question, what information does the expert 
need to respond? A means for checking the flow is to have the advisory experts work 
through the question. If they request information that was not provided (e.g., not 
considered for inclusion or not available for inclusion), insert it at that point. For example, 
in a study of how tank officers planned their routes, the subjects frequently requested more 
information on the density of the forests than was offered on the maps (Meyer 1987). 
They felt that they needed this information to assess whether the trees would offer 
sufficient cover.

Finally, how humans assimilate and recall information needs to be considered in 
sequencing the information. People are thought to better take in new information when it 
fits within the context of their prior knowledge, their mental models (Waem 1987:276). 
Even though the subjects are experts in their field, the question information may represent a 
new portion or a different configuration of the data then they possess. Since the experts 
need to answer the question, albeit in their own ways, they must have a through 
understanding of it. Thus, the experts should be introduced to the various bits of 
information, such as the definitions to be used in common, in a manner that facilitates their 
mental filing and accessing of it.

In addition, in the complex and dynamic environment of solving problems, people 
are prone to forgetting information. For this reason, Payne (1951) has recommended that 
any information critical to the interpretation of the question, such as important definitions 
and assumptions, be included as part of the question. For example, in a study of severe 
accident sequences in nuclear reactors (U.S. NRC 1989), a few questions began with the 
assumption-for example, given that x has occurred, what is the probability that y will?. If 
these definitions and assumptions cannot be made a part of the question because they make 
it confusing or too lengthy, they can be given immediately before the question. For
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example, in a project forecasting the weapon needs of the year 2000 (Meyer et al. 1982:7), 
the definition of the weapon was read immediately before the question.

Often the above considerations on how people best assimilate information leads to a 
hierarchical presentation of the information, such as from general to the specific or from 
specific to inclusive. For example, a general-to-specific ordering would provide the 
experts first with the general context of the question, such as its topic and the scenario, and 
then provide the definitions or assumptions which narrow the question. An ordered 
presentation of the information, whether it be from general to specific or vice versa, is done 
to assist the expert in assimilating the necessary information.

Roles of project personnel and experts
As mentioned in chapter 4, these are the generic roles of persons who could plan 

the presentation of the question information. Their roles could overlap, particularly if the 
advisory experts were also project personnel. In addition, other persons such as the client 
could have a role in presenting the question information if they had assisted earlier in 
selecting the questions. As mentioned in chapter 4, project personnel can include the data 
gatherers (interviewers or knowledge engineers), managers, and analysts.

The project personnel and advisory experts can work together on determining what 
information needs to be presented and in what order. One approach would be to have the 
project personnel draft the information and the advisory experts review and pilot test it. 
(Pilot testing is described in chapter 9.) The project personnel are qualified for this role 
because they know the project's aims and how they intend to do the elicitation. The 
advisory expert's know the field and can anticipate the experts' information needs and their 
response to the proposed question. Another approach would be to have the external 
experts state what background would need to be provided, agree on the definitions and 
assumptions to be used, and decide on the order of the presentation of this question 
information.

Decomposition of the Question

Another typical means of structuring the question is through decomposition, also 
referred to as disaggregation (Meyer 1986:88). Frequently, questions are broken into 
parts to ease the burden of information processing and to promote accuracy (Armstrong et 
al. 1975; Hayes-Roth 1980). For example, Armstrong et al. (1975) asked straight almanac 
questions of half of their sample. Of the other half, they asked the same almanac questions 
but broken into logical parts. For instance, the question "How many families were living 
in the U.S. in 1970?" was asked as "What was the population of the U.S. in 1970?" and 
"How many people were there in the average family then?" The persons answering the 
disaggregated questions gave significantly more accurate judgments. The information on 
how to decompose the question is often given to the experts as background, as mentioned 
in the previous section.

Complex questions are more likely to require decomposition. On simple questions, 
such as the almanac question mentioned above, decomposition is either not needed or done 
only slightly. A classic example of where question decomposition is used is in risk 
analysis. For instance, on the study of severe accident sequences (U.S. NRC 1989),
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questions were disaggregated by the experts into a case structure. The cases were created 
by considering those factors that would have critical effects on the reactor phenomena being 
considered. For example, on the question of radionuclide release associated with pressure- 
driven melt expulsion in a pressurized water reactor, some factors that were thought to have 
bearing were the reactor coolant system (RCS) pressure, and whether the cavity was full, 
half full, or dry. Cases were formed of combinations of different pressures and states of 
the cavity (e.g., RCS pressures of 2500, 2000, and 500-1000 and a full, half full, and dry 
cavity or an RCS pressure of 15-200 with a full cavity).

Considerations in question decomposition
Decomposition is not a simple procedure but one that involves diverse and 

overlapping considerations. In addition to the question’s complexity, there are several 
considerations that impact on how the question is decomposed. One is the purpose in 
performing a decomposition and the aims of the project. For instance, if the question is 
highly complex and the intent is to aid the expert in his information processing, a more 
detailed decomposition is needed. In addition, if the expert's thinking is to be documented 
so that someone else can track it, the decomposition will have to be taken to finer levels.

Another consideration is the amount of detail that will be needed in the data. If 
more detail is needed, the decomposition will need to be correspondingly finer. For 
example, if data on the expert's problem solving is required, this would imply more detail. 
As a general rule, the data gatherers must obtain data that is one level more detailed than 
that which is needed for analysis.

Another factor in planning the question decomposition is the external experts' 
involvement. How much of the decomposition will they do and at what point in the 
question’s development? It is critical that the decomposition be acceptable to the experts. 
As a general rule, we recommend that the external experts be involved in the question 
decomposition as soon as possible. For example, the experts could begin refining the 
decomposition after it has been developed in-house and approved by the advisory experts. 
Or, the experts could decompose the questions by themselves.

A further consideration in decomposition is the relationship between the parts of the 
question. For instance, the relationship could be causal, temporal, or logical, as it was in 
the almanac example.

In addition to the above considerations, there are several concerns guiding 
development of a question decomposition. First, there can be problems when the experts' 
answers are combined for analysis if they have used different decompositions. The 
problem is that the experts will have answered different questions—to combine these is akin 
to mixing apples and oranges. Another caveat is that the decomposition be logical, that it 
properly model the relationship between the parts. A third problem is having gaps or 
redundancies in the decomposition that lead to under- and overrepresentation of the parts 
when these are mathematically modeled.

Roles of the project personnel and experts
As mentioned above, the disaggregation can involve the project personnel, advisory 

experts, and external experts. One method is to have the project personnel propose the 
disaggregation, the advisory experts review and refine it, and the external experts use it as
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is to respond to the question. A second way is to follow the above procedure but to allow 
the external experts to modify the disaggregation, as was done on the reactor risk project, 
NUREG-1150 (U.S. NRC 1989). Still a third way is to have the experts propose their 
own disaggregation. Because there is always the danger that the experts will reject a 
disaggregation that they have not, in large part, developed, we recommend the second or 
third approach.

Representation of the Question

Questions are likely to need representation if they have been disaggregated in any 
detail. Representation is the pictorial or mathematical depiction of the question showing the 
factors that have bearing on the question and their relationship to one another (relative 
likelihood, consequence, and importance). For example, in probabilistic risk assessments 
of nuclear reactors, accident sequences are diagrammed and their outcomes determined. 
The accident sequences resemble a decision analytic model (Barclay, Brown, Kelly, 
Peterson, Phillips, and Selvidge 1977) in that the sequences consist of branches that 
display the possible outcomes that would be arrived at if particular events occurred. The 
accident sequences can be represented in two ways:

... as event trees, which depict initiating events and combinations of system successes
and failures, and fault trees, which depict ways in which the system failures represented in
the event tree can occur." (U.S. NRC 1983: 2-3)

In the example below, figure 1, the simple event tree shows events leading to a safe 
termination of their sequence or to a specific plant-damage state. Representations can be 
used to accomplish the following:

• Guide the external experts in making judgments (e.g., by providing the 
disaggregation that has been agreed upon)

• Document how the experts reached an answer
• Provide future guidance on how the question or similar ones are to be solved
• Provide guidance on how the expert judgment is to be processed and analyzed

Note that representation here is distinguished from the term knowledge 
representation used in artificial intelligence. Representation only includes the ways in 
which the question can be modeled; knowledge representation includes the domain of 
knowledge, the language for programming it, and the means for making automatic 
inferences. For further references on knowledge representation in artificial intelligence, see 
Brachman and Levesque (1985), Sowa (1984), or Skuce and Sowa (1988).

Considerations in representation
Arriving at a representation involves the same sort of considerations and concerns 

as decomposition (see Decomposition of the Question above). The main considerations in 
selecting a representation scheme are that it be compatible with the question decomposition, 
the analysis plans, and the expert's means of solving the question. If one of the existing 
representation schemes cannot be applied, a new idiosyncratic one can be created. A few 
representation schemes are described below.
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The accident sequence representation, used in performing probabilistic risk 
assessments (PRA), is based on causal and sequential relationships. That is, one event can 
cause another and lead to particular outcomes. The PRA accident sequence is widely used 
in the nuclear risk/reliability community but has general applications to modeling physical 
phenomena. For example, a related representation scheme is used to diagram automobile 
accidents (Krupka, Peaslee, and Laquer 1985). This scheme depicts the events that could 
cause accidents among automobiles run on new alternative fuels. For details on how to do 
an accident sequence representation, see the PRA Procedures Guide NUREG/CR-2300 
(U.S. NRC 1983).

Initiating
AVAYlt

RP EGA ECB PAHR
A B C D E Sequence

t
Success
Failure

1

1. A

2. AE-plant
damage

3. AC

4. ACE-plant
damage

5. ACD-pIant
damage

6. AB-plant
damage

Source: NUREG CR-2300 (U.S. NRC 1983)

Figure 1. An example of a simple event tree for Probabilistic Risk 
Assessment (PRA).

Another type of representation scheme is one in which the parts are temporally 
related. These schemes are often used for managing technical programs where for the 
accomplishment of the end product, each milestone must be achieved on schedule. Such 
representations show which activities or milestones need to be realized in parallel and
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which in sequence. PERT is an early example of this type of representation. PERT was 
developed by governmental agencies as an aid to planning and evaluating the costs and 
scheduling of objective-oriented work (PERT Coordinating Group 1963).

In another type of representation scheme, the parts are alternatives which are 
evaluated in terms of particular attributes they are judged to possess. A common scheme 
of this type is Saaty's Analytic Hierarchy Process (AHP). AHP is frequently used by 
decision makers or experts to pick, from alternative actions or products, the one that will 
best address some agreed-upon criteria (Saaty 1980,1982). For example, in the export 
control project, the AHP representation was used to make decisions on whether a specific 
Army technology should be either exported, not exported, or exported with particular 
conditions (Meyer and Johnson 1985).

Idiosyncratic representation schemes are those that occur when a new representation 
is created especially for the project. Idiosyncratic schemes differ, so the relationship 
between their parts cannot be characterized as being one thing, such as causal. 
Idiosyncratic schemes are used when one of the existing schemes cannot be applied. Thus, 
they may be very suited to one application but not easily generalizable to others. For 
example, an idiosyncratic scheme was created for a project that was to forecast the weapon 
needs of the United States for the year 2000 (Meyer et al. 1982). This scheme was 
developed because the experts needed some framework for thinking in a structured manner 
about what potential threats there might be to the defenses of the United States in the 
future—that is, what offensive weapons other countries might develop and how the United 
States might need to respond to these in their own weapons development.

Roles of project personnel and experts
The roles of the project personnel and experts are the same for representation as 

they were for disaggregation. As with disaggregation, the external experts should take a 
major role in creating a representation. This is particularly true if the purpose of the project 
is to model the experts' problem-solving processes or to create one that will serve as a 
guide to future decision making.

Question Phrasing

Another element of structuring is question phrasing or wording. Question 
phrasing refers to the wording of the question and of the mode in which the expert is to 
respond (response mode). Careful question phrasing maximizes the chances that the expert 
will understand the question and not be unduly influenced or biased by it. A biased 
wording can cause the expert to describe his thoughts or answers differently than they were 
and thus can be considered motivational bias as described in chapters 3 and 8. Specifically, 
we consider biased phrasing to be a type of social pressure because the expert's thinking is 
unconsciously affected by the perspective he picks up from the wording.

The biasing effect of phrasing has been shown most dramatically by Payne (1951) 
through his use of the split ballot technique in survey questions. The split ballot technique 
entails giving half of the sample one wording of the question or response option, and the 
other, another. For example, one wording of the question might be: Do you believe thatX 
event will occur by Y time? The other wording might be: Do you believe thatX event will 
occur by Y time, or not? This second option is more balanced because it mentions both
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possibilities. For this reason, it would be likely to receive a higher percentage of "no" 
responses. Often the difference measured by the split ballot technique is 4-15% even when 
the rewording has been very slight (Meyer 1986:88).

In another example (Meyer and Booker 1987b), the experts were asked to identify 
where two curves (one generated by a computer code, the other by an experiment) 
diverged. An early wording of the question asked the experts to mark the places where 
they felt the curves diverged. This wording was leading the experts (e.g., to believe that 
there must be divergences) and was therefore changed to "mark the places, if any, where 
the curves diverge." As Payne (1951), the grandfather of surveys noted, all question 
phrasings are biasing; the best that one can do is aim for equal, but opposite, biases.

Another problem with unclear wording is that the experts are likely to interpret the 
question differently and give answers to essentially distinct questions. For example, in the 
study of interexpert correlation mentioned above (Meyer and Booker 1987b), the experts 
were found to have separate interpretations of the term diverge. To some diverge meant 
where the lines were not exactly the same; to others, it meant where the distance between 
the lines increased with time; and to still others, it meant where the differences exceeded the 
error bars of 10-20%.

Another factor that has bearing on the question's clarity is its length. Payne (1951) 
has found that people's comprehension of written sentences tends to drop off after 25 
words. For this reason, we recommend that sentences be kept as short as possible.

Considerations in question phrasing
In phrasing the questions, consider clarity and bias. Clarity can be improved by 

having the project personnel and experts review and offer feedback on what the phrasing 
meant to them. (This procedure, pilot testing, will be described in detail in chapter 9). 
There is no easy procedure for combating bias-the best strategy is to be sensitive to this 
issue and to carefully scrutinize the phrasings.

One problem in question phrasing is creating one that will be commonly understood 
and acceptable by multiple experts. If a phrasing (or representation or disaggregation) has 
been reviewed and tested by only a few experts, it may be slanted (e.g., reflect only their 
experiences, views, and use of terms). If only one advisory expert is used, the chances of 
slanted phrasing are even greater.

We encountered this problem of slanted phrasing while drafting a linear scale for 
experts to use in estimating the magnitude of a computer code's divergence from the 
experimental results (Meyer and Booker 1987b). There was a small population of experts, 
and we did not wish to further decrease that population by designating more than one 
person to be an advisory expert. Thus, only one well-qualified expert served as advisory 
expert in helping develop the scale for the experts' responses. However, when we 
requested feedback on the scale, we learned that several of the experts did not accept a 
major premise of the scale. The advisory expert had equated magnitude of the divergences 
with the presence of code deficiencies (e.g., insufficient agreement was associated with 
serious code deficiencies that required immediate fixing). (See chapter 7, example 7.2 for 
an illustration of the linear scale). Several of the external experts did not make this direct 
association. Instead, they considered the possibility that the experiment had not been 
conducted as reported. They reasoned that poor agreement between the code's curve and 
the experiment's curve could be attributed to the code trying to model an experiment that
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was conducted differently than reported. Thus they did not necessarily equate poor 
agreement with code deficiencies. As a result of the scale’s wording, adjustments were 
being made to the scale much later than was desirable.

Roles of project personnel and experts
The project personnel can propose the first phrasing for the advisory experts’ 

review. This first draft and later ones should be examined by the project personnel for 
bias. This tasking is proposed because the project personnel will be aware of the potential 
for bias. The advisory experts can review the phrasing to provide information on the 
experts' reaction to it. At the very least, the external experts need to have the opportunity to 
modify the question phrasing before their elicitation sessions. Otherwise, during the 
elicitations the external experts may state that they do not agree with the question and, 
therefore, can not answer it. It is generally best to allow the external experts as major and 
early a role in the development of the questions as possible.

When the Refinement of the Questions Should Be 
Preceded by the Selection of the Experts

There are three conditions when selecting and motivating the external experts 
should precede refining the questions:

• If the purpose of the project is to capture the expert's problem solving or to 
serve as a guide to future decision making.

• If there is any indication that the experts may not accept the questions.
• If outside reviewers are likely to be concerned about bias in the question 

selection or phrasing.

If any of these conditions exist, it is critical to have the external experts do the 
primary work on refining the questions and to begin this as soon as possible. Not 
adequately involving the external experts in question refinement occurs frequently and leads 
to serious problems. For example, in a reactor study, tight time schedules led to an attempt 
to save time by having a panel select the questions and the response scale for the experts. 
The experts were to have the freedom of modifying these, but when they met, did not feel 
that they had sufficient time to do so. As a result, several experts questioned what their 
answers would have been otherwise and stated that they did not wish to defend the study 
(Benjamin et al. 1987:appendix F). Such statements by the experts impair the credibility of 
a study.

If the external experts are selected first, they will assist in creating the presentation 
of the information, the disaggregation, the representation, and the question phrasing. Their 
early involvement may lessen the need for the use of the separate, and usually in-house, 
advisory experts. The external experts' work on refining the questions can occur in 
different ways. For instance, the experts may do the above tasks as part of their elicitations 
or they may do these as a separate step, depending on the project. For example, on the 
export control project (Meyer and Johnson 1985), the experts were convened once to 
disaggregate, represent, and phrase their questions and to give their answers. By contrast,
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on the reactor risk study NUREG-1150 (U.S. NRC 1989), the experts met several times to 
(1) receive briefings on the project and view the disaggregations proposed by the project 
personnel, and (2) to give their answers to their disaggregated questions (i.e., 
disaggregations that they had developed from those earlier proposed).

Common Difficulties-Their Signs and Solutions
Difficulty: There was not enough input from the external experts in 

refining the question. Refining includes providing input on what information is 
needed to answer the question or assisting with the question's disaggregation, 
representation, or phrasing. Because refining the question is an evolving process, at its 
early stages the question will not have had sufficient expert input. Then too, given the 
means of refining the question (particularly who is doing it and at what stage), the signs 
of this difficulty may vary. The earliest signs may be the responses of the advisory 
experts who are reviewing the question. They are likely to be confused by the 
question, say that they do not view the question in this manner or that they can not 
answer the question in its current form. If advisory experts have not been used to 
screen the question, this difficulty may be revealed later when the external experts view 
the questions for the first time. They, then, may have the same reactions as the 
advisory experts. If this problem exists, the external experts are likely to demand more 
information on the question, or criticize its disaggregation, representation, or phrasing. 
Then, if they are to provide their answers as input into this structuring, they may refuse 
to do so. If, they are only to use the structuring as a first cut, they may insist on 
extensive modifications of it. In either case, the effects of this problem are serious. 
The project can lose its credibility or run over schedule when the experts challenge the 
questions.

Insufficient input from the experts in refining the questions commonly happens 
because of tight time schedules. When a project has tight time constraints, project 
personnel may seek to save on time in several ways. Sometimes, they will try to 
minimize the number of times that the experts meet or the number of times that the 
structuring of a question is redone. Another means for trying to conserve time is to 
have the project personnel do most of the structuring. Thus, the duration of this phase 
stays under the project management’s, rather than the expert's, control.

Solution: The simplest way to avoid this serious situation is to involve the external 
experts as early as possible in the refining of the questions. This is particularly 
important if the project has any of the following conditions:

• If the purpose of the project is to capture the expert's problem solving or to 
serve as a guide to future decision making

• If there is any indication that the experts may not accept the questions
• If outside reviewers are likely to be concerned about bias in the question 

selection or phrasing
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If one of the above conditions exists in the project, we recommend selecting and 
motivating the external experts (chapter 6) before beginning the refinement of the 
questions (chapter 5).

Difficulty: The question decomposition becomes too complicated or too 
detailed. In this situation, the disaggregation, and hence its representation, exceeds 
the level of detail needed for the project's goals and analyses. While it is frequently 
necessary to gather data one level more detailed than needed, the level of detail 
discussed here is excessive. The desire to disaggregate ad infinitum appears to be a 
natural tendency. Perhaps the motivation behind it could be explained as give us 
enough rope and we will hang ourselves. Newcomers to disaggregation wish to do a 
good, thorough job. In addition, they may be trying to take the question to a more 
easily answerable point, such as where experimental data can be applied. This quest is 
positive, in moderation, and is the reason that questions are disaggregated. However, 
this inclination to divide things ever more finely, if unchecked, can be 
counterproductive.

Solution: Usually a person needs to experience excessive disaggregation once or twice to 
recognize the tendency in himself and others. If someone else, such as the experts, are 
becoming too detailed, you can do one of two things: (1) allow them to continue so that 
they can come to their own realization about the practicalities of excessive 
disaggregation, or (2) show them through sensitivity analyses when they have more 
detail than they need. The first approach has the advantage of producing experts who 
are, after their own experience, supportive of the the more general level of 
disaggregation proposed by the project personnel. However, this approach has the 
disadvantage of being more time consuming.

Difficulty: The questions are ill defined or open to differing
interpretations. This difficulty is the other side of the one mentioned above. It 
tends to occur when the structuring of the questions has been rushed due to tight 
deadlines. Often, our expressions are not as clear as we would like to believe. To us, 
the question, may be perfectly clear because we are reading between the lines and 
unaware of some of the definitions and assumptions that we are making. Anyone who 
has ever drafted survey questions is aware of how many ways, often other than 
intended, a question can be interpreted. It is to be expected that the questions will be ill 
defined when they are first being structured. After all, that is why refining the 
questions has been designated as a separate phase. However, the questions should be 
as specific and structured as needed before the answers are elicited.

If the advisory experts are pilot testing the question, they may provide the first 
sign of trouble. If this is the case, they are likely either to request more information or 
to try to fill in the question's gaps by making assumptions. The same thing can happen 
later with the external experts if the question has not been sufficiently defined in the 
meantime.

Solution: To avoid having ill-defined questions during the elicitations, solicit the input of 
the advisory experts on the question. For instructions on how to pilot test the question, 
see chapter 8. If the worst comes to pass and the external experts are being elicited 
with ill-defined questions, you have two options. The first and best approach is to
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gather the experts together and have them refine the questions. Each refined question 
should be recorded and declared the new question to be used henceforth. The other 
option is to record any definitions or assumptions that the expert individually uses in 
attempting to answer the question. The advantage of the first approach is that the 
experts are answering the same question and their answers, can be legitimately 
combined, if one composite answer is required for analysis.
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6
Selecting and Motivating 
the Experts

In this chapter we detail how to select and motivate the experts for the two types of 
applications—those meant primarily to gather the experts’ answers and those meant to 
gather data on the experts' problem-solving processes. These two applications are so 
different that they determine the approach to obtaining the experts' data. For example, 
studies that are to gather the experts' answers usually obtain the answers in quantitative 
form from 4 to 50 experts. Studies that will gather detailed data on the expert's problem­
solving processes focus intensively on a few experts. Thus, for the first application, 
experts are likely to be selected for their diversity and ability to quantify their judgments in 
the desired form. But, in the second instance, the experts are frequently chosen for their 
willingness to devote a major portion of their time to being elicited and for their ability to 
respond to the method; for example, can they coherently think aloud for the verbal protocol 
method? The experts may even be screened initially by using a sample of the elicitation 
method.

For Applications Whose Data Will Be the Expert's
Answers

For most applications, especially in risk/reliability and decision analysis, obtaining 
the expert's solution is the primary objective. There may be an attempt to document the 
expert's reasoning behind the answer but this is done to support the solution and is not the 
main goal. Usually, the expert's solution is requested in a quantified form, such as a 
probability. Thus, the experts need to have knowledge of the subject matter as well as 
knowledge of the rules governing the form in which they are to respond.

Who Is Considered an Expert?

An expert is anyone especially knowledgeable in the field and at the level of detail 
(granularity) being elicited: the individual should not be considered an expert unless 
knowledgeable at the level of detail being elicited. For example, an expert on different 
types of reactors would not be knowledgeable on the probability of a specific pipe!s rupture
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in a Westinghouse boiling water reactor (BWR). Similarly, a specialized pipe expert might 
not know the comparative likelihood of loss of coolant accidents (LOCAs) in Westinghouse 
BWRs and pressurized water reactors (PWRs).

What Constitutes Expertise?

Two types of expertise, substantive and normative, enter into projects whose goal 
is obtaining answer data. Substantive expertise comes from the expert's experience in 
the field in question, such as in rupture rates of Westinghouse pipes. Normative 
expertise is knowledge related to the use of the response mode. The response mode is 
the form in which the expert is asked to give his judgment (e.g., probabilities, odds, 
continuous scales, ranks or ratings, and pairwise comparisons). Normative expertise is 
based on knowing the statistical and mathematical principles of the response mode. Several 
response modes, such as probability estimation, are supposed to follow particular 
mathematical or logical rules (e.g., all probabilities are values in [0,1]). The use of 
individuals with expertise in neither or only one of these areas has been a serious problem 
in studies of expert judgment (Hogarth 1975). Both forms of expertise enter into the 
giving of a judgment, so the lack of either can affect the quality of the judgment. The lack 
of normative expertise may be responsible for there often being little difference between the 
goodness of substantive expert’s judgments and those of inexperienced lay persons 
(Armstrong 1981). In particular, substantive expertise does not guarantee normative 
expertise as discussed in chapter 2, in sections Are Experts Bayesian? and Do Experts Give 
Better Data?

In general, a substantive expert who is experienced in the response mode (e.g., a 
pipe specialist with experience in probability estimation) is a better expert than one who is 
not (e.g., a pipe specialist without any experience in probability estimation). Two means 
for coping with this major pitfall is (1) to allow the experts to give their judgments in the 
deterministic mode that they use in solving problems at work, or (2) to try to familiarize 
them in use of the response mode. (See the discussion in chapter 9 on training project 
personnel in how to familiarize the experts with the response mode.)

When Expertise Matters

The above-mentioned parameters of expertise (substantive, normative, and 
knowledgeable at the necessary level of detail) are always of importance in gathering the 
expert’s solutions. However, under particular circumstances, another aspect of expertise 
becomes important-the notability of the experts. Selecting experts who are well known 
and respected among their peers and the broader public can lend the study greater 
credibility. For example, one study forecasting America's needs and resources was 
initially very well received because of the endorsements of its illustrious experts (Club of 
Rome, Limits to Growth 1974). Therefore, if the study has the possibility of being 
controversial, aim to select experts who are notable as well as qualified along the other lines 
of expertise (substantive, normative, and level of detail). Selecting notable experts offers a 
side benefit. It often motivates other experts to participate in the study in the belief that they
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will be in august company. Thus, obtaining additional experts for the study becomes much 
easier.

Additional Considerations in Selecting Experts

Multiple and diverse experts
It is generally advisable to obtain multiple and diverse experts so that the problems 

will be thoroughly considered from many viewpoints. Diverse experts are those likely to 
view and solve the problem in different ways. For example, Seaver (1976) proposes that 
having diverse experts, particularly in face-to-face meetings, leads to better quality 
answers. Ascher (1978:202-203) who has evaluated the accuracy of different forecasting 
techniques in retrospect, states:

multiple-expert-opinion forecasts, which require very little time or money, do very well
in terms of accuracy because they reflect the most up-to-date consensus on core
assumptions.

Diversity of participants is one way to minimize the the influence of a single individual. 
For example, use of a single expert will slant results toward the contents and functioning of 
his memory. One expert will differ from another in what he has experienced, the 
interpretation placed on these experiences, and the ease with which they can be recalled and 
brought to bear on the problem (Hogarth 1980). Expert's answers are also likely to be 
affected by the mental heuristics that they used to simplify and solve the problem (Hogarth 
1980, Tversky and Kahneman 1974 and 1981, Meyer and Booker 1987b). The use of 
diverse experts allows the answers to reflect individual differences in experience, recall, 
and use of problem-solving heuristics.

Diverse experts are likely to be important in cases where the experts are to forecast 
future events or situations (e.g., predicting the market for nuclear power in the year 2000). 
In forecasting, the tendency is to anchor to the status-quo situation and not extrapolate 
sufficiently in considering the future (Ascher 1978). Having multiple experts with different 
viewpoints helps the group overcome the human tendency to anchor to one, usually 
conservative, reference point.

The practice of using multiple experts is being encouraged in knowledge acquisition 
(Boose and Gaines 1988). One advantage of eliciting and showing different expert's 
judgments is that the user of the knowledge-based system can pick the expert's way of 
thinking that he finds most useful or appropriate (Gaines and Shaw 1989).

Other studies on aggregating multiple expert estimates, such as that of Martz, 
Bryson, and Waller (1985), support the practice of having multiple experts. Aggregation 
schemes tend to show that a combined estimate has a better chance than any single expert's 
estimate in getting closer to the true value.

Number of experts
The exact number of experts that multiple constitutes may vary according to the 

elicitation method. For example, if a face-to-face meeting is involved, we recommend 
having from five to nine experts for each interviewer available to moderate the sessions. 
Fewer experts than five does not seem likely to provide enough diversity or enough
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information for making inferences (chapter 18). Nine experts in a session is usually the 
upper limit for obtaining in-depth thinking from each expert and yet having enough control 
to counter potential effects arising from group dynamics, such as the follow-the-leader 
effect.

Selection Schemes

Most of the selection schemes are based on having the experts name other experts. 
In many specialized fields (e.g., seismology, high explosives, and nuclear reactor 
phenomenology), the experts know one another and can supply the names of other experts. 
The researcher starts with a few of the known experts, collects names from them, and 
repeats this process until more names are gathered than are likely to be needed.

The problem with using this scheme without modification is that it leaves the study 
open to later questions of whether people named those with similar views. Because 
diversity of experts is the goal, this basic scheme is often combined with additional 
selection criteria, such as having equal numbers of experts from academia, private industry, 
and the government, or from the major points of view. Some of the selection criteria may 
be used to define the meaning of expert (e.g., criteria beyond being a person who is 
recognized as being an expert by other experts). For example, only experts with particular 
levels of publication or experience, such as in being a plant operator, might be chosen from 
those named.

Then too, logistics play a role in the selection scheme. The scheme must respond to 
such concerns as whether the experts will be be willing to participate, have the time to 
participate at the necessary level, and be allowed to do so by their employer.

The selection scheme is likely to receive close scrutiny if other aspects of the study, 
such as its results, are questioned. The most frequent criticism is that the scheme did not 
select experts who were representative of the larger population and that their answers were, 
therefore, skewed. It is commonly believed that skewed results arise from taking the 
majority of experts from one place such as the same organization (e.g., especially from the 
same organization as the rest of the project personnel), a class of organizations (e.g., from 
academia, industry, or government), or one point of view. Our studies (Booker and Meyer 
1988a, Meyer and Booker 1987b) have not found the expert's affiliation or education to be 
a significant factor in explaining similarities or differences between expert's answers. 
However, in the interest of trying to represent different views and to avoid criticism, we 
recommend selecting a balanced group of experts.

Motivating Experts to Participate

The first step of motivating the experts is to consider the proposed study from the 
viewpoint of the experts. Theories on interviewing predict that obtaining participants 
depend on maximizing those factors of the situation that experts would consider 
motivating, such as recognition, and minimizing those that they would find inhibiting, such 
as having to devote large amounts of their time (Gorden 1980).

For example, two aspects of risk assessments that could be maximized to motivate 
the experts are the opportunity to affect the study or contribute to the field and the
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opportunity to receive recognition. If the potential experts are told that they will have input 
into the methods used, they will be more likely to volunteer. Generally, if individuals have 
control over a process, they feel better about it and will lend support to the methods used or 
to the conclusions reached. This optimistic attitude stems from the belief that if I did it, it 
has to be good. Also, if the experts judge that the study will be done in a manner that will 
bring credit to them or that their reputations will benefit from being included in this 
company of experts, they will be more willing to participate.

Care needs to be taken to remedy those aspects of the study that may be viewed as 
inhibiting the experts' participation. Generally, having to devote large amounts of time to 
participating in the study is a common inhibitor in risk assessments. This inhibitor can be 
minimized directly by reducing the time required for the study or indirectly by either 
increasing the attractiveness of other aspects of the study, such as offering the experts a 
larger role and thus a greater chance for recognition, or, if all else fails, offering to pay 
them for their time.

Motivating the experts through pay
Generally, we believe that paying the expert should be reserved for those situations 

where there are no aspects of the study that can be used to motivate participation or where 
participation requires major investments of the expert's time and thought. Focusing on 
how the intrinsic aspects of the study can be developed to encourage participation can 
produce more effective motivators and also improve the design of the study. Paying 
experts for their time should be a last resort for several reasons: it is costly; it may attract 
one type of participant and slant the results (Gorden 1980:118); or it may have unexpected 
affects on the participants' view of the study.

Payment can affect the expert's views through a means of psychological adjustment 
(cognitive dissonance) illustrated below. If the expert is not paid, he must convince 
himself that he is expending his time and effort for good reason, or he will feel duped. 
Studies have shown that the participant unconsciously resolves this dilemma by focusing 
on the merits of the study and on the benefits derived from participation (Baron and Byrne 
1981:122). If, on the other hand, the expert is paid, he is not led to consider the positive 
aspects of the study. Then too, the expert may view the payment as a bribe for 
participating in a study that could not obtain experts in any other way (Baron and Byrne 
1981:124). In an unconscious effort to show that his cooperation can not be bought, the 
expert may take an extremely critical stance toward the study. One exception to the policy 
of not paying the expert is in the area of travel and lodging expenses. Experts are not likely 
to interpret this practical coverage of expenses as payment for their time or cooperation: 
thus they should be paid for travel and lodging as required.

Motivating the experts through communication of intrinsic 
aspects of the study

How aspects of the study are communicated to the expert is likely to affect his 
desire to participate. For this reason, we recommend that a brief memo (about one page) be 
drafted as preparation for requesting participation. This memo can be used as a script for 
the telephone conversation or face-to-face meeting with the expert to request his 
participation. Generally, more individuals will respond to a request delivered in person
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than by mail. For this reason, it is recommended that the experts be contacted or called first 
and then sent the memo.

Guidelines abstracted from communications theory (Stroud 1981, Gorden 1980) 
and the authors' interviewing experiences suggest that particular items of information be 
communicated. Typically, the potential participant will want to know this information and 
in the following order of importance:

1. The reason that he is being contacted. It is a good practice to phrase the 
first sentence requesting the expert’s participation in a manner designed to 
motivate. For example, I would like you to participate in a study ofY because 
of your considerable knowledge of X. This request could be considered 
motivating because it is a personal appeal for assistance (e.g., / would like 
you.. . ) and because it recognizes the person's expertise. It is important that 
this introductory sentence be motivating because many individuals decide in the 
first few seconds of scanning a letter whether they are interested or not and if 
not immediately throw away the letter. Thus, if the experts can not be called or 
contacted in person, the first part of the letter is a critical point in creating 
interest.

In the authors' experience, scientists have responded well to these 
motivators:
• Recognition. This recognition can come from the project personnel's 

selecting the experts to participate or from other experts in recommending 
prospective participant names. The opportunity for further recognition 
would come from the expert's work in the study.

• Altruism. Altruism can range from helping another person (e.g., the 
interviewer, by agreeing to participate) to helping the human race by 
contributing to the advancement of science. Most scientists will be 
interested in taking the state of the art a little further or in examining 
problems with current methods.

• Experiencing something new and different. Most people enjoy an 
occasional break in their routines, and scientists are no exception. In fact, 
they may have more active curiosities. (A few sources on scientists' 
personality traits are Mahoney 1976; Roe 1952 and 1963; Cattell 1963; and 
Knapp 1963.)

• Need for meaning. Often scientists are interested in how their work fits 
into the larger picture. For example, a computer modeler of reactor 
phenomena might be interested in how his data is used in assessing risks 
and setting new standards. An individual's work becomes more 
meaningful if he can see how it will be used or how it will affect others.

2. Who is conducting/sponsoring the study. This information would 
generally be given before item 1 in a conversation, as opposed to a letter. For 
example: Hello Dr. Jones. I'm John Smith of the Research Division at the 
NRC. Because of your expertise in dry subatmospheric containment in 
Westinghouse PWRs, I would like you to participate in a risk assessment study 
of the Surry plant. The expert may have some impression of past studies done 
by this organization. If the expert’s impression is likely to be negative, mention
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how this study differs from previous ones (e.g., it attempts to rectify particular 
problems or to develop better methods in some area).

3. How much time/effort this study is likely to take, over what 
period of time, and when it will start. Earlier, we recommended that 
the reader consider the factors in the study that might inhibit or motivate 
potential participants. Most experts will be busy and unable to devote large 
portions of their time. However, if the study cannot be made less demanding of 
the experts' time, think about how to increase those factors that would motivate 
them. For example, the expert may weigh the time that the study will take 
against its likely contribution to the field or to his reputation. If the study's goal 
is to set new standards and the experts will be contributing to the creation of 
these, this information should be mentioned to offset the heavy time demands. 
If the study will include the most noted experts in the field, this factor should 
also be mentioned as a probable motivator.

4. How he was selected or who referred him. Basically, the expert will 
want to know how he was selected. Experts will be more interested in 
participating in a study for which they were specially, rather than randomly, 
selected. (Thus, if the experts were selected at random, it is best to gloss over 
this fact.) Even more motivating for the expert is to know that he was 
recommended by persons that he respects, some of whom may also be involved 
in the study. If the latter is the case, it should be mentioned to encourage the 
expert to assist in the study.

5. What, in more detail, would he be doing in the study. Before 
committing himself, even tentatively, to the study, the expert may wish to know 
his tasks or role. Try to avoid using technical jargon to refer to the methods for 
eliciting or modeling the experts' responses. The following is an example of a 
general description of the tasks abstracted from another study (Bemreuter et al. 
1985): Your role will consist of three parts: (1) helping define seismotectonic 
zones east of the Rocky Mountains; (2) giving your opinion on the occurrence 
rate and magnitude distribution of earthquakes within the zones; and (3) 
reviewing/refining your input and that of the other experts.

If the tasks seem very demanding, the expert may request the provision of 
background materials or training. If the details on providing these to the experts 
have not yet been worked out, state that background materials and training will 
be provided, as needed.

The expert may also want to know if he will be required to give answers on 
tasks or on areas where he is not knowledgeable. Scientists often raise this 
issue when they are still new to the study and concerned about their ignorance. 
Tell the expert that he will not be asked to provide his judgment until he has 
received training in the response mode and has become familiar with the study. 
[Note: If after the expert has received the training and briefings, he is still 
reluctant to provide his judgment, he should not be forced for two reasons: (1) 
he is probably not an expert in this area if he does not feel qualified to give his 
judgments; and (2) his reaction to being forced is likely to be negative and to 
detrimentally affect his view of the entire study. This reaction is illustrated by
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reviewer's statements about a study: "The participants were forced to provide 
unsubstantiated guesses as input." (Benjamin et al. 1987:F-5,6)].

In general, the expert can be told that he will not be forced to give 
judgments where he is not expert because that would detrimentally affect the 
quality of the data. Emphasize that the goal of the project is to collect judgments 
that are based on careful consideration and experience.

6. Will the judgments be anonymous, and if so, how will 
confidentiality be maintained. If the study will be sensitive in nature 
(e.g., very hot politically), potential experts will probably want to know how 
confidentiality will be handled before learning about the study in more detail. 
Thus, for a sensitive study, the information on confidentiality should be given 
before the details of the study listed in item 5. In the case of a sensitive or 
controversial study, consider making the experts' estimates and comments 
anonymous. However, it is best to be guided by the experts' wishes on this 
issue. If there is some question about anonymity at the time of contacting the 
experts, the experts can be asked to help establish how anonymity will be 
handled. It may be that the experts wish to have their estimates or thoughts 
identified if they perceive the study as being important and if they have had a 
significant role in shaping it. However, expert judgment studies have 
traditionally followed the social or behavioral science norm of confidentiality, of 
not identifying the expert's data.

Some levels of confidentiality are to list the organizations or offices that 
have contributed experts, to list the names of the experts plus their affiliations, 
or to identify the data provided by each expert in addition to listing them and 
their affiliations.

Generally, the wishes of those experts who request the highest level of 
confidentiality should be applied. For example, the majority of experts may 
want their judgments kept anonymous but want to be listed as having 
participated in the study. One expert may oppose being listed as an expert or 
even having his organization named as having provided a representative. The 
one expert should be given the level of anonymity he requests, even to the point 
of extending this level to include all the experts, if necessary.

For the occasional highly sensitive study, the potential participants may 
wish to hear exactly how confidentiality will be maintained (e.g., how the data 
files will be stored and who will have access to them). They will use this 
description to judge whether they would be likely to lose the protection of 
confidentiality if they chose to participate.

7. The anticipated product of the study and their access to it. 
Generally, one product of the study will be a report and the experts will wish to 
know if they will be sent copies. For many people, knowing that there will be 
something tangible to show for their efforts is a major source of motivation.

8. Whether participation will be required or voluntary. For most 
studies, participation will be voluntary, and this fact should be stated. 
However, usually this statement need not be made until after the benefits of 
participation have been fully elaborated.
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For Applications Whose Data Will Be Problem- 
Solving Processes

It has become more common to obtain problem-solving data, perhaps as a result of 
the influence of artificial intelligence. However, this focus occurs for a variety of reasons, 
such as when the application is to do one of the following:

• Determine how problems are currently being solved and perhaps set new 
standards

• Use the data for evaluating novice's methods of solving problems and for the 
training of novices

• Gather data for the building of an expert- or knowledge-based system

While the expert's answer is usually gathered in these studies, it is not considered 
the main data but rather a part of the problem-solving information.

What Is Needed in an Expert

Applications whose goal is to gather problem-solving data require more of the 
expert than those whose goal is primarily to gather answers. The expert needs to be 
extremely skillful in solving problems (Welbank 1983:8), articulate in describing his or her 
problem-solving processes (Waterman 1986:192), and willing to commit to this difficult, 
time-consuming task.

In particular, articulate experts are rare. In the process of becoming expert, many 
of the expert's basic thought processes have become automatic or unconscious and thus 
inaccessible for articulation. It is thought that humans progress from learning and 
consciously manipulating rules, such as those of grammar, to more abstract thinking and 
less conscious use of rules or procedures (Dougherty 1986, Denning 1986). Yet, experts 
must somehow regain awareness of their thoughts to assist in explaining, representing, 
checking, and refining that process.

In general, the expert must be available for providing this information. Usually, 
availability requires that the interviewer or knowledge engineer and the expert be in the 
same city. How accessible the expert is can be a separate concern. Frequently, even with 
the expert being in the city, he becomes less accessible as the project drags on and his 
interest decreases.

If the goal of the project is to gather problem-solving data for building an expert- or 
knowledge-based system, the qualities of the expert become even more critical. McGraw 
and Harbison-Briggs (1989:99) list the following personal characteristics and attitudes as 
desirable:

domain experience, sense of humor, good listener, sense of committment, patience,
ability to communicate ideas and concepts, introspective of own knowledge, willingness
to prepare for the session, honesty with self and others, and persistence.
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Method-Driven Selection

Often, the interviewer or knowledge engineer does not have a choice of experts—the 
expert is simply appointed by the organization that is funding the work. If this is the case, 
then the methods of elicitation must be tailored to the expert so that he is able to respond to 
them. If however, there is a plethora of experts, they can be selected according to the 
methods planned. Because of the in-depth nature of this application, the focus is usually 
either on one expert or one elicitation method at a time. Thus the expert can be chosen for 
his willingness and ability to be elicited by a particular method. (See chapter 7 for a 
description of the elicitation methods.)

A trial of each elicitation method can be conducted on each expert to determine 
which combinations of expert/method work best. (To run a trial, select a sample problem 
and follow the instructions in chapter 10 on how to administer the verbal protocol, the 
verbal probe, or the ethnographic technique.) Of the elicitation methods, the verbal probe 
and ethnographic technique can be used on the greatest number of people. The verbal 
protocol is more restrictive in that some experts can not use it. We have found that about 
one in thirty experts becomes extremely frustrated in using this method because it interferes 
with their thinking.

Motivating the Expert

As mentioned in the section on motivating experts to participate in answer-gathering 
applications, the goal in problem-solving applications is to maximize those aspects of the 
study that humans find motivating and minimize those which have the opposite effect (see 
Motivating Experts to Participate above). The information is then communicated to the 
potential participant in the same manner as detailed in Motivating the Experts Through 
Communication of Intrinsic Aspects of the Study. The differing aspects of motivating 
participation in a problem-solving application is described so that the communication to the 
expert can be adjusted accordingly.

The main factor discouraging expert's participation in the problem-solving 
application is the great amount of time that it requires. Sometimes, the burden on an expert 
can be lessened by using several experts. However, if the number of experts is limited or 
if learning one expert’s thinking in depth is important (as is common at the beginning of 
such projects), this may not be possible. A second inhibitor can be the experts' fears that 
the model/system could replace them or show their thinking to be faulty. For example, if 
management volunteered their participation, they may be suspicious of why management 
wishes to examine their thinking. These fears can be alleviated by explaining the purpose 
of the project and eventual capabilities of its product. To further reassure them, state that 
there are no right answers, explain that this is not a test, and convey a nonjudgmental 
interest in learning their thinking. A third inhibitor is the experts’ concern that they will not 
be able to tell how they solve problems because they do not know. Their concerns can be 
answered by explaining that this lack of awareness is part of being an expert and that 
methods have been developed to extract the information. (For inhibitors specific to experts 
involved in building expert- or knowledge-based systems, see McGraw and Harbison- 
Briggs, 1989:117-125.)
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Just as the problem-solving application presents additional inhibitors, it offers 
stronger inducements for participation than its answer-gathering counterpart. In addition to 
the motivators mentioned earher for the answer-gathering application, the problem-solving 
application offers a greater opportunity for motivation through altruism and the 
experiencing of something new and different.

Some of the altruistic rewards offered by problem-solving applications are the 
opportunity to help different groups of people. For example, there is an opportunity to aid 
students if the application is to provide the expert's thinking as instruction as in Elston et al. 
(1986). Others in the expert's field can benefit if the application performs a function such 
as identifying likely locations for petroleum deposits (PROSPECTOR) or offering 
decision-making guidance in export control (Meyer and Johnson 1985). The work can also 
serve the larger public if the application is to provide a service, such as medical diagnostics 
(MYCIN).

Problem-solving applications offer participants the opportunity to experience 
something new and different—insight into how they think. While this opportunity is 
appealing to most people, it is especially so to scientists. In fact, scientists will often 
request references on how practitioners in their field think and act. (Mahoney 1976, Roe 
1952 and 1963, Cattell 1963, and Knapp 1963 are good sources for this information).

Lastly, if the product of the application will be marketed, recognition and financial 
gain can be incentives for participation.

A major problem is keeping the expert motivated through time. Generally, the 
incentives that were used to interest the experts in the project can be used to maintain their 
interest. As Waterman (1986:194) notes:

Making the expert feel like an integral part of the system-building process will motivate 
him or her, as will showing the expert how the system will ultimately produce a useful 
tool.

He adds that long periods between interviews should be avoided because they diminish the 
expert's interest. Welbank (1983:10) recommends the following means for recharging the 
expert's enthusiasm: selecting an interesting problem, such as one which has received 
recent publicity; holding panel discussions in the belief that many experts enjoy criticizing 
one another; and producing a prototype of the expert’s thinking for him to review.

Common Difficulties—Their Signs and Solutions
Difficulty: The experts do not wish to participate. In most applications, 

somewhere between one-third and three-quarters of those experts called will 
initially agree to participate. If fewer than one-third agree to participate, be alerted 
to a potential problem in motivating the experts.

Solution: While it is likely that the communication with the expert is the culprit, we 
recommend gathering more specific information before reworking the presentation 
of the rewards of participation. One of the experts earlier contacted can be 
questioned to learn what may be inhibiting participation. If one of these experts is 
an acquaintance or known to be outspoken, he would be a natural choice. Ask this
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expert to provide, in confidence, his real reasons for not participating. If asking an 
expert for this information seems awkward, consider asking the advisory experts. 
The advisory experts, because of working on the project, are likely to have a 
different view of it than the external experts. For this reason, the advisory experts 
are not our first choice. The advisory expert will need to be briefed on what was 
said to the other experts and on the experts' responses. Ask the advisory expert to 
place himself in the expert's place and to suggest reasons for the low participation 
rate.

If the above suggestions are inappropriate or unsuccessful, itemize the 
motivators and inhibitors of the study again. It is likely that the motivators are not 
strong enough to overcome those things inhibiting the expert's participation. 
Inhibitors may be discovered that were not taken into account. In our experience 
the one factor that most causes experts to balk at participation is the belief that their 
effort and judgment will not be used. We have been told, in some such cases, that 
the experts thought that decisions had already been made at high levels and that their 
judgments would not be used as input. If this perception, true or false, is hindering 
expert participation, it needs to be addressed. The project's client and the other 
project personnel can be helpful in suggesting solutions.

Difficulty: Everyone, including nonexperts, wishes to participate. The 
participation of everyone may seem to be an embarrassment of riches to those 
encountering the difficulty mentioned above. However, it is a difficulty even 
though it can be easily resolved.

Solution: Everyone can participate, if participation is broken into classes and run 
according to a few rules. In general, the volunteer participants should be grouped 
according to their expertise. For example, in the army export control project, most 
of the experts were knowledgeable in one specific question area but wished to 
provide their inputs to all the areas. All the experts were allowed to present their 
views and answers in a structured manner. However, only those experts who had 
been previously designated as experts in the area gave their answers as votes, 
which were then documented for analysis. The other expert's answers were 
simply recorded as commentary. Both groups were satisfied. The nonvoting 
experts had had the opportunity to express their views and ensure that the voting 
experts were not overlooking some important information. The voting experts 
knew that their expertise had been acknowledged and that their answers would be 
used to establish policy.

Frequently, the participants can be asked to sort out their participating rights 
and statuses. In the above example, it was the participants who suggested the 
voting scheme.

Difficulty: The real experts are too busy to participate at the needed level. 
As a general rule, this difficulty is considered much more serious if it occurs in 
problem-solving applications rather than in answer applications, especially if the 
application is to emulate the expert. The signs of this problem are similar to the 
above-mentioned one of the experts not wishing to participate.
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Solution: If this difficulty occurs when the experts are first being called, the problem is 
in the communication. Refer to the suggestions given above. Note that the best 
experts are often more busy than those less expert or that they may need greater or 
different motivators to be persuaded to participate. Consider asking the expert what 
would convince him to participate.

Difficulty: The system for selecting experts is criticized. We have observed 
that selection schemes are frequently criticized. The most common complaints are 
that the selection is biased or that it does not include the real experts.

Solution: If the credibility of the selection is questioned after the expert judgment has 
been elicited, there is little that can be done. The only thing that can be done is to 
document the selection scheme as a means of explaining and defending it. We 
recommend recording the selection criteria, the reasoning behind the use of the 
criteria, and the number of those who were invited to participate versus those who 
actually participated.

If the selection scheme is criticized while it is still in the design stage, there 
are two approaches. One approach is to rethink the selection scheme. We suggest 
targeting the top experts in the field and trying to motivate as many of them as 
possible to participate. If the top experts accept, the selection will not be open to 
the common criticism that no real experts participated. If the top experts cannot 
participate full time, accept their partial help. If none of the top experts will 
participate, at least their participation was sought. In addition, we recommend 
designing the selection scheme around features that are expected to make the 
judgments of the experts' differ. For example, the experts are often expected to 
differ according to where they have worked or gone to school. Experts can be 
selected to represent these different features.

Another approach to handling criticism of the selection scheme is to put the 
criticizers in charge of designing a selection scheme. Having to design a selection 
scheme will make them more appreciative of the difficulties involved. Double 
check their selection scheme to ensure that it is not open to one of the common 
criticisms. Then, use them as manpower in calling the experts. The experience of 
trying to implement their selection scheme will make them aware of how things 
often go awry. If they do not participate in making the calls, they may later wonder 
why their scheme was not implemented exactly. If they assist in the calls, they will 
understand that some experts could not participate and that substitutions had to be 
made.

Difficulty: There is a conflict between those wanting to identify the
expert's data and those wanting to preserve anonymity. The conflict 
stems from the two views of identifying the expert's judgments. One view is that 
the expert data will be more credible if it is labeled by the expert's name. 
Proponents of this view believe that the experts will exercise more care in giving 
their judgments if these judgments are attributed to the experts and that better quality 
data will result. The second viewpoint favors anonymity in the belief that the 
experts will not give their true answers if others can trace the answers back to their
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sources. Proponents of this second view argue that the confidences of interviewees 
have traditionally been protected.

A sign that this difficulty is occurring is disagreement among project 
personnel, clients, or experts on anonymity.

Solution: The means for resolving this conflict of views is to have the experts decide 
how they wish to have their judgments identified. The experts are the persons to 
make this choice because they are the providers of the data and they may withhold 
their judgments if they are uncomfortable. Explain to the experts that their decision 
on anonymity will be followed but that they will have to reach a consensus. This 
puts the burden on them for swaying the members of their own party that have 
differing ideas. If the experts fail to reach a consensus, impose the highest level of 
protection requested, even if only one expert wishes his judgments to be 
anonymous.
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7
Selecting the 
Components of Elicitation

This chapter is designed to guide the reader through planning what is needed to 
obtain and later analyze expert judgment data for a particular application. It offers the 
checklist shown below to assist the reader in determining which of the five basic 
components, the building blocks, of elicitation will be needed. Then, in subsequent 
sections, it aids the reader in selecting the most appropriate methods from within the 
selected components. For example, the reader might use the checklist below to decide that 
the expert's problem-solving processes need to be elicited. The reader may then select the 
verbal protocol and the verbal probe as the best combination of methods for accomplishing 
this task.

The basic methods are presented because people often wish to use an existing 
method rather than try to create a new one and possibly reinvent the wheel. Also many 
people prefer to use an existing and accepted method in the belief that it will enhance the 
credibility of their work.

In the next chapter (chapter 8) information is provided on how the methods selected 
in this chapter can be tailored to the reader's application.

Determining Which of the Five Components 
Are Needed--Checklist

Check When a Component Is Needed

_____  1. An elicitation situation is needed if expert judgment is to
be gathered. Regardless of specific project requirements, some 
staging is necessary for arranging how the experts and data 
gatherers will meet and how the expert judgment will be obtained. 
Definition of Component: An elicitation situation is the setting in which 

the expert's judgment is elicited. Expert's judgments can be elicited in private, in a 

group setting, or when the experts are alone but receiving information on the other 

expert's judgments. More than one elicitation situation can be used in a project.
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For example, the experts could meet as a group to discuss and revise the questions. 
Later, they could be interviewed separately for their final judgments.

2. A response mode/dispersion measure is needed if the 
expert's answers must be in a specific form and if the experts will be 
asked to make this conversion mentally as opposed to having someone 
later translate their judgments into the desired form. Often, project 
personnel wish to use a particular model and therefore want the 
expert's answers to be in a particular form. This means that either the 
expert must conform to the desired mode or the analyst must 
transform the expert's judgments into that form. In general, we favor 
using a response mode rather than converting the expert's judgment 
into the desired form later. We believe that the former practice is less 
likely to lead to misinterpretation or misrepresentation of the expert's 
data, providing that the expert can accurately encode his thoughts into 
the requested response mode (either naturally or with training). 
Definition of Component: A response mode is the form in which the 

expert is asked to encode his judgment. Some modes that are handled in this book 
are estimates of physical quantities, probability estimates, odds-ratio, probability 
distributions, continuous scales, ratings or rankings, pairwise comparisons, and 

Bayesian updating. Additionally, the expert is often asked to provide a measure of 
dispersion on his judgment (e.g., 0.9 ±0.1). A dispersion measure is the amount 
of variation or spread in the data. Dispersion measures can also indicate the 
amount of uncertainty in the data. The dispersion measures covered below are 
ranges, percentiles, and variances or standard deviations.

3. Elicitation of problem-solving processes will be needed, 
if
(a) the goal of the project is knowledge acquisition, such as in 
building a knowledge-based or expert system;
(b) there is likely to be interest in how the experts arrived at their 
answers;
(c) the answers are to be aggregated. If the experts defined the 
questions differently, combining their answers could be like mixing 
apples and oranges. Use of data on their problem solving could 
prevent this mistake.
Definition of Component: Elicitation of problem-solving processes involves 
obtaining data on how the subject solved the problem. Data on problem-solving 

processes can be gathered to any level of depth.

4. Aggregation of expert's answers is needed if multiple 
experts (and, therefore, usually disagreeing experts) will be used and 
a single representation of their answers is needed. For example, one 
might want to combine several expert's problem-solving procedures to 
produce one procedure for use in an expert system. Similarly, in a
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risk analysis application, one might aggregate several expert's 
estimates to enter one estimate into the model.
Definition of Component: Aggregation is a means of obtaining a single 
datum from multiple and differing expert data. For example, experts can 

be required to agree among themselves as to what answer they give or they can be 

allowed to give different answers that are then, later, mathematically combined 
(chapter 16).

5 . Documentation is needed if having a permanent or semi­
permanent record of the expert's answer and problem-solving 
processes is desired. Documentation can include information on 
which expert gave each estimate and their reasons for giving these 
answers. Documentation is often used to provide traceability on the 
expert's decision. Traceability becomes important if the judgments are 
likely to be reviewed or to require updating.
Definition of Component: Documentation is a record of the expert's 
judgment and! or of how that judgment was reached.

Selecting From Within Each Component
Selecting From Elicitation Situations

There are three major methods or situations for eliciting the expert's judgment: with 
the interviewer in a private face-to-face interview with the expert; with the interviewer in an 
interactive meeting of the experts; and with the expert in physical isolation from the 
interviewer or other experts but communicating his data by mail (electronic or postal) or 
telephone. These situations can be tailored and combined to fit the application. For 
example, the interactive group could be structured to be like a technical conference where 
each experts is scheduled to present his views prior to the group's discussion. The use of 
the interactive group method could be combined with that of the individual interview to 
elicit each expert's judgments apart from that of the other experts.

Interactive group
The interactive group is where the experts meet in a face-to-face situation with one 

another and a session moderator or interviewer. The expert's interactions with one another 
can be structured to any degree. An unstructured group resembles a traditional meeting; a 
highly structured group is carefully choreographed to prevent spontaneous interaction (to 
limit the negative effects of interaction, such as group think).

Advantages: Generates more accurate data, particularly for predictions, and a greater
quantity of ideas than the other two situations. (These two results are 

attributed to the synergism created by expert's sharing their thoughts.)
Disadvantages: Possesses the potential for group-think bias. Poses logistical problem

in scheduling and handling multiple interacting experts, particularly if 

there are more than four or five .
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Summary of studies: According to Seaver (1976) who did comparative studies of these three elicitation 

situations, the interactive group method produces a greater quantity of ideas and higher member satisfaction 
with the product than the Delphi He also noted that the majority of subjects in a group of diverse 
membership improved their accuracy following a discussion. Fogel (1967:375) commends the interactive 

group for solving problems that require "originality and insight" and not routine tasks. He found that 
predictions made by groups were more often correct than those made by individuals. In general, studies 
comparing a structured interactive group with one or more of the other methods favor the former (Seaver 
1976, Armstrong 1981, Gutafson et al. 1973, Gough 1975, and Van de Ven and Delberq 1974).

Delphi
Delphi is where the experts do not directly interact with one another or the 

moderator. The experts, in isolation from one another, give their opinion data. These are 
collected by the moderator, made anonymous, and distributed to the experts to allow them 
to revise their previous judgments. The experts can be allowed to revise their estimates 
until consensus, if it is desired, is achieved. This method was developed by RAND to limit 
the biasing effects of interaction.

Advantages: Designed to avoid biases arising from group dynamics. (However,
some question whether it accomplishes its design purpose.)

Disadvantages: Limited in the amount of data that can be gathered (e.g., not suited to
gathering data on how the experts solved the problem, except for their 
sources of reference. Less synergism than in the interactive group. 
Usually, the most time consuming of the three situations because of 
the turnaround time through the mail. (If the Delphi were done by 
electronic mail, it would be less time consuming.)

Summary of Studies: For all of its use, the Delphi method has not had extensive empirical 
investigation, and its reviews range from the positive to the negative. Several researchers consider the 
structured interactive group to be better than the Delphi in terms of avoiding the bias the Delphi was 
designed to avoid (Seaver 1976 and Armstrong 1981). It would be natural to hope that the experts have 

converged on the "right" answer when they have reached consensus in the Delphi. However, Dalkey 
(1969) found that the number of rounds in Delhi corresponded to increasing agreement but not to 

increasing accuracy.

Individual interview
Individual interview is where the expert is interviewed alone, usually in a face-to- 

face situation with the interviewer. This situation can be structured to any degree. An 
unstructured interview occurs when the interviewer has not oudined data-gathering goals or 
questions in advance.

Advan tages: Best method for obtaining detailed data. Main method used for
obtaining data on the expert's problem-solving processes. Avoids 

potential bias from group dynamics and data can be combined 
later, usually by mathematical aggregation.

Disadvantages: Time consuming. No synergistic effects from interexpert discussion.
Summary of Studies: Seaver (1976) found that mathematically combined estimates from individual 
interviews outperformed single estimates. When the answers from the individual interviews are 

mathematically combined, the individual interview is termed the staticized or nominal group method.
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Results from the staticized group situation have been judged poorer than those from interacting groups 
(Stael von Holstein 1971). However, it should be noted that the above-mentioned studies were not using 

the individual interviews to elicit deep problem-solving data, the task for which it is most suited.

EXAMPLE 7.1: Relative Interactiveness of Elicitation Situations
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(This figure was excerpted in part from Armstrong 1981:104)

Selecting from Response Modes

The response modes given below are organized according to the forms that are 
commonly needed to answer the types of questions asked of experts. For example, a 
question on the number of homeless currently in the United States would require an 
estimate of a physical quantity. In contrast, a question on the likelihood of some 
occurrence would need probability estimates, odds, or distributions. Questions based on 
the comparison of two or more things would require pairwise comparisons, continuous 
scales, or ranks or ratings.

In addition, some questions require single estimates, such as one probability value, 
while others need multiple estimates, as in an expert's probability distribution. Of the 
response modes listed below, the estimate of a physical quantity, the probability estimate, 
the odds ratio, the ranks or ratings, and the continuous scale are utilized to obtain single 
estimates. Probability distributions, Bayesian updating, and pairwise comparisons are 
most frequently employed to obtain a set of estimates from the expert, although the 
continuous scale, and ranks or ratings can also be used for this purpose.

To help the reader find the response modes appropriate to his questions, the modes 
are listed separately as well as under the more inclusive mode to which they belong. For
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example, odds ratios are listed separately and also as one of the ways of eliciting a 
probability response.

Estimate of physical quantity
The expert gives an estimate of a physical quantity, such as of temperature, time, 

pressure, volume, or flow rate, in response to a technical question. For instance, the 
expert could be asked to provide the engineering specifications for a component, the 
parameters needed to achieve a particular milestone in magnetic fusion, or the amount of 
coal reserves currently in the United States. Sometimes estimates of physical quantities are 
part of the phrasing of the question and thus can be used in combination with other 
response modes. For example, in a magnetic fusion project (Meyer et al. 1982:424), the 
parameters needed for confinement were elicited from an advisory expert, refined by an 
external expert, and then used in questioning several experts. These experts estimated the 
time needed (a physical quantity) and the probability (another response mode) for achieving 
these physical parameters. Similarly, in the reactor risk project NUREG-1150 (Ortiz et al. 
1988), the values of physical variables were sometimes elicited at given cumulative 
probabilities (e.g., what is the inner core temperature such that the probability is 0.90 for 
that temperature or higher?).

Advantages: A convenient and flexible form for answering questions on poorly
understood or difficult to measure physical processes. The expert has 
little or no difficulty in understanding estimates of physical quantities 

as response modes because he uses them in his work. Thus, the expert 
does not need to be trained in the use of this response mode.

Summary of Studies: To our knowledge, there are no studies that evaluate estimating physical 

quantities with respect to some other response mode. However, there are two types of studies that address 
estimates of physical quantities: (1) studies (e.g., Ascher 1978) that examine in retrospect the accuracy of 
experts' predictions, such as the size of United States' market for petroleum in some year; and (2) studies 
that examine properties of human judgment by asking questions whose answers can be determined. There 

are many more studies of the second variety and most of these have used almanac questions (e.g., 
Armstrong et al. 1975, Martz et al. 1985), where the subjects estimate physical quantities, such as a city's 
population of persons over age 50. The results of these studies have shown that the accuracy of expert's 

estimates of physical quantities can be effected by the assumptions that the expert makes (Ascher 1978) and 
by decomposition of the question-decomposition being associated with greater accuracy. (These results are 

thought to apply to the other response modes also. )

Probability estimate
A probability estimate is a single value given by the expert (e.g., 0.45) in response 

to the question. Usually probability estimates are used to predict the likelihood of some 
event occurring. Probability estimates can be asked for in different ways: What is the 
probability that an event will occur? (fixed value); what are the number of occurrences in n 
total trials using a log scale? (log odds); and what are the number of occurrences or events 
in n total trials? (See Odds Ratio below.) Multiple experts' estimates to the same question 
are sometimes linked to form a probability distribution, which is then used as the answer. 
(See Probability Distribution below.)
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Commonly used in decision analysis. In fact, one advantage in using a 
probability-based response mode is the existence of established 
elicitation and analysis techniques. (For this reason we recommend 
the use of decision analysts and decision analysis techniques if this 
response mode is chosen.) In general, probability estimation is a 

very convenient form for modeling and analysis.
Most experts are not good estimators of probability values and may be 
reluctant to use this response mode. (The use of probability wheels and 

training in probability estimation can mitigate these problems.) Done 
correctly, probability estimation is a very time-consuming process. It 
can fatigue the expert.

Summary of Studies: It has generally been shown that humans are biased in their estimation of 
probabilities (Tversky and Kahneman 1974), that they do not properly interpret probabilistic phenomena­
like randomness, statistical independence and sampling variability (Hogarth 1980), and that most do not 
feel capable cf using this response mode (Spetzler and Stael von Holstein 1975, Welbank 1983). Hogarth 
(1980:149), who has done extensive studies on cognitive and motivational biases, acknowledges that 
"probability theory itself is difficult to learn and apply" but argues that it is the best choice for expressing 

uncertainties. He cites the numerical precision of probabilities and their logic for structuring relationships 
between events as reasons for using probabilities. Welbank (1983:28) notes that the precision of 
probabilities is not always needed or justified but states that probabilities may be useful where the 

knowledge is vague and where there is need for weighting of the answers.

Odds ratio
An odds ratio is a response that follows the form of x chances out of n total trials. 

For example, an expert could state that there is 1 chance in 1000 of a particular event 
occurring. The odds ratio is most frequently used to estimate the frequency of rare 
physical events. (Odds ratio is also mentioned above under Probability Estimate and next 
under Probability Distribution.)

Advantages: A convenient form for estimating the likelihood or frequency of rare
events. We believe that it is easier for most people to think of rare 

events in terms of odds (e.g., 1 in 1000) rather than in probabilities 

(e.g., 0.001).
Disadvantages: If the expert is given the total number of trials (n) from which he is

to estimate the occurrence of some event, setting too small a total can 
affect the expert’s judgment and/or frustrate him.

Summary of Studies: In general, humans tend to overestimate the likelihood of rare events. 
According to Seaver et al. (1983:2-7), odds are one of the best procedures for estimating relatively unlikely 
events, especially if the odds are on a logarithmic-spaced scale. In general, rare event estimates are thought 
to be less biased when they are elicited as odds, such as 1 in 1000, than when they are elicited as decimals, 

such as 0.001 (Boose and Shaw 1989:71).

Probability distribution
Probability distribution is used here in a very broad sense to mean a set of 

possible values for the estimate and the associated likelihood or probability for each value's 
occurrence. The set should include the absolute maximum and minimum values possible.

Advantages:

Disadvantages:
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The set is ordered into a distribution of values. Functional forms of probability 
distributions are commonly used to represent the probability per unit interval of values. 
These are probability distribution functions, f(x), and they are equations in terms of 
the estimate, called a random variable, x. (See chapter 11 for a more detailed discussion 
of both of these terms.) The Gaussian curve or bell-shaped curve are common names for 
the normal probability distribution function.

The questions for eliciting the probabilities associated with each value in the set can 
be asked in different ways: What is the probability that an event will occur? (direct value); 
given a probability, what is the value or lower of the variable in question? (cumulative 
probability); what are the chances in n trials of an event occurring on this log scale? (log- 
odds); and what are the chances in n trials of an event occurring? (odds ratio). For 
example, the estimate for the probability of a pipe rupture in a specified sequence of events 
would be given by the following:

Pipe Break 
Estimate

Probability of That 
Estimate or Less

0.001 0.01
0.005 0.05
0.010 0.10
0.05 0.20
0.10 0.50
0.15 0.70
0.20 0.90
0.25 0.95
0.27 0.99

Advantages: Commonly used in decision analysis. In fact, one advantage in using a
probability-based response mode is the existence of established 
elicitation and analysis techniques. (For this reason, we recommend 
the use of decision analysts and decision analysis techniques if this 
response mode is chosen.) In general, this is a very convenient form 

for modeling and analysis.
Disadvantages: Most experts are not good estimators of probability values and may be

reluctant to use this response mode. (The use of probability wheels and 

training in probability estimation can mitigate these problems.) In 
addition, the concepts of probability distribution may not be fully 
understood by the experts and training may be required. Done correctly, 
probability estimation is a very time-consuming process. It can fatigue 
the expert.

Summary of Studies: It has generally been shown that humans are biased in their estimation of 

probabilities (Tversky and Kahneman 1974); that they do not properly interpret probabilistic phenomena, 
like randomness, statistical independence and sampling variability (Hogarth 1980); and that most do not 
feel capable of using this response mode (Spetzler and Stael von Holstein 1975, Welbank 1983). Hogarth 

(1980:149), who has done extensive studies on cognitive and motivational biases, acknowledges that 
"probability theory itself is difficult to learn and apply" but argues that it is the best choice for expressing
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uncertainties. He cites the numerical precision of probabilities and their logic for structuring relationships 
between events as reasons for using probabilities. Welbank (1983:28) questions whether the precision of 
probabilities is needed, at least in expert systems, but states that probabilities may be useful where the 

knowledge is vague and where there is need for some weighting of the answers.

Continuous scales
Continuous scales have continuous number lines either with linear or log spacing of 

values. The end points of the scale should represent extreme values and be labeled with 
text or numbers. Thus, the scale could be labeled with integers, textual categories, 
probabilities, odds, categories, ratings, or measurements of physical quantities such as 
temperature. The expert can mark his answer at or between any of the delineations on the 
scale. We recommend that the labels on the scale be clearly defined, especially if they are 
not measurements of some physical quantity. Frequently, categories or rating require 
additional clarification, such as given in the linear scale in the example 7.2. This scale was 
used by the experts to compare the data gathered from an experiment to the results 
generated from a computer code that simulated the experiment. The experts used the scale 
to rate (1) the agreement between these two sources of results, and (2) the performance of 
the code in capturing the experimentally generated reactor phenomena (Meyer and Booker 
1987b).

Advantages: Requires little instruction in how to use. Easily converted to
numerical, continuous variables for analysis. Most people seem to be 

reliable estimators when using these scales.
Disadvantages: Developing a continuous linear scale to fit a particular application

requires time. Care must be taken to guard against biased wording of 

either the labels or of the definitions of these labels. Training may be 

needed if log scales are used.
Summary of Studies: Seaver and Stillwell (1983) compared pairwise comparisons, rankings or 

ratings, and continuous linear scales. The continuous linear scale (labeled by probabilities) was ranked by 
them on the basis of their experience as being an empirically tested means of estimating probabilities and as 

requiring little preparation for analysis.

EXAMPLE 7.2: A Continuous Linear Scale

EXCELLENT AGREEMENT 

MODERATE AGREEMENT

NO UNACCEPTABLE CODE DEFICIENCIES

ACCEPTABLE CODE DEFICIENCIES 
(Le., can still apply the code with confidence)

MINIMAL AGREEMENT 

INSUFFICIENT AGREEMENT

MINIMALLY ACCEPTABLE

SERIOUS CODE DEFICIENCIES 
(i.e., must fix code immediately)
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Pairwise comparisons
Pairwise comparisons is a process of having experts rate a set of objects, events, or 

criteria by comparing only two at a time. Comparisons can be made in terms of 
importance, likelihood of occurrence, or possession of some characteristic (e.g., cost). If 
there is a set of n things, n(n-l)/2 comparisons are required to do all possible pairwise 
comparisons. Comparing element A to B is considered the reciprocal of comparing B to A. 
Thus, if A is considered more likely to occur than B, B is less likely to occur than A. 
Using Saaty's (1980) type of pairwise comparison, the expert might be asked Which is 
more important, A or B? and then how much more important? To answer the latter, the 
expert would use a scale of values, such as the one listed below that Saaty designed for pair 
comparisons (see chapter 11, figure 11.8 for the complete scale). A response of "3" would 
indicate that he considered A to be weakly more important than B.

Number _____________ Description___________________

3 A slight favoring of the first item over the second 
5 A strong favoring of the first item over the second 
7 A demonstrated dominance of the first over the second 
9 An absolute affirmation of the first over the second

Advantages: Most people are reliable estimators using pairwise comparisons, in part
because they only have to consider two things at a time. Thus, they do 

not exceed the capabilities of their information processing, as described 
by Miller (1956). Some methods, such as Saaty's (1980) Analytic 
Hierarchical Process, offer means for verifying the mathematical 
consistency of the expert's estimates. After a brief introduction, 
experts find pairwise comparisons an easy method to use. Another 
advantage of pairwise comparisons is that they can provide a 

numerically based analysis for qualitative data.
Disadvantages: Time consuming to elicit all possible combinations. Pairwise

comparisons provide only relative data relations. A baseline scale or 

value is needed to translate relative comparisons into an absolute 

relation (Comer et al. 1984).
Summary of Studies: There is a body of research showing that people make better relative, indirect 
judgments, such as with pairwise comparisons, than direct estimates. (See Stillwell, Seaver, and Schwartz 
1982 for a review.) In a study by Seaver and Stillwell (1983:2-12), pairwise comparisons was ranked by 
the authors, on the basis of their experience, as being acceptable to experts, as producing a high quality of 

judgment, and as having a strong theoretical base. Another study examined the usefulness of paired 

comparisons and continuous linear scales (labeled by probabilities and matching odds ratio) for obtaining 
estimates of human reliability in reactor risk assessments (Comer et al. 1984). The study's conclusion was 

that the analyses did not dictate the selection one response mode over another, but practical considerations 
could lead to a preference. The paired comparison method used required more experts and more of the 

expert's time than the linear scale.
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Ranks or ratings
Ranks or ratings involve assigning numbers or descriptions to the objects, events, 

or values in question. They are listed together because the judgments that they require are 
thought to be based on the same underlying psychological model (Comer et al. 1984).

Ranks can be integer numbers in ascending or descending order or ordinal 
descriptions, such as good, neutral, and poor. For example, to select the questions that 
would be addressed later in the elicitation sessions, the experts could rank them in 
importance (e.g., a "1" for the most important to address and a "5" for the least important).

Ratings are usually numbers or choices from a given scale or set of choices, such as 
a scale from 1 to 10 or a multiple choice set. We recommend using both numbers and 
words to further describe the ranks or ratings if there is a chance that their labels will not 
mean the same thing to each expert. For example, the qualitative term small chance has 
been found to mean from 1% to 40% depending on the expert’s interpretation (Keeney and 
von Winterfeldt 1989). To foster consistency in experts' interpretation of the ranks or 
ratings, try to use both numerical and qualitative descriptors. For example, weapon's 
planners gave one of the numbers below (example 7.3) to rate how potential weapons 
related to a U.S. defense need (Meyer et al. 1982). The textual descriptors on the right 
were provided as part of the scale to prevent inconsistent use of the numerical values.

EXAMPLE 7.3: A Rating Scale

3---------- Completely related, approximately 80% related
2---------- Significantly related
1---------- Slightly related, approximately less than 20%
0---------- Not at all related

The possibility of having experts make different interpretations of the rating was the 
reason that Sherman Kent developed the rating scale (example 7.4) below for government 
use.

Advantages: Experts find ranks and ratings easy to use, with little instruction.
Ranks and ratings are good for applications with qualitative 

information or with only a limited set of possible answers. Many 
analysis techniques are available for rank data (Conover 1971).

Disadvantages: People have difficulty keeping more than 7 (±2) things in their minds
at once (Miller 1956); therefore, comparing and ranking many items is 
difficult and inaccurate. Comparing more than 7 things requires either 

the use of more experts or the use of more time with fewer experts 
(Seaver and Stillwell 1983).
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EXAMPLE 7.4: Sherman Kent Rating Scale

Order Of Chances
Likelihood Synonyms In 10 Percent

Virtually (almost) certain 99

Nearly Certain We are convinced
Highly probable
Highly likely

9

806

Probable
Likely
We believe
We estimate 7
Chances are good
It is probable A 60

Even Chance
Chances slightly better than even 
Chances about even 5
Chances slightly less than even

d 40

Improbable
Probably not
Unlikely 3
We believe not

o 20

Nearly
Impossible

Almost impossible
Only a slight chance
Highly doubtful

1

10

Summary of Studies: Seaver and Stillwell (1983:2-12) compared pairwise comparisons, rankings or 
ratings, and continuous linear scales. On the basis of their experience, they evaluated ranks or ratings as 
being relatively easy to collect and acceptable to the experts. Also they considered the use of ranks or 
ratings to have sound theoretical justification.

Bayesian updating
Bayesian updating is a process of revising estimates by combining different sources 

of information. Bayesian updating can be done by combining measured data with expert 
judgment data, by combining data previously supplied by one expert with that of the same 
expert at a different time, or by combining expert judgment from different experts. The 
expert judgment can be elicited using any of the previously mentioned response modes. 
This technique is also a means of aggregation because it is used to combine data sources. 
(Some background on Bayesian methods is given in chapter 11, and some applications are
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found in chapters 16 on aggregating estimates and in chapter 17 on handling uncertainties.) 
For example, suppose a component was being tested for failure and 0 failures were found 
in 10 tests. Imagine also that an expert provided an estimate of 1 failure in 100. Using a 
binomial process for the data and assuming a beta prior distribution for the expert's data, 
Bayes updating would combine the test data and the expert’s estimate as

0+1
10 + 100 0.009 .

Advantages: Provides a convenient way to combine various information sources and
accounts for the conditional nature of the data.

Disadvantages: Requires assumptions about the distributions of each source of data.
May also require additional estimates by the experts for the parameters 
of the assumed distributions.

Selecting from Dispersion Measures

The expert gives a dispersion measure when he is asked to provide some 
measurement of the amount of variation or uncertainty in the data, such as the error bars on 
experimental measurements. In addition, the expert’s answer itself can be the datum on 
which a dispersion measure is requested. For instance, the expert could be asked to 
provide the absolute maximum and minimum possible value on his estimate of a physical 
quantity or a probability. The dispersion measures covered below are ranges, percentiles, 
and variances or standard deviations.

Ranges
Range is the difference between two values that represent a likely interval where the 

estimated value lies. Usually the expert is asked to provide an absolute maximum and 
absolute minimum possible value. The expert may be asked to provide two values that 
represent his version of what is likely. Error bars and uncertainty ranges are examples of 
these. For example, an expert estimates the probability of an event as 0.001. He is then 
asked to estimate a minimum and maximum on that event. He gives the minimum as 
0.0001 and the maximum as 0.005.

Advantages: Ranges are easily elicited. Ranges are an acceptable measure of
dispersion for analytical purposes.

Disadvantages: Humans are not very good estimators of absolute maxima and minima.

They tend to underestimate maxima and overestimate minima. Ranges 
may not be sufficiently defined to analyze. For example, if the expert 
is asked to give a range and supplies two numbers, the analyst will not 
know what interpretation to place on these values. Similarly, if the 
expert is requested to mark specified ranges, such as ± 0.10, the analyst 
cannot assume that the expert's values represent ±0.10 because people 

are known to generally underestimate such intervals.
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Volunteered ranges
Volunteered ranges are the same as ranges except that the experts are not asked to 

provide any ranges of dispersions during the elicitation. For example, in a project 
evaluating the performance of a computer code (Meyer and Booker 1987b), the experts 
used a linear scale, marked their best estimate with a tick mark, and then voluntarily made 
two marks on either side:

EXAMPLE 7.5: Volunteered Ranges on A Best Estimate

Ranges < Best Estimate

Advantages: Can be used to represent additional values of those elicited. Thus, the
volunteered ranges can be used to fill out the sample of expert 
estimates. The values indicate the expert's uncertainty in his original 
estimates. Obtaining volunteered ranges requires no special efforts, 
except perhaps to use a response mode like continuous scales that 
encourages the experts to mark their ranges.

Disadvantages: It is difficult to interpret the meaning of the ranges and therefore
difficult to analyze.

Percentiles
Percentiles are where the expert estimates are specified values of a distribution 

such that the distribution is cut into the predesignated pieces. The expert may be asked to 
provide an estimate such that 5% of the values are smaller than that estimate, or such that 
95% of the values are larger than that estimate. Confidence interval estimation is the same 
as estimating two different percentiles. For example, the expert estimates the failure 
probability for an event as 0.001. He is asked to give an estimate of the probability of 
failure such that there is a 5% chance or less or that the probability will be less than the 
estimate. He estimates this 5th percentile to be 0.0001. He is then asked to give an 
estimate of the probability of failure such that there is a 95% chance or more that the 
probability will be greater than the estimate. He estimates this 95th percentile to be 0.01. 
This interval of (0.0001,0.01) is the expert's estimate for a 90% coverage interval.
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Advantages: Convenient for many analyses and modeling techniques.
Disadvantages: Humans are not very good estimators of specified percentiles.

Training may be needed for the expert to understand what a percentile is.

Variances, standard deviations
Variances, or standard deviations, are statistics estimated by the expert. The 

variance measures the average squared deviations of all possible values of the estimates 
from the arithmetic mean. The standard deviation is the square root of the variance. For 
example, the expert could give a best estimate for the probability of an event as 0.001. He 
might estimate that the variance about this value is 0.000001.

Advantages: Convenient for many analyses and modeling techniques. Standard
deviations are easier to estimate than variances because they are for the 

same order of magnitude as the estimates themselves; whereas, the 
variances are squared quantities.

Disadvantages: Humans are not good estimators of variances or standard deviations.

Experts must be trained in the concepts of variance or standard deviation 
to use this response mode.

Selecting from Methods for Eliciting Problem-Solving 
Processes

Three very simple means of eliciting the expert's problem-solving data are the 
verbal protocol, the verbal probe, and the ethnographic technique. While these are not the 
only methods for obtaining problem-solving data, they are three of the easiest and least 
prone to introducing bias. For additional information on methods, see McGraw and 
Harbison-Briggs (1989), LaFrance (1988), and Spradley (1979)

Verbal protocol
Verbal protocol involves instructing the expert to think aloud as he progresses 

through the problem (Ericsson and Simon 1980 and 1984). For example, the expert is 
given a written copy of the problem as follows:

What feed program would you start this colt on? The colt is 6 months, 550 lbs., has an 
average metabolism, and will receive light exercise through ponying. Please solve this 
problem as you do others that you receive in this field. Please try to think aloud as you 
work your way through the problem. Your thinking aloud is as important to me as the 
answer that you reach.

The expert's verbal protocol resembles someone talking to himself or herself. This 
technique is from psychology.

Advantages: Avoids introducing motivational bias (altering the expert's reports of
his thinking) because the interviewer does not question the expert and 
thus is less likely to "lead" the expert (Meyer et al. 1989).

Disadvantages: Must be used only on one expert at a time. Not suited to group
situations or those where the expert and interviewer are
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communicating by telephone or mail. Very time consuming. It 
usually takes the expert at least twice the time to verbalize his thoughts 

as it does to simply have them. The expert may not be able to 

verbalize all of his thoughts, as is a problem with all elicitation 
methods. These thoughts may be unconscious or they may be difficult 

to articulate because they must be translated from one form into 
another, such as from a mental picture into words.

Summary of Studies: A main concern with this elicitation method has been that the process of 
verbalizing may negatively influence (bias) the expert's problem-solving. Ericsson and Simon (1980) , the 
authorities on this method, argue that the introduction of bias depends on the presence of the data in short­
term memory and the type of information that the expert is asked to verbalize (McGraw and Harbison- 

Briggs 1989:335). If the information is in the expert's short-term memory, thinking about it should not 
alter it. Similarly, if the expert is to simply report his considerations and steps, less bias is expected to 

occur than if the expert were to conceptualize about his reasons for these steps.

Verbal probe
Verbal probe is questioning done at a particular time and in a specific manner. 

The type of verbal probe discussed here is used immediately after the expert has reached a 
solution. The probe focuses on only one problem, the one that the expert has just solved, 
and is indirectly phrased so as to minimize influencing the expert's thinking. For example, 
immediately after the expert has solved the problem and given the answer, the verbal probe 
is used to learn why that answer was given.
Interviewer-Why did you give that answer—that feed program?
Expert-Well, it provides the right amount of protein, calcium, and phosphorus for a

horse to grow at this age.
Advantages: Quick means of obtaining general data on the expert's reasoning in

solving the problem. Can be used on experts individually or in 

a group (Meyer et al. 1989).
Disadvantages: The verbal probe is best used where the expert can respond verbally in a

face-to-face situation. Written responses to the probe are generally 

inadequate. The verbal probe is slightly more likely to induce 

motivational bias than the verbal protocol because the probe's 
questioning can cause the expert to invent descriptions of this thinking 

(e.g., plausible reasoning).

Ethnographic technique
Ethnographic technique involves transposing the expert’s words into 

questions. For example, the ethnographic method could be used to probe on one of the 
expert's responses to obtain an operational definition that could then be entered into the 
knowledge base. The expert has just said that the colt's feed program may need to be 
adjusted if the colt is not keeping his weight on.
Interviewer—Not keeping his weight on?
Expert—Yes, not gaining as he should at this time.
Interviewer-At this time?
Expert-At his age, 6 months, he should be gaining between 1.5 and 2.0 lbs. per month.
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Advantages:

Disadvantages:

Can be used to obtain the greatest amount of detail on the expert's 
problem-solving processes. The ethnographic technique is a relatively 
nonbiasing form of questioning (Meyer et al. 1989) because it is based 
on the expert's own words. In addition, this technique can act as a 
check on the interviewer's or knowledge engineer's tendency to assume 

that she knows the meaning of the expert's terms (misinterpretation 
bias).
Generally time consuming, except when used to elicit a few 
definitions. The ethnographic technique is not suited, in its usual time- 
consuming form, to group elicitations. Also this technique should not 
be administered while the expert is still solving the problem because it 
can distract him.

Selecting the Type of Aggregation
Frequently there will be a need in the project to obtain a single answer from multiple 

and differing expert answers. There are two basic ways of obtaining a single response: (1) 
have the experts work until they reach a single consensus response, or (2) have the experts' 
answers mathematically aggregated into one answer.

Behavioral aggregation
Behavioral aggregation relies on the experts reaching a consensus (Seaver 

1976). The aggregation occurs during, rather than after, the elicitation session. In 
interactive group situations, the experts are informed by the group moderator that they must 
reach a consensus and usually use persuasion and compromise to do so. In the Delphi 
method, successive iterations are used to reach one datum. (How to set up for behavioral 
aggregation is discussed in chapter 8.)

Advantages: Produces an aggregated result during the session. Behavioral
aggregation protects anonymity because no individual can be linked to 

the consensus response. Encourages the experts to support the product 
of their labors and view it as a group effort (e.g., perhaps from the 

thinking of "if we do not hang together, we will all surely hang 

separately").
Disadvantages: Needs advance planning because it should be used in conjunction with

particular elicitation situations and measures for countering bias. In 

particular, it can foster a group-think situation where no one truly 

thinks but simply unconsciously acquiesces. Behavioral aggregation 
1 can be very time consuming if group think is not facilitating 
unconscious agreement. Employing behavioral aggregation can 
suppress expressions of difference and thus the chances of discovering 
the "right" answer. This means of aggregation obscures the differences 
between the experts' answers and the reasons for the differences, both of 

which can be critical to the understanding, analysis, and use of this data.
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Mathematical aggregation
Mathematical aggregation is the use of mathematical means to combine multiple 

expert's data into a single estimate or single distribution of estimates. Some mathematical 
methods weight the experts' data equally, such as the mean; others weight the experts' data 
differently in attempts to give higher weights to the "more expert" or more valued data 
(These methods are not included in chapter 8 but in chapter 16 because they can be 
considered after the elicitation.)

Advantages: Does not have to be planned as early or as closely in conjunction with
the elicitation methods as the behavioral aggregation. (However, the 

choice of the response mode may limit which aggregation methods can 

be applied.) Also, different mathematical schemes can be applied in 
succession to the individual’s data, whereas with the behavioral 
aggregation the process can usually only be done once.

Disadvantages: Like any type of aggregation, it obscures the differences between the
experts' answers and the reasons for the differences. It is easy to do 
mathematical aggregation incorrectly, such as by combining the 
estimates of experts who have made such different assumptions in 
answering the question that they have essentially solved different 
questions. Then too, mathematical aggregation can lead to the creation 

of a single answer that all of the experts would reject. For example, if 
the experts had given different distributions for describing a physical 
process, the aggregation of these distributions might describe a 
phenomena that could not occur physically. (For further discussion of 
the difficulties of mathematical aggregation , see chapter 16.)

Summary of Studies: The problem of how to aggregate expert's estimates has received much attention 
recently (Morris 1986, Clemen 1986, Schervish 1986, French 1986, Winkler 1986). Most schemes 
require that the experts' estimates be independent, even though experts' judgments are not known to be 
(Booker and Meyer 1988a:135). The few exceptions are those discussed by Winkler (1981) and Lindley and 

Singpurwalla (1984) but the latter two schemes assume that the structure of the correlation in the expert's 
estimates is somehow known or estimable (Booker and Meyer 1988a:136). Comparisons of different 
aggregation schemes indicated that the equal weighting of experts' estimates performs the best in covering 

the right answer (Martz et al. 1985).

Selecting From Methods for Documentation

There are two major options for recording expert judgments: (1) recording the 
expert's answers, and (2) recording both the expert's answers and any information on the 
expert's problem-solving processes, including the expert's background. The second 
option can be done to any level of detail. We describe three levels, or documentation 
schemes, for the second option: summary documentation, detailed verbatim documentation, 
and detailed structured documentation.

Answer-only documentation
Answer-only documentation is a written record of only the answers or solutions.

Advantages: Is the quickest and easiest method of documentation.
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Answer-only documentation
Answer-only documentation is a written record of only the answers or 

solutions.
Advantages: Is the quickest and easiest method of documentation.
Disadvantages: The details of how answers were reached cannot be reconstructed later, if

this becomes necessary. These details, then, cannot be critically 
reviewed, a seeming blessing but at closer inspection, a true 

disadvantage (i.e., what cannot be reviewed cannot be improved).

Answer plus problem-solving documentation
Answer plus problem-solving documentation is written records of the 

experts' answers and how they arrived at these answers They can vary in their degree of 
detail. Three levels of detail are listed in Advantages below.

Advantages: Allows for the defense of the judgments or the processes of elicitation.
Provides the data for revising or updating the judgments. Provides the 

data for conducting detailed analyses on which factors (e.g., of the 
expert's problem solving or background) may correlate to the answer.

Disadvantages: On the other hand, the data is documented and can be criticized by
reviewers. We believe that it is better to document how the experts 
arrived at their answers and receive possible criticism of specifics than 
it is to not document this information and to be criticized for 

inscrutability. There seems to be a growing trend among reviewers to 
lambast studies for missing or confusing documentation (e.g., the early 
drafts of the NUREG-1150 reactor risk study).

Summary documentation
Summary documentation is when experts or project personnel provide a few 

sentences or paragraphs on their thinking (e.g., references used, major assumptions, and 
reasoning). Sometimes this type of documentation is used to annotate the expert's answers 
or to compare them to each other or to some other baseline.

One version of summary documentation gives a few sentences of explanation for 
each answer. Experts from Army offices rated the importance of particular factors to the 
export decisions. For example, the importance of the factor "Triggers US Conventional 
Arms Transfer Restrictions" was given the high rating of "3" because "these restrictions are 
set by Congress and are outside of the Department of Army's control" (Meyer and Johnson 
1985:50).

Advantages: Less labor intensive or time consuming than the other means of
documenting problem solving.

Disadvantages: Generally does not provide enough detail for tracing an expert’s
thinking.

Detailed verbatim documentation
Detailed verbatim documentation involves transcribing, usually from an 

audio or video recording, the expert's elicitation session. This method is more common to 
knowledge acquisition applications in artificial intelligence.
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Advantages: Requires minimal advance planning of what should be recorded

and how.
Disadvantages: Transcribing tape recordings is very time consuming and labor

intensive. Frequently, verbatim documentation provides too much and 

too undifferentiated data to be useful in tracing the expert's thoughts.
We have also noticed that project personnel often prefer to recontact the 
expert to clarify some question rather than search through tapes or 
transcribed records of that expert's session.

Detailed structured documentation
Detailed structured documentation usually involves providing the person 

tasked with documentation with a format of what is to be recorded. The format lists those 
aspects deemed to be the most important (e.g., answers and uncertainty levels, 
assumptions, and rules-of-thumb) and to the level of detail desired. For example, in the 
large reactor risk study NUREG-1150 (U.S. NRC 1989), the experts and project 
personnel recorded the following:

1. The issue name (e.g., the Temperature Induced PWR Hot Leg Failure)
2 . The sources of information (e.g., analysis of results of running computer codes

RELAPs/S CD AP)
3. Subissues into which the issue was divided (e.g., likelihood of hot leg

circulation cell and ballooning occurring,...)
4 . Assumptions relating to the subissues (e.g., that hot leg nozzle and pipe and

surge pipe are maintained as designed,...)
5 . Answers (e.g., plot of probability of failure, given temperature)

Advantages: Provides the most traceable and analyzable problem-solving data.
Disadvantages: Requires the most planning and coordination. Very labor or time

intensive.

Common Difficulties-Their Signs and Solutions
Difficulty: The literature on the different methods is either scarce or 

conflicting. When the project personnel are selecting the components of their 
elicitation, they would like the literature to provide them with guidance. 
Specifically, they would like to be able to look up which method would be best for 
their particular application or situation. Unfortunately, there is little comparative 
literature on the methods, and the few sources that exist may provide conflicting 
advice.

There are several reasons for this state of the literature on elicitation components. 
One, it is very difficult to evaluate which methods provide the best results, if the 
result, the experts' answer to the question, is not something which can be externally 
verified, such as through measurement. Certainly this is a problem with evaluating 
the individual interview, Delphi, and interactive group methods, the response 
modes/dispersion measures and aggregation schemes. For this reason, elicitation 
components are more often compared on practical considerations such as how
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acceptable they are to the experts or how much time they take to administer (e.g., 
Seaver and Stillwell 1983). Sometimes the results of one comparative study 
conflict with another. One reason for this difference may be that authors define 
methods differently. For example, the term Delphi has been used to refer to a 
variety of elicitation situations-some where the experts are kept physically separate, 
their data made anonymous and redistributed to the experts and others where the 
experts are together but restricted as to when they may interact. Then too, the 
authors may have different views about what is valuable in a method. For instance, 
response modes/dispersion measures can be compared in terms of how easy they 
are for the expert to use or how tractable they are computationally. While pairwise 
comparisons are easier for many experts to use than probabilities, they are not as 
easy to analyze. Depending on the importance that different authors attribute to 
these almost opposite considerations, different methods could be recommended for 
the same type of application.

Solution: To select the best elicitation components for a given situation, we recommend 
the following two steps. The first step is to review the relevant literature on 
methods. The references mentioned in the above text, particularly in the Summary 
of Studies paragraphs found throughout the section Selecting from Within Each 
Component, should provide a starting point. In addition, there are a few new 
attempts in the field of knowledge acquisition to compare and evaluate different 
elicitation techniques (see Dhaliwal and Benbasat 1989; Shaw and Woodward 
1989).

The second step is to list the possible elicitation components and their strengths 
and weaknesses for the situation being considered. This list will serve as a decision 
aid in selecting the components of the elicitation for the application. The 
information on the method's strengths and weakness can be gleaned from the 
literature and also from the views of the project personnel. Try to use the 
definitions of the methods rather than the author's names for them as the basis of 
comparison. Points where the different sources of information truly differ, that is 
support the choice of different methods, should be noted and as much explanatory 
information should be provided as possible.

Later this list can be used to justify the selection of methods, such as in the final 
report for the project. We suggest that the report give the theoretical and logistical 
reasons for selecting the particular method. In addition, if the standard methods 
were tailored in any way, the documentation should explain why.
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8
Designing and Tailoring 
the Elicitation

In the previous chapter the reader was guided through the selection of the building 
blocks or components of elicitation for gathering expert data. This chapter is designed to 
assist the reader in tailoring these components to a particular application. Five 
considerations are presented in the following sections to guide the tailoring of the 
elicitation: (1) Logistics and Costs of Convening the Experts or Interviewing Them 
Separately, (2) Structuring the Elicitation Process, (3) Handling Bias—A Starting Point, (4) 
Documentation During and After the Elicitation Sessions, and (5) Presentation of the 
Question—A Quick Check. There are so many possible combinations, given the 
components of the elicitation and these considerations, that arriving at the appropriate 
elicitation design requires detailed planning on paper. In general, people often neglect this 
planning phase, only to regret it later. Indeed, the design is not final even after following 
all the guides in this chapter. In chapter 9, Practicing the Elicitation and Training of In- 
House Personnel, a description is given of how to find any remaining glitches by testing 
the elicitation design.

Considerations in Designing the Elicitation
Frequently the elicitation design is driven by a combination of the considerations 

mentioned above and project-specific constraints, such as schedule. However, if this is not 
the case, the reader can selectively read those sections below pertaining to his or her areas 
of concern.

Logistics and Costs of Convening the Experts or 
Interviewing Them Separately

Even though the basic elicitation situation for extracting the expert's data has been 
selected (chapter 7), it can be tailored by adding or substituting other methods. Other 
elicitation situations and modes of communication (face to face, telephone, and mail) are 
frequently combined to create the quickest and least expensive means of elicitation. In 
particular, if the interactive group has been chosen as the basic elicitation situation, it could
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be combined with less expensive situations, such as the Delphi and the individual 
interview. The expense of the interactive group situation lies in having the experts and 
project personnel meet together. It is usually cheaper for the interviewer to communicate 
by mail or telephone with the experts, as in the Delphi, or to meet with each expert 
separately, as in the individual interview. In addition, it is logistically difficult to schedule 
more than a few, usually busy, persons to meet for a week or for a series of shorter 
periods. Given the high expense and difficulty of gathering experts together, these 
meetings are often reserved for when they are absolutely necessary Other situations, such 
as the Delphi and individual interview, and modes of communication are substituted for the 
group meetings.

Frequently, other methods of eliciting besides the interactive group method are 
used for the first, second, and fourth stages of the larger elicitation process. The stages are 
as follows:

Stage 1. The selection of the question areas
Stage 2. The refining of the questions
Stage 3. The elicitation of the expert data
Stage 4. The documentation of the data

For example, in the NUREG-1150 reactor risk study (Ortiz et al. 1988), individual 
interviews had been selected for the eliciting of the expert data, stage 3, but other means 
were used for the rest of the stages. A preliminary set of questions were selected by the 
project staff and then sent, with background information, to the experts (stage 1). The 
experts were given several months to review these on their own and modify them, if they 
so chose. Then, the experts met together to be briefed on the use of the response modes 
and on techniques for refining the questions through decomposition. This refinement of 
the question (stage 2) continued as follows: the experts separately prepared their 
preliminary disaggregations; they met a second time to present their preliminary results so 
that they could benefit from the exchange of information; and they met as an interactive 
group for a third time to do a final refining of the questions and to discuss their problem­
solving approaches. Their answers and aspects of their problem-solving process were 
elicited through individual interviews (stage 3). They were contacted singly after their 
elicitations to review the documentation of their data (stage 4).

The one exception to using different methods for the other stages occurs when the 
individual interview has been selected for eliciting in-depth, problem-solving data. 
Obtaining in-depth data in stage 3 must be preceded by working toward that level in the 
other stages. Thus, group situations (the interactive group) or ones in which the expert is 
physically isolated from the interviewer (the Delphi) cannot be used in the other stages 
because they are not suited to obtaining detailed data. For this reason, if the individual 
interview is being used for the 3rd stage, the other two situations cannot be used in the 
other stages.

Three modes of communication
Different modes of communication can also be employed in creating the optimal 

means of elicitation. The three modes of communication that can be used are face to face, 
by telephone, and by mail. Each has its advantages and disadvantages.
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Face to face. The face-to-face mode is particularly adapted to obtaining 
detailed data. In fact, if eliciting deep problem-solving data is the goal, this is the only 
suitable mode of communication. Usually this type of information is elicited from one 
expert at a time through intensive interviews. For example, one project focusing on crisis 
managers required two 2-hour interviews with each of the experts. With projects whose 
goal is extracting the expert's problem-solving processes for building an expert system, the 
interviews are likely to be even longer. The latter can be a "prolonged series of intense, 
systematic interviews, usually extending over the period of many months" (Waterman 
1986). The knowledge engineer usually travels to the expert's place of work and 
investigates the expert's problem solving in situ.

Telephone. One advantage of telephone communications is that it is generally 
less expensive than either face-to-face interviews or gathering the experts together. 
Another advantage of telephone communication is that it has a shorter turnaround time than 
the traditional postal method. The data can be obtained while the interviewer is still on the 
telephone, rather than later by mail.

On the other hand, the telephone is not good for relaying detailed or long pieces of 
information. For example, the telephone could be used to learn the expert's major reason 
for giving a particular answer or the main reference that he used. The telephone would not 
be suited to probing for the assumptions that the expert made in arriving at an answer. 
However, the telephone could be used for obtaining answers, such as to questions sent in 
the mail.

Traditionally, the mail survey has been used in combination with the Delphi, but the 
telephone could also be used, if only limited bits of information were being communicated. 
For example, the experts could give their responses (answers, a sentence or two on their 
reasoning, and/or the names of the references that they used) over the phone. The 
coordinator could make this information anonymous and relay it to the other experts. If 
there were many experts and thus magnitudes of data to be relayed, the above-mentioned 
information could be sent by mail. After the experts had received the mailed information 
they could be interviewed by telephone for their revised responses.

Mail. Traditionally the mail survey has been conducted by post but electronic 
mail is beginning to be used for this purpose. The traditional mail survey is good for 
eliciting simple data from a large sample just as the individual interview is suited to 
obtaining more detailed data from a small sample. Like telephone elicitations, mail surveys 
are much cheaper than face-to-face interviews or meetings of the experts.

The mail survey has the greatest problem of all of the modes of communication in 
its response rate, probably because it is easier to ignore a mailed request than to refuse one 
made in person or over the phone. In addition, recording one's thoughts and mailing them 
requires more effort than verbally reporting them. Again, the added effort of writing one's 
response leads many to abandon the attempt. For this reason, a mail survey is not 
recommended if it is critical to receive a response from a high proportion (i.e., over half) of 
the targeted population. The response rate can be boosted by calling the sample to request 
their response, but these attempts usually generate only half again as many as that of the 
earlier rate. (Note that electronic mail surveys may have higher responses rates than those 
sent by post. In addition, electronic mail surveys may have faster turnaround times than 
the traditional surveys.)
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Neither the mail nor the telephone are suited for the transmission of complex 
instructions or detailed problem-solving data. For this reason, complicated response 
modes that require training should not be used with either of these modes of 
communication. Similarly, interviews for eliciting in-depth problem-solving data should 
not be conducted by mail or telephone. In particular, the verbal protocol, or thinking aloud 
method, should never be used in mail or telephone communications with an expert.

In the final method decision, the reasons for gathering the experts together will need 
to be balanced against the possible costs. These reasons and costs are listed below to aid 
you in making this decision. (For additional information on the relative costs and speed of 
these modes of communication, see Armstrong (1981:104-108,122).

Reasons for gathering the experts together
The reasons for gathering the experts together are as follows:
1. If complex response modes and dispersion measures, such as 

probability distributions or percentiles, have been selected for use 
with more than a few experts. The experts will require training in these 
complex modes and measures, and if there are more than a few experts, it is 
convenient to give them their training at the same time. In addition, a less 
complex response mode, Saaty's pairwise comparison, should also be 
introduced in an interactive setting. Experts sometimes experience initial 
confusion in using this mode (e.g., Does a three indicate that A is weakly more 
important than B, or the reverse?). For this reason, they need the extra 
clarification that being in a face-to-face situation offers.

2. If the synergistic effect of group discussion is necessary to the 
elicitation process. For example, if the experts in this field have not 
previously or recently gathered, if the field is evolving, or if the questions 
require knowledge of the field's state of the art, then meeting together as a 
group would be advisable. In addition, if it is critical that the group of experts 
identify with the outcome of their problem solving (i.e., see it positively as the 
product of their labors), meeting as a group is recommended. Member 
satisfaction with the product is higher in interactive groups than in Delphi ones, 
according to Seaver (1976).

3. If the experts will not be able to give their uninterrupted attention 
to the project because of other demands on their time. Having the 
experts meet in a place of your designation allows you to place controls on 
other's demands on the expert's time. For instance, controls can be placed on 
when and how the expert's telephone messages are delivered to the meeting 
room. Occasionally, we have had the experts themselves request that the 
meetings be held away from where they could be easily reached by their offices 
so that they could focus on the project (Meyer and Johnson 1985). We believe 
that gathering the experts together is especially helpful if their management has 
not given your project top priority.
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Expenses for gathering the experts together
Possible expenses for gathering the experts together are as follows:
1. Payment for the experts' travel and lodging, if they do not reside in the 

same geographical area.
2. Payment for the meeting room and any refreshments (e.g., coffee to 

help keep the experts awake).
3. Payment for having the sessions videotaped. This record is not only 

useful for documenting the data but for allowing the experts who have missed a 
session to catch up. For example, in the NUREG-1150 reactor risk study, the 
experts gave presentations to the group on issues related to the technical 
question. These presentations and their subsequent discussions were taped. 
These tapes can then sent to the experts who were unable to make the 
presentation meetings so that they will receive the same information as the other 
experts.

4. Payment for miscellaneous administrative costs, such as for typing, 
copying, and mailing any background material that the experts need to see 
before coming together as a group. Copying may need to be done throughout 
the meetings. For example, after the experts have met, often they have 
materials that they wish to share with the other experts. In addition, toward the 
end of the process, the copying machine can be used to provide copies of the 
project personnels’ documentation of the experts' data for the experts' review.

5. Payment for the expert's time, if this was part of the project budget.

Structuring the Elicitation Process

Structuring means imposing controls on the elicitation process. Structuring with 
respect to presenting the expert with a clear and assimilable statement of the question was 
discussed earlier in chapter 5. When the concept of structuring is applied to the larger 
elicitation, it can include using a predesigned set of questions to guide the elicitation, 
allowing only particular kinds of communication between the experts and requiring that the 
experts answer using one of the response modes.

Why structuring is done
Structuring the elicitation is done for a purpose, such as aiding the interviewer in 

interviewing, making the elicitation easier for the expert, or limiting the introduction of 
bias. For example, the structuring may be imposed by the use of a specially designed 
interview instrument—one that prompts the interviewer to ask particular questions at 
specific times (e.g., as described in Meyer 1987). The structuring may be put on the 
experts’ group interactions to prevent some experts from acquiescing, without thinking, to 
other experts, as occurs in group think bias. For example, the Delphi was designed to 
counter biases arising from group interactions and thus is structured in this manner.

In general, we have observed that structuring the elicitation limits the intrusion of 
extraneous factors, such as bias. It seems to keep the field of observation clearer and thus 
eases the task of gathering and analyzing the expert data.
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Degrees of structuring
Structuring can be done to varying degrees to different aspects of the elicitation 

process. As a general rule, use of one of the following components imposes structure: the 
response mode and dispersion measure, a method for eliciting problem-solving processes, 
the use of behavioral aggregation, or a documentation scheme. Using one of these 
components means that there is a plan in place and a specific procedure that will be used. 
For example, if the pairwise comparison response mode is used, the experts’ judgments 
will be elicited by the interviewer or moderator asking particular questions and by the 
experts responding with answers on the appropriate scale. The response mode or 
dispersion measure, methods for eliciting problem solving, and behavioral aggregation are 
typically used when the expert data is being extracted (stage 3). The documentation 
component is often used in the last stage, 4, to record the data or the data-gathering 
methods.

Examples of structuring applied to each of the stages of elicitation are given below. 
The more that these options are applied, the more highly structured the elicitation situation 
becomes.

Structuring options applied to the stages of elicitation 
Stage 1. Selecting the questions. For most elicitation situations, any one of the 
three structuring options could be applied to selection of the questions.

• Input could be obtained from the advisory experts on what would be good 
questions to pose to the external experts. This option is used frequently when 
the project personnel are unfamiliar with the field or if the project funder has not 
requested specific questions.

• The project personnel or the external experts can rank and select the questions 
according to some criteria. For example, on the reactor risk study NUREG- 
1150, (U.S. NRC 1989), the questions were initially selected by the project 
personnel according to which held the greatest potential to produce uncertainty 
in risk. The experts then reviewed the proposed set of questions and added, 
deleted, or modified these with respect to their own criteria.

• Alternatively, the external experts could be polled to learn, in advance, which 
problems they consider themselves qualified to address or which they would 
like to work on.

Stage 2. Refining of the questions.
• In interactive group situations, the experts and/or project personnel can work 

together in disaggregating the question. The experts or project personnel can 
present to the other experts and to the group moderator their interpretation of the 
question, means of disaggregating it, or any other relevant information.

• In any face-to-face situation, the experts can be required to review the 
definitions, the assumptions, or any other information that defines the question 
and then to refine the question for the last time.

• In individual interviews, the external or advisory expert could work on refining 
the questions that will be asked of him or other experts. For example, the 
expert can assist the interviewer in determining how to word the question and 
how to define particular variables.
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Stage 3.

Stage 4.

In a Delphi situation or a mail survey, the external experts can be sent 
information on the question and asked to provide information on how to set it 
up. For example, in a seismic study (Bemreuter et al. 1985) the experts were 
asked to break the Eastern United States into various earthquake zones in 
preparation for defining the question. It is also possible to have qualified 
project personnel, such as advisory experts, do most of the work in refining the 
question and then have the external experts review and modify it. For example, 
in the NUREG-1150 reactor risk study, the project personnel created sample 
disaggregations of the question, and the experts had the options of using these 
disaggregations as the starting points for their own.
Eliciting the expert data:
During elicitations in interactive groups, the external experts can record their 
own data on a documentation format. The experts can also be asked to 
verbalize their judgments or thinking to the group and/or to the group 
moderator. For instance, the experts could state their names and their answers 
in the desired response mode. Only some of the experts need give data on 
particular questions; namely, those who were earlier judged (by themselves or 
the project staff) to be the most qualified. On the export control project, all the 
experts voiced their opinions in the early discussions, but only those experts 
who were assigned to particular questions were allowed to vote on the answers 
(Meyer and Johnson 1985). If a group of experts are verbally giving their 
responses, one expert can present his response while the rest are asked to 
remain silent. The natural and official leaders in the group can be asked to give 
their responses last or privately, if group think is a concern. The verbal probe 
or ethnographic technique can be used briefly to question the experts on aspects 
of their problem solving.
In the Delphi method, the experts can be sent questions and asked for their data 
(e.g., their answers, a few lines of explanation for each answer, and a footnote 
of the references used). This data can be made anonymous and redistributed to 
the experts to allow them to revise their earlier answers. This process can be 
repeated as long as necessary, until consensus (behavioral aggregation) is 
achieved. If the experts are to give their answers in a particular response mode, 
they can be sent a format, such as a copy of a continuous linear scale, and 
instructions on how to use it.
In individual interviews, the questioning can be guided by a list of topics that 
the interviewer has prepared. Alternatively, the interviewer could be guided by 
the format on which the data is to be recorded. Or, the interviewer can simply 
let the use of one of the pre-existing methods for eliciting problem-solving data, 
(e.g., verbal protocol, verbal probe, or ethnographic technique) guide her 
gathering of the data.
Documenting the data and/or the process by which it was 
obtained:
In interactive group situations, the experts can use one of the documentation 
schemes to guide them in filling out their own records of their answers or
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problem-solving data. Similarly, the group moderator can use one of these to 
guide her in gathering and recording all the required data.

• In a Delphi, the documentation format, along with instructions, can be sent to 
the experts.

• In individual interviews, the expert or interviewer can use the documentation 
scheme to record the desired information. A computer program that prompts 
the expert for his inputs and/or reasoning would serve this same purpose as a 
written documentation scheme (Meyer 1987).

General rules in structuring the elicitation
As a general rule, the more structuring that is imposed on the elicitation, the greater 

the time needed to plan and conduct it. However, these greater demands are balanced by 
the greater effectiveness of the structured techniques. For example, unstructured individual 
interviews are described as being less effective than their structured counterparts, at least in 
knowledge acquisition (Hoffman 1987, McGraw and Harbison-Briggs 1989:73).

A higher degree of structuring also seems to correspond to the gathering of more 
detailed data. It makes sense that a structured approach allows the interviewer to focus the 
questioning to a finer level. In an unstructured interview, there is less to prevent the expert 
from jumping from one topic or level to another, often to the interviewer's dismay.

We would also emphasize that conducting a structured elicitation often demands 
more tact than administering an unstructured one. This is because the experts do not 
always follow the structuring. They may be confused or ignorant about what they are 
supposed to do, or they may simply decide that following instructions takes too much 
effort. Tact is needed in getting the experts to follow the plan because the interviewer is 
dependent upon their good will for obtaining data. For example, imagine that the 
interactive group method has been structured to minimize the occurrence of group think 
bias, otherwise known as the follow-the-leader effect. The experts have been asked to 
present their views to the group before entering into a discussion of all the presentations 
Additionally, the natural leader of this group has been requested to go last in stating his or 
her views. However, that which was requested is not what happens. The leader interrupts 
and criticizes others' presentations. Diplomacy is needed to make this session run again 
according to the plan. One way of handling this problem would be to take the leader aside 
and tell him or her about the group think bias and how it negatively affects people's 
thinking. In addition, the experts could be briefed again, as a group, on the elicitation 
procedure and the reasons for structuring it in this manner.

Handling Bias—A Starting Point

Designing elicitation with regards to bias, as we advocate, is a new approach. The 
information presented here was largely developed from our own experiences. For this 
reason, it is intended to be a starting point for those who wish, as we did, to become more 
aware of bias and how to handle it. There is a small but growing body of literature on 
human biases that can be applied to handling bias in expert judgment-Payne 1951; Hogarth 
1980; Tversky and Kahneman 1974 and 1981; Kahneman and Tversky 1982; Cleaves 
1986; Meyer et al. 1989; and Meyer and Booker 1989).
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There are two reasons for paying attention to bias: First, the occurrence of some 
biases has been shown to degrade the quality of the results (Hogarth 1980, Kahneman and 
Tversky 1982); and concerns about its presence, such as among reviewers of a project, 
affect the project's credibility.

There are two views or definitions of bias, as mentioned in chapter 3.
The first view of bias, sometimes termed motivational bias, proposes that bias 

occurs when the expert's reports of his thoughts or answers are altered by the elicitation 
process. (For an explanation of why this altering occurs, see chapter 3, Causes of Bias- 
Motivational bias.) For example, if the expert gave a different answer from what he 
believed because of the interviewer's comments, this would be considered bias. Using this 
first view, if the expert's estimates or problem-solving data do not represent the expert's 
thinking, these are not quality data. In addition, reviewers or clients are liable to question 
the validity of this data if they suspect that the experts have been led by the interviewer. In 
our experience, reviewers have been most sensitive to biases occurring because the 
interviewee was led either by the interviewer or by other members of the group to give an 
answer other than the one in which the interviewee believed. Also, many people are 
familiar with bias arising from a conflict of interest, such as when the expert's wishes or 
interests influence his judgment. (This bias is called wishful thinking in this book). These 
biases need not actually occur to impair the credibility of the work; they need only to be 
suspected of having occurred.

The second view of bias, sometimes termed cognitive bias, defines bias as 
occurring when the expert's estimates do not follow normative, statistical, or logical rules. 
Cognitive bias is frequently determined by checking the expert's data against the 
mathematical and statistical standards that apply to the response mode that he has been 
asked to use. To illustrate, if an expert gives probability estimates on all outcomes to a 
problem (previously defined as being mutually exclusive), and these probabilities do not 
sum to zero, these data would be considered biased because they do not follow normative 
statistical rules. While the majority of people are not yet as aware of cognitive bias as they 
are of motivational bias, this situation is not likely to continue. Such authors as Hogarth, 
Kahneman, and Tversky are leading the field in showing the cognitive limitations to which 
the human mind is prone. The old view that the brain acts like a computer (i.e., in being 
mathematically correct) is rapidly being debunked.

The approach proposed in the section below is to anticipate which biases are likely 
to occur given the planned elicitation and then to tailor the elicitation methods accordingly. 
This step, Anticipate the biases, is followed by others in the later chapters: Make the 
Experts Aware of the Potential for Introducing Bias and Familiarize Them with the 
Elicitation Procedures-Step 2 (chapter 10); Monitor the Elicitation for the Occurrence of 
Bias-Step 3 (chapter 10); and Adjust, in Real Time to Counter the Occurrence of Particular 
Biases—Step 4 (chapter 10). Analyze the Data for the Occurrence of Particular Biases-Step 
5, is discussed generally in chapter 14. In chapter 3 in Determining Which Steps to Apply, 
we describe how the reader can determine which of the above-mentioned steps to use.

How to anticipate bias is described below.
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Anticipate the biases to which the planned elicitation is prone and 
redesign the elicitation, as needed—Step 1

Applying this step presupposes that the reader has selected a motivational or 
cognitive view of bias, as described in The Selection of the View of Bas—chapter 3, 
subheading Determining Which Steps to Apply. While we consider the cognitive and 
motivational views to be equally valid definitions of bias, we believe that one way of 
construing bias may be more useful than another for a particular project. We suggest that 
the reader select and use only one view of bias at a time to avoid being contradictory. For 
example, use of the cognitive definition would propose that a mathematically incorrect 
judgment be modified. This act would cause a misrepresentation of the expert's data, a 
bias, according to the motivational definition of bias.

Selected biases and situations in which they occur
To anticipate some of the biases to which an elicitation method is prone, determine 

the components of elicitation and/or modes of communication that you intend to use and 
look them up in the table Index of Selected Biases in chapter 3—Steps in a Program for 
Handling Bias. The index will list some of the biases to which particular situations are 
prone. To obtain more information on the motivational and cognitive biases, locate the item 
in the section following the table Definitions of Selected Biases (chapter 3). It should be 
noted that the biases listed in the Index and Definitions are not the only ones that can occur 
in gathering expert data. However, they are the biases that we have frequently encountered 
and have developed means for handling. These sections are meant only to give the reader a 
start in dealing with bias.

The other option for accessing information in this section is to go directly to the 
segment Definitions of Selected Biases and skim it to learn if the planned elicitation is likely 
to be susceptible to one of the selected biases. The elicitation situations and components 
that are prone to these biases have been underlined in this segment to allow them to be 
found more easily. This segment also provides information on why the elicitation is prone 
to a particular bias.

The information on why the elicitation is prone to bias can provide the reader with 
ideas for redesigning the elicitation, if the reader wishes to do so now. For instance, under 
wishful thinking bias the following information is provided in chapter 3: "that its effects 
will be most pronounced when the expert does not have to explain this reasoning." Thus, 
if wishful thinking bias was a concern, this information could be instrumental in modifying 
the existing elicitation to require that the experts provide explanations of why they gave 
their answers.

Documentation During and After the Elicitation Sessions

How the expert data will be recorded is one of the considerations guiding the 
tailoring of the elicitation. The other considerations mentioned so far have been the logistics 
and cost of having the experts meet together, the structuring the elicitation; and the treatment 
of bias. Before we can present the options for who performs the documentation and when, 
we need to describe what can be documented.
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What documentation can include
1. The statement of the question, in its final version. This statement 

would include (1) any background information that clarifies the question, such 
as scenarios, and (2) definitions or assumptions that the experts are to use.

Stating the question is not as easy as it sounds because often the statement of 
the question is changing until the actual beginning of the elicitation, or in some 
cases until the expert gives an answer. For example, in the NUREG-1150 
reactor risk study, the experts were developing their own disaggregations of the 
questions, essentially their statements of the question, until the moment that 
they gave their judgments.

2. The identity of the experts. The names of the experts may need to be 
recorded in order to answer questions about the expert's responses or to update 
their responses after the elicitation. For example, if the experts are to review the 
project personnel's documentation of their responses, records must be kept of 
each expert’s response, name, and date of elicitation. In addition, records of 
the expert's identities and responses will be needed for report writing. 
However, even when all of this information is recorded, it need not be divulged 
in a report. There are three ways of presenting the expert's identities depending 
on the level of confidentiality that has been selected. (In chapter 6, see item 6 
Will the Judgments Be Anonymous... under Motivating the Experts Through 
Communication of the Intrinsic Aspects of the Study.) These three ways are to 
either list (1) the organizations or offices that have contributed experts; (2) the 
experts names and affiliations; or (3) the expert's names and affiliations in 
connection with their responses. The last of these is the most demanding in 
terms of the records that will have to be kept.

The identity of the experts can also refer to aspects of their professional 
background, such as how long they worked in their area of expertise and where 
they went to school. We recommend recording and testing this information to 
learn if it correlates to the expert's answers or other factors. In our experience, 
people intuitively expect the experts' answers to correlate to some aspect of their 
background, such as where they went to school. Although we have found no 
such evidence of correlation (Booker and Meyer 1988a, Meyer and Booker 
1987b), we suggest documenting this information for testing.

3. The methods by which the expert data was obtained. The elicitation 
methods need to be documented if any of the project personnel intend to use 
them again, if the project is likely to be reviewed by outsiders, or if a written 
report is a required product of the study. In general, if the methods are to be 
documented in a report, we suggest that two types of information be supplied: 
(1) a summary of what methods were used and how they were applied; and (2) 
an explanation of why each method or combination of these were selected. 
Support for the use of the methods can include references from the literature and 
other considerations such the data-gathering objectives of the project and the 
need to reduce costs, time, or the occurrence of particular biases. This support 
can also include descriptions of how the methods were pilot tested or rehearsed 
and revised. In addition, the supporting information can include statements on 
what the documentation of the expert judgment represents. Readers of the
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report may not know that the documentation represents the expert's state of 
knowledge at the time of the elicitation. For this reason, it may be necessary to 
state that the expert might, with time and new knowledge, give a different 
answer to this same question.

4. The expert's responses. The expert's responses can be documented using 
several schemes. The documentation schemes, described in chapter 7, are 
basically of two types: where only the expert's answers are recorded and where 
both the expert’s answers and thoughts in arriving at these answers are 
recorded. There are approximately three ways of documenting the second type. 
The first is a summary documentation where the expert's answer and a few 
sentences or paragraphs on his thinking is provided. The next is detailed 
verbatim documentation where everything that the expert says or does is 
written. Often this scheme involves mechanically recording the elicitation 
session and then transcribing it. The last and most involved means of 
documentation is the detailed structured scheme. In this method, there is 
usually a format to guide the person doing the documentation. The format 
includes blanks labeled for the recording of the aspects of the elicitation that are 
considered most important, such as the sources of information (e.g., code 
simulations, references, experiments, personal communications), assumptions, 
algorithms, and equations that the expert used in solving the problem.

The documentation can be used in a report in its original form or it can be rewritten 
to be more general; that is, the report can include less or more general data than was 
gathered but not the reverse. For example, if the expert's names were not originally 
recorded with their responses, this data will not be available for inclusion in a report.

Logistics of who will record and when
The documentation of the expert judgment can be written by the project personnel, 

by the external experts, or by a combination of the two. For example, the judgments can 
be written by the data gatherer and reviewed for accuracy and completeness by the expert. 
In addition, there is sometimes an option for when particular types of information are 
documented—before, during, or after the elicitation session.

Step 1: The first consideration in determining how to do the 
documentation is the decision of who is qualified and motivated to do it.

This information is listed below according to what is being documented.
1. The final statement of the question. The project personnel, such as the 

data gatherers (interviewers and knowledge engineers) are usually the most 
qualified and motivated persons to document this information. The one 
exception would be if the external experts had been totally responsible for the 
refining of the question. Then, the experts would be the most qualified, 
although, not necessarily the most motivated, to record this information. (The 
experts are generally not as concerned with documenting the elicitation as they 
are with solving the problem.) For this reason, even when the experts are the 
most qualified to document the statement of the question, the project personnel
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often do it. The project staff may request the latest statement of the question 
from the experts and then record it

2. The expert's identity. Writing the expert's names by their responses does 
not demand as much qualification and motivation as recording the types of 
information mentioned, described in items (1), (3), and (4). Noting the 
expert's identity can be done by whoever is recording the expert judgment. If 
the experts are recording their own judgments on a special format, they can 
simply enter their names on the predesignated blank. If the data gatherers are 
using formats (writing the expert's responses in an organized manner on the 
board or using interview guides), they can label the responses by the expert's 
name. If the data gatherers are mechanically recording individual interview 
sessions, the tape can be labeled in the same fashion. In general, the labeling 
should be double checked because the documenter can forget to record a name 
or record the wrong one. Occasionally the data gatherer records characteristics 
of the expert, in addition to the expert's names and responses. These 
characteristics are gathered when later analysis is planned, such as for learning 
if the characteristics correlate to the expert's data. Some commonly recorded 
attributes are the expert's education, years of experience, job title or position, 
area of specialization, and psychological test results.

3. The elicitation method. We consider the project personnel, specifically 
those who conduct the elicitation, to be the most qualified and willing of 
persons to record information on the elicitation methods. Information on the 
elicitation methods is the only one of the four types of information under What 
Documentation Can Include that can be written both before and after the 
elicitation. The elicitation methodology can be initially written up after its last 
revision (chapter 9). Then after the elicitations, the description of the methods 
can be updated because they may have been conducted slightly differently than 
planned.

4. Expert's responses. Who is qualified to record the expert responses 
depends on how detailed or technical this data is. Almost anyone is sufficiently 
qualified to write down a short answer (e.g., a probability estimate, rating, or 
ranking). Frequently, the project personnel record this information if it is given 
verbally in an interactive setting (e.g., group or individual interviews). If the 
elicitation is conducted over the telephone, the interviewer records the answer. 
On simple mail surveys, the expert records the answer, using the desired 
response mode.

If, however, the expert data includes detailed problem-solving data, the 
expert is the most qualified to document it. Unfortunately, experts are not 
usually as well motivated as the project personnel to document this information. 
Generally, they are more willing to deliver the data verbally than they are to take 
the time to record it in written form. Thus, documenting the problem-solving 
data needs to be made as easy as possible to increase its chances of being done. 
Documentation formats (also called interview instruments or forms) are often 
used for this purpose. (See sample forms included at the end of this chapter.) 
The data gatherer or the expert can be guided by these formats in documenting 
the information. Please note that if the experts fill out the formats, the
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completed formats should be checked by the project personnel before the 
experts leave. Experts frequently fail to document their thinking as they were 
instructed to do. They may have misunderstood the instructions or simply tired 
of writing their data. Similarly, if the project personnel did the documentation, 
the expert should check the notes for accuracy and completeness. For example 
in the NUREG-1150 reactor risk study, an extra precaution was taken—the 
experts signed the final documentation to show that they had approved it. Then 
too, if the elicitation is tape recorded, someone should check that the expert's 
voice is audible and understandable, especially if this will be the only record of 
the session.

If the data gatherer is unfamiliar with the field and if complex questions are 
being asked of the experts, the data gatherer may no longer be the most 
qualified to document. Arrangements beyond those mentioned above may be 
needed. For example, in the NUREG-1150 reactor risk study (U.S. NRC 
1989), the elicitations were performed by decision analysts who were 
experienced in the elicitation but not in the technical areas. For this reason, 
project personnel who were knowledgeable in the question areas attended the 
sessions and, like the decision analysts, provided written records. In addition, 
all sessions were tape recorded and the expert was encouraged to document his 
reasoning for his judgments immediately after the elicitation (Wheeler, Hora, 
Cramond, and Unwin 1989, 3-7).

Step 2: The second consideration is whether the persons
tentatively selected for the documentation role will be able to do it.

The selected person may be too busy eliciting the expert data or solving the question 
to do the documentation. A list of tasks that people can do simultaneously is given below 
to help you make this assessment.

Experts
• Experts can solve the problem and verbally deliver or write down the

answer
IF it is a short answer
IF it is given in a manner (response mode) that the expert is used to

• Most experts can solve the problem and verbally describe their problem
solving. A few have difficulty doing these two tasks simultaneously, as 
noted in chapter 7 in the description of the verbal protocol.

• Most experts cannot solve the problem and write down their thought
processes in solving it

IF their thought processes are to be recorded in any detail

Interviewers or knowledge engineers:
Working with a single expert
• The interviewer is able to request the expert's answer, record it on a

documentation format, and run the tape recorder.
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• In addition, to the above tasks, the interviewer can usually also document 
the expert's problem solving

IF the interviewer is famihar with the subject area

Working with multiple experts face-to-face
• The interviewer can request the expert's answer and record it on a 

documentation format
IF obtaining the expert's answer does not require in-depth 
elicitations
IF the experts will be orderly in giving their answers, as in a 
structured elicitation situation

IF the interviewer is not also running mechanical recording 
devices

• In addition to the above tasks, the interviewer can usually document the
experts' problem solving

IF only one or two sentences are needed (e.g., on the references that 
the experts used or the group's rationale for their answer)
IF the interviewer is familiar with the subject area

Working in any elicitation situation
• Interviewers cannot write aU of an expert's problem solving as the expert is 

verbalizing it
IF this is being elicited in great detail (because people usually 
verbalize their thoughts much faster than the average person can 
write. Peoples' rate of speech is one of the reasons that tape 
recorders and stenographers are used as backup to notetaking).

Note: More is involved in running a tape recorder than there might seem. In all sessions, 
someone needs to turn the tape recorder on, check that the tape head is turning, and change the tape 
cassette as needed. In group situations, the omnidirectional microphone needs to be turned on and 

have its batteries checked. In individual interviews, the expert's lapel microphone needs to be 
attached and detached so that the expert does not walk away with it, tape recorder dangling.

Step 3: If the documenter is asked to do more than what was 
listed as feasible in step 2, consider the three following aspects of 
documentation. It may be that manipulating one of more of these will 
lighten the documenter's load:

1. Who does the documentation or how many others assist in it? For 
example, if the data gatherer is to do the documentation, could the expert help? 
Could additional project personnel (e.g., a stenographer, secretary, or editor 
familiar with the technical area) assist the data gatherer, such as by taking notes 
or running the tape recorder during the session?

2. The timing of when the documentation is done. It may be that some 
of the documentation can be done in advance of, or after, the elicitations. 
Frequently, the statement of the question, the elicitation methods, and the
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expert's identities can be documented in preliminary form before the elicitation. 
Then, during the elicitation, brief notes can be taken on any changes that were 
made. For example, the statement of the question often evolves or changes 
during the process or elicitation. Similarly, the list of experts assigned to the 
questions may change if some of the experts do not come and substitutes are 
used.

• The leeway in timing the documentation of the expert's 
problem solving. The problem-solving data cannot be recorded in total 
before the elicitation because it often changes significantly during the session. 
However, you may be able to document some of the basics of the expert's 
problem solving if it has been written prior to the elicitation. For example, in 
the NUREG-1150 reactor risk study (U.S. NRC 1989) the experts 
disaggregated their questions before the sessions in which their answers were 
elicited. However, even in this project, the experts changed their 
disaggregations and thoughts during the elicitation. Documenting the problem­
solving data totally after the elicitation does not work either. Waiting to 
document this data results in portions of it being forgotten and lost. Tape 
recording the problem-solving data, although helpful, is not a panacea because 
much of what people say is unclear without their expressions or gestures. (We 
recommend that tape or video recording be used only as a backup to note taking 
because the mechanical recordings often malfunction and they are very time 
consuming to play back, e.g., to clarify particular points or to transcribe.). 
Thus, some documentation of problem solving must be done during the 
elicitation if this data is to be recovered and reported later.

• The amount of time needed to verify the expert's data. 
Generally, more time is needed to verify expert data if it was documented after 
the elicitation rather than during. For example, if the experts' problem solving 
was documented after they had left, they will have to be contacted to verify 
what has been written. Therefore, verifying documentation long after the 
session is more time consuming than verifying it during or shortly thereafter by 
having each expert read and initial it while he is still present

3. The level of documentation. If none of the suggestions mentioned above 
resolve the documentation problem, simplifying the documentation demands 
may be the last resort. Would a less detailed or structured documentation 
scheme still provide the necessary data? The general documentation schemes 
listed in chapter 7 are listed in order of the simplest, or least demanding, to the 
most demanding.

Sample documentation formats
Formats serve as guides for the project person or the expert who is taking down the 

information. For instance, formats have been developed for questioning the expert on the 
subject area (Spradley 1979); for obtaining background on the expert (McGraw and 
Harbison-Briggs 1989, Meyer 1987, Meyer and Booker 1987b); and for obtaining short 
explanations of the expert's problem solving (Meyer 1987, Meyer, Booker, Cullingford
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and Peaslee 1982). Formats that have been designed specifically for knowledge acquisition 
projects are given in McGraw and Harbison-Briggs (1989).

Two generic formats for recording the expert's answers and their problem solving 
are illustrated at the end of this chapter. The first focuses on documenting experts' ratings 
and only gathers a few notes on why the expert gave these ratings. The second focuses 
more on the expert's problem solving. It documents the experts' disaggregation of the 
problem, their answers, and their reasons for giving both of these.

Presentation of the Question—A Quick Check

Although this topic was covered in chapter 5, we readdress it at this time to ensure 
that the presentation of the question fits the revised elicitation. In chapter 5, the question 
was refined by considering the information that the experts needed to answer it (e.g., the 
background, assumptions, and definitions), the order in which the information needed to 
be presented (e.g., general to specific or specific to inclusive), the decomposition of the 
question, and the phrasing of it. Now these same aspects of presenting the question need 
to be reconsidered in terms of the revised elicitation.

In general, you need to note the changes that you have made to the elicitation as a 
result of following the suggestions in this chapter and ask whether the presentation of the 
question still fits. A few considerations follow:

1. If the components of elicitation have been structured, is the 
presentation of the questions structured to a comparable degree? 
For example, if the elicitation components were structured to provide a clearer 
field for observation, an unstructured presentation of the question could 
compromise this aim. An example of an unstructured presentation would be to 
ask a question without having determined which wording was clearest and what 
information would be needed to answer it.

2. If the basic elicitation situation was modified to include a 
combination of the other situations, will the planned presentation 
need changing? For example, imagine that you decided to break an 
interactive group situation into individual interviews to avoid the possibility of 
group think during the elicitation. If you had planned to present the question 
(i.e., its background, definitions, and assumptions) only once to the group, you 
would have to rethink this presentation for the individual. The question could 
be announced to the group before individual interviews began but if there was 
much of a delay before interviewing the last expert, the question would have to 
be presented again to refresh the expert's memory. In a case like this, the 
question could be presented on paper and then verbally reviewed by the 
interviewer at the onset of each elicitation.

3. If the telephone or mail was to be used as an alternate mode of 
communication, will the means by which the question was to be 
presented need changing? For example, if the plan was to save on costs 
and time by eliciting the expert's solutions over the telephone, can a simple and 
brief presentation of the question be given over the telephone? If not, perhaps 
the question can be sent by mail and then the experts called for their answers.
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4. Does the documentation scheme support the presentation of the 
problem and vice versa? For example, if a detailed structured 
documentation scheme was selected, the presentation of the question should 
exhibit comparable care.

Any remaining conflicts between the presentation of the question and the elicitation 
methods will become known when the pilot testing is done. The pilot testing described in 
chapter 9 will be the last stage in refining the elicitation process before the elicitation is 
conducted.

Common Difficulties-Their Signs and Solutions
Difficulty: Realization that sufficient time has not been allotted to planning 

the elicitation. This is one of the most common problems that we have observed. 
Often people view the planning stage as an unnecessary delay to starting the elicitation. 
Signs of insufficient time for planning usually come when the project personnel are 
looking at their project schedule. The schedule may show that the elicitation, not its 
planning, is to begin now.

Solution: One remedy is to determine if the planning can be dropped without severe 
consequences later. Planning is less necessary, if only a few experts are being 
interviewed, especially face to face. For this situation, you do not have to coordinate a 
group of interacting experts nor polish the elicitation materials that you would send to 
another group of experts (e.g., a Delphi group). You have greater license to plan as 
you go because there are fewer things requiring advance preparation. Planning is also 
less necessary, if unstructured techniques are used. As mentioned earlier in the 
chapter, the more highly structured techniques require more planning. We believe that 
the structured techniques offer, in compensation for their greater planning time, greater 
effectiveness in elicitation and analysis. For all other situations, planning is likely to be 
critical. If sufficient time for planning has not been allowed, we urge you to consider 
modifying the schedule.

Difficulty: Ignoring the possibility of bias. Frequently, the possible occurrence 
of bias is disregarded because of the project staffs ignorance. They may have been 
totally unaware of its existence, or they may have chosen to ignore it. Both of these are 
understandable responses. The topic of bias in expert judgment has not commonly 
been addressed and the physical scientist, in particular, is not accustomed to dealing 
with it.

However, ignorance is definitely not bliss. We have seen an increase in external 
reviewers' criticism of expert judgment studies. Generally, these reviewers have been 
sensitive to the bias that results from the interviewer's leading of the experts. For 
example, a committee that reviewed NUREG-1150's early use of expert judgment 
(Kouts et al. 1987) criticized this effort for having the experts work from questions 
proposed by the project personnel. They advocated allowing the experts to 
independently generate and refine their own questions. Another frequent concern with
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external reviewers is the possibility of group think, perhaps because of the influence of 
Janis' book (1972). The concern is that some experts may have mouthed or tacitly 
accepted the opinions of others without thinking or expressing their own thoughts. 
Conflict of interest, called wishful thinking in this book, is another source of bias that 
seems to catch reviewers' attention. When this bias is present, the expert's judgments 
tend to reflect what the expert would like to happen, or in an extreme case, the position 
that the expert has been paid to support.

Solutions: One approach would be to use this chapter's section on anticipating bias to 
design the elicitation before proceeding. Another narrower approach is to selectively 
focus on handling the three biases mentioned above (social pressure from the 
interviewer, group think, and wishful thinking). Still another approach is to proceed 
with the idea of gathering enough data to test for the presence of selected biases after 
the elicitation. The analysis techniques for testing bias are described in chapter 14.
For example, on a magnetic fusion project (Meyer et al. 1982), two tests were run to 

examine the problem of wishful thinking. The purpose of the study was to obtain 
estimates from those working on the fusion project of whether they would meet 
scheduled milestones. After the elicitation, the sample of experts were divided into 
those with more to gain from their answer—the managers, and those with less—the 
scientists working on the hardware. Their data was analyzed. These two groups could 
not be found to give significantly different answers to the same questions. The experts 
answers were also compared to the wished-for outcome. That is, the expert’s 
predictions of when they would meet various scheduled milestones were compared to 
the planned schedule and found to differ significantly.

The last approach, not considering bias until during the analysis, has one advantage 
over doing absolutely nothing about bias. If reviewers of the work raise questions 
about a particular source of bias, the results of the analysis can be presented. If the 
results show no evidence of the bias and the reviewers find no fault with the methods 
of analysis, the reviewers can turn their attention to other matters.
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EXAMPLE 8.1: Sample Format for Documenting Mainly Answers

Expert's
name:_________________

Date:

Time: to

Interviewer:.

Definition of question:.

Variable 1 Variable 2 Variables Variable 4

Variable w

Variable x

Variable y

Variable z

Expert's comments on reasons for giving estimates:

Variable w and 7:__________________________

Variable x and 2:__________________________

Variable y and 5:__________________________

Variable z and 4:___________________________
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EXAMPLE 8.2: Sample Format for Documenting Answers and Problem 
Solving

Expert's 
name:

Date:
Time: to

Interviewer:

Question name:________________

Information defining the question:

Sketch and label each question, subquestion, and branch, as shown in the example.
Provide a few sentences on the expert's reasoning for each point, as shown in the example.

Footnote any references that the expert uses.

Reasoning: /

Reasoning:

71

T2

Ti
PI

PI

P3

P4



9
Practicing the Elicitation
and Training the In- 
House Personnel

The purpose of this chapter is to provide the last check on all aspects of the 
elicitation design before conducting the elicitation, which is described in chapter 10. The 
logistics, ease of use, interface, and timing of the parts of the elicitation process are 
examined to find any remaining glitches and resolve them. The problems are identified by 
practicing and pilot testing the different parts of the elicitation.

Practicing the Elicitation
The following aspects of the elicitation are frequently practiced: the briefings given 

to the experts; the elicitation procedures; and the documentation, aggregation, and entry of 
the data into the model. Practice is defined loosely here to mean rehearsing some act to 
become more proficient in it. Practicing serves another purpose—the training of in-house 
personnel. One subset of practice is pilot testing. Pilot testing involves taking a very 
small sample of the expert population, presenting them with the aspect of the elicitation that 
is to be tested, obtaining these experts' feedback, and revising the elicitation accordingly.

What Needs to Be Practiced?

The following items should be rehearsed to resolve any difficulties and to leam how 
long they will take.

1. Introduction of the experts to the elicitation process. Introducing 
experts to the elicitation process includes familiarizing them with the general 
steps and schedule that will be followed, the questions or problems that they 
will address, the response mode that they are to use, and the biases to which 
they may be prone. If the experts were not heavily involved in developing the 
elicitation, they will need clear and concise briefings on what they are to do. 
Conducting such briefings do not occur naturally but requires practice. If the
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expert is confused about any of the above-mentioned topics, his confusion 
could make him more prone to bias, such as inconsistency. It could also make 
him reluctant to participate. Practicing these items will make the communication 
of them clearer and will give the project personnel greater confidence.

Introducing the experts to the elicitation process is such a critical step in 
establishing the project's credibility and the experts' understanding of their 
tasks that we offer the following suggestions. (The most appropriate time to 
introduce the experts to the elicitation process is after they have been briefed on 
the general elicitation procedures.)
• We suggest that the experts be given sample questions to work so that they 

can practice using the response mode. If there are any techniques for 
properly using the response mode, they can be introduced and practiced 
here. For example, if the response mode is probability distributions, 
Hogarth (1980:149) offers eight keys to assigning probabilities.

• We recommend that the experts be briefed on the biases that were identified 
in chapter 8 as being likely to occur. This briefing should include an 
explanation of why the selected biases occur and of how the expert can 
reduce his tendency to commit them. (The section Definitions of Selected 
Biases in chapter 3 provides examples of this type of information.)

The bias briefing should include exercises that are designed to evoke the 
selected biases. The interviewer can read the correct answers and allow the 
experts to score their own exercises. These exercises can convince the 
expert that he, like everyone else, is prone to these biases. If the briefing is 
given without exercises, we have noticed that the experts are not as effective 
in countering their tendencies toward bias, perhaps because they were never 
convinced that they, too, would be biased.

2. The elicitation procedures. Even when the elicitations have been carefully 
planned, much can be learned by testing them on sample experts. For example, 
you may observe that the elicitations last longer than expected and that the 
sample experts become fatigued during them.

3. The documentation procedures. Pilot testing the documentation will 
provide information on the logistics and the format, such as whether or how 
these need to be revised. For example, the pilot tests may show that the 
interviewer cannot conduct the elicitation and simultaneously fill in the 
documentation format.

4. The mathematical aggregation of the expert's answers, if this will 
be used. Although mathematically combining the expert's responses may 
seem straightforward, there are many methods available and some may not be 
appropriate to the data elicited (chapter 16). Therefore, it is advisable to practice 
the chosen method. At the very least one can leam how long this procedure is 
likely to take, and if necessary, automate it. The data from the limited pilot tests 
are used to practice the aggregation. In addition, if the experts have broken the 
problem into its logical parts and the project personnel will reaggregate the 
experts' responses, as in the NUREG-1150 reactor risk study (U.S. NRC 
1989) this step should also be practiced.
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5. The entry of the data into a model, if this is planned for its 
analysis or end use. The data gathered from the limited pilot tests, as 
described below, is used for rehearsing the entry of the data into a model. 
Frequendy, this rehearsal reveals a major disconnect between the form in which 
the expert's data was obtained and that which is needed for the model.

What Needs to Be Pilot Tested?

The procedures that need to be pilot tested are those that the expert participates in, 
such as in giving his judgment. The expert's understanding is critical to his participation. 
Therefore, anything that the expert must understand, is a good candidate for pilot testing. 
Usually, however, a smaller set of all those things that the expert must understand are pilot 
tested because pilot testing is time and expert intensive. As a general rule, pilot testing is 
done on the expert's understanding of instructions whether these are given orally or in 
writing, such as on how to fill out a survey. The following parts of the elicitation are 
suggested for pilot testing.

1. The expert's understanding of the problem or question. Sometimes 
the statement of the question or problem has already been developed and is 
being presented to the experts for their solutions. In other projects, such as the 
NUREG-1150 reactor risk study, the experts are to evolve their own statement 
of the problem from a beginning version. In the first case, the pilot test 
provides information on the expert's interpretation of the problem. If the 
project personnel did most of the question development, their interpretation is 
likely to differ noticeably from that of the experts. In the second case, the pilot 
test checks that the expert understands that he is to take the basic problem area 
and refine it.

2. The expert's use of the response mode. The pilot test allows you to 
check that the expert understands how to use the mode. The expert's response 
can be checked against both the instructions and logical or mathematical 
standards. For example, probabilities for all mutually exclusive events should 
sum to one.

3. The expert's understanding of the elicitation procedures that he 
will be expected to follow. For example, if verbal protocol was to be 
used, it would be important to check that the expert knew that he was to think 
aloud and that he could do it.

4. The expert's use of any documentation format, such as on a mail 
survey, if he, rather than someone on the project, is to fill it out.
The pilot test provides feedback on the expert's understanding of the directions 
on how to fill out the format. We have found that experts typically do not 
provide as thorough a documentation of their judgment as they are requested to 
do.
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How to Pilot Test

Sample selection and sizes
In pilot testing, it is desirable to have experts who represent the range of experts 

who will later be elicited. For instance, if the experts have been drawn from positions in 
the government, private industry, and academia, the pilot sample should contain members 
of each of these positions. Consider the factors that were used in selecting the expert 
populations and use these in choosing the sample for pilot testing. In selecting an expert 
pilot sample, consider that this selection decreases the pool of experts whose judgments can 
be elicited later. Generally, it is not advisable to use the pilot test sample or those who have 
otherwise assisted in the method's development in the final elicitation. Similarly, we 
would caution you to avoid using the advisory experts, those who have helped develop the 
questions, in the pilot sample. The advisory experts will not be able to approach the test 
materials from a fresh perspective if they helped develop them.

The size of the test sample will depend on the size of the expert population for the 
elicitations. Test samples for expert elicitations rarely, if ever, have the large sample sizes 
(10% of the total) associated with traditional mail surveys. Typically, expert samples for 
pilot tests are five persons or less because the largest expert population does not usually 
exceed 50. Because of these small sample sizes, the strategy for pilot testing in expert 
judgment studies has been to test intensively. In other words, try to obtain as much benefit 
or feedback as possible from these few experts.

There are two types of pilot tests mentioned below. We recommend conducting the 
intensive pilot test first, if you intend to do this test. The intensive pilot test was 
developed (Meyer, 1986:92) to trace the expert's understanding. It consists of structured, 
in-depth interviews and observations. The other type of pilot test is called limited to 
distinguish it from the traditional (high sample size) and the intensive pilot tests mentioned 
above. Limited pilot tests are best done after intensive pilot tests have been performed and 
the elicitation revised. The limited pilot test allows the in-house personnel to practice the 
elicitation procedures, time their duration, and check how these procedures fit together.

Sequence for pilot testing
The sequence for performing these pilot tests follows:
1. Apply part one and part two of the intensive pilot test (as 

described on the next page) to the elicitation.
2. Use the pilot test results to revise the tested parts.
3. Practice the entire elicitation process from beginning to end with 

limited pilot tests done on those parts where the experts will be 
involved. For example, the in-house personnel would rehearse their 
introduction to the elicitation in front of the experts for the limited pilot tests. 
The in-house persons would practice the elicitation procedures on these experts. 
The expert data from the practice elicitations would be used to check the other 
steps of the elicitation. Specifically, the data would be documented, 
aggregated, and used as input just as it would be when the elicitation is done for 
real. Each of the elicitation procedures is timed during the practice.
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How to conduct intensive pilot tests
This type of pilot test is the only one to our knowledge that allows people's 

thinking to be tracked through information presented in written form. The intensive pilot 
test provides two kinds of information: (1) how, in general, the expert progresses through 
the information, his general impressions, and when and why he decides to respond to 
particular questions; and (2) how the expert specifically interprets each direction, statement 
of the question, or response mode option.

First, the materials to be pilot tested are selected using the list provided above under 
What Needs to Be Pilot Tested? A typical selection would be the set of problems; any 
written directions on assumptions or definitions that the expert was to use; directions on 
what information the expert was to document on the form and in what manner, such as on a 
continuous linear scale.

Intensive pilot testing is done with one expert at a time in a face-to-face situation. 
The interviewer sits to the opposite side of the expert's handedness to allow easy viewing 
of his writing; that is, the interviewer sits to the expert's left, if the expert is right handed.

Intensive pilot Test-Part 1. For the first part of the intensive pilot 
test, the expert is instructed to fill out the written materials as he would naturally if no 
observer were present. The expert is also asked to think aloud (verbal protocol) as he reads 
through the written materials. The interviewer has a copy of the same materials given to the 
expert for recording the data.

While the expert pages through the written materials, the order in which he looks at 
the materials, his pauses, gestures, facial expressions, and words are recorded by the 
interviewer on the interviewer's copy. For example, the expert may skim through the 
introduction, cover letter, or directions and then flip through the rest of the materials before 
returning to read each of these more thoroughly. The expert may make such comments as: 
"I have problems with this page and will probably let it sit on my desk for several days."

In addition, if the intensive pilot tests will not be followed by limited pilot tests, the 
interviewer can record the expert's starting and ending time on the first part of the intensive 
test. The limited pilot tests described in the next section provide better time estimates 
because the expert is not having to think aloud throughout the interview. However, some 
data on time is better than none, so this data should be gathered now, if they will not be 
gathered by other means. Note, if you are trying to obtain time data, you will have to save 
your questions of the expert until the second part of the intensive test. Otherwise, your 
questions will inflate the time estimates of how long the expert takes to respond to the 
written materials.

The intensive pilot test provides better time estimates than might be expected. It is 
reasonable to expect that the time estimates obtained from the first part of the intensive pilot 
test would be very high because the expert continuously verbalized his thoughts (and will 
not do so for the actual elicitation). However, we have found that this measurement 
provides an adequate estimate of the upper limit of time needed. This is because the experts 
selected for the pilot test may not represent the range of experts, some of whom could take 
a significantly longer time to finish. For instance, we have had pilot tests last two hours 
and the actual elicitations range from 1 hour to 2 hours and 15 minutes.

Frequently, the expert is allowed a brief break between the first and second part of 
the intensive pilot test.
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Intensive Pilot Test-Part 2. During the second part of the intensive 
pilot test, the expert is asked to paraphrase in his own words, the meaning of each 
direction, question, or response option. This information allows the interviewer to track 
the expert's interpretation in detail. It has always amazed us that something could be 
interpreted in so many different ways, ways that we had not thought of because we knew 
what we meant The interviewer can also question the expert about any reactions, such as a 
look of puzzlement, noted at one of the questions during the first part of the pilot test. This 
questioning can jog the expert's memory so that he can give a more thorough description of 
his impression.

All information is recorded on the interviewer's copy of the written materials, and 
the expert's hard copy is collected. The expert is thanked and asked not to discuss the 
details of the pilot test with anyone else because it could influence their responses The data 
from the intensive pilot test is examined and used in revising the elicitation procedures or 
the logistics of who performs the different tasks. If limited pilot tests are planned, they are 
the next step.

How to conduct limited pilot tests
In limited pilot tests, the elicitation procedures are conducted as closely as possible 

to the way that they will be done for the actual elicitation. There would be little point in 
examining the expert's responses to a form or a procedure that did not resemble the one to 
be administered. For this reason the intensive tests are done first to allow the methods to 
be revised. Thus, in the limited pilot test, the experts are given the briefings or the 
introductions that have been planned for the larger population of experts. Similarly, the 
sample experts receive whatever forms and instructions on providing their responses that 
will be used during the actual elicitation sessions.

The interviewer elicits the data in the planned manner and obtains the experts 
responses. In addition, data is gathered on how long each elicitation lasts so that this can 
be added to other time estimates to produce a total. If the elicitations are being done in 
person, the interviewer may also record the amount of time it takes an expert to respond to 
a particular problem.

The following is an illustration of how the timing data is used. The practice 
briefing of the group of sample experts lasted 2 hours and one elicitation lasted 2 1/2 hours 
(counting the expert's review of the documentation of his responses). Assuming that there 
is only one elicitation team to perform 10 individual interviews, about 27 hours would be 
needed just to perform the elicitation.

As with the other pilot test, when the expert finishes, he is thanked for his 
cooperation. The data from the pilot test is used in practicing the other stages of elicitation, 
mathematical aggregation and modeling, as was mentioned in the Sequence for pilot testing 
above.

In addition, the limited pilot test may be used in training in-house personnel, as will 
be discussed below.
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Training In-House Personnel
Project personnel are frequently lay persons in the area of expert judgment and 

require training in elicitation methods. Even those experienced in expert judgment may 
need training if they are unfamiliar with the specific methods selected. Training provides 
the personnel with instructions (directions) and the opportunity to practice until they 
become proficient.

Training is done in the same areas that are practiced.
1. Introduction of the experts to the elicitation process.
2. The elicitation procedures.
3. The documentation procedures
4. The mathematical aggregation of the expert's answers if this will be used.
5. The entry of the data into the model if modeling it in some way is the end use.
The training can be done to differing levels of proficiency depending on what the

project demands and the personnel desire. For instance, if the experts were likely to be 
reluctant to give their judgments, we would recommend that the data gatherers be trained 
to a higher level of proficiency to obtain the judgments. In addition, there are particular 
situations that make training necessary.

When Training Is Needed

Training the in-house participants is especially necessary under the following 
conditions.

1. When different people have planned the elicitation than will be 
conducting it. In many projects, the elicitation methods have been designed 
by experienced persons or selected by a committee. However, the task of 
implementing the methods is often given to those who are less experienced and, 
perhaps, those who did not participate in the selection of methods.

2. When the persons who will be performing the elicitation and 
documentation are uncomfortable with this assignment. This 
reaction may stem from the situation mentioned in item 1. Others, such as their 
managers, selected the methods, and now they are being asked to implement the 
methods even though they have not had any input into the selection process. 
Then too, the persons who are to perform the elicitations may be initially 
reluctant to do so because of their inexperience. Training can make them feel 
more confident of their ability to perform these tasks.

3. When more than one person or team will be gathering and 
documenting the expert data. With more persons, there is the chance that 
each will perform the tasks differently and that data will be inconsistent. 
Training the data gatherers promotes consistency in these tasks. In addition, the 
process of providing instruction often allows the instructors to identify any 
looseness in the procedures and to provide stronger guidelines.

4. When more than one in-house person will be involved in an 
expert's elicitation. More than one person may be required to perform the 
elicitation if one cannot do all the tasks simultaneously. Then too, the elicitation
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can require very different skills, such as in interviewing and in the technical 
subject area. Frequently, several people are used because there is not time to 
train one person in both skills (e.g., train the technical person to interview). 
Thus, one person may elicit one type of information from the expert and a 
second person another. For example, in the NUREG-1150 reactor risk study, a 
decision analysis method of elicitation was selected, and three decision analysts 
were brought in to do the elicitations (U.S. NRC 1989). However, the 
information being elicited on reactor phenomenology was so technical that an 
in-house person needed to participate in the elicitations to answer the expert's 
technical questions about the problem, to record, and to check the expert's 
technical data for gaps. In another project examining tank tactics (Meyer 1987), 
one person obtained the expert’s reasoning as he responded to a computer- 
simulated battleground, and the other ran the computer. The computer person 
who was familiar with the computer program, ensured that the computer ran 
properly and answered any of the expert's questions on it. If a two-person 
interviewing situation exists, the in-house persons must rehearse their roles 
together. Otherwise, they can appear like a slapstick comedy routine—bumping 
into one another, interrupting and confusing each other and the expert.

How to Train
There are different means of training in-house personnel to execute the five items 
mentioned earlier in What Needs to be Practiced. The paraphrased items are listed below 
and followed by training suggestions.

1. The briefing of the experts on the elicitation. The in-house personnel 
can simply rehearse this talk in front of an audience, preferably one unfamiliar 
with the planned elicitation.

2 and 3. The elicitation and any documentation done during it. It is
more difficult to train personnel in these two areas because the areas are more 
complex than those mentioned in 1, 4, and 5. Elicitation and documentation 
involve interactions with the expert and perhaps simultaneously with another 
data gatherer. The instructions that can be given do not encompass all that 
could happen in the elicitation. Therefore, these tasks must be rehearsed with 
someone playing each role as it will be done in the actual procedure.

Three training options and their advantages and 
disadvantages.

The first option is to instruct the trainees in the procedures and then 
have them conduct the limited pilot tests as practice. The advantage of the 
first training option is that it does not require a large pilot test sample nor 
much time.

The second option is to have the experienced data gatherers perform 
the first limited pilot tests while the trainees observe quietly and then have 
the trainees conduct the last tests. The advantage of the second option is 
that the trainees are able to learn by observing before doing. The 
disadvantage of this option is that it requires a large enough sample for more 
than a few tests.
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The third option is to have the trainees observe the limited pilot tests 
or videos of them and to practice their skills by taking turns role playing the 
interviewer and the expert. The advantages of the third option are (1) that 
there is no special requirement for a particular number of pilot tests, and (2) 
that there are benefits derived from role playing the expert. The trainees 
who play the experts gain insight into the elicitation from the expert's 
perspective and become better interviewers. When they play the experts, 
they leam first hand how the interviewees wish to be treated. For example, 
the trainees as interviewees may view some of the procedures as 
condescending and dictatorial.

4 and 5. The mathematical aggregation and entry of the the data can 
be done simply. The trainees can be given the data from the limited pilot 
tests, instructed on what to do with it, allowed to perform and time these 
operations, and asked to report any problems.

Common Difficulties—Their Signs and Solutions
Difficulty: Pilot tests show that the sample experts have significant

difficulty with the response mode. If there are problems in using the response 
mode, the intensive pilot tests will have indicated this. The sample experts may have 
paused on the section describing the response modes; they may have seemed confused; 
or they may have remarked that they did not understand. In addition, the answers may 
give further evidence of the expert's difficulties. For example, it may be that the 
response mode is to follow particular logical or statistical standards. If the sample 
expert's responses consistently violate these, there is a problem.

Solutions: One of the first approaches is to rethink the briefing on the response mode 
that was given to the experts. Perhaps, this briefing or the written instructions on the 
response mode were not clear. The revised briefing should be given to a new sample 
of experts, and the use of the response mode should be intensively pilot tested again.

If this sample of experts has the same amount of difficulties, you may wish to 
reconsider using this response mode. In selecting another response mode, consider 
what would fit with the other phases of the elicitation, such as the aggregation and 
modeling of the responses.

Difficulty: Pilot tests indicate that the elicitation is likely to need more 
time than is available. It is a common occurrence to find that your elicitation 
requires more time than you have allotted. This discovery is evidence that all of us are 
prone to wishful thinking-to overestimating how much we can do in a given amount of 
time and to underestimating uncertainty—forgetting those things that can take more time. 
Signs from the limited pilot test indicate that the interviews by themselves or perhaps in 
combination with the other stages, such as aggregation, sum to more time than was 
scheduled.

Solutions: A first option is to review the information from the limited pilot tests on how 
long the different stages take and decide which of these stages could be done differently
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to cut time; redo the stage; pilot test the elicitation again; and record its new duration. 
A second option is to change the schedule. In our experience, people have often 
chosen the second option because it does not require the careful consideration that the 
first option does.

Difficulty: In-house personnel resist the training. Personnel can resist
elicitation training for several reasons: they do not view elicitation as part of their job; 
they do not feel qualified to perform elicitation; they fear being blamed if the elicitation 
fails; and they resent having to do something that they did not help plan. If those 
receiving the training appear uncooperative or object to the training, you need to find 
out why.

Solutions: Any solution rests on learning the person's reasons for resistance and 
addressing those reasons. If only a few persons seem to be inspiring this reaction in 
the rest, addressing the concerns of the minority may resolve the problem.

Difficulty: The rehearsal shows that the documentation scheme does not 
meet the other needs of the project. The documentation can fail to mesh with 
the rest of the elicitation process if it is at a different level of detail (granularity) or form 
than needed for the later reporting, aggregating, inputing, or analyzing of the data. If 
the documentation scheme was not pilot tested, this difficulty is often not discovered 
until after the elicitations have been conducted.

Signs of the above situation will show up during the pilot testing as processes that 
do not fit or flow. For example, you may have tried to aggregate the expert's solutions 
mathematically while taking into account their differing assumptions so as not to mix 
apples and oranges. Imagine, however, that this data is missing or that it is in a fuzzy 
form and cannot be used for comparing the experts' solutions. Another example could 
be that the documented data cannot be input into the model. It is in the wrong form. 
The expert's solutions were given on a linear scale of 1 to 5 and the computer model 
requires probability distributions with confidence ranges. Similarly, you may have 
tried to analyze the effect of some variable on the expert's problem solving only to find 
that you did not have the necessary data. Perhaps, you used a summary documentation 
scheme and could not find any record of this variable.

Solutions: If this problem is caught before or as a result of pilot testing, the solution is 
simple. Select and develop another documentation scheme (chapters 7 and 8) that will 
address these needs. Perform limited pilot tests again and use the data gathered in them 
in testing the aggregation and the entry of the data into the analysis model.

If this problem is not detected until after the elicitations have been completed, the 
options are limited. Basically, the aggregation, report, or analysis cannot be done as 
planned. If the documentation was in the wrong form, perhaps, it can be translated into 
the desired one. However, in translating the data from one form to another, there is 
always the risk of misrepresenting it, of making an assumption that is not valid, such as 
concerning its distribution.

Difficulty: The documentation of the expert's problem solving has been 
done differently or to different levels. We have frequently encountered this 
difficulty and have observed many other situations in which it has occurred. Generally,
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inconsistency in the documentation occurs when (1) multiple project people or experts 
have done the documentation, or (2) when the documentation includes questions of 
differing complexity.

For example, in the NUREG-1150 reactor risk study, some of the final 
documentation was done by the decision analysts who were performing the elicitation 
and some by the project staff who were familiar with the technical area of the expert's 
problem solving (U.S. NRC 1989). Given the differences in these documenter's 
backgrounds and the information that each was to record, they could not, in all 
likelihood, have produced the same documentation. In another instance, our 
documentation was inconsistent even though it was done by the same person using 
approximately the same documentation format. The expert's means of solving 
problems were gathered in detail—first on classical statistical questions and then on 
judging the adequacy of a computer code in modeling reactor phenomena (Meyer and 
Booker 1987b). While the statistical questions could not be called simple, they were 
simpler than the evaluations of the code. The experts seemed to think and verbalize 
very differently about solving the simpler versus the more complex questions. Thus, it 
was difficult to document the same level of detail on these two questions.

Solutions: If this problem has been detected during the practice elicitations, the 
rehearsals have served one of their purposes. There are several actions that can be 
employed to promote consistency in the documentation. First, the guidelines on the 
documentation can be tightened. Often, one of the reasons that people have done their 
documentations differently is that their instructions on the format have been open to 
differing interpretations. Second, additional training on documentation could be 
offered. If project personnel will be doing the documentation, they can rehearse it by 
doing limited pilot tests and taking turns at playing the experts. They could turn in their 
practice documentation for review and feedback on which aspects of their elicitation still 
needed to be changed. If the experts will be doing the documentation, the instructions 
and format given to them should be carefully pilot tested for clarity.

As a final check on documentation, a qualified person can be appointed to review 
each record as it becomes available after the real elicitations. The project person who 
will be aggregating, modeling, or programing the expert data or writing the report 
would be a natural choice for this task. The designated individual could be asked to 
check each record, preferably before the experts left, if the experts had been convened 
for the elicitation sessions. The appointed person could quickly check that all the 
needed information was there and that it was legible and comprehensible. This type of 
check is particularly necessary if the experts will be documenting their own solutions or 
problem solving.

If the documentation problem was not discovered until after the elicitations, which 
is when it is typically found, the options for resolving it are more limited.

The first option is to try to reconstruct the elicitations to fill in the gaps. This entails 
using all the records, both written and mechanically recorded, to find the missing 
information. If the information cannot be found, recontacting the experts may be 
necessary, perhaps even to have them rework some parts of the problem. This option 
is so tedious and embarrassing that it is rarely done.

The second option, is to adjust what and how the data is reported so there will be 
no gaps. Usually this means reporting or modeling the data at a more general level, a
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coarser granularity. For example, if some of the notes on the expert's problem solving 
are more detailed than others, the less detailed will have to be used as the common 
denominator.
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Conducting the ‘Elicitation

10
Conducting the 
Elicitation

This chapter provides details on how to schedule, set up, and conduct the 
elicitation. The different elicitation situations and the three techniques for eliciting problem­
solving data are covered. In addition, guidance is given on how to monitor and adjust for 
bias during the elicitations.

In Part III, information is given on how to analyze the data collected from the 
elicitations.

Scheduling the Elicitations
There are several fine points in scheduling and confirming meetings that will make 

this phase go more smoothly. In general, these are simple courtesies that set the stage for 
good relations with the experts. The next two sections—Scheduling the Meetings and 
Confirming the Scheduled Meetings-may be skipped if there will not be meetings with the 
experts, such as if the mail survey, Delphi, or telephone interview are to be used.

Scheduling the Meetings

To schedule the meetings, such as for individual interviews or interactive group 
situations, call the expert and follow the steps given below:

• Introduce yourself and your affiliation for this project. For 
example, Hello, Dr Jones, this is Mary Smith calling for the Division of Risk 
Analysis, Nuclear Regulatory Commission (the name of the organization that is 
funding the study).

• Ask if it convenient for the expert to talk for a short, specific 
amount of time now. An example of how to ask this is, Is it convenient for 
you to speak to me for about five minutes at this time? We have all had the 
frustrating experience of answering the telephone when we are busy, having the 
caller speak nonstop, and not being able to interrupt to explain that we cannot 
talk at this time. Similarly, it can be irritating to the expert to be called when he 
is leaving for a meeting or holding one in his office, and his irritation may
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emerge later (e.g., in his reluctance to be scheduled for an interview). For this 
reason, we recommend checking that the call is at a convenient time. The 
following illustrates such a check. Have I called at a convenient time, or am I 
interrupting something? If the expert answers in the negative, quickly ask when 
it would be a good time to call back.
State your intention—to schedule a meeting for interviewing the 
expert. Briefly explain to the expert that the purpose of this call is to schedule 
an interview with him. In general, we have found that it is best to say 
interviewing rather than obtaining answers. The latter seems to lead many 
experts to think that they will be asked point blank for their answers. This 
imagined scenario seems to make them uncomfortable or leads them to doubt 
the validity of the caller's intentions (e.g., anyone who thinks that these 
answers can be given so easily must not be very knowledgeable).
Tell the expert about how long the session will last. This time 
estimate will allow the expert to decide when he can block out an appointment 
of the necessary length. If pilot tests were performed (as described in chapter 
9), estimates of the length of an elicitation will be available. We frequently say 
something like the session is likely to last from one to two hours, depending on 
you. (Later, if the expert complains about the amount of time that his session 
took, emphasize again that the duration depends on the expert, and then thank 
the expert for his thoroughness.)
Emphasize selecting a date and time that is at the expert's 
convenience. We have found it effective to emphasize our wish to schedule 
the meeting at the expert's convenience. This courtesy initially promotes the 
expert's good will. If the meeting will include other experts, mention the times 
that the other experts have suggested and ask this expert which ones are the 
most convenient. (Continue this process until one preferred time and one 
alternate time are found that are acceptable to all the experts.) If the meetings 
will involve only one expert, ask the expert to pick a convenient time. For 
example. Could you pick a convenient time for a two-hour meeting within the 
next two weeks? Request that the appointment be in the next few days, few 
weeks, or months, depending on the deadline for completing the interviews. 
After the expert has selected a time and date, verify this 
information by repeating it. Repeating this information gives both the 
caller and the expert time to record the appointment and to catch any 
misunderstandings. Also repeat the location of the meeting, especially if it will 
be held somewhere other than the expert's office. If this is the case, either give 
or request directions to the meeting place.
State that the appointment will be confirmed. For instance: I will try 
to call on Thursday, the day before, to check that the meeting time is still 
convenient.
Thank the expert.
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Confirming the Scheduled Meetings

• Introduce the caller and state the intention of confirming the 
meeting. For example: Hello, this is Mary Smith calling about our meeting 
from 9:00 to 11:00 a.m., tomorrow, the 31st, in your office. Is this meeting 
time still convenient? Confirm the meeting the day before or on a Friday, if the 
meeting is on a Monday. (If the experts will be traveling to the meeting, 
confirm the meeting a few days before their trip.) This simple reminder has 
saved us many frustrations and wasted trips.

• If the meeting was to be with only one expert who then needs to 
cancel, reschedule the meeting. If the meeting involved other 
experts, offer to call the expert back after talking to the other 
participants. The following things need to be considered in rescheduling a 
meeting: whether other experts or only this one will be unable to attend, 
whether the meeting could be video taped, whether there will be costs 
associated with cancelling (e.g., travel, lodging, or meeting room), and whether 
it is possible at this late date to contact the other experts to cancel the meeting. 
Offer to call the first expert back after talking to the other participants. If only 
one expert cannot attend, he could be shown a video tape of the session and his 
interview could be conducted later. If several experts cannot attend, consider 
using the alternate (backup) date.

Setting Up and Conducting the Elicitations
Tips on Setting Up for the Elicitations

Setting up for the elicitation means bringing the necessary papers and or supplies 
and physically arranging the meeting room. Many of these preparations are not critical to 
the success of the elicitations but make them easier or more pleasant. The preparations are 
listed below and can be used as a checklist or memory aid, if so desired.

How to set up for an individual interview
For an individual interview, we recommend that you assemble the following:
1. The expert's name because forgetting it in the midst of the elicitation can be 

embarrassing. It is also a good idea to take the address and telephone number 
of the meeting place if there is a chance of becoming lost or arriving late. Maps 
of the area are useful.

2. A short letter on the project that includes who is sponsoring it, who is 
conducting it, and what its product will be. (A longer version of this letter is 
described in Motivating the Experts Through Communication of Intrinsic 
Aspects of the Study, chapter 6). This information on the proper letterhead 
helps establish the interviewer's and the study's credentials and refresh the 
expert's memory on the project. In addition, we recommend stating this 
information to the expert, rather than just handing it to him for reading.

153



Chapter 10

Conveying this information verbally will get the interview started and ensure 
that the expert has heard the necessary information at the beginning of the 
interview.

3. The documentation format, list of question topics, or any form that 
will be guiding the questioning. These can be labeled with the interview's date 
and the expert's name or identification number prior to the interview.

4. Copies of the questions and/or background materials (references, 
charts, tables, etc.) that the expert will be using. The expert will need one copy 
and the interviewer will need another in order to follow what the expert is 
viewing or commenting on. Again, the expert's identity can be recorded in 
advance on these papers.

5. Extra pencils or papers for note taking.
6. The mechanical recording device, cassettes, extra batteries, and/or 

an extension cord. The tape cassettes can be labeled in advance with the 
expert's name and the time and date of the elicitation. This labeling is 
particularly important if an expert will be interviewed more than once on the 
same question because his thinking is likely to change with time.

How to set up for a Delphi situation
Setting up for a Delphi is different than the other two situations because its 

communications will be by mail and/or by telephone. As mentioned in chapter 7, one of 
the greatest problems with the mail survey is that it has a low response rate. It is therefore 
advisable to put as much effort as possible into communications with the expert to increase 
the chances that he will respond.

If the experts will be receiving and returning the questions by mail, the following 
need to be prepared.

1. The cover letter for the set of questions. The cover letter contains an 
abbreviated version of the letter first sent to motivate the experts to participate. 
(See chapter 6, Motivating the Experts Through Communication of the Intrinsic 
Aspects of the Study) The cover letter should be carefully composed because it 
is one of the most important tools for encouraging the experts to answer.

2. Copies of the set of questions. These are assumed to include instructions 
on how to fill out the questions, explanations of the response mode, and 
directions on how the expert judgments should be returned. If the expert's data 
is to be returned by postal mail, we recommend self-addressed envelopes with 
stamps, if possible. Self-addressed envelopes have been found to increase 
response rates on mailed surveys.

3. The names, addresses (electronic or regular mail), and telephone 
numbers of the experts. If the list of addresses is likely to be outdated, 
current mailing addresses should be verified by calling the experts.

4. Advance publicity to increase the response rate. If the experts work 
in the same organization, a brief article can be inserted into the organizational 
news bulletin or a memo can be sent from the expert's management. If the 
experts are not all in the same place, call them before sending the set of 
questions. In general, we recommend calling the experts in addition to 
publicizing the study through the use of articles and memos. Frequently, so
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much time will have elapsed between the time when the experts were selected 
and when they receive the set of questions that they will have forgotten about 
the study.

If the expert will be giving his answers to the interviewer over the telephone, the 
same things as above will need to be done, with only slight modifications. Usually with a 
telephone interview of this sort, the expert is mailed the information and then called to 
obtain his judgments. The interviewer goes through each question over the telephone with 
the expert. Please note that the telephone communication between the expert and 
interviewer should not last more than about fifteen minutes per call. As with scheduling 
interviews, the interviewer should ask the expert if it is a convenient time to talk before 
proceeding. The interviewer can use the written cover letter as a guide in introducing the 
expert to the elicitation. We do not propose that the interviewer actually read the cover 
letter over the telephone because this practice causes most people to sound repetitive and 
flat.

How to set up for an interactive group situation
Many of the support materials listed below are things that a visitor or meeting 

coordinator could assist with, if one were available. In any case, we recommend having 
the following papers and supplies ready for the experts:

1. Materials that the group moderator/interviewer will need, such as 
lists of participants, the introduction to the elicitation, copies of the expert's 
background materials and statements of the problem, the 
moderator/interviewer’s question topics, and documentation formats.

2. The mechanical recording devices, cassettes, and extra batteries or 
extension cords needed. If the sessions are to be video recorded, the equipment 
(and the experts' seating) should be set up in advance and tested. It is a good 
idea to test everything in place to determine if the machine can receive sound or 
picture from each location. The cassettes can be labeled by the meeting date 
before the meeting.

3. Name tags for the experts, especially if they are not all known to the 
meeting moderator or each other. With large groups, we recommend that the 
names be printed across each side of 8 1/2- by 11-inch papers that have been 
folded lengthwise and placed before the expert for easy viewing. If the experts 
are supposed to sit in particular seats, their name tags can be set out in advance 
to show them where to sit. Otherwise, it is very effective to present each expert 
a packet of the materials listed below and labeled by his name tag.

4. The program schedule. A general schedule includes the goals and 
deadlines. More detailed schedules include the names of speakers, topics of 
discussion, and their times. On projects where there will be presentations, we 
recommend listing the speaker, title, times of the talks, and the person in charge 
of each session. This procedure has been effective in keeping elicitation 
meetings on schedule. Please note that time overruns are sometimes necessary, 
such as when the experts are clarifying a question. The person listed as being 
in charge of the session can be asked to decide if the discussion should continue 
or if it is being unproductive and should end.
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5. The expert's copy of background materials, statements of the 
questions, and documentation formats, if the experts will be recording 
their own data. Often the experts will wish to provide current references to be 
distributed at the meetings. It is much easier to receive and copy these in 
advance of the meeting than during it

6. Refreshments. If the experts will be meeting for more than a few hours qt 
for more than one day, the use of caffeinic beverages and snacks can prolong 
their productivity. Sweet, fatty foods, such as doughnuts, should be avoided 
because of their sedating effects.

7. A list of restaurants and things to do (sights, tours, and activities), if the 
meetings will last more than a day and are being held outside of the experts' 
work places. We have found that the extra effort of treating the experts like 
VIPs is more than rewarded by their good will and favorable impression of the 
project. As a professional visitor coordinator told us, "People may not 
remember the technical content of the meetings but they will remember how 
they were treated."

8. Extra note paper and pens for the experts' use.

Tips on Conducting the Elicitations

For convenience we have divided the elicitation sessions into several parts: 
introducing the experts to the elicitation process, gathering and recording the data, and 
monitoring the session for bias. General suggestions are offered below on how to do each 
of these. However, we recommend that you use what was learned from practicing or pilot 
testing as your primary guide in conducting the elicitation.

Introducing the Experts to the Elicitation Process

This section represents step 2 in the program for handling bias, as discussed in 
chapter 3 Steps in a program for handling bias. However, the procedures mentioned below 
are so generally beneficial to the expert's performance that we recommend following them 
even if the bias program will not be used. If the program for handling bias will not be 
used, one procedure, that of briefing the expert on the biases to which he may be prone, 
can be omitted without detriment.

Make the Experts Aware of the Potential for Introducing Bias and 
Familiarize them with the Elicitation Procedures—Step 2 

HOW TO SET UP FOR AN INDIVIDUAL INTERVIEW
1. Introduce yourself, if you have not already met the expert. Give the expert 

the cover letter (mentioned in Setting up for the Individual Interview) to 
establish the interviewer's credentials. If the expert will be questioned on 
classified matters, show the expert further identification, and name a person 
known to him who will vouch for you. After the expert has glanced at the 
cover letter, quickly deliver this same information verbally. (Giving the 
information verbally ensures that all the experts will receive the same
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information, something that cannot be said of their reading it.) For example, 
we usually mention the sponsor of the study, how the expert was selected, what 
the expert will be doing, how long it is likely to take, how his data will be 
protected, and the anticipated product of the project and the expert's access to it. 
At the end of this description, ask the expert if he has any questions. Start the 
mechanical recording devices, if these are to be used.

2. Start with questions on the expert's professional background, if 
these will be asked. These simple questions will allow the expert to get into the 
flow of being interviewed and will reassure him that he is capable of answering 
later questions. Examples of these questions: How many years have you 
worked in your present position? What educational degrees do you hold? In 
what fields are your degrees?.

3. Give the expert some sample questions to familiarize him with the use 
of the response mode, if that mode is likely to be a difficult one for him.

4. Brief the expert on any biases that were identified as being likely to occur 
(chapter 8). Give the expert ideas on how he can strive to counter the tendency 
towards these biases. (The section Definitions of Selected Biases in chapter 3 
provides examples of this type of information.)

5. Give the expert the set of questions and verbally go over any 
instructions. Ask the expert if he has any questions.

6. Tell the expert that he can begin. Record the expert's beginning time if a 
record of duration of interviews is being kept.

HOW TO SET UP FOR AN INTERACTIVE GROUP SITUATION
1. Distribute the materials described above in How to Set Up for an 

Interactive Group Situation. Turn on the recording devices if these are to be 
used.

2. Introduce the meeting moderator/interviewer, the project staff, 
and the experts.

3. Review the purpose of the project, its schedule, and, in general 
the elicitation procedures for the benefit of the experts. Some 
descriptions of the elicitation procedures are as follows. You will meet together 
for this week to develop detailed statements or representations of the problems. 
On the last day, Friday, you will vote on what you think the answers should 
be. A more detailed overview of elicitation procedures is as follows. You will 
meet here three times: First, to become familiar with the project and the 
elicitation procedures; second, to present up-to-date technical information and 
refine the rough-drafted questions; and third, to give your expert judgment in 
private meetings with an interviewer.

4. Give the experts sample questions to work so that they can practice 
using the response mode. If there are any techniques to properly using the 
response mode, they can be introduced and practiced here. For example, if the 
response mode is probability distributions, Hogarth (1980:149) offers eight 
keys to assigning these.

5. Brief the experts on those biases that were identified in chapter 8 
as being likely to occur. This briefing should include an explanation of
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why the selected biases occur and of how the expert can reduce his tendency to 
introduce them. (The section Definitions of Selected Biases in chapter 3 
provides examples of this type of information.) In addition, the briefing on bias 
should include exercises that are designed to evoke the selected biases. After 
the experts have completed the exercises, the moderator/interviewer can read the 
answers and allow the experts to correct their own. These exercises can 
convince the expert that he, like everyone else, is prone to these biases. If the 
briefing is given without exercises, we have noticed that the experts are not as 
effective in countering their tendencies toward bias, perhaps because they were 
never convinced that they, too, would be vulnerable.

6. Ask if there are any questions. Afterwards, state that the introduction is 
concluded and the sessions will now begin.

HOW TO SET UP FOR A DELPHI SITUATION 
If the entire Delphi will be conducted by mail, the expert will not be introduced to 

the elicitation by the moderator/interviewer in person. Instead the expert will receive the 
cover letter and set of questions described above.

If part of the Delphi will be conducted by telephone, call the the expert to assist him 
in understanding the set of questions or just to obtain his answers. Use the items listed for 
individual interviews above as a basis for introducing the expert to the elicitation process.

Gathering and Recording the Expert Data
Using the individual interview, group interactive, and delphi 

situations. As a general rule, let this phase be guided by the results from the practice 
runs or pilot tests (as described in chapter 9). If the elicitations were not pilot tested, we 
recommend reading Common Difficulties-Their Signs and Solutions at end of this chapter 
before proceeding. Reading the section on common difficulties may prevent you from 
encountering some of them.

Using the three techniques for eliciting problem-solving data. The 
three techniques for eliciting problem-solving data—verbal protocol, verbal probe, and the 
ethnographic technique—are frequently used in combination with individual interviews. 
Occasionally two of them, the verbal probe and ethnographic technique, are used with the 
interactive group situation to gather a few sentences on how the experts solved the 
problem. Details are provided below on how to administer these techniques.

Verbal protocol. To review, verbal protocol involves instructing the expert 
to think aloud as he progresses through the problem (Ericsson and Simon 1980). For 
example, the expert is given a written copy of the problem:

What feed program would you start this colt on? The colt is 6 months, 550 lbs., has an 
average metabolism, and will receive light exercise through ponying. Please solve this 
problem as you do others that you receive in this field. Please try to think aloud as you 
work your way through the problem. Your thinking aloud is as important to me as the 
answer that you reach.

The expert's verbal protocol resembles someone talking to himself. This technique is from 
psychology. The following are suggestions for setting up to conduct the verbal protocol.
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• Place the interviewer's chair slightly behind the expert and to the 
opposite side of his handedness (i.e., for a right-handed expert, the 
interviewer is on the expert's left). There are several advantages to this 
positioning. First, the expert will not be as able to see what or when the 
interviewer is taking notes. If the expert becomes aware of what the interviewer 
is interested in, this awareness may influence, or bias, the response. Second, 
this position allows the interviewer to see, unobtrusively, what the expert is 
looking at, marking, or writing.

• Design the questions, at least initially, so that they are like those 
in which the expert has expertise. Otherwise, there is little point in using 
the expert. The elicitation sessions should be set up so they resemble, as much 
as possible, the environment in which the expert usually solves such problems. 
Otherwise, factors may be introduced into a particular elicitation session that 
change the expert's usual way of thinking and make him inconsistent. The 
sessions can be conducted in the expert's customary work place, if interruptions 
can be controlled. For instance, telephone calls can be handled by call 
forwarding.

• Obtain copies of whatever visual aids (e.g., tables, graphs, and 
equations) or references the expert will be using. This practice 
allows the interviewer to follow what the expert is viewing even when it can not 
be seen over his shoulder because of the distance and the print size. It also 
provides a hard copy for recording what the expert is looking at and marking. 
Hard copies should also be obtained if the expert is solving problems on a 
computer. In the later case, the hard copies are copies of the computer screens.

• Take notes rather than rely solely on the expert or recording 
devices. Experts are unreliable in taking notes and should not try to provide 
detailed written accounts because this activity is likely to be done at the expense 
of their thinking. Thus, not only is little data obtained but it is likely to be 
unreliable as well. Recording devices, by themselves, do not provide complete 
records. For example, they do not show the marks that experts make on their 
papers as they think. In addition, recording devices malfunction, so a backup 
copy, your’s, is likely to be needed.

• Emphasize that the expert is to work through the question rather 
than talk hypothetically about how it could be solved. Experts are 
often unaware of, or mistaken about, how they actually solve a problem. They, 
therefore, provide more reliable (less biased) information if they are verbalizing 
while they are solving the problem. The message on actually working the 
problem need only be delivered the first couple of times that you work with the 
expert.

• Stress the importance of thinking aloud when instructing the 
expert to begin solving the question. The first time an expert solves a 
question may remind him of a test situation in school. As a result, his tendency 
may be to rush through the question to give the solution. The interviewer must 
contrive to convince the expert to think aloud and must be careful not to 
emphasize the importance of verbalizing at the expense of problem solving.
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The latter alters the way the expert would normally work the problem and is 
therefore undesirable.

Example 10.1: Illustration of the Verbal Protocol

The interviewer in this example wishes to leam, in general, how the expert plans a 
feed program, what information on the horse and on the types of feed are needed, and what 
concepts (e.g., the horse’s metabolism) are considered. The expert is presented with a 
written copy of the problem:

What feed program would you start this colt on? The colt is 6 months old, 550 lbs., has 
an average metabolism, and will receive light exercise through ponying. Assume that the 
colt has normal good health.

Interviewer—Solve this problem as you do others you receive in this field. Please try to 
think aloud as you work your way through the problem. Your thinking aloud is as 
important to me as the answer that you reach.

Expert—(The expert slowly reads the question aloud.) The first thing that I’ll need to find 
out is what this colt would weigh full grown. (The expert scans some xeroxes that 
were previously copied from reference books.) Let's see, at six months and 550 
lbs., he will be about 1100 to 1300 lbs. full grown.

Next, I need to find the balance between hay and grain that I'd feed a horse of 
this age. (The expert looks at another table.). Four lbs. of hay and 8 lbs. of grain. 
However, I like to feed more hay, so I will aim for 6 lbs. of hay and 7 lbs. of 
grain.

Other constraints that I have are the amount of protein in pounds needed for a 
colt that will mature to a 1100- to 1300-lb. horse. (The expert refers to another 
table.) I'll want to balance between 1.74 and 1.89 lbs. of protein per day.

(The expert examines another chart.) I also need to balance protein in the 
overall diet to about... 14.5%, calcium to... 6%, and phosphorus to... 0.45%.

Foods that I like to feed in the diet are oats, com, and soybean meal. I also like 
a feed supplement for extra protein, Horsecharge, and alfalfa and timothy hay. I'm 
getting their percentages of protein, calcium, and phosphorus from the charts. (The 
expert ceases thinking aloud, records the percentages of these feeds, and begins 
using a calculator.)

The expert writes a list of feeds and weights and leans back in the chair, signaling 
that the exercise has finished.

• Frequently, the expert will stop thinking aloud and need 
prompting to resume. Several types of prompts are given below. 
One reason for using different prompts is to avoid repetitiveness that can be 
irritating to both expert and interviewer. Another reason is to use the most 
subtle prompt possible to remind, rather than to distract, the expert. Distraction
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can cause experts to lose their place and then solve the problem differently than 
they would have otherwise. The prompts are given in order of most-to-least 
subtle.

1. Look intendy at the expert and lean forward slightly.
2. Look at the expert, lean forward, and clear your throat.
3. State please try to think aloud.

The first prompt would be used with an expert who only needs the occasional 
reminder to think aloud. The expert perceives the interviewer's forward 
movement almost subliminally and then responds. The second prompt is 
slightly stronger because it triggers associations concerning the expert's throat 
(e.g., my throat should also be making sounds). The third prompt would be 
used on the expert who failed to notice or respond to the first two prompts.

• Generally if the expert is counting or otherwise performing 
calculations, a reminder to think aloud would be inappropriate. 
The expert could lose his place. If it is necessary to prompt the expert at this 
time, the first prompt would be better than the third. The nonverbal aspect of 
the first prompt allows the expert to note it without being distracted.

Verbal probe. To review, the verbal probe is questioning done at a 
particular time and in a specific manner. The type of verbal probe discussed here is used 
immediately after the expert has reached a solution, focuses on only one problem, and is 
indirectly phrased so as to minimize influencing the expert's thinking. For example, 
immediately after the expert has solved the problem and given the answer, the verbal probe 
is used to leam why that answer was given.

Interviewer-Why did you give that answer—that feed program?
Expert-Well, it provides the right amount of protein, calcium, and phosphorus for a

horse to grow at this age.
• If the verbal probe is used in an individual, face-to-face 

interview, set up as mentioned earlier for the verbal protocol. As a 
general rule, individual interviews are used for pursuing more detailed 
information than can be obtained in group settings.

• If there will be multiple experts in a group setting, the group 
moderator mentions, in advance, that the experts will be asked to 
provide their reasons for giving their answers. The experts should be 
asked to provide this information verbally because people, in general, do not 
provide good written records of their reasoning. Their notes are usually 
sketchy and, for this reason, more likely to be misinterpreted by the interviewer 
than their more complete verbal counterparts.

Example 10.2: Illustration of the Verbal Probe
Assume that the expert has used verbal protocol, as previously illustrated, and is at 

the point in time where the problem has just been solved. In this example, the expert will 
be asked for an answer and then administered the verbal probe to leam why that answer 
was given.

161



Chapter 10

Interviewer—What was your answer?
Expert—The diet, per day, that I would recommend for this horse is 4 lbs. of oats, 1.5 

lbs. of com, 0.5 lbs. of soybean meal, 1 lb. of Horsecharge, 4 lbs. of alfalfa, and 2 
lbs. of timothy. This is, of course, only the starting point.

Interviewer—Why did you give that answer—that feed program?
Expert—Well, it provides the right amounts of protein, calcium, and phosphorus for a 

horse to grow at this age.

• Word the verbal probe in the past tense (e.g., Why did you give 
this answer?) to emphasize your wish to know how the expert 
actually solved the problem. Some experts will begin, even after solving 
a problem, to describe how they or a colleague could have solved it. The 
interviewer's response to such a beginning should be something like: I am 
interested in your thinking and how you solved this problem.

• Check for tautological responses. Tautologies are reasons that do not 
truly provide the why information that is being sought. For example, / gave 
that feed program because it seemed right is a tautological response. Although, 
the tautology here is obvious, tautologies can be difficult to discern in an 
unfamiliar domain, vocabulary, and/or when fatigue sets in. Frequently, the 
desired information can be obtained by using the ethnographic technique to 
probe on the tautology.

Ethnographic technique. The ethnographic technique involves restating 
the expert's words into questions. For example, the ethnographic method could be used to 
probe on one of the expert's responses to obtain an operational definition that could then be 
entered into the expert program. The expert has just said that the colt's feed program may 
need to be adjusted if the colt is not keeping his weight on.

Interviewer—Not keeping his weight on?
Expert—Yes, not gaining as he should at this time.
Interviewer—At this time?
Expert—At his age, 6 months, he should be gaining between 1.5 and 2 lbs. per month.

• How the ethnographic technique is set up is usually determined by 
the setup for the other techniques used or by the situation in 
which it is used alone. For example, if the ethnographic were used with 
the verbal protocol, the verbal protocol's setup would be used. If the 
ethnographic technique is to be used by itself, no special set up would be 
needed. For example, if it is to be used on one expert at a time, it can be set up 
as a conversation would be (e.g., with the interviewer sitting adjacent to or 
across from the expert).

162



Conducting the 'Excitation

Example 10.3: Illustration of the Ethnographic Technique
The expert has just answered the verbal probe explaining why that answer was 

given. The ethnographic technique could be used either to investigate this information or 
information given earlier. Earlier, the expert had given the feed program and added. Of 
course, this is only the starting point. For the purpose of this illustration, the ethnographic 
technique will be applied to the reply to the previous verbal probe and then to the subject as 
it develops.

Interviewer—A starting point?
Expert—Yes, because the rations may need to be adjusted, if the colt is getting fat or if 

he's not keeping his weight on.
Interviewer—Not keeping his weight on?
Expert—Yes, not gaining as he should at this time.
Interviewer—What do you mean by "at this time"?
Expert—At his age, 6 months, given his expected total weight, he should be gaining 

between 1.5 to 2 lbs. per day.

The ethnographic technique was used to follow a line of the expert's thoughts to a 
detailed level where an operational definition of not keeping his weight on was obtained. 
The interviewer stepped down three levels in questioning, as shown in the figure below. 
The ethnographic technique is effective at taking the questioning to the desired level of 
granularity, in this case to a definition that would be represented and programmed. In 
another case, the ethnographic technique could be used to branch across several topics at a 
more general level.

Example 10.4: Illustration of a Series of Ethnographic Questions

\ 1) A starting point?

2) Not keeping his weight on?

3) At this time?

• Vary the length of the ethnographic questions so that they do not 
become tedious. For example, if the expert said, The books give samples 
and I start with these, a short ethnographic query would be, samples? For 
variety, a longer query would be, What samples do the books give?
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• If the ethnographic technique is used in problem-solving 
sessions, plan to use it only after the expert has reached the point 
in problem solving that satisfies the interviewing goals. Otherwise, 
the expert is likely to lose what he has in short-term memory while responding 
to questioning. Then, if the interviewer resumes questioning where the 
interruption occurred, the expert will have to guess at his previous thoughts. 
Bias can result. For this reason, the ethnographic technique is best used after 
other techniques or by itself. Occasionally, the ethnographic technique can be 
inserted during the use of another technique but only if it is asked quickly and 
not pursued to fine granularity.

Monitoring and Adjusting for Bias During the Elicitation
During the gathering and recording of data mentioned above, bias can intrude. This 

section includes steps three and four of the program that we propose for handling bias. 
The program includes the following steps:

1. Anticipate which biases are likely to occur in the planned elicitation (chapter 8)
2. Make the experts aware of the potential for introducing bias and famiharize them 

with the elicitation procedures (chapter 10)
3. Monitor the elicitation for the occurrence of bias (chapter 10)
4. Adjust in real time to counter the occurrence of these biases (chapter 10)
5. Analyze the data for the occurrence of these biases (chapter 14)

How to perform steps 3 and 4 is described below.

Monitor the elicitation for the occurrence of particular biases—
Step 3.

For many of the selected biases, there are signs that indicate their occurrence. The 
interviewer or a trained observer can watch for these signs during the elicitation. In 
general, monitoring biases, as described in this book, requires that the experts verbalize 
their thoughts and answers. Without this feedback, we have found the monitoring to be 
much more difficult.

Signs of selected biases (group think, wishful thinking, inconsistency, availability, 
and anchoring) are given in chapter 3 in Steps in a program for handling bias; Signs of 
selected biases.

Adjust, in real time, to counter the occurrence of particular 
biases—Step 4.

This step is perhaps the most delicate one in the program for handling bias because 
if done carelessly it could confuse the results and any later analyses. The interviewer needs 
to decide in advance on the timing of the adjustment because these adjustments change the 
conditions under which the data is gathered. If a condition leading to bias is corrected 
before the analyzable data has been gathered, there is no problem. If, however, the 
analyzable data has been gathered under two conditions, when bias was occurring and then 
when it was corrected, the data will be mixed. Unless the situations can be clearly
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separated, such as before and after correction of a particular bias, testing for the presence of 
this bias is not possible.

Mentioned below are some of the techniques that we have used to adjust for bias. 
In general, our approaches have been to (1) impede those factors contributing to a particular 
bias, or (2) to employ the opposite bias. For example, the interviewer's tendency to lead or 
influence the expert contributes to social-pressure bias. When using the first approach, we 
have advocated the use of elicitation methods—verbal protocol, verbal probe, and 
ethnographic technique—that curb this tendency (Meyer et al. 1989). Another example of 
this approach is focusing on the fatigue and confusion that contribute to our natural 
tendency to be inconsistent. The elicitation sessions can be scheduled to stop before the 
point when most of the experts become fatigued. The basis of the second approach, 
fighting bias with bias, comes from the grandfather of survey design, Stanley Payne 
(1951). Payne believed that all interviewing was biased and that one should therefore aim 
for equal but opposite biases. An example of this technique is to try to have experts anchor 
to their own judgments in attempts to counter a group-think situation.

Suggestions on how to adjust for selected biases (group think, wishful thinking, 
inconsistency, availability, and anchoring) are given in chapter 3 under Steps in a Program 
for Handling Bias; Suggestions for Countering Selected Biases.

Common Difficulties—Their Signs and Solutions
Difficulty: The experts resist the elicitation process or resist giving

judgments under uncertainty. We have seen this situation develop in a few 
interactive group situations, especially among engineers who were unaccustomed to 
thinking in terms of uncertainty. One of its first signs is the experts' reluctance to give 
their judgments. They may mutter amongst themselves or they may openly criticize the 
elicitation procedures and refuse to give their data.

An expert who is reluctant to give his judgment should not be forced for two reasons:
(1) he is probably not an expert in this area if he does not feel qualified to give his 
judgments; and (2) his reaction to being forced is likely to be negative and to 
detrimentally affect his view of the entire study. This reaction is illustrated by 
reviewer's statements about a study: "The participants were forced to provide 
unsubstantiated guesses as input" (Benjamin et al. 1987:F-5,6).

Solutions: In general, the solution to this problem must rest on addressing the experts' 
reasons for resistance. We recommend that the objecting experts be individually taken 
aside and asked in a pleasant manner why they are reluctant to give their judgments. 
Ask the experts separately because asking them as a group may not reveal the individual 
reasons and it may reinforce their resistance. We have been given the following 
reasons for experts' resistance: (1) that they had misgivings about an elicitation process 
that they were involved in developing, (2) that the experts did not trust the use to which 
their judgments would be put, (3) that they thought there would be new data related to 
the question and that they would they would not be able to use it in making their 
judgments, (4) that they feared that their judgments would be misinterpreted, taken out
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of context, and unfairly criticized, and (5) that they did not think they could give 
reliable estimates given the high uncertainty of the subject area.

The means for resolving this difficulty lies in addressing its underlying causes. For 
instance, if the experts implicitly feel that they did not have sufficient input into 
developing the questions as described in (1), allow them to refine the questions now. 
In addition, let them know of the design considerations and constraints that led to the 
creation of the current methods. This information will help convince them that the 
elicitation was not ill conceived and will save you from having to accept everything that 
they suggest. That is, you will be able to point out which of their proposed 
modifications would not meet the project's constraints.

The other reasons for resistance mentioned above can be similarly resolved:
If the experts do not trust the use to which their judgments will be put (2), show 

them an outline of the project report or arrange for the eventual users of their judgments 
to brief them.

If the experts were concerned about using the most current information in making 
their judgment (3), help them circulate this information before the elicitation sessions. 
Explain that their judgment is a snapshot of their knowledge at the time, that it is likely 
to always be in a state of change, and that there must be some cutoff point for writing 
up the results of the study.

If the experts were worried about misinterpretation of their judgments (4), explain 
that they will be asked to review the documentation of their judgments after the 
elicitation situations. If possible, show them an outline on how their judgments will be 
presented in the report or model.

Address the experts' doubts about giving judgments in areas of high uncertainty (5) 
by acknowledging the validity of this concern. Explain that the high uncertainty in the 
field is one of the reasons why their judgment must be elicited—that other data is 
lacking. Also summarize how the elicitation practices will help them give more reliable 
estimates.

Questioning the experts on their reasons for resistance also helps identify those 
experts who are the most vocal in their reluctance. Sometimes only one or a few 
experts are causing the rest to question the elicitation. We have found it effective to 
first address the concerns of these few natural leaders. Again, we suggest talking to 
these experts separately and privately. If you cannot resolve the leaders' concerns, you 
may be able to balance them with the positive things that can come out of the project. 
For example, one expert was very concerned that the funder of the project would use 
the expert data inappropriately, something which we could not absolutely prevent (i.e., 
people can always pull data out of context and misuse it). Aside from emphasizing the 
good that would come from the study (the opportunity for the experts to meet together, 
to pool their most current data, to identify gaps, to conduct further research, and to 
cause the field to progress), we could not completely assuage this expert's worries. 
However, we were able to convince this expert to proceed, and thus the others, by 
privately appealing to him for his assistance. We explained that he was a natural leader 
in this group, that the others were being influenced by his views, and that we needed 
him to agree to be elicited.

If all else fails, consider doing as much of the elicitation process as possible with 
one expert at a time. For example, perhaps the experts' data can be obtained from
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individual interviews rather than from group situations. In this way, you only deal 
with one uncooperative expert at a time and can be more flexible in responding to their 
individual needs.

Difficulty: The experts seem confused about what they are to do or how 
they are to do it. The experts may progress very slowly through the elicitation 
procedures and look puzzled. Sometimes it may be hard to discern if they are confused 
about the elicitation or stalling because in both cases they will be slow to provide their 
judgments. If the experts were introduced to the process by working sample questions 
and using the response mode, these exercises will provide the first evidence of their 
confusion. If they have not been given any explanation of what they are to do, then the 
existence and source of their confusion can almost be assumed. Intensive pilot tests, if 
performed, will have given some warning as to which parts of the elicitation were likely 
to cause confusion.

Solution: The first step, as in the above-mentioned difficulty, is to identify the cause of 
the expert’s reaction. The cause may stem from the general procedures for the 
elicitation, such as when the experts are to meet together and when separately for 
individual interviews; it may stem from the response mode that they are to use; or it 
may be confusion over some instructions. One of the special problems with confusion 
is that people are often unable to express what they are confused about One way of 
identifying the source is to quickly go through the information that was already 
presented and ask the expert to signal the points that are unclear. Then, it should be 
conveyed that the problem has resulted from a lack of clarity in the presentation rather 
than from a lack of understanding on the part of the expert.

We urge working with the expert until his confusion is resolved because not doing 
so can have severe ramifications. In the one situation where we saw experts pushed to 
provide data when they were confused, the experts later criticized the elicitation 
methods and raised doubts as to the data’s validity.

Difficulty: The final statement/representation of the question or the
expert's last data were not documented. The main cause of this common 
difficulty is the evolutionary quality of elicitations. The phrasing of the question often 
evolves gradually during a group session, and there is usually no special sign that 
signals its entry into its final form. Then too, in the individual elicitations, the expert 
may try to solve the question in different ways, backtracking a few times, before 
settling on a process and arriving at a final judgment. Thus, the failure to record the 
final form of the question or its solution often goes undetected-unless it is caught by 
those who worked on it. To detect this difficulty, the involved persons must review the 
documentation while their memory of this information is still sharp. We recommend 
that the interviewer request the group or the expert to review the final form while it can 
still be easily corrected.

Solution: If this difficulty is detected immediately following an elicitation session, the 
group or the expert and interviewer can update their copy using their memories. If not, 
the interviewer will have to replay the mechanical recordings to update the 
documentation. The latter is usually very time consuming and difficult because the 
communications are not as clear in retrospect as they were when they occurred.
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Difficulty: Bias may have occurred but its presence was not monitored 
during the elicitations. Bias has not usually been considered in designing or 
conducting elicitations. For the majority of studies, the possibility of bias is not 
considered until the end of the elicitation and only then because some one has raised 
this question. When the question of bias is raised so late, there are fewer options for 
detecting its presence than there would have been earlier (e.g., anticipating which were 
likely to occur and then monitoring the session for their intrusion). However, if 
sufficient data was gathered, it may be possible to test for the presence of a particular 
bias.

Solution: A detailed description of how to analyze the expert data for bias is given in 
chapter 14. If this analysis is being performed at the request of others, they may 
identify the biases that they want to test for. In our experience, people have been most 
worried about three biases: the one that occurs because the interviewee's thinking was 
led by the interviewer, the one that occurs when the expert is led by other experts, such 
as in a group-think situation; and the one that arises from a conflict of interest, from the 
expert's wishes or interests influencing his judgment. These three can be considered 
motivational biases because they arise from human needs and desires.

The data can also be analyzed for the presence of particular cognitive biases, and 
often more easily (Meyer and Booker 1989:13). For example, on one project, we 
tested for the underestimation of uncertainty (Meyer and Booker 1989). The experts 
had estimated the likelihood of achieving national magnetic fusion milestones within 
particular time periods. They gave probability estimates, such as 0.90, and ranges, 
such as ± 0.10. The experts' ranges were analyzed and found to be within one standard 
deviation of the set of probability estimates. This result indicated that the experts 
thought they were adequately accounting for uncertainty when they were only 
accounting for about 60% of uncertainty (Meyer, Peaslee, and Booker 1982).

As a general rule, we recommend that the data be analyzed for the presence of 
whatever biases are possible and that these results be included in the project report.

Difficulty: There is wide disagreement between the expert's data. Although 
differences in the expert data may not be a problem, they are frequently perceived as 
being such. Some view interexpert disagreement as an indication that the elicitation 
process failed--that it did not produce the one right answer or means of solving the 
question. However, as mentioned in chapter 1, experts can legitimately solve the 
question in different ways, and the ways that they solve the question affect the answer 
that they reach (Ascher 1978, Booker and Meyer 1988a, Meyer and Booker 1987b). 
Handling varying expert data can pose problems if this data is to be brought together 
such as in a program for a knowledge-based system or if it is to be mathematically 
aggregated.

Solutions: Before a solution can be offered, it must be determined whether there is truly 
a problem—whether the expert disagreement was caused by a weakness in the elicitation 
or by the natural differences between the experts. To answer this question, data is 
needed on the experts' problem-solving processes, in particular their definitions and 
assumptions. If the expert's questions were only loosely defined, the experts will often 
make their own definitions and assumptions in clarifying the question. In so doing, 
they can create different questions, use different problem-solving processes, and give
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correspondingly different answers. If this has happened, there is indeed a problem. If, 
however, records show that the expert's used the same definitions and assumptions 
(i.e., answered the same questions), any differences can be assumed to result from 
their use of acceptable but different means of solving the question. In this case, if there 
is a problem, it is one of perception.

If the expert's differences were found to be caused by their answering different 
questions, there is little that can be done. One option is to separate the expert’s answers 
according to the questions that they answered. Sometimes, this operation is used to 
declare the answers of one or more experts as being inapplicable to the question. That 
is, their answers differed from the rest because they answered a different question, one 
that is outside the study's selected questions. Another option is to recontact those 
experts who used the discrepant definitions and assumptions and ask them to use the 
agreed-upon definitions or assumptions and solve the question again. Recontacting the 
experts to have them solve the problem again can be very time consuming and can, 
unless carefully done, cause others to question the competence of the project staff.

If the experts legitimately differed, you may still find that you have problems-those 
of other's perceptions. Frequently, those funding the project or the outside reviewers 
interpret expert differences as a negative sign. We recommend that they be made aware 
that expert disagreement is valid and that the differences arise from variation and 
uncertainties in the experts' answers. Also, they should be provided with any evidence 
that the differences were not induced by the elicitation (e.g., the experts used the same 
definitions of the questions).

For detailed information on how to aggregate experts' answers, see chapter 16. 
Suggestions on how to integrate differing expert's knowledge is given in chapter 9 of 
Knowledge Acquisition (McGraw and Harbison-Briggs 1989).
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11
Introducing the 
Techniques for Analysis 
of Expert Judgment Data

The analysis of expert judgment data is viewed by some analysts as ad hoc at best 
and impossible at worst. There are no standard forms of modeling and analysis that are 
applicable to all types of problems in the world in general, and there are no standard forms 
for analyzing all expert judgment data. Part III, therefore, contains a compendium of 
techniques whose applications vary depending upon the design of the elicitation and upon 
the goals of the study. In this chapter (11) a detailed explanation of these techniques for 
those unfamiliar with them is provided. In the following chapters, 12 through 18, we 
mention the various statistical and computational techniques and make suggestions for their 
use.

Some statistical concepts are needed to understand the analyses and techniques 
suggested. The glossary provides basic definitions of these concepts and some discussions 
are presented below. Special attention is given below to the concepts of random 
variables and probability distributions.

Techniques are discussed in the remaining sections of this chapter. These 
techniques cover three basic areas of statistical methods: (1) simulation techniques, (2) 
data analysis techniques, and (3) Bayesian techniques. The simulation section describes 
the uses, advantages and disadvantages of Monte Carlo and bootstrap simulation 
methods. The data analysis section describes multivariate techniques such as correlation, 
cluster, factor, and discriminant analyses; analysis of variance; and a decision 
analytical tool called Saaty's method. The methods developed from Bayes Theorem and 
its applications are discussed in the third section. In all sections the descriptions are brief 
and limited to the applications for expert judgment data analysis. References are furnished 
for outside works where further details and applications can be found.

Random Variables and Probability Distributions
The basic premise for the concept of the random variable is that for all quantities of 

interest which are being measured or observed, there is a set of possible values that
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quantity of interest can assume or take on. That quantity of interest is called a random 
variable, or simply variable, and the values that it can assume come from this possible 
set. When a measurement is done, an observation is made, or a datum is gathered, the 
random variable is assigned one of those possible values. The assignment process is 
represented by a real-valued function. The function that does the assigning is a 
probability distribution function for that random variable.

Probability distribution functions (pdfs) or, more simply, probability distributions 
are nonnegative functions that allocate unit mass to points on the real line. The two 
properties of pdfs are that each value of the pdf is greater than or equal to zero and that the 
area under the entire curve is equal to 1.0. In terms of probability, the interpretation of 
fiX) is not the frequency or probability of x, it is the probability per unit interval of a small 
increment of x, dx.

An easier probability interpretation is available by accumulating the areas under the 
curve of the pdf for a range of values of the random variable. The function resulting from 
such an accumulation or integration is the cumulative distribution function or cdf. The 
notation for the cdf is F{x), and the interpretation for F{x) is the probability that X<x. In 
other words, the cdf gives values for the probability that the random variable is less than or 
equal to a value of the random variable.

The pdf and cdf have the following relationships. The cdf is the integral of the pdf. 
The pdf is the derivative of the cdf. Therefore one can be calculated from the other using 
calculus.

Examples of random variables are (1) the probability of an event, (2) the failure rate 
of a component, (3) the amount of time to repair a component, (4) the time to failure of a 
component, (5) the number of failures for a component, (6) the age of an expert, (7) the 
colleagues working with the expert, (8) the rank of one alternative relative to another, (9) 
the odds of winning a race, and (10) just about anything else that is determined in an 
experiment, an observation, an elicitation, or other data-gathering process. The symbol for 
a random variable is usually a capital letter such as X. The values that X can have are 
genetically listed as x.

Examples of probability distribution functions are (1) the normal, Gaussian or bell­
shaped curve with one mode (hump) at the center and with half of the curve cut at the 
mode forming an exact mirror image of the other half; (2) the lognormal distribution with 
the log(X) distributed as a normal and with a single mode shifted to the left (skewed right) 
such that the right tail is long and drawn out; (3) the beta distribution with possible values 
of X restricted to the range of 0 to 1.0 and with many shapes possible such as U-shaped, 
horizontal line, decreasing curve, skewed right curve, and bell-shaped curve; (4) the 
uniform with the equal probability assigned to each value of X such that the distribution is a 
straight, horizontal line; and (5) the exponential with the values decreasing in a decay 
function shape. The symbol f(x) is used to denote the distribution function and to 
designate the value of that function atX=x.

To this point, the pdfs and random variables discussed are continuous pdfs and 
continuous random variables. This means that x andf(x) can be any value along the real 
number-line. For random variables that can only take on a finite number or discrete 
number of possible values, the corresponding pdf is a discrete distribution function. For 
discrete distributions, the value of the function is the probability that X =X, Pr(X=jt).
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Cumulative distribution functions for discrete distributions are found by summing all the 
probability values rather than by integration.

Examples of discrete distribution functions are the binomial and the Poisson 
distributions. The binomial characterizes the number of success as x in a given set of n 
trials where each trial has the probability of success as p. The Poisson characterizes the 
number of occurrences (failures), x, in a given, fixed t units of time where the failures are 
independent and at a constant rate, A.

Descriptions and Uses of Simulation Techniques
With the availability of fast and personal computers, the use of simulation 

techniques has recently grown. New data sets can be formed from the original data set 
(bootstrap simulation) or from specified distributions representing the data (standard 
Monte Carlo simulation). Both are useful in gaining new insights about the data set and 
for forming estimates that might not be available.

Monte Carlo Techniques

What is Monte Carlo simulation?
Traditional simulation, as described here, is often referred to as Monte Carlo 

simulation. The basic idea is to form new samples or distributions of data either from 
existing samples or from specified distributions. The formation process is done by 
randomly selecting values from the existing samples or specified distributions, making 
some calculation, performing this several hundred or thousand times, and collecting the 
hundreds or thousands of calculated values into a table or distribution for inference 
purposes.

The following steps illustrate how to perform a simple Monte Carlo simulation to 
solve a problem that has no tractable mathematical solution. The steps may be summarized 
as follows:

Step 1: Determining the desired quantity to be estimated.
For example, the product of two random variables is desired. Each variable has a 

specified distribution; however the product of these distributions is not in a closed or 
known form.

Step 2: Determining the distributions from which sampling is
done.

For example, each of two random variables is distributed as normal-one with mean 
0, variance 1 and the other with mean 1, variance 0.5.

Step 3: Finding or code a computer program that randomly 
selects a value from each of the specified distributions from step 2.

A random number generator is needed to randomly select values, and an algorithm 
is needed for mapping that value onto the specified distributions. Many such codes are
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available. In appendix B, a code is given that selects values from beta distributions. In 
appendix C, a code is provided that forms empirical, or data-based, distributions for 
simulation. For a more complete guide on simulation techniques see Ripley (1987) or 
Johnson (1987).

Step 4: Determining the number of samples, N, to be taken.
With most modern computers, 1000 samples is not too expensive or time 

consuming and gives accuracies for nearly two decimal places.

Step 5: Constructing a program for taking the N samples.
For each sample, the random values are chosen and mapped onto the function or 

distribution. The desired quantity (e.g., the product of the two normals from step 1) is 
then calculated. Upon completion of the N samples, there will be N values of the desired 
quantity.

Step 6: Collecting the values of the desired quantity for making 
inferences.

The N values of the desired quantity form a distribution of possible values for that 
quantity. Estimations are possible using this distribution. For example, estimates for the 
mean and the variance of the products of the two normals are available. First, the 1000 
(iV=1000) values for the 1000 products of two normals are collected and ordered. The 
mean of these 1000 values is the estimate of the desired mean quantity, and the variance of 
these 1000 is the estimate for desired variance quantity. Percentiles are also available from 
this distribution. Sometimes the interest is purely in the resulting distribution rather than in 
an estimator (such as a mean, variance, or percentile). Quantities of interest in the 
resulting distribution are the shape, center, tails, spread or range, and modes (humps).

Example 11.1 uses Monte Carlo simulation in a reliability analysis application.

EXAMPLE 11.1: Monte Carlo Simulation
The reliability of a component, r, is often characterized by the beta probability 

distribution function:

where the parameters n - x and n are interpreted from the number of component failures, x, 
in n trials, and B is the beta function (Martz and Waller 1982).

For a system composed of two components, r\ and r^, in series, the system 
reliability is the product of the reliability functions. If the reliability function for each 
component is distributed as a beta distribution, then the system reliability is the product of 
two beta distributions. Simulation is used to find the distribution of this product that 
represents the system reliability.

It is known that the first component failed in four out of seven trials; therefore, jci = 
3 and n\ = 7. There is no data on the second component, but an expert estimates that its 
average reliability is 0.90 and that a 95th percentile value for the reliability is 0.99 (i.e.,
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there is a 5% chance that the reliability is greater than 0.99). The parameters of the beta 
with that mean and 95th percentile are *2 = 11.7 and n2 = 13.0. The notation for this beta 
is beta (x,n-x) or, in this case, beta (11.7,1.3). These parameters are found using the code 
in appendix B.

Comparing the two components, the reliability of the first is much worse than the 
second. Their beta distributions below reflect this:

Beta 1

Beta 2

Using the steps for simulation, the system rehability was determined:
Step 1: The desired quantity is the product of the two reliabilities, ri • r2.
Step 2: The reliability for component 1 is distributed as a beta (3,4), and the 

reliability of component 2 is distributed as a beta (11.7,1.3).
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Step 3: A computer code was written using a uniform random number generator 
to select values of r\ and r2 from the two betas.

Step 4: The chosen value of N, the number of samples, is 1000.
Step 5: A computer code was written to determine the random values of r\ and r2 

from their respective beta distributions. A uniform random number generator 
chooses a random value for the probability of the reliabilities of r\ and T2. The 
code determines the values of r\ or r2 by mapping the chosen probabilities 
through each beta distribution. This is an inverse process; i.e., the probability 
values for the beta are chosen as random numbers; then they are mapped 
through the beta function to determine the reliability value, r. This is done for 
r\ and again for r2 in each of the N samples. In each sample, the chosen value 
of n is multiplied by the chosen value of r2. The code for the beta sampling 
and simulation is given in appendix B.

Step 6: The 1000 product values are stored and sorted. They are plotted to 
indicate the shape of the system reliability distribution. The results follow:

The mean of this simulated distribution is 0.36 
The standard deviation is 0.16 

The 5th percentile is 0.12 
The 95th percentile is 0.65

Beta 1 • Beta 2

Therefore, the system reliability is not very good. It is dominated by the poor reliability of 
the first component.

The product of two beta distributions does not usually produce a known type of 
distribution function. However, research (Bruckner and Martz 1987) indicates that this 
final distribution is not too far from being in the beta distribution family.
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Advantages and disadvantages
The major advantage of Monte Carlo simulation is that it allows the analyst to 

determine estimates of desired quantities that would be either impossible or extremely 
difficult to determine by theory or mathematical computation. (Some analysts rely on the 
phrase, "when in trouble, simulate!") This major advantage is very important in risk 
analysis and reliability applications where many system components interact, but the 
performance of the entire system is needed for study. It is also advantageous for 
uncertainty calculations where uncertainties are often characterized by distribution functions 
and these functions are combined to determine the uncertainty of a larger system.

Monte Carlo simulation, especially the sampling and collecting steps, is relatively 
easy to program. Many such programs already exist, and most computers have random 
number generators available.

Simulation is a tool for increased understanding of the data. Many times new 
features in the data can be identified. Through simulation, sensitivity studies can be done 
to determine which characteristics or components are most important to the system.

The disadvantages of simulation are related to the advantages listed above. 
Programming can be difficult if complex distributions are required or if packaged 
distribution programs are not available. Bad random number generation or improper use of 
sampling techniques can wildly distort results. Care is needed in programming and in the 
use of packaged routines.

Simulation can be expensive and consume computer time. However, that is less of 
a problem today than it was even 5 or 10 years ago.

Uses for Monte Carlo simulation
Widespread use of this technique can be found in risk and reliability studies. As 

mentioned above, in these studies there are a large number of components (random 
variables) comprising a system, and system behavior is required for making inferences. 
Each component can affect the system or other components. The result is a complicated 
expression describing the system behavior in terms of the various components.

In addition, each component may have a behavior that is random or uncertain in 
nature. In this case, each component can be characterized by a probability distribution 
function. The system is then a complex combination of these component distribution 
functions. This is the type of situation where simulation provides a way of obtaining 
information about the system. This situation also describes how simulation can be used in 
an environment characterized by uncertainties (chapter 17 gives more details on this).

Monte Carlo simulation is the backbone of other data-based analysis techniques, 
such as the bootstrap. These techniques have there own advantages such as uses for 
exploratory data analysis and the handling of small sample-size problems.

Bootstrap Sampling and Estimation

What is the bootstrap?
One of the more recent developments in the simulation community is the increased 

use of empirical distributions. Empirical distributions are distributions resulting from the 
original data set. Constructing distributions from the data without making assumptions
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about the form of the distributions (e.g., that the data is distributed as a normal) falls under 
the general heading of nonparametric techniques. Because the original data is used over 
and over again in a simulation method, construction of empirical distributions is often 
referred to as resampling techniques. Both descriptions apply to the technique known as 
the bootstrap (Efron 1979).

Advantages and disadvantages
The bootstrap has the advantage of relying solely on the original data itself without 

assuming that the data follow a particular probability distribution. Bootstrap simulation 
allows the formation of distributions of any desired quantity (such as the sample median). 
The resulting simulated distribution of that quantity provides estimates of the variance and 
percentiles of that quantity. Statistical biases resulting from the bootstrap estimation 
process are possible but are also estimable. (Statistical bias means that the expected value 
of the estimated quantity does not equal the parametric or theoretical value.) The extremely 
small samples that are common in expert judgment data are troublesome with many 
techniques, parametric or nonparametric. However, the bootstrap does reasonably well for 
smaller samples (Efron and Gong 1983).

The major disadvantage of the bootstrap technique is that the formation of samples 
in the simulation is limited to the range of the original data. This limitation tends to form 
empirical distributions with truncated (chopped off) tails (at both ends). Another caution in 
using the bootstrap deals with a statistical bias that may be induced in the estimation 
process. That is, the bootstrapped value for a chosen estimator may not be unbiased. 
However, the statisical bias can and should be monitored as part of using the technique.

Uses for the bootstrap
In general, the bootstrap technique is used for providing estimates of parameters 

that would normally be obtained by assuming a distributional form of the data or of the 
parameter. The bootstrap avoids the necessity of these assumptions and therefore can be 
used in any application or problem setting. In expert judgment problems, its use is ideal 
because information regarding distributions of expert judgment data is lacking. The 
bootstrap is also useful for the small sample sizes that are usually found in expert judgment 
applications.

In this book, the bootstrap will be used in three different ways. First, it will 
provide ways of investigating the correlation structures and biases (motivational and 
cognitive) in the data. Second, it will be used as a simulation method to characterize and 
analyze uncertainties in the experts' estimates. Finally, it will provide a convenient way for 
aggregating the multiple expert's estimates into a single estimator and corresponding 
distribution.

How to implement the bootstrap
The implementation of the bootstrap is easily done on any programmable computer 

or calculator. The original sample data, that is, the responses to a single question, is 
denoted as {xi, xi,..., xn) for the n experts. The parameter to be estimated is denoted by
9. Then the estimate of 9 from the bootstrap results will be 6. A simulation is done by 
randomly forming many samples, N, (usually of the original size, n) from the original data.
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The samples are formed by replacing sampled data points back into the original data set so 
that they can be sampled again. In other words in forming the first sample, if *3 is chosen 
at random, it could be chosen at random again, appearing twice in the same sample. This 
method is called sampling with replacement. The basic idea of the simulation is to calculate 
the estimate of 6 for each sample formed. The various values of ©denoted as 6j (j = 1,2, 
..., N), are then ordered to form an empirical distribution for 6 in the same manner that the 
resulting distribution of values is formed in Monte Carlo simulation. The following steps 
summarize the bootstrap technique.

Step 1: Determining the desired quantity to be estimated,
estimator

For example, the estimator or quantity of interest is the sample median of a sample 
of size n.

Step 2: Deciding on the number of bootstrap samples to be
taken, N

One thousand will usually give an acceptable standard error (to within two decimal 
places.)

Step 3: Forming of N random samples of size n from the original 
data by sampling with replacement (replacing each sampled value back into 
the data set so that it is available to be chosen again)

Step 4: Doing N times: Calculate the desired estimator for each 
sample (e.g., the median)

These individual estimators are 6j.

Step 5: Calculating the overall bootstrap estimator of 6, 9 using

N ~- x*

Step 6: Calculating the standard error of the estimator, a, using

~ N ~ ~ "|l/2

Step 7: Ordering the N estimates of 0 j to find (l-2a)% putative 

central coverage intervals for 9

These intervals represent the central (l-2a)% area of the bootstrap distribution. In 
the case of the median, for a = 0.5, then this area corresponds to the middle 90% of the 
median values generated in the N bootstrap samples.
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A

Step 8: Finding the two values of the 6 j that correspond to the 
a% and (l-a)% in the ordered list

____  A A

These two values, 0 (a) and d (1-a), are the a-th and (l-a)-th percentiles of the 
bootstrap distribution for 0, and they form the (l-2a)% putative central confidence 
interval.

Step 9: Calculating the statistical bias induced by the bootstrap 
technique by calculating the value of 0 from the original sample, do

Statistical bias in the technique is the difference between the value of the estimator
A A

calculated from the original sample, Oq and 9 calculated from step 5. If the bias is large 
(more than 10% of either of the two values), then the use of the bootstrap technique might 
not be appropriate.

These steps are easily programmed into a code. A FORTRAN version is included 
in appendix D, and an illustration of this code is given in example 11.2

EXAMPLE 11.2: Bootstrap Simulation
Fourteen experts provided value estimates for a quantity on a continuous linear 

scale from 0 to 1:

(0.07, 0.50, 0.28, 0.63, 0.95, 0.70, 0.62, 0.70, 0.58, 0.78, 0.4, 0.68, 0.43, 0.60)

If the data are plotted, it can be seen that the distribution of these values is not 
symmetric. The median is a commonly used aggregation estimator to represent such 
asymmetric data. The median of this data is 0.61. However, since the exact form of the 
distribution of this data cannot be assumed, there is no available estimator for the variance 
of the median. The bootstrap sampling method provides such a variance estimate, and 
more.

Following are the steps outlined in the bootstrap method:

Step 1: The parameter of interest is the median.
Step 2: One thousand bootstrap samples will be taken.
Step 3: One thousand random samples of size 14 were taken from the original set 

of data using the bootstrap code in appendix D.
Step 4: To form each sample, 14 data points were selected from the original set, 

with replacement; e.g., a single value could be chosen more than once in a 
given sample. For each sample, the sample median was calculated; therefore, a 
set of 1000 medians resulted.

Step 5: The average of these 1000 medians was 0.597.
Step 6: The standard deviation of these 1000 medians was 0.058.
Step 7: The 1000 medians were sorted in order.
Step 8: To form the 90% putative interval for the median, the 5th and 95th 

percentiles were calculated by finding the 50th and 950th values from the 
ordered median set. These values were 0.465 and 0.680, respectively.
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Step 9: The bias is 0.610 - 0.0597 = 0.013, which is less than 10% of either 
value, making the bias induced by the bootstrap method acceptable.

Thus the median is 0.597 with a variance of 0.003, and the 90% putative intervals 
for the median are 0.465 to 0.680. This forms a complete description of the chosen 
aggregation estimator for this data set.

Descriptions and Uses of Data Analysis Techniques 
Multivariate Techniques

Multivariate analysis techniques refer to statistical methods designed for the 
analysis of data sets with many random variables (multivariate). Most data sets are 
multivariate in structure; however, the study of the possible variate relationships is often 
ignored or assumed without analysis. In such cases important results are not considered in 
drawing conclusions.

The variates are of two types: (1) answer, response, or dependent variates, 
and (2) ancillary, conditional, or independent variates. The names differ, but the 
relationship between these two types is the same; the independent variates are measured or 
fixed variables that influence or are functionally related to the dependent variates. The 
independent variates are usually thought of as variables that can be controlled by the analyst 
in the data-gathering process, and the dependent variates are usually thought of as variables 
that are unknown and uncontrolled and are the values being gathered in the study. The 
dependent variables are dependent upon the independent variables.

Correlation analysis
Correlation refers to the linear relationship between two variables. If the two 

variables have values that are completely identical, their correlation is 1.0. A graphical 
interpretation is that if the values of the two variables are plotted and they fall exactly on a 
line with positive slope, then the correlation is 1.0. If the values fall exactly on a line with 
negative slope, then the correlation is -1.0. In most applications, the values do not all lie 
exactly on a line. Instead the values of the two variables form a general scatter with either a 
positive trend, negative trend, or no trend. For these cases the correlation is near 1.0, near 
-1.0, or near 0.0, respectively. The closer that the correlation values are to 1.0 or -1.0, the 
stronger the linear relationship between them is.

The most common measure of correlation uses the Pearson product-moment 
correlation coefficient, r. For two variables, x and y, that coefficient, r, is calculated by

r = Z(x-x)(y-y)
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where x and y are the mean values of x and y, and the summations are overall values of x, 
y, and xy pairs. Example 11.3 illustrates how the correlation coefficient is calculated.

EXAMPLE 11.3: Correlation Analysis
The following answers to two questions were elicited from 10 experts. Are the two 

answers correlated?

Exnert Answer LA i Answer 2. A o

1 0.10 0.15
2 0.05 0.00
3 0.15 0.20
4 0.11 0.10
5 0.10 0.12
6 0.14 0.10
7 0.00 0.05
8 0.00 0.10
9 0.15 0.20

10 0.09 0.09

Ex = 0.89 Ey = 1.11
Ex2 = 0.11 Ey2 = 0.16

Exy = 0.12

A calculator formula for the correlation coefficient is

r =_______Exy - ZxZy/n_______ 0.12-0.89*1.11/10
^[ExHmynl ^[ZyHZy)2/n\ V(0.11-0.892/10) • V(0.16-l.ll2/10)

Using the above values, r = 0.64. For 10 experts (n=10), an r value greater than or 
equal to 0.63 is considered different from r = 0 (no correlation) using a 5% level of 
significance. Therefore, this x, y relationship is strong (significant at 5%) and is 
positive in nature (as x increases, y increases). Tables are available in most statistics 
books indicating the cutoff values for r for various significance levels and sample sizes.

Other correlation measures exist, such as nonparametric ones based on ranks and 
agreement between x, y pairs. For the Pearson correlation, if the data for x and y are 
normally distributed, then a zero correlation can be interpreted as x and y being two 
variables that are statistically independent. More discussions on the correlation or 
dependence of variables are available in chapter 14.
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Cluster analysis
Clustering refers to the grouping structure of the data. Clusters can be formed as 

(1) how the values from a single variable (quantity of interest) are grouped, or (2) how the 
different variables are grouped. The groups are formed based upon how closely related the 
values or variables are to each other. Cluster analysis traditionally refers to methods of 
determining how the values of one or more variables can be grouped together. Most 
methods form hierarchical clusters - beginning with all the data in one cluster, splitting it 
into two, then three, etc., until each datum forms its own cluster.

Cluster forming is determined by many different methods (Duran and Odell 1974). 
Basically, the methods compute and then compare some measure of the distance between 
clusters. For example, some methods form clusters by maximizing the distance between 
cluster means. If the squared Euclidean distance is used, then the method is the centroid 
method. Other methods, called linkage methods, form clusters by maximizing distances of 
individual observations in the clusters. Still other methods minimize variances to determine 
clusters.

For a multivariate data set, clusters formed by grouping similar variables are of 
interest Variable cluster analysis uses the correlation or covariance matrix of the variables 
to determine the clusters of the variables. Again, many techniques for variate cluster 
determination are available.

In either the data or variable hierarchical clustering, the clustering process by the 
various methods begins with the formation of one large cluster and ends with each 
observation or variable in its own cluster. It is up to the analyst to decide which set of 
clusterings between these extremes is to be used for interpretations and conclusions. Many 
packaged programs provide graphical trees to aid in this decision. The distance 
measurements are plotted against the cluster groupings to help determine which grouping to 
use. Example 11.4 illustrates how this is done using the SAS® software for data and 
variable clustering.

EXAMPLE 11.4: Cluster Analysis of Variables and of Data 
The following data was gathered on 11 experts.

YRSEXP
YRSED
YRSJOB
DEGAREA
EXPAREA
ANSWER

total years of professional experience
total years of college education
number of years on the current job/project
code (1-3) for discipline of highest degree/education
code (1-5) describing major area of experience
answers to the question on a continuous number scale [0,1]
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Exnert ANSWER YRSEXP YRSED DEGAREA YRSJOB. EXPAREA

1 0.11 6.00 4 1 0.75 5
! 0.1! 4.50 6 ! 1.00 5
3 0.90 8.50 8 3 l.!5 5
4 0.78 3.00 6 3 !.!5 4
5 1.00 5.00 6 2 3.00 5
6 0.17 4.75 5 2 1.00 4
7 0.14 4.!5 6 2 3.!5 3
8 0.83 5.00 6 2 3.00 3
9 1.00 7.00 6 2 !.50 2

10 0.88 8.25 7 1 3.00 2
11 0.!0 4.00 5 1 1.00 1

I: Cluster analysis of all six variables
Cluster analysis of the six variables indicates the following cluster formations. 

Each formation is based on the proportion of variance explained by the clustering—the 
higher the proportion, the tighter the individual clusters and the larger the separation 
between clusters.

Proportion of Variance Cluster Formation

0.37 All 6 variables in one cluster

0.63 YRSEXP YRSED YRSJOB ANSWER Cluster 1
DEG AREA EXP AREA Cluster!

0.76 YRSEXP YRSED Cluster 1
DEG AREA EXP AREA Cluster!
YRSJOB ANSWER Cluster 3

0.85 YRSEXP YRSED
EXPAREA 
YRSJOB ANSWER 
DEGAREA

Cluster 1 
Cluster ! 
Cluster 3 
Cluster 4

The decision of which cluster formation to use can be based upon the proportion of 
variance values. The proportion is doubled from the all-in-one cluster formation to the 
two-cluster formation. This increase makes the two-cluster formation an attractive choice. 
The remaining formations do not indicate as great a change in the proportion.

Cluster interpretation is just as important as deciding which cluster formation to 
use. If the clusterings in a particular formation do not make sense, then using that 
formation makes no sense no matter how good the clustering is (in this case, how large the 
proportion of variance is). In the example, the two- cluster formation does make sense. 
Cluster 1 contains the years-related variables and the answer. Cluster ! contains the
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variables related to the experts' areas. Based on interpretation and proportion of variance, 
the two-cluster formation is the logical choice.

II: Cluster analysis of the experts using the answer variable
It is notable that the answers given by these experts cover the entire available range 

on the offered number-line from 0 to 1: some experts are high, and some experts are low. 
A cluster analysis on the answer variable can be done in a number of different ways. One 
way is to use only the answer variable itself, disregarding the other variables. Another way 
is to use the other variables to help determine how the answers cluster. Yet a third way is 
to use a subset of the other variables. A natural choice for such a subset would be the set 
of variables that provide similar information about the answers. From the above variable 
cluster analysis, this subset would include the three variables describing the number of 
years for various items.

Again, a number of viable cluster formations results from the cluster analysis of the 
answer variable. Criterion, such as distance measures between clusters, can be used to 
determine which formation is a logical choice. Again, logical or reasonable interpretation is 
equally important.

Only the answers are used to determine the following cluster formations from an 
analysis based on the centroid method. The expert numbers are listed, and the centroid 
distances are listed for the different cluster formations.

Cluster Formation Centroid
_______________ (clusters are connected by underlines!____________ Distance

5 9 3 10 4 8 1 2 7 6 11 1.33
5 9 3 10 4 8 1 2 7 6 11 0.27
5 9 1 2 7 <? 11 3 10 4 8 0.15
5 9 1 2 7 6 11 3 IQ 4 8 0.11
5 9 1 2 7 6 11 3 10 4 8 0.09
5 1. 2 J. $11 2 4 8 0.05
5 9 1 2 7 3 10 6 11 4 8 0.04
5 9 1 2 3 1Q 7 6 11 4 8 0.04
5 3 10 7 6 11 4 8 0.02
5 9 1 2 3 10 7 6 11 4 8 0.00

The greatest change in the distance measure is from the single-cluster formation to 
the two-cluster formation. This change delineates the major division between the high- 
answer experts and the low-answer experts. All other cluster formations differ very little in 
the distance measure and do not have any better interpretative value.

Ill: Cluster analysis of the experts using three variables 
A cluster analysis on the answers was performed including the three variables 

describing years of items. Again, the centroid method was used, and the distance measures 
were used for cluster formation determination.
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Cluster Formation
^clusters are connected bv underlines)

Centroid
Distance

5 4 8 7 6 11 2 1 9 1Q 3 1.14
5 4 8 JZ $ 11 2 SL 10 3 0.84

4 JL JL JJ 2 2 -JO 2 1 0.70
4 8 7 0 11 2 9 _iQ 1 2 0.63

5 4 7 6 11 2 9 10 1 2 0.59
2 Z 0 £ _IQ 1 2 4 0.51
8 7 6 11 2 1 2 4 9 IQ 0.34

11 2 I 2 4 7 9 10 0.31
£ 1I. 1 2 2 4 1 £ IQ 0.23

5 Jl 1 2 2 4 0 7 9 IQ 11 0.05

These cluster formations are different from the ones in part II of this example. The 
reason for this difference is that the information from the other three variables is being used 
to determine clusterings. The new information forms clusters differently from those 
formed using just the answers.

Again, there is a substantial change in values from the single-cluster formation to 
the two-cluster formation. This change indicates that the two-cluster formation is 
reasonable. However, the experts in these two clusters do differ from those in the two 
clusters in part II. This discrepancy indicates that the three added variables make a 
difference in the results. For this example, other modeling is indicated to use the other 
variables in combination with the answer variable. Chapter 15 discusses model formation 
and uses. However, valuable information has been gathered from the cluster analyses 
about variable relationships. Cluster analysis can be a useful tool for such investigation.

Factor analysis
A related method to variable clustering is factor analysis. Factor analysis analyzes 

the relationships among a set of variables through their correlation and covariance to 
determine what information is shared among subsets of the variables (common factors) and 
what information is unique to each variable (unique factors). A common factor is an 
unobserved, imaginary variable that shares information with (or contributes to the variance 
of) at least two of the original variables. A unique factor is an unobserved, imaginary 
variable that represents information from only one of the original variables. It is assumed 
that all the unique factors are uncorrelated with each other and that the unique factors are 
uncorrelated with the common factors.

Factor analysis can be done using many different methods. Some methods rely on 
the use of principal components (Kshirsagar 1972). Other methods use least squares 
methods or maximum likelihood techniques. Still others formulate scores that are based on 
correlations. There are many ways of transforming the variables, called rotation, so that 
the formation of the common and unique factors is both optimized and logical. Example
11.5 illustrates the principal factor method for an unrotated set of variables.

It is not recommended that factor analysis be used casually. To select the proper 
factor method and use of rotation requires experience and knowledge of the various factor
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methods. To interpret the results requires even more knowledge. Only if the variable set 
has a good underlying stracture can a simple factor analysis reveal important information. 
A successful result can then be used to reduce a large number of variables to a smaller 
number of variables containing the common factors. However, in most applications, the 
(common) factors produced are not interpretable and are useless.

EXAMPLE 11.5: Factor Analysis
A principal components factor analysis using SAS® was done on the set of six 

variables from example 11.4. The (common) factor loadings listed below indicate how 
each variable maps onto each factor. A successful result would be for each variable to map 
nearly completely (e.g., 0.8 or greater) onto one factor and for the set of factors to be much 
smaller than the original number of variables. Then success must also be measured in the 
interpretation. Can meaning be attached to each of the factors based on the variables that 
constitute (load onto) them? This is the same problem faced in interpreting the results of a 
cluster analysis.

The principal components factor analysis resulted in six factors for the six 
variables. This result does not indicate that a successful reduction in the number of 
variables is possible. Each factor represents a portion of the original variation of the six 
variables. Examining these portions can help determine which factors are the most 
important:

Factor
1 2 4 6

Portion 0.42 0.25 0.18 0.08 0.05 0.02
Cumulative 0.42 0.67 0.85 0.93 0.98 1.00

The first three factors account for 85% of the variation. While 85% of the variation 
would be considered very good for one factor and good for two factors, it is not a good 
result for three factors.

The six variables map or load onto these three (common) factors as follows:

Factor
1 2 3

ANSWER 0.88 -0.13 -0.06
YRSEXP 0.56 -0.20 0.79
YRSED 0.90 0.10 0.13
YRSJOB 0.60 -0.43 -0.54
EXPAREA 0.02 0.88 0.16
DEGAREA 0.53 0.71 -0.33

This mapping of the variables is not very good. ANSWER loads well onto the first 
factor, and so does YRSED. EXPAREA loads well onto the second factor. However, 
YRSEXP, YRSJOB, and DEGAREA spread their loadings over all three factors. If an
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interpretation were attempted, the first factor would represent some combination of 
ANSWER and YRSED, the second factor would represent the two AREA-type variables, 
and the third factor would represent some combination of YRSEXP, YRSJOB, and 
DEGAREA. Such an interpretation is not very clear. Thus, this example would not 
represent a successful factor analysis. For a more successful analysis, see chapter 15 on 
model formation.

Discriminant analysis
In cluster analysis, variables could be clustered, or observations based on variables 

could be clustered. Discriminant analysis determines how well other (ancillary or 
independent) variables predict the classifications or groupings described by the dependent 
or classification variable. If the ancillary variables do a good job of determining the 
classifications of the dependent variable, then they can be used to predict into which class 
or group that a new observation (a new value of the dependent variable) will fall.

A discriminant function is calculated from the predictor variables based on the 
distances between classes and the variation within classes. The theory is based on the data 
for the variables following a multivariate normal distribution. This assumption is highly 
restrictive. It is unlikely that the data from any expert elicitation would be multivariate 
normal. Therefore, this method is offered as an exploratory data analysis and premodeling 
tool. It is only a means to other analyses, and not the sole analysis tool. Example 11.6 
illustrates how discriminant analysis can be useful.

EXAMPLE 11.6: Discriminant Analysis
The eleven experts from examples 11.4 and 11.5 were asked to make 

recommendations based on the answers (scaled 0,1) they gave. The recommendations (1- 
4) were given as follows:

Expert Recommendation

1......................... ......... 1
2-—....................................................—1
3-.........................-4
4 ........ 3
5 ----------------------4
6 -------------------------- 2
7 ---------------------- 1
8 ----------------------3
9 ------------ .4

10 ------------- 4
11 ---------------------2

It is hypothesized that the original answer variable and some of the other variables 
might be good discriminators in determining the recommendations. A discriminant analysis 
was done. The results of this analysis indicate whether the six other variables are good
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discriminators if they properly classify the recommendations into the four classes. A 
discriminant function for each class is calculated using the six other variables. These 
functions are used to determine the existing classifications and are also used to predict 
classifications of experts who did not make the recommendation but provided information 
on the six variables.

The classification was a success based on the following results:

Predicted Class
Expert Recommendation Based on Variables

1 ---------------------------- i
2 --------------------------- l
3 --------------------------- 4
4 --------------------------- 3
5 --------------------------- 4
6 --------------------------- 2
7 ----------------------------i
8 --------------------------- 3
9 --------------------------- 4

10 -------------------------- 4
11 -------------------------- 2

1
■1
■4
■3
■4
■2
■1
■3
■4
•4
■2

No misclassifications occurred. The discriminant functions for the classes are as 
follows:

Recommendation 1 = -109.2 + ANSWER • 382.6 + EXPAREA • 9.2 +
DEGAREA * -14.0 + YRSED • 19.2 + YRSEXP • 9.0 + 
YRSJOB • 5.0.

Recommendation 2 = -107.8 + ANSWER • 483.0 + EXPAREA • 7.5 +
DEGAREA • -14.4 + YRSED • 20.2 + YRSEX • 8.3 + 
YRSJOB • 1.5.

Recommendation 3 = -611.1 + ANSWER • 1145.9 + EXPAREA • 15.2 +
DEGAREA • -32.0 + YRSED • 43.3 + YRSEXP • 17.7 + 
YRSJOB • -1.4.

Recommendation 4 = -908.1 + ANSWER • 1398.8 + EXPAREA • 18.4 +
DEGAREA * -40.6 + YRSED • 52.4 + YRSEXP • 22.7 + 
YRSJO • -2.5.

The main result from this example is that the recommendations given are functions 
of the values of the other six variables. A careful look at the recommendations versus the 
answer variable reveals that there is a very strong positive correlation between them. This 
correlation is reflected in the above discriminant functions as well.
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Discriminant analysis assumes a multivariate normal distribution for all the 
variables. It is likely that this assumption is not valid for expert judgment data. Therefore, 
this technique should only be used as an exploratory analysis tool to gain information about 
the variate relationships. Results from the discriminant analysis should be cross validated 
by the use of other analysis and modeling tools as described in chapters 13,15, and 18.

Analysis of Variance
Analysis of variance is a broad-based methodology for analyzing data from an 

experiment where the dependent or response variables are considered functions of the 
independent or ancillary variables. Each independent variable or factor is tested 
(controlled) at specified values (levels) of that variable. In most analysis of variance usage, 
the experiment is carefully designed using techniques that specify the levels of all the 
factors to be studied (Snedecor and Cochran 1978) so that a minimum number of 
experimental tests or observations is required to yield information on the importance of all 
the factors.

The major inferences made and hypotheses tested in analysis of variance concern 
the equality (or lack of it) of the means for the various values or levels of the factors. If the 
factor means differ for the responses, then that factor is said to be significant in determining 
the response.

Multiple factors are designed and tested in a single set of experiments. Each factor 
is tested individually for its influence or effect upon the response. Combinations of two or 
more factors can be tested at a time for their combined effect upon the response. These 
combinations are called interactions. Interactions are important because the factors 
individually may not be significant but their interaction may be significant.

Using analysis of variance for expert judgment studies is not recommended because 
there can be no controlled design of the study (experiment). Most of the factors are 
gathered during the elicitation and cannot be controlled prior to the study to produce a good 
experimental design. At most, only single factors can be analyzed, each in a separate 
analysis, as illustrated in example 11.7. Performing several analyses of variance such as 
this is not recommended. In doing so, the analyst loses control over the chance of 
detecting differences in the factor means when no differences exist. This is the alpha level 
or type-I error. Multiple factors must be tested using the analysis of variance technique 
in a single analysis and that requires good experimental design before the elicitation. 
Because good design is not possible in expert judgment applications, analysis of variance is 
used as an exploratory tool for examining simple between versus within experts' values as 
is suggested in chapter 14.

EXAMPLE 11.7: One Factor Analysis of Variance
In the previous examples in this chapter, the expert's degree area or discipline was 

described using a variable DEGAREA which had three values (levels). These values were 
1 = mechanical engineering, 2 = nuclear engineering, and 3 = physics. DEGAREA is 
therefore a single factor with three levels that could be analyzed using analysis of variance.
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There are three experts with DEGAREA = 1, six experts with DEGAREA = 2, and 
two experts with DEGAREA = 2. For a single factor analysis of variance (AOV), this 
imbalance of the number of experts across levels is fine. However, if two or more factors 
were to be analyzed, a balance of the numbers of experts in each level for both factors 
would be necessary in most software programs for a conventional analysis of variance.

For example, suppose the two factors were DEGAREA and EXPAREA. 
DEGAREA has three levels and EXPAREA has five levels. For a balanced design of the 
experiment, 15 experts would have to be interviewed, one for each combination of all the 
levels of the two factors. With such a balanced experiment, tests on the effects of 
DEGAREA and EXPAREA would be possible. To have a test for the 
DEGAREAIEXPAREA interaction, more than one expert for each combination would be 
necessary. To find experts necessary to fit these combinations would not be very practical 
or even possible and illustrates the difficulties in designing experiments for expert 
elicitation.

The data for this example is as follows:
Factor: DEGAREA

1 2 3

Answers 0.11 12.00 0.90
0.88 1.00 0.78
0.20 0.17

0.14
0.83
LQQ

Sum 1.19 3.26 1.68

To test the differences between the three means for the factor, variance components 
are calculated for between (across) the three categories and within the three categories. If 
the variance between the three is significantly greater (using an F-test statistic) than the 
within variance (which acts as the noise level), then the factor means are not the same. The 
idea behind this comparison of variations is that the levels of the factor will influence the 
response if the means of the three levels are different. To test if the three means differ, the 
variation between the three levels is compared to some noise level. If the between variation 
is large compared to the noise level, a difference in the three levels is indicated. This noise 
level is determined as the variation within the three levels, the within variation. Thus the 
name analysis of variance implies what is actually tested. It is the variations that are 
compared and tested to determine if the means of the factor levels differ.

The following analysis of variance table outlines the steps of the variance 
calculations and the test (F-test) used to compare the variances:

Term df Sum of Squares Mean Square F-Statistic

Between dfB SSB MSB F
Within dfE SSE MSE
Total dfT SST
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MSB represents the variance between the three levels of the factor. MSE 
represents the error or noise level calculated using the within-levels' variance. The F- 
statistic measures the significance of the between variance relative to the within or noise 
variance. If this value for F is larger than the critical value for an F distribution with 
parameters of dfB and dfE, then the between variance is significantly larger than the noise. 
The conclusion would then be that the means of the factor levels differ and that the factor 
significantly affects the answers given by the experts.

The following formulas indicate how to calculate the quantities in the analysis of 
variance table:

N = number of observations =11
T = grand total = sum of all data = 1.19 + 3.26 + 1.68 = 6.13 

SST = sum of squares of all 11 answers = 0.112 + 0.882 + ... + 0.782 = 5.00 
SSB = sum of squares of categories (between) = 1.192 /3 + 3.262 /6 +

1.682 /2 = 0.47 + 1.77 + 1.41 = 3.65 
C = correction factor = the grand mean = T 2/N = 6.132/! 1 = 3.42 

SST = total sums of squares = SST - C = 1.58 
SSB = between sums of squares = SSB - C = 0.23 
SSE = within (error) sums of squares = SST - SSB = 1.35 
dfB = degrees of freedom for between = number of categories -1=2 
dJT = degrees of freedom for total = iV - 1 = 10 
dfE = degrees of freedom for error = dfT - dfB = 10 - 2 = 8 

MSB = mean square between = SSB/dfB = 0.23/2 = 0.12 
MSE = mean square error = SSE/dfE = 1.35/8 = 0.17 

F = F-test statistic = MSB/MSE = 0.12/0.17 = 0.71

To determine if this F value is larger than the critical value for an F distribution with 
2 and 8 degrees of freedom, a table or program of F distributions is required. These are 
available in all statistical packages and textbooks (Snedecor and Cochran 1978).

To use the tables, a significance level is needed and is determined by the analyst. 
The level represents the chance that the analyst is willing to accept for making the following 
error: declaring that between variance is larger than the within variance when, in truth, they 
are the same. Usually a 5% value is commonly chosen for the chance of making this error 
(called a type-I error). This chance is called the level of significance or a. Sometimes an 
extremely safe or conservative value of 1% is chosen. Sometimes a liberal value of 10% is 
chosen.

If the significance level is chosen at 5%, then the critical value for this F distribution 
(with degrees of freedom two and eight) is 4.46.

F(2,8,0.05) = 
F =

F(2,8,0.05) <

4.46 
0 .71
F (no factor effect indicated)
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The F value calculated must be larger than 4.46 for the factor to have a significant 
effect. Here the F value is only 0.71; therefore, the factor means are considered the same, 
and the factor itself has no effect on the answers provided by the experts.

Saaty's Technique for Pairwise Data Analysis 

What Is Saaty's Method?
In lieu of asking experts to compare multiple items simultaneously either by 

numerical or qualitative evaluations, experts can be asked to make relative comparisons 
and evaluations. It is very difficult for humans to simultaneously examine and evaluate 
many items. However, with pairwise comparisons, it is only necessary to examine 
two items at a time. Paired comparisons can be made by evaluating items relative to each 
other in a qualitative evaluation such as better, worse, or equal. Comparisons can be made 
in a quantitative evaluation using specified numerical scales. Either way, the 
comparisons made by the experts are then quantified using a matrix algebraic approach 
resulting in relative numerical weighting factors for all the items being compared. The 
paired comparisons technique and one of the scales designed for this technique are part of 
the Saaty Analytical Hierarchy Process (AHP) (Saaty 1980).

The AHP has been widely applied in many decision analysis problems. Its basic 
appeal for these applications is its ease of use by the experts and its ability to easily quantify 
qualitative evaluations.

A simple example illustrates the usefulness of the technique. An expert is asked to 
determine which of the following meteorological conditions would be the most likely to 
cause a loss of off-site power in a power plant:

1. Flash flooding at plant site with 0.5 to 2 inches of water
2 . Flash flooding with 2 to 4 inches
3 . Flash flooding with more than 4 inches
4 . Lightning (direct hit to power lines)
5 . Direct hit by a tornado
6. Winds between 20 to 40 mph
7 . Winds higher than 40 mph

The expert begins by thoroughly defining and clarifying the seven conditions. The 
expert then decides upon an evaluation scheme. If a qualitative evaluation is to be made, 
the expert only needs to compare all possible pairs of the seven items (making 21 
comparisons) using the terms better, worse, or equal. If a quantitative evaluation is to be 
made, then the choice of scale, such as the one below designed by Saaty, is made. The 
Saaty scale is listed below with descriptions of the numerical evaluations for the 
comparisons:
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Number Description

1 The two items are of equal importance or likely
3 A slight favoring of the first item over the second
5 A strong favoring of the first item over the second
7 A demonstrated dominance of the first over the second
9 An absolute affirmation of the first over the second

2,4,6,8 These are used when compromise is needed

1/3,1/5 These values are used to indicate the above relationships
1/7,1/9 when the first item is worse or less likely than the second

The expert begins comparing all possible pairs of conditions. The numerical 
comparisons are recorded in a 7 x 7 matrix of values with Is on the diagonals and the 
comparisons in the upper triangular portion of the matrix. The lower portion is filled later 
with the reciprocal values of the upper portion. That is, if condition 3 is strongly more 
likely than condition 4, the value assigned in row 3 column 4 is 5 (from the scale). Then, 
the value for row 4, column 3 is 1/5.

When the comparisons are made and the matrix is completely filled, the relative 
weights of the seven conditions are obtained from matrix theory. Specifically, these 
weights are the normalized eigenvectors of the maximum eigenvalue of the 7 x 7 matrix. 
The reason why these weights are formulated in such a fashion may not be obvious; 
however, the mathematical theory behind it is sound.

Another advantage of using the Saaty method is its ability to monitor the 
consistency of the expert's evaluations. For instance, if an expert evaluates condition 1 
versus condition 2 as a 4, and evaluates condition 2 versus condition 6 as a 3, and 
evaluates condition 1 versus 6 as a 1, then his three evaluations indicate an inconsistency. 
Using matrix theory, the Saaty technique provides an index of consistency for the 
comparisons made in a single matrix. The expert is warned when his consistency is 
lacking by a high value for this index of consistency. When this happens, the experts 
should re-examine the definitions and evaluations that were made and resolve the 
inconsistencies. Example 11.8 illustrates the pairwise comparisons, the relative weights 
and the inconsistency measures for the meteorological conditions described above.

EXAMPLE 11.8: Saaty's Pairwise Comparison Method or AHP
The seven meteorological conditions important for affecting loss of off-site power 

(LOSP) in a reactor are as follows:
1. Flash flooding at plant site with 0.5 to 2 inches of water 
2 . Flash flooding with 2 to 4 inches
3. Flash flooding with more than 4 inches
4. Lightning (direct hit to power lines)
5. Direct hit by a tornado
6. Winds between 20 to 40 mph
7. Winds higher than 40 mph
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By comparing these seven using all possible pairs (number of pairs = 7(7-l)/2 = 
21), a set of relative weights can be found. The weights are interpreted according to the 
pairwise comparisons. In this case, comparisons are made by determining which of the 
pairs is more likely to cause LOSP. The pairs are evaluated using the Saaty scale listed 
above as follows:

1 vs 2------ ------ 1/3 2 vs 3------ ------ 1/2
1 vs 3------ ------ 1/4 2 vs 4------ ------ 1/3
1 vs 4------ ------ 1/5 2 vs 5------ ------ 1/3
1 vs 5------ ------ 1/5 2 vs 6------ ------1/2
1 vs 6------------- 1/3 2 vs 7------ ------1/3
1 vs 7------ ------ 1/4

3 vs 4------ ------ 1/2 4 vs 5------ ------1/3
3 vs 5------ ------ 1/2 4 vs 6------ ------1/5
3 vs 6------ ------ 1 4 vs 7------ ------1/4
3 vs 7------ ------ 1/2

5 vs 6------ ------- 5 6 vs 7------ ------1/2
5 vs 7---------------4

These comparisons form the upper triangle of a matrix. The diagonal terms are Is 
and the lower triangle contains the reciprocals of the upper triangle:

1 2 3 4 5 6 7
1 1 1/3 1/4 1/5 1/5 1/3 1/4
2 3 1 1/2 1/3 1/3 1/2 1/3
3 4 2 1 1/2 1/2 1 1/2
4 5 3 2 1 1/3 1/5 1/4
5 5 3 2 3 1 5 4
6 3 2 1 5 1/5 1 1/2
7 4 3 2 4 1/4 2 1

The principal eigenvalue of this matrix is 8.001. The weights for the seven factors 
are formed by normalizing (so that they sum to 1.0) the seven terms in the eigenvector for 
this eigenvalue. These normalized weights are

(0.03, 0.06, 0.11, 0.11, 0.35, 0.15, 0.19) .

The Saaty method provides a consistency check in the form of a ratio value, called 
the consistency ratio, that indicates the deviation of the principal eigenvalue from the 
theoretical eigenvalue of a perfectly consistent matrix. The ratio is also adjusted for the 
number of factors, the dimension of the matrix. If a consistency ratio is greater than 0.10, 
inconsistency is indicated.
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In this example the consistency ratio is 0.13, indicating some problems. Upon 
closer examination of the meteorological conditions comparisons, the following results are 
indicated:

1 vs 4 is the same as 1 vs 5
2 vs 4 is the same as 2 vs 5
3 vs 4 is the same as 3 vs 5
6 vs 4 is the same as 6 vs 5
7 vs 4 is the same as 7 vs 5

These results imply that 4 and 5 are the same; however, 4 vs 5 is given as 1/3. Also, 6 < 
7, but examining 4 vs 6 and 4 vs 7 indicates that 6 > 7. There may be other minor 
inconsistencies in the magnitudes of the relationships; however, three major corrections are 
made as follows:

Comparisons Correction _______Objective______

4 vs 5 1 To make 4 and 5 the same
4 vs 6 5 To match 5 vs 6
4 vs 7 4 To match 5 vs 7

Now the consistency ratio becomes much more acceptable at 0.06. The weights become

(0.03, 0.07, 0.11, 0.28, 0.28, 0.08, 0.15)

The interpretation of these weights indicates only relative comparisons. Direct hit 
lightning (4) and tornado (5) are the most likely to cause LOSP. The least likely is the 
flooding with 0.5 to 2 inches of water (1). It is incorrect to draw conclusions based on the 
numerical values of the weights; such as, flooding with 2 to 4 inches; (2) is only one-fourth 
as likely as a tornado (5).

The example problem above consisted of a single matrix evaluation. As the name 
AHP implies, most problems using this technique are hierarchical in structure. In the 
above example, loss of off-site power may be one of many plant conditions that are of 
critical concern to operations. Another matrix could be formed comparing all such critical 
concerns. For each of those other critical concerns, a matrix of meteorological conditions 
could be attached. These condition matrices do not have to be identical to the one for the 
loss of off-site power concern. Thus, an entire hierarchy of as many levels as are needed 
can be constructed. Usually, the hierarchy is constructed from the top down, with the top 
levels being the more general environmental or scenario factors. The middle levels are 
usually the more specific criterion or characteristics under consideration. The bottom level 
is usually the list of competing alternative decisions, actions, or choices that must be 
decided upon to answer the question.

Each matrix is evaluated at each level resulting in a set of relative weights. The 
weights are multiplied down the levels to form a final set of weights for the bottom level
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items. This final set of weights is then used to make the decisions regarding the choices of 
the bottom level items. The higher the weights, the more desirable that item is.

There are many codes and packages that perform this technique at various levels of 
user interaction. Some codes merely provide the algorithms for the technique; others take 
the user through the entire problem from the initial building of the hierarchy to the final set 
of weights (Booker, Bryson, McWilliams 1984). For general references on the technique, 
Saaty has two books that provide codes and instructions (Saaty 1980 and 1982). A 
FORTRAN user-interactive code for a single matrix evaluation taken from the second of 
these books by Saaty (Saaty 1982) is given in appendix A.

Advantages and disadvantages of Saaty's method
The main advantages of this technique are its ease of use for the expert, its ability to 

monitor consistency of the expert's evaluations, and its ease of quantifying highly 
qualitative information. These advantages make it suitable for use in expert judgment 
problems.

The major disadvantage is that for application the problem must be structured in a 
hierarchical formation. Incorporating feedback cycles and pathways other than straight up 
or down the hierarchy are difficult to implement. A single level structured problem can be 
used to avoid the hierarchy; however, a single level formation is usually an over­
simplification of the problem.

Uses for Saaty's method
The primary use for the hierarchical design is in decision analysis problems. Here 

the weights are used to aid in a decision maker’s choice of the competing alternatives at the 
bottom level of the hierarchy. Therefore, the major disadvantage in applying this technique 
in expert judgment problems is that usually expert judgment problems cannot be neatly 
formulated into a hierarchical structure. Also, this type of forced structure formation is not 
consistent with the data analysis philosophy and model formation advocated in this book. 
The analyses and models are suggested by the data, not the forced fitting of the data to the 
analyses and models chosen.

In expert judgment applications, the scale and quantification features of this 
method can be used as a chosen response mode and as a quantification technique, 
respectively. It is these limited uses that are the reason for introducing Saaty's method.

Descriptions and Uses of Bayesian Techniques
What is the Bayesian Philosophy?

There are two different statistical philosophies for analyzing data and for 
interpreting the roles of probability distributions. These two different approaches are the 
classical or frequentist approach and the Bayesian approach.

The classical statistical approach assumes that the data or sample is representative of 
the population (the universal set of possible values) for the random variable. It is 
common practice to characterize the population as a probability distribution with certain
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features (mean, variance, range, percentiles, mode, median, etc) called parameters. The 
parameters are fixed but unknown quantities. The estimates of these parameters are values 
calculated from the sample (data), and these estimates are called statistics. For example, if 
the population is represented by a normal distribution, then a sample of 20 values randomly 
chosen from that normal will represent that population. The population mean was 2.0, but 
this is not known. The sample has a mean of 1.82 which is the best available estimate for 
that unknown population of 2.0. Using the sample mean (statistic) to draw conclusions 
about the population mean (parameter) is the process of inference that is further discussed 
in chapter 18.

The Bayesian approach of philosophy is different in interpretation. The population 
parameters are not fixed quantities. Instead, they follow probability distributions, called 
prior distributions, just as the random variables do. This prior distribution represents 
the state of knowledge or information about the parameter before the sample is taken. The 
sample (data) also forms a distribution called the likelihood which represents how likely it 
was for that sample to be taken from the population. After the sample is taken, the 
likelihood distribution can be combined with the prior distribution to form a final combined 
distribution called the posterior distribution. The posterior represents the combined 
state of knowledge or information from before and after the sample data is taken. The 
analytical tool (equation) used to perform this combination is Bayes Theorem. Hence, the 
mathematics, the approach, and the philosophy are all labeled as Bayesian.

The philosophy is a logical one. It is common to have information about the 
problem before any data or experiment is done. It makes sense to use all available 
information to draw conclusions. The Bayesian approach provides a method for doing just 
that: combining different sources of information. Application of the technique involves 
representing the previously known information as a prior distribution, gathering the sample 
data, and using Bayes Theorem to combine the distributions into the resulting posterior 
distribution. Bayes Theorem is as follows:

g(&x) =f(x\6) g(6) //(*) .

where

g(6bc) is the posterior distribution, 
f0d&) is the likelihood or data distribution, 
g(0) is the prior distribution for the parameter 6, and 
f(x) = \f{x\9) g{6) dd is the marginal distribution that can be considered as a 

normalizing constant in the denominator of the above theorem equation.

Therefore, the theorem can be stated as follows: the posterior is equal to the prior 
times the likelihood divided by the marginal, or the posterior is proportional to the prior 
times the likelihood (Martz and Waller 1982).
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Advantages, Disadvantages, and Uses of Bayesian 
Methods

The major advantage of taking the Bayesian approach is that it provides a means for 
combining or pooling information from different sources. The philosophy of using all the 
available information is a logical and reasonable approach especially when information 
from a single source is sparse or lacking as in most reliability applications.

Some short examples illustrate the uses of Bayesian methods—a pooling 
mechanism: (1) Expert estimates could provide the information for the prior, and that could 
be combined with sparse data; (2) Expert estimates could be combined, one at a time, to 
form an aggregation estimate; (3) An expert aggregation estimate (prior) could be 
combined with information from a decision maker; (4) Older information from an expert 
(prior) could be combined with his new assessment to update his judgment in view of 
different conditions or information; (5) Generic data such as an overall failure rate of all 
check valves (prior) could be combined with data on a specific check valve; and (6) 
Uncertainties (prior) could be modeled with the data. Bayesian methods are suggested and 
discussed in more detail for aggregation (chapter 16), for characterizing uncertainties 
(chapter 17), and for updating (chapter 7).

The major disadvantage of Bayesian methods lies in the requirement of 
transforming all the available information, regardless of its source or form, into probability 
distributions. For qualitative data, this transformation is an especially difficult task. 
(Chapter 12 discusses ways of handling qualitative data.) Transformations may not be any 
easier for quantitative data. Once distributions are formed, the second disadvantage of 
Bayesian methods emerges. These various distributions are combined using Bayes 
Theorem. This combining may not be a mathematically easy task. However, with modem 
simulation techniques, using the theorem for combining distributions is not as difficult as it 
was a decade or so ago.
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12
Initial Look at the Data— 
The First Analyses

After the elicitation is completed, the information gathered will seem like a large, 
complex mass of words and numbers. The first step is to become familiar with the 
information of this mass: that is, examine the data that has been gathered; then, focus on 
some important data features, investigate transforming the data or quantifying it, and 
formulate a data base for further analysis.

What Data Has Been Gathered?
The components of the elicitation, methods for formulating the questions, response 

modes and documentation, are described in chapter 7. Tailoring these schemes for the 
particular elicitation is described in chapter 8. Implementing these is described in chapter
10. Having implemented the chosen schemes for questions, response mode, and 
documentation, the post-elicitation information base should consist of large amounts of 
qualitative and quantitative information from each expert on each question. Following the 
documentation guidelines helps reduce some of the volume of information to a more 
compact and efficient form at chosen levels of detail. However, this is not much help to the 
analyst faced with the qualitative/quantitative data mixture containing a potentially large 
number of variables.

The information gathered at the post-elicitation stage consists of two major parts: 
(1) the answers to the the questions, and (2) the ancillary information. This ancillary 
information is in two groups: (1) the information about the expert such as his background 
and experience, and (2) the information called expert data in chapter 1 about how the 
expert solved/answered that question and how long since he had seen such a problem.

The qualitative or quantitative structure of the answer data and the ancillary data 
depends on the choices of the response mode and the documentation. Usually the answer 
data is quantitative and the ancillary data is a mixture. Regardless of the original structure 
of either, some quantification of some of the qualitative information becomes necessary for 
analysis. One criterion for determining the necessity and method of quantification is to 
consider the level of generality or granularity of all the data and of the analyses.
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Overview of the Data
In the process of analyzing the data, often two important overall features of the data 

are taken for granted and therefore forgotten by the analyst. These two features of the data 
set are important to the analyst at all stages of the analysis and have important effects on the 
conclusions reached. The two features are granularity and conditionality.

Granularity is the level of detail defined or chosen for the data, the analysis, and the 
conclusions. Two examples of the information recorded on an expert's problem-solving 
may be (1) in the form of detailed steps, equations, heuristics, definitions, and 
descriptions, or (2) in the form of a general categorization of this problem-solving stating 
simply that the expert used a pessimistic approach. The above are two different 
granularities for the information regarding the expert's problem-solving process.

Conditionality refers to the inescapable fact that all of the elicited data is conditioned 
on many other factors. Some of these factors are controlled, some are not controlled, and 
some are unknown.

The Pitfalls section in chapter 2 discusses the importance of these two features for 
expert judgment applications in more detail. There are sections on granularity and 
conditionality in all the chapters dealing with the analysis of the data.

Establishing Granularity
To some extent, the granularity will have already been established in the selections 

of the response mode and documentation recording schemes. The granularities chosen for 
each could be different, and the analyses can have a third level or even more. However, 
for interpreting the results and drawing conclusions, one level, the most general of all, 
must prevail. That level is the only one applicable to the results and conclusions. 
Therefore, it is wise to establish that one desired level of detail in the initial planning phase 
of the study before the elicitation. If that is not possible, then at least establish the level at 
the preanalysis phase and use it throughout all the analysis steps. Otherwise, analyses may 
have to be repeated at the proper granularity.

If levels are mixed in the analyses, conclusions can change. For example, 
comparisons of variables at the granularity gathered, raw form could reveal some 
significant correlations among the variables that vanish if they are compared after being 
combined or reduced to a more general level. Of course, such a combining or collapsing 
process might not change the significant results among the variables from the raw form, but 
it could produce significance where none existed in raw form or it could lose significance 
where it existed in raw form. The effects on the results of changing granularity is not 
known beforehand.

In the chapters that follow, many stages of data analysis are described. In each, the 
granularity is important. At each stage, the results can change if the granularities are 
changed. Examining how results can change with different granularities within each stage 
and across stages is an exercise consistent with the spirit of investigative data analysis 
advocated by this book. However, great care must be taken not to confuse such an 
academic exercise with the goal of determining conclusions for the problem at hand. There 
is another point to consider when playing with granularities. It is possible to take detailed
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information and make it more general, but it is not possible to do the reverse. To avoid 
confusion and problems, it is recommended that one granularity be chosen and used 
throughout all analysis stages.

Establishing Conditionality
Often the conditional structure of the data, especially the answer data, is ignored in 

the analysis and in the conclusions. Disregarding the conditional structure of the data 
produces conclusions that are a mixture of differing effects, or more simply, a mixture of 
apples and oranges. Most analysts would agree that such conclusions are worthless. 
Indeed, this lack of care in analysis may be the reason why many do not trust expert 
judgment data or claim that expert information can not be analyzed.

A recent example will help illustrate the problems in dealing with conditionality. In 
an effort to revise the probabilistic risk assessment (PRA) methodology for nuclear 
reactors, the Nuclear Regulatory Commission has invested time and money in the 
NUREG-1150 project (U.S. NRC 1989). As part of this task, several panels of the 
world's top experts were gathered for eliciting their data on many rare, and undefined 
events affecting reactor safety. These events were decomposed into decision-type event 
trees; decision trees are briefly described in chapter 15 and also by Raiffa (1970). The tree 
structures and probabilities for each branch were elicited from the experts. The final 
answers came from multiplying these probabilities through the tree. Each answer is 
therefore conditioned on the tree and its estimates. This conditioning cannot be ignored. 
Two experts could arrive at exactly the same final answer but for very different reasons, or 
two experts could arrive at different answers for exactly the same reasons.

Analyses, such as the ones described in this chapter and in chapters 13-15 are 
needed to determine what effects, if any, such conditioning has on the final answers. If the 
answers are not dependent upon the conditions, then conditioning can be ignored; 
however, this determination is necessary before setting conditionality aside.

How to Quantify
Quantification can be useful for preparing the complex post-elicitation data set for 

the data base. Both the qualitative data and the quantitative data may require 
transformations and cleanup for the data base. Transforming words such as descriptions or 
preference scales {worst, worse, bad, neutral, good, better, best) into numerical values will 
often be required for analysis of the data using numerically based techniques (such as 
statistical techniques). Also, some data that is already numerical in raw form may require 
additional numerical transformation to more convenient scales or to the chosen granularity. 
In both cases, the transformation process is quantification, transforming the raw 
information into a desired numerical form.

Several commonly used methods of quantification are described below. The major 
problem with quantification is to not impose additional assumptions about the information 
in order to fit the data into the desired form. In most instances this is difficult or impossible
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to avoid. However, sometimes other available information elicited from the experts can aid 
in the quantification process as illustrated in example 12.1.

EXAMPLE 12.1: Using Definitions to Quantify
The analyst is attempting to convert a statement of the expert's preference about 

how good a reactor system design might be. The analyst can refer back to the expert's 
elicited definition of good and use that definition to compare to definitions from other 
experts. This comparison can form a consistent numerical scale across experts as follows:

Expert's Definition of Good_____________________  Numerical Scale Value

System functions outside specifications at all times 5
System functions within specifications at all times 3
System functions within specifications 90% of the time 1

At this stage of the analysis, the reasons for eliciting information from the experts 
about definitions, assumptions, and problem-solving processes become obvious.

When Is It Necessary to Quantify?
Ideally, all the information gathered during the elicitation should be quantified to a 

common numerical scale for comparisons using statistical analyses. However, this form of 
quantification is not feasible, nor is it entirely necessary. Many times information gathered 
is redundant. The expert will state the same information repeatedly in different forms as 
illustrated in example 12.2.

EXAMPLE 12.2: Detecting Redundant Information
An expert gives a lengthy explanation of a physical phenomenon. Five minutes 

later, he realizes that he was simply applying a basic principle or law. The information 
provided by the expert and the usage of that information has not changed. The expert has 
just given the same information in two different forms. Many times the expert does not 
realize this redundancy, but the analyst can find it in the course of his analysis if proper 
documentation was done.

The first items that need quantification are the answers to the technical question. In 
most instances the answers will already be in the desired numerical form from the chosen 
response mode designed in the elicitation. (See chapter 7, Selecting from Response Modes 
and Selecting from Dispersion Measures.).

It may be difficult to quantify assumptions, definitions, and problem-solving 
processes initially. Yet, some assumptions about physical quantities such as temperature 
are easily converted to a scale of values or ranges of values. Ranges of values should not 
be reduced to a single value. The process of such a reduction imposes assumptions on the
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involving problem-solving information, experts' background information, and expert 
answers.

EXAMPLE 12.3: Dichotomous Quantification
Experts are asked if they applied the first law of thermodynamics. To quantify the 

simple yes or no responses, set yes = 1 and no = 0.
Experts are asked if they consider themselves engineers or not. To quantify the 

responses, set engineer - 1 and nonengineer = 0.
Experts are asked if the probability of an event is greater than 0.001 or less than 

0.001. To quantify the responses, set greater than 0.001 = 1 and less than 0.001 = -1.

Rank or rating quantification
If there are more than two choices for representing some information, multiple 

integer or numbered values can be used. The values can be in ascending or descending 
order (ranks) or the values can be chosen from a specified scale. In either case, these 
values reflect an ordering of the information and should not be used unless the information 
has a logical ordering. The order implied by ranks is linear, implying equal spacings 
between the ranks and relationships, such as a rank of 4 is twice a rank of 2. Example 
12.4 illustrates the proper use of ranks.

EXAMPLE 12.4: Rank Quantification
In gathering background information, the experts are asked if they have had any 

reactor operator experience. The responses to that question are given in verbal terms such 
as none, some, and extensive. The ranks 0, 1 and 2 can be assigned to the answers none, 
some, and extensive. The ascending order implied by the ranks is logical.

The experts are also asked to describe their major discipline area. The responses 
are given in terms such as nuclear engineer, civil engineer, mechanical engineer, physicist, 
and mathematician. The ranks 1, 2, 3, 4, and 5 should not be assigned to these answers 
because they do not have a logical order and should not be given an order through the use 
of ranks.

Number line quantification
As mentioned earlier, accuracy of information content is important in the 

transformation process, especially for transformations to the continuous number line. 
Accuracy is an issue related to granularity. It is usually considered when determining how 
many significant digits can be used to represent the information. The number of significant 
digits used in the analysis and in the results is a granularity issue.
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original data by the analyst that the expert might not have had in mind. In general, the 
assumptions, definitions, and problem-solving information should be kept in raw form 
until the modeling stage of analysis (chapter 15).

The ancillary information or data, such as data on the expert's background and 
experience, also needs quantification. This data can be in many different forms and usually 
has been elicited without much advanced planning or designing of the analysis. Therefore, 
this data may range from completely descriptive information to strictly numeric values and 
to everything in between.

Quantification Schemes

The application of the following quantification schemes should be done with 
extreme caution. It is so easy for the analyst to impose assumptions on the data to make it 
fit into the desired quantification scheme. The higher the degree of qualitative structure, the 
more such assumptions are required to transform the raw information to numbers useful for 
standard analysis techniques. The Pitfalls section in chapter 2 discusses in more detail the 
interviewers, analysts, and knowledge engineers as sources of this bias.

The following methods of quantification cover ways of transforming qualitative 
information to quantitative information. Examples of application are included in each 
method.

Dummy variables
This method is the one most people think about when dealing with quantification. 

The raw data is transformed into artificial or dummy numerical values. Many times the 
transformations are done without proper logic or thought. Examples of this transformation 
follow:

1. Transforming information where only two options are available into 
dichotomous values such as (0,1) or (-1,1).

2. Transforming information to integer values such as in the use of scales or ranks 
(1, 2, 3, etc.).

3. Transforming information to the real number line, a continuum of values for a 
specified interval (e.g., 0.0, 0.1, 0.15, 0.27, 0.96 in the [0,1] interval). The 
choice depends on the information gathered, its potential use, and its accuracy 
(the number of significant digits).

The reason for transforming to number values is for use in both the data base 
formation (discussed later in this chapter) and for the modeling process. Numerical 
variables are easy to analyze in most statistical and analytic procedures and are desirable for 
that reason. The appropriate formation of the various types of dummy variables is given in 
more detail in the following sections.

Dichotomous quantification
Most information, whether qualitative or quantitative, can be transformed to a 0,1 

or -1,1 dichotomy (two choices) with little or no assumptions required for the 
transformation. Example 12.3 illustrates dichotomous quantification for the cases
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EXAMPLE 12.5: Significant Digits
Experts arc asked to provide the number of years experience that they have had in a 

field. The number of digits offered by the experts will differ across experts. Some say 
about 2 years and mean greater than 1 year but less than 3 years. This is only one 
significant digit. Some said 2 years and 6 months or 2 1/2 years. This is 2 significant 
digits. Some say 2 years and mean exactly 2.0 years (2 digits) or mean about 2 years (1 
digit). Because the number of digits differs across experts, the most general level of detail 
must be used for all experts. In this case that means the lowest number of significant digits 
(1) would be used for all experts.

Using only 1 significant digit results in a loss of information at the finer level of 
detail offered by some of the experts. To avoid this loss, the elicitation of the information 
should be more thorough. The first and second experts should be queried for the desired 
level of detail using the verbal probe or ethnographic methods described in chapter 7. The 
elicitation process can help guarantee that the level of information content is consistent 
among experts, thereby minimizing the problems with quantification.

Proper elicitation planning and execution also involves understanding why this 
information is being gathered and what potential use it will be in the analysis. Knowing 
this, the analyst should make sure that the the information is being elicited at the desired 
granularity (e.g., number of significant digits) rather than getting mixed levels of detail and 
having to transform information to some other level in the post-elicitation phase.

Number-line quantification can be used to combine information from two or more 
variables, provided these variables have a common basis of accuracy. One such application 
could be the following:

EXAMPLE 12.6: Combining Number Line Quantifications
Experts were asked how much thermodynamics training and experience each 

had. The answers were as follows:

School Training Job Experience
Expert No (vrs) (vrs)____

1 1.50 0.00
2 0.50 5.50
3 0.00 2.33
4 2.25 3.10

If training is only half as valued as job experience, then the results would be

1 0.50(1.50) + 1.00(0.00) = 0.75 years
2 0.50(0.50) + 1.00(5.50) = 5.75 years
3 0.50(0.00) + 1.00(2.33) = 2.33 years
4 0.50(2.25) + 1.00(3.10) = 4.23 years *

<S
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It is not recommended that information of a more descriptive structure (words) be 
transformed onto the real, continuous number line. Only information gathered in a 
continuous, numerical form should be treated in this way.

Ordinal ranks
Ordinal ranks are usually used on descriptive information (nonnumeric) that has 

some relative ordering. The rank values assigned are also descriptive (words) in nature. 
The variables formed using this quantification can be incorporated into the data base and 
can be used in many of the analytic procedures for such analyses as correlation detection 
and for understanding the conditional nature of the data base.

Because the ranks are relative comparisons, care must be taken regarding the use of 
definitions to achieve and maintain consistency of application. Assuming that the 
information from the experts was elicited in the proper fashion, clarifications are available 
in the documentation to help the analyst or decision maker assign relative comparisons for 
certain quantities.

EXAMPLE 12.7: Assigning Ordinal Ranks
In solving a problem, most experts use a basic principle from thermodynamics but 

in varying degrees of emphasis of use. This information can be added to the data base 
using the following ordinal rank variable:

Expert No. _____ Descriptive Use_______ Rank

1 Did not use the principle at all 1
2 Extensively used the principle 6
3 Only mentioned the principle 2
4 Used the principle a few times 4
5 Used the principle once 3
6 Used the principle several times 5

The Saaty pairwise comparison technique (chapter 11) is a way of making relative 
comparisons using the technique's own quantification to a numerical scale. However, 
these resulting numbers or weights can only be interpreted in a relative sense because the 
information used in the method is only relative comparisons. A resulting relative weight 
from this technique of 0.25 cannot be interpreted as half as good as a weight of 0.50. The 
relative interpretation is that the value 0.25 is less important or less preferred than 0.50. 
This technique is best used as an elicitation method for obtaining responses from the 
experts. However, it can be used as a quantification scheme for post-elicited data. One 
major advantage of this method is that the relative comparisons are made in pairs and do not 
have to be made simultaneously.
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EXAMPLE 12.8: Ordinal Ranks From Pairwise Comparisons
Of the five experts solving a problem, some used a rule of thumb or a modification 

of that rule. The pairwise comparisons on the usage of this rule are determined by 
answering the following question: Did expert i apply the rule more completely than expert 
/? The answers follow:

Expert i Expert / Comparison

1 2 Same
1 3 Yes
1 4 No
1 5 No
2 3 Yes
2 4 No
2 5 No
3 4 No
3 5 No
4 5 Yes

Using Saaty's method the resulting relative weights for these 5 experts follow:

Expert Weight

1
2
3
4
5

0.138
0.138
0.079
0.387
0.257

These weights indicate that expert 4 applied the rule more completely than the others. 
Expert 3 applied the rule less completely than any of the others. Experts 1 and 2 applied 
the rule in the same manner. No further interpretation is possible with such a relative 
comparison.

Categorical variables
In cases where qualitative information cannot be ranked or ordered in preference, 

the information can be transformed and stored into groups or categories, usually according 
to verbal descriptions. It is not recommended that these verbal categories be coded into an 
arbitrary numerical code (a dummy variable). When this is done there is a great temptation 
to analyze the numeric data as if the numbers reflected ranks or orderings. Most modem 
software can easily handle character (word) information as a part of the information data 
base.

Educational information on the experts are usually put into the data base as 
categorical or classification variables. Degree titles such as BS, MS, MBA, etc. are
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examples of these categories. Degree disciplines such as civil engineering, mechanical 
engineering, nuclear physics, and thermodynamics are other examples.

During some of the later analyses, categories or classes can be consolidated or 
collapsed in later analysis stages if there are too many classes and not many experts (less 
than 3) in each. Such collapsing does change granularity from specific to more general.

EXAMPLE 12.9: Collapsing Categories
For example, if there are 10 experts with the following disciplines in their highest 

degree, these 10 different disciplines might be collapsed into 3 disciplines:

Expert Elicited Discipline Transformed Discipline

1 Mechanical engineering Engineering
2 Nuclear engineering Engineering
3 Thermodynamics Engineering
4 Hydrodynamics Physics
5 Material science Physics
6 Nuclear physics Physics
7 Mechanics Engineering
8 Computer science Computation
9 Simulation science Computation

10 Knowledge engineering Computation

The definitions and rationale for the above transformation should be recorded and 
consistently applied throughout the study. The above process is one of changing the 
granularity of the discipline information from a more detailed description to a broader one. 
The results of any analysis done on the collapsed version will only be valid for the more 
general categorization. For this reason, it is recommended that collapsing be done only 
during the later analysis stages and that the categorical data be stored untransformed in the 
data base.

Description Variables
It may not be possible to quantify some of the information gathered. This 

information should be condensed to as few words as possible and kept for further analysis 
uses.

Descriptions of how the experts solved problems can be analyzed as conditioning 
variables or can be used in model formation (chapter 15). Usually this information is not 
easily translated into numbers or even categories without making some assumptions or 
without changing the level of detail. At this initial analysis stage, neither is recommended.

Description variables such as the definitions and assumptions used by experts have 
another important use. These variables need to be retained for documentation purposes and 
for purposes of updating the experts’ answers if new information is considered (chapter 
10).

212



FnitiaC Lool(_ at the lData--{Ifu Just Analyses

Forming a Data Base of Information
Once the quantification steps from the previous section are done, the information 

can be placed in a data base. This data base could be a computer file or a paper listing of all 
the information gathered about each expert including their answers. A suggested list 
follows:

Expert ID Name and Number

Interview information 
Expert's background: 

Education 
Experience

Expert's problem solving 

Answers

Date, time, place, duration, environment

Degrees, dates, schools, disciplines 
Years, organizations, colleagues, nature 

and type of work
Definitions, assumptions, steps, cues, 

heuristics
Values and comments

Each expert will then have many quantities (variables) associated with him. Some 
information could be missing for some experts. A code word or number is needed to 
denote missing information (e.g., miss), and one is also needed for nonapplicable 
information (e.g., no) to distinguish these from 0 values. Many statistical and data-base 
packages have their own designations for missing information.

If the guidelines for tailoring the elicitation in chapter 8 were followed, the data 
gathered will reflect the design chosen, and the reasons for the choices are already 
documented. There is little that needs to be done to the data base to conform to the 
elicitation method used.

Because the data base and the elicitation method are so closely connected, the 
monitoring and use of granularity is important. The results and conclusions that will be 
found firom the data base should be either at the same or at a more general level of detail 
than the information in the data base. In the analyses suggested in the next chapters, 
granularity is continuously monitored. Examples are given where the results change if the 
granularity changes. It is important at this data-base stage to be aware of the detail of the 
information content in the data base. A quick review of the variables and information in the 
data base is usually sufficient. This review can be aided by listing each answer in 
ascending order and listing other variables beside the answers for each expert

During this review, the analyst can get some ideas about model formation (chapter 
15). If many variables have missing values, more general-leveled models are suggested. 
If the information is complete in the data base, models at the current granularity can be 
formed and analyzed.

Also during this review, the analyst can see which and how many variables need 
testing for possible conditioning effects on the answers. In addition, some variables may 
require testing as sources of correlation or bias among the experts (chapter 14).

If many variables are in the data base (more than 20), there is a strong possibility 
that information is being repeated among the variables. Many statistical techniques (from

213



Chapter 12

chapter 11) can be used to monitor for this redundancy of information among the variables. 
In some cases, variables can be eliminated from the data base. These steps are presented in 
the next chapter (chapter 13) on understanding the data base.
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13
Understanding the Data 
Base Structure

In this chapter analyses are suggested to gain understanding of the relationships 
existing among the ancillary variables, among the answer (response) variables, and 
between these two sets of variables. The information and knowledge gained from the 
results of these analyses are merely for understanding the data base, are not to be 
considered as the final results, and conclusions should not be drawn from them. The 
analyses suggested are standard, statistical techniques, most of which require assumptions 
about the data that would not necessarily hold under expert judgment applications. Instead, 
these techniques are suggested as tools for understanding variate relationships and are not 
to be used to determine final or significant results. The use of several techniques is 
suggested for the purpose of cross-verification of suspected relationships among the 
variates.

The words of caution regarding the use of the statistical techniques presented below 
are serious words. It is very uncomfortable for the authors to recommend applying a 
technique when there is good reason to believe that assumptions required for its use are 
being violated. It is also very difficult to recommend using a technique and then strongly 
urging not to rely on the results. These statistical tools are used to explore variate 
relationships in the data base. If the results from these analyses do not make sense, or if 
the results of one test contradict results from another, there could be a very good reason; 
namely, the techniques were not used properly. We strongly advise using these techniques 
with the help of a statistician.

The analyses presented in this chapter begin with the investigation of potential 
relationships between the ancillary variables and the answers. Then a separate analysis of 
the answer data is presented for two purposes: (1) to present analyses of the answers when 
there are no suspected conditional effects, and (2) to gain additional information about the 
answer variables. The separate analysis of the ancillary data is also provided. Finally 
analysis techniques are given for analyzing the ancillary data with the answer data.

The analysis techniques used are commonly found on statistical and data analysis 
software packages. The software used for most of the examples is the SAS® product.
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Conditionality-Examining Relationships Between 
Answers and Ancillary Data

All of the variables formed from the ancillary data have the potential of being 
conditional variables that could have affected the answers given by the experts. This 
relationship is called conditionality. Some very basic statistical tests and graphic 
procedures can be used to begin the investigation of any potential relationships. These are 
referred to as bivariate analyses where each ancillary variable is checked against each 
answer variable. The multivariate investigative procedures are described in the later section 
on Analyzing the Ancillary Data with the Answer Data.

Correlations
The easiest starting place for bivariate analysis of the ancillary data and the answer 

data is to calculate Pearson pairwise correlation coefficients for all pairs of numerical 
ancillary variables and numerical answer variables. Most statistical and data analysis 
packages have correlation routines. If none are available, the formula in chapter 11 can be 
used.

In order to determine if any of the correlations indicate potential relationships 
between the pairs of variables, a significance level must be specified. If there are a total of 
n pairwise correlations calculated, the significance level used to determine if any pair is 
correlated should be < l/n for n > 20 or the customary values of 0.05 or 0.01. Example 
13.1 illustrates this determination for a large number of experts.

EXAMPLE 13.1: Correlations and Significance Level
The following 10 correlation coefficients were calculated for 31 experts answering 

two questions (Qi and Q2) compared to five ancillary variables from their background (Ys 
= years since they worked on this type of problem; Ya - years worked as an assessor; Yp 
= years worked in applications; Yd = years worked as a developer; and Yn = years worked 
on documentation):

Ancillary Variables
Correlation fievell Ys Ya Yp Yd Yn

Qi 0.095
(0.61)

-0.484
(0.006)

0.167
(0.37)

0.153
(0.41)

0.035
(0.85)

Qi 0.322
(0.08)

-0.452
(0.011)

-0.095
(0.61)

-0.089
(0.63)

-0.309
(0.09)

The significance levels are listed in parentheses below the correlations. A 
significance level of 0.05 or 0.01 is indicated because the number of correlations calculated 
is less than 20. A conservative (minimizing the chances of an incorrect conclusion) level of 
significance for this example would be 0.01. Any correlation whose level is less than 0.01
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would be considered significant, and a relationship would be suspected between those two 
variables. In this case, only the Ya / Qi relationship is indicated. The conclusion is that 
large values of Ya correspond to small values of Q\ (because the correlation coefficient is a 
negative value.).

At this point in the analysis, all the significant relationships should be recorded 
along with any possible reasons or explanations. The ancillary variables that are 
significantly correlated to the answers are the beginning of a list of potential conditional 
variables. However, these significant relationships may not hold when the multivariate 
analyses are performed later. Nevertheless, for now, they offer some understanding about 
the data base, the reasons for the experts' answers, and some directions for future 
analyses.

Graphs
The correlations can only be done for numerical variables. Graphs can be used to 

plot potential bivariate relationships between the ancillary variables and the answers. 
Graphs can also indicate nonlinear relationships; whereas correlation analysis is only good 
for linear trend detection.

To graph qualitative or categorical data, equally spaced intervals may be used on the 
axis using the ordering or ranking inherent in the categories. If there is some reason for 
using unequal spacing, that should also be tried. If nonlinear relationships are indicated, 
transformations of the data by taking logarithms can sometimes produce linear 
relationships. Example 13.2 illustrates that such a graph of categorical data can be done.

EXAMPLE 13.2: Graph of an Ancillary Variable and an Answer Variable 
The following is an example of a graph of a categorical variable describing the 

reactor experience of 13 experts versus the answer variable Q\. The three categories of the 
experience variable indicate an order of importance. That ordering is used to place the 
categories on the axis.

J2l

None School Work
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From the above graph, no linear or nonlinear relationships between the two 
variables are indicated.

Plots like the one in example 13.2 should be done on all possible pairs of the 
ancillary variables with answer variables. If the graphs indicate a relationship between the 
variables, then the ancillary variable is added to the list of potential conditional variables. 
Any explanations or reasons for the relationship should also be kept with the list.

As mentioned above, additional analyses (e.g., multivariate analyses) will be used 
to add to and to change the list of the potential conditional variables. Prior to these 
analyses, some basic investigation of the answer data is useful especially if conditionality 
does not appear to be a problem.

Analyzing the Answer Data
The answers to the technical questions are the prime reason for electing expert 

judgment. It has been emphasized that these responses can be highly conditioned on other 
(ancillary) information such as the experts' problem-solving processes and response 
environment. It has also been emphasized that any scientific investigation must be done 
with the understanding of the granularity used at the various stages of the problem: the 
information gathering, analysis, and conclusions. These issues, granularity and 
conditionality, are considered here in the analysis of the answer data by examining the 
between/within variance and multimodal structures of the answers.

Investigating Multimodality

Empirical evidence has shown that the answers given by multiple experts form a 
multimodal distribution (Booker and Meyer 1988a; Meyer and Booker 1987a; Baecher 
1979). This multimodality was partially responsible for die widespread belief that experts 
must be correlated or dependent upon one another. Therefore, the explanation of the 
modes or clusters of their answers reflected membership of the experts into groups based 
on common backgrounds, educations, or experiences. Until recently this belief and the 
reasons for these clusters had not been investigated (Meyer and Booker 1987a).

In many cases the number of distinctive modes formed by the data will be obvious 
to the eye. For example, a bimodal case with one mode at high values and the other at low 
values with a gap in the midrange obviously splits the data set into two groups or clusters 
(as seen in example 13.3). However, some cases may not indicate such obvious groupings 
or clusterings. For these cases, a formal cluster analysis is useful for determining the 
structure of possible groupings.

As described in chapter 11, cluster analysis forms the clusters from a data set 
according to some distance criteria separating the individual data points. Most cluster 
analysis programs have several options available for determining this distance criteria, the 
most commonly used is the centroid method. The results of the cluster analysis can change 
depending upon the method chosen. In any case, the interpretation of the cluster analysis
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results are left to the user. Most cluster programs printout results according to a 
hierarchical clustering scheme where clusters are formed beginning with one cluster 
containing all the data and ending with clusters containing only one data point each. The 
user must decide which of these possible cluster formations to use to characterize the data 
set.

There are ways that the user can decide on which cluster structure to use. The 
analytically based way is to choose a cluster formation that shows the largest change in 
distances between clusters (examples 13.3 and 13.4). Example 13.3 is a frequency data 
plot of 31 experts' answers to a reactor safety question with a continuous response scale 
from 0.0 to 1.1 (Meyer and Booker 1987a). At first glance, the data appears bimodal in 
nature. The results of a formal cluster analysis using the centroid method on SAS® are 
given in example 13.4. This graph shows the distance between the cluster centers plotted 
for the different numbers of clusters formed (the different cluster formations). The detailed 
clusters are also given for all possible cluster formations.

EXAMPLE 13.3: The Frequency Plot of a Raw Data Set
Thirty-one expert responses to one question are plotted below. The responses were 

elicited on a continuous scale from 0 to 1, where a 1 was considered the highest likelihood. 
One expert (value assigned as 1.1) felt that the event was even more certain than the 
likelihoods presented on the scale. Of course, these values could have been transformed 
from a 0 to 1.1 scale to a 0 to 1.0 scale for analysis.
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The data form two distinctive groups or distributions, 
should also indicate these two major clusters.

The formal cluster analysis
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EXAMPLE 13.4: Cluster Analysis Graph
The following graph indicates the distances between all possible cluster formations 

for the 31 responses to one question. The distances are based on the centroid method of 
cluster analysis.

Cluster formations range from 17 clusters where each value given by an expert 
forms its own cluster to 1 cluster where all 31 observations form a cluster. (Some experts 
gave the same value, making only 17 distinctive values in the data set.) From the plot, 
there is a dramatic change in cluster distances with the two-cluster formation. The next 
major breaks in cluster distances occur at the four- and five-cluster formations. By the time 
that 17 clusters are formed, the distance measure is at zero value.
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The following table gives the values from the experts belonging to each cluster formation 
where individual clusters are marked by square brackets:

No. of Clusters Cluster Formations with Members

1 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13, 0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30,
0.40, 0.44, 0.45, 0.50, 0.75, 0.75, 0.75, 0.75, 0.77,
0.81, 0.88,1.0, 1.1]

2 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13, 0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30,
0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81, 0.88, 1.0, 1.1]
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3 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13, 0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30,
0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81, 0.88] [1.0, 1.1]

4 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13]
[0.20, 0.20, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30,
0.30, 0.30, 0.40, 0.44, 0.45, 0.50]

[0.75, 0.75, 0.75, 0.75, 0.77, 0.81, 0.88] [1.0, 1.1]

5 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45, 0.50] [0.75, 0.75, 0.75, 0.75,
0.77, 0.81, 0.88] [1.0, 1.1]

6 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0, 1.1]

7 [0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0, 1.1]

8 [0.0,0.0,0.0,0.0,0.04] [0.11,0.13] [0.20,0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

9 [0.0,0.0,0.0,0.0,0.04] [0.11,0.13] [0.20,0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45] [0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

10 [0.0,0.0,0.0,0.0,0.04] [0.11,0.13] [0.20,0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45] [0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

11 [0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77] [0.81] [0.88] [1.0] [1.1]

12 [0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40, 0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77] [0.81] [0.88] [1.0] [1.1]

13 [0.0,0.0,0.0,0.0,0.04] [0.11,0.13] [0.20,0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
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[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75, 
0.77] [0.81] [0.88] [1.0] [1.1]

14 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11,0.13] [0.20,0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75, 
0.77] [0.81] [0.88] [1.0] [1.1]

15 (The distance from 14 to 15 clusters was the same.)

16 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11] [0.13] [0.20,0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75] 
[0.77] [0.81] [0.88] [1.0] [1.1]

17 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11] [0.13] [0.20,0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30] 
[0.40] [0.44] [0.45] [0.50] [0.75, 0.75, 0.75, 0.75] 
[0.77] [0.80] [0.88] [1.0] [1.1]

The centroid distance measure can be used to determine which clusters are 
reasonable. The strongest cluster separation splits the data set into two clusters of sizes 9 
and 22 experts. This corresponds to the bimodal structure indicated in example 13.1. The 
next cluster structure suggested by the analysis forms four clusters breaking off the two 
largest answers and the seven smallest answers for the original two clusters. Again this 
separation is visible on the graph in example 13.3.

A second way that the decision on clusters can be made is to use the ancillary 
information gathered on the experts. For example, if there are two clusters in the data, 
which ancillary information corresponds to the experts in each cluster? Perhaps, all the 
experts in the first cluster made very optimistic assumptions when answering the question, 
and the experts in the second cluster made very pessimistic assumptions. The cluster 
dividing lines could then be drawn based on the experts’ assumption-making in conjunction 
with the statistical clustering results from the formal cluster analysis. Investigating the 
relationships between the answer data and the ancillary data is discussed further in the 
section below. However, it is always important to keep potential conditional relationships 
in mind and to be watchful for them.

Determining the number of modes and clusters will be useful later in the bootstrap 
simulation applications for investigating correlation and bias, and for forming aggregation 
estimates. The cluster formations that look reasonable and any possible ancillary 
information or explanations relating to the clusters should be documented for these later 
investigations.

Investigating Between/Within Variation Structure

In most problems where expert judgment data is to be used, several experts are 
asked more than one technical question. The multiple technical questions may be either
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totally different, or some could be quite similar in content and structure. In either case, 
information regarding any differences in the experts can be gained by examining the 
variation in the answer data between and within the experts. A commonly used technique 
for analyzing between variation versus within variation is analysis of variance (see chapter 
11). Example 13.5 illustrates the mechanics of the analysis of variance technique for 
calculating these two sources of variation. (For further details, introductory statistics or 
analysis of variance textbooks such as Snedecor and Cochran 1978, chapter 10, are 
useful.)

EXAMPLE 13.5: Between and Within Response Variation Calculation
Eight experts were asked four technical questions on scales from [0,1]. The 

between expert variance is MSB, and the within expert variance is MSE. Xij is the 
response of the ith expert to the jth question. The overall mean of all 32 responses is C, the 
number of experts is t (= 8); the total number of responses is N (= 32); and n/ is the 
number of questions asked of each expert (= 4).

Expert
Question 1 2 3 4 5 6 7 8

1 0.90 0.50 0.75 0.65 0.80 1.00 0.22 0.44
2 0.95 0.50 0.75 0.65 0.80 1.00 0.22 0.40
3 0.80 0.50 0.75 0.75 0.30 0.38 0.06 0.40
4 0.94 0.48 0.75 0.75 0.65 0.65 0.06 0.38

Total, Xi 3.59 1.98 3.00 2.80 2.55 3.03 0.56 1.62

Mean, X/. 0.90 0.50 0.75 0.70 0.64 0.76 0.14 0.41

MS5 =X C)2/(r-1)

= L63/7 = 0.23

MSE^'ZiXij-Xtf/iN-S) 
»' j

= 0.49/24 = 0.02

MSB/MSE = 0.23/0.02 = 11.50

The MSB/MSE is a ratio of variances and it measures the relative difference of 
between experts versus that of within experts. This ratio is also an F statistic and follows 
an F probability distribution. If the ratio is large, then the differences of the between- 
experts values are large relative to those of the within experts. In this example 11.50 is 
large because it is in the far upper-right-hand tail of the F distribution with (M) and (n-i)
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degrees of freedom. Therefore, the variation of between experts is significantly larger than 
the variation within experts.

If two or more questions are similar, then the variation of the responses to these 
questions can be used as a source of random or background variation for the experts. This 
random source provides a gauge with which to measure the variability between the experts. 
The section on Using Analysis of Variance in chapter 14 indicates how this variation 
comparison can be used to investigate interexpert correlation. Basically, if the variance 
between experts for the similar questions is much larger (e.g., four times larger) than the 
variance within experts, then the experts are giving quite different responses, and 
correlation among them is not suspected. If not, then the variation from one expert to 
another is similar to the individual experts' variation, and correlation among experts might 
be a problem.

If all the technical questions are vastly different in either content or structure, then it 
is expected that the within-expert variability would be larger than it would be if the 
questions were similar. The within expert variability could even be larger than the between 
expert variability (Meyer and Booker 1987a). In this case, it is necessary to investigate 
why such large within-expert variation is present. Perhaps, some questions were quite 
familiar to the experts whereas others were never seen before. Perhaps, the experts had 
difficulty in using the response mode. Perhaps, the experts used an anchoring/adjustment 
heuristic on some questions and simply guessed on others. Perhaps fatigue was a 
problem. Perhaps there was some inconsistency in the elicitation process. With proper 
recording of the experts' rationale and monitoring of the elicitation, these possibilities can 
be traced and understood.

Even though the multimodality and between/within investigations were done only 
on the answer data, explanations and reasons for the results found incorporated the 
ancillary information. At this point some investigation into the ancillary data is needed.

Analyzing the Ancillary Data
The ancillary variables and information in the data base can be analyzed separately 

from the answer data. However, the conditional relationships between the answers and 
this data should not be ignored. The primary purpose for the separate analysis is to 
investigate any redundancies in the ancillary variables, thereby reducing the number of 
variables in the analysis with the answers later on. A secondary purpose is to gain insight 
into the stractures and relationships among these variables.

The suggested analysis of the ancillary data is given in a series of steps using 
standard statistical multivariate techniques. More detailed descriptions of these techniques 
are given in chapter 11.

Step 1: Factor analysis of the ancillary variables
Factor analysis produces a new set of factors from the original set of variables. The 

original variables are mapped onto the new factors according to their common information
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content (based on variability). The mappings are sometimes difficult to interpret, and thus 
the results may not be very useful. However, if the ancillary variables map well into a set 
of new factors, either the new factors can be used as the ancillary variables or the original 
number of variables can be reduced.

Example 13.6 illustrates two cases of factor analyses. The first case indicates how 
a successful factor analysis can be used. The second case illustrates a factor analysis that is 
not useful in trimming down the set of ancillary variables.

EXAMPLE 13.6: Use of Factor Analysis for Ancillary Variables 
Case I: Successful factor analysis
There are 12 numeric, ancillary variables gathered from an elicitation of 20 experts. 

A factor analysis on the 12 variables resulted in the following factor loadings on four new 
factors:

Factors
Ancillarv Variable 1 2 3 4

Ai 0.054 0.112 0.802 0.032
A2 0.556 0.236 0.080 0.128
A3 0.754 0.001 0.026 0.219
A4 0.011 0.218 0.099 0.672
A5 0.832 0.064 0.002 0.102
A6 0.000 0.000 0.347 0.653
Ay 0.107 0.883 0.000 0.001
Ag 0.256 0.495 0.202 0.017
A9 0.109 0.001 0.389 iLm
A10 0.000 0.049 0.076 0.875
An 0.672 0.256 0.003 0.069
Al2 0.000 0321 0.006 0.157

The interpretation of these loadings is that variables A2, A3, Ast and An comprise (load 
onto) factor 1; variables Ay, Ag, and A12 load onto factor 2; variables A4, A(,, A9, and A10 
load onto factor 4; and only variable Ai loads onto factor 3. It happens that A2, A3, As, 
and An are the only set of variables containing information on the experts' education. 
Variables Ay, Ag, and A12 refer to the experts' recent work experience. Variables A2, A3, 
A5, and An refer to the years of work on various related projects. Variable Ai indicates 
how long the experts took to interview. With this clean breakdown of variables, the 12 
original ancillary variables can be restructured using the four factors. However, the four 
new factors have interpretations that are a little more general than the original variables. 
Thus, the granularity has changed.

Case II: Useless factor analysis
Suppose the factor loadings were as follows:
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Factors
Ancillarv Variable 1 2 3 4

Ai 0.054 0.112 0.802 0.032
A2 0.256 0.236 0.080 0.328
A3 0.154 0.001 0.026 0.219
A4 0.011 0.218 0.099 0.672
a5 0.832 0.064 0.002 0.102
Ae 0.000 0.300 0.347 0.353
Aj 0.107 0.883 0.000 0.000
As 0.256 0.495 0.202 0.017
A9 0.109 0.001 0.389 imi
A\o 0.000 0.049 0.875 0.076
An 0.672 0.256 0.003 0.069
An 0.400 0.437 0.006 0.157

Here there is no clear indication as to which factors variables A2, and A12 belong. 
Also, in factor 3, the variables Ai and A10 have nothing in common, making the 
interpretation for factor 3 difficult. Furthermore, factor 1 does not include all the 
educational variables, factor 2 does not include all the experience variables, and factor 4 
does not include all the work variables. These results are not very helpful in gaining 
understanding about the ancillary variables relationships or structure.

Step 2: Graphical analysis
Factor analysis can only be used on the numeric ancillary variables. Relationships 

among qualitative variables or among mixed qualitative/quantitative variables can be 
examined using plots or graphs as suggested in the section above on conditionality.

Because the goal in these analyses is to search for interesting and redundant 
relationships among the ancillary variables, any graphs that show all the data points falling 
on or near a line indicate possible redundant information among the two variables plotted. 
A list of such variables should be made and checked against the correlation analysis 
suggested in the next step (3). The pairs of variables on this list should be either positively 
correlated (for a line indicating positive slope) or negatively correlated (for a line indicating 
a negative slope).

Step 3: Correlation analysis of the ancillary variables
Another useful step in understanding relationships among the ancillary variables is 

the Pearson pairwise correlation coefficient for all possible pairs of ancillary variables. A 
level of significance is needed for deciding whether any correlation is significant (important 
enough). The level is based on the number of pairs, n, for which correlations are 
calculated. If n is less than 20, then the standard 0.05 or 0.01 levels can be used. If n is 
greater than 20, then the level should be less than l/n.

Even though correlation analysis is considered a bivariate analysis technique, it is 
useful in gaining understanding of all the ancillary data relationships. It is also useful in 
verifying graphic results for numeric variables. If any correlation is highly significant (a
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significant level of less than 0.0001 or a correlation greater than 0.90), then redundancy is 
suspected. Only one of the pair of variates needs to be considered for further analysis.

Step 4: Categorical analysis
The ancillary variables can be modeled among each other. One way to do this is by 

modeling all variables that have integer (ranks, dummy variables, or quantifiable 
categories) as dependent variables with the numerical ancillary variables as independent 
variables. Categorical analysis techniques will indicate any potential relationships 
among the dependent and independent variables. This analysis technique is based on linear 
modeling (Grizzle, Starmer, and Koch 1969) and is not discussed or used extensively in 
this handbook. Any significant relationships indicated by categorical analysis should be 
noted and added to the list for potential redundancies.

Step 5: Cluster analysis for variables
Like factor analysis, cluster analysis can be used to examine how much information 

is shared among the numerical ancillary variables. If the variables cluster in distinct and 
tight groups, then information is shared among the variables in the group. The variables 
from any tightly formed groups should be added to the list of potentially redundant 
variables.

By following all or some of the above steps, lists of potentially redundant ancillary 
variables are available for interpretation. The following flow chart indicates how the steps 
can be used, and the example in example 13.7 indicates how results can be interpreted and 
used. Only results indicating the strongest information redundancies should be used for 
trimming the set of ancillary variables. Additional similar tests will be done on the 
combined ancillary/answer variables data set in the next section.

Summary of Steps for Ancillary Data Analysis 

For Numeric Data: For Descriptive Data:

(1) Factor analysis (2) Graphs
indicates shared information indicates possible relationships

(3) Correlation analysis For Integer Data:
indicates possible relationships

(4) Categorical analysis
(5) Cluster analysis indicates possible relationships

indicates shared information

EXAMPLE 13.7. Ancillary Variables Analysis
The 12 ancillary variables from example 13.6, case II, plus 5 more (A13.18) 

descriptive variables were analyzed using the five steps. The results are indicated below:
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Step 1: Factor analysis, part II, example 13.6: Indicated no clear redundancies 
of information; no new factors could be used in lieu of other variables.

Step 2: Graphs of all pairwise combinations of the 18 variables: Indicated a 
strong relationship between Ai and descriptor An and between A3 and A5.

Step 3: Correlations of all 12 pairwise numerical variables: Indicated one pair 
(A3, A5) strongly correlated with a significance level of 0.0001 and that several 
other pairs were barely significant.

Step 4: Categorical models of all integer variables (A7, Ag, A9) with the other 
numerical variables: Indicated A7 is influenced by A2, Ag, and A12 but not 
strongly.

Step 5: Cluster analysis of the numerical variables: Indicated a weak clustering 
of A7, Ag, A2 and A12 and a weak clustering of A3, A5, and A9.

Interpretation
Weak clusterings and no clear factor analysis results indicate little shared 

information.
The only strong result is the A3, A4 correlation. Either of those two could be 

eliminated from the ancillary variables set.
All other variables should be kept for further analysis.

Analyzing the Ancillary Data with the Answer Data
Many of the steps for analysis presented in this section are identical to those 

described in the previous section. Analyzing the Ancillary Data. The main objective in this 
section is to compile lists of possible multivariate relationships—specifically, which answer 
variables are related to which ancillary variables. Ancillary variables that are related to the 
answers are called conditional variables. The model formations and analyses use 
multivariate techniques. Results from these analyses should be consistent with results 
found in the previous sections of this chapter.

Step 1: General linear models (GLMs)
As the descriptor general implies, it is tempting to try to formulate one giant model 

of all the numerical variables with the ancillary variables as the independent variables in the 
model and the answer variables as the dependent variables in the model. Such a general 
linear model would describe relationships existing between the answer and ancillary 
variables and determine which of the answer variables were conditioned on which ancillary 
variables. However, this temptation should be avoided for a couple of reasons. First, 
there is a strong possibility that the same information is shared by many variables. 
Including all of them in a single model results in erroneous variable relationships. Second, 
the variables may be of different types (dummy variables, etc.) and different granularities. 
The model would then be a mixture of levels of detail in the information. Finally, some 
variables may have missing values. Many computer packages cannot perform the analysis 
or will give erroneous results.
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Some logical general linear models can be formed by using some of the information 
gained in the bivariate analyses and the ancillary analysis. For example, if any of the 
graphs of the answer data versus the ancillary data indicated a trend either in the positive or 
negative direction, these variables should be analyzed using the GLM procedure known as 
regression. The answer variables are the Ys, or dependent variables, and the ancillary 
variables are ibex's or independent variables. Likewise, models can be formed using any 
of the variables, indicating significant correlations; and models can be formed by using any 
other information, such as suspected relationships between the variables.

To assist in regression model formulations, many software packages have 
procedures, called stepwise procedures, that indicate which models produces significant 
relationships between the independent and dependent variables. However, stepwise 
procedures do not make model choices. They only give a set of models. Model choices 
should still be based on the information already gathered from previous analyses and 
logical variable selections.

Once the models have been run on the regression analysis code or a linear model 
package, a list of significant models and relationships among the variables should be 
compiled. These significant results should be consistent with the information already 
gathered in the previous analyses; however, some differences will result because (1) 
bivariate results do not necessarily hold for multivariate models, and (2) weak significant 
relationships can change to no significance or to stronger significance depending upon the 
procedure used.

Model formations are not restricted to using only ancillary variables for the X’s. 
One answer variable may be modeled in terms of the other answer variables if it appears 
that the answer variables are related or correlated to each other.

The model formations at this stage of the analysis are solely for the purpose of 
investigating variate relationships. Model formation for the purpose of obtaining final 
results and interpretations is described in more detail in chapter IS.

Step 2: Discriminant analysis
This procedure can be used in addition to or in place of the GLM for investigating 

variable relationships. The objective of this modeling is to find a set of ancillary variables 
that best discriminates among the values of an answer variable.

Studies have indicated that answer variable values tend to be distributed with 
multiple modes, multimodal, (Booker and Meyer 1988a, Meyer and Booker 1987a, 
Baecher 1979). In order to determine which, if any, ancillary variables are responsible for 
this clumping of values, discriminant analysis can be used. The results of a discriminant 
analysis indicate a list of variables that best discriminate among the values of the chosen 
answer (dependent) variable. In order to set up the discriminant analysis, the values of the 
dependent variable need to be grouped or classified into categories. If there are several 
modes, this grouping is obvious. If no value groupings are evident, then discriminant 
analysis is not indicated. If a discriminant analysis is done for each answer variable, then 
any significant (effective) discriminating ancillary variable indicates a potential variable 
relationships. New ancillary/answer relationships should be added to the list, and any old 
relationships should be noted as confirmation of a previous result. The variable 
relationships found from the discriminant analyses will also be useful in chapter 14 for 
correlation and bias detection.
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Step 3: Mulitvariate correlation
Pairwise correlations have been suggested for the ancillary data, the answer data, 

and the combined set of both. The information from all these pairwise correlations can be 
combined graphically to form an ad hoc multivariate correlation structure. Such a graph 
depicts many intertwined relationships among the variables.

One way of constructing this graph is by forming a distance between the pairs of 
variables based on their correlations and plotting the variables according to how far apart 
they are. Distance measures based on variance and covariance (related to correlation) are 
used in cluster and discriminant procedures. A simple distance based on the correlation is 
calculated by 1-r, where r is the correlation coefficient The effect of this calculation is that 
the higher the value of r, the closer the distance will be for any pair of variables.

For the graph, distances should only be calculated for pairs of variables that have 
significant correlations. The rules for significance are outlined above in the bivariate 
correlation step.

Example 13.8 illustrates a graph from the Meyer and Booker study (1987a). Three 
separate conglomerates of variables are evident from the significant correlations among the 
variables. The first group of variables comes from five different ancillary variables 
describing the experts' backgrounds. The second group of variables comes from four 
different ancillary variables describing the experts' experiences. The third group of 
variables comes from all the answer variables (labeled a), 10 of the variables describing the 
experts' problem-solving processes (labeled r), and the single variable which described the 
experts' evaluation of the complexity of the technical question (labeled c).

Many interesting results can be seen from such a diagram:
1. There is no connection between the background variables, the experience 

variables, and the answer/problem-solving variables. The separation of the 
answer variables from the experience and background variables implies little 
evidence for conditionality.

2. There is a close connection between the answer variables, the problem-solving 
variables, and the complexity variable. This connectivity implies strong 
evidence for the answers being conditioned on the problem-solving variables 
and the complexity variables.

3. The answer variables are closely interconnected among themselves. The 
problem-solving variables are also closely interconnected.
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Example 13.8: Multivariate Correlation Analysis

A answer variables 
B background variables 
C complexity variable 
E experience variables 
R problem solving variables

E B ^ B 
E

The sole purpose of performing GLMs, discriminant analysis, and mulivariate 
correlation steps for ancillary and answer data is to search for strong, consistent 
relationships among the variables in general and, in particular, to search for answers 
conditioned on ancillary variables. From the results of these analyses, an expert judgment 
model can be constructed, as discussed in chapter 15.
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14
Correlation and Bias 
Detection

In this chapter, the concept of correlation is defined and discussed as it is used in 
expert judgment applications.

Correlation among experts is closely related to the concept of dependence, and 
distinctions and similarities of both concepts are discussed below in Defining Correlation 
and Dependence.

Correlation is also closely related to the various forms of bias, discussed in detail in 
Part II; the affinity of these two concepts is addressed in Bias and Correlation 
Relationships.

Because correlation among experts is often considered a problem area in analysis of 
expert judgment data, the third section. Detecting Correlation in the Analysis, focuses on 
various methods of detection. This section is organized as a series of 14 steps. Each step 
relates to the usage of several different analysis techniques. These steps and techniques 
may appear to be redundant. Indeed, they are meant to be redundant. Comparing results 
from different techniques is the only way to verify conclusions about correlation. In 
Analysis Summary and Conclusions, we summarize both the 14 steps and the results from 
the examples in the steps.

Defining Correlation and Dependence
Correlation among expert judgment answers has typically meant dependence or lack 

of independence among expert answers. Thus, to discuss correlation, the concepts of 
independence and dependence need to be clarified.

One concept of independence comes from a mathematical definition and is referred 
to as probabilistic independence. The mathematical procedures for combining data from 
multiple experts require that the data have this type of independence. In probabilistic terms, 
two events, A and B, are said to be independent if the probability of A is unaffected by 
what happens to B. Stated another way, the unconditional probability of A, P(A), is 
unaffected by B such that P(A) = P(A\B), the probability of A given B (Feller 1957).

In the context of examining independence in data, the same definition can be used, 
but the process of identifying independence is not so straightforward. Analysts tend to

233



Chapter 14

think of two pieces of data as being independent if the occurrence of one datum is 
unaffected by the other. One way of defining unaffected is to examine ways in which the 
data were collected. This examination involves investigating conditionality. If data are 
collected under various conditions, they may be unconditionally dependent because those 
conditions are affecting the data and the data are affecting each other. Thus, the 
observation of one datum is affected by another such that P(A) * P{A\B). However, if the 
data are collected under conditions, C, mutually affecting both A and B, they could be 
conditionally independent such as P(A\C) is independent of P(B\C). In either case, 
conditionality becomes the focal point of investigating independence or dependence.

The terms correlation and dependence have been used interchangeably and 
synonymously in expert judgment problem settings. This usage is also mathematically 
valid and is in keeping with the probabilistic definition. However, the terms zero 
correlation (uncorrelated) and independence can only be used interchangeably when the 
data are normally distributed. Only in the normally distributed cases does zero correlation 
or uncorrelated guarantee independence. In nonnormal cases, zero correlation could imply 
either independence or dependence. Thus, for most of the analyses in this book, the 
dependence/independence problem is discussed from the dependence (or correlated) 
viewpoint.

In collecting expert judgment data, analysts have historically speculated that the data 
were not independent (Baecher 1979, Winkler 1981). The reasoning was that dependence 
is likely because the experts had many conditions in common that would affect their 
estimates. Analysts considered such conditions as shared training, common work 
experiences, and exposure to the same data bases. Through time the speculation about the 
effects of these conditions became identified as sources of correlation among the experts.

A simple example can be used to illustrate how this line of reasoning developed. 
The following is a sample of probability estimates from five different experts for an event: 
(0.1 0.15 0.1 0.6 0.65). The bicluster structure of the estimates is commonly seen 
(Baecher 1979, Booker and Meyer 1985, Meyer and Booker 1987b). The analyst looking 
at the clustering of the answers tends to arrive at the conclusions that the first three experts 
are giving the same answer and the last two are giving the same answer, that there are 
really only two independent answers, and that this is not a sample of five independent 
pieces of information. The data appear to have a correlation structure with the first three 
experts being correlated to each other and the last two experts being correlated to each 
other. If the analyst has assumed that experts should be correlated, then the clustering of 
the data supports that assumption. However, it should be noted that the clustering is the 
only reason for suspecting dependence. No conditions have been examined to support the 
dependence idea, nor has any reason been given for dependence.

The reasoning used in the above example was responsible for the development of a 
new body of literature on how to deal with data from dependent sources (Winkler 1981, 
Lindley and Singpurwalla 1984). The focus of this research was to establish methods for 
handling dependent data, assuming that the dependencies existed and in many cases 
assuming that the correlation structures were known. The analytical focus concentrated on 
these assumptions and not on the real issues. First, the correlation structures are generally 
not known. Second, correlation among the experts may not exist or may not be an 
analytical problem if it does exist Third, conditionality and granularity need consideration 
in determining and interpreting correlation.
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Two studies (Booker and Meyer 1985, Meyer and Booker 1987b) had the goal of 
identifying possible sources of correlation among experts. In both studies, it was not 
assumed that experts were correlated nor that clusters of answers implied correlation. 
Instead the approach was to investigate any possible sources of correlation using the 
definition of dependence based on conditions and monitoring the effect of granularity. 
Sources (conditions) were sought from many different forms of information gathered in 
intensive interviews of the experts.

For the model formations of each study, the granularities were chosen with the level 
in the first study more detailed than in the second. For the chosen granularity, the results 
of each study indicated that the answers were conditioned on the problem-solving 
processes of the experts. These conditions appeared to be a reasonable source for possible 
correlation or dependence among the answers. However, an equally valid result would be 
that the answers were conditionally independent, being conditioned on the sources in the 
same way. Therefore, discovering conditions affecting answers does not automatically 
imply dependence.

Granularity must also be considered in interpreting the results. In both studies, at a 
granularity finer than the ones chosen for analysis, the experts had nothing in common in 
background, experiences, or problem solving (i.e., there were no conditions that could 
induce dependence among them). Applying the conditioning argument at a different 
granularity results in the conclusion being that there is no dependence among the experts. 
Of course, another equally valid possibility is that sources of correlation could exist at an 
even finer level of detail than was gathered. Gathering information at such an extremely 
fine granularity might be difficult or impossible because the subjects might not be capable 
of providing information at such a level or by providing it the interview would be 
prohibitively long.

Therefore, in defining correlation or dependence among experts, the conditioning 
argument from the definition of probabilistic independence can be used as a guide. In its 
application, care must be taken to use the predecided granularity for the entire problem 
because conclusions about correlation and dependence can change if levels are changed.

Bias and Correlation Relationships
In the broadest definition, bias can be related to a number of sources. Bias can be 

induced from the interview environment through factors such as the interviewing 
technique, the question phrasing, and the interactions with others including the interviewer 
present at the interview (motivational bias). Bias can be related to the internal 
consistency of the experts' reactions, conditioning, and thinking (cognitive bias). This 
bias occurs when the expert is not consistent in his own reasoning or when the expert is not 
consistent with fundamental rules of logic. Bias can be induced by faulty memory retrieval 
(availability bias). Therefore bias can be considered a conditional phenomenon. It can 
be initiated by certain external or internal conditions during the elicitation.

Because bias can be found in any of the above forms, it becomes difficult to 
monitor and to control. However, monitors and controls such as those discussed in Part II 
should be used and considered an integral part of the experimental design. The various
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ways of handling and minimizing bias are discussed in chapters 3, 7, 8, and 10 in 
conjunction with the elicitation techniques.

In the analysis of the data from experts, bias manifests itself as conditions 
responsible for correlated data. Therefore, application of bias-minimizing methods is 
important for minimizing possible dependence. Of course, answer data can be correlated 
for reasons other than bias; however, the original postulated sources of correlation can all 
be traced to the different types of bias.

The correlation in the data appears in the forms of interexpert correlation or between 
expert correlation. If an expert has a motivational bias that drives him to be consistently 
optimistic, then his answers will reflect that bias by being more optimistic than the other 
experts. This expert's answers could indicate interexpert correlation but not between- 
expert correlation. If all the experts shared the common goal for a project, then their 
answers might exhibit between-expert correlation and little or no interexpert correlation. 
The remainder of this chapter describes how to detect and analyze correlated data in both 
forms regardless of whether a bias or some other condition is the source of correlation.

Detecting Correlation in the Analysis
Several steps using several methods are given below to investigate any potential 

correlation among the experts' answers. The main emphasis in each step/method will be on 
detecting correlation or dependence in the answers given by the experts using the answer 
data itself and the conditionality definition of dependence. In other words, dependence is 
sought in terms of possible conditions that may be influencing the answers of multiple 
experts or that may be biasing the answers given by a single expert. It is not assumed, a 
priori, that dependencies exist. The investigation is done using only the data (except for 
step 14) and minimizing the assumptions necessary for using the analysis techniques.

The methods for detection include using the results from correlation analysis, 
multivariate analysis, analysis of variance, and simulation techniques, such as the 
bootstrap. Detection is also done by using the features of the chosen elicitation method and 
using assumed correlation structures and distribution forms. Any one of these steps or 
methods can be used individually. However, to maximize the information inherent in the 
data, it is suggested that all steps, except the last one (step 14), be done for a data analysis 
approach. Because the last step is an assumptional approach, it may not always be 
appropriate to use, but it can be done in conjunction with the others or by itself.

The following 14 steps fall into various categories according to usage. These 
categories are listed as subsection headings. There may be one or more steps under each 
heading.

Using Granularity

Step 1: Defining a level of detail to be used in the analysis and in 
the interpretation of the results.

Even after having assumed and established a definite granularity for the problem, 
the application of the definition of dependence must be done considering granularity. What
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does it really mean to say the experts are correlated? With a fixed granularity, the question 
becomes. What does it really mean to say the experts are correlated for this granularity of 
data and analysis? It has already been shown that the answer to this question can be 
different if the granularities are allowed to change. Therefore, the first step and most 
important step is to fix the level in the analysis and in the interpretation of the results. The 
results of the rest of the steps in the correlation investigation are given in terms of the 
granularity chosen in this first step.

Using Hypothesized Sources of Correlation

The next few steps are data preparation steps for some of the remaining methods of 
correlation detection. They do offer the analyst an opportunity to hypothesize what 
conditions in the ancillary data might be potential sources of correlation. They also offer an 
opportunity to do some hands-on data analysis gaining additional insight into the data set 
for formal model formation later (chapter 15).

Step 2: Compiling a list of conditions from the ancillary infor­
mation that are suspected or hypothesized as being potential sources of 
correlation.

This list could include suspected sources from the literature (Booker and Meyer 
1985), such as, the experts' educational background, commonly shared work experiences, 
how recently they worked on a similar problem, assumptions made in the problem-solving 
process, and heuristics or rules used in solving the problem. Likely candidates for this list 
can come from the results of the multivariate analyses done on the answer data and from the 
ancillary data in chapter 13. Any ancillary variables that were significantly correlated to 
answer data should be added to this list.

Step 3: Examining the raw data clusterings.
In chapter 13 on understanding the data-base structure, the multimodal structure of 

the data was investigated. A raw data frequency plot, such as in figure 13.1, was helpful 
in determining the raw data clusters. The important point here is that these clusters of the 
raw data do not necessarily imply a correlation or dependence structure. For one reason, 
the data may be conditionally independent on one or more ancillary variables. For another 
reason, there may not be any rationale for the clusterings. However, it is important to try 
and find reasons for the raw clusterings. Also do any of the ancillary variables group the 
data according to these clusters? This question is partially answered in the ancillary data 
analysis in chapter 13, but a more complete answer to this question is needed in the 
correlation investigation. The steps below pursue this answer.

Step 4: Forming clusters of the data using the suspected 
conditions.

New data clusterings can be formed using the conditional variables listed in step 2. 
This formation can be done by hand by simply splitting the values of the conditional 
variables into categories or clusters and listing the corresponding answer data for each 
category. If the answers within these clusters are numerically similar, then the question 
posed in step 3 is answered affirmatively. An alternative formation can be done by plotting
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the categories of the conditional variable against the numerical answers to see if clusters 
form. In either case, if no cluster formations are evident, information is still gained 
regarding the relationships of the data and the ancillary information. This information 
should be consistent with the results from the analysis in chapter 13.

Step 5: Compiling a list of unsuspected variables.
This list should be a random selection of the ancillary variables not hypothesized as 

sources of correlation. Ideally, this list should be as long as the list in step 2; however, that 
may not be possible in some cases either because there may not be enough ancillary 
variables left or because such a list would be too long for the analyses in the following 
steps.

The purpose of this unsuspected list is twofold. First, a random selection provides 
a chance of discovering conditions that might be sources but were not previously 
hypothesized as possible sources. Second, this list provides a comparison to the list of 
suspected sources from step 2.

The lists compiled in steps 2 and 5 should not be considered final at this point in the 
investigation. The results from the remaining steps/methods will help determine if these 
hypothesized lists are correct.

Step 6: Forming clusters of the data using the unsuspected 
variables.

Graphs or hand listings of the unsuspected ancillary variables and the answers 
should be examined to see if the answer data clusters similar to the raw clustering (from 
step 3). The clustering for an unsuspected variable could be better (closer to the raw 
clustering) than the clustering for the suspected variables (from step 4).

Steps 2 through 6 will give three different clustering mechanisms to interpret and 
compare: (1) the raw data clusters, (2) the data clustered by the various conditions 
suspected of inducing dependence, and (3) the data clustered by other unsuspected 
conditions. If any of the variables forms clusters of approximately the same size and of 
similar values to the raw data clusters, then there is reason to suspect that the variables are 
sources of correlation. The remaining steps will help verify this conclusion. If none of the 
variables produces good clusterings, there may still be correlation among the experts and 
the other steps are necessary. Example 14.1 illustrates hand listings of cluster formations 
from ancillary variables.

Example 14.1: Clusterings Using Different Variables
From the list of background variables on the eight experts, years of work 

experience in the technical area (YRWORK) and one of the variables describing the 
expert's problem-solving process (PSRATE) were selected as potential sources of 
correlation. Two other variables, not suspected, were also chosen: discipline of highest 
degree (DEGREE) and whether or not the expert had any experience in a nuclear 
experimental facility (EXPFAC). The answers to the technical question are listed as P.
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Exnert P DEGREE

1 0.90 Engineer
2 0.50 Engineer
3 0.75 Engineer
4 0.65 Physics
5 0.80 Engineer
6 1.00 Engineer
7 0.22 Physics
8 0.44 Engineer

EXPFAC YRWORK PSRATE

Yes 1.5 1
Yes 0.5 -1
Yes 3.0 0
No 3.0 -3
yes 1.2 -1
No 10.5 -1
No 7.6 -2
Yes 4.9 2

Two clusters for each variable can be formed by hand listing as follows:

Variable austerine Descriotion Cluster 1 Cluster 2

P [0,0.50] & [0.50,1.0] 0.22, 0.44, 0.50 0.65, 0.75, 0.80, 0.90, 1.0
DEGREE Physics & engineer 0.65, 0.22 0.90, 0.50, 0.80, 0.75, 0.44,1.00
EXPFAC Yes & no 0.65, 1.00, 0.22 0.90, 0.50, 0.75, 0.80, 0.44
YRWORK > 5.0 & [0,5.0] 1.00, 0.22, 0.44 0.90, 5.00, 0.65, 0.75, 0.80
PSRATE [0,2] & [-3,0) 0.90,0.44, 0.75 0.50, 0.65, 0.80, 1.00, 0.22

Here none of the ancillary variables clusters the answer data similar to the raw data 
clusters (line P), even though the cluster sizes (2 or 3 for cluster 1 and 5 or 6 for cluster 2) 
are similar for the ancillary variables.

Using Correlation Analysis

Step 7: Calculating the Pearson correlation matrices of the
answers.

Calculating the Pearson pairwise correlation matrix (chapter 11) for the experts' 
answers to all questions is helpful for finding experts that are numerically correlated in their 
answers. This correlation is strictly a numerical correlation, and it does not necessarily 
imply dependence of the experts under the definition. However, it is good to know which 
pairs of experts' answers are significantly correlated using the Pearson correlation 
coefficient. Any significant correlation coefficients can indicate potential expert correlation 
that can be further tested under the dependence definition using the remaining 
steps/methods.

The correlation coefficients are calculated for pairs of experts by comparing the 
numerical similarity between the experts answers to more than two technical questions. 
There is an implicit assumption made regarding the similarity of the technical questions 
asked. The coefficient calculation assumes that the answers to these different questions 
represent repeated measures of each experts’ knowledge and problem-solving processes. 
This assumption is not a bad one to make if the technical questions are similar in structure 
(form and response mode) and if they are similar in content. One way to help verify 
similarity among the questions is to check the results of the analysis done in chapter 13. If
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the answer variables were found to be related to each other from Pearson correlation 
coefficients, from graphs, from GLMs, or from cluster analysis, then similarity among the 
questions is plausible.

Example 14.2 illustrates two different correlation matrices for the data from 
example 13.1. The first matrix is the expert correlation matrix of coefficients calculated 
across answers to the questions. The second is the answer matrix of coefficients calculated 
across experts to help verify question similarity through correlation of the answers.

EXAMPLE 14.2: Correlation Matrices of Experts and Answers
Eight experts were asked four questions that were similar in subject matter and used 

the same response mode, a continuous scale from 0.0 to 1.1. The correlation matrix for the 
experts is formed using the Pearson correlation coefficients for each pair of experts as 
follows:

-El Ei -E3 _ea -EiS -En _£8

El 1.00 -0.41 0.00 -0.46 0.87 0.74 0.46 -0.15
e2 1.00 0.00 -0.58 -0.03 0.24 0.58 0.66
El 1.00 0.00 0.00 0.00 0.00 0.00
Ea 1.00 -0.80 -0.93 zLQQ -0.69
e5 1.00 0.96 0.80 0.35
Ee 1.00 0.93 0.52
El 1.00 0.69
E8 1.00

The only significant correlations in this matrix (using a 5% significance level) are 
the ones underlined. The lower triangular values are not listed because they are identical to 
the upper triangle values folded over at the diagonal of 1.00 values. One interesting result 
here is the perfect negative correlation of expert number 4 and expert number 7. Usually, 
analysts tend to be concerned with positive correlations among experts because that has the 
effect of underestimating the true expert variation if ignored. However, if experts are 
negatively correlated, the expert variation is overestimated if the correlation is ignored. 
Neither effect is desirable and both produce statistically biased estimates of the expert 
variation. In any case, correlations (positive or negative) should be investigated.

The correlation matrix for the answers follows:

—Qi -02 —Qs -Qa

Q\ 1.00 0.99 0.51 0.86
Qi 1.00 0.52 0.87
<23 1.00 0.85
Qa 1.00

The significant correlation coefficients (using a 5% significance level) are 
underlined. Here the answers to the questions are very well connected into a structure.
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This structure indicates that using the answers could serve as repeated measures of the 
experts' processes of answering similar technical questions. Therefore, the correlation 
results from the first matrix (experts) are also usable. The answer structure can be 
diagramed as follows, with the connecting lines representing significant correlations:

Qi

Qd Qi 
Q3

Using Multivariate Analysis

Step 8: Determining which clusterings match the raw clusters.
The objective in this step is to determine which of the ancillary variables cluster the 

data in a manner most similar to the raw data clusters by using multivariate analysis 
methods such as discriminant analysis and by using some of the results obtained from the 
analyses done to gain understanding of the data base in chapter 13. If an ancillary variable 
clusters the answers well, and this clustering has a basis in terms of cognitive theory, then 
a potential source of correlation is identified (Meyer and Booker 1987b). The word 
potential is important here because it is not true that the raw clusters of the answer data 
indicate the existence of a correlation structure. Additional analysis such as using 
simulation techniques and examining variances (in steps 9 and 10) is needed to make such a 
determination.

Discriminant analysis could be used to complete the investigations done in steps 3 
and 6 where the answer data are clustered according to the ancillary variables from the lists 
compiled in steps 2 and 5. Discriminant analysis can be used in two different ways. First, 
it can be used to determine which of the ancillary variables best predicts to which raw 
cluster each datum belongs. Second, it can be used to determine which ancillary variables 
predicts the clustering behavior of any other ancillary variable, such as the variables from 
the lists in steps 2 and 5.

To implement the first application, a variable is chosen from either the list in step 2 
or in step 5. Categories of values for the clustering are formed using the values of that 
variable. For example, the variable PRSOLV in example 14.3, could be categorized as 
positive (1) or negative (-1) values. PRSOLV is the variable describing the experts' 
problem-solving score accumulated over several problem-solving characteristics. This 
variable was from the list of suspected correlation sources (step 2). Another variable, 
DEGREE categorizes the discipline of the highest degree earned by the experts. It is not 
suspected as being a source of correlation (from the list in step 5).

EXAMPLE 14.3: Using Ancillary Variables as Discriminators
The answers of 8 experts are listed below as Q\. Two other ancillary variables, 

PRSOLV and DEGREE, represent choices from the lists in steps 2 and 5, respectively. 
Discriminant analysis is done with each of the ancillary variables to determine if they might
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be potential discriminators for the answers. The results given below indicate how many 
answers would be misclassified if the ancillary variable was used as the discriminator.

Exnert ID PRSOLV DEGREE Gi

1 1 1 0.90
2 -1 1 0.50
3 1 1 0.75
4 -1 0 0.65
5 -1 1 0.80
6 -1 1 1.00
7 -1 0 0.22
8 1 1 0.44

Discriminant analysis results using where the asterisks indicate misclassification by 
PRSOLV:

Expert From PRSOLV Classified Into
ID Class PRSOLV Class

1 1 1
2 -1 -1
3 1 1
4 -1 -1
5 -1 l ***
6 -1 1 ***
7 -1 -1
8 1 ***

Discriminant analysis results where the asterisks indicate misclassification 
DEGREE:

Expert From DEGREE Classified Into
id Class DEGREE Class

1 1 1
2 1 o ***
3 1 1
4 0 1 ***
5 1 1
6 1 1
7 0 0
8 1 Q ***
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With so few experts (8), any misclassifications indicate poor discrimination by the 
ancillary variable. Thus neither of these variables is a good clustering mechanism for the 
answers.

The second use of discriminant analysis can be done in two ways. Ancillary 
variables can be analyzed with each other to see if they are mutual discriminators or their 
discriminating abilities can be compared by direct examination of the misclassification 
output. In example 14.3, the two ancillary variables did not have the same 
misclassification pattern. This difference in patterns indicates that these two variables had 
little in common. This result should be consistent with the results from the analysis of the 
ancillary variables done in chapter 13.

Using Analysis of Variance
Step 9: Examining between and within cluster variations.

Comparing between-expert and within-expert variations is the basic philosophy of 
analysis of variance procedures in statistics (see chapter 11). The formal analysis of 
between and within answer variation was suggested in chapter 13 as part of the 
understanding of the data-base structure. Interpreting the results from this analysis in the 
context of correlation is given in this step.

In the previous steps, analyses have concentrated on data clusterings. How do 
clusterings relate to correlation? One way of determining if data within a given cluster are 
correlated is by comparing the variance structures of between-expert variation to within- 
expert variation. Formal analysis methods such as discriminant analysis are based on 
complex, but similar, variation comparisons. If interexpert correlation is suspected, then 
within-expert variation can be used as a measuring standard. Within-expert variation is 
how closely each expert repeats himself on the answers to various, but similar, questions.

For example, if experts are asked multiple, but similar, questions, then the variation 
between experts can be compared to the variation within experts. If the two variations are 
the same, the interpretation would be that there is no difference in answers given by 
experts. If between-expert variation is much larger than within-expert variation, then this 
result indicates that the experts are acting more independently of each other. The variation 
comparison approach only works if multiple questions are asked of the experts, and these 
questions must be very similar in content, structure, and response mode.

If the multiple questions asked are very different in content or structure, then the 
within-expert variation comparison measures a combination of question variation and 
within-expert correlation. Even so, the between versus within variance comparison can 
still be useful. If each expert answers the various questions differently, indicating no 
consistent bias, such as always answering with low values, then the within-expert variation 
would be large. In this case, if the between variance is of the same size or larger than the 
within variance, correlation among the experts might not be suspected. If the between- 
expert variance is small relative to the within-expert variance, correlation might well be 
suspected.

Example 13.3 illustrates how these variations are calculated for the eight experts 
answering four very similar questions. Here the between-expert variation is 0.23 and the
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within-expert variation is 0.02, significantly smaller by comparison using an F test. By 
examining the raw data, a systematic bias among experts 1, 2, 3,4,7, and 8 is suspected. 
Each of these experts consistently answers the four questions as low or high. Therefore, 
the within-expert variation is expected to be a small value and is a good measuring standard 
for the between-expert variation. In this case, the between variation is much larger 
indicating that the eight experts may not be correlated.

Using Simulation Techniques

A major concern with correlated data is when an aggregation or pooled estimate 
must be formed. Most rules for aggregation require the independence of the data (not just 
uncorrelated data). However, the chosen aggregation estimator can be used on the existing 
data to help determine if correlation is a problem. This determination is made by 
investigating the behavior of the chosen estimator comparing correlated and uncorrelated 
data sets. A convenient way of determining this behavior is by using simulation 
techniques.

Two such simulation techniques, Monte Carlo and bootstrap, are discussed in 
chapter 11. Using the median as an example of a chosen aggregation estimator, steps 10 
through 12 illustrate how to use simulation for investigating correlation. Heavy use is 
made of the bootstrap technique because it does not require any assumed distributional 
forms for the data and relies solely on the information content of the raw data.

Step 10: Comparing different stratified bootstrap sample results.
The bootstrap simulation technique can be used to investigate correlation in 

conjunction with ancillary variables listed in steps 2 and 5. The resulting bootstrapped 
distributions of a chosen estimator (such as the median) are formed for each clustering 
using stratified sampling techniques. This sampling is different from the ordinary 
bootstrap as described in chapter 11 because the clusters of the data act as the strata. Each 
bootstrap sample is formed by randomly selecting one datum from each strata. The 
resulting distribution of the median from stratified bootstrapping for a cluster formation 
from one variable can then be compared to the results from other clustering variables.

Specifically, this comparison can be made by examining the dispersion of the 
resulting bootstrapped distribution of the medians. The dispersion of highly correlated data 
(r=0.9) is smaller than for uncorrelated data (r=0.0). Dispersions can be measured using 
the variances of the bootstrapped distributions, the ranges, or some central probability 
coverage interval such as the central 90% putative interval (the difference between the 95th 
and 5th percentiles).

If the central 90% putative intervals of the distribution of the median are used as the 
measure of dispersion, then these intervals are at least three times wider for uncorrelated 
data than for highly correlated data (Booker and Meyer 1988b). Thus by comparing the 
90% putative intervals for the bootstrapped medians from different cluster formations, 
relative correlation structure can be determined. If one cluster formation (from an 
unsuspected clustering variable) results in an interval three or more times wider than from 
another (suspected or good) clustering variable, then the data in the first case is 
uncorrelated relative to the second case. Again the correlation investigation is geared to 
finding conditional variables in accordance with the definition of dependence.
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To form these bootstrapped distributions, a modification is needed in the bootstrap 
technique (chapter 11). The first step is to classify the data into clusters using the 
clustering variables from the lists in steps 2 and 5. Then form stratified bootstrap samples 
(e.g. 1000) by randomly sampling 1 datum from each of the m clusters. The median is 
calculated from the m values. For 1000 or so such samples, a distribution of the median is 
formed, and the corresponding percentiles (e.g., 5th and 95th) variance or range can be 
found, indicating dispersion.

Example 14.4 illustrates the results of stratified bootstrapped median distributions 
for 4 ancillary variables and for the raw data itself. Two of the ancillary variables were 
from the suspected list (step 2), and two were from the unsuspected list (step 5). The 
central 90% putative intervals plotted in the example indicate relative correlations due to the 
various clustering mechanisms. By far the raw cluster formation is the most narrow. DEG 
is the only other clustering variable indicating possible relative correlation. The other 
variables are not very promising as potential sources of correlation.

EXAMPLE 14.4: Ninety Percent Putative Intervals for Bootstrap Medians 
Using Different Variables as Strata 

Six clusters were formed for each of the five variables; PSP and YRS were from 
the suspected variable list, and DEG and ASR were from the not suspected list. Stratified 
bootstrap sampling was done forming 1000 samples. The medians of each sample were 
calculated and sorted. The 5th and 95th percentiles of these medians are marked by vertical 
lines (I—I). Each sample was of size six, one point was randomly selected from each of the 
six clusters (strata) in the manner of simple random stratified sampling (Cochran 1963). 
The variables chosen were as follows:

RA W - the raw data as it clustered numerically
PSP - a variable describing the problem-solving process of the experts
YRS - the number of years since the expert had worked on that type of problem
DEG - the discipline of the expert's highest degree
ASR - the number of years the expert worked as a code assessor

I-—I RAW

|--------------------------------1 psp

|------------------------------- 1 YRS

|------ 1 deg

|--------------------------------------- 1 ASR

I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Step 11: Comparing bootstrap distributions using pairwise corre­
lation.

The bootstrap distribution of the chosen estimator (median) for the entire, 
unclustered, data set can be used in conjunction with the information from the pairwise 
correlation analysis of the answer data (from chapter 13). First, the entire data set is 
bootstrapped obtaining the distribution of the chosen estimator. Second, the experts' 
answers that were correlated in a pairwise manner from the correlation analysis are 
removed from the sample. Next, the bootstrap distribution of the estimator for this 
reduced, but perhaps more independent, data set is found. By comparing the dispersions 
of the two resulting distributions for the median, the effect of including those highly 
correlated experts can be readily seen.

Example 14.5 shows some results of this analysis for a data set of 31 experts 
(example 13.3) from the study by Meyer and Booker (1987b). In this example, the 
removal of the five correlated experts significantly changes the dispersion of the estimator, 
indicating that the inclusion of those correlated experts does affect the dispersion of the 
aggregation estimator (the median). The recommendation at this point would be to remove 
those five experts' answers from the data set and replace them with an average of their 
values. This average represents a single, but more independent, expert in conjunction with 
the remaining, uncorrelated experts.

EXAMPLE 14.5: Using the Bootstrap with Pairwise Correlation Results
Thirty-one experts were asked a question with a response mode scaled from 0.0 to 

1.1 (Meyer and Booker 1987b). The median was chosen as the estimator for aggregating 
the 31 answers. A bootstrap sampling procedure was done for 1000 randomly formed 
samples for this data.

In this set of 31 experts, a pairwise correlation of the experts over eight similar 
questions resulted in the following significant correlation structure:

Expert 11— Expert 12 — Expert 6

Expert 3 
I

Expert 10

A bootstrap distribution for the median was then calculated on the data with the 
above five experts' answers deleted from the data set. However, because dispersion is 
affected by sample size, the results for a sample of 31 might differ from a sample of 26. 
This effect would be more pronounced if the samples were 15 versus 10. In order to 
account for sample size changes in comparing these two bootstrapped distributions, a third 
bootstrap was done on the original data set deleting five experts' answers from five 
randomly selected experts that were not at all pairwise correlated.

The resulting 5th and 95th percentiles for the median from that bootstrapped 
distribution are plotted below.
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|----------------1 Original data set,
1V=31

|------------------------------- 1 N=26, without the
5 correlated experts

---------------1 N=26, without the
5 uncorrelated experts

I I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The results of the three comparisons indicate that the sample size difference between 
31 versus 26 has little effect on the median dispersions; however, removing the five 
correlated answers indicates a significant increase in the dispersion. Therefore, it is 
recommended that those 5 experts be replaced by a single average value for all 5, making a 
data set of 27 uncorrelated expert answers.

Step 12: Comparing simulation results of the data to known 
distributions.

Relative comparisons using bootstrap simulation do not give absolute information 
on the correlation structure of the data. To gain this information, the bootstrap results of 
the data can be compared to bootstrap results of data sets with known correlation 
structures. Comparisons can be done by forming random samples of data from 
distributions with known correlations and comparing these dispersions of the chosen 
estimator (e.g. median) to dispersions of the estimator for the data.

The major difficulty in this approach is deciding on which known distributions and 
correlation structures to compare with the raw data bootstrap results. For example, if a 
normal distribution is decided upon, then what values should be used for the parameters? 
If the mean and variance are estimated from the mean and variance of the raw data, then the 
resulting dispersion of the normal sample with zero correlation will be the same as the 
dispersion of the original data with unknown correlation. Such a comparison does not 
provide any information about the unknown correlation in the raw data. However, if many 
different correlation structures are bootstrapped, the effects in dispersion can be seen for 
changes in correlations. For example, the central 90% putative interval of the median 
estimator for a normal sample with correlation structure of 0.5 is about twice as much as 
the central 90% putative interval for a normal sample with correlation structure of 0.9.

Another way of comparing the data set with distributions of known correlation 
structures using the bootstrap technique is by using a mixture of distributions rather than a 
single distribution. This method has two advantages. First, the new data set can be 
modeled into clusters with means and variances reflecting the raw data set clusters. 
Second, the new data set can be mixed according to the results of the correlation analysis 
on the raw data set. An example of a mixture is given in example 14.6. Here the 
correlations and clustering structure of the 31 experts (Meyer and Booker 1987b) were 
used to form a three-mixture distribution using the normal family. The three mixtures are
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formed from the two distinctive raw data clusters and from the set of the five correlated 
experts (see example 14.5). The raw data bootstrap compares favorably to the bootstrap 
results for this three-normal mixture. Of course, other goodness of fit techniques (Conover 
1971) could have been used in making this comparison, but the focus of this section is on 
the use of simulation techniques.

EXAMPLE 14.6: Using the Bootstrap for a Normal Mixture
The following answers from 31 experts (Meyer and Booker 1987b) are cleanly 

grouped into two distinctive clusters. In addition, a correlation analysis indicates that 
experts 6, 3, 10, 11 and 12 are significantly correlated with correlations larger than 0.90. 
The data can be divided into three groups using the correlation and raw clustering 
information. These three groups are as follows:

Group Size Mean Variance Correlation

17 0.24 0.03 0.00
5 0.18 0.01 0.99
9 0.84 0.02 0.00

Using the normal distribution with the above parameters for each group, a sample 
of 31 was formed by combining the three groups. This sample was bootstrapped and 
compared to the bootstrap distribution for the median of the raw data. The resulting 5th 
and 95th percentile values of the medians are given below. The close correspondence 
implies that the normal mixture is a reasonable fit for this data set.

I-------------------1 7V=31, raw data

|---------------------1 N=31, mixture
normal sample

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Using Elicitation Methods

Depending upon the elicitation technique used, biases and correlation resulting 
from them can be somewhat controlled or monitored. Chapter 3 describes the biases and 
some methods for countering, reducing, or handling them. Bias consideration is an 
integral feature of designing the expert judgment elicitation as presented in chapter 8. Bias 
control and monitoring in conducting the elicitation is discussed in chapter 10.
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Step 13: Examining the correlation or bias relative to the 
elicitation method.

Of the three basic elicitation situations, interactive group, Delphi, and 
individual interview, the first two are expected to induce correlation among experts. 
In these two situations, the analysis steps 1 through 12 above can still be performed, but 
the results should indicate much more correlation among the experts than the examples 
given in this chapter that were taken from individual interview situations.

In the group and Delphi situations, particular attention should be paid to the 
ancillary variables and their clustering or discriminating ability for the experts' answers. 
Strong clusterings should be expected. That is, experts should reach similar answers for 
similar reasons, especially for the group situation. In the Delphi situation, the analysis 
steps 1 through 12 can be performed at the various stages of the process. The results at 
each Delphi iteration will indicate how the correlation structure among the experts is 
becoming stronger. The answers of the first stage should be no more correlated than those 
from an individual interview situation.

In all three situations, the results of the correlation analyses steps can be 
summarized as indicated in the final section of this chapter. The conclusions reached from 
these steps will be used in the aggregation chapter (16).

Using Assumptions
Step 14: Making assumptions about the correlation structure 

based on the analysis or on any additional information.
An example of making such assumptions about the correlation structure was 

illustrated in the example 14.6. The results of the correlation and bootstrap analyses 
indicated a potential correlation structure for the data set. These results also indicated that 
there were 26 uncorrelated experts and 5 correlated experts. One possible conclusion 
based on this result would have been to form a 27th uncorrelated expert by using the 
average of the 5 correlated experts' answers.

The idea of combining the five correlated experts comes from the concept of 
forming an equivalent number of experts (Clemen and Winkler 1985). For k normally 
distributed experts with a common correlation, p, and a common variance, g, the 
asymptotic equivalent number of independent experts is

n(G2,p) = k [1 + (fc-l)p]-1 .

The application of this formula can be impractical because n(o2, p) is much smaller than k 
for large values of p, making the number of independent experts extremely small or equal 
to one. Another problem in using this concept is the assumption that the experts are 
normally distributed with a common correlation and a common variance.

Correlation structures can be assumed using a mathematically convenient model 
such as a multivariate normal model with an assumed value of a mutual correlation 
coefficient that provides the covariance structure for the data. This model is commonly 
assumed and can easily be used to handle the dependence problem. Because normality is 
assumed, the concepts of zero correlation and independence are interchangeable. Example
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14.7 gives an example of how such an assumed model and correlation structure can be 
used (Winkler 1981). The major problem of this approach is the process of making the 
required assumptions. Since very little experimental evidence is available on distributions 
and correlations of expert judgment data, many analysts consider these assumptions too 
unrealistic to make.

Example 14.7: Dependent Experts With Assumed Normal Distribution
Three experts (k = 3) are asked to estimate the average cost and standard deviation 

(in 1000's of dollars) for a newly designed earthquake-proof valve. If each expert's 
estimate is normally distributed with means and standard deviations as m\ = 60, si = 6; m2 
= 62, S2 = 5; m3 = 70, $3 = 7, then the distribution for all three experts is a multivariate 
normal with mean vector, m = (60, 62,70y and covariance matrix, E. The elements of £
are Sjj = PySfy, where Pij is the correlation coefficient between the /th and jth experts. In 
this example the values for these correlations were found from previous estimates of these 
experts to be P12 = 0.6, P13 = 0.5, and P23 = 0.6. The resulting matrix Z is

£ =
36 18 21
18 25 21
21 21 49

One way of formulating a single normal distribution from this multivariate (three- 
variate) normal distribution is to use a Bayesian approach. Chapter 16 describes this 
approach to aggregation in more detail. The way to reduce this multivariate normal to a 
single normal is by combining the multivariate normal with a prior for the parameter of 
interest. In this case the parameter of interest is the aggregation estimator for the combined 
mean responses. A prior that has little influence on the data would be an improper, diffuse 
prior that does not involve X. Combining the above multivariate normal with such a prior 
gives a posterior distribution (the aggregation distribution) that is normal with a mean, m*, 
and a variance, s*2, where

m* = etE~lm/etE~le , 

and

s*2=WX-1e ,

and where e=( 1,1,1)* for three experts. This formulation gives weights to the three experts 
according to the following:

3 33
Wj = ^ Sy / Smj

j=l j=\ m=l

The resulting values for this data are
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m* = 62.0

and

s*"2- = 22.8 ,

with the experts' weights being vvi = 0.26, W2 = 0.67, and W3 = 0.07.

If the experts were considered independent, then the values for p,y would be 0.0. The 
resulting values for the mean and variance would be

m* = 63.2

and

5*2=11.3 ,

with the experts' weights being w; = 0.32, W2 = 0.45, and ws = 0.23.

By ignoring the dependence, a slightly larger mean results and a much smaller 
variance results.

The mathematical formulations in the above example are not trivial. Yet, the 
multivariate normal model is the most simple and convenient model that allows closed form 
calculations. If the data does not indicate that a multivariate normal distribution is 
appropriate, or if the correlation structures cannot be assumed as known, then even these 
formulas are not useful. In those cases, the results from the other steps that rely on the 
evidence from the raw data itself must be used to draw conclusions.

Analysis Summary and Conclusions
Investigating the possible existence of correlated data is an important step prior to 

aggregation analysis (chapter 16). Many aggregation methods assume that the experts' 
answers are independent. The steps (10-12) involving the bootstrap simulation as a tool 
for investigating correlation demonstrated the use of aggregation and its relationship with 
correlated answers. If dependencies can be identified or controlled, then the aggregation 
schemes can be used with the assurance that the independence assumption is not being 
violated. Identifying and controlling dependencies was the reason for investigating 
ancillary variables that might be affecting the answers. If such conditions were found, the 
experts might be conditionally independent. Under conditional independence, aggregation 
on a conditional basis can be done without violating the independence assumption.

Conclusions from the analyses done in the above steps (1-14) can be drawn by 
using the results collectively and relying on results that are consistently indicated by several
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steps. After performing the above steps, a summary of the results from each step is useful 
in determining consistency. In most cases, the same results are indicated by several of the 
steps making conclusions obvious.

For instance, example 14.8 shows the summary of the results for a set of 31 
experts answering a question (Meyer and Booker 1987b). Most of the results for the steps 
can be found in the examples in this chapter. The conclusion from all the steps is that five 
of the experts are correlated numerically but the source of this correlation is not known. 
The numerical correlation can easily be handled by averaging the answers of those five and 
using that average as a 27th expert. The normality fit in step 13 indicates that the data can 
be considered a mixed normal distribution. For a single normal distribution, zero 
correlation and independence are identical. This equivalence supports the conclusion that 
the data could be considered a set of 27 independent experts for the purposes of 
aggregation (chapter 16).

EXAMPLE 14.8: Summary of the Correlation Detection Steps
The following summary is for the series of 14 steps outlined in this chapter for the 

detection of correlation and bias. The data set used in these steps is from example 13.3 and 
consists of 31 experts' answers to eight technical questions. The ancillary information 
gathered was reduced to 17 variables relating to the experts' background and problem­
solving processes (Meyer and Booker 1987b).

,Step Step Summary

1 Granularity was chosen at the detail level of the analyzed ancillary variables. 
This level was more general than the original data gathered because a 
problem-solving score variable was formed for each (8) answer variable from 
combinations of the original problem-solving characteristics gathered.
Results or Conclusions: Results will be interpreted and valid at this level of 

generality.

2 A list was formed of nine variables suspected as sources of correlation.
Results or Conclusions: These variables represented the experts' recent background 

and problem-solving processes.

3 A cluster analysis was done on the data for each answer.
Results or Conclusions: The data formed two or three major clusters.

4 The data was clustered using the suspected ancillary variables.
Results or Conclusions: The problem-solving scores were the only variables 

clustering the answer variables in a similar way to step 3.

5 A list was formed of 11 variables not suspected as sources.
Results or Conclusions: These variables represented the experts' earlier history.
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6 The data for each answer variable was clustered using the not-suspected 
ancillary variables.
Results or Conclusions: None of these ancillary variables clustered the answer data in 
a similar way to step 3.

7 Pairwise correlation matrices were calculated for the 31 experts and the eight 
questions.
Results or Conclusions: The eight questions were all highly correlated. Of the 31 
experts, 5 were highly, mutually correlated.

8 Discriminant analysis was tried on three of the suspected ancillary variables 
and on three of the not-suspected ancillary variables.
Results or Conclusions: Only the problem-solving score variables discriminated 
between the answers for some of the eight questions.

9 Analysis of variance was done on the eight answers for the 31 experts.
Results or Conclusions: The within-expert variation was much smaller than the 

between-expert variation, indicating interexpert consistency and possibly bias, but also 
indicating less correlation among experts.

10 Stratified bootstrap simulations for the median were done on the six variables 
from step 8 for each of the eight answer variables. The descriptions and 
results for the remaining steps are only listed for the one answer variable 
that indicated potential expert correlation. For this one answer variable, each 
ancillary variable was used to cluster the answer data into six clusters of 
nearly equal cluster sizes.
Results or Conclusions: Some of the results are in figure 14.4. Of the variables 
analyzed, only one of the variables for one of the answer variables (the one for DEGREE) 
indicated any potential as a source of correlation. This result may have been because one 

cluster of the DEGREE variable was of size one, inducing a bias into the stratified 

sampling.

11 The raw data for the answer variable in step 10 was bootstrapped with the five 
correlated experts deleted, five uncorrelated experts deleted, and none of the 
experts deleted.
Results or Conclusions: Removing the five correlated experts resulted in a 
significant increase in dispersion compared to the bootstrap results with no experts removed 
(example 145). Removing five uncorrelated experts produced the same results as the case 

with no experts removed. Therefore, the five correlated experts are affecting the variance of 
the median, and their estimates should be combined into a single value to represent a single 

expert that is uncorrelated to the others.

12 The raw data bootstrap results on the answer variable in step 10 for the 
median were compared to a three-normal distribution mixture using different 
means, variances, and correlations.
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Results or Conclusions: The bootstrap results for this mixture modeled the data well 
(example 14.6). The correlation structure of the mixture could represent the raw data. If the 
data can be modeled using normals, then the concepts of zero correlation and independence 

can be interchanged.

13 The ethnographic method with verbal protocol methods were used in 
an individual interview situation.
Results or Conclusions: Biases and correlations during the interview process were 
controlled and minimized. No other biases were suspected to affect the results of the data 

analysis.

14 No additional assumptions about the correlation structure were made.
Results or Conclusions: An analysis of a mixture of three normals could have been 
developed similar to the one in example 14.7. However, such development would be useful 
only as a special case for this problem. The information already gained in the previous 
steps is enough to draw some conclusions about correlation for this data set.

Using the results from steps 2-6 ,8 ,10, and 13, two possible conditional variables 
were indicated. Steps 6 and 8 indicated a rather strong conditioning effect from the 
problem-solving score. However, there was a good reason to doubt the effect of the 
DEGREE variable from step 10. Step 9 also indicates that there is not much numerical 
indication of interexpert correlation. Some numerical correlation was indicated from the 
results in steps 7, 11, and 12, the equivalent number of independent experts for the five 
correlated experts would be one expert. This expert would be added to the remaining 26 
for a set of 27 pseudoindependent experts. Therefore, the final conclusion would be to 
use the 27 experts and consider them conditionally independent upon the problem-solving 
score variable which was formed at a more general level of detail than the raw information 
gathered.
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15
Model Formation

In chapters 12 through 14, the emphasis was on investigation and preliminary 
analyses beginning with gaining familiarity with the information gathered from the 
elicitation. This chapter and chapter 16 focus on what might be termed final analysis 
procedures that have the goal of establishing interpretable conclusions. This chapter 
concentrates on forming models whose results provide inferences. Chapter 16 concentrates 
on forming aggregations or combinations of the experts' judgments also for inference 
purposes.

In this chapter, modeling techniques and suggestions for describing the experts’ 
answers in terms of other variables are presented. These models are chosen based upon 
information already gained from the exploratory analyses done on the data base. Some 
modeling techniques use standard statistical procedures, such as least squares regression, 
as their foundation. These techniques fall under the heading of general linear models 
(GLMs). The multivariate structure of the data base lends itself to being modeled using 
multivariate methods such as factor, discriminant, and cluster analyses. However, as in 
previous chapters, the use of these techniques for final conclusions is not recommended 
because of the assumptions required in using them. Other, more applicable modeling 
techniques are based on decision analysis methods and can be described as conditional 
models.

In general, the model is a functional relationship between the answer variables, y, 
and the ancillary variables, x, and is described as

y=fM .

General linear models define the expected value of the answer variable as a function 
of the ancillary variables:

E(y)=f(x) .

GLMs also define the observed values of y as the function,/, of the observed values of the 
x's plus some error residual, e,:

y -f(x) + e .

The above model is also applicable in discriminant analysis where / is the linear 
discriminant function.
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Model formation based on conditional relationships between the answer variable 
and the ancillary variables can be written as

f(yM .

Cluster analysis can be written in terms of conditional relationships between any 
and all variables of x and y:

ftyM, f(xlx’), f(y/y') .

Factor analysis can also be modeled in terms of defining new variables, z, from x
and y:

2=f(x,y) .

Special problem areas, such as granularity and the structure of the available data 
base, arise in model formation. Models can be formed at general or specific levels, 
depending upon the chosen granularity and the granularity inherent in the variables. Model 
selections are also integrally linked to the elicitation technique used in gathering the 
information. As with any analysis technique, the assumptions required for the selected 
modeling procedure such as cluster analysis must be examined and/or tested prior to 
application.

General Linear Models

General linear models (GLMs) refers to the models formed using the statistical 
method of least squares. The least squares method is so named because the model 
coefficients (b's in the equation below) are determined such that the squared distances 
between the values of y and the E(y) are minimized. The commonly used techniques that 
use the least squares method are regression, analysis of variance, and their multivariate 
counterparts. Analysis of variance refers to the cases where the y’s are continuous, 
numerical variables and the Jt’s are categorical or rank variables. Analysis of variance is 
usually not applicable for models. Its uses are discussed in more detail in chapter 11. 
Regression usually refers to the cases where both y’s and x's are continuous, numerical 
variables. Because the x's may be dummy variables, the term GLM better describes the 
models discussed in this section.

Full-Scale General Linear Models

In a full-scale GLM, the experts' answers are modeled as functions of the ancillary 
variables. The form of the GLM is

y = bo + bixi + bzxi + ••• + bmxm+ e ,
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where

y is the dependent variable and is one of the answer variables,
xi (i=l^w) are the independent variables and include many, if not all, ancillary 

variables,
bi (/=0, m) are the coefficients estimated in the GLM analysis that are used to 

determine the significance of the *,• variables, and
£ is the random error in the model, the residual that cannot be modeled by the 

other variables.

In a full-scale GLM, all the independent variables (the Jt's) are included in the 
model in the same form as they appear in the data base. There are procedures for screening 
out redundant variables and insignificant variables to form a streamlined model. Redundant 
variables are variables that contain overlapping information so that substituting one for 
another does not change the model. Insignificant variables are variables that do not predict 
the values of y so that their b values are not statistically different from zero.

The screening procedures for both types of variables are called stepwise regression 
and are available on most statistical packages that have GLMs (Snedecor and Cochran 
1978: chapter 13). In a step-up procedure, a model is formulated by adding x's one at a 
time. The x's are added according to which ones best model or predict the dependent 
variable. In a step-down procedure, a model is formulated by starting with the full set of 
Jt's and eliminating, one at a time, those Jt's that contribute least to the model. In a 
stepwise procedure, both the step-up and step-down techniques are done simultaneously to 
select the best sets of Jt's that model the y.

Stepwise procedures are a convenient way to find the best model for y for any 
selected number of Jt's. However, there are cautions and assumptions necessary for using 
this procedure. Some cautions are discussed in the last section of this chapter. The 
assumptions are the same as for any GLM:

1. The Jt's (all the Jt's) are independent variables with no measurement errors.
2. The e's are distributed as normal random variables with a mean of 0 and a 

variance of a2.

Violation of the first assumption occurs when one or more of the answer variables 
are included in the model as Jt's because the answers are considered as variables measured 
with error. There may be other jt's that cannot be considered as measured without error. 
One way to avoid violating the first assumption is to include as Jt's only the variables that 
are measured without error. This, of course, limits model formation possibilities, which 
limits discovering some conditional relationships among the variables. The effect of 
including Jt's with errors is to underestimate the variance of the dependent variable. This 
underestimate has the most impact upon the variance associated with predictions made by 
the model. Approximations for the prediction variances are available (Booker 1978). 
However, predictions using GLMs in expert judgment applications are not usually 
necessary nor are they recommended.

Testing for compliance with the second assumption is relatively easy. A quick test 
can be done by plotting the residuals, ds, on normal probability paper. If they plot as a
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straight line, then the normality assumption holds. Many statistical packages have tests for 
normality, such as the W test. These can also be used to provide easy verification. 
However, the violation of this assumption is not as important as the violation of the first 
assumption.

A caution that needs to be mentioned in full-scale modeling is that poor models are 
possible when many or all the variables have missing values. If there are many missing 
values (from the experts) on many of the variables used in the model, an adequate model fit 
is not possible using GLM procedures. Appropriate models can be formed from the 
original data by collapsing, combining, or redefining variables. In changing the original 
variables to more general variables, the granularity of the model changes to a more general 
level. The next topic discusses such a model formulation.

Combination Models

In chapter 13, several analysis techniques were suggested for analyzing the 
ancillary data. From the knowledge of the relationships among these variables gained in 
those analyses, combinations of the ancillary variables are possible. Combinations of 
information from many ancillary variables can form new variables that represent scores or 
indices.

For example, information (many variables) is elicited on the experts’ problem­
solving processes. These variables may be in the form of rules, assumptions, heuristics, 
and problem-solving steps used by each expert. Each expert solves the same problem 
differently; therefore, many variables are gathered that have missing values for many 
experts (as shown in example 15.1). A full-scale GLM using all these different variables 
would not be possible because these variables would form a sparse matrix of information. 
If the variables could be combined to form scores with no missing values, then a GLM 
analysis would be possible, because each expert would have a value for this score. The 
score would be a new variable for the GLM.

EXAMPLE 15.1: Scoring Using the Anchoring and Adjustment Model
Seven experts were interviewed in a face-to-face interview. The information 

gathered on their problem-solving processes indicated the use of four different 
assumptions. The matrix below gives the usage of these assumptions by the experts:

Assumption No.
Expert No. J_ _2 3 4

1
2
3
4
5
6 
7

x

X

X

X

X

X

X

X

X
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Not all the experts used the same assumptions. The assumption matrix has many holes and 
a GLM for these 7 experts and 4 assumptions would not be recommended.

The experts all began solving the problem with some initial impressions. These 
impressions could be considered anchors and the assumptions used could be considered as 
adjustments made on the impressions forming an anchoring and adjustment model (see 
chapter 3, The Four Cognitive Tasks). The following information on the experts' initial 
impressions of the problem is used to score the anchoring:

Expert No. Initial Impression Value Assigned to Anchor

1 Highly possible 2
2 Possible 1
3 Not likely -1
4 Not sure about this 0
5 Can never happen -2
6 Don't believe this -2
7 Could be true 1

The following evaluation of the assumptions is used to score the assumptions as
adjustments from the anchors:

Assumption No. Evaluation Value

1 Assuming this gives a pessimistic view -1
2 Assuming this has no effect on the problem 0
3 Assuming this gives an optimistic view 1
4 Assuming this gives an optimistic view 1

To produce the final score, the matrix entries of the original assumptions are
replaced by the assumption evaluations, the initial impression values are added, and the
score is formed as follows:

Assumption Value
Expert No. 12 3 4 Anchor Score

1 -1 1 2 1+1+2 = 2
2 0 1 0+1 = 1
3 0 -1 0+-1 = -1
4 1 0 1+0 = 1
5 0 -2 0+-2 = 2
6 1 -2 1+-2 = -1
7 -1 1 1 1+1+1 = 1

Because score or index variables are combinations of several variables, the 
granularity of the model with these new variables is more general than the original variables 
gathered. Thus, the results and their interpretations must be done at this more general
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level. As in example 15.1, if the problem-solving score variable is found to be significant 
in modeling the answers from a GLM analysis, then the interpretation is that the answers 
are conditioned on this general score variable, not on the specific problem-solving features 
(assumptions and initial impressions) of the experts.

Combination variables can be formed in many ways. Some of the most commonly 
used ones are described below.

Anchoring and Adjustment Scores
This variable combination scheme uses the cognitive theory of problem solving 

which states that the expert anchors to an initial value or idea and then proceeds with a 
series of adjustments from that value (anchoring and adjustment heuristic). To model the 
expert's problem solving using this theory, the expert's initial impression (good, bad, 
indifferent) of the problem (as in example 15.1) is formulated into a new variable, and then 
the expert's adjustments (e.g., up, down, neutral) are formulated into one or more new 
variables. Adjustment variables can be formed from any of the relevant problem-solving 
information. The one illustrated in example 15.1 relates to assumptions made by the 
experts in their problem solving. The new anchor and adjustment variables can be easily 
quantified into ranks (1,-1, and 0). A final score or index for each expert is then found by 
summing up the new anchoring variable and the new adjustment variables.

Cumulative Scores
Cumulative scoring is a very general variable combination scheme that produces a 

final score variable at a general granularity. An example of a cumulative score is the 
counting up of all the problem-solving features used by the experts. This accumulation 
produces a score that reflects how much effort and thought each expert used in solving the 
problem. Of course, there is freedom to determine which problem-solving features are 
counted, and there is also the flexibility of weighting the various features to provide a 
weighted sum as a score. Example 15.2 uses the information from example 15.1 to 
illustrate the formation of a cumulative score.

EXAMPLE 15.2: Scoring Using Cumulative Scores
Using the matrix of assumptions from the experts in example 15.1, a cumulative 

score is formed by counting up the number of assumptions used by each expert. No 
evaluation of the assumptions is done to establish different weights.

Assumption No.
Expert No. _1 2 3 4 Cumulative Score

1 X X 2
2 X 1
3 X 1
4 X 1
5 X 1
6 X 1
7 X X 2
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The interpretation or meaning of the cumulative score can be vague. In this 
example, the meaning refers only to the number of assumptions used by the experts. This 
cumulative score variable may not be important for modeling of the answers because it 
provides very little and very general information on why the answers were chosen by the 
experts.

Collapsing Variables
Variables can be combined or collapsed together to form new variables with 

different, usually more general, interpretations. Example 15.3 illustrates how information 
on the expert's background relating to his education degrees and disciplines can be 
combined to form a more general variable reflecting all the information. There are two 
items worth mentioning in this process. First, the analyst must be careful not to impose his 
own views or interpretations on the original data in order to successfully collapse variables. 
Second, the granularity can change through several levels producing an extremely general 
variable that may be of little use in conjunction with other variables (at a different 
granularity) or be of little use in the interpretation of the results.

Example 15.3: Scoring by Collapsing Variables
Background information on the education of seven experts is listed below. A new 

variable is formed by collapsing this information into a single composite variable 
representing the experts' education.

Degree Code*
Expert No. BS MS PhD

1
2
3
4
5
6 
7

1 3
4 4 4
2
6 4
5 5
3 3 3
5 4 4

*i —physics

2— fTlathemaUcs

3— nuclear engineering

4 =mechanical engineering

5— dvU engineering

6— electrical engineering

By assigning weights to the degrees (BS, MS, and PhD) and to the degree 
disciplines (the 6 codes*), the above information can be collapsed into an overall education 
score. The weights are calculated from ranks of importance for the degrees; i.e., a BS 
degree is not very desirable; an MS degree is; a PhD is only slightly better than an MS. 
The ranks are normalized so that they sum to 1.0:
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Degree Rank Normalized Weight, wj

BS 1 0.1
MS 4 0.4
PhD _5 05

10 1.0

ranking, weight calculation process is done for the degree code

Degree (Code’) Rank Normalized Weight, wr

Physics (1) 1
Mathematics (2) 2
Electrical engineering (3) 4
Civil engineering (4) 4
Mechanical engineering (5) 6
Nuclear engineering (6) Jl

23

0.05
0.09
0.17
0.17
0.26
QM
1.00

The collapsed variable is then the combination of the degree weights and the degree 
code weights as follows:

Collapsed variable for the i-th expert, V,- = 'Lwcw(i

The values for the collapsed variable are given below:

BS__  MS PhD
Exoert U'c— mi— + m__ mi— + m__ mi— Yi Vj new

1 0.05 0.10 0.26 0.40 0 0.50 — 0.11 0.42
2 0.26 0.10 0.26 0.40 0.26 0.50 = 0.26 1.00
3 0.09 0.10 0 0.40 0 0.50 = 0.01 0.03
4 0.17 0.10 0.26 0.40 0 0.50 = 0.12 0.47
5 0.17 0.10 0 17 0.40 0 0.50 = 0.09 0.33
6 0.26 0.10 0.26 0.40 0.26 0.50 = 0.26 1.00
7 0.17 0.10 0.26 0.40 0.26 0.50 0.25 0.97

Because the maximum possible score for this weighting scheme is only 0.26 and 
the variation among the experts is small, the F/’s can be transformed according to the 
highest score as follows: Vj new = Vi /0.26.
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Multivariate Models
In chapter 14, some multivariate analysis procedures were used to aid in the 

detection of correlation and bias. These procedures are briefly described in chapter 11. 
They can also be used here in the model formation process. However, the assumptions 
and circumstances for applying these techniques makes their use limited. Specifically, 
factors from a successful factor analysis can be used as new variables in a GLM. 
Discriminant analysis models can be used for describing relationships between answer 
variables that are categorical in structure and ancillary variables. Cluster analysis can be 
used on the variables (rather than on the values of a variable) to model variate relationships.

Factors From Factor Analysis

A successful factor analysis on the set of ancillary variables will produce a set of 
new variables, called factors, that are combinations of the original variables from a shared 
information analysis. These factors could be used as new variables in a GLM. The key 
word here is successful. Success implies that the factor analysis produces factors from 
clear-cut subsets of the original variables and that the factors have an interpretation or 
meaning that is consistent with the variables that went into the factors' formation. Example 
15.4 illustrates these concepts.

Example 15.4: Using Factor Analysis to Form New Variables
There are 12 numeric, ancillary variables gathered from an elicitation of 15 experts. 

These 12 are all problem-solving variables: variables H2, #3, H$, and Hu are variables 
describing heuristics used; variables A7, Ag and A12 describe assumptions used; variable 
/?! is a rule of thumb used; and variables C4, Ce, C9, and C10 describe cues used from the 
problem. The data is as follows:

Variable
Expert 02 03 05 On A? 00

^1 Al2 Rl £4 £6 £9 £10
1 -1 0 1 0 -1 -2 -1 0 -1 0 -2 -1
2 0 0 0 0 -2 -3 -1 0 -2 -3 -2 -3
3 1 -1 -1 1 -3 -3 -1 0 -1 -1 -3 -3
4 2 1 1 2 -1 -1 -1 1 -1 -2 -3 -2
5 2 2 1 1 -1 -1 0 1 -2 -1 -1 -3
6 1 2 2 2 0 0 -1 1 -1 -1 0 0
7 -2 -1 -1 -2 0 0 -1 0 0 0 0 0
8 -1 0 0 -1 0 0 0 0 0 -1 0 0
9 -1 0 -1 0 1 0 0 0 0 -1 1 0

10 2 1 2 2 -1 0 0 1 -1 1 1 0
11 2 2 2 2 2 2 3 1 1 3 1 2
12 1 1 2 2 1 1 1 1 2 2 2 2
13 0 0 0 -1 2 2 3 0 3 2 3 2
14 0 -2 -2 0 2 2 3 0 3 2 3 2
15 0 -1 0 0 3 3 3 0 3 3 3 2
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A factor analysis on the twelve variables using the principle components method
resulted in the following factor loadings on 2 new factors:

Ancillarv Variable Factor 1 Factor 2

Hi -0.23 0.85
Hi -0.35 0.83
h5 -0.21 0.87
Hu -0.27 0.86
A? 0.94 0.15
Ag 0.93 0.27
A12 0.90 0.20
R\ -0.23 0.93
C4 0.96 -0.03
c6 0.87 0.30
C9 0.93 0.12
Cio 0.93 0.20

Factor 1 is a new variable that combines the information from the rule of thumb
variable (R\) and the 4 heuristic variables (Hi, Hi, H5, and Hu). Factor 2 is a new 
variable that combines the information from the 3 assumption variables (A-j, As, and A12,) 
and the 4 cue variables (C4,C(),Cg, andCio). Therefore, the original 12 variables can be
reduced to only 2, factor 1 and factor 2. The values, or scores, for each expert for factor 1
and factor 2 follow:

Exnert Factor 1 Factor 2

1 -0.64 -0.64
2 -1.27 -0.87
3 -1.19 -0.84
4 -1.12 0.71
5 -0.99 0.79
6 -0.56 1.07
7 0.10 -1.47
8 -0.02 -0.83
9 0.13 -0.80

10 -0.32 1.17
11 0.78 1.69
12 0.60 1.21
13 1.39 -0.26
14 1.49 -0.76
15 1.64 -0.17

The original twelve variables are now represented by two variables. The meaning 
or interpretation of these 2 new variables are factor 1 represents the assumptions and
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problem cues used indicating the problem background items; factor 2 represents the rules 
used in solving the problem.

Some information is lost by using the two new factors in place of the 12 original 
variables. A measure of how much is lost can be determined from most factor analysis 
procedures by examining the percentage of the total variance (from the twelve variables) 
explained by the 2 factors. In this example, that percentage is 87%. Therefore, 13% of the 
variation is lost using the 2 factors as new variables.

This loss of variance or information can also be interpreted as a change in the 
granularity represented by the change from 12 variables to 2. If these 2 new variables are 
used in a GLM, the results from that model would have a more general interpretation than a 
GLM using the original 12 variables.

Discriminant Analysis
Discriminant analysis determines a linear discriminant function,/, which determines 

how well the ancillary variables map or classify the categories or groups defined by the 
answer variable. The assumptions for using discriminant analysis are (1) the variables 
must follow a multivariate normal distribution, and (2) the answer (dependent) variable 
must have a structure of groups or classes, e.g., multiple choice responses, qualitative 
responses, or naturally occurring numerical groupings. The first assumption is very 
restrictive and would not be expected to hold true for expert judgment data. The second 
assumption is often very applicable to expert answers. However, the answers should be 
distinctively and cleanly clustered and the reasons for this clustering should be evident from 
the exploratory analysis results. Example 15.5 illustrates model formation using this 
technique under these conditions.

Example 15.5: Using Discriminant Analysis in Model Formation

Eleven experts are asked to estimate the likelihood of a specific event under certain 
conditions in a nuclear reactor. The response or answer mode given to them was the 
Sherman-Kent scale (in chapter 7), and their percentage answers follow:

(10, 10, 90, 80, 99, 20, 10, 80, 99, 90) .

Each expert provided the type of work environment (listed 1-3 for variable W), 
used certain cues (listed as 1-5 for variable Q, used certain formula calculations (listed 1-3 
for variable F), used some rules of thumb (listed 1-5 for variable R), provided information 
on background (listed 1-5 for variable B), provided the highest educational degree (listed 1- 
3 for variable D), provided information on work experience (listed 1-5 for variable E), and 
used certain assumptions (listed 1-3 for variable A). The data are as follows:
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Exnert No. ANSWER W Q £ R B D £ A

1 10 2 3 3 1 1 1 5 1
2 10 2 2 1 3 2 2 5 1
3 90 1 5 3 5 3 3 5 1
4 80 3 3 3 3 4 3 4 2
5 99 2 5 2 3 5 2 5 3
6 20 2 2 3 2 5 2 4 1
7 10 2 1 1 3 4 2 3 3
8 80 3 2 3 3 3 2 3 3
9 90 2 4 2 3 2 2 2 2

10 90 1 5 3 4 1 1 2 3
11 20 2 1 3 2 1 1 1 1

The goal is to determine which variables are good discriminators for the five 
different answer categories (10, 20, 80, 90, 99). If a discriminant analysis is run on this 
data set, most packages will either give a warning, an error message, or will not complete 
the calculation for this data because there is a singularity present in the variable set. The 
presence of the singularity means that not all the eight variables can be used to model the 
answer because one or more of the variables are exact functions of one or more other 
variables. In this case variables eliminating variables E and W would allow a solution. 
This problem is common in data sets with either large numbers of variables and/or small 
numbers of experts.

Two solutions are possible: (1) run a cluster analysis or correlation analysis on the 
variables (as done in chapters 13 and 14) to learn more about the variable structure or to 
find the singularity; or (2) use available information to make some discriminant analysis 
runs on subsets of the variables. In this example, the cluster analysis in example 15.6 will 
indicate a solution, but there is already a clue on how to categorize the eight variables from 
their definitions. Four of them (A, C, F, and R) are items that the expert used to solve the 
problem, and four of them (B, D, E, and WO are features of the expert's background and 
work environment. Two discriminant analysis runs were made using the two sets of 
variables.

I. Variables A, C, F, and R as discriminators for the answers
Most discriminant analysis programs supply a table of how well this discrimination 

was done and of any observations that were misclassified. The table for this analysis 
follows:
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Exnert No.
From
ANSWER

Classified Into
ANSWER

1 10 10
2 10 10
3 90 90
4 80 80
5 99 99
6 20 20
7 10 10
8 80 80
9 99 99

10 90 90
11 20 20

In other words, no misclassifications implies that the four variables did a good job
of discriminating the five answer classes.

The model between the four variables, xi, and the categories of the answer variable,
yj, is very similar to the GLM:

yj = hj + hj xi + hi X2 + hj *3 + Uj *4 .

where /y are table of coefficients below:

Linear Discriminant Function Coefficients

ANSWER

Term in Model 10 20 80 90 99

Constant -241.9 -337.4 -538.2 -833.0 -438.0
A=x\ 26.1 29.1 38.7 47.7 36.0
C =X2 15.3 12.3 20.1 32.1 27.0
F=X3 105.5 130.3 160.4 191.9 134.2
R =X4 100.2 118.2 149.4 185.4 132.0

This table specifies the model of the experts' answers as classified by these four 
variables. This model could be used to predict the answer (10, 20, 80, 90, or 99) of a 
twelfth expert given his values for the four variables. However, this prediction capability 
is not necessary nor important here. The goal is to determine which variables are influential 
in determining the answers. To attempt inferences beyond this goal would be stretching the 
limit of the information contained in the data gathered.

II. Discriminant analysis using IF, E, B, and D.
The following classification table resulted from this analysis:
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Expert No.
From
ANSWER

Classified Into 
ANSWER

1
2
3
4
5
6
7
8 
9

10
11

10
10
90
80
99
20
10
80
99
90
20

10
10
90
80
99
20
20*

80
90*
90
20

The * on experts 7 and 9 indicates that if these four variables were good 
discriminators, then expert 7 should have answered with a 2 and expert 9 should have 
answered with a 9. While some may argue that this is not too bad a misclassification of the 
answers, the four variables in the first run of this example did a better job with no 
misclassifications. Also, with so few experts, even two misclassifications are not 
considered a good result.

Therefore, the results of these discriminant analyses indicate that the first set of 
variables were good discriminators of the answer variable.

Because the function determined in discriminant analysis is a linear function, a 
model from this technique should be similar to a GLM. In other words, if a particular set 
of ancillary variables is found to be significant in affecting the answer variable in a GLM, 
that same set should also be significant linear discriminators for the answer variable in a 
discriminant analysis. If the results do not match, then perhaps assumptions required for 
one or both procedures were violated. As a general rule of thumb, the GLM is a more 
forgiving and more widely applicable procedure. It is recommended over discriminant or 
even cluster analysis.

Cluster Analysis
The primary use of cluster analysis in chapter 13 was as an exploratory analysis 

tool where determinations were made about how the data formed various clusters or 
groups. Using cluster analysis as a modeling tool is done by determining variable 
relationships according to how the variables are clustered or grouped. Cluster analysis can 
also be used as a premodeling tool for discriminant analysis or for GLM. In the 
discriminant analysis case, a cluster analysis is done on the answer data to determine if the 
data forms clean, definite clusters that form the categories for the discriminant analysis like 
the one in example 15.5. The results from a cluster analysis on the variables can then be 
used to determine which variables would be good discriminators, as illustrated in example 
15.6. The results from variable clustering can also be used to set up a GLM.
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Example 15.6: Using Cluster Analysis in Model Formation
Using the responses and ancillary information from the 11 experts in example 15.5, 

a cluster analysis was performed on all nine variables using the centroid method to 
determine clusterings of the variables. The results of the first cluster formation indicated 
that the two clusters should contain the following variables:

_____ Cluster 1 Cluster 2

(A, F, R, C, ANSWER) (B, D, E, W)

Interpretation Interpretation_____

The problem-solving The background and
variables and answers experience variables

This result indicates a strong relationship between the answer and the problem­
solving variables. The implication is that these four ancillary variables would be good 
discriminators for the answers (as used in example 15.5) and would be good independent 
variables for GLM with ANSWER as the dependent variable. The four variables in cluster 
2 are not good candidates for discriminator or independent variables for ANSWER.

The cluster analysis done indicates other cluster formations for three to nine 
clusters. Deciding on which formation to use is done by using different criteria. One such 
criterion is the measure of the proportion of the original variance as explained by each 
cluster formation. For this data, 72% for the variation is explained by the following four- 
cluster formation:

Cluster Variables

1 (ANSWER, A, C, R)
2 (B,D,E)
3 (F)
4 (W)

Another criterion is common sense or logical interpretation of the cluster formation. 
Although the above four-cluster formation indicates a sizeable percentage of the variation, it 
makes little sense to have clusters 3 and 4 with only one variable each. A better clustering 
is the two-cluster formation where the variables in each cluster have common definition, 
even though only 50% of the variation is explained by the two clusters.

Using cluster analysis as a stand-alone modeling tool provides only a conditional 
model. The model is represented as a cluster formation like the two-cluster formation in 
example 15.6. This model can be described using a general conditional form of the answer 
variables, y, and the ancillary variables, x and x', as
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and
fiyjx) for cluster 1

fixjx') for cluster 2 .

Conditional models such as these are described further in the next section.

Conditional Models

The functional relationship between the answer variables and the ancillary variables 
can be modeled using techniques from the decision science community. These modeling 
techniques also serve as the response modes for the experts' answers. In other words, the 
model selection dictates how the questions are asked of the experts. Therefore, the model 
selection process becomes an integral part of the elicitation process (chapter 7) and must be 
determined prior to gathering the data. The analysis philosophy of part III of this book has 
been to explore the gathered data with the freedom of letting the data and its information 
content direct the analyses. Formulating a model prior to the gathering of the data has the 
disadvantage of losing some of this freedom and runs contrary to the analysis philosophy.

Two of the more popular decision analytic methods are described below. Their 
popularity stems from several advantages: (1) ease of implementation, (2) wide 
applicability, and (3) track record of success. The first is based on Saaty's pairwise 
comparison technique, and the second is a general technique based on decomposition of the 
problem using decision trees or diagrams.

Saaty

The Saaty pairwise comparison method yields a set of relative weights comparing 
the items from a set of competing alternatives. This method is, therefore, a decision­
making tool. The resulting comparison weights are not probability or likelihood estimates. 
However, they could represent relative likelihood comparisons. A more detailed 
description, including advantages and disadvantages of Saaty's method, is given in chapter 
11.

The Saaty method acts as both a model formation tool and as a response mode. The 
model formed is a very qualitative one structured as a hierarchy of descriptive conditions 
under which the alternatives are compared. The pairwise comparisons are made at all levels 
of the hierarchy. Therefore, conditional comparisons are made among all the conditions in 
all the levels; also comparisons are made of the alternatives, given the various conditions.

The analysis of the hierarchy to determine the weights is a straightforward set of 
calculations based on the eigenvalues of the matrix of comparisons at each level. For each 
level, the weights for the items being compared are calculated from the eigenvectors of the 
principle eigenvalue. Weights are propagated through the levels of the hierarchy by 
multiplication so that the final weights for the bottom level of competing alternatives can be 
determined.

270



Model formation

The weights at any level are relative comparisons only, and have no numerical 
interpretation. For example, if item A has a weight of 0.25 and item B has a weight of 
0.50, then A is not half as important (or half as likely or good) as B. The only 
interpretation is a qualitative one: item A is more important or likely than item B.

Example 15.7 illustrates how the conditioning and calculations are done for a 
simple, two-level problem. Most problems have a much more complex structure than only 
two levels. The more levels and items per level in a problem, the more relative 
comparisons are necessary, and the more time required for evaluation. For each level of m 
items, m(m -l)/2 comparisons are required.

Example 15.7: Using Saaty's Pairwise Comparison Technique for Model 
Formation

In reactor safety analysis, the loss of off-site power (LOSP) can lead to other 
consequences and important events. Therefore, it is important to investigate how LOSP 
can occur. One set of possible events responsible for LOSP is meteorological conditions— 
floods, lightning, and high winds. Each of these conditions can occur with varying 
degrees of impact on the likelihood of LOSP. Questions such as how much flooding? 
where does the lightning hit? how high are the winds? are important for evaluating the 
impacts. To answer these questions, a hierarchy of the impacts on LOSP is represented as 
follows:

LOSP
Due to Meteorological Conditions

Flooding Lightning Hit Winds (mph) 

0-2" 2-4" >4" Direct Indirect 40-60 60-80 >80

The comparisons of the bottom eight specific meteorological conditions are made 
conditional on the levels above them. Although a numerical Saaty scale given in chapter 11 
is used to make the comparisons on a pairwise basis and the resulting weights are 
numerical, the interpretation of the weights is qualitatively done. This interpretation 
preserves both the qualitative structure of the input information and its granularity.

The pairwise comparisons are done as follows:

LEVEL 1: LOSP due to meteorological conditions.

LEVEL 2: Which of the 3 general conditions is most likely to cause 
LOSP?

Flooding vs lightning? 1/4 (meaning lightning is more likely than 
flooding using a 4 on the Saaty scale)

Flooding vs winds? 1/3
Lightning vs winds? 2
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These three comparison form an upper triangular matrix that is filled in by placing 
Ts on the diagonal and reciprocal answers on the lower triangular portion.

F_ L_ _W

Flooding 1 1/4 1/3
Lighming 4 1 2
Winds 3 1/2 1

The weights for F, L, and W are found by normalizing the eigenvector of the 
principle eigenvalue of this matrix and are (0.12,0.56,0.32), respectively.

LEVEL 3: Which of the specific conditions is most likely to occur 
given the general condition of flooding occurs?
0-2 inches vs 2-4 inches given a flood? 2
0-2 inches vs more than 4 inches? 6
2-4 inches vs more than 4 inches? 3

The weights for the flooding matrix are (0.67, 0.22, 0.11).

Which of the specific conditions is most likely to occur 
given the general condition of lightning occurs?

Direct hit vs indirect hit given lightning hit? 1/4

The weights for the lightning matrix are (0.20, 0.80).

Which of the specific conditions is most likely to occur 
given the general condition of winds occurs?

40-60 mph given high wind? 2
60-80 mph? 8
Greater than 80 mph? 5

The weights for the winds matrix are (0.75, 0.16, 0.09).

FINAL WEIGHTS: By multiplying the weights of levels 2 and 3, the final (unconditional) 
weights for the eight specific conditions are obtained as follows:

(0.08, 0.03, 0.01, 0.11, 0.45, 0.24, 0.05, 0.03) .

The results indicate that the most likely cause of LOSP is an indirect lightning hit; 
the second most likely is winds 20 to 40 mph. These results then would be the important 
conditions and causes of concern for LOSP.
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It is not correct to make statements like the indirect lightning hit is almost twice as 
likely as is the 20-to-40-mph winds. Such numerically based conclusions are not valid 
with a relative (nonnumeric) comparison method.

One application of this technique is to use it as a weighting scheme for aggregating 
multiple experts (chapter 16). A hierarchy can be done representing a conditional model of 
information of each expert. Multiple experts can be aggregated by combining their 
hierarchies. This combination is done by making a new level for the experts and placing 
their hierarchies beneath it.

Decomposition Diagrams

The hierarchical structure of the Saaty method described in the previous section is 
not the only way to diagram conditions. A more established way is to form an event tree 
or decision tree structure with branches and nodes (Raiffa 1970). The tree usually begins 
as a qualitative description of alternatives or events connected with branches. The tree can 
be quantified into a decision diagram, like an event tree, by assigning values or 
distributions to the branches. If values or distributions are propagated through the branch 
pathway, then the values or distributions at the end of the tree will have a numerical 
interpretation. If only qualitative information is propagated through the tree branches, then 
the results have a qualitative interpretation such as the results from Saaty's method. In 
either case the diagram serves as a model describing the conditions relevant to the final 
results.

Using the diagramming approach as a decomposition tool helps the expert evaluate 
a complex or large problem in smaller pieces, one piece at a time (U.S. NRC 1989). The 
advantages of using the decomposition principle are cited in chapter 5 and in Kahneman 
and Tversky (1982). An example of the use of the diagram method is given in example 
15.8.

EXAMPLE 15.8: Using Decomposition Diagrams for Conditional Modeling 
An expert is asked to determine the probability of failure for an important, but never 

observed, event prime. The failure of prime depends on the temperature and the pressure 
of the system. The expert is asked to provide a set of potentially fatal temperature values 
(T\, 72, and Tf) and a set of potentially fatal pressure values (Pi, P2, P3, and P4). The 
expert then diagrams the relationships between these temperatures and pressures as they 
affect prime. The diagram is as follows:

Prime

71
PI
P2

72 P3

73------------- P4
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This diagram is a qualitative model of prime. To quantify it, the expert provides the 
likelihoods or probabilities of the temperatures and the pressures.

Prime

. 0.0001 — J*! 
0.005 -----n<. 0.0005 ------P2

0.000001—Tl— 0.01 -----P3
0.000005— 73 — 0.005 -----P4

The values listed for the pressures could be independent of the temperatures (if pressure is 
independent of temperature) or the pressure values could be conditional on the given 
temperature (e.g., the chance or Pi given Ti is 0.0001). In the above diagram, the 
pressures are found to be conditional on temperature because the P2 values change 
depending on whether Ti or 72 is used.

The resulting probability for prime is determined by multiplying the values across 
pathways:

Prime

^ 0.0001 - PI— 0.000005 
0.005----- TK* 0 0005—P2— 0.0000025
0.000001-72— 0.01------P3— 0.0000001

0.000005-73— 0.005 — P4— 0.000000025
0.000007625 

or 0.000008

The example 15.8 illustrates a conditional model construction for a single expert 
providing single estimates for the branches. In chapter 16, a similar example illustrates 
how to combine multiple experts using the diagram approach. In chapter 17 a similar 
example illustrates how to propagate probability distributions on the branches.

Model Selection Suggestions and Cautions
This chapter has described some of the ways of formulating functional relationships 

between the answers and the ancillary or conditioning variables. In the examples provided, 
some of the pitfalls and shortcomings have been illustrated. This section summarizes these 
cautions and makes some suggestions for model selection.

1. A fully descriptive model of the answer in terms of the ancillary variables (such 
as GLM) is useful for determining and defining which variables are influential. 
Such models provide better understanding of the answers given. However it is 
not recommended that these models be used for prediction purposes because the 
independent variables may not be measured without error. The variable 
relationships established from these models should be consistent with the 
results from the exploratory data analysis (chapters 12 and 13).

2. The steps necessary to formulate some models may require interpretations or 
quantification of variables by the analyst. Interpretations should be avoided,
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and quantification should be held to a minimum and be done carefully. If the 
information content or granularity of the elicited or gathered data is insufficient 
for forming the desired models, then the model selected is inappropriate. If the 
data is all highly qualitative or uncertain in nature, perhaps the model selection 
should not be done.

3. If more than one modeling procedure is done, consistency of the modeling 
procedures chosen is important. The examples listed in this chapter indicate 
how the multivariate procedures are compatible with GLM models. Likewise, 
the conditional models are compatible among themselves. Only in a very 
general way are the statistical and conditional types of models compatible.

4. Granularity is important when collapsing or reformulating variables for 
modeling. As noted in several examples, the new variables formed are more 
general in information content, and the conclusions resulting from the analyses 
must also be stated in the more general terms. Granularity is also important 
when making relative comparisons, such as with the Saaty method. Even 
though numbers are used in the analysis, the results can only be interpreted in 
relative comparison terms.

5. When using GLMs or multivariate procedures, it may be necessary to consult a 
statistician. The regression and multivariate methods results are sometimes 
difficult to interpret. The procedures themselves require prepackaged programs 
that may be difficult to run, and there may be several different methods available 
for the analysis. For example, there are many different ways to do a cluster, 
factor, and discriminant analyses, and results do depend on the method chosen.

6. The conditional models serve as both elicitation and analysis techniques. They 
are somewhat difficult to use because they are time-consuming and may require 
training of the experts.

7. The philosophy of this handbook is that models should not be selected prior to 
gathering the data, nor should they be selected based on popularity or 
convenience of the analyst. The elicitation is complicated and compromised by 
many choices, and the experts must be motivated to participate in its 
implementation. It is easier on the experts and provides more flexibility for the 
analyst if the model choice is based upon and directed by the data and the 
elicitation.

8. The primary purpose of model formation is to describe the answers in terms of 
the other variables (information). The results of the modeling effort provide the 
appropriate conditional interpretations for the answers. Enough other 
information should be available from the elicitation and from the data base so 
that these relationships can be understood and so that they can be used for 
aggregating experts (chapter 16), handling the inevitable uncertainties (chapter 
17), and making the final inferences (chapter 18).
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Combining Responses-- 
Aggregation

This chapter is divided into three major sections. First in Choosing the Aggregation 
Scheme we present several recommended and widely accepted aggregation estimators and 
also methods for forming aggregation distributions. Next in Application Environments is 
presented aggregation using the above methods in various problem settings and 
environments that involve multiple experts, decision makers, and analysts. Last, the 
similarities of solving the aggregation problem and of solving the problem of characterizing 
uncertainties as discussed in chapter 17 is presented.

Choosing the Aggregation Scheme
One of the most difficult analytical problems in expert judgment is how to combine 

the experts' answers into either a single value (estimator) or a single distribution of values. 
This aggregation is a mathematical aggregation. There is no shortage of techniques 
available for mathematical aggregation; however, many of these techniques impose 
restrictions on the data, the experts, the analyst, and on the interpretations of results. The 
techniques presented in this chapter for both estimators and distributions reflect the general 
philosophy of the book: from the elicitation side, the aggregation should not require the 
experts to be force-fitted into unknown or uncomfortable modes of providing data; from the 
analysis side, the aggregation should not be so complex that a doctorate in mathematics is 
required to understand and use it. To achieve both goals, not all available techniques are 
represented in this chapter. However, most of the general types of estimators are given in 
some form. For a complete report on all the different types of mathematical aggregation 
schemes, see a survey paper by Genest and Zidek (1986)

Aggregation Estimators

The most commonly used method of combining a set of answers is to calculate a 
single value from a formula called an estimator using all the values in the data set. The 
most popular estimators are the mean, median, and geometric mean. As discussed below, 
each estimator has its own properties, making it appropriate for different applications.
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Regardless of the estimator chosen, it should be accompanied by an estimate of the variance 
of that estimator. For example, both the mean and the variance of the mean are estimated.

The mean, or arithmetic average of the values, has the advantage of an easily 
calculated variance of the mean. For any mean value from a large sample (e.g., 30), the 
variance for that mean is estimated by the variance of the data divided by the square root of 
the sample size, n.

var {mean) = o2(mean) = | X (xi - mean)2j/n(n-l) .

This variance formula is from the central limit theorem which claims that the formula is 
valid for any sample of sufficient size. However, if the sample size, n, is small, as it is in 
most expert judgment applications, or if the data set is not unimodal and symmetric, the 
central limit theorem does not accurately determine the variance of the mean. For samples 
of size less than 10 (even for symmetric, unimodal data), the theorem does not work well. 
Therefore, in these cases it is recommended that an alternative estimate for the variance of 
the mean be used. One such alternative is to calculate the variance of the mean from a 
simulation such as the bootstrap.

A second noteworthy property of the mean is that it gives equal weight to each 
datum. This equal weighting implies that if one expert gives an answer that is far away in 
value from the rest and if there are only a few experts providing estimates, then the mean 
value will be greatly influenced by that extreme value. This result may not be a desirable 
especially if that extreme value is questionable or seems unreasonable.

To overcome the influence of extreme values in forming an aggregation estimate, 
the median or geometric mean can be used. Both of these estimators are influenced by the 
central values of the data set and are not so influenced by the extreme values.

The median is the 50th percentile value. It is defined as the middle of the data set 
such that half of the data is larger than the median and half of the data is smaller than the 
median. If the data set is of odd sample size (n is odd), then the median is calculated by 
finding the central value of the ordered data points. If the data set is of even sample size, 
then the median is the average or halfway between the two center values. There is no 
general or convenient formulation of the variance for the median. As suggested in earlier 
chapters, this variance can be found using simulation techniques such as the bootstrap or 
Monte Carlo methods.

Another interesting reason for using the median in expert judgment applications can 
be found in the studies of Kahneman and Tvsersky (1982). They have shown that when 
experts are providing numerical answers, they are really estimating the median value rather 
than the mean. If all the values for the answers given by the experts form a distribution that 
is symmetric in shape (cutting the distribution in half results in one half being the mirror 
image of the other), then the mean and median are the same. However, most expert 
judgment data distributions are not symmetric (they are skewed with the mode shifted to 
one side of the center and the other side having a long tail); consequently, the mean and 
median cannot be considered the same. Therefore it is a common (and recommended) 
practice to consider the answers given by experts as median values.

The geometric mean is an average of the data values based on a logarithmic scale 
whereas the simple mean is based on a linear scale. The geometric mean is formed by the
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product of all the n values raised to the l//ith power. The variance for the geometric mean 
is also not readily available and can be determined using simulation methods. The 
geometric mean is popular for use in expert judgment applications because of its log-based 
nature. Many estimates elicited from experts are small values or probabilities that fit better 
in a log scale than in a linear scale.

Example 16.1 shows how the above three different aggregate estimators give 
different results for the data set of seven experts estimating a very low probability value of 
an event. The variance estimates are from a bootstrap sampling done on the data. The 
FORTRAN computer program for this bootstrap simulation is given in Appendix D.

EXAMPLE 16.1: Comparison of Three Aggregation Estimators
Seven experts provided the following probability estimates for a rare event

Expert Estimate

1----------------- 0.00001
2-..................................................................0.00010
3—...................0.00010
4 ......... 0.10000
5 ----------------- 0.00001
6......................0.00001
7   0.00005

Expert 4's estimate is several orders of magnitude larger than the others. The three 
aggregation estimators—the mean, the median, and the geometric mean—produce the 
following results.

Mean = 0.014 
Median = 0.000050 

Geometric mean = 0.000091

The influence of expert 4's large value is quite noticeable in the large mean value. 
The median and geometric mean are much closer and do not reflect the influence of expert
4.

Using the central limit theorem (CLT), the variance of the mean for this data set is 

var(mean)dj' = var{data)H = 0.0014/7 = 0.000054 .

The variances for the geometric mean and the median can be found easily by using 
the bootstrap simulation (BS). (The code for this simulation is in Appendix D.) Here 1000 
samples of size 7 were formed by sampling with replacement from the original data. The 
mean, median, and geometric means were calculated for each of the 1000 samples. The 
calculations for the variances from the 1000 means, the 1000 medians, and the 1000 
geometric means are as follows:
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var(meari)BS = 0.00016
var(mediari)BS = 0.000060

var(geometric meari)BS = 0.000000095

A large discrepancy is evident in comparing the bootstrap variance for the mean 
with the variance of the mean from the central limit theorem. This data is a small data set 
and is highly skewed (with the extreme value from expert 4). It is not expected that the 
central limit theorem would give accurate results for such a data set. It is interesting to note 
that in this case the variance for the mean from the CLT is the same as the bootstrap 
variance for the median.

In comparing the bootstrap variances for the three estimators, the mean has the 
largest, the median is smaller, and the geometric mean has the smallest.

In conclusion, the small sample size and extreme value of expert 4 makes the mean 
estimator and its theoretical variance inappropriate. Either the median or geometric mean 
estimates are fine for this data. In either case, a variance estimate for that estimator must 
come from a simulation such as the bootstrap.

Because the mean estimator weights each datum equally and the median does not 
give weight to the extreme values, some analysts prefer to use a weighted average or mean. 
Each datum (expert answer) is given its own individual weight, and the mean is calculated 
as

n n
weighted mean = ^ x/vv,- w,- .

i=l «=1

The advantage of this estimator is that the analyst can control which values (or 
experts) influence the estimator. The variance for the weighted mean is also available from 
theory; however, due to the small sample sizes and potential skewness of most expert 
judgment data sets, simulation is again advised for determining the variance. The biggest 
disadvantage is that the weights must be determined for each expert.

Determining Weights

Determining weights is not an easy process. It often requires information about the 
experts and how they arrived at their answers. It can lead to the dangerous situation where 
the analyst imparts his knowledge and influence (perhaps erroneously) to the results.

However, there are ways of determining weights based on the data itself, on 
qualitative comparisons of the experts and ancillary data, and on information from model 
formations. There is also a simple rule of thumb for determining weights and that is to use 
equal weights.

Data>based determinations
Weights can be determined from the data itself using no other information. For 

example, if one expert gives an extreme value relative to the others, that expert can be 
assigned a lower weight than the others. To illustrate this use of the data to determine
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weights, example 16.2 shows the effects of different weights on a weighted mean 
estimator. In this example, expert 4 must be given a weight of 1/1000 of the other six 
experts in order to produce a weighted mean value comparable to the median or geometric 
mean. The purpose of this example is not to imply that the goal is to achieve the same 
value for the weighted mean as for the median or geometric mean. This example merely 
indicates how the three estimators are weighting the seven responses.

EXAMPLE 16.2: Using the Weighted Mean Estimator
Using the data from example 16.1, different sets of weights are proposed for the 

seven experts. In each case expert 4 is given a smaller weight relative to the other six. 
The other six are all given the same larger weight, and expert 4 is given a weight of 1. The 
effect on the weighted mean estimates is shown below.

W 1.2.3.5.6.7 W4 Weighted Mean

1 1 0.014
2 1 0.0039

10 1 0.00086
50 1 0.00021

100 1 0.00013
1000 1 0.000055

1 0 0.000047

For cases where the other six are given weights 1000 times that of expert 4, the 
weighted mean is comparable to the median and geometric mean values. The mean with 
expert 4 eliminated (W4 = 0) is also comparable with the median and geometric mean.

If the analyst truly felt that a weight as low as weight l/1000th or even l/50th that 
of the others was warranted, why would that person be considered an expert. There is 
probably some underlying reason for the extreme value given by that expert. Rather than 
eliminating him from the sample, it is better to discover why that expert gave such an 
extreme answer rather than resolving the issue analytically with outrageous weights. The 
reason for the extreme value can be made by reviewing the rationale recorded by the 
experts. The reason may also be found by reviewing the preliminary data analysis results 
as prescribed in chapters 12 through 15. These results should contain information about 
this expert and his answer relative to the others.

If no evidence can be found that this expert used different assumptions, cues, 
problem-solving methods, or any information different from the others, then there is no 
reason for giving him a low weight or eliminating him from the sample. His answer is just 
as valid and reasonable as the others. In this case, it would be better to use an estimator 
that has a wide variance to reflect the wide range of data values. The bootstrap results from 
example 16.1 indicate that the variances are wide for the mean and median.

Using only the data to determine weights can lead to the dangerous situation of the 
analyst trying different weights to achieve some goal such as the elimination of a particular
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expert. Therefore, other methods of determining weights are recommended. These 
methods rely more on finding and using the reasons why experts' estimates differ rather 
than on focusing on mere numerical differences.

Saaty weight determinations
Instead of using the gathered data to help determine the weights for the experts, it is 

sometimes desirable to determine the weights before the answers are given. The Saaty 
pairwise comparison method is helpful in this determination and can be used by the 
decision maker, the analyst, or even the experts themselves to determine expert weights.

The determinations are based on other information about the experts. The major 
advantage of the Saaty method is that this information can be qualitative in nature, but the 
results are a set of numerical weights. However, care must be taken in the use and 
interpretation of these resulting weights. In forming the weights, quantification of the 
original information has changed the granularity from general to specific. The resulting 
weights should not be used as numerical values. They are only relative comparisons in 
numerical form. However, relative comparisons can be used to help determine other, 
numerical, weights for a weighted mean. If the weighted mean value is calculated using the 
Saaty weights, it should be accompanied by a caveat such as this mean is the result of 
relative weights that are values from qualitative comparisons and are not exact numerical 
values. Because even exact numerical weights are highly uncertain in value or fuzzy in 
nature anyway, such a caveat would not be unusual.

A FORTRAN program in Appendix A for a single level (evaluation) of the Saaty 
method can be used to determine the weights of the experts. The user (decision maker, 
knowledge engineer, analyst, or expert) supplies the comparisons of the experts on a 
pairwise basis. The resulting relative weights are normalized to sum to 1.0. Example 16.3 
illustrates how this can be done.

Example 16.3 Using Saaty's Method to Determine Weights
The decision maker wishes to determine weights for the seven experts in example 

16.1. He is familiar with their qualifications and will make the comparison according to 
those criteria before he sees the answers that were elicited. Based on his knowledge of the 
seven, he compares them as follows:

1 versus 2—Better 
1 versus 3 -—Same 
1 versus 4 -—Same 
1 versus 5 -—Better 
1 versus 6 —Better 
1 versus 7 —Better

3 versus 4 -—Same 
3 versus 5 —Better 
3 versus 6 —Better 
3 versus 7 —Same

2 versus 3 —Worse 
2 versus 4 —Worse 
2 versus 5 -—Worse 
2 versus 6 —Worse 
2 versus 7 —Worse

4 versus 5 —Same 
4 versus 6 —Better 
4 versus 7 —Same

5 versus 6 —Same 
5 versus 7 —Worse

6 versus 7 -—Worse
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Using the Saaty method (and code in Appendix A), these verbal comparisons are 
translated using the following recommended numerical scale:

better = 2.72, 
same = 1.00, 

worse = 0.37,

and the resulting relative weights for experts 1-7 are

(0.23, 0.06, 0.19, 0.17, 0.10, 0.08, 0.17) .

The consistency ratio for this matrix is 0.06, which is less than the critical value of 0.10 
and indicates good consistency among the comparisons.

If the seven expert answers are combined using these weights, the result is

n n
X w/Z wi = o.on .
i=l i=l

Instead, the weights can be used for determining other numerical weights. The weights of 
experts 1, 3,4 (the extreme-valued expert), and 7 are high relative to those of experts 2,5, 
and 6. A 2-to-l weighting of the high group over the low group is suggested. With this 
weighting, then

n n
Xw/Xw*=0-018 •

«=1 1=1

This value is not much different from the original mean value of 0.014 or the weighted 
mean using the Saaty weights (0.017). It is interesting that expert 4 is in the high-weight 
group, making the weighted mean estimate even more influenced by his answer.

The results from example 16.3 may appear to be disappointing. The decision 
maker's information about the experts only added to the problem of over-influence of the 
extreme value given by one of the experts. Thus the decision maker did not have any 
information about this expert that would suggest that the experts solved a different 
problem. In fact, the information used by the decision maker tended to reinforce the idea 
that expert 4 should be included just as any other expert.

Model-based determinations
In supplying the weights in example 16.3, the decision maker compared the experts 

using a single, cumulative criterion representing the knowledge that he had about the 
experts. These comparisons are therefore conditions on the experts' estimates. Other 
conditions such as the rationale information recorded in the elicitation session may be 
important. This information was formulated into a data base in chapters 12 and 13 and was
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also used to formulate models in chapter 15. Weights can be found by using the 
conditional variables found to be significant in model formation.

CONDITIONAL modeling. The Saaty method is a conditional type of 
model for use in formulating relative weights for the experts. Any variables found 
significant in other models can also be used as conditional variables and put into a 
hierarchical structure for analysis in the Saaty method. If only a single conditional variable 
is found important, the hierarchy is a single level and the Saaty method is convenient to 
use. If a hierarchical structure of many variables is too complex, becoming not practical, 
then other weight-determining methods in this chapter should be used. Hierarchies of a 
few levels with a few items in each level are manageable by the Saaty method.

The method has the advantage of making pairwise comparisons among experts 
either by a simple better, same, or worse comparison or by a convenient numerical scale 
such as the Saaty scale (given in chapter 11) or Sherman-Kent scale (given in chapter 7). 
Therefore, quantitative or qualitative conditional variables can be used in this procedure. 
Example 16.4 illustrates how a significant variable from a general linear model is used to 
obtain relative weights for the experts using a simple scale of better, same, or worse. Here 
the analyst uses the conditional variable to determine the weights rather than using his own 
knowledge or judgment about the experts.

EXAMPLE 16.4: Using Conditional Variables and Saaty's Method to 
Determine Weights

Eight experts provided answers to a likelihood comparison question using a linear 
scale from 0.0 to 1.1. A problem-solving variable, ps\ was created as a cumulative score
of several heuristic and cue variables (example 15.1). A general linear model analysis 
indicated that psi was the best variable (and the most significant) in predicting the answers, 
vi. The second best variable for predicting the answers was an experience variable, yrt, 
specifying the number of years that the expert had worked in the particular field of the 
problem. The data follow.

ILi yrt

0.20 -2 5.49
1.00 2 6.00
0.04 -3 2.00
0.00 -2 2.00
1.10 6 1.99
0.45 0 4.50
0.00 -3 3.00
0.75 2 4.90

Using the values of ps\ and yrt, pairwise comparisons follow where

>
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psi yrt pi i yrt

1 <2 1 <2 3 < 6 3 < 6
1 > 3 1 >3 3 = 7 3 < 7
1 = 4 1 >4 3 < 8 3 < 8
1 < 5 1 >5
1 <6 1 >6 4 < 5 4 > 5
1 >7 1 >7 4 < 6 4 < 6
1 < 8 1 >8 4 > 7 4 < 7

4 < 8 4 < 8
2 > 3 2 > 3
2 > 4 2 > 4 5 < 6 5 < 6
2 < 5 2 > 5 5 < 7 5 < 7
2 > 6 2 > 6 5 < 8 5 < 8
2 > 7 2 > 7
2 = 8 2 > 8 6 > 7 6 > 7

6 < 8 6 < 8
3 < 4 3 = 4
3 < 5 3 > 5 7 < 8 7 < 8

These two variables can be used as two items in one level of a hierarchy:

The hierarchical structure is used to combine the influence of the two variables into 
a single aggregation measure for weight determination. The above pairwise comparisons of 
the eight experts for each conditional variable form the entries of the two matrices (one for 
each variable) needed for the analysis. Each matrix results in a set of weights for the 
experts. These two sets are combined using weights assigned for the two variables. From 
the GLM done on these two variables, ps\ accounted for most of the model variation, and 
yrt added very little. A weighting for the two variables might be 0.9 for ps\ and 0.1 for 
yrt.

Using the Saaty single matrix code in Appendix A, the weights for the eight experts 
for ps\ and yrt are given below. These two sets of weights are combined using the 0.9, 
0.1 split on the two variables.
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Combination
ps i Weiehts vrt Weights = 0.9»D5i+ 0.1»vrr

0.08 0.20 0.09
0.18 0.26 0.19
0.05 0.06 0.05
0.08 0.06 0.08
0.15 0.05 0.14
0.16 0.12 0.16
0.08 0.09 0.08
0.22 0.16 0.21

Following is the weighted mean value using the combination weights.

Vl Combination vi •Combination

0.20 0.09 0.02
1.00 0.19 0.19
0.04 0.05 0.00
0.00 0.08 0.00
1.10 0.14 0.15
0.45 0.16 0.07
0.00 0.08 0.00
0.75 0.21 0.16

0.59

This mean value is larger than the original mean of 0.44.. The reason for this discrepancy
is simply due to the choices of the variables for weight determinations. Both variables have
large values for large answers, vi; therefore, the weights will be large for large values of
vi. The final mean value is inflated due to this effect. This may seem like a weighting
scheme with a built-in bias. The scheme is based on conditioning which can give a bias.
The validity of the scheme lies in using conditioning variables that are important in
determining the answers.

Example 16.4 brought up one problem inherent in weighting schemes. Sometimes 
the method for determining the weights induces a bias into the results. The weights in that 
example biased the resulting mean on the high side simply by the method used to determine 
the weights. The analyst or decision maker determining weights can also induce biases. 
Other methods and examples follow that tend to minimize these biases.

GLM MODELING. For example, problem solving variables have been found 
to be important in determining answers (Booker and Meyer 1988a and Meyer and Booker, 
1987b). Example 16.5 illustrates how one such problem-solving variable can be used to 
form weights for the experts based upon the residuals from a linear model regression 
analysis done on that variable and the answer variable. The residuals measure how far 
away each answer is from the model (line) predicted by the problem-solving variable.
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Therefore, one possible set of weights is the inverse of these residuals. This weighting 
scheme gives larger weights to values with smaller residuals.

The advantage in using residuals to determine weights is that the residuals can come 
from a model of more than one variable. Therefore, the impact of several conditional 
variables can be simultaneously incorporated into the weight determination. However, as 
is generally true of multivariate models, the influence of the most important one or two 
variables has the greatest impact in the model that impacts the residuals and which 
ultimately impacts the weights.

EXAMPLE 16.5: Using Residuals to Determine Weights
Weights for the eight experts in example 16.4 can be determined from a model of 

their answers. A general linear model analysis indicated that the problem-solving variable, 
ps\t was very significant in predicting the answers, vj. The residuals from a regression of
vi on psi follow.

Vi Mi Residual Wei sht= 1/Residual

0.20 -2 -0.095 10
1.00 2 0.137 7
0.04 -3 0.115 9
0.00 -2 -0.058 17
1.10 6 -0.023 43
0.45 0 -0.045 22
0.00 -3 0.007 141
0.75 2 -0.038 26

275

Weight Weighin' 1

10 2.0
7 7.0
9 0.4

17 0.0
43 47.3
22 9.9

141 0.0
26

80.06/275 = 0.31 = weighted mean

The mean of the original data is 0.44, and the median is 0.45. Therefore, the residual 
weighting scheme did change the mean value, but not significantly, from 0.44.

DIRECT ESTIMATION. Other conditional variables that were found to be 
important in model formation can be used to determine weights. Specifically, these
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variables may be qualitative- or classification-type variables that were analyzed in cluster 
analyses and found to be important in cluster formations.

Weights can be determined from these model variables by direct estimation. This 
requires knowledge of how to use qualitative or class variables to form quantitative 
weights. As seen in similar quantification problems, the Saaty method is useful for this 
type of quantification. Also as previously noted with this type of quantification, the 
granularity can change . It is easy to transform the words into numbers and then to use 
those numbers for interpreting the results, forgetting that the original data is nonnumeric 
and has no numerical meaning. Therefore, any weights formulated from qualitative or 
class information should be considered relative weights, as in example 16.3.

With direct estimation, the decision maker or analyst can also form relative weights 
without the formal Saaty technique. The criteria (variables) chosen for the comparison can 
be evaluated according to how they cluster the data, as in example 16.6. Here the 
classification variable is important because it discriminates between the experts according to 
a critical assumption made in solving the problem. Such a clear-cut distinction would 
provide a valid reason for eliminating expert 4 from the data set. Based on expert 4's use 
of this assumption, he was actually solving a different problem from the others. He was 
also solving a different problem from the one being asked.

EXAMPLE 16.6: Using Direct Estimation from Cluster Model Variables to 
Determine Weights

One of the critical assumptions made in determining the probability of a rare event 
was not discovered until the exploratory data analysis and data-base formation was done. 
The seven experts made explicit assumptions regarding the constancy of temperatures. 
Some assumed that the temperatures would be constant (assumption =1), some assumed it 
would vary negligibly (assumption = 2), and some assumed it would vary greatly 
(assumption = 3). Originally, the decision maker assumed that the temperature variation 
would not be great and wanted the problem solved without large temperature variation. He 
did not realize that this assumption might be important to the problem. However, a cluster 
analysis revealed that the seven answers were clustered according to this assumption.

Estimate Assumption /Cluster

0.00001----------------------------- 1
0.00010 ----------------------------2
0.00010 ---------------------------- 2
0.10000---------------- 3
0.00001----------------------------- 1
0.00001----------------------------- 1
0.00005-----------------------------2

Only expert 4 made the assumption of the large temperature variability. Therefore, expert 4 
was actually solving a different problem from the other experts and from the one intended. 
A weight determination was made according to this assumption as follows.
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Estimate Weight Estimate* Weight

0.00001----- ---------2-------- --------- 0.00002
0.00010----- --------- 1-------- --------- 0.00010
0.00010----- ---------1-------- --------- 0.00010
0.10000----- ---------0-------- --------- 0.00000
0.00001----- ---------2-------- --------- 0.00002
0.00002----- ---------2-------- --------- 0.00002
0.00005----- ---------1-------- -------- -0,00005

9-------- --------- 0.00031/9 = 0.000034

This weighted mean value is not much different from the unweighted mean value 
with expert 4 deleted (example 16.2). Therefore, the weights for experts Ithrough 3 and 5 
through 7 made little difference.

The basic idea is to make weight determinations using variables or conditions that 
influence the experts' answers as determined from models. As with any weight 
determinations, the methods presented here must to be done carefully. Because these 
variables are known to be important in the experts determination of their answers, they can 
induce a bias into the weights that will result in a bias in the weighted mean value. Also, 
care must be taken in using qualitative or more general leveled information to formulate 
weights. Such formulation can cross levels of detail (granularity is not constant) and make 
accurate interpretation of the results tricky at best, or incorrect at worst.

One final word is needed on weight determinations using the methods presented 
here or elsewhere. As seen in many of the examples in this chapter, regardless of how 
good the choices for the weights are, in most cases the weights make little difference in the 
value of the weighted means. The question then becomes, why bother with weights? The 
answer follows.

Equal weights
The best recommendation to date on the weight determination problem is to use 

equal weights. This idea is not new (Seaver 1978); however, several studies have 
indicated that it is still the best idea (Genest and Zidek 1986).

Equal weights are best for combining individual responses from experts. Also, as 
demonstrated in the remaining chapter sections, equal weights are best for combining 
distributions.

Unless some unusual circumstances arise that clearly indicate why and how some 
different weights should be used, equal weights should be used. Example 16.7 below 
summarizes the lessons from the first sections of this chapter. These lessons enforce the 
idea of equal weights for the two applications used as examples in this chapter.
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EXAMPLE 16.7: Summary of Weight Determinations
In examples 16.1 through 16.3, the seven experts were asked to estimate the 

probability of a rare event. Expert number 4 gave an answer that seemed to be different 
(much larger) than the other six. In those examples, the mean (equal weights), median, 
and geometric mean were calculated. Also, several different weighting schemes were 
calculated using various weights and the Saaty method to determine weights. Those results 
are summarized below.

Estimator Weighting Scheme Estimate

Mean Equal 0.014
Median Equal 0.000050
Geometric mean Equal 0.000091
Weighted mean W4=2 0.0039
Weighted mean W4=10 0.00086
Weighted mean W4=50 0.00021
Weighted mean W4=100 0.00013
Weighted mean W4=1000 0.000055
Weighted mean W4=0 0.000047
Weighted mean Saaty - decision maker 0.017
Weighted mean Saaty - model 0.000034

Even with all these methods, there are still only two basic results:
1. Estimates of the order of 0.01 resulting from equal weighting of expert 4 with 

the rest.
2. Estimates of the order of 0.00001 resulting from deleting expert 4 from the set 

with equal weighting for the rest.

The results from simply increasing the weight of expert 4, W4, are of little use 
except to demonstrate that severe weights are needed to lessen the impact of expert 4. The 
clear decision in this example is either to include or exclude expert 4 entirely.

From the knowledge about the assumptions used in solving the problem in example 
16.6, it was discovered that the other six experts made acceptable assumptions for the 
particular problem but that expert 4 made an unacceptable assumption. This is valid reason 
for deleting expert 4.

It should be noted that the results could have been completely reversed. Expert 4 
may have been the only expert making an acceptable assumption and that was why his 
answer differed from the rest. In evaluating the results of an elicitation session, the 
information on the conditions under which all experts answered the question must be tested 
and evaluated. Hopefully, some problem areas such as the expert using questionable 
assumptions, drifting from the question, or solving a different problem than asked, can be 
corrected during the elicitation. It is vital that all the experts answer the same question (and 
therefore, estimate the same quantity).

In examples 16.4 through 16.5, eight experts estimated the likelihood of an event. 
Here there are no experts that appear to give responses different from the rest, but there are
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two distinctive clusters of answers from the experts (experts 1, 3, 4, 6 and experts 2, 5, 
8). In this case, any centroid type of estimator (mean, median) will give a result that is 
between the two clusters of data (where no actual data exists). A weighting scheme in this 
case is useful to pull the aggregation estimator toward one cluster or the other. However, 
the same cautions about choosing and using weights in this case still apply. Following are 
the results for this data set and the chosen estimators.

Estimator Weight Scheme Estimate

Mean Equal 0.44
Median Equal 0.45
Weighted mean Saaty, 2-variate 0.59
Weighted mean GLM residuals 0.31

All of these estimates are close in value. The residuals tend to lower the original 
mean value because the regression model is more influenced by the larger sized cluster, 
which is the lower valued cluster. There is a bias built into the Saaty weightings that favors 
the larger values. Neither of these weighting schemes are based on conditions that 
definitively favor one cluster over the other.

In examining the original data base, no other conditions are apparent for making 
such a distinction. In other words, there is little explanation why the two clusters emerged 
and no reason to attempt to eliminate one of them from influencing the final estimate.

In conclusion, the equal weighting (simple mean) is appropriate here. The 
uncertainty in the data is such that the experts spanned the entire available range of values 
(response mode) for their answers. The mean estimator will give a value in the center of 
the range and between the two clusters.

It is hoped by examining the two problems in 16.7 that the steps are evident for 
determining weights for the experts. The choices in both these cases came down to a 
simple, equal-weighting mean estimator. By using the data from the data base, many 
possible explanations were examined for apparent differences in the answers. In the first 
problem, a valid difference was found. In the second, no difference was found. The basic 
rule for searching and determining such differences is that all experts must be providing 
estimates (answers) to the same problem.

Aggregation Distributions

Rather than restricting the expert to providing a single, best estimate for an answer, 
many analysts prefer the experts provide either a range of values or an entire distribution of 
values (a set of possible values with corresponding probabilities of their occurrence). 
Many experts prefer to give multiple values. These multiple values do not imply that the 
experts provide values for different conditions. Giving multiple values for different 
conditions would be the case of providing single estimates for multiple problems.

If the problems in handling single-valued estimates from several experts appeared 
difficult, the problems are equally difficult in handling distributions or multiple values from
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many experts. In this section the emphasis is placed on the case where distributions 
(probability distributions) are available from the experts. In the next section on dealing 
with uncertainties, the topic of handling ranges is also included (see also chapter 17).

The aggregation methods presented here are in keeping with the philosophy in this 
book. In particular, the methods should be comfortable and easy for the experts to use. 
The analyst does not have the luxury of deciding upon his favorite method and then force­
fitting the experts into its use. The methods should also be easy for the analyst to use. 
These are the methods illustrated in the examples. Genest and Zidek (1986) reference 
others.

Using Bayesian methods
The philosophy of using Bayesian methods incorporates the idea that all 

information can and should be used to form final estimations (chapter 11). Bayes Theorem 
provides the mechanics for the combination of information from various sources. The 
information can be in several or differing forms, such as (1) information from measured 
data that is combined with expert judgments, (2) information from the present that is 
combined to update previous information, and (3) information from experts that is 
combined with information from the decision maker (DM) or analyst

The first case is the more classical reliability problem that is common in PRA 
applications (Martz and Waller 1982). The second case is modified to include 
combinations of several information sources (experts) without regard to a time line and is 
examined below. The last case is examined in more detail in the Application Environments 
section of this chapter.

The major difficulty in applying Bayesian methods is that the information (all 
information sources) must be quantified into probability distribution forms. Common 
forms such as the beta distribution are easy to use because (1) they require only two 
parameters to estimate the entire distribution, (2) they range from 0.0 to 1.0 in values, 
which is the range of probabilities, and (3) they combine in a mathematically tractable form 
with other common distributions such as the binomial to form the resulting or posterior 
distribution.

Example 16.8 illustrates how two estimates provided by each expert can be 
combined into a single beta distribution that represents the probability of a single failure, p, 
of an event.

EXAMPLE 16.8: Bayesian-Based Aggregation of Distributions
Six experts provided estimates of 5th and 95th percentile values for the distribution 

of a probability, p, for an event. Based on previous studies (Kahneman and Tversky 
1982), these percentiles really only represent a fraction of the true uncertainty. Therefore, 
the given 5th percentile was chosen to represent the 30th percentile and the given 95th 
percentile was chosen to represent the 70th percentile.

Assuming that each experts' percentiles come from a beta distribution with 
parameters xq and no, the values of those parameters are given below:
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Percentiles
30th 70th

0.0010 0.004
0.0001 0.010
0.0010 0.100
0.0001 0.010
0.0050 0.050
0.0100 0.050

Beta Parameters
xn ___20

0.82 242.59
0.19 11.04
0.18 1.52
0.41 41.80
0.41 8.64
0.65 15.30

The values of the beta parameters can be obtained from the beta subroutines in the 
beta Monte Carlo code in Appendix B. These parameters have specific meaning in a 
binomial process: xq represents the number of failures in «o trials, each with a probability 
p of occurrence.

To combine the six different beta probability distribution functions into a single beta 
distribution function, f(p:x,n), where

6
/ (pvc,n) = X /i (Pi:x0i>n0i) . 

i=l

with equal weights for w; t parameter sets are combined as follows (Winkler 1968):

6
x = ^x0i =2.66 

;=i
and

6
n = X n0i = 320.89 .

/=i

There is also a convenient Bayesian method for using this new beta as a prior 
distribution to combine with a distribution of a DM to make a resulting posterior. This 
combination is illustrated in example 16.10 below.

This new resulting beta distribution is the aggregation distribution for the experts. 
It has a mean and variance of

and

respectively.

x/n = 0.008

x(n-x)/(n2(n+l)) = 0.00003 ,
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Using assumed distributions
There are other analytical methods for combining assumed distribtuion functions. 

An aggregation function is based on the formation of a joint distribution of all the experts. 
Using this joint or composite distribution as a prior distribution, the decision maker can 
combine the joint distribution of all the experts with his distribution,/o(x:0) in a Bayesian 
manner as follows:

fix:6) = c{x:6) • /o(x:6) •fc(x:9) ,

where/c(x:0) is the joint distribution function with parameter d for the random variable x 
of all k experts and where c(x: 6) is a joint calibration function for all k experts. Another 
way of expressing that equation if all the experts are independent is by

fix.d) = c{x:6) -Mx-.d) -fiixid) *f2{x:d) • ... -fkix'.G) ,

where the individual distribution functions of the experts are factored out. Another way of 
saying this is that the joint distribution of all the experts is expressed as the products of the 
individual expert distributions. If the expert's distributions are not statistically 
independent, then this factorization is not possible.

Joint distribution functions are usually assumed, easy-to-work-with distributions. 
In example 16.8, the expert information was characterized using a beta distribution for each 
expert. Other distributional forms produce mathematically tractable combinations and can 
be assumed for the experts. One common choice is the normal distribution (Winkler 
1981). If very few estimates are provided by the experts, or if the experts provide a simple 
range of values, then the uniform distribution is appropriate. In this case, the posterior or 
resulting distribution will also be uniform.

If the information provided by each expert can be assumed to follow a normal 
distribution, then a multivariate normal distribution is the combination distribution. Using 
a multivariate normal has the advantage of allowing for a specified correlation structure 
among the experts. The disadvantage is that this correlation structure must be known.

Example 16.9 illustrates the information requirements necessary from the experts to 
use the multivariate normal. As seen in this example, it may be difficult and uncomfortable 
for experts to provide estimates for the required parameters of the normal, the mean, and 
the variance. It is also difficult to obtain a correlation structure for the experts. Usually 
such estimates are assumed by the DM or analyst. In using the normal, it is assumed that 
the quantity of interest (quantity being estimated) follows a normal distribution. Most such 
quantities, such as failure rates and probabilities do not tend to be symmetric in shape nor 
unimodal (Meyer and Booker 1987b) and cannot be considered normally distributed.

EXAMPLE 16.9: Multivariate Normal Distribution for Aggregation
Three experts are asked to estimate a temperature range that is critical for a 

component failure (Winkler 1981). The experts agree that this temperature range should be 
distributed as a normal distribution, and they understand how to estimate the mean of this
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normal. The variances of the temperature ranges are known and are not estimated by the 
experts. Also the correlation structure of these three experts is known to be as follows:

Correlation of experts 1 and 2 = p\2 = 0.60 
Correlation of experts 1 and 3 = pis = 0.50 
Correlation of experts 2 and 3 = P23 = 0.60

The experts' mean values, ji, and corresponding known variances, o2, follow:

= 60 o21 = 36
P2 = 62 022 = 25
P3 = 70 <t23 = 49

The multivariate normal mean vector, jl, and variance-covariance matrix, Z, are

p =(60, 62, 70)

and

Z =
36 18 21 
18 25 21 
21 21 40

where the diagonal elements of Z are the variances and the other elements are OiOjpij.

In order to combine these estimates, a Bayesian technique is used by assuming a 
diffuse (imparts little added information) prior to combine with the multivariate normal (the 
joint distribution of the experts) to produce a posterior distribution for the temperature 
range. With e being the unit vector of Is, the posterior mean and variance are

Impost = e,Z-lp/etZ'le = 62.02 
and

Zp0St = e^e = 22.83 .

The Ppost is actually a weighted mean value with weights corresponding to the 
following:

Wi — Q-ij!Qmj >

; m j

where a,y are the i/th elements of 2/1. In this case the weights are

wi = 0.263, W2 = 0.669, and W3 = 0.068 .
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The third expert has a small weight due to his large variance and the high 
correlations with the other two.

It is difficult to imagine a situation where the variances are known. If the variances 
for the experts are estimated, then the posterior variance calculation is much more 
complicated (Winkler 1981).

The multivariate normal distribution requires estimates for its parameters that may 
be difficult to obtain or may rely on assumptions. However, the normal is a convenient 
distributional form for a combined distribution. Certainly other distributions could be used 
to make multivariate combinations; however, these would also require assumptions and 
estimates of their parameters. Other multivariate distributions are not as easy to form or to 
work with as the normal, and there is no more precedence for using them than for the 
normal. If multivariate forms become too complex or difficult to use, then empirical (data- 
based) distribution forms are suggested in conjunction with simulation techniques.

Using empirical distributions
If experts prefer to provide several values or are comfortable giving percentiles 

without specifying distribution forms, then empirical or step distribution functions can be 
constructed from these estimates. Sometimes interpretations or rules of thumb are needed 
to form the distributions. The rules below are based on several studies (Kahneman and 
Tversky 1982).

1. When experts provide 5th and 95th percentiles, they really are only giving 30- 
40th and 70-60th percentiles.

2. When experts provide maximum and minimum values they really are only 
giving 5-10th and 95-90th percentiles.

3. When experts provide their best central estimate, they really are giving a value 
that corresponds to a median (50th percentile) rather than a mean.

4. When experts provide a variance, they really are only representing less than half 
of the variance.

Empirical distributions are formed from percentiles (i.e., those percentiles using the 
rules above rather than what the expert provides directly). The percentiles provide the 
points for a step cumulative distribution function. The empirical probability distribtuion 
function, f(x), is also formed from these percentiles in the shape of a histogram. For 
example, an expert provides

Best estimate-----------------------------0.3
5th percentile-----------------------------0.2
95 th percentile---------------------------0.4
Minimum value--------------------------0.1
Maximum value------------------------- 0.5

for a random variable, x, with a possible ranges of values from 0.0 to 1.0. The 
distribution of x is then a histogram composed of a series of rectangles with starting values 
at xit ending values at xu, and having heights of/;
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-M -Mi -J

0.0 0.1 0.5
0.1 0.2 2.5
0.2 0.3 2.0
0.3 0.4 2.0
0.4 0.5 2.5
0.5 1.0 0.1

These values for/are calculated by

fi = (percentile level of xu)/(xu - xi) .

The areas under these rectangles (fr(xu-xi)) sum to 1.0. There is a program in 
Appendix C that forms these empirical distributions for each expert and combines them by 
a user-specified aggregation function using Monte Carlo simulation.

The aggregation function is usually of the form that combines the expert's 
individual empirical distribution functions, /;(*) and the decision maker's empirical 
function,/o(jc), by the following weighting scheme (Winkler 1968):

k
f(x) = wtfdx) + X w/i(x) .

1=1

Determining these weights has the same difficulties mentioned in the first section of 
this chapter. The rule of thumb for these weights is also the same: equal weights are best 
(Seaver 1978). Distributions can be empirically combined using this equation without 
specifying distributional forms (such as normals, beta, or uniforms) or parameters. 
Example 16.10 illustrates weighting methods for empirical distributions from two experts.

EXAMPLE 16.10: Empirical Distribution Aggregation
Two experts provide the following estimates for a random variable x, without 

specifying any distributional form such as the normal or beta. The given values are 
interpreted (used) according to the rules of thumb listed above.

Given As Used As Expert 1 Expert 2

Best estimate Median 0.30 0.10
5th percentile 30th 0.20 0.05
95th percentile 70th 0.40 0.15
Minimum value 5th 0.10 0.01
Maximum value 95th 0.50 0.20

Here the absolute possible range of values for x is from 0.0 to 1.0. The resulting empirical 
distributions from the code in Appendix C follow.
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Expert 1
-M _2Eu -J

0.0 0.1 0.5
0.1 0.2 2.5
0.2 0.3 2.0
0.3 0.4 2.0
0.4 0.5 2.5
0.5 1.0 0.1

Expert 2
-id -Xu -J

0.0 0.01 5.00
0.1 0.05 6.25
0.2 0.10 4.00
0.3 0.15 4.00
0.4 0.20 5.00
0.5 1.00 0.06

The following pooled distribution results from using a weighted sum (with equal 
weights of 0.5) in a Monte Carlo simulation of the two empirical distributions.

Percentile Level Value

1st 0.042
5th 0.079
10th 0.099
20th 0.13
30th 0.15
40th 0.18
50th 0.20
60th 0.23
70th 0.25
80th 0.28
90th 0.32
95th 0.43
99th 0.58

Mean = 0.22 
Variance = 0.011 

Standard deviation = 0.11

If a pooled (weighted) distribution of just the experts is to be found and used alone 
in a non-Bayesian context such as in example 16.10, then the weighting scheme used is 
very important. Even if a DM is added to the set, he becomes like another expert in terms
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of influence on the final results. Of course the choice of weights can shift influence slightly 
toward or away from the DM or any other expert. However, as seen before, results will 
not differ by much unless drastically different weights are used, and such weights require 
justification. Lacking good reasons for drastically unequal weights, equal weight 
assignments are recommended.

Using Monte Carlo simulation
The use of Monte Carlo simulation has already been demonstrated in the previous 

section for aggregation by using empirical distributions from experts. There are other 
applications where Monte Carlo simulation is useful for aggregation.

One commonly used method of eliciting and modeling expert information is through 
a series of distributions, each representing a phase or characteristic of the problem. The 
idea behind this method is to decompose the problem into simpler parts. Information is 
then gathered on each of the parts. The information can be in the form of distributions of 
variables of interest in the various parts. The difficulty becomes how to recombine the 
information from all the parts for each expert and how to combine all the information from 
the experts.

In many applications the parts are structured by a tree diagram. This type of 
diagram is commonly used in decision analysis applications. Some diagrams could be 
hierarchical in structure while others could be quite complex with feedback loops and ill- 
defined connections. Whatever the structure, logic must be used in order to determine how 
the parts should fit together. It can be very difficult to accurately diagram a complex 
problem, but, like any model formation process, it is very important to do it correctly.

In combining different structures for several experts, another difficulty arises. Each 
expert will have a structure that is uniquely his own. These structures can be viewed as 
conditional models, /Otic), for the final result or answer, x. Because the structures are 
complex, one way of combining them to determine/(xlc) is through simulation. Usually 
the information provided for the various parts of the structure is characterized by assume * 
or empirical distributions. The connections between the parts (however complex) can be 
characterized by arithmetic expressions similar to Boolean expressions for the failure or 
reliability of a system fault tree. For each expert, simulation is then done by sampling from 
each of the distributions in his structure and combining the sampled values using the 
expression to form a result A final or resulting distribution of the whole structure is found 
by performing the sampling and calculations many times. The resulting distributions for 
each expert can then be combined using any of the above distribution aggregation methods 
including Monte Carlo simulation. Example 16.11 illustrates how this is done for two 
experts solving a problem by decomposition.

EXAMPLE 16.11: Decomposition and Aggregation by Simulation
Two experts are asked to evaluate the probability of an event E. The question 

posed to them provides a limited set of conditions for determining the probability. These 
conditions involve establishing specific values: temperature (7), pressure (P), and flow 
rate (F). Both experts agree that these are the three most important conditions; however, 
each differs in his assessment of how the three conditions affect the event and what 
probabilities are associated with them.
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The probability of the event Pr(E) is found by summing the products of the 
conditional probabilities times the probabilities of those conditions:

Pr(E) = Pr(E\T)-Pr{T) + Pr(E\P)-Pr{P) + Pr(E\F)-Pr{F) .

Expert 1 claims that the probability of T, P, and F are all uniformly distributed with 
a value of 0.01. Expert 2 claims that all three follow a unimodal distribution between the 
values of 0.0 and 1.0, with a reasonable range of 0.1 to 0.9. This information can be 
characterized as a beta distribution with 40th and 60th percentiles of 0.1 and 0.9, 
respectively, using the rules of thumb for ranges and percentiles.

The experts are asked to estimate the probability of the event given these values of 
T, P, and F. The probabilities associated with the ranges of the three conditions given are 
as follows:

Expert 1 Expert 2

PriEThi) 0.1 0.01
Pr(E\Th) 0.01 0.001
PriElPhi) 0.01 0.001
Pr{E\Plo) 0.001 0.0001
PriElFhi) 0.01 0.01
Pr(E\Fi0) 0.001 0.001

Because a range was given for each condition, this range can be used to determine 
the 40th and 60th percentiles of some probability distribution. Again a useful form for 
distributions of probabilities is the beta. If these values are used to form betas, the 
following beta distributions result.

Expert 1 Beta Parameters
-JC.0 «0 Mean

E\T 0.17 0.83 0.21
E\P 0.18 4.32 0.04
E\F 0.18 4.32 0.04

Expert 2 Beta Parameters
2t0 -HO Mean

E\T 0.17 0.83 0.21
E\P 0.18 4.32 0.04
E\F 0.18 4.32 0.04

T,P,F 0.11 0.22 0.50

Using Monte Carlo simulation of beta distributions for the above equation for 
Pr(E), a distribution for the probability of E is found for each expert. For expert 1, Pr(T),
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Pr(P), and Pr(F) are constant values (0.01), and the conditional probabilities of E given T, 
P, and F are the beta distributions listed in the above table. For the expert 2, Pr(E) is found 
as the sum and products of the beta distributions listed in the above table. Those empirical 
distributions have the following characteristics.

Expert 1 Expert 2

Mean 0.0028 0.045
Standard deviation 0.0031 0.094

1st percentile 0.00001 0.00016
5th percentile 0.00006 0.00080
10th percentile 0.00013 0.0016
20th percentile 0.00025 0.0032
25th percentile 0.00034 0.0040
50th percentile 0.0016 0.0080
75 th percentile 0.0042 0.043
80th percentile 0.0053 0.064
90th percentile 0.0082 0.14
95th percentile 0.0097 0.24
99th percentile 0.011 0.47

Using the empirical aggregation program in Appendix C, the two expert’s 
distributions can then be combined. Equal weights were used for the pooling of the two 
distributions and give the following results:

Mean 0.030
Standard deviation 0.060

1st percentile 0.00037
5th percentile 0.0010
10th percentile 0.0017
20th percentile 0.0028
30th percentile 0.0038
40th percentile 0.0049
50th percentile 0.0073
60th percentile 0.013
70th percentile 0.020
80th percentile 0.036
90th percentile 0.078
95th percentile 0.14
99th percentile 0.33

As indicated in example 16.11, the decomposition, aggregation problem is a multi- 
step, complex procedure. First, much information is needed from the experts. Then, that
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information is formulated into distributions, requiring some assumptions. Next, the 
distributions must be combined for each expert. Finally, the aggregation of all the experts' 
combined distributions is done. All these steps involve assumptions, information transfer, 
and quantification, and all the problems associated with these such as imposing new 
information not originally present and changing granularity.

Granularity can change several times in this series of steps, making the 
interpretation of the final results meaningless. At best in the above example, the mean 
value and its standard deviation might be useful and meaningful for interpretation. 
However, this example is a relatively simple one. In practice, there are usually more than 
three simple conditions and more than two experts. Recombining such decomposed 
information requires more and more assumptions and makes final inference more and more 
difficult.

In spite of these obstacles, information is gained that can be used in the inference 
process. For instance, in Example 16.11, one interesting feature to note is that the experts 
agreed on the basic conditions affecting the event. This agreement indicates that they are 
solving the same problem in a similar way. They disagreed as to how these conditions 
affected the event on a more detailed level, and that disagreement translated into their 
different estimates. Such numerical differences can be interpreted by considering the wide 
ranges of values as representing the true uncertainty in estimating the event.

Application Environments

Thinking in terms of inference, it is important to understand who is making the 
inferences—the experts, the decision maker, the analyst, or all three? To answer this 
question, the problem or application environment becomes important. Choosing an 
aggregation method involves considering the application environment. Examples given 
below demonstrate the differences in methods for some application environments. The 
specific cases examined follow:

1. One expert and one decision maker (DM)
2. DM and several in) experts
3. One analyst and n experts

When a DM is involved, it is because he has some information relevant to the 
problem, just as an expert would. The DM may be an expert of equal expertise, or he may 
have erroneous or dated information. The influence that his information has in the 
aggregation is up to him. However, his views are subject to change after seeing the 
information from the other experts. Because of this influence, it seems a logical 
assumption that the DM is not independent of the experts (Morris 1977, Genest and Zidek 
1986).

On the other hand, the analyst is supposed to be independent of the experts acting 
as a neutral party. He is never to impart his own information or biases into any 
assumptions, definitions, or information transformations. This ideal is unrealistic; 
however, the steps and recommendations in this handbook are designed to minimize 
problem areas and approach the ideal.
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Decision Maker and One Expert

In the situation where the DM has a problem for solving and has his own 
information (DM's prior), he consults a chosen expert (usually one he feels has more 
information than he does). That expert gives his information (expert data) to the DM. The 
DM then combines the information forming a posterior (Morris 1977). This type of 
aggregation problem is characterized by a Bayesian philosophy. The DM is imparting 
information into the final posterior in several ways:

1. The DM's prior
2. The choice of the expert
3. The aggregation of the information
4. The inference

As previously noted, when using Bayesian methods, the way of combining the 
information sources to form the posterior (in this case the DM's prior and the expert's data) 
can result in one or the other sources being emphasized. The DM has the power to 
determine which source is emphasized in the aggregation (item 3 above). If the DM feels 
uncomfortable with his prior, he can reduce its influence even to the point of using a 
noninformative prior that imparts little (but some) information into the aggregation process.

Another effect results from item 3 above. After seeing the expert's prior, the DM 
may revise his own prior to either match or differ from the expert's. This is also a part of 
the aggregation process because the DM has decided on how his information is to be 
combined with the expert's information. A simple example, 16.12, illustrates these effects.

EXAMPLE 16.12: Decision Maker and One Expert
The Decision Maker (DM) has knowledge about an event. He has never seen nor 

heard of a particular component failing in 10 plants in a combined 60 years of operations. 
He asks his favorite plant operator to estimate a failure rate for this component. The expert 
estimates that there should be a possibility of one failure in 60 operation-years or one 
failure in 120 operation-years. Thus the expert gave a range of values from 1/60 -1/120 
failures/operation-years. Using a Bayesian context for this problem, the DM can aggregate 
in many different ways.

Part 1: The DM considers his information as valid data and combines it with the expert’s 
information using that as his prior. He uses the binomial process to characterize his 
information (0 failures in 60 years), and he uses the expert's prior information as a beta 
distribution with 40th and 60th percentiles of 0.008 and 0.017, respectively.

The DM finds that the mean of the expert's beta is 0.0205 with parameters xq = 

0.677 and no = 33.096. The posterior distribtuion resulting from the Bayesian 
combination of the DM's binomial and expert's beta prior is also a beta with mean equal to

xq/hq = (0.677 + 0)/(33.096 + 60)= 0.677/93.096 = 0.0073 

or a mean value of 1 failure in 137 operation-years and a variance equal to
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xo(no-xo)/[no2(no+l)] = 0.000077 .
Part 2: The DM believes his information is incorrect and uses a noninformative prior for 
himself. The expert's information can be characterized as the data from a binomial process 
with 0.677 failures in 33.096 trials. With a noninformative prior, the resulting posterior 
distribution is a beta distribution with mean equal to

xo/no = (0.677 + 0.5)/(33.096 + 1) = 1.177/34.096 = 0.035

or a mean value of 1 failure in 29 operation-years and a variance equal to

*0(rt0-*0)/l>i02(«0+l)] = 0.00095 .

Part 3: The DM believes the expert is too cautious and decides to use a noninformative 
prior for the expert, relying more on the DM's information. The DM claimed 0 failures in 
60 trials. With a noninformative prior on the expert, the resulting posterior is a beta with 
mean equal to

xo/no = (0.0 + 0.5)/(60 + 1.0) = 0.5/61.0 = 0.0082 

or a mean value of 1 failure in 122 operation-years and a variance equal to

Xo(no-Xo)/[n02(n0+l)] = 0.00013 .

Part 4: After seeing the expert give a range of values for an estimate, the DM realizes that 
he too would be more comfortable giving a range. He likes the expert's evaluation of 1 
failure in 60 years and decides to use that for an upper bound. The DM now has a beta 
distribution with 40th and 60th percentiles as 0.0 and 0.017, respectively. Because the 
beta distribution has a minimum value of 0.0, for calculation purposes it may be necessary 
to make the 40th percentile an extremely small value (relative to the other estimates) such as 
0.0000000001 instead of exactly 0.0. In doing so the expert has a beta and the DM has a 
beta to be pooled into a final distribution that has the following mean:

xo/no= (0.021+0.677)/(0.062+33.096) = 0.698/33.158 = 0.021 

or a mean value of 1 failure in 48 operation-years and a variance equal to

*0(«0-*0)/[«02(«0+l)] = 0.00060 .

In the four different parts the DM uses the expert's information in a variety of 
ways. The different ways produce very different final mean and variance estimates.

DM binomial and expert beta prior 0.0073
DM noninformative and expert beta prior 0.035 
DM binomial and expert noninformative 0.0082 
DM beta and expert beta 0.021

0.00008
0.00095
0.00013
0.00060
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It is interesting to note that the lower estimates occur when the DM uses a single 
estimate. Higher estimates occur when the DM's information is formulated into a 
distribution, either noninformative or beta. In this case the DM's choice on how to handle 
his own data drives the final results.

The DM should play an important role in the inference process regardless of how 
many experts provide information. In the example 16.12 above, the illustrations 
concentrated on the answers only. The DM has access and needs to use all the ancillary 
information about the expert gathered at the elicitation.

1. Is the expert solving the correct problem?
2. Are the assumptions, cues, definitions and problem-solving methods used by 

the expert reasonable and in agreement with the DM?
3. Can the DM spot any relevant effects that this ancillary information might have 

on the expert's given answer?

Because the DM is also a knowledgeable party, he can answer these questions. 
This simple exercise will ensure that conditionality is monitored. The DM can then use 
what he has learned by answering these questions to make any adjustments or different 
ways of combining his information with that of the expert.

Decision Maker and n Experts
When a DM is faced with combining his information with that of several other 

experts (more than 1), the aggregation becomes more complicated. The DM is immediately 
faced with a choice.

Choice 1: He can decide to aggregate all the experts into a single distribution or estimate 
(accompanied by a variance or uncertainty estimate) and then combine that result with his 
information. This is represented by the following equation where the DM's distribution is 
/o and the combined distribution of the experts is/c.

/final00 = K */()(*) */()(*) , (Morris 1977)

where A- is a normalizing constant.

Choice 2: He can decide to aggregate his information with the experts as if he were just 
another expert. This is represented by the following equation where the expert 
distributions are/:

/final W = K */oW •/;(*) * - •//»(*) > (Morris 1977)

or

305



0iapterl6

ffina(x) = K»w0 •fdx) + wi f&x) . (Winkler 1968)
i=l

In the choice 2 case, the aggregations posed in the beginning of the chapter are 
already applicable. In the choice 1 case, some modifications of these techniques are 
necessary. Specifically, the process is to first determine a composite distribution of the 
experts and then combine that distribution with the DM.

In terms of the DM's behavior, there may be distinctive differences in the one 
expert case versus n experts. It is more likely that the DM will change his own views 
(information) if he has information from several experts than if he just has information 
from one expert. The exception to this would be if the DM is extremely dogmatic in 
personality. Then the DM will not reduce the influence of his information or change his 
information in view of the other expert or experts .

The methods for applying the above combinations are modifications of the methods 
already mentioned in the Aggregation Distributions section. These methods are illustrated 
in the examples below. The examples include using Bayesian methods (example 16.13), 
assumed distributions such as the normal (example 16.14), and empirical distributions with 
simulation (example 16.15). Weight determinations for combining distributions use the 
same methods as discussed in the weight determination section above. These 
determinations also suffer from the same problems as mentioned there, and the resulting 
conclusion for using equal weights is also applicable (Seaver 1978). Example 16.15 also 
illustrates weight determinations and results.

EXAMPLE 16.13: Decision Maker and n Experts: Bayesian Aggregation
A DM has the information elicited from the six experts from example 16.8. The 

information was formulated into six beta distributions, one for each expert. The parameters 
of these distributions are as follows (Winkler 1968):

__m

fl(x) 0.82 242.59
fl(x) 0.19 11.04
Mx) 0.18 1.52
fAix) 0.41 41.80
fs(x) 0.41 8.64
kix) 0.65 15.30

The combination distribution for the six betas is also a beta with parameters equal to 
x' and n' where

n
*' = X VVi*i 

i=l 
and
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n
«' = X W,7lj .

i=l

The DM has reviewed the ancillary information and analysis of this data and has 
agreed with the analyst that there are no special conditions or circumstances that make any 
expert's estimate different from any other. All experts are using reasonable assumptions, 
definitions, cues, and problem-solving processes to solve the same problem (the one at 
hand). There is no good reason for unequal weights. With equal weights, the values for 
x' and n' are

and
= 2.66

n' = 320.89 .

The DM then has to combine his information with the other experts. He estimates 
the occurrence of the event as 1 in 100 trials. Because he agrees with their problem-solving 
methods, he simply adds his estimates into theirs to make a posterior beta with the 
following parameters:

and
x" — x’ + xdm = 2.66 + 1 = 3.66 ,

n" = n’ + nDM = 320.89 + 100 = 420.89 . 

Therefore, the aggregation result is a beta distribution with a mean and variance of

and
3.66/420.89 = 0.0087

[3.66(420.89-3.66)]/[420.892(421.89)] = 0.000020 .

EXAMPLE 16.14: Decision Maker and n Experts: Normal Aggregation
Using the three experts from example 16.9, the DM wants to combine his estimates 

of a mean value of 65 and a variance of 25 into the resulting posterior normal distribution 
formed from the experts. The experts' distribution, fc(x), is a normal with mean, fip0St = 
62.02, and variance, o2p0St = 22.83 (Winkler 1981). Adding the DMs normal distribution 
as the prior results in the following normal posterior with mean and variance parameters

(jADM/<y2DM + llpost /G2post)/(Vo2DM + V<52post)

= (65/25.00+ 62.02/22.83)/( 1/25 + 1/22.83) = 63.44

and
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mi&DM + 1/oW) = W25 + i/22-83) = 1L93 •

EXAMPLE 16.15: Decision Maker and n Experts: Empirical Aggregation
with Saaty-Based Weights

A DM is given the empirical distributions functions from the two experts in example 
16.10. However, he is told by the analyst that there are certain conditions that were highly 
significant in determining the answers given by these experts. These conditions were a set 
of five cues used by the experts. The cues came from a set of descriptions listed in the 
problem statement that the experts focused upon when solving the problem.

In order to use these conditions to formulate weights for the experts, the DM set up 
the cues into a hierarchical structure. He then evaluated each expert's usage of the cues 
using Saaty's pairwise comparison method. This method allowed the DM to formulate a 
set of relative weights for the two experts based on their usage of the cues.

First the DM evaluates the importance of the cues (C1-C5) relative to the problem 
being solved. His pairwise comparisons of the cues are indicated below.

Cl vs C2------------------ ----- w
Cl vs C3------------------ -------------------s
Cl vs C4------------------—b
Cl vs C5------------------—b

C2 vs C3------------------ -------------------s
C2 vs C4------------------—b
C2 vs C5------------------—b

C3 vs C4------------------—b
C3 vs C5------------------—b

C4 vs Iiiit
mu

-------------------s

The b = important (Saaty weight = 2.72, the natural log base, e); s = neutral (Saaty weight 
= 1.00); and w = detrimental (Saaty weight = 0.37,1/e). The resulting relative weights for 
Cl through C5 are

(0.22, 0.33, 0.26, 0.09, 0.10) . 

Then the DM evaluates the experts given each of the five cues.

Expert 1 vs 2 given Cl---------------- b
Expert 1 vs 2 given C2---------------- b
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Expert 1 vs 2 given C3---------------- b
Expert 1 vs 2 given C4---------------- w
Expert 1 vs 2 given C5---------------- w

The following relative weights result for the experts given each cue.

(0.73, 0.27) for Cl 
(0.73, 0.27) for C2 
(0.73, 0.27) for C3 
(0.27, 0.73) for C4 
(0.27, 0.73) for C5

To calculate the final relative weights for the two experts, each cue weight is 
multiplied by the expert weight for that cue; then these products are summed over all cues.

and

Expert 1 weight = 0.73(0.22) + 0.73(0.33) + 0.73(0.26) + 0.27(0.09) 
+ 0.27(0.10) = 0.64 ,

Expert 2 weight = 0.27(0.22) + 0.27(0.33) + 0.27(0.26) + 0.73(0.09) 
+ 0.73(0.10) = 0.36 .

Therefore the relative weights of the experts are 0.64 and 0.36. These are relative weights 
and should not be taken at their numerical values. (This is a granularity issue.) From this 
analysis the DM can see how the two experts rate relative to each other regarding the 
important cues in the problem solving. The DM can then assign numerical values based on 
this relative assessment. The DM decides to use weights of 0.7 and 0.3 for the two 
experts, indicating that he feels that the relative weights closely represent true weights for 
the experts.

The DM now wishes to combine the empirical distribution functions of the two 
experts using the following aggregation function:

/c = 0.7/i + 0.3/2 .

The DM also wishes to combine his information (empirical distribution function) with the 
experts.

Median 0.25
30th 0.20
70th 0.30
5th 0.05

95th 0.45

The DM uses equal weights for his distribution,/) and/c:

/= 0.5/o + 0.5/c = 0.5/o + 0.35/1 + 0.15/2 .
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Using the empirical code in Appendix C, the following aggregation distribution,/, results.

Percentile Level Value

1st 0.08
5th 0.12
10th 0.14
20th 0.18
30th 0.20
40th 0.22
50th 0.25
60th 0.27
70th 0.29
80th 0.32
90th 0.37
95th 0.43
99th 0.58

Mean = 0.26
Variance = 0.0097

Standard deviation = 0.098

This aggregation is not very different from the original two experts, equally 
weighted, in example 16.10. One reason for that is that the DM gave estimates similar to 
both experts. Another reason is that even though different weights were applied, the 
weights did not have a significant impact.

Analyst and n Experts

The reason this application environment is listed separately from the ones involving 
a DM stems from the anticipated uses of this book by analysts. In the application 
environments discussed above involving a DM, the text and examples mentioned that the 
analyst is the person supplying the DM with vital information and results in addition to the 
answers from the experts. It is also a part of the analyst's role to help the DM synthesize 
and assimilate this information. To do this, the analyst should make the DM aware of the 
concepts of granularity, conditionality, and quantification; and the analyst should guide the 
DM in the aggregation process.

The DM may view himself as just another expert and rely on the analyst to take the 
DM's information, do the analyses, and report back to the DM. There may also be cases 
where the DM is not an expert at all. In this case, the analyst is faced with a similar 
situation: do the analysis without the DM's added information and report back the findings.

In either case, the analyst is left alone with the information (data). The analyst does 
his job and reports his findings.

This application environment has advantages. First, the analyst is the only source 
of influence on the information elicited. He is familiar with the cautions and
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recommendations presented in this book designed to minimize his influence on the data. 
Second, the analyst either elicited the data or worked closely with the elicitor. He is 
therefore familiar with the data and has helped with the development of the elicitation. 
Third, the analyst can be an objective bystander who is not concerned with the results and 
conclusions of the study. He can be free to let the data speak, and make inferences 
accordingly.

The analyst may find it extremely difficult in the reverse environment where the DM 
takes the analyzed results and changes them without the benefit of the analyst or the 
guidelines presented in this book. Careful analysis of the information can be quickly 
destroyed in such a case.

The focus of part III is from the analyst's viewpoint. Most of the examples given 
in this book reflect the analyst and n experts environment. However, it is also 
recommended that the analyst be an integral part of the elicitation. Facilitators or 
moderators of the elicitation and the analyzers of the data must work together. If they do 
not, then definitions, assumptions, problem solving, and conditions can change during the 
study. Also, granularity can change without notice, making interpretations meaningless. 
Common sense and simple consistency in designing and implementing the study from start 
to finish are the key to success.

Aggregation and Uncertainty Analysis
Uncertainty analysis is addressed in more detail in chapter 17. However, many of 

the problems associated with aggregation are related to uncertainty characterizations. In 
fact, many of the techniques are useful for both, such as simulation methods, Bayesian 
methods, tree diagrams for decomposition, and the use of distributions rather than single 
estimates.

As is illustrated in chapter 17, methods used to characterize uncertainties 
automatically aggregate estimates and distributions in the same way that was illustrated in 
the examples in this chapter. The difference is one of interpretation. In this chapter, the 
ranges and distributions provided by the experts were not specifically labeled as 
characterizing uncertainties; although they did represent uncertainty. The primary goal was 
to aggregate all the information into a convenient estimate plus variance or into a 
distribution. The interpretation of those final estimates and distributions do incorporate and 
reflect the uncertainties in the information given by the experts and also the uncertainties 
among the experts. The goal and emphasis in chapter 17 is to identify and characterize the 
uncertainty.
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17
Characterizing
Uncertainties

There are ways of characterizing and handling all uncertainties even in the restrictive 
environment of expert judgment applications. This chapter examines some of the easier 
ways. The concept and definition of uncertainty given here is, in a very broad sense, 
covering the four basic sources of uncertainty that prevail throughout the data and the 
analysis.

To control, or at least understand, this single uncertainty characterization, the 
following steps are suggested in this chapter. First, uncertainty measures for the answer 
data that are needed are discussed in Obtaining Uncertainty Measures. Second, 
uncertainties in the data that can be modeled either separately or as additional terms in the 
full data analysis models are discussed in Modeling Uncertainties. This chapter concludes 
in Comparison of the Methods with a comparison of various methods for handling 
uncertainties. Later in chapter 18 on making inferences, the relationship that uncertainty 
has to the inference process is discussed.

Living with Uncertainties
There are different kinds of uncertainties that become important in any sampling or 

experimental data-gathering process. Some uncertainties can be controlled and, therefore, 
reduced to an acceptable noise level of influence simply by taking larger samples or by 
doing careful experimental design and measurements. Other uncertainties cannot be 
controlled or reduced by any practical means. These are the uncertainties with which we all 
must live. The most that can be done is to understand their importance and effects.

Uncertainties can stem from different sources such as (1) definitions, (2) sampling 
errors, (3) nonsampling errors such as missing data, and (4) scientific or modeling 
techniques (Stoto 1988). In expert judgment applications, uncertainties come from all four 
sources. Uncertainty from definitions can be reduced by careful elicitation as proposed in 
Part II of this book. Sampling error uncertainty can be reduced by taking large sample 
sizes; however in expert judgment applications, this may not always be practical. 
Nonsampling uncertainty cannot be reduced by any simple or practical means. Modeling
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uncertainty can be reduced by proper experimental design (where possible) and even by the 
use of cross validation in the analyses.

Obtaining Uncertainty Measures
Uncertainty values for the experts' answers can be obtained directly from the 

experts during the elicitation, or they can be estimated indirectly from the post-elicitation 
data. In either case, the expert or the analyst may be required to make additional 
assumptions or to provide estimates that stretch the limits of their current knowledge. 
However, the purposes of estimating uncertainties are (1) to represent the possible 
inaccurate estimation of the variables of interest by the experts, and (2) to increase the 
chance of estimating (covering) the true answer by allowing for a range of possible values 
rather than relying on a single value.

Using Elicitation

Asking experts to estimate uncertainty measures for an answer is, on the one hand, 
like asking them to estimate a variance or distribution of values. As noted in chapter 7, 
these estimations are difficult and may be highly inaccurate for most experts. On the other 
hand, asking for a simple range of possible values from an expert is not much different 
from asking for the original answer. Eliciting a range of values requires the same care as 
eliciting a single answer. One advantage of eliciting a range of values is that many experts 
are comfortable with providing uncertainties in this form, realizing their existence and 
importance. In fact, many experts prefer to give a range of possible values, being 
uncomfortable with the pinpoint accuracy implied for a single value estimate.

In chapter 7, several dispersion measures were offered for selection. These 
included error bars, variances, percentiles, and ranges. All of these can be used to 
characterize uncertainties in the answers and can be elicited from the experts along with the 
answers. The advantages and disadvantages for each are given below.

Error bars
Most engineers use the term error bars to connote some measure of uncertainty; 

however, there is little agreement on a firm definition of how much uncertainty is 
characterized by error bars. Therefore, error bars should be elicited using some sort of 
definition. Most such definitions will overlap with the other uncertainty measures. For 
example, error bars could be defined as plus or minus one standard deviation from the best 
estimate (a standard deviation definition), or error bars could be defined as the middle 90% 
(percentiles definition) of the distribution.

The philosophy of this handbook is to keep restrictions on the expert to a minimum. 
In keeping with that, the expert would be asked to provide error bar values and then 
provide his definition of what those values represent. This way is the recommended use 
for error bars.
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Variances or standard deviations
Most engineers have heard and used the terms variance or standard deviation but 

may not have a good understanding of them. It is also not recommended that the experts be 
asked if they are comfortable with these concepts. In general most people do not like to 
admit a lack of knowledge or understanding of any concept. The experts can be trained in 
these concepts during the elicitation. However, studies have indicated (Martz, Bryson, 
Waller 1985) that even experts with expertise on these concepts are not very good at 
estimating variances. In general variances are underestimated in value, sometimes by a 
factor of two or more. Therefore, using variances and standard deviations will result in 
large underestimates of uncertainty.

Because of the unfamiliarity of these concepts by many experts, it is not 
recommended that they be used as uncertainty measures.

Percentiles
Percentile estimation involves the concept of a probability distribution of values. 

The 95th percentile is the value such that 5% of the distribution is larger than that value and 
95% is smaller . As with variances, it has been demonstrated that even statisticians have 
difficulty in estimating percentiles. People will also tend to underestimate the uncertainty in 
the form of percentiles. When asked to estimate 95th percentile values, people only 
estimate about the 60-70th percentile values, and 5th percentile values are really only about 
the 30-40th percentile values. There is another problem inherent in this process. Even if 
the expert is comfortable with the concept of a distribution, he will tend to think in terms of 
a symmetric, bell-shaped distribution. Such an assumed distribution may be totally 
inappropriate for the problem. The result is a distortion of the values and percentiles that 
the expert is trying to estimate.

Again, because of the difficulty in defining and using the concept of percentiles, 
they are not recommended for use as uncertainty measures.

Ranges
As mentioned above, many experts will prefer to give a range of possible values 

instead of a single point estimate. This preference reflects their uncertainty in providing a 
single value. Many experts will give a range of values whether a range is elicited or not. 
There is a problem with interpreting a given range. Usually experts are unwilling (or 
unable) to provide a definition of what the range represents. These definitions might also 
involve other uncertainty characterizations such as variance that should be avoided.

It is recommended that definitions of ranges not be provided in terms of the other 
uncertainty measures. It is also recommended that some rationale be gathered concerning 
what the expert has in mind about the ranges: Are they equally possible values? Do they 
represent extreme values? It is difficult for the analyst to use ranges that have no meaning 
attached; however, as demonstrated in the next section, undefined ranges can be a source of 
information for analysis.
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Using Post-Elicited Data

This section provides some suggestions on obtaining uncertainty measures from the 
data that are not elicited from the experts and on using such information. Uncertainty 
characterizations can come from several sources: (1) directly from the experts, (2) 
indirectly from the experts, (3) assumed by the analyst from the data, or (4) any 
combination of these three. In any of these four sources, assumptions are being made by 
the experts, the analyst, or both. Therefore, following the suggestions given in this chapter 
should be viewed with extreme caution because of these assumptions. Different 
interpretations of the uncertainties should be tried and compared. In Modeling 
Uncertainties it it is indicated how these uncertainty measures can be analyzed and then a 
final comparison section is given.

1. As mentioned above, many experts will volunteer ranges of values when 
answering a question. It is important to query them about the meaning or 
interpretation that they attach to these ranges. Otherwise the analyst is forced to 
assume some interpretation such as the 40th percentile and 60th percentile 
values. Volunteered range values can be used in uncertainty analyses 
calculations as described below. They can be used as repeated measures for 
determining variations or parameters for assumed distributions. They can also 
be used as repeated measures for supplementing a sparse or small data set. For 
example, if five experts give five best guesses and 5 minimum values with 5 
maximum values, then there are 15 values for the data set

2. Experts may also supply ranges indirectly. This can be done in several ways.
First, the expert may give his best estimate and then, later on in the session, 

revise that estimate or give another possible estimate. If the rationale is 
recorded, many such references to estimate changes in values and assumptions 
(if changed) can be noted and recorded. If an expert changes his estimate, it is 
vital to find out why. In some cases, he may be updating his thought 
processes; in other cases, he may be changing the estimate because the problem 
has changed. If he is changing the problem, then the new estimate is not useful 
for a range value.

Second, the expert may have recorded his response in such a way as to 
indicate a range of values. For example, if a continuous number scale is the 
response mode, an expert may use a wide mark or smear his response along the 
line indicating a spread of values. This may only indicate a narrow range, but it 
is a useful range nonetheless. This kind of volunteered range value is best 
considered as a very narrow uncertainty measure and can be used as repeated 
measurements to increase the sample size.

3. The analyst can make many assumptions about either the direct or indirect 
ranges volunteered by the expert. Percentile values, fractions of standard 
deviations, or multiples of standard deviations definitions can be assumed by 
the analyst to apply. A common rule of thumb (Kahneman, Slovic, Tversky 
1982) is to take the experts' uncertainty range and double or quadruple it to 
make a 90% coverage interval (the difference between the 95th and 5th 
percentiles). In determining the validity of such a rule, the effects of different 
uncertainty measures can be compared or can be studied by using simulation.
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Another way that analysts can use uncertainty measures is by using the 
direct or indirect ranges as additional estimates to increase the sample size. 
This method is especially useful for applications which have only a few 
available experts. Again, a simulation technique such as the bootstrap is useful 
for using the range values to increase sample size.

The analyst can also make assumptions even when no ranges are directly 
supplied by the experts. Such indirect assumptions can be made by examining 
the variation in the given answers. One such method would be to induce a 
range of values by doubling the variance of the original set of single estimates 
and assume a distributional form for the estimates with this doubled variance 
and original mean. A similar uncertainty measure could be determined by 
doubling the original range (maximum value - minimum value) of the data. To 
assist the analyst in making such determinations, the experts may have provided 
some verbal clues about the uncertainties in their estimates. The analyst will be 
required to transform any such qualitative statements into quantitative values of 
uncertainties. Therefore, any and all such information provided by the experts 
should be viewed as part of the uncertainty characterization.

Modeling Uncertainties
After determining some uncertainty measures for the experts' estimates by the 

above methods, modeling or using uncertainties can be done by many different methods. 
A few more commonly used techniques are described below, and a comparison of these 
techniques is given at the end of the section for the problem described in the examples.

Bayesian Methods

Using one prior
In many risk and reliability problems, expert judgment is used to supplement 

existing (but usually small amounts of) data. The expert judgment is used to formulate a 
prior distribution that is combined with the data and its distribution using Bayes Theorem to 
form a posterior distribution that reflects a composite of all the available information. In 
this type of application, the expert judgment information serves two purposes (1) it 
augments the data, and (2) it serves to characterize the uncertainty in the data.

The major disadvantage to this approach is that probability distribution forms are 
needed for both the expert judgment data (as the prior) and for the existing data. Then the 
process of combining these distributions can be difficult from a mathematical viewpoint. In 
some difficult cases, numerical analysis techniques are required to find a solution. In other 
difficult cases, simulation may be used to find a solution. To avoid mathematical 
difficulties in calculating a posterior result, many analysts assume commonly used 
distributions that have convenient mathematical properties that provide easy forms for the 
posterior distribution. One such commonly used combination of the prior information with 
the data is the binomial-beta combination. Here the existing data are assumed to follow a 
binomial process-in n independent trials, x failures are observed, with each trial having a
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probability of failure equal to p. The prior information (usually from the experts) is also in 
the form of xq failures in no trials. However, here the prior distribution is a beta 
distribution. This beta distribution is the distributional form for the binomial parameter p. 
The beta is convenient for three reasons: (1) the beta distribution can have many different 
shapes, (2) the beta ranges from 0 to 1 just as p does, and (3) the beta parameters are 
interpreted as xq failures in no trials. The resulting posterior of this binomial-beta 
combination is also a beta distribution. Its mean and variance are easily calculated 
functions of the n, x, no, and jcq values as follows:

posterior mean = x + x° ,

posterior variance = (■X+XoXtt + ftQ-X-JCo) 
(n + no)\n + no+ 1)

Two other prior distributional forms combine easily with the binomial process and 
are commonly used in situations where little or no prior information is available. These are 
the uniform distribution on the (0,1) interval and the noninformative prior k(p-p^)'^^, 
where k is any constant. By choosing k in terms of the gamma functions (Martz and 
Waller 1982), this noninformative prior becomes a beta distribution with Xq = 0.5 and nQ = 
1.0. The posterior distribution is then also a beta distribution function with the above mean 
and variance formulae. The uniform distribution is a special case of the beta distribution 
with parameters jc0 = 1.0 and nQ = 2.0. Again the resulting posterior is a beta distribution 
with mean and variance formulae given above. Thus for either the uniform or 
noninformative priors the above formulae can be used to determine the posterior mean and 
variance. One word of caution is necessary here in using either of these priors. The 
uniform prior is used when no prior information is available and is sometimes called the 
ignorance prior. This prior spreads the information evenly across the entire range of 
values, from 0.0 to 1.0. It has almost a negligible impact on the posterior. On the other 
hand, the noninformative prior is really a misnomer. This prior is informative and does 
have an impact on the posterior. Its name should be the prior of little information.

Choosing the distributional form and corresponding parameters for the prior 
distribution can make a significant difference in the posterior. Using the binomial-beta 
combination to form the posterior, example 17.1 shows the influence that the prior 
parameters can have on the final results.

EXAMPLE 17.1: Using Bayesian Methods for Uncertainty—Forming a 
Single Prior

Ten experts have provided estimates for the probability of failure per year of a
subsystem in a reactor as follows:

Estimate of 
Expert Failure Rate

1 -----------------0.00250
2 -----------------0.00100
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3 ----------------- 0.05000
4 ----------------- 0.00500
5 ----------------- 0.01000
6 ----------------- 0.02500
7 ----------------- 0.00100
8 ----------------- 0.00250
9 -----------------  0.00010

10----------------- 0.00005

It is also known that this subsystem has been operational for 12 years without any 
failures. This data follows a binomial process with x = 0 failures in /i = 12 years. The 10 
experts' estimates can be used to form a prior distribution that is combined with this 
binomial data. The major advantage here is that the data alone do not contain enough 
information to form a failure-rate estimate. Just using the data would give a failure-rate 
value of 0/12 = 0. By combining the data with the experts information, a more reasonable 
estimate is possible.

The variation in the 10 experts' estimates represents the uncertainty in the value of 
the failure rate. By forming a distribution out of these 10 values, that distribution will 
represent the uncertainty. The mean of the 10 values is 0.010; the standard deviation is 
0.016. A beta distribution with that mean and standard deviation has parameters jcq = 0.40 
and no = 39.5. These parameters represent an average failure rate of xo/no = 0.010 or 1 
failure in 98 years. A beta distribution with the above parameters, xq and no, has the 
following characteristics:

Mean
Variance

Minimum 
5th percentile 
50th percentile 
95th percentile 
Maximum

0.0102
0.00025

0.00000023
0.000012
0.0038
0.042
0.074

Combining the expert information (beta prior distribution) with the data (binomial 
process) gives the mean and variance of the posterior beta distribution as

and

1+0
98 + 12 0.0091

- 1(11(M) = 0.000081 . 
1102 (110+1)

The influence of the data and the prior information on the final estimate is 
demonstrated by examining changes in the data. Suppose there was 1 failure in 12 years,

319



0iapurl7

then the final mean estimate becomes 0.018, or twice the original value, with a variance of 
0.00016. Here the data is more dominant, increasing the mean estimate. Suppose the data 
was 0 failures in 144 years. Then the final estimates of the mean and variance are 0.0041 
and 0.000017, respectively. Here the final mean is dominated by the experts.

Of course, changes in the experts' estimates affect the posterior in a similar fashion. 
The purpose of this exercise is to emphasize that the prior and the data both are influential 
and care must be taken to represent each appropriately.

Assuming distribution forms and determining posteriors can be arbitrary and 
difficult. It is therefore recommended that Bayesian methods be used only in the simple 
binomial-beta cases such as in example 17.1. For other cases, a statistician should be 
consulted.

Using multiple priors
To characterize the uncertainty in each estimate (answer) given by the experts, 

Bayesian methods can be used to establish a prior distribution for each expert. Each expert 
provides an estimate or best guess and a corresponding range of values for that estimate. 
These ranges represent the uncertainties that the experts have about the accuracy of their 
single-point estimates. Distributions representing the estimates and their uncertainties can 
be formed for each expert using the ranges and the estimates. Example 17.2 discusses 
some of the ways of forming these distributions and shows one method in detail.

EXAMPLE 17.2: Using Bayesian Methods for Uncertainty — Forming 
Multiple Priors

The 10 experts in example 17.1 provided uncertainty ranges with their estimates as 
follows:

Expert Estimate of Failure Rate Ranees

1 0.00250 0.00100 - 0.0040
2 0.00100 0.00010 - 0.0100
3 0.05000 0.00100 - 0.1000
4 0.00500 0.00100 - 0.0100
5 0.01000 0.00500 - 0.0500
6 0.02500 0.01000 - 0.0500
7 0.00100 0.00500 - 0.0025
8 0.00250 0.00100 - 0.0050
9 0.00010 0.00010 - 0.0100

10 0.00005 0.00005 - 0.0005

Given this information, there are several ways of formulating distributions for each 
expert. The type of distribution is the first choice to be made. For convenience, the beta 
distribution is chosen. Following are some ways of forming the beta distributions:
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1. The single estimates represent the mean of the beta. The lower range values
represent specified percentiles. For expert 1, his resulting beta distribution 
would have parameters xq = 1.90 and no = 761.9 if his lower range was the 
20th percentile. This beta distribution has a mean of 0.0025 and a variance of 
0.0000033.

2. The single estimates represent the mean of the beta. The upper range values
represent specified percentiles. For expert 1, his resulting beta distribution 
would have parameters xq = 1.08 and no = 430.8 if his upper range was the 
80th percentile. This beta distribution has a mean of 0.0025 and a variance of 
0.0000058.

3. The single estimates represent the median of the beta. The lower range values
represent specified percentiles. For expert 1, his resulting beta distribution 
would have parameters xq = 0.64 and no = 142.5 if his lower range was the 
30th percentile. This beta distribution has a mean of 0.0045 and a variance of 
0.000031.

4. The single estimates represent the median of the beta. The upper range values 
represent specified percentiles. For expert 1, his resulting beta distribution 
would have parameters xq = 1.32 and no = 401.8 if his upper range was the 
70th percentile. This beta distribution has a mean of 0.0033 and a variance of 
0.0000081.

5. The range values represent specified percentiles. The single estimate is not used.
For expert 1, his resulting beta distribution would have parameters xq = 0.31 
and no = 38.6 if his lower range was the 40th percentile and his upper range 
was the 60th percentile. This beta distribution has a mean of 0.0080 and a 
variance of 0.00020.

6. The range values represent specified percentiles such as the 40th and 60th
percentiles. Beta distributions are formed from these. These betas act as priors 
to be combined with the information in the single estimate where the single 
estimates represent Imp failures such that x = 1 and n = 1/p. For expert 1, the 
range values form a beta prior with parameters xq = 0.31 and no = 38.64. The 
single estimate represents a binomial process with x = 1 and n = 400. 
Therefore, a resulting beta for expert 1 has parameters xq + x = 1.31 and no + n 
= 438.64. The resulting beta has a mean of 0.0030 and a variance of 
0.00000014.

As seen in the example of using expert 1, the beta parameters and the variances can 
change quite significantly depending on the interpretation of the uncertainty range values. 
However, the means remain fairly similar to the original single estimated value (except in 
item 5, where the mean is not used).

Using the method in item 5., the lower ranges are the 40th percentiles and the upper 
ranges are the 60th percentiles. With these percentiles, the following are the beta 
parameters for each expert:
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Beta Distribution Parameters
Expert M) no

1 0.31 38.64
2 0.09 0.60
3 0.09 0.30
4 0.18 4.32
5 0.18 1.25
6 0.26 2.60
7 0.26 42.76
8 0.26 21.64
9 0.09 0.60

10 0.18 76.19

These 10 beta distributions can be combined according to the distribution 
aggregation methods from chapter 16, such as using Monte Carlo simulation. The 
resulting combination distribution could then be used as a prior to combine with the data or 
with a decision maker's distribution to form a posterior. The aggregation by simulation is 
performed in example 17.3 in the next section on Monte Carlo simulation.

Simulation Methods
In chapter 11, the bootstrap and Monte Carlo simulation techniques were 

introduced. These techniques were also used in chapter 14 for exploring correlation among 
experts, and in chapter 16 for aggregation of expert estimates. Both techniques are useful 
for characterizing uncertainties.

Monte Carlo simulation
One of the easiest and most effective (Martz et al. 1983) ways of propagating 

uncertainties through a model is to use Monte Carlo simulation. Simulation can be used to 
combine various types of distribution functions without relying on difficult or complex 
mathematical formulations of the combinations. The mathematical difficulties in 
aggregating expert estimates was seen in chapter 16. Similar problems can also arise in 
characterizing uncertainties because uncertainties are commonly represented by 
distributions on estimates. These uncertainty distributions must usually be combined in 
some manner with original estimates or with other uncertainty distributions to obtain an 
overall effect of all the uncertainties.

Example 17.3 illustrates how uncertainty characterizations for the 10 experts’ 
estimates from example 17.2 can be combined to form a single distribution that represents 
the uncertainties in all 10 distributions. In example 17.2, each expert's range was used to 
formulate a beta distribution as the uncertainty distribution for his estimate. Using the 
ranges and the original estimates, several ways of formulating such beta distributions were 
given in example 17.2. In example 17.3, the effect of choosing different distributional 
forms for the uncertainty distribution is illustrated. First, the ranges are used to establish
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the upper and lower limits of a uniform distribution. Second, the ranges are used to 
determine the parameters of a beta distribution. Then, in both cases, the 10 distributions 
are aggregated to determine the distribution of the median (50th percentile value) of the 10 
experts' estimates using Monte Carlo simulation. The simulation is done by forming 1000 
different samples by randomly choosing one value from each of the 10 expert distributions. 
For each sample the median of the 10 values is calculated. The end result is a distribution 
of 1000 medians. The variance, percentiles, and mean of this final distribution provides 
the estimates of the variance, percentiles, and mean for the median of the 10 experts.

EXAMPLE: 17.3: Uncertainty Characterization Using Monte Carlo
Simulation

Using the 10 experts’ ranges given in example 17.2, individual uncertainty 
distributions can be determined for each expert. These distributions can then be combined 
to form a distribution for an overall estimate of the 10 experts. According to chapter 16 on 
aggregating expert judgment, the median of the experts is a commonly used aggregation 
estimator. Monte Carlo simulation allows the analyst to determine the distribution of the 
median.

In this example, the ranges given by the experts are used to form two different 
distributions: (1) the lower and upper range values form the 40th and 60th percentiles of 
uniform distributions, and (2) the lower and upper range values form the 40th and 60th 
percentile values for beta distributions as done in example 17.2.

Final distribution for the median of the 10 experts is formed from 1000 median 
values calculated from 1000 samples of size 10. Each sample is formed by randomly 
selecting a value from each expert’s distribution.

Two simulations are done. The first uses uniform distributions to represent the 
experts’ uncertainties in their estimates, and the second uses beta distributions. The two 
resulting median distributions have the following characteristics:

Uniform Uncertainty Distributions for the Experts

Mean
Variance

0.0047
0.0000072

Minimum 0.0000013
5th percentile 
50th percentile 
95th percentile 
Maximum

0.00030
0.0038
0.012
0.026

Beta Uncertainty Distributions for the Experts

Mean
Variance

0.0091
0.00024
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Minimum 0.00000033
5th percentile 
50th percentile 
95th percentile 
Maximum

0.00038
0.0041
0.034
0.14

The variance for the medians from the beta uncertainty distributions is much larger 
than from the uniforms. The maximum for the beta is a little larger, and the minimum for 
the beta is much larger. However, the medians of both are the same, and the means are 
also quite close. Thus the central measures of the final distributions for the median are not 
affected by the choice (beta or uniform) of the uncertainty distribution form used for the 
experts. The greatest effect from distributional choice is in the variances and the shapes of 
the tails of the resulting distributions.

In examples 17.2 and 17.3, two problems were identified in translating the experts' 
range values into uncertainty distributions. The first problem (example 17.3) is deciding 
upon a form for the distributions. The second problem (example 17.2) is deciding how to 
use the ranges to form the parameters of the chosen distributions.

In example 17.3, the effect of the first problem was seen. The choice of the 
uncertainty distributions (beta or uniform) made a difference in the variances and tails of the 
final distributions for the median. One way of handling this problem is to run several 
simulations, each using a different, but reasonable, distribution choice. Results from 
different choices should be consistent with each other, or inconsistencies should be 
resolved based on the assumptions that were made. For example, in 17.3 the wider 
variance in the beta case is a result of the interpretation made about the experts' range 
values (the second problem). If the ranges had been used to represent the 5th and 95th 
percentiles, then the resulting variance from the beta case would have corresponded better 
to the uniform case.

There are some logical choices for distributions that can be tried and compared for 
various types of estimates. For probability estimates, the uniform and beta distributions are 
logical choices. The normal distribution is also commonly used; however, care must taken 
not use a normal distribution that gives values for probabilities which are negative or 
greater than 1.0. The normal, lognormal, and gamma distributions are often used to 
represent estimates of physical quantities, such a temperatures or of failure rates.

Another way of handling the first problem is to do the simulation using a technique 
such as the bootstrap that does not require a distributional assumption. This technique uses 
the data itself to form an empirical distribution for the simulation. Details on this technique 
are given below.

In handling the second problem, understanding that experts underestimate 
uncertainty is useful. Because experts do underestimate uncertainty, it is recommended that 
either the range be doubled for use as tail percentile values (e.g., 5th and 95th) or that the 
range values represent inner percentiles, such as the 30th to 40th and 60th to 70th 
percentiles. As in example 17.2, different interpretations should be tried. Usually the 
different interpretations will tend to affect the variances of the uncertainty distributions 
rather than the centers of the distributions. The basic idea is to represent the uncertainties in
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the quantity being estimated. If the experts feel that the uncertainty is great, then larger 
variances are to be expected, and these variances may even be larger than the experts 
expect.

Bootstrap simulation
Distributions can be formed by sampling and resampling from the original data set. 

This sampling and resampling process is referred to as sampling with replacement. To 
form a single sample of size n, n values are randomly chosen from the original data set. If 
a particular value is chosen once, it can be chosen again in the same sample. The 
simulation is done by forming N such samples (N = 1000). As in the Monte Carlo 
simulation, a calculation or model is formed for each sample. The N results of this 
calculation or model are collected to form a final distribution.

The main advantage with bootstrap sampling is that no distributional assumptions 
are required on the data. Its main disadvantage is that the sampling/resampling procedure 
produces a final distribution with a small variance. In other words, the variation of the 
final distribution is limited to the variation of the original data set.

One way to overcome the restricted variance problem is to induce more variation 
(more uncertainty) into the original data set. The ranges of values that represent the 
uncertainties in the values serve to expand the variation of the original data. Therefore, if 
the ranges are included in the original data set, the results from a bootstrap simulation will 
have a wider variation than the original sample without ranges. Example 17.4 illustrates 
the difference in the bootstrap final results when calculating the median of the 10 experts' 
estimates for cases without the range values and with the range values

EXAMPLE 17.4: Uncertainty Characterization Using the Bootstrap
Using the data from the 10 experts from example 17.1, a bootstrap sampling 

procedure of those 10 estimates represents the uncertainty in the estimates. Samples are 
formed in a similar manner to the Monte Carlo simulation except random selections are 
taken from the original data set and not some specified distribution. For each sample, a 
single datum can be chosen either once, more than once, or not at all.

By forming 1000 such random samples from the original 10 estimates and 
calculating the median value of each sample, a distribution of 1000 medians is formed with 
the following characteristics:

Mean 0.0044
Variance 0.0000085

Minimum 0.0010
5th percentile 0.0018
50th percentile 0.0037
95th percentile 0.010
Maximum 0.027

The central values (mean and median) are the same as the ones in example 17.3. 
However, here the variance is between the two results in 17.3. It was noted in that
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example that the smaller variance probably reflected the tendency of the experts to 
underestimate uncertainty. It is also known that the bootstrap simulation produces a small 
variance—a variance limited by the variation in the original data set. Therefore, the resulting 
variance of the median may also be too small to adequately represent the uncertainty .

One solution to this underestimation of uncertainty is to expand the variance of the 
original data set by including the range values given by the experts. One way of doing this 
is to supplement the data set by adding these upper and lower range values as if they were 
additional estimates. Now the original data set is increased to 30 values. However, when 
performing the bootstrap simulation, the sample size of 10 is recommended so that false 
benefits from an increased sample size are not induced into the simulation.

Results for the bootstrapped median with range values follow:

Mean
Variance

Minimum 
5th percentile 
50th percentile 
95th percentile 
Maximum

0.00083
0.00000089

0.0000010
0.0000010
0.00055
0.0030
0.0063

The final distribution for the median is stretched over a wider range of values than 
the final distribution without the range values. However, because the range values are 
biased toward the lower values, this final distribution is shifted in that direction. This shift 
may not be a desirable result One way to avoid this shift would be to add range values that 
are symmetric about the original estimates.

In conclusion, both simulation techniques (Monte Carlo and bootstrap) have their 
advantages and disadvantages. Care must be taken to decide which advantage is most 
desirable and which disadvantage is most harmful. In the case of uncertainty 
characterization, the Monte Carlo distribution assumption disadvantage is less harmful than 
the bootstrap restricted variance disadvantage because uncertainties tend to be 
underestimated and more diversity is generally needed to adequately represent the true 
uncertainty. This is a conservative approach to uncertainty. However, unless more 
information about the size and effect of uncertainties is known, the conservative approach 
is the approach accepted by the risk and reliability community.

Decision Analytic Methods

The decision analysis community has adopted and developed many ways of 
characterizing uncertainties including the Bayesian and simulation methods mentioned 
above (Booker and Bryson 1985). Many of these techniques rely on strict model 
formulations. Some also require that the data be distributed with a multivariate normal 
distribution. Uncertainties are also assumed to follow distributions that combine with the 
data in a mathematically convenient fashion. It is not in keeping with the basic philosophy
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in this book to impose such restrictions on the data or to require experts to give their 
estimates in forms that are merely convenient for the analyst. Whereas some distribution 
assumptions may be necessary, in this book we advocate their usage be kept to a minimum 
or that they be used in cross-validation with other techniques.

There is one decision analytic technique whose usage is in keeping with the 
philosophy expressed in this book. It is known as the maximum entropy technique and can 
be easily implemented using the following description and example:

The idea behind maximum entropy is to formulate a distribution for the data such 
that the distribution maximizes the uncertainty in the data. To determine this distribution, 
several values are required, and a choice for the prior distribution on the variable of interest 
(e.g., probability of an event, p) is also required. At least two percentile values are needed, 
and the value for the absolute maximum of p and minimum of p is needed. Two commonly 
and easily used prior distributions are the uniform and the noninformative prior (Cook and 
Unwin 1986).

Using a uniform prior on p from the absolute minimum value a to the absolute 
maximum value b and two percentiles X[ and xu, the maximum entropy distribution for p is

p(x) = L(xi -a) a<x <X[
(U - L)/(xu -xi) xi<x < xu
(1 - U)/(b -xu) xu<x<b ,

where U and L are the percentage values (e.g. 0.95 and 0.05) for the x\ and xa percentiles.
Using a noninformative prior on p with two percentiles a and b, the maximum 

entropy distribution for p is

p(log(*)) = L/log(xi/a) log(a) < log(x) < log(x/)
(U - L)f\og{xJxi) log(x/) ^ logM < log(xu)
(1 - U)l\og(blxu) log(xM) < log(*) < \og{b) ,

where log is the base 10 logarithm.
These two distributions will be shaped as three blocks or steps. If other percentiles 

are easily estimated, the above formulae can be expanded and the distribution will have 
more steps:

p(x) = L\/{x\ - a) a <x<x\
(L2 - L\)!{x2 -x\) xi<x<X2

(L3 -L2)/(*3 -*2) X2<x<xi

(1 - L^Kb-Xn) xn<X<b ,

for n percentile estimates (x\, X2,..., *«)•
Example 17.5 illustrates the use of these formulas for the 10 experts' estimates 

from example 17.1. Prior distributions other than the uniform and noninformative can be
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used; however, forming the maximum entropy distribution for those can be mathematically 
difficult. For such complex cases, simulation can be used to find a solution.

EXAMPLE 17.5: Forming a Maximum Entropy Distribution
For the 10 experts in the previous examples, the smallest range value is 0.00005, 

and the largest is 0.1. These numbers for the 5th and 95th percentile values in the 
maximum entropy formulae form the uniform prior distribution. The values for the 
absolute minimum and maximum are also needed. These values are listed below with the 
percentiles:

Absolute minimum value, a = 0.000001 
Absolute maximum value, b = 0.20 

Number of specified percentiles = 2
Percentile levels, U = 0.95 and L = 0.05 

Percentile values, xu = 0.10 and xi = 0.00005

The following is the distribution of the failure rate, p{x).

p(x)= 1020.41 0.000001 <x < 0.00005
9.00 0.00005 <^<0.10
0.50 0.10 <*<0.20

This distribution has the following characteristics:

Mean 0.00056
Variance 0.000041

Minimum 0.0000010
5th percentile 0.000050
50th percentile 0.025
95th percentile 0.10
Maximum 0.20

Comparison of the Methods

The methods for characterizing uncertainty presented in this chapter are chosen for 
their ease of implementation and for the minimal amount of assumptions required. 
Example 17.6 shows how these methods for characterizing uncertainty compare using the 
10 expert estimates and their range values.
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Example 17.6: Comparison of uncertainty characterizations
On this graph the maximum and minimum values for the final distribution are 

plotted at the ends of the straight line. The narrow boxes connect the 5th and 95 th 
percentile values for the median. The 50th percentile is the point inside the box. The final 
distributions for the bootstrap and Monte Carlo plots are the distributions for the median. 
The final distributions for the experts' estimates, Bayesian single prior, and maximum 
entropy plots are the distributions for the failure rate (not the median of the failure rates).

Bayesian Single Prior -

Monte Carlo Betas -

Experts' Estimates -

Monte Carlo Uniforms -

Maximum Entropy -

Bootstrap Medians -

Bootstrap with Ranges -

=«-B

lii U ■■ "U D

—a □

H B □

D U U 1H---- □

-d n d

10 ;7 10:6 10:5 10:4 10/3 10-2 10 r1 10?
Failure Rates

Some interesting results are evident from this graph. First, the bootstrap without 
ranges is very narrow, indicating little variation in the values. It is even narrower than the 
raw data and is not unexpected. Small variations are indicative of the bootstrap (Efron 
1979), and the variation of the median is expected to be smaller than the variation in the raw 
data. The bootstrap for the median with ranges has a wider spread than the bootstrap from 
just the raw data because there is increased variability of the data set from inclusion of the 
range values. Second, most plots indicate a skew of the values with more of the 
distributions shifted to the right or to higher failure rates. This is not surprising because the 
raw data and range values are shifted to the higher failure rate values. Third, the Monte
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Carlo with beta priors, the maximum entropy, and the single beta prior indicate the most 
spread and are very similar to each other. The maximum entropy and single prior also have 
similar variability in the center (the boxes). The Monte Carlo betas has narrower center 
because it represents the median and not the raw estimates. Finally, there is increased 
variability over the raw estimates indicated in the plots of the methods using the ranges to 
represent the uncertainty.

The differences in the methods result from the different assumptions made about the 
distributional forms (beta, uniform, and empirical) and the interpretations of the range 
values (where used). Complete consistency should not be expected. However, 
inconsistencies should be explained. In this comparison, the plots for all methods are quite 
similar with the exception of the raw data and the bootstrap median of the raw data. It is 
expected that these plots should show very little variation because the range values were not 
used to represent uncertainties in the raw estimates. As in other chapters, it is suggested 
that several different uncertainty characterizations be tried and compared. However, if only 
one method is chosen, the Monte Carlo with uniform priors would be a reasonable choice 
(Martz et al. 1983).
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18
Making Inferences

The purpose of eliciting and analyzing expert judgment has always been to use the 
information gained either as data where none existed or as supplemental data where sparse 
data existed. The goal is then to take this information from the experts and draw 
conclusions from it. This process is referred to as making inferences.

In this chapter the possible inferences that can be made are examined taking into 
account the design features of the problem and the use of analysis methods. Finally, some 
comments about inference relating to expert judgment applications are presented.

What Inferences Can Be Made

Besides inference referring to information gained either as data where none existed 
or as supplemental data where sparse data existed, inference also refers to drawing 
conclusions that apply on a more universal scale. These inferences are based on statistical 
principles of sampling. For example, results from a sample that is representative of a larger 
population are used to make statements regarding that population. In expert judgment 
applications, however, such extended inference is usually not possible. For one reason, 
the information from the experts is not a random sample (or representative sample) of the 
true state of knowledge. In most cases it is not even possible to form a random sample of 
the experts used for the elicitation. Therefore, making inferences from expert information 
about the true state of the universe is not a good idea.

In most expert judgment applications, the experts’ knowledge represents the state of 
e ?:dsting or available knowledge. In that sense, inference can be made as follows: the 
suits from the experts' information can be used to draw conclusions about the existing or 

available knowledge base which may or may not represent the true state of nature. In other 
words, the inferences that can be made are not necessarily relevant to truth. Also the 
inferences that can be made are not statistically based inferences. Example 18.1 illustrates 
this distinction.

Example 18.1: Expert Judgment Inference Versus Statistical Inference
Statistical inference allows the analyst to draw conclusions from a statistically valid, 

or representative sample taken from a population which has a true value of some quantity of 
interest (parameter). The inference is made accompanied by a probability statement
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specifying the chance that the conclusion is incorrect. For example, the parameter of 
interest, P, is the probability of an earthquake scaled at 8.0 or greater at a particular 
location. There is a true value for this probability in nature based on the entire history and 
future of the earth at this location. Ideally, the analyst draws a random sample of times, n, 
throughout the planet's history and future. He counts up the number of instances that such 
an earthquake occurred, x, and estimates the true probability of such a quake by x/n. This 
estimate would be representative of the true value from a statistically valid sample.

Such an example is ridiculous in reality. The information base required is not 
available. Some information about earthquakes and potential conditions for one are 
available to the expert. His knowledge and expertise are all that is available for estimating 
the probability at this location. Suppose that existing historical data is that no evidence or 
record of an earthquake exists. That does not mean that one never happened. The expert is 
still the primary source of all the information that is available. The expert is carefully 
interviewed using the techniques in this book. The information is recorded. His final 
estimate, p, is given under sets of conditions that are plausible based upon what is known.

The expert's estimate, p, is not the same as the mythical x/n. Also, p cannot be 
interpreted as representing the true value of P, whereas x/n can be interpreted for P.

What, then, is pi The value p is representative of the only existing information 
about P. It may be the best information that will ever be available in the history of man. It 
is subject to bias, to change, and to misinterpretation. It is not a statistical estimate of the 
parameter P. It may be considered a single datum from a sample of possible estimates. 
Analysts realize that statistical inferences are virtually impossible from a sample size of 1. 
However, p is relevant, useful information.

How is p useful if statistical inference is not possible? It is representative of the 
state of knowledge. It is information that was not previously known. It can be interpreted 
in conjunction with any caveats from conditions and assumptions that the expert made.

■

This limited ability to infer is bothersome to many analysts who are accustomed to 
drawing statistically based inferences about a population (the truth) from a statistical sample 
(the data). This limited ability to infer is also what leads many analysts and many experts 
to believe that expert information is not valid data and cannot be used. One of the 
misconceptions listed in chapter 2 deals with the issue of how to interpret expert judgment 
as valid data. In that section, the foundation for the entire book was laid with the claim that 
information from experts (data) was like any other data in that it must be carefully gathered, 
analyzed, and interpreted. Example 18.2 illustrates how an expert judgment application is 
identical to an experiment regarding the treatment of the data.

Example 18.2: Expert Judgment Data Versus Experimental Data
A chemist is asked to determine the composition of a chemical mixture. He 

measures the easily identifiable elements and compounds first to determine composition. 
To do this, he uses his calibration standards, instruments, and test procedures. He then 
tackles the more difficult remaining items. He eliminates some and suspects some as being 
present based on his own experience of how elements and compounds could mix together. 
He completes the analysis and presents the results.
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Most scientists, analysts, and laymen would consider the chemist's results as good 
experimental data. They would even make inferences (statistical ones) based upon the 
results. Is this a good idea? What are the problems with the above experimental data that 
affect the inference process? In answering these questions, it turns out that this 
experimental data is no better than any expert information. Here's why:

First, the chemist used his judgment and expertise to make decisions about which 
tests he would use. He went so far as to decide, based on his own experience, which items 
were likely to be there or not. These are the conditions and assumptions that the chemist 
made which are parallel to conditions and assumptions any expert makes in solving a 
problem.

Second, the instruments used have measurement problems. Calibration, standards 
used, and operator errors are commonplace sources of bias and lack of precision. The data 
recorded from these are not the ideal samples required to make statistically based inference. 
These biases and lack of representativeness of the data are parallel to the same things 
discussed in this book in expert data elicitation (see particularly Pitfalls in chapter 2).

Why then is the chemist's experimental data more acceptable than data from an 
expert's answer to a question? From this experimental description, the inferences possible 
for the chemist's data are no better than those for expert data. From a statistical 
perspective, neither data can be used for statistically based inference. However, both can 
be used to reflect the best state of knowledge available.

The above illustrations indicate a philosophy about data interpretation and inference. 
However, such a philosophy is necessary for expert judgment applications. It provides a 
logical and defensible (if required) structure for the need and use of expert information.

Improving the Inference Process

It is highly desirable to do everything possible to accurately elicit and analyze the 
information from the experts to get the best existing knowledge. Because inference stems 
from the interpretation of the results, careful interpretation becomes important. Care and 
improvements can be made from the design aspects of the elicitation and from the analyses 
done.

Design-Based Improvements

Proper experimental design is always the key to obtaining the most and best 
information for making inferences. This statement is true in experimental and expert 
judgment applications. The ways of accomplishing design-based improvements are given 
in the book and will be referred to by chapter numbers for this discussion. Basically, 
proper design includes coordinating elicitation with analysis methods by (1) structuring the 
questions and response modes, (2) monitoring granularity, (3) recording all information 
from the experts (conditions), and (4) performing quantification.
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Synergism of elicitation and analysis
The interrelationship between parts II and HI of this book may not appear obvious 

to the reader. However, the elicitation (part II) is designed with a focus on the experts, and 
the analysis (part HI) is designed with a focus on the elicitation.

There are many different ways of analyzing expert answer data (usually quantitative 
in structure). The methods in part HI are chosen specifically to match with the elicitation 
methods in part II. The choices made by the authors are mainly based on personal 
experiences while working with both parts, the elicitation and the analysis.

Too often these are not connected (if at all) until the elicitation is completed. The 
process of inference then becomes pure guesswork. The analyst is unfamiliar with the 
ways that the data were gathered or with the forms in which it was gathered. Also, the 
analyst probably has his own favorite methods that will more likely than not require 
assumptions or model formations that are not appropriate to the data or to the way it was 
gathered. This situation results in poor-to-bad inferences. This situation also contributes 
to the bad reputation of expert judgment data.

If the analyst is not the data gatherer, he should at least be involved with the person 
gathering the data at all stages of the project, from designing the questions (chapters 4 and 
5), to selecting the elicitation components and tailoring the elicitation (chapters 6 and 7), to 
pilot testing and final elicitation (chapters 9 and 10). Decisions made by the data gatherer 
concerning the methods and components of the elicitation can provide important 
information on the problem to the analyst. Also, the analyst needs to know what form the 
gathered information will be in for the analysis. The analyst can help by avoiding during 
the elicitation some of the problems involving granularity, quantification, and 
conditionality.

Granularity
In the analysis part of expert judgment applications, monitoring the level of detail 

reflected in the information at each analysis step has been emphasized. Granularity can 
change within or between the analysis steps without notice. Granularity can also change in 
the elicitation. The best defense against changing granularity is proper recording of the 
elicitation to monitor such changes.

Inferences are made at the granularity that is the most general for all the steps. 
Therefore, it may not be possible to improve inferences made by monitoring granularity; 
however, inferences may be erroneous if proper attention is denied.

In the data-gathering and data-base-formation steps, it is likely that the data base 
(chapters 12 and 13) contains variables (information) with different granularities. The 
qualitative information can be thought of as more general for analysis purposes than the 
quantitative. The quantitative variables can be categories or ranks; categories being more 
general than ranks and both being more general than variables measured on a continuous 
numerical scale. In the model formation step (chapter 15), variables of differing 
granularities tend to be modeled together. Example 18.3 illustrates how the granularity 
should be monitored and what inferences can be made as a result of different granularities.
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Example 18.3: Inference and Granularity
In an expert judgment application, six experts were asked to provide estimates of 

how well experimental results matched results from a simulation code. The data base 
included variables on problem-solving features. Three variables indicated assumptions 
used, two indicated cues used, and one related to a definition. The data are as follows:

Exoert 4_i 4.2 Cl £2 ANSW

1 1 13 2 N B 0.25
2 1 20 2 Y A 0.10
3 2 33 1 Y C 1.00
4 3 27 2 Y A 0.50
5 3 25 1 N B 0.45
6 2 30 2 Y B 0.95

The variables A\ and D\ are category variables where the numbers 1, 2, and 3 and the 
letters A, B, and C refer to qualitative descriptions. Variable Ci is a rank variable where 
the values 1 and 2 mean that 2 is twice as important as 1. Variable C2 is also categorical 
where Y is yes and N is no indicating whether or not a certain cue was used. Variable A2 
is a numerical variable indicating the values assumed for a parameter important to the 
problem. The answers are on a continuous linear scale describing degree of agreement 
from 0.0 to 1.0 in value.

Using regression analysis (GLM), the single best predictor variable for ANSWER 
is A2. If these 6 experts were a representative sample of all experts, then statistical 
inference about A2 would be possible. However, no such claim can be made, and only the 
more limited inference is possible: A 2 may be an important variable for determining 
answers for these 6 experts. It also turns out that the variables £>1, Ci and C2 are 
significant variables in this regression. Their degree of importance as predictor variables is 
according to the order listed, D\ being the most.

This set of 4 predictors from a regression analysis represents a mixture of 
granularities. With such a mixture and the lack of a statistically valid sample, only a limited 
inference is possible. In this case, the information gained is merely that these 4 variables 
are possible conditions for determining the answers. They are not to be used as predictors 
for other answers as would be the inference made with significant variables from a 
regression analysis. As possible conditional variables, they can be considered for use in 
aggregation; they can be used to answer the important question: Are the experts all solving 
the same problem?

Example 18.3, illustrated granularity problems with modeling. The aggregation 
step (chapter 16) has similar problems. However, aggregation involves combining final 
answers or answer distributions by some weighting scheme, and usually these answers are 
already at the same granularity. The same granularity might not hold if different 
aggregation methods were used on the same data set. Therefore, granularity must still be 
monitored.
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In characterizing uncertainties (chapter 17), granularity can become a severe 
problem because the uncertainties may represent one level and the answers represent 
another. Also, the uncertainties from different experts may represent different granularities 
as illustrated in example 18.4.

Example 18.4: Granularity and Uncertainty Characterization
Suppose that the six experts in example 18.3 provided the answers given above and 

provided uncertainty estimates as follows:

Expert Answer Uncertainties Expert's Definition

1 0.25 (0.10, 0.50) Range
2 0.10 (0.00, 0.20) 5th and 95th percentiles
3 1.00 (0.90, 1.00) Range
4 0.50 (0.25, 0.75) 5th and 95th percentiles
5 0.45 (0.00, 1.00) Absolute min. and max.
6 0.95 (0.90, 1.00) Range

These uncertainty estimates do not have matching definitions (or matching 
granularities). The percentile definitions from experts 2 and 4 will not represent a 90% 
coverage interval. The definitions might represent more of a 30 to 40% coverage interval. 
The ranges from experts 1, 3, and 6 have no obvious interpretation. The values from 
expert 5 appear to be useless. However, if expert 5 claims that his range really represents 
his assessment of the true uncertainty, then those values are valid uncertainty 
characterizations even though they cover the entire possible range of the answers.

A common, but more general, definition for the uncertainty values is needed for all 
experts. One such solution would be to assume uniform distributions for each expert using 
the ranges provided as the upper and lower limits for the uniform distributions. Monte 
Carlo sampling from these uniform distributions provides a useful uncertainty analysis 
method in this case. However, the results of such an analysis would reinforce what is 
already evident from the ranges of values provided by the experts. The uncertainty is large 
enough to cover the entire possible range of values for the answer. In such a case, the 
granularity problem is overshadowed by the large uncertainty.

Modeling, aggregation, and uncertainty analyses are important for making 
inferences in ways other than those regarding granularity. These are discussed in another 
section below.

Quantification
Granularity is actually a part of quantification as it is broadly defined in this book. 

Quantification is defined as transformations from one type of data to another rather than as 
the traditional definition of transforming qualitative information to numbers. Qualitative 
information is considered more general than quantitative; ranks (or integers) more general
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than (continuous) numbers; categories more general than ranks; descriptions more general 
than categories. The granularity/quantification connection affects the inference process.

In cases where data is sparse or missing for a set of variables, categories, ranks, or 
numerical values are summed or collapsed to form new variables or new categories for a 
variable. Summing or collapsing variables also changes granularity from specific to more 
general. The inferences must be made in terms of the new, more general variables and not 
in terms of the original information. An example of changing granularity is given in 
example 18.5 using one of the quantification methods, the Saaty method, which finds 
numerical weights from qualitative information.

Example 18.5: Granularity and Quantification Using Saaty's Method
An expert is asked to compare and evaluate the likelihoods of seven different 

events. By using Saaty's pairwise comparison method, the relative evaluations (a general 
granularity) using the Saaty scale follow:

versus 2-—— 0.50 3 versus 4——2.00
versus 3-—— 0.33 3 versus 5——3.00
versus 4-—— 1.00 3 versus 6——3.00
versus 5— — 2.00 3 versus 7—-—3.00
versus 6-— — 3.00
versus 7—— 2.70 4 versus 5——2.00

4 versus 6——3.00
versus 3— — 0.50 4 versus 7——2.00
versus 4—— 3.00
versus 5-—— 4.00 5 versus 6——2.00
versus 6—— 6.00 5 versus 7—-—1.00
versus 7 -—— 5.00

6 versus 7——0.50

The resulting relative weights are

(0.13, 0.27, 0.28, 0.13, 0.07, 0.05, 0.07) .

Even though the weights are numerical, the interpretation must be made on a relative basis. 
For example, events 5 and 7 are not half as likely as events 1 and 4, nor are they one- 
fourth as likely as events 2 and 3. The only interpretation is that possible for the 7 events. 
The events judged most likely are 2 and 3, and the events judged least likely are 5, 6, and
7.

Conditionality
The concept of conditionality refers to the fact that the answers given by the experts 

are conditioned on many aspects of the problem, the elicitation, and the experts themselves. 
In chapters 12 and 13, analysis techniques are discussed that emphasize how to search for 
these conditions. Here their importance is in interpreting the answers.
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The major focus for investigating conditions is to guarantee that the experts are all 
solving the same problem and that the problem being solved is indeed the one being asked. 
If conditions relating to problem-solving features such as definitions, assumptions, and 
heuristics used by the experts are found to have an effect on the answers given, then these 
features must be examined to determine if they somehow change the problem.

It is also recommended that some background information on the experts be 
gathered as possible sources for influential conditions. It has long been speculated that 
experts' backgrounds are a source of correlation among experts (Baecher 1979); however, 
recent studies (Booker and Meyer 1988a , Meyer and Booker 1987b) have indicated that 
evidence for influential background features is lacking.

Conditions can be found in the design features of the elicitation and in the 
environment. Questions must be carefully formulated (chapter 5) and the elicitation 
carefully implemented (chapter 8, 9, and 10) to minimize biases and other conditions that 
can affect the answers given by the experts. Other, uncontrollable conditions, such as the 
expert's mood, the room being uncomfortable, a disturbing recent event, should be noted 
and documented as possible important conditions.

Recording and monitoring conditions is essential in order to determine if they are 
important. It is also vital that the analyst and data gatherer not be responsible for inducing 
any additional conditions by the way they analyze and elicit the data. This warning 
includes the inference process. The analyst can impose his own views to the extent that he 
interprets the data in the way that he desires. Conditions that might not really be important 
can be used as excuses to disregard data that do not fit preconceived ideas. Even 
conditions that might be important can be falsely used for this purpose.

There are other ways in which inferences can be erroneously made by placing too 
much importance on conditions. While it is important not to ignore conditions, it is also 
important not to use them as excuses, cover-ups, or justifications. Conditions found to be 
significant or important may only be masks or indirect effects for some other effect that 
cannot be monitored. Conditions found to be important must also be relevant to the 
problem. Only then are interpretations made with conditions given as caveats or qualifiers.

The basic philosophy regarding possible effects from conditions is threefold. First, 
proper elicitation and analysis is designed to reduce any effects induced by the data gatherer 
and analyst. Second, the data gatherer and analyst should control conditions that are 
controllable, and they should record information on any conditions that are observable. 
Third, significant and relevant conditions are stated as part of the conclusions and as 
reflecting the inferences made.

Analysis-Based Improvements

The methods chosen in the analysis section reflect a conservative, cautious 
interpretation of the results. This caution is borrowed from the reactor design and 
probabilistic risk analysis communities. The use of redundancy and cross validation plays 
a major role in the analysis and design. In expert judgment analyses, this philosophy 
means that more than one technique is used to determine the results. The consistency of 
results is therefore validated. A simple way to cross validate is to use simulation 
techniques. Simulation has the added advantage of not relying on assumed distributions or 
on methods based on those assumptions.
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Cross validation and redundancy
There are multiple ways of analyzing a data set. Many of the methods presented in 

part III of this book are similar and produce similar types of results that can be used 
together to validate each other or to provide redundancy of analyses.

A regression (GLM) analysis provides information on how condition variables 
affect the answers. Correlation also determines variable relationships. If two variables are 
significantly correlated, they will usually be significant terms in a regression model.

The various multivariate techniques are also interrelated. If a conditional (ancillary) 
variable is a good discriminator, then it will also be an effective predictor in a regression 
model. If cluster analysis reveals definite clusterings, it is possible to find a discriminating 
variable that is responsible for the clusterings. Factor analysis reveals, as can cluster 
analysis and correlation analysis, how the different variables are related to each other.

Therefore, the analyst can run different techniques and determine if the results are 
consistent. If the results are consistent, that lends strength to the conclusions. If the 
results are inconsistent, then there is either trouble with using the techniques (e.g., 
violation of the required assumptions) or trouble with the interpretations (e.g., a variable is 
not really important in determining the answers). Example 18.6 illustrates the use of 
redundant techniques.

Example 18.6: Inference Using Redundant Techniques
Ten experts are asked to answer five questions, A\ through A5. For each question, 

a general problem-solving variable, P\ through P5, was found by summing up all the 
problem-solving features for that question. Each problem-solving variable was found to be 
significant in the regression analyses done for the answers. The individual problem­
solving features and all other ancillary information (variables) were not found to be 
significant in the regressions.

Variables Ai, A3 and A4 were trimodal in structure. The three modes formed three 
clusters. Variables P\,Pt,, and P4 were found to be significant 
discriminating variables for their respective answer variables, and they 
successfully predicted the three clusters for each answer variable.

Variables A2 and A5 had no identifiable structure. A cluster analysis of all the 
variables for questions 2 and 5 indicated that A2 and P2 formed a cluster, 
and A5 and P5 formed a cluster.

Variable A1 was unimodal in structure. A correlation coefficient of A\ and Pi was 
found to be a significant value of 0.87.

Therefore, for each A/ variable, additional evidence was found to support the claim 
that the P/ variable might be important for determining A/.

Having supportive evidence for the Pj variables as conditions for the answers, it is 
now necessary to specify this in the statement of conclusions. The answers given by the 
experts are conditioned on their general problem-solving processes (not specific problem­
solving features). For aggregation, it would be desirable to examine the values of the P/ 
variables for weight determinations. For inference, it would also be desirable to use the P/ 
variables to determine whether or not all the experts were solving the same (the given) 
problem.
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Suppose the additional evidence was not so clear. If the A2, Pi and A§, P5 
variables did not cluster, then the conditionality would not necessarily apply for these 
questions. Other techniques would have to be tried. If none of the other techniques 
provided evidence of variable relationships between the A variables and the P variables, 
then the conditionality would be suspect These potential conditional variables would have 
little or no importance for aggregation and interpretive purposes.

Because the inference process itself is weak in expert judgment applications, there 
must be strong supportive evidence for conditionality. Redundancy or cross validation 
helps to determine the degree of strength.

Simulation
Cross validation and redundancy checks can be provided by using simulation. 

There are at least three good reasons for using simulation to improve the inference 
capability in expert judgment applications: (1) sample sizes are typically small (less than 5 
or 10 experts); (2) distributional forms for the answers do not follow convenient forms 
(such as the normal) and are usually multimodal or distribution mixtures; (3) estimations 
for variances, percentiles, or central measures (such as the median) are desired for 
inference but are difficult to obtain without specified distributional forms. At the very least, 
simulation allows the analyst the freedom to explore and check things in an empirical (data- 
based) manner.

It is difficult to make statistical inferences with small sample sizes. Most statistical 
techniques rely on asymptotic or theoretic results that require sample sizes of 30 or more. 
Designing for samples of 30 or more would be totally impractical in expert judgment 
applications. For one reason, the elicitation would be too time consuming and expensive. 
For another reason, there may not be 30 experts in existence.

It is equally difficult to make statistical inferences without specified distributional 
forms. Many statistical techniques require distributional forms such as normality. This is 
true of many of the multivariate analysis techniques such as discriminant analysis. Other 
techniques such as regression have less strict distributional requirements, requiring only 
that the residual or model errors be normal rather than the data itself.

It has been emphasized that all estimators (such as the mean or median) should be 
accompanied by variance estimates or interval (e.g., percentile values) estimates. 
Providing such estimates is part of the inference process and part of establishing the 
uncertainty. A single-valued estimator does not provide any information about the 
variability or uncertainty surrounding it. A single-valued estimator implies a precision in 
the results that is not present. A variance or interval estimator conveys the appropriate state 
of uncertainty and variability. It is difficult to estimate variances of estimators such as the 
median without distributional forms. In some cases it is difficult even with distributional 
forms because the formulas are not tractable.

Simulation can provide solutions to the difficulties from small sample sizes and 
required assumptions. It allows the analyst to make the most of a small sample size using 
such techniques as the bootstrap. Reliance upon asymptotic or theoretic results is not 
necessary, and simulation provides the way of obtaining estimates for variances and other 
quantities without theory, distributional assumptions, or difficult calculations.
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Inferences with Modeling, Aggregation and 
Uncertainties

The relationship between the inference process and the results obtained from 
modeling (chapter 15), aggregation (chapter 16), and uncertainty (chapter 17) was 
introduced in the discussion of granularity above. These three steps in part HI relate to the 
inference process in other ways.

The models in chapter 15 are used to identify relationships between the conditional 
(ancillary) variables and the answer variables. The major category of these models are the 
GLMs, which are the backbone of statistical modeling techniques. Other conditional 
models were also suggested that did not have a strong statistical basis. The purpose of 
both types of models is not to identify functional relationships among the variables to be 
used for prediction purposes; it is not even to specify model functions (equations); but the 
purpose is only to provide clues about variable relationships that could be verified by using 
other procedures (or other procedure's results could be verified using these models). The 
reason for such a limited purpose is that model assumptions may be lacking.

The purpose of aggregation is to formulate the final results as a combined estimate 
with a variance or as a distribution with central values (mean or median) and dispersion 
measures (variance or 5th and 95th percentiles). These final estimates or distributions are 
interpreted as the cumulative knowledge for the parameter of interest (the answer to the 
question). This interpretation is part of the inference process. These results do not have a 
statistical interpretation that relates the estimates to the true value. The dispersion estimates 
do have a valid interpretation relating to the uncertainty in the state of existing knowledge, 
and a conclusion can be made using the uncertainty characterization. However, the ideal 
goal of aggregation to form an estimate or distribution that accurately reflects the truth is not 
realizable. One could argue that this unrealistic goal negates the reason for aggregation; 
however, aggregation does provide a convenient summary or combination of all the 
available information.

As mentioned in the simulation section above, uncertainties are an integral part of 
the inference process. In representing or characterizing uncertainties, their existence is 
acknowledged as well as estimated. Drawing conclusions without accounting for 
uncertainties makes the information appear more precise than is true (bad inference). As 
emphasized in chapter 17, uncertainties are an important part of every experiment or 
application and cannot be ignored, especially when it is time to interpret the results.

Final Comments
With only weak inferences possible, a natural question becomes: Why take such 

care in gathering and analyzing the data? The answer to this was stated in Part I of the 
book: Expert judgment data is like any other data. It must be carefully gathered, analyzed, 
and interpreted. Careful interpretation, in this case, unfortunately translates to limited 
inferences. Trying to do otherwise violates the true content of the information gathered. A 
cliche is applicable here: You can't squeeze blood out of a turnip. This means that one 
cannot get better information than that which exists.
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Other cliches and phrases are applicable to the philosophy of this book and to the 
inference process:

1. Rome wasn't built in a day. This means that more research is needed and 
that this book represents only a start in the research and efforts needed to 
resolve the many problems in expert judgment elicitation and analysis. Better 
inference will be possible with better techniques and understanding of the expert 
information.

2. Nothing good comes easily. This means that all the steps and suggestions 
offered here may seem tedious and unnecessary, but to obtain good quality data 
takes time and effort. Even limited inferences can only be made if a good job is 
done.

3. Take it with a grain of salt. This means that the results are accompanied 
by a list of caveats and conditions, and interpretation must include these.

4. Keep it simple. The methods presented are designed to be feasible and 
usable by data gatherers and analysts. Many other techniques exist, and some 
of them are referenced. No evidence exists that the more complex ones omitted 
are better than the simple ones offered. In fact, many of the more complex 
methods do not perform as well as the simpler ones do.

In conclusion, the inference process may be disappointing in that the results and 
conclusions available do not extend to the truth as is done in statistical inference. 
However, information has been gained that was previously unknown, and that is the sole 
reason for eliciting and analyzing expert judgment.
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Appendices
Appendix A--SAATY

program saaty 
c
c Uses Saaty's own FORTRAN subroutine for calculating the weights 
c for a single level (matrix) (Saaty 1982). For more than 1 level 
c weights can be calculated using this code for each matrix and then 
c combined either by hand calculation or by modifying this code, 
c
c The input to this code can be done on the terminal or 
c by contructing input file SAATY.IN which has: 
c line 1: nfctr = number of experts (factors), maximum =10. 
c line 2: contains (nfactr-1) pairwise comparisons in f5.2 format, 
c comparing item 1 with items 2-nfct using scales **
c line 3: contains (nfctr-2) pariwise comparisons in f5.2 format, 
c comparing item 2 with items 3-nfactr.
c etc.
c line (nfctr-1): contains 1 pairwise comparison in f5.2 format, 
c comparing the last two items [item nfctr to item (nfctr-1)].
c
c **Values for pairwise comparisons can be taken from: 
c l)the Saaty integer scales: values = 2-9 
c where the first of the pair is better or more likely 
c than the second;
c value = 1 where the pair is identical;
c values = 1/2-1/9 where the first of the pair is worse or 

less likely than the second.
2)the pairwise comparisons can be qualitative, using 

c a triplet of choices (better, same, worse) rather than the
c numerical scale, the values for this triplet are:
c (2.72, 1.00, 0.37), respectively,
c 
c

dimension w(60)
open (unit=ll,file='saaty.in',status=,old') 
open (unit=22,file='saaty.out',status=,new')
write(*,'("To use input file SAATY.IN, type 1 else type 0: u,\)') 
read(*,*) infile 
if (infile.eq.l) then 

read(ll,*) nfctr 
go to 61 

endif

write (*,'("Enter the number of factors (up to 10): "A)') 
read (*,*) nfctr

61 continue
call mtxin(w,nfctr)

c write (*,52) nfctr,(w(i),i=l,nfctr)
52 format('Normalized weights for the',i3,' factors:',/,lOflO.6)
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stop
end

c
c
c

subroutine mtxin(w,nfctr)
dimension c(60,60),w(60),cw(60),w2(60),rct(10) 
data rct/.O,.0,.58,.90,1.12,1.24,1.32,1.41,1.45,1.49/

16 continue
if (infile.eq.0) write (*,9)
nfctrl=nfctr-l
do 10 i=l,nfctrl

2 continue
if(infile.eq.0)write (*,3) i 
il=i+l
if(infile.eq.0)read (*,4) (c(i,j),j=il,nfctr) 
if(infile.eq.l)read(ll,4) (c(i,j),j=il,nfctr) 
if(infile.eq.0)write (*,5) i, (c(i,j),j=il,nfctr) 
if(infile.eq.l)write (22,5) i, (c(i,j),j=il,nfctr) 
if(infile.eq.0) write (*,1)

4 format(10f5.2)
5 format('Row',i3, 1 is:',10f5.2)
1 formate If not correct type 9, if correct hit return.')
3 format(/,'Enter row',i3,' (use f5.2 format): ')
9 format(/,'The upper triangular part of the matrix:')

18 format(fl.0)
if(infile.eq.l) yn=4 
if(infile.eq.0)read (*,18) yn 
if(yn.gt. 6) go to 2 
do 10 j=il,nfctr 
if(c(i,j).lt.0.) go to 6 
if(c(i,j).ge.0.) go to 8

6 c(i, j)=-(1.0/c(i,j))
8 c(j,i)=1.0/c(i,j)

10 continue

do 14 i=l,nfctr 
14 c (i, i) =2. 

ts=0.
do 24 i=l,nfctr 
s=0.
do 22 j=l,nfctr 

22 s=s+c(i,j) 
w2(i)=s 

24 ts=ts+s
do 26 i=l,nfctr

26 w2(i)=w2(i)/ts 
k=0

27 ts=0. 
k=k+l
do 30 i=l,nfctr 
s=0.
do 28 j=l,nfctr

28 s=s+c(i,j)*w2(j) 
w (i) =s

30 ts=ts+s 
d=0.
do 38 i=l,nfctr
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w(i)=w(i) /ts 
38 d=d+abs (w (i) -w2 (i)) 

if(k.gt.10000) go to 42 
if(d.lt.l.e-15) go to 42 
do 37 i=l,60 

37 w2(i)=w(i) 
go to 27 

42 continue
if(infile.eq.0) write(*,47) 
if(infile.eq.l) write(22,47)

47 format(/,'The final matrix is:') 
do 40 i=l,nfctr
c(i,i)=l
if(infile.eq.l) write (22,41) (c(i,j),j=l,nfctr)

40 if(infile.eq.0) write (*,41) (c(i,j),j=l,nfctr)
41 format(1Of6.3) 

do 46 i=l,nfctr 
s=0.
do 44 j=l,nfctr 

44 s=s+c (i, j) *w(j) 
cw (i) =s 

46 continue 
s=0.
do 48 i=l,nfctr

48 s=s+cw(i)/w(i) 
ymax=s/nfctr 
ci=0.
cr=0.
if(nfctr.le.l) go to 49 
ci=(ymax-nfctr)/(nfctr-1) 
if(nfctr.le.2) go to 49 
cr=ci/rct(nfctr)

49 continue
if(infile.eq.0) write (*,50) (w(i),i=l,nfctr) 
if(infile.eq.l) write (22,50) (w(i),i=l,nfctr)

50 format(/,'Normalized weights=', (10f6.3)) 
if(infile.eq.0)write (*,52) ymax,ci,cr 
if(infile.eq.l)write (22,52) ymax,ci,cr

52 formate principle eigenvalue, Imax =',f6.3,/,
*'Consistency index (deviation of Imax from n) =',f6.3,
* /,' consistency ratio (should be < .10) =',f6.3) 
if(infile.eq.0) write (*,54)

54 format(/,'If you want to redo this matrix,',
* 'type 9, else hit return:') 
if(infile.eq.0)read (*,18) yn 
if(yn.ge.S) go to 16
return
end
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Appendix B--MCBETA

program mcbeta 
c
c Monte Carlo uncertainty analysis code 
c for beta distributions,
c
c Important!!!!!!!!!!!! user must change the function for 
c combining the set of experts, events, or sequence as:
C FUNCTION EVAL (PR)
c where pr is array of probabilities of primary events, 
c and the function is aggregation estimator for all the betas, 
c
c Input is supplied using file MCBETA.IN, as unit 11, 
c see format below, 
c Output is sent to two files:
c MCSTATS.OUT which contains the Monte Carlo results
c BET.OUT which contains the fitted beta distributions results,
c MCSTATS.OUT is unit 22 and BET.OUT is unit 33
c
c Betas are fit with two supplied estimates either as: 
c 1) 2 percentile estimates and levels (e.g. 0.05 & 0.95)
c 2) 1 percentile estimate and level and a mean value,
c

parameter (nbmax=500,klmax=100,ndmax=100,nhmax=10000,nhpl=nhmax+l) 
dimension ppbig(10000)
common/primary/pr(nbmax),param(klmax,ndmax,2)
common/options/nb,nruns
coiranon/utility/dumy(nhpl)
save /utility/, /options/, /primary/
open (unit=22,file='mcstats.out',status='new')
call input
nout=0
do 10 n=l,nruns 

5 call pgen
prob=eval(pr)
if (prob.ge.0..and.prob.lt.1.01) go to 8 
nout=nout+l
write (22,1222) n,prob 
go to 5 

8 continue
ppbig(n) = prob 

10 continue
call finish (ppbig,nruns) 
write(22,1000) nout

1000 format(//' Simulation generated',i5,
* ' values not in (0,1)')

1222 formate n=',i6, ' prob=',el6.8) 
close (unit=22) 
stop 
end

subroutine input

Read parameters from file 'MCBETA.IN'.
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c
c
c
c
c
c
c
c
c
c
c
c
c

line description

1 nb = number of primary events (le nbmax)
nr = number of monte carlo runs, max = 10000

2 iibet = 2 for 2 percentiles, = 1 for 1 percentile & mean
next nb lines free format 

two percentiles for the beta case: 
upper estimate, lower estimate, 
upper level (.95), lower level (.05) 
or
mean, percentile value, percentile level.

parameter (nbmax=50 0,klmax=l00,ndmax=l00) 
common/primary/pr (nbmax), param (klmax, ndmax, 2) 
common/options/nb,nruns 
save /options/,/primary/ 
dimension t(2)
open (unit^ljfile^mcbeta.in'jStatus^old1)
open (unit=33,file=1bet.out1, status=1 new')
read (11,*) nb,nr
read(ll,*) iibet
nruns=nr
do 10 i=l,nb

c Subroutines twoper & meanper find the beta parameters, xO fnO 
c

if(iibet.eq.2) call twoper(xO,fnO) 
if(iibet.eq. 1) call meanper(xO,fnO) 
t(l)=x0 
t(2)=fn0

param(i,l,l)=t(1) 
param (i, l,2)=t(2)

10 continue
close (unit=ll) 
close (unit=33) 
return 
end

subroutine pgen
parameter (nbmax=500,klmax=100,ndmax=100) 
common/primary/pr(nbmax),param (klmax, ndmax,2) 
common/options/nb,nruns 
common/utility/p(klmax,ndmax) 
save /primary/, /options/, /utility/ 
do 100 n=l,nb 
prml=param(n, 1,1) 
prm2=param(n,1,2)-prml 

82 if (prml. gt. 1.0) gxl=gt (prml) 
if(prml.eq.1.0) gxl=gs(l.) 
if(prml.It.1.0) call gl(prml,gxl) 
if(prm2.gt.1.0) gx2=gt(prm2) 
if(prm2.eq.l.O) gx2=gs(l.) 
if(prm2.lt.1.0) call gl(prm2,gx2) 
p(n, l)=gxl/(gxl+gx2) 
if(p(n,l).gt.1.0) go to 82
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100 continue
do 200 i=l,nb 

200 pr(i)=p(i,l) 
return 
end 

c

C
c FUNCTION EVAL: must be changed for each new problem 
c

c
function eval(x) 
dimension y(150),x(500) 
ymedian = (x(l) + x(2) +x(3))/3.0 
eval = ymedian 
return 
end 

c 
c 
c

function gs(alp) 
c
c Routine for generating gamma variates with 
c shape parameter less than 1. )
c Ahrens, J. H. and Dieter, U. (1974) 
c "Computer Methods for Sampling from Gamma, 
c Beta, Poisson, and Binomial Distributions," 
c Computing, vol 12, p.223-246. 
c

data ex/2.718281828459045/ 
bet=l.0

1 ul=rnd(0.)
b=(ex+alp)/ex 
p=b*ul
if (p.gt.1.) go to 3

2 x=exp(alog(p)/alp) 
u2=rnd(0.)
if (u2.gt.exp(-x)) go to 1 
go to 10

3 x=-alog((b-p)/alp) 
u3=rnd(0.)
if (alog(u3).gt.(alp-1.)*alog(x)) go to 1 

10 gs=x*bet
return 
end 

c 
c 
c

subroutine twoper(zpar,znpar) 
c
c This program computes the parameters of a beta distribution 
c given two percentiles of the distribution 
c
c The following values are to be read in from MCBETA.IN: 
c r2=upper percentile estimate
c r3=lower percentile estimate
c y=percentile level of r2 (e.g. .95)
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c w=percentile level of r3 (e.g. .05) 
c
c The followign values are calculated as the beta parameters 
c zpar=the value of xO in single precision 
c znpar=the value of nO in single precision 
c

implicit real*8(a-h, o-y) 
common/per2sub/n,int, ifin 
save /per2sub/ 
read(ll,*)r2,r3,y,w 
al = .0001 
bl = 1000. 
n = 0 
int=0 
ifin = 0

30 call perint(an,bn, n)
call betasub(an,bn,al,bl, r2,r3,y,w,ppar,xnpar) 
if(ifin.ge.l)go to 20 
if(int.gt.2) go to 40 
if(int.ge.l) go to 30

40 write(*,41)
41 formate parameter value is greater than 100000.' )
20 continue

zpar=ppar
znpar=xnpar
return
end

c
c
c

subroutine betasub(an,bn,al,bl,r2,r3,y,w,ppar,xnpar) 
implicit real*8(a-h,o-y) 
common/per2sub/n,int, ifin 
save /per2sub/ 

c
c Prints to output file for beta information, BET.OUT 
c

write(33,31)
31 formate RESULTS FOR THIS BETA DISTRIBUTION:',/,/) 

write(33,33) r2,y,r3,w
33 formate upper percentile= ',fl2.6, ' level=', f!2.6,/,

*' lower percentile=', fl2.6, ' level=',fl2.6) 
x0=betpar(al,bl,r2,an,y) 
ax= dbti(r3,an,xO) 
xl = betpar(al,bl,r2,bn,y) 
bx = dbti(r3,bn,xl)

15 cn = (an + bn)/2.0
x2 = betpar(al,bl,r2,cn,y) 
cx = dbti(r3,cn,x2) 
if(cx-w) 50,60,60

50 bn = cn 
go to 70

60 an = cn
70 dn = bn - an

if(dn .It. 10e-10) go to 80 
go to 15

80 ppar = (an + bn)/2. 
qpar = x2
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c
c
c

c
c
c

30

20

35

91

90

98

85

95

96 
25

prob = dbti(r2,ppar,qpar) 
diff = abs(prob-y) - .0001 
if(diff) 30,20,20 
prob = dbti(r3,ppar,qpar) 
diff = abs(prob-w) - .0001 
if(diff)35,20,20
int = int+1 
go to 25
xnpar = ppar + qpar
bmean = ppar/xnpar
ifin = ifin + 1
formate ',a4,/,a80)
write(33,90) ppar,qpar,xnpar
format(5x,'p = xO = ',fl2.6,5x,'q = ',fl2.6,5x,' nO = ',fl2.6/)
write(33,98) bmean
format(2x,'the mean of the prior is ',fl2.8) 
var=(bmean*(1-bmean))/(xnpar+1.) 
std=var**.5 
write(33,85)var, std
format(2x,,variance=',el4.6, ' std. dev. = ',el4.6/) 
prob=dbti(r2,ppar,qpar) 
write(33,95) prob
format(2x,'the upper percentile probability is ',fl6.13) 
prob = dbti(r3,ppar,qpar) 
write(33,96) prob
format(2x,'the lower percentile probability is ',fl6.13,//)
return
end

function betpar(al,bl,r2,an,y) 
implicit real*8(a-h,o-y) 
a = al 
b = bl

10 c = (a + b)/2.0 
x = dbti(r2,an, c) 
if (x-y) 20,30,30 

30 b = c 
go to 40 

20 a = c 
40 d = b-a

if (d.It.10e-10) go to 50 
go to 10

50 betpar = (a + b)/2.0 
return 
end

subroutine perint(an,bn,n) 
n = n+1
go to(10,20,30) n 

10 an=.0001 
bn=1000. 
go to 40 

20 an=1000. 
bn=10000.
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go to 40
30 an=10000. 

bn=100000.
40 return 

end 
c 
c 
c

subroutine meeinper (zO, znO) 
c
c This program computes the parameters of a beta 
c distribution given the mean and one percentile 
c of the distribution 
c
c The following values are read in from MCBETA.IN: 
c mean = mean
c perc = percentile
c prob = percentile level,
c
c The following values are calculated: 
c zO = the value of xO in single precision
c zn0= the value of nO in single precision
c

implicit real*8(a-h, o-y) 
common/meansub/mean, perc, prob, n, int 
save /meansub/
read(ll,*) mean, perc, prob 
n = 0 
int = 0

30 call parint(a,b,n)
if (mean.It.perc)go to 10 
go to 20

10 rl = mean 
r2 = perc 
y = prob 
go to 38

20 rl = 1. - mean 
r2 = 1. - perc 
y = 1. - prob

38 call betsub2 (rl,r2,a,b,y,x0,fn0) 
if(int.eq.l) go to 35 
if(n.le.3)go to 30 
if(n.gt.3) go to 40 
go to 35

40 write(*,42)
42 formate parameter value is greater than 100,000.'
35 continue 

z0=x0 
zn0=fn0 
return 
end 

c 
c 
c

subroutine betsub2(rl,r2,a,b,y,x0,fn0) 
implicit real*8(a-h,o-y) 
common/meansub/mean, perc, prob, n, int
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save /meansub/ 
c
c Prints beta information to BET.OUT 
c

92 formate *,a4,/,a80)
write(33,15) rmean,perc,prob 

15 format(2x,* the given mean is ',f8.5,//
* ’ the given percentile is ',f8.5,//
* ' the given percentile level ^fS.S/) 
f nO=btpar (rl, r2, a, b, y)
xO = fnO*rl
if(rmean.It.perc)go to 30 
go to 40 

30 p = xO
q = fnO - xO 
go to 50 

40 q = xO
p = fnO - xO 
r2 = perc 
xO = p

50 prb = dbti(r2,p,q)
diff = dabs(prb-prob) - .00001 
if(diff.ge.0.) go to 85 
int = int + 1 
write(33,60) fnO, xO

60 format(2x,' nO = ',fl2.6,' xO = ', fl2.6/)
write(33,20) r2,prb

20 format(/2x,1 the probability at',fl2.7,' is ',fl9.17/) 
pm = dbti(rmean, p,q) 
write(33,70) rmean, pm

70 format(2x,' the probability at the mean ',f7.5/' is',fl2.8/) 
pmean = p/(p+q)
var = (pmean*(1.-pmean))/(p+q+1) 
std = var**.5 
write(33,80) pmean

80 format(2x,' the mean of the beta prior is xO/nO = ',f8.5) 
write(33,86) var,std

86 format(2x,' variance=',el4.6,' std. dev.=,,el4.6)
85 return 

end 
c 
c 
c

function btpar(rl,r2,a,b,y) 
implicit real*8(a-h,o-y) 
common/meansub/rmean,perc,prob,n,int 
save /meansub/

10 c = (a + b)/2.0 
x=c*rl 
q=c-x
p=dbti(r2,x,q) 
if(p-y)20,30, 30 

30 b=c
go to 40 

20 a=c 
40 d=b-a

if (d .It. 1.0e-10)go to 50 
go to 10
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50 btpar=(a+b)/2.0 
return 
end 

c 
c 
c

subroutine parint(a, b, n) 
implicit real*8 (a-h,o-y) 
n = n+ 1
go to(10,20,30) n 

10 a = .0001 
b = 1000. 
go to 40 

20 a = 1000. 
b = 10000. 
go to 40 

30 a = 10000.
b = 100000.

40 return 
end 

c 
c 
c

subroutine gl(alp, x) 
c
c Finds gamma values for alpha less than 1.0 
c

1 ul=rnd(0.)
b=(2.718281828+alp)/2.718281828 
p=b*ul
if(p.gt.1.0) go to 3

2 x=exp(alog(p)/alp) 
u2=rnd(0.)
if(u2.gt.exp(-x)) go to 1 
return

3 x=-alog((b-p)/alp) 
u3=rnd(0.)
if(alog(u3).gt.(alp-1.)*alog(x)) go to 1
return
end
function gt (alp) 

c
c Cheng, R. C. H. and Feast, G. M. (1979) 
c "Some Simple Gamma Variate Generators," 
c Applied Statistics, vol 28, p. 290-295. 
c for alpha .gt. 0.5 
c

data aset/-l./ 
if (aset .eq. alp) go to 1 
aset = alp 
a = alp - 0.5 
b = alp / a 
c = 2.0 / a 
d = c + 2.0 
s = sqrt(alp)
hi = (0.865 + 0.064/alp) /s 
h2 = (0.4343 - 0.105/s) / s 

1 ul = rnd(0.)
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u = rnd(0.)
if(ul.le.O. .or. ul.ge.l.)go to 1 
if(u.le.O. .or. u.ge.l.)go to 1 
u2 = ul + hl*u - h2 
if (u2 .le. 0.) go to 1 
if (u2 .ge. 1) go to 1

2 w = b * (ul/u2) * (ul/u2)
if ( (c*u2-d+w+l./w) .le. 0.) go to 4

3 if ( (c*alog(u2)-alog(w)+w-l.) .ge. 0.) go to 1
4 gt = a * w 

return 
end

c
c
c

c
c
c

function rnd(idum)

Generates random uniform numbers, use 0=idum 

save p,q,m,j,nn

integer p,q,m(98) 
logical inuse
data j/40/,nn/2147483647/,p/98/, q/27/ 
data (m(k),k=l, 50)/

+1387256442, 539505633, 7126687,2115653676, 480642437,
+1403109719, 898019591,1609472695, 742049136, 964528840, 
+1774590149, 531014893,1478060509, 224730595,1413365137, 
+1415397063, 370513614,1981855272,1672294721,1559669404, 
+1992066581, 440083042,1552169384, 949029171,1848294689, 
+1014369863,1226252978, 199445637, 552539314, 101995811, 
+1795618857,1468200845, 403608434, 466262418,1783034892, 
+2125486341,1437171068, 839437811, 685760609, 311739045, 
+1876584692, 223544964, 667792106,1829604735, 887026472, 
+ 688815796,1153871680,1135467106,1975710098,1393037901/ 
data (m(k) ,k=51, 98)/

+ 330755675, 804762632, 393596594,1695657725, 50479950,
+1039358666,1885424316, 400881551, 142829986, 187416368, 
+ 821029919,1292641081, 415120294,1104581275,1258423968, 
+ 304285054, 400491932,2014625087,1619263031, 750624285, 
+1996732699, 97476312,1250544934,2145510054,1510875684,
+ 262891578, 616032534,1316668730,1500747974,2138561534, 
+ 809719156,1605036043, 510086967, 317411066, 54278455,
+2052774305, 439191668,1881943474,1397167115,2046084812, 
+ 644321591, 328615697,1004646018,1110120728,2007784487, 
+ 992677826,1756605308, 796797739/ 
if(idum)200,100,300 

100 j=j+l
if(j.gt.p)j=l 
k=j+q
if (k.gt.p)k=k-p 
m(j)=m(k) .xor.m(j) 
rnd=float(m(j))/nn 
return

200 iunit=100
201 iunit=iunit-l

inquire(unit=iunit,opened=inuse) 
if(inuse)goto 201
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open(unit=iunit,file=,rnd.str',status='unknown') 
read(iunit,*)m,j 
close(unit=iunit) 
return

300 iunit=100
301 iunit=iunit-l

incjuire (unit=iunit, opened=inuse) 
if(inuse)goto 301
open(unit=iunit,file='rnd.str', status=1unknown') 
write(iunit,*)m,j 
close(unit=iunit) 
return 
end 

c 
c 
c

double precision function dbti (x,a,b) 
c
c Incomplete beta function value for x with a, b parameters 
c calls betac and gamin — double precision function 
c

real*8 betacf,gamln,a,b,x,bt,one/zero,two 
data one,zero,two/1.d0,0.d0,2.d0/
if(x.It.zero.or.x.gt.one) print *,'bad argument x in betai' 
if(x.It.zero) x=zero 
if(x.gt.one) x=one 
if(x.eq.zero.or.x.eq.one) then 

bt=zero 
else

bt=exp (gamin (a+b) -gamin (a) -gamin (b)
* +a*dlog(x)+b*dlog(one-x))
endif
if(x.It.(a+one)/(a+b+two))then 
dbti=bt*betacf(a,b, x)/a 
return 

else
dbti=one-bt*betacf(b, a, one-x) /b 
return 

endif 
end

c
c
c

double precision function betacf(a,b,x) 
parameter(itmax=100,eps=3.d-7) 
implicit real*8 (a-h,o-z) 
data fone/l.dO/ 
am=fone 
bm=fone 
az=fone 
qab=a+b 
qap=a+fone 
qam=a-fone 
bz=fone-qab*x/qap 
do 11 m=l,itmax 
em=m
tem=em+em
d=em* (b-m) *x/ ((qam+tem) * (a+tem))

356



Program MCBeta

ap=az+d*am
bp=bz+d*bm
d=- (a+em) * (qab+em) *x/ ((a+tem) * (qap+tem))
app=ap+d*az
bpp=bp+d*bz
aold=az
am=ap/bpp
bm=bp/bpp
az=app/bpp
bz=fone
if(abs(az-aold) .lt.eps*abs(az)) go to 1 

11 continue
pause 'a or b too big, or itmax too small; Hit CR'

1 betacf=az 
return 
end 

c 
c 
c

double precision function gamin(xx) 
save cof,stp,half,fone,fpf,x, tmp,ser 
real*8 cof(6),stp,half,fone,fpf,x,tmp,ser 

data cof,stp/76.18009173d0, -86.50532033d0,24.01409822d0,
* -1.231739516d0,.120858003d-2,-.536382d-5,2.50662827465d0/
data half,fone,fpf/0.5d0,1.OdO,5.5d0/ 
x=xx-fone 
tmp=x+fpf
tmp=(x+half)*log(tmp)-tmp 
ser=fone 
do 11 j=l,6 
x=x+fone 
ser=ser+cof(j)/x 

11 continue
gamln=tmp+log(stp*ser) 
return 
end 

c 
c 
c

subroutine sort (ra,n) 
c
c Sorts an array RA of length N into ascending numerial order 
c using the Heapsort algorithm. N is input; RA is replaced 
c by its sorted rearrangement, 
c

dimension ra(n)
1 = n/2 + 1 
ir = n 

10 continue
if (1 .gt. 1) then 

1 = 1-1 
rra = ra(l) 
else
rra = ra(ir) 
ra(ir) = ra(l) 
ir = ir - 1 
if (ir .eq. 1) then 

ra(l) = rra
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return 
endif 

endif 
i = 1

j = 1 + 1 
20 continue

if (j .le. ir) then 
if (j .It. ir) then 
if (ra(j) .It. ra(j+1)) j=j+l 
endif

if (rra .It. ra(j)) then 
ra(i) = ra( j)
i = j 
j - j + j
else
j = ir + 1 
endif 

go to 20 
endif

ra(i) = rra 
go to 10 
end 

c
c sorts and outputs Monte Carlo results 
c

subroutine finish (pval,nn) 
dimension pval(10000),per(13) 
fnn=nn
i01=fnn*.010001 
i05=fnn*.050001 
il0=fnn*.100001 
i20=fnn*.200001 
i30=fnn*.300001 
i40=fnn*.400001 
i50=fnn*.500001 
i60=fnn*.600001 
i70=fnn*.700001 
i80=fnn*.800001 
i90=fnn*.900001 
i95=fnn*.950001 
i99=fnn*.990001 
ss=0.0 
sum=0.0 
do 412 i=l,nn 
sum=sum+pval(i) 
ss=ss+pval(i)**2 

412 continue
avg=sum/fnn
var=(ss-sum**2/fnn)/(fnn-1.)
stdev=sqrt(var)
call sort (pval,nn)
fmin=pval(1)
fmax=pval(nn)
per(1)=pval(iOl)
per(2)=pval(105)
per(3)=pval(ilO)
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per(4)=pval(120) 
per(5)=pval(130) 
per(6)=pval(140) 
per(7)=pval(150) 
per(8)=pval(160) 
per(9)=pval(170) 
per(10)=pval(180) 
per(ll)=pval(190) 
per(12)=pval(195) 
per(13)=pval(199)
151=150+1
fmedian=(pval(150)+pval(151))/2. 
write(22,41) nn

41 format(/,'Monte Carlo results for ',16,' samples:',/) 
write(22,42) fmin,fmax

42 formate minimum value = ',el2.6,/,' maximum value = ',el2.6) 
write(22,43) avg,var,stdev

43 formate mean = ',el2.6,/, ' variance = ',el2.6,/,
*' standard deviation = ',el2.6)
write(22,44) fmedian,(per(k), k=l,13)

44 formate median = ',el2.6,/,/,' 1st percentile = ',el2.6,
5th percentile = ',el2.6,/,' 10th percentile = ',el2.6,

',el2.6,/,
*/,
*/,
*/,
*/,
*/,
*/, 
return 
end

20th percentile 
40th percentile 
60th percentile 
80th percentile 
95th percentile

30th percentile = ',el2.6, 
= ',el2.6,/, ' 50th percentile = ',el2.6, 
= ',el2.6,/,' 70th percentile = ',el2.6, 
= ',el2.6,/,' 90th percentile = ',el2.6, 
= ',el2.6,/,' 99th percentile = ',el2.6)



Program Empirical

Appendix C-EMPIRICAL

program empirical 
c 
c
c forms empirical distribution functions for a given set 
c of percentiles for multiple experts, 
c
c uses simulation to combine weighted aggregations of these 
c distributions according to a specified weighting function 
c
c empirical cumulative distribution functions (for each expert) 
c are sampled in the simulation using lines connecting the 
c individual points of the distribution. The more percentiles 
c provided by the experts, the less influence this linear 
c approximation has on the results. A step function version 
c of this code is available from the authors, 
c
c inputs can be made directly from the terminal or through a 
c file called emp.in (on unit 52).
c outputs are on a file called emp.out (on unit 59). 
c
c emp.in file has the following lines and formats: 
c line 1 idim = no. of experts (distributions) - free format 
c line 2 iper = no. of percentiles for each distribution - free format 
c for each expert & DM do lines 3,4,5,6
c line 3 pe array = estimates of the iper percentiles - free format 
c line 4 pi array = levels (e.g. 0.95) for the percentiles - free 

format
c line 5 pmin = minimum value for the estimates - free format 
c line 6 pmax = maximum value for the estimates - free format 
c last 3 lines are:
c line 7 nn = number of simulations (e.g. 1000) - free format 
c line 8 ifun = 1 for equal weights, = 2 for unequal - free format 
c line 9 wt array = weights for experts & DM - free format 
c 
c

dimension pe(20,20), pl(20,20), fx(21), fy(21) 
dimension val(20), fxa(20,21), fya(20,21),plx(20,21) 
dimension pmin(20),pmax(20),pval(10000),per(13),wt(20) 
open (unit=59,file='emp.out',status='new') 
open (unit=52,file=,emp.in',status=,old')
write(*,'("To use input file EMP.IN, type 1; else type 0: ",\)’) 
read(*,*) ifile 
if(ifile.eq.l) go to 50

write (*,' ("Enter the sum of the experts and DM: "A)') 
read(*,*) idim
write( *,1("Enter the # of percentiles for an expert/DM: ",\)') 
read(*,*) iper 
do 10 i=l,idim 
write (*,11) iper, i

11 format ('Enter the 'AS,' percentile estimates for expert ',i3) 
read(*,*) (pe(i,j), j=l,iper)
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write (*,12) iper, i
12 format (' Enter the ',i3,' percentile levels ',
*'(e.g. .95 for 95th percentile) for expert ',i3) 
read(*,*) (pl(i,j), j=l,iper)
write(*,'("Enter the absolute minimum value possible: ",\)') 
read(*,*) pmin(i)
write(*,1("Enter the absolute maximum value possible: ",\) ') 
read(*,*) pmax(i)

10 continue
write ( *,'("Enter the number of samples for the simulation "A)') 
read(*,*) nn 
write(*,48)

48 format(/,'Specify the aggregation function to be used:') 
write (*,'("Enter 1 for equal weights, else enter 2: "A)')
read(*,*)ifun 
if(ifun.eq.2) then
write(*,'("Enter the weights for experts & DM, including Os: ")') 
do 8 i=l,idim 
write(*,7) i

7 formate weight for person ’,±2,' = ’,\) 
read(*,*) wt(i)

8 continue 
endif 
sumw=0.0 
do 6 i=l,idim 

6 sumw=sumw+wt(i) 
epsilon=0.0001
if(abs(sumw-1.0).gt.epsilon) then
write(*,'("The weights will be normalized to 1.0")') 
do 5 i=l,idim 

5 wt(i)=wt(i)/sumw 
endif
write(*,1("Output is on file EMP.OUT")') 
go to 40

50 continue
read(52,*) idim 
read(52,*) iper 
do 19 i=l,idim
read(52,*) (pe(i,j), j=l,iper) 
read(52,*) (pl(i,j), j=l,iper) 
read(52,*) pmin(i) 
read(52,*) pmax(i)

19 continue
read(52,*) nn 
read(52,*) ifun 
read(52,*) (wt(i), i=l,idim) 
sumw=0.0
epsilon = 0.0001 
do 4 i=l,idim 

4 sumw=sumw+wt(i)
if(abs(sum-1.0).gt.epsilon) then 
write(59,'("The weights are normalized to 1.0")') 
do 3 i=l,idim 

3 wt(i)=wt(i)/sumw 
endif

40 continue
write(59,13) idim, iper, nn
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Program Empirical

13 format ('Number of experts=',15,/,'Number of percentiles=',15,
*/,'Number of samples=',15)
if(ifun.eq.l) write(59,49)

49 format('The aggregation function uses equal weights.') 
if(ifun.eq.2) then 
write(59,47)

47 format('The aggregation function has weights as:') 
write(59,*) (wt(i), i=l,idim) 
endif
do 14 i=l,idim 
write(59,16) i

16 format(/,'Estimates for expert ',13,':')
write(59,15) pmin(i),pmax(i),(pi(i,j),j=l,iper)

15 formate min & max=',2f6.3,/, ' levels ',5f7.4,/, ' ',6f7.4)
write(59,9)(pe(i,j),j=l,iper)

9 formate estimates',5f7.4,/,' ',6f7.4)
14 continue

do 20 i=l,idim
call distmake (i,pe,pi,iper,pmin(i),pmax(i),fx,fy)
iperl=iper+l
do 30 j=l,iperl
fxa(i, j)=fx(j)
fya(i,j)=fy(j)

30 continue 
20 continue
forms the nn samples of the product distribution

call monte (fxa,fya,idim,iper,nn,pval,plx,pi,ifun,wt,pmax,pmin) 
calculates stats for pval

call calc(nn,pval,avg,fmedian,var, stdev,fmin,fmax,per) 
print results

write(59,41) nn
41 format(/,'Monte Carlo results for ',i5,' samples:') 

write(59,42) fmin,fmax
42 formate minimum value = ',el2.6,/,' maximum value = ',el2.6) 

write(59,43) avg,var, stdev
43 formate mean = ',el2.6,/,' variance = ',el2.6,/,

*' standard deviation = ',el2.6)
write(59,44) fmedian,(per(k), k=l,13)

44 formate median = ',el2.6,/,' 1st percentile = ',el2.6.
*/,' 5th percentile = ',el2.6,/,' 10th percentile = ',el2.6,
*/,' 20th percentile = ',el2.6,/,' 30th percentile = ',el2.6.
*/,' 40th percentile = *,el2.6,/,' 50th percentile = ',el2.6.
*/,' 60th percentile = ',el2.6,/,' 70th percentile = ',el2.6.
*/,' 80th percentile = \el2.6,/, • 90th percentile = ',el2.6,
*/,' 95th percentile = ',el2.6,/,' 99th percentile = ',el2.6)
close (unit=59) 
close (unit=52) 
end

Forms empirical distribution function for each expert & DM: fx and
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c fy. 
c

subroutine distmake (ie,pe,pl,n,pmn,pmx,fx,fy) 
dimension pe(20,20), pl(20,20), fx(21), fy(21) 
ibin=n+l
fy(1) = pl(ie,l)/(pe(ie,1)-pmn) 
fy(ibin) =(1.0-pl(ie,n))/(pmx-pe(ie,n)) 
do 100 i=2,n 
j=i-l
fy(i)=(pi(ie,i)-pi(ie,j))/(pe(ie,i)-pe(ie,j))

100 continue
do 110 i=l,n 

C fx(i)=pl(ie,i)
fx(i)=pe(ie,i)

110 continue 
fx(ibin)=l. 
write(59,113) ie

113 format(/,'Empirical distribution; fx,fy for person:',i4) 
do 114 j=l,ibin

114 write(59,*) fx(j),fy(j) 
return
end

c
c Performs the monte carlo simulation of the supplied functions 
c

subroutine monte (fxa,fya,idim,iper,nn,pval,plx,pi,ifun,wt, 
*pmax,pmin)
dimension fxa(20,21),fya(20,21),val(20),plx(20,21),wt(20)
dimension pval(10000),pl(20,20),pmax(20),pmin(20)
n=iper+l
do 223 i=l,idim
do 222 j=l,iper
plx(i,j)=pl(i,j)

222 continue 
plx(i,n)=1.0

253 formate plx=', 6el2.6)
223 continue

do 200 isamp=l,nn 
do 201 i=l,idim 
n=iper+l 
idum = 1 
val(i)=0.0
if (isamp.eq.l.and.i.eq.l) idum = -iabs(487320587) 
t=ran3(idum) 
if(t.eq.O.O) val(i)=0.0 
if(t.le.plx(i,1).and.t.gt.0.0) then 

bl = plx(i,l)/(fxa(i,l)-pmin(i)) 
bO = plx(i,1)-bl*fxa(i, 1) 
val (i) = (t-b0) /bl 

endif
if(t.gt.plx(i,iper)) then

bl = (1.0-plx(i,iper))/(pmax(i)-fxa(i,iper)) 
bO = 1.0-bl*pmax(i) 
val(i) = (t-b0)/bl 

endif
do 202 k=2,iper 
kml=k-l
if(t.le.plx(i,k).and.t.gt.plx(i,kml)) then
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bl = (plx(i,k)-plx(i,kml))/(fxa(i,k)-fxa(i,kml)) 
bO = plx(i,k)-bl*fxa(i,k) 
val(i) = (t-bO)/bl 

endif
202 continue
213 formate isamp',^,' expert', i2,' rand#',el2.6, ' value',el2.6)
201 continue

dim=idim
if(ifun.eq.l) go to 275 
if(ifun.eq.2) go to 265

265 continue 
surtiy = 0.0
do 266 i=l,idim
sumy = sumy + val(i)*wt(i)

266 continue
pval(isamp)=sumy 
go to 270

275 sumy=0.0
do 276 i=l,idim 
fi=idim
sumy=sumy+val(i)/fi

276 continue
pval(isamp)=sumy 
go to 270 

270 continue
214 format('isamp',i4,' pval',el2.6)
200 continue

return
end

function ran3 (idum) 
c
c Returns a uniform random deviate between 0.0 and 1.0.
c Set IDUM to any negative value to initialize or
c reinitialize the sequence,
c

parameter (mbig=1000000000,mseed=161803398,mz=0,fac=l./mbig) 
c
c According to Knuth, any large MBIG, and any smaller (but still
c large) MSEED can be substituted for the above values,
c

save inext, inextp, ma
dimension ma(55)
data iff /0/
if (idum.It.0 .or. iff.eq.0) then 

iff = 1
mj = mseed - iabs(idum) 
mj = mod(mj,mbig) 
ma(55) = mj 
mk = 1
do 11 i = 1, 54 

ii = mod(21*i,55) 
ma(ii) = mk 
mk = mj - mk
if (mk .It. mz) mk = mk + mbig 
mj = ma(ii)

11 continue
do 13 k=l, 4
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do 12 i=l, 55
ma(i) = ma(i) - ma(l+mod(l+30,55)) 
if (ma(i) .It. mz) ma(i) = ma(i) + mbig

12 continue
13 continue 

inext = 0 
inextp = 31 
idum = 1

endif
inext = inext + 1 
if (inext .eq. 56) inext = 1 
inextp = inextp + 1 
if (inextp .eq. 56) inextp = 1 
mj = ma(inext) - ma(inextp) 
if (mj .It. mz) mj = mj + mbig 
ma(inext) = mj 
ran3 = mj*fac 
return 
end 

c 
c 
c

subroutine calc(nn,pval,avg, fmedian,var, stdev,fmin,fmax,per)
dimension pval(10000),per(13)
fnn=nn
i01=fnn*.010001 
i05=fnn*.050001 
il0=fnn*.100001 
i20=fnn*.200001 
i30=fnn*.300001 
i40=fnn*.400001 
i50=fnn*.500001 
i60=fnn*.600001 
i70=fnn*.700001 
i80=fnn*.800001 
i90=fnn*.900001 
i95=fnn*.950001 
i99=fnn*.990001

401 formate 1,5,10,50, 90, 95, 99',7i4) 
scale=0.0 
ss=0.0 
sum=0.0 
do 400 i=l,nn 
scale=scale+pval(i)

400 continue 
scale=l.0 
do 411 i=l,nn 
pval(i)=pval(i)/scale

411 continue
422 format('scale',el2.6) 

do 412 i=l,nn 
sum=sum+pval(i) 
ss=ss+pval(i)**2

433 format ('pval =' ,el2.6)
412 continue 

avg=sum/fnn
var=(ss-sum**2/fnn)/(fnn-1.) 
stdev=sqrt(var)
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cal1 sort (nn,pval) 
fmin=pval(1) 
fmax=pval(nn) 
per(l)=pval(i01) 
per(2)=pval(105) 
per(3)=pval(ilO) 
per(4)=pval(120) 
per(5)=pval(130) 
per(6)=pval(140) 
per(7)=pval(150) 
per(8)=pval(160) 
per(9)=pval(170) 
per(10)=pval(180) 
per(11)=pval(190) 
per(12)=pval(195) 
per(13)=pval(199)
151=150+1
fmedian=(pval(150)+pval(151))/2.
return
end

c
c
c
c
c

subroutine sort (n, ra)

Sorts an array RA of length N into ascending numerial order 
using the Heapsort algorithm. N is input; RA is replaced 
by its sorted rearrangement.

dimension ra(n)
1 = n/2 + 1 
ir = n 

10 continue
if (1 .gt. 1) then 

1 = 1-1 
rra = ra(l) 
else
rra = ra(ir) 
ra(ir) = ra(l) 
ir = ir - 1 
if (ir .eq. 1) then 
ra(l) = rra 
return 
endif 

endif 
i = 1 
j = 1 + 1 

20 continue
if (j .le. ir) then 

if (j .It. ir) then 
if (ra(j) .It. ra(j+1)) j=j+l 

endif
if (rra .It. ra(j)) then 

ra(i) = ra(j)
i = j
j = j + j 
else
j = ir + 1 
endif
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go to 20 
endif

ra(i) = rra 
go to 10 
end
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Appendix D—BOOT

program boot 
c
c Constructs bootstrap samples from the original sample of size n. 
c
c Each sample is randomly formed on its own. 
c
c Input is done on the terminal or file BOOT.IN 
c BOOT.IN has the following lines in free format:
c line 1 iabb = 0 if all simulated values are printed, =1 if not
c line 2 irange = 1 if the sample of n experts each supplies two
c ranges values (3 values per person), = 0 if not **
c line 3 n = number of values supplied = number of persons or 
c 3 times that
c line 4 m = number of simulations
c line 5 x array = the n values supplied
c (a space between each value)
c
c Output is sent to file BOOT.OUT 
c
c ** if each expert provides a best estimate and an upper & lower range 
c value, then irange = 1 and there are 3 times as many values as
c experts, for this case, the sample size used in the program
c is changed to n/3 = number of experts, not the number of values, 
c 
c

character title*75
dimension x(65),xsamp(65),xbig(20000),xnew(65) 
dimension xmed(lOOO)
open (uni t=ll, file='boot .in', status^old') 
open (unit=22,file='boot.out',status='new')
write(*,'("to use input file boot.in, type 1 else type 0: ",\)') 
read(*,*) infile 
if(infile.eq.l) go to 61

write(*,31)
31 format('to print all simulated values, type 0; else type 1: ',\) 

read(*,*) iabb
write(*,32)

32 format('if range values are included, type 1; else type 0: ',\) 
read(*,*) irange
if(irange.eq.l) write(22,33) 
if(irange.eq.0) write(22,34)

33 formate irange=l, ranges with sample values are assumed')
34 formate no range values included') 

write(*,'("enter the sample size: ",\)') 
read(*,*) n
write(*,'("enter the number of simulations (e.g.1000): ",\)')
read(*,*) m
fn=n
write(*,39)

39 format('enter the sample values with a space between each:') 
read(*,*) (x(i),i=l,n) 
go to 65
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61 continue
read(11,*) iabb 
read(ll,*) irange 
if(irange.eq.l) write(22,63) 
if(irange.eq.0) write(22, 64)

63 formate irange=l, ranges with sample values are assumed')
64 format(' no range values included') 

read(ll,*) n
read(11,*) m 
fn=n
read(ll, *) (x(i),i=l,n)

65 continue 
write(22,66) m

66 formate the number of simulations is ',i5) 
write(22,37) n, (x(i),i=l,n)

37 formate the ',i2,' sample values are: ',/,10e9.2) 
c
c Calculate simple statistics for the sample only 
c

slog=0.0 
sum=0.0 
ss=0.0 
do 51 i=l,n 
sum=sum+x(i)
if(x(i).eq.0.0) go to 51 
slog=slog+aloglO(x(i)) 
ss=ss+x(i)**2

51 continue 
xbar=sum/fn 
xgbar=10.0**(slog/fn) 
xvar=(ss-sum**2/fn)/(fn-1.) 
xstd=sqrt(xvar)
do 52 i=l,n 
xnew(i)=x(i)

52 continue
call sort(xnew,n)
k=n/2
kl=k+l
kind=mod(n,2)
if(kind.eq.O) xtild=(xnew(k)+xnew(kl))/2.0 
if(kind.eq.1) xtild=xnew(kl)
write(22,53)xbar,xtild,xgbar,xvar,xstd,xnew(l),xnew(n)

53 format(/,'simple statistics for the original sample:',/,
*' sample mean = ',e9.2,/,' sample median = ',e9.2,/,
*' sample geometric mean = ',e9.2,/,' sample variance = ', 
*e9.2,/,' sample standard deviation = ',e9.2,/,
*' sample minimum = ',e9.2,/,' sample maximum = ',e9.2,/) 

c
c Begin bootstrap sampling of x
c All bootstrap samples are randomly formed and stored in xbig 
c

do 50 i=l,m 
do 50 j=l,n 
k=(i-l)*n+j 
idum=l
if(i.eq.l.and.j.eq.l) idum = -iabs(5739784770)

12 tl=rand(idum)
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temp=tl*fn 
do 13 kk=l,n 
kkl=kk-l
if(temp.eq.0.0) xbig(k)=x(l) 
if(temp.le.kk.and.temp.gt.kkl) xbig(k)=x(kk) 
if(temp.gt.n) go to 12 

13 continue 
50 continue

if(irange.eq.l) n=fn/3.0 
c
c Loop for the 3 estimators: median, mean, geomean 
c

iwrite=0 
do 100 ii=l,3 
do 40 i=l,m 
do 41 j=l,n 
k=(i-l)*n+j 
xsamp(j)=xbig(k)

41 continue
call sort(xsamp,n) 

c
c Median calculations 
c

if (ii.eq.l) then 
k=n/2 
kl=k+l
kind=mod(n, 2)
if(kind.eq.O) xmed(i)=(xsamp(k)+xsamp(kl))/2.0 
if(kind.eq.1) xmed(i)=xsamp(kl) 

endif 
c
c Mean calculations 
c

if (ii.eq.2)then 
xmean=0.0 
do 101 ij=l,n

101 xmean=xmean+xsamp(ij)/float(n) 
xmed(i)=xmean

endif
c
c Geometric mean calculations 
c

if (ii.eq.3)then 
xgeo=0.0 
do 102 ij=l,n
if(xsamp(ij).eq.0.0) go to 102 
xgeo=xgeo+alogl0(xsamp(ij))

102 continue
if(xgeo.eq.0.0) then 
iwrite=iwrite+l 
xmed (i) =0.0 
go to 107 

endif
xmed(i)=10.0**(xgeo/float(n))

107 continue 
endif

40 continue
if(iwrite.gt.0.0) write(22,104)iwrite
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c
c
c

c
c
c
c

104 format(/,/,'warning: ',14,' samples had no geometric mean,', 
*' results may be biased low')

End sampling, sort resulting estimators

call sort(xmed,m)

Calculate percentiles, estimators, variances 
Print results

if(ii.eq.l) write(22,27) 
if(ii.eq.2) write(22,28) 
if(ii.eq.3) write(22,29)

27 formate ',//,'medians')
28 formate ',//,'means')
29 formate ',//,'geomeans') 

if(iabb.ne.l) write(22, 43)
43 format('the sample estimator values from the simulation') 

if(iabb.ne.l) write(22,21) (xmed(i),i=l,m)
21 formate ', 6fl0.6) 

smed=0.0 
ssmed=0.0 
slmed=0.0 
do 45 i=l,m 
smed=smed+xmed(i) 
ssmed=ssmed+xmed(i) **2 
if(xmed(i).eq.0.0) go to 45 
slmed=slmed+aloglO(xmed(i))

45 continue
amed=smed/float(m)
vmed= (ssmed- (smed**2) /float (m)) /float (m-1)
sdmed=sqrt (vmed)
gmed=10.0** (slmed/f loat (m))
delta=float(m) /100.0
m99=99.0*delta
m95=95.0*delta
m90=90.0*delta
m50=50.0*delta
m20=20.0*delta
m30=30.0*delta
m40=40.0*delta
m60=60.0*delta
m70=70.0*delta
m80=80.0*delta
ml=1.0*delta
m5=5.0*delta
ml0=10.0*delta
write(22,23) xmed(1),xmed(m)

23 formate minimum value = ',fl0.6,/, ' maximum value = ',fl0.6) 
write (22,26) xmed (ml) ,xmed(m5) ,xmed(ml0) ,xmed(m20) ,xmed(m30), 

*xmed(m40) ,xmed(m50) ,xmed(m60) ,xmed(m70) ,xmed(m80) ,xmed(m90), 
*xmed(m95) ,xmed(m99)

26 formate percentiles: ',/,llx, ' 1: ', flO. 6,/, llx, ' 5:',fl0.6,/,

llx,' 99:',flO.6)

★ llx, ' 10 ',flO.6,/,llx,' 20 ', flO. 6, /,★ llx, ' 30 ',flO.6,/,llx,' 40 ', flO. 6, /,* llx, ' 50 ',flO.6,/,llx, ' 60 ', flO.6,/,★ llx, ' 70 ',flO.6,/,llx, ' 80 ', flO.6,/,★ llx, ' 90 ',flO.6,/,llx, ' 95 ', flO.6,/,
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write (22,22) smied,vmed, sdmed,gmed 
22 formate mean = ',fl0.6,/, 1 variance’, f 10.6,/,

*' standard deviation = ’,fl0.6,/,
*' geometric mean = ’,fl0.6)

100 continue 
stop 
end
subroutine sort (ra,n) 

c
c Sorts an array ra of length n into ascending numerial order 
c using the heapsort algorithm, n is input; ra is replaced 
c by its sorted rearrangement, 
c

dimension ra(n)
1 = n/2 + 1 
ir = n 

10 continue
if (1 .gt. 1) then 

1 = 1-1 
rra = ra(l) 
else
rra = ra(ir) 
ra(ir) = ra(l) 
ir = ir - 1 
if (ir .eq. 1) then 

ra(l) = rra 
return 

endif 
endif 
i = 1 
j = 1 + 1 

20 continue
if (j .le. ir) then 

if (j .It. ir) then 
if (ra(j) .It. ra(j+1)) j=j+l 

endif
if (rra .It. ra(j)) then 
ra(i) = ra(j)
i = j 
j = j + j

else
j = ir + 1 

endif 
go to 20 
endif
ra(i) = rra 
go to 10 
end

function rand (idum) 
c
c Returns a uniform random deviate between 0.0 and 1.0.
c set idum to any negative value to initialize or
c reinitialize the sequence, 
c

parameter (mbig=1000000000,mseed=161803398,mz=0,fac=l./mbig)
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c According to Knuth, any large mbig, and any smaller (but still
c large) mseed can be substituted for the above values,
c

save inext, inextp, ma
dimension ma(55)
data iff /0/
if (idum.It.0 .or. iff.eq.O) then 

iff = 1
mj = mseed - iabs (idum) 
mj = mod (mj, mbig) 
ma(55) = mj 
mk = 1
do 11 i = 1, 54 

ii = mod(21*i, 55) 
ma(ii) = mk 
mk = mj - mk
if (mk .It. mz) mk = mk + mbig 
mj = ma(ii)

11 continue
do 13 k=l, 4 

do 12 i=l, 55
ma(i) = ma(i) - ma(l+mod(i+30,55)) 
if (ma(i) .It. mz) ma(i) = ma(i) + mbig

12 continue
13 continue 

inext = 0 
inextp =31 
idum = 1

endif
inext = inext + 1
if (inext .eq. 56) inext = 1
inextp = inextp + 1
if (inextp .eq. 56) inextp = 1
mj = ma(inext) - ma(inextp)
if (mj .It. mz) mj = mj + mbig
ma(inext) = mj
rand = mj*fac
return
end
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Glossary of Expert 
Judgment Terms

ADVISORY EXPERT: The in-house employee or consultant who is 
considered expert in the subject matter and who assists the project personnel 
in developing the questions that will be later asked of the external experts.

AGGREGATION: See Behavioral or Mathematical Aggregation.
ALPHA level: See Significance Level.
ANCHORING bias: The indvidual's failure to adjust sufficiently from his 

first impression in solving a problem. Sometimes this bias is explained in 
terms of Bayes Theorem as the failure to adjust a judgment in light of new 
information as much as it would be adjusted in terms of Bayes mathematical 
formula.

ANCHORING and ADJUSTMENT HEURISTIC: This effect occurs when an 
individual reaches a final answer by starting from an initial value and 
adjusting from it. The initial value can be supplied with the question, or it 
can be reached by the expert through his impressions or computations. 
Usually, the use of this heuristic skews the answer toward the initial value.

Ancillary DATA or information: Any information or data gathered 
as part of the elicitation that is not the expert's answer. For example, 
information on the expert's background and problem-solving processes 
(expert data) is ancillary information. This information has the potential for 
being related to the the answers. Thus ancillary information can form 
conditional variables.

ANALYSIS of variance: a statistical technique for testing the 
equivalence or lack of equivalence of mean values from several different 
groups or classes of data. The test is done by comparing variation between 
the groups to the variation within the groups. The within-group variation 
represents the background-, error-, or noise-level variation. Groups are 
determined prior to the study so that the test can be made from a minimal 
number of measurements. Such efficient planning is called experimental 
design.

ANALYST: Member of the project personnel who analyzes the expert data and 
judgment. The analyst may have other roles, such as interviewer.

ANSWER-ONLY DOCUMENTATION: a written record of only the experts’ 
answers.

Answer plus problem-solving documentation: a written 
record of the experts' answers and how they arrived at these answers.

ANSWERS OR EXPERT ANSWERS: The expert's final response to a 
technical question. This term includes responses given in quantitative 
(estimates) or qualitative form (solution).

AVAILABILITY bias: Differing ease with which events can be retrieved 
from long-term memory. Data involving catastrophic, familiar, concrete, or
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recent events may be easier to recall. Availability bias affects people's 
ability to accurately estimate frequencies and to recall other aspects of the 
event.

BACKGROUND INFORMATION: Information that the expert needs to 
interpret the question or problem. Background information includes the 
sequence of events leading up to the event in question, pictorial 
representations of the question (e.g., flow charts), and decompositions of 
the question.

BAYESIAN methods/approach: A technique for combining information 
of various types or from various sources. The combining calculations are 
based on Bayes Theorem, which defines the probability distribution 
function of the data as conditioned on its parameters. These parameters are 
also assumed to have a probability distribution called a prior distribution. 
Combining the data and prior distributions produces a posterior distribution. 
The expected valued of this posterior distribution is the desired final 
estimate. The philosophy of this method is to use and combine all available 
information to form the final estimate rather than to rely only on the data 
from a single study or experiment.

BEHAVIORAL AGGREGATION: A means of obtaining one answer from 
multiple experts through the use of behavioral techniques that encourage 
consensus. For example, group-think bias can be fostered to create 
pressures toward unanimity.

BIAS: Bias can be defined as occurring when (1) expressions of the expert's 
thinking do not match his actual thinking at the time of the elicitation, and
(2) the expert's estimates do not follow normative statistical or logical rules. 
An example of the first would be if the expert judged a particular event to be 
extremely rare but had to select from response options that did not extend as 
far as his judgment. An example of the second would be if the expert 
claimed that A was better than B in some respect, B better than C, and C 
better than A. Sources of bias can be a person's needs (motivational bias) 
or thought processes (cognitive bias).

BOOTSTRAP: A data-based simulation technique useful for finding estimates 
and distributions of estimates when statistical distribution theory is not 
applicable. This technique is based on forming multiple (1000) random 
samples with replacement from the original sample data, calculating the 
estimator of interest in each sample, and forming the distribution of that 
estimator from these calculated 1000 values.

CLIENT: The person who has requested the gathering of expert judgment. 
That is, the client is the one whose needs the project will serve. Often the 
client is the person funding the study. Whether the client is the funder or 
not, the client can usually say what the purpose and goals of the project are, 
what information is needed from the experts, and what resources will be 
available for the project.

CLUSTER ANALYSIS: Techniques for identifying how values or a variable is 
grouped numerically or how variables themselves are grouped according to 
shared information. For example, the data set of values (0.2, 0.25, 0.30,
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0.77, 0.80, 0.95) would cluster into two groups. Various grouping 
methods are used to determine group size and membership. Most are based 
on some measure of distance between values and groups of values.

COGNITION: The mental activity, the processing of information, that humans 
do when they solve problems.

COGNITIVE BIAS: Biases whose source is the limitations of the human mind. 
Anchoring bias is one example.

COGNITIVE DISSONANCE: Cognitive dissonance occurs when an 
individual finds a discrepancy either between his beliefs or between his 
beliefs and his actions (Festinger 1957). For example, an individual may 
find he holds an opinion that conflicts with that of the other group members, 
and if he has a high opinion of the intelligence of the group, he may resolve 
the discrepancy by unconsciously changing his judgment to be in agreement 
with that of the group.

CONDITIONAL variable: An ancillary quantity (variable) found to be 
influential or important for determining the answers given by the experts. 
This determination is made using more than one analysis technique.

CONDITIONALITY: The description of the phenomenon where one variable 
has an influence on or a significant relationship to another variable. 
Conditionality also includes the case where several variables are influential 
over several other variables.

Correlation: See Dependence.
Cumulative distribution function (cdf): The function resulting 

from the accumulation of area under the probability distribution function 
(pdf), in other words, the integral of the pdf. The function value, F(x), is 
the probability that the random variable takes on values less than or equal to 
the value at*.

Data GATHERER: See Interviewer or Knowledge Engineer.
DECISION analysis: Structured means for c „ ceptualizing and resolving 

complex problems. This structure involves breaking the problem into parts 
to make it more tractable. Often the decision structure includes the initial 
options or acts, the possible consequences of these values, and uncertainty 
measures. A variety of structural forms are used, ranging from event trees 
to hierarchies of factors. Decision analysis is applied mainly to business 
problems such as plant siting, procurement, and portfolio analysis. It has 
also been used in crisis management, international negotiations, intelligence 
analyses, and labor-management negotiations (Peaslee 1981).

DECOMPOSITION: The breaking of a problem or question into its component 
parts to make it easier to solve. This technique has been shown to increase 
accuracy.

DELPHI method: An elicitation method developed by the Rand Corporation 
to limit the biasing effects of interaction. In a true Delphi, the experts do not 
interact with one another and only interact with the moderator in a limited 
way. The experts, in isolation from one another, give their judgments and, 
perhaps, some of their reasons for making these judgments. The moderator 
collects these judgments, makes the judgments anonymous, distributes
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these judgments to the individual experts, and allows each of them to revise 
their previous judgments. This process can be repeated for as many times 
as desired, such as until consensus is achieved.

DEPENDENCE: Expert's estimates are conditioned on some factor and 
affected by this conditioning. In this handbook, dependence is used 
interchangeably with correlation. Dependence can refer to the data from 
different experts (between-expert dependence) or it can refer to 
dependencies of estimates given by the same expert (within-expert 
dependence).

DEPENDENT VARIABLE: The quantity of interest that contains the expert 
answers. These answers are usually conditioned and therefore dependent 
on other ancillary variables or information.

Design of elicitation METHOD: Planning of the method in terms of 
(1) the project's constraints-e.g., time, budget and personnel; (2) goals- 
e.g., for obtaining particular data; and (3) additional considerations-e.g., 
the logistics and cost of meeting together versus separately, the structuring 
of the elicitations, the treatment of bias, the presentation of the problems, 
and the documenting of the elicitation). The reason for designing the 
elicitation is to create the optimal combination of techniques for a particular 
situation. Different techniques possess differing advantages and abilities to 
control for particular factors, such as those which would introduce bias. 
One of the main techniques used in designing the data gathering is 
structuring, or placing controls on the elicitation (see Structuring). An 
example of structuring applied to interactive groups is to have the natural 
leader present his or her views last, so as to prevent the follow-the-leader 
effect (see Group Think Bias).

DETAILED VERBATIM DOCUMENTATION: See Verbatim Documentation.
Detailed STRUCTURED DOCUMENTATION: See Structured Documen­

tation.
Disaggregation: See Decomposition.
Discriminant analysis: A multivariate statistical technique for 

determining how well a chosen variable discriminates or classifies each 
datum from a data set into specified groups.

DISPERSION measure: An estimate of how much spread or dispersion is 
in the sample data. Dispersion measures may be in the form of percentiles, 
variances, ranges, or error bars.

DISTRIBUTION: See Probability Distribution Function.
ELICITATION: Process of gathering expert judgment in a specially designed 

manner. (See Delphi, Individual Interview, and Interactive Group.)
ESTIMATE: The expert's answer encoded in the response mode. Estimates 

specifically refers to answers given in numerical form, such as probabilities 
or ratings.

ESTIMATOR: The formula or procedure for calculating or determining the 
value of a property of a population such as the median or the parameter of a 
distribution such as the mean.
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ETHNOGRAPHIC TECHNIQUE: An interviewing technique from cultural 
anthropology that involves restating the subject's words into questions. 
This method avoids the danger of having the interviewer bias the subject's 
account by using the subject's own words. This technique is used to 
pursue in greater depth information that the subject has mentioned.

Expert: A person who has background in the subject matter at the desired 
level of detail and who is recognized by his peers or those conducting the 
study as being qualified to answer questions. The expert is sometimes 
referred to as the external expert.

Expert data: See Problem-Solving Data.
Expert JUDGMENT: Judgments of those with expertise or knowledge in the 

area. Expert judgment is usually elicited when experimental data is sparse 
or lacking. In this book, expert judgment refers to a combination of the 
expert’s answer, his data on how this answer was reached (e.g., 
definitions, assumptions, and algorithms), and ancillary information on the 
expert himself (e.g., educational background and work experience).

FACTOR ANALYSIS: A multivariate statistical technique for determining 
how a set of variables share common information. The original variables 
are transformed to a set of new variables called factors. Some factors, 
called common factors, are formed from shared information of more than 
one of the original variables. Other factors, called unique factors, are 
formed from information from only one variable.

General linear model, GLM: See Regression.
GRANULARITY: Level of generality used in gathering, examining, or 

analyzing data. For example, data on expert’s problem solving could be 
viewed at a coarse granularity, such as the of type of heuristic used, or at a 
fine granularity, such as the actual calculations performed as a part of each 
heuristic.

GROUP THINK BIAS: The tendency to modify a judgment so that it is in 
agreement with that of the group or of the group leader. Generally, the 
individual is unaware that he has modified his judgment to be in agreement. 
This bias is classified as a motivational bias because it stems from the 
human need to be accepted and respected by others. Individuals are more 
prone to group think if they have a strong desire to remain a member, if they 
are satisfied with the group, if the group is cohesive, and if they are not a 
natural leader in the group.

HEURISTIC: A short cut used to reduce the mental effort of solving a complex 
problem. A common heuristic is that of anchoring and adjusting. Instead 
of doing many detailed calculations, the individual adjusts in small 
increments from his initial impression of the answer.

HUMAN reliability ANALYSIS: This analysis "models events that are 
primarily due to human actions or inactions, often called errors, analyzes 
their effects, and quantifies their impact" (Doughterty et al., 1986: 3-2). 
Human reliability analysis is often a component of risk analysis because 
human events can contribute to the initiation, prevention, or mitigation of 
damage states.
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IMPRESSION MANAGEMENT BIAS: A type of social pressure bias that 
occurs when the subject is responding to the reactions of those not 
physically present. For example, on a survey the subject tries to answer in 
such a way as to bring the most approbation (e.g., from society in the 
abstract or from the question writer in particular).

INCONSISTENCY bias: Inability to maintain the same problem-solving 
heuristic, definitions, or assumptions through time because of the limited 
information-processing capacity of the human mind.

INDEPENDENT VARIABLE: A quantity that is fixed, measured, recorded, or 
determined before or during the study. This quantity is possibly related to 
the answers given. See also Ancillary Information and Conditional 
Variables.

INDIVIDUAL interview: One of the three basic methods of elicitation. 
One individual is interviewed at a time, usually in a face-to-face situation. 
The interviewer can structure the elicitation to any degree. An unstructured 
interview resembles a conversation; a structured one an interview driven by 
prepared questions. Often the separate responses are mathematically 
combined in some way, hence its other names staticized or nominal group.

INFERENCE (GENERAL): The process of drawing conclusions from 
information for interpretation on a general or universal scale.

INFERENCE (STATISTICAL): The process of drawing conclusions about 
the population of interest or study from the results of statistically valid 
sampling and analysis.

INTENSIVE pilot TEST: A type of pilot testing that combines structured 
interviews and observations. The intensive pilot test provides two kinds of 
feedback: (1) how the expert progresses through the elicitation, his general 
impressions, when and why he decides to respond to particular questions; 
and (2) how the expert specifically interprets each direction, statement of the 
question, or response mode option.

INTERACTIVE GROUP method: One of the three basic methods of 
elicitation. In the interactive group method, the participants are in a face-to- 
face situation with one another and a session moderator. The participants' 
interactions with one another can be structured to any degree. A totally 
unstructured group resembles a typical meeting; a highly structured group is 
carefully choreographed as to when the participants present their views and 
when there is open discussion.

INTERVIEWER: The person who elicits the expert judgment. (See also 
Knowledge Engineer.)

KNOWLEDGE acquisition: Part of artificial intelligence connected with 
"extracting, structuring, and organizing knowledge from some source, 
usually human experts, so it can be used in a program." (Waterman 
1986:392).

Knowledge-based cognition or behavior: The level of thinking 
that most of expert judgment involves. It is interpretive, analytical, high- 
level, conscious activity caused by thinking about rare or uncertain 
phenomena.
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KNOWLEDGE ENGINEER: The knowleedge engineer is similar to the 
interviewer in that both elicit information from the expert. However, the 
term knowledge engineer refers to someone who, in addition to 
interviewing, represents and enters the expert knowledge into a computer 
system with the goal of creating a knowledge-based system.

Limited interactive group: See Delphi Method.
LIMITED pilot test: A type of pilot testing done with a very small sample 

of experts. The limited pilot test is done after the intensive pilot test to 
provide a time estimate of the duration of each part of the elicitation.

LINEAR SCALE: A continuous line of numbers on a scale that is linear in 
structure; that is, each number on the line is separated from its neighbor by a 
value equal to the difference between it and its neighbor. For example, 4.0 
would be twice as far from 0.0 as 2.0.

Long-Term memory (LTM): Memory of large capacity and relatively 
permanent duration. A portion of what is processed in the individual's 
short-term memory is stored in this type of memory.

Mathematical aggregation: The use of mathematical means to 
combine multiple expert's answers into one answer, usually when a single 
estimate is needed. Multiple expert's answers or distributions can also be 
combined into a single distribution. Some mathematical methods weight the 
expert's answers equally, such as the mean; others use more complex 
weighting schemes.

MEAN: The numeric average of a set of values (sample) calculated by 
summing the values and dividing by the value of how many there are in the 
set. The mean of a population is the theoretically derived expected value.

Median: The middle value of a sample or a distribution. The median is the 
50th percentile of a distribution. It is the value such that half of the sample 
or the distribution is larger, and half of the sample or distribution is smaller. 
The median is a measurement of the center of the sample or distribution.

MILLER'S number: The number of things that the average person can 
mentally juggle—7 plus or minus 2.

Misinterpretation: The altering of the expert's thoughts as a result of 
the methods of elicitation and documentation. See Training Bias.

Misrepresentation: The altering of the expert's thoughts and answers 
as a result of modeling or analyzing them. See Tool Bias.

MODE: The most frequent value in a data set (sample) or distribution. The 
mode is the hump of the distribution. A distribution or data set with more 
than one hump is bimodal (for 2), trimodal (for 3), or multimodal (more 
than 2).

MODES OF COMMUNICATION: Communicating with the expert in person, 
by mail (electronic or postal), or by telephone. Each mode has its 
advantages and disadvantages. For example, the mail mode is the least 
expensive but the most time consuming).

MONITORING ELICITATION: Real-time observations of the elicitation 
process, usually for detecting bias.
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MONTE Carlo SIMULATION: A computational technique for investigating 
properties and behavior of a variable by repeated random sampling from a 
known or assumed distribution (e.g., normal) representing the variable.

MOTIVATIONAL BIAS: Biases that have as their source, the emotional needs 
and wishes of the subject. Group think bias is one example.

MULTIVARIATE analysis: A statistical analysis technique that allows two 
or more variables of interest to be considered simultaneously.

NOMINAL GROUP method: See Individual Interview.
NONPARAMETRIC TECHNIQUE: Statistical analysis techniques that does 

not require assuming that the sample or population follow a particular 
distribution, such as the normal distribution. These are sometimes referred 
to as distribution-free techniques.

NORMAL DISTRIBUTION: A particular probability distribution function that 
is symmetrically shaped about the mean, has identical values for mean, 
median, and mode, and has a bell-like shape. It is also known as the 
Gaussian distribution or a bell-shaped curve.

NORMATIVE expertise: Expertise in the statistical or mathematical 
principles of the response mode.

OUTLIERS: Extreme-valued observations in a sample or data set. It is 
unlikely (not probable) that these observations belong to the same 
distribution as the rest of the sample.

PAIRWISE COMPARISONS: Establishing the relative ratings of a set of 
objects, events, or criteria by comparing them two at time. If there is a set 
of n things, then in order to make all possible pairwise comparisons, n(n- 
l)/2 comparisons are required. Comparing object A to object B is the 
reciprocal of comparing object B to object A.

PERCENTILE: The value from a distribution of a random variable that divides 
the area under the distribution curve into the specified percentages. For 
example, the 5th percentile is the value of the distribution such that 5% of 
the distribution is smaller and 95% of the distribution is larger.

PILOT TESTING: A type of practice involving taking a sample of the larger 
expert population, presenting these experts with an aspect of the elicitation, 
obtaining their feedback, and revising the elicitation accordingly. (See also 
Intensive and Limited Pilot Testing.)

POPULATION: The entire existing or theoretical set of items under study. 
Examples are (1) all the people on the earth-past, present and future; (2) all 
earthquakes on the earth; (3) all earthquakes in a particular location on the 
earth; and (4) failures and successes of all components of a certain type. 

Posterior distribution/density function: The resulting 
distribution or density function from a Bayesian analysis. This distribution 
is the combination of the prior information and the data.

PRACTICING THE elicitation: Rehearsing the elicitation to detect any 
problems in its design before its use. One type of practice is pilot testing. 
(See Pilot Testing.)

PRIOR DISTRIBUTION/DENSITY function: The distribution or density 
for the parameters of interest. This represents the information known prior

382



QCossary of 'Expert Judgment 'Terms

to the gathering of the data. It is combined with the data to form the 
posterior.

PROBABILITY: Refers to the chance of something occurring. One important 
property of probabilities is that they are values from 0.0 to 1.0. A 
probability equal to 0.0 means that the event never happens. A probability 
equal to 1.0 means that the event always happens. A probability equal to 
0.5 means that the event happens half of the time. Another important 
property is that the probabilities of all exhaustive (all events in a set), 
mutually exclusive events (nonoverlapping events) must sum to the value 
1.0.

Probability distribution function (pdf) or probability 
DISTRIBUTION: The mapping of a random variable onto a functional 
representation of probabilities for the possible values of that random 
variable. The nonnegative function,/, is mathematically represented by an 
equation in terms of the values of the random variable, x. The area under 
the entire curve resulting from this equation is 1.0. Sectional areas under 
the curve correspond to the probabilities of the corresponding x values. The 
values of the equation,/, are probabilities per unit interval, dx.

PROBLEM-SOLVING data: information relating to the expert's solution of 
the problem such as his definitions, assumptions, or algorithms. 

Problem-solving elicitation: Techniques used to elicit how the 
subject solved the problem. These elicitation techniques can be used to 
deliver data of differing levels of detail. For example, in a risk analysis 
study, a few sentences on the expert's reasoning might be all that is needed. 
For an artificial intelligence project, more detailed information might be 
needed to model each step of the expert's thinking.

Problem-solving method or process: The means by which the 
expert solves the problem. These means could include the expert's 
interpretation of the problem, assumptions, definitions, and algorithms.

PUTATIVE INTERVAL: An interval estimate calculated from a simulated or 
computed distribution, usually from a bootstrap or Monte Carlo simulation. 
For example, the 5th and 95th percentiles of the simulated distribution of the 
median for a sample would form the central 90% putative interval for that 
distribution.

Qualitative data or information: Any nonnumeric data such as 
verbal descriptions, classifications, categories, or preferences.

QUANTIFICATION: The process of transforming qualitative information into 
quantitative or numerical forms. In addition, quantification is used here to 
refer to the process of transforming raw data, in any original form, to a 
desired numerical form. This transformation can change the granularity of 
the data from coarse to fine.

QUANTITATIVE data or INFORMATION: Any numerical data such as 
integers, ranks, or values on the real number line.

QUESTION: The concrete, detailed points within the question areas to which 
the expert is asked to respond. Questions are also referred to as problems. 
An example of a question or problem is "what is the leak rate in gallons per
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minute as a function of time to seal failure due to loss of cooling to the 
pump shaft?" The test for whether a query qualifies as a question is 
whether the expert finds it sufficiently specific to be answered.

QUESTION area: The specific issue for investigation or the general area in 
which the experts will be questioned. Question areas are developed by 
considering such information as the goal of the project and the client's 
directives. For example, for an application whose goal was the provision of 
likelihoods and consequences of severe accidents in light-water reactors, 
separate question areas exist for front- and back-end phenomena, the 
different plant manufacturers, and so on.

QUESTION PHRASING: The wording of the question and the response mode 
done to maximize the chances that the expert understands it and is not 
unduly influenced by the wording. Payne (1951) has shown that different 
word choices and orderings can change the answer reached by 4 to 15%.

RANDOM VARIABLE: The quantity of interest that can take on any of a set 
of possible values or outcomes of an experiment or observation. The 
symbol for a random variable is X; the symbol for a generic value of a 
random variable is x.

RANKS: A set of numeric or descriptive values assigned to an original set of 
values or descriptions. Ranks are usually cardinal (i.e., composed of 
integer values, in ascending or descending order, and equally spaced 1, 2, 
3, etc.). Ranks can also be ordinal, or descriptive in nature (worst, better, 
best). Ratings are usually assigned numbers from a chosen scale (e.g. from 
1 to 10). The numbers are assigned by the user or the analyst according to 
some criteria.

RATINGS: See Ranks.
REGRESSION: The analysis that finds the best fit line for a dependent 

variable, y, in terms of the independent variables, The form of the 
model is y = &o + ^1*1 + + ••• + £ where the bo is the intercept term,
the other bs represent slopes, and e is the residual or remaining error not 
accounted for in the model. The regression line is fit such that the squared 
distances between the data points and the line are minimized. Regression is 
a subset of the analyses known as general linear models (GLMs) where 
linear relationships are determined using various techniques.

Reliability analyses: Studies of process or equipment failure or 
operability. An example of a reliability study would be an analysis of "how 
frequently a chemical reactor might overheat due to malfunctioning pumps, 
heat exchangers, human operators, control systems, and other plant 
equipment..." (Henley and Kumamoto, 1981: 8).

RESPONSE mode: The form in which the subject is asked to give his 
judgment. Some numeric response modes that are commonly used are 
probabilities, odds, intervals, ratings, logs, and pairwise comparisons. 
Nonnumeric, qualitative, response modes include verbal or written 
descriptions, classifications, categories, or preferences.
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RISK ANALYSIS: Risk analysis includes the data and techniques used to 
quantify risk. These analyses usually include a model of events leading to 
risks and their consequences. A risk analysis of a nuclear plant could 
describe major factors relating to accident events; frequency and uncertainty 
ranges of accident events; major factors and accident phenomena leading to 
these damage events; and consequences and risks of these to the public.

SAMPLE: A subset of a population of items that is chosen for examination. A 
statistically valid sample is chosen using sampling technique designed for 
representativeness of the population and for random selection of the items.

SHORT-TERM memory: A memory of limited capacity and intermediate 
duration. Ericsson and Simon (1980) depict short-term memory as being 
where information is processed in problem solving.

Significance or significance level: The result of a statistical test 
or technique is said to be significant if the conclusions indicate a difference 
between the data and the assumed normal state of the world. For example, 
the test indicates two experts are correlated where it is assumed that experts 
are not correlated. Because nothing is 100% certain, there is a chance that 
the conclusion drawn from a test is incorrect. The probability of a 
significant result being incorrect is the significance level. This level is 
chosen by the analyst prior to the test and indicates the chance that he is 
willing to take that the conclusion is incorrect. Usually this level is 5% or 
less, but the choice is always indicated in the statement of the conclusion. 
For example, "the positive correlation between expert 1 and 2 is significant 
at the 5% level," means that experts 1 and 2 are positively correlated, and 
there is a 5% chance that they are not. This 5% is sometimes called the 
alpha level or the type I error.

SIMULATION: See specific simulation techniques: Bootstrap and Monte 
Carlo.

SOCIAL PRESSURE: An effect that induces individuals to slant their 
responses or to silently acquiesce to the views that they believe will be 
acceptable to the interviewer, their group, supervisors, organization, or 
society in general. This altering of an individual's thoughts can take place 
consciously or unconsciously. The social pressure can come from those 
physically present or from the subject's internal evaluation of how others 
would interpret their responses. People's need to be loved, respected, and 
recognized induces them to behave in a manner that will bring affirmation.

SOLUTION: Expert judgments that are given as descriptive text or diagrams, 
as opposed to numerical estimates.

STANDARD deviation: the square root of the variance.
STATICIZED group: See Individual Interview.
STRUCTURED DOCUMENTATION: A detailed type of record of the expert’s 

answers and problem-solving processes. The person tasked with providing 
the documentation is usually provided with a format of what should be 
recorded. The format lists those aspects deemed to be the most important 
(e.g., answers and uncertainty levels, assumptions, and algorithms) and the 
level of detail at which the information is desired.
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Structuring elicitation: The amount of controls placed on the 
elicitation process. The interaction between the experts is one aspect of an 
elicitation method that is typically structured. Varying degrees of structure 
can be imposed, ranging from none to a high degree of structuring. No 
structuring would allow spontaneous interaction between the experts; a high 
degree would produce carefully choreographed communications. (See 
Designing on Paper-Planning the Elicitation for a description of the larger 
process of which structuring is a part.)

Substantive expertise: Expertise stemming from the expert's 
experience in the field in question, such as in the rupture rate of 
Westinghouse pipes.

SUMMARY DOCUMENTATION: A type of record of the expert's answers 
and problem-solving processes. Typically, it provides a few sentences or 
paragraphs on the experts' thinking, such as the sources of information that 
they used, their major assumptions, and their reasons for giving particular 
answers.

THINK aloud method: See Verbal Protocol.
TOOL BIAS: The misrepresentation of the expert's data as a result of forcing 

these to fit the tools selected for analysis. The analyst, and people in 
general, tend to use those models or methods with which they are most 
comfortable. Then, they are often unable to objectively judge whether they 
have used the tool appropriately (e.g., the model required that the data have 
a normal distribution, and the data may not have).

TRAINING bias: The tendency of the data gatherer to introduce bias into the 
expert's data by misinterpreting it. It is an unconscious human tendency to 
interpret incoming information in terms of what is already believed, such as 
what has been learned through professional training. For example, it is 
common for a data gatherer to define a term using those definitions that he 
or she has learned rather than to elicit the expert's definitions.

TYPE I ERROR: See Significance Level.
UNDERESTIMATION OF UNCERTAINTY BIAS: The tendency to 

underestimate the true amount of uncertainty in giving an answer. For 
example, when people are asked to put a range around their answer such 
that they are 90% sure that the range encompasses the correct answer, their 
ranges only cover 30-60% of the total.

VARIABLE: See Random Variable.
VARIANCE: A measure of dispersion based on the squared differences 

between individual values and their mean or expected value. The standard 
deviation is the square root of the variance.

VERBAL PROBE: A method from educational psychology used to elicit 
information on the subject's problem solving. There are different types of 
verbal probes that vary in when and how they are asked. This book uses 
verbal probe is used to refer to a question which has a nonleading wording 
that is asked while the expert is still attending to the subject of the question.
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VERBAL PROTOCOL method: A method from educational psychology 
involving having the subject think aloud as he works through the problem. 
The verbal protocol is used in face-to-face interviews.

Verbatim documentation: A record of the expert's answers and 
problem-solving processes. Obtaining a verbatim account is usually done 
by mechanically recording the expert's elicitation sessions and then 
transcribing them. This type of documentation is more frequent in artificial 
intelligence than in traditional expert judgment applications.

Volunteered dispersion measure: A type of dispersion measure 
that the experts volunteer without being asked. This dispersion marks a 
spread of values around the expert's best estimate.

WISHFUL thinking BIAS: A tendency that occurs when an individual's 
hopes influence his judgment. For example, people typically overestimate 
what they can produce in a given amount of time. In general, the greater the 
subject's involvement and the more he stands to gain from the answer, the 
greater this bias. Also called conflict of interest bias.
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