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Abstract

In this book we describe how to elicit and analyze expert judgment. Expert
judgment is defined here to include both the experts' answers to technical questions and
their mental processes in reaching an answer. It refers specifically to data that are obtained
in a deliberate, structured manner that makes use of the body of research on human
cognition and communication. Our aim is to provide a guide for lay persons in expert
judgment. These persons may be from physical and engineering sciences, mathematics and
statistics, business, or the military. We provide background on the uses of expert
judgment and on the processes by which humans solve problems, including those that lead
to bias. Detailed guidance is offered on how to elicit expert judgment ranging from
selecting the questions to be posed of the experts to selecting and motivating the experts to
setting up for and conducting the elicitation. Analysis procedures are introduced and
guidance is given on how to understand the data base structure, detect bias and correlation,
form models, and aggregate the expert judgments.
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Preface

In this book we describe how to elicit and analyze expert judgment. Expert
judgment is defined here to include both the experts' answers to technical questions and
their mental processes in reaching an answer. It refers specifically to data that are
obtained in a deliberate, structured manner that makes use of the body of research on
human cognition and communication.

The book was written at the request of the Nuclear Regulatory Commission. At the
time, the Risk Analysis Division of the Nuclear Regulatory Commission was breaking
new ground in gathering and using expert judgment in large probabilistic risk
assessments. The book's content has been generalized to meet their needs and those of
others using expert judgments.

Our aim in this book is to provide a guide for lay persons in expert judgment.
These persons may be from the physical and engineering sciences, mathematics and
statistics, business, or the military. Alternatively, they may be working in one of the
fields that have traditionally relied on expert judgment, such as risk analysis, reliability
analysis, decision analysis, operations research, or knowledge acquisition, a branch of
artificial intelligence. To illustrate, people working in the sciences and the military have
often remarked to us that they wish there was detailed information somewhere on how to
gather or analyze expert judgment. Earlier, there was no source to provide the guidance
that they, as lay persons, needed to design and conduct their own elicitations or analyses.

There are several reasons for there being little usable literature on how to elicit
information from experts. First, the way in which these techniques are learned does not
lend itself to publication. Interviewing techniques in anthropology, psychology, and
sociology are usually taught in laboratory situations. Students in these fields typically
learn by watching one of their professors and, then, by doing. Thus, even within these
specialized fields, there are few sources on elicitation. Second, the sources that do exist
are specialized for a particular discipline or situation and are not easily generalizable to
others. Third, it is difficult to communicate elicitation techniques because the written
medium is not well suited to conveying levels of information that are communicated
through nonverbal means. Also, most of the mechanics of elicitation become automatic
in the experienced practitioner and thus inaccessible for retrieval.

The prerequisites for understanding this book are minimal. Generally, the content
is simple and procedural in orientation. For a few of the statistical sections, an
understanding of the elementary concepts would be advantageous, but the procedures can
be followed without this technical background. When jargon is used, it is defined. Also,
a glossary is provided as an aid. The data sets used in the examples are referenced where
appropriate. Those data sets that are not referenced have been artificially generated using
data set structures and values similar to real data.

We gratefully acknowledge the Division of Risk Analysis, Office of Nuclear
Regulatory Research, Nuclear Regulatory Commission for their financial support (FIN
A7225) and encouragement of this effort. In particular, we are indebted to Dale
Rasmussen for suggesting this work, James Johnson for overseeing the research, and
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P.K. Niyogi for guiding the book's development. Special thanks also go to the many
scientists at Los Alamos National Laboratory, Sandia National Laboratories, and Science
Associates International Incorporated who participated in our studies of expert judgment.
Without their contribution of time and expertise, this book would not have been possible.
In addition, we extend our appreciation to our colleagues, Gary Tietjen and Thomas
Bement, for their insightful reviews of the early drafts. We are also thankful for the
constant support and encouragement provided by A. Juan. Finally, we are most grateful
to Wilma Bunker, our expert in desk-top publishing, for her work in designing and
editing the book.

M. A. Meyer
J. M. Booker

Los Alamos, New Mexico
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Introduction

Introduction

In this book we provide guidance on how to gather and analyze expert judgment.
Such a source has been lacking, particularly for those who are lay persons in the area of
expert judgment. We have met many people working in the physical sciences, in
government, or in the military services who were struggling to elicit or analyze expert
judgment. Their jobs required that they perform these tasks, but there was little
information available to assist them. This book is our response to their special needs. We
describe elicitation and analysis procedures, when to use them, and how to perform them in
a way that allows the lay readers to design methods suited to their own particular
application. Those more experienced with expert judgment, typically those working in the
fields of risk analysis, reliability analysis, operations research, decision analysis, or
knowledge acquisition, may also find the book of interest because in it are mentioned
techniques and options that could extend or improve their usual methods.

In this chapter we give a general introduction to expert judgment and to the
situations in which it is used. We define expert judgment as it will be covered in this book
and provide an overview of the methods that will be presented for eliciting and analyzing
expert judgment. Lastly, we describe our philosophy of elicitation and analysis as
background for understanding the methods presented.

What is Expert Judgment?

Expert judgment is data given by an expert in response to a technical problem. An
expert is a person who has background in the subject area and is recognized by his peers or
those conducting the study as qualified to answer questions. Questions are usually posed
to the experts because they cannot be answered by other means. For instance, it may be
impossible or impractical to measure the quantity of interest, such as the coal reserves in the
United States, therefore a judgment is needed. Areas for expert judgment can vary from
being an estimate of the number of homeless in the United States, to the probability of an
occurrence of a nuclear reactor accident of a particular type, to an assessment of whether a
person is likely to carry out a threatened act, to a description of the expert's thought
processes in arriving at any of the above answers. Expert judgment has also been called
expert opinion, subjective judgment, expert forecast, best estimate, educated guess, and
most recently, expert knowledge. Whatever it is called, expert judgment is more than a
guess. Itis an informed opinion based on the expert's training and experience.
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When Expert Judgment is Used

Expert judgment data has been used widely, especially in technical fields. Itis a
means of providing information when other sources, such as measurements, observations,
experimentation, or simulation, are unavailable. Furthermore, it can be employed to
supplement existing data when these are sparse, questionable, or only indirectly applicable.
For example, in a new reactor-risk study called NUREG-1150 (U.S. NRC 1989), expert
judgment was used where "experimental or observational data or validated computer
models were not available or not widely agreed upon" (Ortiz, Wheeler, Meyer, and Keeney
1988:4).
Expert judgment has been gathered, specifically, to meet the following needs.
¢ To provide estimates on new, rare, complex, or otherwise poorly
understood phenomena. Such phenomena have also been described as
being fuzzy or of high uncertainty. One example would be estimates of the
likelihood of the occurrence of rare reactor accidents. Another would be
estimates of the safety of new automotive fuels as, for example, in the early
eighties, when fuels such as liquid and compressed natural gas were being
proposed for automotive use, but little was known about how safe they would
be. To solve the problem a group of experts were convened to estimate the
relative safety of the new fuels by considering their physical properties in
combination with potential accident scenarios (Krupka, Peaslee, and Laquer
1983).

® To forecast future events. In general, when good actuarial data are
unavailable, predicting future events or actions requires use of expert judgment.
The experts are needed in order to adjust, sometimes radically, from the status
quo or past patterns in making predictions. For instance, businesses often rely
on expert judgment to forecast the market for their products. What the demand
for various utilities will be in the United States may also come from experts'
projections (Ascher 1978). A forecast of Soviet weapon capabilities for the
year 2000 as a means of determining what the weapon needs of the United
States will be for this same period can rely on the judgment of experts (Meyer,
Peaslee, and Booker 1982).

® To integrate or interpret existing data. Expert judgment is frequently
needed to organize qualitative information or mixtures of qualitative and
quantitative data into a framework for making decisions. Qualitative data are
any nonnumeric data, such as text on the expert's reasons for giving the
answer, or the expert's answer encoded in descriptive categories or preference
scales like poor, moderate, and good. Quantitative data are numeric data
such as estimates of probabilities, physical phenomenon such as temperature,
simple ranks or ratings (1-5), and error bounds on any such estimates of
probability, physical phenomenon, or ranks or ratings, etc. (0.75 £ 0.25).

For example, an expert might determine how his firm's quantitative data,
such as on projected cost, and qualitative data, such as on market potential,
should be modeled in order to make decisions about next year's product line.
And this data might include other expert's judgments, such as on market
potential.
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Similarly, expert judgment might be employed to interpret existing data,
even when that data is other expert judgment. For instance, decision makers
often interpret expert judgment data. They receive multiple and differing
experts' judgments and have to decide whether or how to use them.

Another situation in which experts interpret data is diagnosis. Medical
specialists frequently must interpret differing test results in arriving at a
decision.

¢ To learn an expert's problem-solving process or a group's
decision-making processes. Often the experts do not know how they
solve a problem or reach a decision because their thoughts have become
automatic and, thus, difficult to recall. Yet, this information on their problem
solving is needed to improve current practices, to train others, or to create
systems that provide expert advice.

One project involving learning the expert's problem solving focused on
discovering the expert's procedures in reaching a decision. In this project, the
experts were police officers who specialized in resolving hostage-taking events.
The experts assessed information on the situation and reached decisions on how
to proceed, such as whether to negotiate or resort to an assault (Vedder and
Mason 1987).

In another project, the goal was to provide guidance on how the
organization would make future decisions on the export of munitions. The
experts, members of different Army offices, divided the problem into parts and
specified the type of input that they wanted each office to provide in making the
larger decision (Meyer and Johnson 1985).

e To determine what is currently known, what is not known, and
what is worth learning in a field of knowledge (Ortiz et al. 1988). In
the reactor risk study, NUREG-1150, the experts exchanged the most up-to-
date information in preparation for giving their answers to particular questions.
As a result, they identified gaps in their field's state of knowledge and
determined in which areas they would most like to see research. This type of
information offers several benefits: it can serve as a complement to the current
state of knowledge or as motivation for further study.

Often expert judgment is used to address more than one of the above-mentioned
needs. Such was the case in the new reactor risk project, NUREG-1150 (Wheeler, Hora,
Cramond, and Unwin 1989), where the expert judgment met all of the above-mentioned
purposes. In addition, the gathering of expert judgment often provides side benefits: one
of the most common benefits being the facilitation of communication. The experts are able
to see how their judgments differ and relate to each other's views in an environment of
openness and objectivity. We have noticed that the synergism of interexpert discussion
stimulates results that would not have been achieved otherwise.

General Attributes of Expert Judgment

In general, expert judgment can be viewed as a representation, a snapshot, of the
expert's knowledge at the time of response to the technical question (Keeney and von
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Winterfeldt 1989). As Ascher (1978: 203) notes, "multiple-expert-opinion forecasts,
which require very little time or money, do very well in terms of accuracy because they
reflect the most-up-to-date consensus on core assumptions.” The expert's judgment
legitimately can and should change as the expert receives new information. In addition,
because the judgment reflects the expert's knowledge and learning, the experts can validly
differ in their judgments.

Frequenily, expert's answers are given in quantitative form, such as probabilities,
ratings, or odds. For instance, an expert's answer to the question could be respectively
0.10, 1 on a scale of 10, or 1 in 10 chances. Quantitative response modes are often
requested because the numeric data are more easily analyzed than qualitative data.

Much of expert judgment is the product of high-level thought processing, also
called knowledge-based cognition. By cognition is meant the mental activity that occurs
when a person is processing information, such as for solving a problem. Knowledge-
based cognition is the high-level interpretive or analytic thinking that we do when
confronted with new and uncertain decision situations (Dougherty, Fragola, and Collins
1986: 4-2) Thus, knowledge-based cognition is often invoked by the situations for which
expert judgment is sought.

The quality of expert judgment varies according to how the data are gathered, and
the data can be obtained in a variety of ways ranging from unconscious to deliberate.
Expert judgment can be gathered unconsciously, as often occurs in technical projects.
Analysts typically make decisions in defining problems, establishing boundary conditions,
and screening data without being aware that expert judgment (their own) has been used.

Expert judgment is also gathered deliberately, although even this type of gathering
varies along a continuum of informal to formal. On the informal end of the continuum,
experts are asked to provide judgments off the top of their heads. The informal means of
gathering expert judgment has been a source of current controversies involving expert
judgment. The most recent controversy involves psychologists and psychiatrists serving as
expert witnesses in legal proceedings. Recent articles have proclaimed that these expert
witnesses are no more accurate than lay persons, particularly in predicting an individual's
propensity for future violence. These situations illustrate that "without the safeguards of
the scientific method, clinicians are highly vulnerable to the problematic judgment practices
and cognitive limitations common to human beings" (Faust and Ziskin 1988: 33).

Formal means of gathering expert judgment usually involve selecting experts
according to particular criteria, designing elicitation methods, and specifying the mode in
which the expert is to respond. The formal approach to elicitation has two advantages over
its unconsciously or informally gathered counterparts. First, with the formal approach
more time and care is taken in eliciting the judgments. Because the quality of expert
judgment is often evaluated in terms of the methods used to gather the judgments, the
greater time and effort associated with the formal approach is an advantage. Second, the
formal approach is more likely to be documented than those that used unconsciously or less
formally. That is, records may be kept of which elicitation methods were used and of how
the experts arrived at their final judgments. Such a record allows the formal method and
its results to be scrutinized. Thus the formal approach is more likely to advance through
the process of reviews ( Ortiz et al. 1988).
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Expert Judgment Covered in This Book

Gathering expert judgment in a formal and structured manner is covered in this
book. An additional focal point is gathering expert judgment according to those methods
suggested by the research into human cognition and communication. Even the formal
means of gathering expert judgment have not generally made use of the rapidly emerging
body of literature on how best to obtain expert's judgments (i.e., how to avoid biases).
After all, expert judgment is frequently needed, and its gatherers are not always familiar
with the biases to which we, as humans, are prone. The result is that experts are asked to
provide estimates without concern to bias or the benefit of methods shown to improve
accuracy.

The research on how judgments should be elicited comes from three fields--
psychology, decision analysis, and more recently, knowledge acquisition, a branch of
artificial intelligence. Examples of works in the field are Hogarth (1980) for psychology,
Spetzler and Stael von Holstein (1975) for decision analysis, and Gaines and Boose (1988)
for knowledge acquisition.

Using the methods suggested by the research usually enhances the quality of the
expressed judgments. Following are some examples of just a few of the ways that research
can be applied to improving the gathering of expert judgment.

The use of one such method--breaking a problem into its component parts--has
been shown to yield more accurate answers (Hayes-Roth 1980 and Armstrong, Denniston,
and Gordon 1975).

Other research has shown that people have difficulty correctly translating their
judgments into quantities, such as probabilities. In the state-of-the-art elicitations of expert
judgment, either probabilities are not required or the experts are given lessons in their use
(U.S. NRC 1989).

Similarly, people are known to be unable to consider more than approximately
seven things at once (Miller 1956). To deal with this limitation, the experts may be asked
to use scales that allow them to compare two, rather than seven or more, things at a time.

In addition to focusing on eliciting expert judgment as suggested by the relevant
research, in this book we define expert judgment to include more than simply the expert's
estimates or solutions. We have broadened the traditional meaning of expert judgment
because we believe that all the data associated with the expert's answer are important to
understanding his answer. Indeed, many gatherers of expert judgment have begun to
document the expert's thoughts as well as their answers, perhaps because of the influence
of artificial intelligence and expert systems. From this point on, expert judgment will be
defined to include the following:

1. Any of the expert's work in selecting or defining the scope of the

problem. For example, in the reactor risk study mentioned earlier (U.S.
NRC 1989), the experts reviewed proposed problem areas--safety issues in
reactor risk studies--and added or deleted issues. The selected issues that they
chose and their criteria of selection are considered expert judgment, according to
this book's definition.

2. Any of the expert's work in refining the problem. In many uses of

expert judgment, the problem is depicted in some fashion, such as in scenarios,
tree structures, grids of the pertinent factors, and/or pages of explanatory text.
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In this book, all of these attempts to break the problem into parts and describe
them are considered to be expert judgment. For example, in the reactor risk
study, the experts took the questions to a more detailed level by breaking the
issues into parts--scenarios by which the particular failure could occur. The
problem--the check valve fails causing a loss-of-coolant accident-- was broken
into three scenarios that could cause an accident occurrence. One failure
scenario was for both valves to fail independently; a second was for one check
valve to fail to reclose, and a third was for the valve to randomly rupture (Ortiz
et al. 1988). In this same study, the key variables were operationally defined
by the experts. For instance, the experts set independent rupture to mean a
catastrophic leak, which in turn had been defined to mean a particular flow rate
Pper unit time.

3. Any of the expert's mental processes in arriving at a solution.
This aspect of expert judgment often involves the expert's sources of data,
definitions, assumptions, and mental procedures for processing the
information. For example, in the same reactor risk study, some experts used
information from event trees as their primary source of data in solving the
problem, others used information from experiments, and still others relied on
output from computer models. In addition, the expert's definition of terms are
considered part of his problem-solving processes. Often experts unconsciously
assign their own meanings to terms. For this reason, in the reactor risk study,
variables like catastrophic leak were given definitions by the panel of experts.
Experts also utilize cognitive techniques for helping them process the problem
information. One such technique, or shortcut, is to adjust up or down from a
base line. For example, an expert could evaluate the risk posed by a rare
accident by setting the frequency of a related but more common risk as his base
line.

The above-mentioned three categories of data relating to the expert's solving of the
problem will be referred to as expert data. In a risk analysis application, expert data is
likely to include the expert's assumptions, his definitions, and his decomposition of the
problem into its parts. In a knowledge acquisition (artificial intelligence) project, the expert
data could be the expert's rules or procedures for reaching a solution. Expert data is a
subset of an even more general class of information that is elicited from the experts. This
more general class is called ancillary data/information and it includes data gathered on
the educational background, work history, current job environment, or personality of the
expert. Additionally, the term estimates will refer to answers such as probabilities or
ratings that are given in quantified form. Solutions will refer to answers given in
qualitiative form, such as descriptive text or diagrams. Answers will be used as a general
term for both estimates and solutions. Expert judgment will be used as a cover term to
refer to a combination of the expert answers and ancillary information.
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How Expert Judgment is Elicited

How expert judgment has been elicited has differed widely even within a particular
field, such as risk analysis or knowledge acquisition. The following factors affect how the
expert judgment can be best gathered in particular situations:

® The type of information that is needed from the experts (answers only or

ancillary expert data)

® The form (response mode) in which the expert's answers are needed for
input into a model
The number of experts available
The interaction desired among the experts
Difficulty of setting up the problems
The amount of time and study needed by the experts to provide judgments
The time and resources available to the study
The methodological preferences of the interviewer or knowledge engineer,
analyst, funder, and experts

Elicitation is the process of gathering the expert judgment through specially
designed methods of verbal or written communication.

For example, in one situation, a large group of experts is convened for a week to
interactively construct a problem representation and to provide the estimates. They produce
a representation of all the factors involved in deciding whether to export an army-developed
technology (Meyer and Johnson 1985). During the week, the experts separately weight the
importance of these factors. They test their representation by applying it to an example and
examining the outcome from the mathematical processing of their estimates through the
decision framework.

In another situation, the experts are interviewed in depth, separately, to obtain their
judgment on the performance of their computer code in modeling reactor phenomena
(Meyer and Booker 1987b). They are asked to work the selected problem in the presence
of an interviewer and to explain in detail their thinking as they work through it. They are
requested to rate the computer's performance on a linear scale.

In a third situation, the experts are interviewed separately as well as convened for
discussions. The experts are first sent seismic-tectonic information and asked to detail
zones for the United States (Bernreuter, Savy, Mensing, Chen, and Davis 1985). They are
also asked to provide estimates on the frequency and magnitude of earthquakes by zone.
The experts are then convened and presented with a combined zone map and estimates of
earthquake phenomena. They receive the judgments of the other experts after these have
been made anonymous. They then have the opportunity to discuss this information
together and to privately and confidentially make adjustments to their estimates.

The above examples illustrate some of the diversity in elicitation processes.
Elicitation processes can also differ in terms of the following:

1. The degree to which the experts interact

2. The amount of structure imposed by a group moderator or interviewer on the

elicitation process

3. The number of meetings



Chapter 1

10

LRI &

10.

. The time allotted for structuring the problem, eliciting the expert judgment

. Who performs these tasks, the experts and/or the analyst

. The response mode in which the expert estimates are elicited

. Whether the expert's reasoning is requested or not

. The level of detail in the expert judgment elicited

. Whether the expert judgment undergoes some translation in a model and is

returned to the experts for the next step
Whether all or some of the elicitation is conducted in person, by mail, or by
telephone

Despite this diversity in the elicitation processes, there are only three basic
elicitation situations and a general sequence of steps. Expert judgment can be elicited
through the following:

Individual interviews in which one expert is interviewed in a private,
usually face-to-face situation, by an interviewer or knowledge engineer. This
situation is suited to obtaining in-depth data from the expert, such as on his
means of solving the problem, without having him distracted or influenced by
other experts.

The individual interview is also called the staticized or nominal-group
situation when the experts' estimates which have been obtained in private are
mathematically combined to form one group answer.

Interactive groups in which the experts are in a face-to-face situation with
both one another and a session moderator when they give their data. The
participants' interactions with one another can be structured to any degree: (1) a
totally unstructured group resembles a typical meeting; and (2) a highly
structured group is carefully choreographed as to when the experts present their
views and when there is open discussion to prevent some of the negative effects
of interaction.

Delphi in which the experts, in isolation from one another, give their
judgments to a moderator. The moderator makes the judgments anonymous,
redistributes them to the experts, and allows them to revise their previous
judgments. These iterations can be continued until consensus, if it is desired, is
achieved. This elicitation situation was developed by RAND as a means for
countering some of the biasing effects of interaction.

The general sequence of steps in the elicitation process is as follows:

1.
2.
3.
4.
5.
6.
7.

Selection of the question areas and particular questions

Refining of the questions

Selection and motivation of the experts

Selection of the components (building blocks) of elicitation

Designing and tailoring of the components of elicitation to fit the application
Practicing the elicitation and training the in-house personnel

Elicitating and documentating expert judgments (answers, and/or ancillary
information)



Introduction

Philosophy Guiding the Elicitation

The philosophy put forth in this book is that the elicitation be designed to fit the
experts and the way that humans think rather than forcing the experts to adapt to the
methods. We propose that the research on human limitations and tendencies toward bias be
taken into account in selecting the methods. For example, if the interviewer does not
consider people's limitation in comparing more than seven things at once in selecting
elicitation methods, the resulting data is less credible. If in the former case the expert
estimates are being used as inputs into a model or decision process, there is the danger of
garbage in, garbage out.

Also eliciting as much of the information on the expert's problem-solving processes
as possible is advocated in this book. We believe that this data is necessary to the
understanding of the expert's answers. Expert's estimates have been found to correlate to
the way that they solve the problem (Booker and Meyer 1988a, Meyer and Booker 1987b).
Frequently, the definitions or assumptions that the expert used explain why that particular
answer and not some other answer was reached. In addition, this type of data is valuable
later if multiple expert's estimates are to be mathematically combined to form a single
estimate. The expert data can guide the aggregation so that experts who construed the
problem very differently will not have their answers combined inappropriately . In general,
recording information on the expert's thinking allows the judgments to be more easily
updated as new information becomes available.

Another aspect of the elicitation philosophy is to control for the factors that can
enter into the elicitation process and influence the expert's problem solving. For example,
the phrasing of the problem, the interviewer's responses, and other participant's responses
can affect the answer an expert reaches. The elicitation methods, mentioned in chapters 7
and 8, are designed to control these influences. For those influences that can not be easily
controlled, such as the expert's tendency to anchor to his first impression, we recommend
gathering as much data as possible to analyze their effects.

Philosophy Guiding the Analysis

The analysis philosophy of this book complements that of the elicitation philosophy
mentioned above. Just as the elicitation approach allows the experts' capabilities to shape
the data-gathering methods, the analysis philosophy allows the data to dictate which
analytic methods are used. Thus, the analyses are data driven. This analysis approach is
used in the belief that it will produce the highest quality results.

As a part of the analysis philosophy, the analyses avoid assuming particular
properties of expert judgment. For example, the analyses do not a priori assume that the
expert judgment data is normally distributed, that the answers of multiple experts are
independent, or that the experts are perfectly calibrated (unbiased). Instead, the analysis
sections offer methods that either do not require these assumptions or that can test for the
existence of such properties. For example, nonparametric statistical procedures and
data-based simulation techniques are used because they do not depend on an assumed
distribution of the data.

11
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The analyses also avoid assuming that the expert's data are independent or
dependent (i.e., conditioned on some common factor, such as the expert's education).
Analysts have been driven into assuming independence in the past because they need to
combine multiple estimates into a single representative one, and most aggregation schemes
have required independence. Those aggregation schemes that have not required
independent data are more complicated and require information on the structure of
dependence, information which the researcher rarely has. As part of the analysis
philosophy in this book, simple methods from recent research (Booker and Meyer 1988b;
Meyer and Booker 1987b) are provided for testing for independence and for handling
dependence, if it is found.

In addition, the analyses allow the reader to check for biases in the elicitation
process or in the expert's judgment. Many users of expert judgment have been forced to
assume that the data was unbiased because they had no way of analyzing biased data. To
meet this need, the analysis section provides methods for investigating potential sources of
bias in the data elicited earlier .

A variety of methods are used to address the multivariate nature of expert judgment
data. The data is multivariate because it often includes answers to multiple problems, data
on the experts themselves, and mixtures of qualitative and quantitative data. Multivariate
analysis techniques allow the simultaneous consideration of two or more variables of
interest (Tietjen 1986). Thus, they can be used to investigate some of the more important
properties of the data, such as the dependence of experts. Several multivariate techniques,
such as cluster analysis, discriminant analysis, and general linear models
(GLMs), are used because no single one is universally applicable to the structure of expert
judgment data. In addition, methods are given for transforming qualitative data into
quantitative forms.

How to Use this Book

This book is divided into three parts--Part I Introduction to Expert Judgment,; Part
II: Elicitation Procedures; and Part Ill: Analysis Procedures. Part I consists of three
chapters. In chapter 1, Introduction, we have presented a description of what expert
judgment is and our philosophy for its elicitation and analysis. Chapter 2, Common
Questions and Pitfalls Concerning Expert Judgment, includes many questions asked about
expert judgment and the hidden traps encountered in eliciting or analyzing it. In the third
and last chapter, Part I: Background on Human Problem Solving and Bias, information on
how we as humans think and some of the consequences of those processes, such as
common biases, is provided. The background provided here is necessary to setting up,
selecting, and tailoring the elicitation method so as to obtain the best quality data possible.
Part II, chapters 4 through 10, containing sections on eliciting expert judgment, and Part
III, chapters 11 through 18 on analyzing results, are outlined by chapter in a flow chart
below. This chart gives guidance for the best use of these parts of the book, pointing out
the most efficient sequencing to use in differing situations. Appendices A through D
document the computer programs we have used. And finally, a glossary is provided as a
quick reference for the terms that have been highlighted in bold in the text. We expect the

12
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glossary to be a major aid to those readers who are unfamiliar with the book's terminology
and recommend that they refer to the glossary heavily at first.

There are several ways for the reader to use this book, depending on needs and
situation. The book proceeds sequentially from the selection of the problem (Part II) to the
elicitation procedures and the analysis of results (Part III). The reader can read about each
phase as he or she is ready to execute it. Reading portions in retrospect will give an
understanding of the strengths and weaknesses in how the phases were conducted. Most
of the chapters on the elicitation contain sections on common difficulties and means for
resolving them.

13
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Common Questions and Pitfalls Concerning Expert Judgment

Common Questions and

Pitfalls Concerning
Expert Judgment

In this chapter many of the common questions, often arising from misconceptions
concerning expert judgment, are addressed. In addition, information on those aspects of
elicitation and analysis that have typically caused problems are discussed under the
designation pitfalls. We hope that the information on pitfalls will alert the user and prevent
his falling into the difficulties described.

For the reader's convenience, the information on both the common questions asked
and the common pitfalls encountered are summarized in the lists below; later
questions/misconceptions and pitfalls are addressed at length.

Common Questions:

1. What does it mean when the experts disagree? When the experts
disagree, as they do with irritating frequency, it can mean that they interpreted
the question differently (i.e., took it to mean different things) or that they solved
it in using different methods (e.g., used different algorithms or data sources).
If the data indicates that the expert interpreted the question differently, one
option is to have the expert, who essentially answered a different question,
readdress the question as it has been defined by the other experts. His previous
response may be discarded as being invalid.

2. Is expert judgment scientific? We propose that the type of expert
judgment advocated in this book is scientific. The methods for gathering and
analyzing it are based on research that has followed the tenets of science--
observation, hypothesis formation, and experimentation.

3. Are experts Bayesian? People, in general, do not naturally follow the
philosophy developed from the application of Bayes Theorem. This philosophy
assumes that existing information is updated to account for new information as
it becomes available. In laboratory and real-life settings, experts may fail to
sufficiently adjust their estimates in view of new information, to grasp the
effects of sample size and variability, or to follow the axioms of probability
theory.
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4.

Do experts give better data? Whether experts give more accurate or better
quality data depends on the type of data that they are asked to give. In
providing predictions, humans are notoriously poor, and the experts have not
consistently been shown to be better than nonexperts. Experts are considered
better than nonexperts in providing data on the state of the knowledge in their
field, on how to solve problems, and on the certainty of their answers.

. Can experts be calibrated? Experts cannot yet be fully calibrated as some

technical instruments and processes are. Calibration means the comparison of
unknown instruments or processes to known or correct ones to adjust the
unknown ones until they match the known. To improve expert's calibration,
the feedback from the known procedures must be immediate, frequent, and
specific to the task (Lichtenstein, Fischhoff, and Phillips 1982), such as in
weather forecasting. This type of information is unavailable for the majority of
problems requiring expert judgment, at least in the risk and reliability fields.

Common Pitfalls:

1.

Interviewers, knowledge engineers, and analysts can introduce
bias. These persons can unintentionally introduce bias--that is cause an
altering of the expert's thinking or answers--in two ways. First, interviewers
or knowledge engineers, are likely to misinterpret the expert's data by
perceiving it to be the type of data that their training ideally equipped them to
handle (training bias). Second, analysts are likely to misrepresent the expert
data by forcing it to fit the models or analytic methods with which they are most
comfortable (tool bias).

. Experts are limited in the number of things that they can mentally

juggle. The limit to the amount of information that humans can process in
their short-term memory is seven plus or minus two (Miller 1956). This
information-processing limit is something to consider in designing the elicitation
situation.

. The level of detail in the data affects the analyses. The granularity

is the level of detail in a chunk of information (Waterman 1986). An example
of coarse granularity could be the basic functions of a nuclear power plant; an
example of finer granularity could be the subfunctions of one such function.
We have found that the granularity used in gathering the data influences the
results of the analyses.

. The conditioning effect poses difficulties in gathering and

analyzing expert data. The data that the expert gives can be conditioned on
a variety of factors, ranging from the wording of the problem to the expert's
internal mood. The conditioning effect poses problems because many factors
can intrude without the data gatherer's awareness, overlap with other variables,
and complicate the analyses.
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Questions
What Does It Mean When the Experts Disagree?

We are all acquainted with instances when the experts have disagreed. This
disagreement has led some persons to question the credibility of expert judgment. The
reaction, although natural, is based on a misconception about expert judgment. The
misconception is that expert judgment is reproducible--that experts, given the same data,
will reach the same conclusion, otherwise their judgment is questionable. This concept
comes from experiments in the hard sciences where reproducibility of results is used as a
yardstick. However, this concept is inappropriate and misleading when applied to expert
judgment for two reasons.

First, experts do not possess the same data, even if they are given the same
briefings and information as background to the problem. The expert's body of
knowledge, the primary reason for consulting him, is something which has been created
over time through the expert's professional experience (education, on-the-job-training, and
exposure to data bases or dramatic events in the field). Each expert's knowledge is,
therefore, different. In addition, what the experts do with their information, how they
consider the separate pieces, is likely to differ. For example, if two experts possessed the
exact same information, they would probably differ in their use of the data ( e.g., one
might consider a datum highly relevant to the case in point and use it whereas the other
might dismiss it from consideration). Because experts have different bodies of knowledge
and approaches to solving problems, their answers are likely to differ. The relationship
between the expert's problem-solving approach and the answer reached has been verified
by research (Booker and Meyer 1988a, 1988b; Meyer and Booker 1987b).

Second, expert judgment is frequently sought in situations where there are not clear
standards or well-developed theories as there are in many areas of the physical sciences.
For example, expert judgment is often sought for prediction, such as the likelihood of an
individual performing a threatened act, the chances of occurrence of a seismic disturbance
of a particular magnitude, or the probability of occurrence of a rare sequence of reactor
events. In the engineering sciences, where many standards are clearly defined, the experts
have guides to follow in reaching a decision. Such standards tend to reduce expert
variability in problem-solving approaches. However, in the fields where expert judgment
is usually elicited, such standards are not in place and therefore do not lead to greater
uniformity among the experts' solutions.

Thus, when the experts disagree, a valid interpretation would be that they have
interpreted and solved the problem in differing manners. If records have been kept as to
their problem-solving processes, one can pinpoint where they differed (e.g., in their
assumptions, definitions, or algorithms) and justify the later inclusion or exclusion of a
particular expert's answers. It may be that some of the expert's approaches are better
approximations of the reality (of the problem being posed) and therefore more likely to be
accurate, as proposed by the Brunswik lens model (Hogarth 1980:8) However, it is
difficult to select which approach is better when the right answer or approach is not
known. For this reason, differences among the experts can be interpreted in a positive
light as evidence that the different perspectives on the problem are being represented. In
fact, studies have shown that mathematically combining the experts' differing answers
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provides a better chance of covering the right answer than does the use of single expert's
answers.

Is Expert Judgment Valid Data?

Expert judgment has been called subjective data, subjective judgments, expert
estimates, and expert (judgment) data. If the data are in the form of probabilities, then
terms such as subjective probabilities and probability estimates have been used. Other
times expert judgment is called qualitative data even though the data itself may be in the
form of numbers rather than words. (The correct use of the term qualitative data is for non-
numeric data, regardless of its source.)

The term data has different meanings for different people. To some, data refers
exclusively to measured or observed numerical values (cardinal or real numbers). To
others, data is used in a less restrictive context and refers to information. Historically,
however, data has been cardinal (real-numbered values), ordinal (numeric or verbal ranks),
categorical (numeric or verbal classes or categories), or descriptive (words, phrases,
sentences). In this book the term data is used to refer to information either in a qualitative
or quantitative form.

Some have questioned whether expert judgment is data, or good data, given its
source. These individuals consider expert judgment to be lower in quality than hard data
that has been measured or obtained from observation or from instruments.

In this book, the hypothesis is that expert judgment data is comparable to any other
data. All data are an imperfect representation of the object they are supposed to represent.
Data from instruments are not a perfect representation for many reasons: random noise,
equipment malfunction, operator interference, data selection, or data interpretation. Expert
judgment data is no less representative of the underlying truth than data from instruments or
any other source of data.

Expert judgment data, like any other data, must be carefully gathered, analyzed, and
interpreted. The guidelines given in this book are designed to facilitate the careful handling
of expert judgment data.

Is Expert Judgment Scientific?

There are differing views as to whether the gathering of expert judgment can be
considered scientific. To arrive at an answer, one can consider the definition of science: "a
process or procedure for making inquiries of our world" (Hirely, 1989:25), with the basic
tenets of observation, hypothesis formation, and experimentation. Expert judgment studies
follow all these tenets. The large body of research on human judgment and problem
solving illustrates this point. For example, these topics have been the focus of tightly
controlled experiments: judgmental processes (Hogarth 1980; Kahneman and Tversky
1982), effects of problem decomposition (Hayes-Roth 1980; Armstrong, Denniston, and
Gordon 1975), memory functions (Ericsson and Simon 1980), effects of group dynamics
(Zimbardo 1983), effects of question phrasing (Payne 1951), probability estimation
(Spetzler and von Holstein 1975; Hogarth1980), and sources of interexpert correlation
(Booker and Meyer 1988a).
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In conducting the third tenet of science, experimentation, expert judgment studies
have faced challenges beyond those characteristic of the physical sciences. These
challenges stem from the use of human subjects. Human subjects have the capability of
manipulating the experiment while the typical subject of physical science studies do not.
For example, a chemist does not have to cope with an element suddenly changing its
behavior, such as its mass, because it favors a particular outcome in the experiment. In
addition, with human subjects, the data is generally conditioned on multitudes of unknown
and uncontrollable factors. An expert's judgment or descriptions of it can be conditioned
on attributes of the expert (assumptions and algorithms used in solving the problem,
training, past experiences, and so on), the interviewer's presence, the phrasing of the
question, and the responses (verbal and nonverbal, real and imagined) of the interviewer or
others. Factors such as the expert's mood prior to elicitation and aspects of his background
are among those that generally cannot be controlled.

In addition, the expert data gathered is often of a predictive nature which cannot be
objectively verified, at least not in real time. These judgments cannot be evaluated by
performing additional measurements of some physical property or by referring to some
authoritative text.

These aspects of expert judgment studies pose problems in experimental design.
Typically, experimental design involves the planning of a study in terms of what will be
observed for measurement and how it will be observed. In expert judgment studies and
applications, the investigator cannot totally control the entry of factors for observation
because the subject brings a variety of unknown ones to the elicitation. Then too, the small
sample sizes of expert judgment studies do not allow the data to rise above their effect. In
addition, the type of data gathered makes testing difficult, especially in a scientific tradition
that holds that "the world is objectively knowable and that deductions about it can be
tested" (Denning 1988).

In sum, we would argue that the field of expert judgment follows the tenets of
science and produces scientific studies. Furthermore, it is through the careful gathering,
use, and examination of expert judgment that this field will make further progress as a
science.

Are Experts Bayesian?

In the mathematical community, there are many analysts and theorists who advocate
the Bayesian philosophy of analysis. In the decision analysis and reliability assessment
communities, this philosophy has come to mean the evaluation of gathered data as they are
conditioned on other events or circumstances (variables). Given that the data are
conditioned on other variables, the Bayesian philosophy implies that as these conditions
change, the data changes. In other words, data are updated with changing conditions.
However, there is a major problem in applying Bayesian philosophy to expert judgment--
experts are not naturally Bayesian (Kahneman and Tversky 1982). Human cognitive
processes do not naturally follow Bayesian philosophy.

Humans are not Bayesian for a variety of reasons demonstrated in both laboratory
settings and actual applications. The above studies of Kahneman and Tversky have shown
that that experts fail to change or adjust their estimates in view of new information.
Mathematically, the failure to update estimates means that P(AIB)=P(AIC), i.e., the
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probability of A is not altered when the conditions governing A are changed from B to C.
This equation would only be true if P(A) was independent of any conditioning, i.e.,
P(AIC)=P(A) and P(AIB)=P(A). However, in estimating probabilities it is unlikely that any
event would be so totally independent of conditions.

Other characteristics of human cognition prevent humans, including experts, from
being Bayesian. Some of these characteristics are the inability to grasp the effects of
sample size, the frequencies of truly rare events, the meaning of randomness, and the
effects of variability (Hogarth 1975).

These same failings also contribute to human difficulties in estimating probabilities
in general (Kahneman and Tversky 1982). The human brain does not follow the axioms
(rules) of probability, such as all probabilities lie in the [0,1] interval and the sum of
mutually exclusive event probabilities must be 1. The probabilities elicited from a human
are not representative of a true, mathematical, probability measure. One of the purposes in
writing this book is to provide guidance on which inferences and interpretations can be
applied to expert judgment data.

Do Experts Give Better Data?

The literature differs on whether experts give better quality data than nonexperts.
Some reasons for this disparity in the literature might be the following:

e Real populations of experts are rarely used for these comparative studies

® Expert-level questions are not usually asked because of the difficulties in
evaluating the responses when there are no known answers

® A number of factors intervene in the comparison (e.g., the type of data the
expert is being asked to provide and in what form, or to whom the expert is
being compared, novices or persons with training in the field)

In other words, the answer to the question "Do experts give better data?" is that it
may depend on the type of data that they are asked to give. The expert can be asked: (1) to
make predictions, (2) to provide information on the field, (3) to show how to solve the
problem, or (4) to assess the accuracy of his responses.

It has been claimed that "there are no experts in forecasting change" (Armstrong
1981:89). Certainly studies in the social sciences and medicine have not consistently
shown experts to be better at predictions than lay persons (Armstrong 1981). Most of
these studies have aimed at predicting human behaviors, such as patients' lengths of stay in
mental institutions, or the winning scores of sports teams, or economic trends. For
instance, one highly publicized study of expert witness psychiatrists and psychologists
found expert prediction of future violence to be highly inaccurate and no better than that of
lay persons (Faust and Ziskin 1988). Faust and Ziskin noted (1988:33) that experts are
dependent on the state of their science, which in this case "lacks a formalized, general
theory of human behavior that permits accurate prediction." They proposed that both the
lay persons and the clinicians had resorted to using common cultural stereotypes and
assumptions about potentially violent people in making their predictions. Thus, their
predictions were similar and inaccurate.
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It should also be noted that prediction questions have been worded (without
technical jargon) so that they can be understood by novices and answered by guesses, as
opposed to problem-solving questions that a novice would find difficult to understand.
Thus, the wording of the questions may minimize the difference between the performance
of the expert and the novice.

Another reason why the experts do not significantly outperform nonexperts in
prediction may be because of the response modes that are used. Typically, subjects are
asked to give their predictions in the form of probabilities. While the experts may be
knowledgeable in the field of study, this is no guarantee that they will be expert in
assigning probabilities. (Being knowledgeable in the field of study is sometimes referred
to as substantive expertise and being knowledgeable in the use of the response mode as
normative expertise.) In general, people do not estimate probabilities in accordance
with statistical principles, as mentioned in the previous pitfall.

It is generally thought that experts are both better on knowing the state-of-the-art
and at providing data on how the problem can be solved. In more detail, this data could
encompass formulating the problem, interpreting it, determining what additional
information is needed to solve it, knowing whether and where this data is available,
knowing how to solve the problem, providing the solution, and estimating how much
confidence can be placed in the solution. Typically, all of this knowledge is used in an
artificial intelligence application and has been documented in recent probabilistic risk
assessments (U.S. NRC 1989). In these uses of expert judgment, the expert's judgment is
not as frequently encoded in a response mode and, therefore, may more directly reflect their
substantive expertise.

Armstrong (1981), who has questioned the value of experts in prediction, considers
problem solving to be a proper area for the use of experts. This view seems to be held
even more strongly in the expert systems community, where the knowledge engineer is
likely to be advised to "be sure to pick an expert highly skilled in the target domain"
(Waterman 1986:192). Use of a true expert is given as the means for "extracting high
quality data” and for avoiding great difficulties.

There is some evidence that experts think differently than nonexperts when solving
problems in their area of expertise. Best documented is the expert's ability to recall greater
amounts of relevant visual information. For example, skilled electronics technicians were
able to recall more of briefly shown circuit diagrams than the novices (Egan and Schwartz
1979). It is proposed that experts are able to code, for memory, chunks or groups of
information that are conceptually related. It is also commonly proposed that experts are
more abstract, pattern types of thinkers than nonexperts (Denning 1986; Doughterty et al.
1986). For example, the Dreyfuses (1986) characterize a novice as knowing basic facts
and context-independent rules; an expert as having little conscious awareness of these rules
but an ability to visualize and manipulate whole sets of objects and situations.

Another type of data that subjects can give is an assessment of their own accuracy
or confidence in their answer. The process of trying to assess or improve the accuracy of
the expert judgment is sometimes called calibration. These assessments are frequently
given as probabilities. In general, people are very poor at assessing the accuracy of their
own answers and are usually overconfident; that is, most individuals would estimate the
chances of their solution being correct more highly than warranted. However, Lichtenstein
and Fischhoff (1977) have found that those knowledgeable in the field are less prone to this
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overconfidence bias than those who are not. An individual's calibration improves with
knowledge (as measured by percentage of correct answers) until the individual has over
80% of his answers correct. Then, those with over 80% of their answers correct become
less well calibrated because they tend toward underconfidence. It may be that those who
are very knowledgeable are more aware of the dangers of estimation and thus increasingly
tend to underestimate their accuracy.

In sum, the quality of expert judgment may depend on the area of questioning, the
wording of the question, the form in which the expert responds, and the person to whom
the expert is being compared. However, the current view is that experts provide better data
in situations requiring their insights into the problem, such as in solving a problem or
assessing their own accuracy. These situations generally occur in the building of expert or
knowedge-based systems.

It should also be noted that there are additional benefits, beyond the quality of the
data, from using experts. Using experts motivates other experts to participate in the study
and thus increases the study's credibility.

Can Experts Be Calibrated?

The concept of calibration is a basic part of the scientific method. Calibration is
used here to mean the comparison of an unknown (instrument or process) with a known,
defined standard or a correct procedure in order to adjust the unknown until it matches the
standard. Until recently, calibration was applied only to measuring devices or processes
for which standards or known quantities were available or defined. Thus, the concept of
calibrating experts seemed a reasonable approach for getting better expert judgment data.

The conclusions from experimental studies indicate that experts cannot yet be fully
calibrated. Studies by many such as Lichtenstein, Fischhoff and Phillips (1982) show that
feedback on the outcome of events can reduce, but not eliminate, the biases which hamper
calibration. In order for feedback to be effective as a calibration tool, it must be immediate,
frequent, and specific to the task. Such feedback cannot be given for problems where the
outcomes are unknown, as is often the case in risk and reliability assessments.

While this situation of uncalibrated experts and unknown outcomes may seem
problematic, many users of expert judgment, such as decision makers, do not worry about
biases arising from their experts. Instead, they tend to have faith in experts because they
perceive them as being very knowledgeable (Morris 1986).

This faith in the expert's judgment is not to imply that the calibration problem is
being ignored by researchers. On the contrary, many decision analysts are focusing on the
problems arising from the expert decision-maker interaction in view of calibration issues.
In many applications, calibration of the expert cannot be defined independently of the
decision maker (French 1986) because the decision maker factors the expert's thinking into
his own in reaching a final decision. Ideally, the experts should be calibrated to the
problem and to the decision maker. (This dependent relationship between the experts and
the decision maker is further discussed in the section on different application environments
in chapter 16.)

The decision maker also affects calibration through the evaluation of his own and
the expert's calibration. For example, a decision maker who sees himself as miscalibrated
can induce additional biases and misconceptions by overcompensating for his calibration.

24



Common Questions and Pitfalls Concerning Expert Judgment

He may not be able to perceive independence when it actually exits (Harrison 1977). Thus,
awareness of miscalibration and overcompensation for it, just as ignorance of it, can
exacerbate calibration problems.

In sum, calibration enters into many aspects of expert judgment and its use.
However, the means for measuring the degree of miscalibration or preventing it requires
further research.

Pitfalls

Interviewers, Knowledge Engineers, and Analysts Can
Introduce Bias

The interviewer, knowledge engineer, or analyst can unintentionally introduce bias
into expert judgment. The bias referred to here is motivational bias: an altering of the
expert's responses due to the influence of the interviewer, knowledge engineer, or analyst.
Specifically the data gatherers and analysts can cause bias through misinterpretation or
misrepresentation of the expert data.

While the data is being gathered, the interviewers and knowledge engineers can bias
the expert's data by misinterpreting it. When interviewers or knowledge engineers listen to
experts and record their thoughts, they are likely to be influenced by what they already
know or believe, their training, and their experience. For example, when an engineer,
economist, and decision analyst met initially with military experts on a manufacturing
matter, each interpreted the information in terms of her own training. The engineer
perceived the problem to be an engineering one, the economist a cost/benefit one, and the
decision analyst a multiattribute decision-theory one. Each questioned the experts to obtain
the additional information that they needed to apply their orientation in greater depth. Each
interviewer believed that she had received information that confirmed the applicability of
her training to treating the matter. For this reason, we also refer to this source of bias as
training bias.

In the later stages of an expert judgment project when the data must be represented,
modeled, or analyzed, there is the potential for misrepresentation. In performing analyses,
we have the tendency to force the data to fit the models or methods with which we are most
comfortable or familiar. For this reason, misrepresentation is also referred to as tool
bias. It is as if we had one tool, such as a wrench, and tried to use it on all problems--
tightening bolts, pounding in nails, and removing nails. This favored tool would work
well in some tasks and inadequately in others, such as in pounding in nails. However, it is
likely that in continued use of the tool we would be intent on its use and unaware of its
shortcomings or of a better alternative. For example, an analyst may wish to use a model
that requires either independence or a particular distribution. She will probably assume that
the data meets these requirements (or hope for robustness) so that the model can be used.
The validity of these assumptions may not be questioned by the analyst owing to some of
the social and psychological mechanisms discussed below.

It should be noted that the training and the tool bias are connected. They are
connected because inherent in our fields are values that predispose us toward particular
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approaches and methods. For example, artificial intelligence (Henrion and Cooley 1987)
and cultural anthropology have valued the expert's knowledge and viewed it as the gold
standard to be extracted and emulated. By contrast, the fields of decision analysis,
statistics, and operations research have viewed particular mathematical and statistical rules
as the standard (Henrion and Cooley 1987). Expert data is valued if it exhibits these
standards, such as the axioms of probability and Bayesian philosophy. The methods that
these two orientations use reflect their values. Artificial intelligence and cultural
anthropology favor methods that are designed to obtain and represent the expert's natural
way of thinking. The approaches of decision analysis and statistics correct for what they
consider to be limitations in human information processing.

Why are we, as humans, prone to these subtle but pervasive biases? Why do we
selectively take in data that supports what we already know, and believe that it can be
handled by the approaches, models, or methods that we prefer? First, it should be noted
that all of human perception is selective and learned. Our perceptions of reality, of what is,
are conditioned at a cultural, societal, and individual level.

At the cultural level, meaning and structure are imposed and then taken for reality
by members of that culture. For example, members of this western scientific culture would
take the color spectrum, such as in a rainbow, and divide it into four to six colors--violet,
blue, green, yellow, orange, and red. In another culture, the people would not see the
segmentation that we do. Instead, they might have been conditioned to view the spectrum
as consisting of wet and dry colors. The members of both of these cultures have been
conditioned to see color in a particular way and to believe that it objectively exists as they
perceive it.

At the societal level, our training leads us to define and structure problems in
particular ways, to use our field's methods, and to value special types of data. Yet, we
forget that these are learned values and tend to proceed as if they were simply truths that
were revealed through our learning experiences. For example, many of the hard scientists
believe that the only true data are the quantitative measurements gathered by instruments
during physical experiments.

At the individual level, our desire to be able to handle the problem leads us to use
those tools that we know best, and then believe that they worked. There is a psychological
mechanism that allows us to avoid becoming aware of when our beliefs and perceptions do
not match, such as when the use of a favored method was inappropriate. The
psychological theory of cognitive dissonance (Festinger 1957) predicts that when we have
either two beliefs or a belief and a perception in conflict, the conflict will be resolved
unconsciously. Many tests have shown that people selectively pay attention to information
that confirms their beliefs and discount that which could cause conflict (Baron and Byrne
1981). Scientists are not immune (Armstrong 1981; Mahoney 1976). For example,
scientists tend to notice the data that confirms their hypotheses and either miss or discount
the negative evidence (e.g., the data must be noisy, the equipment probably malfunctioned,
or there could have been operator interference).

How can we guard against our own tendencies to introduce bias? First, we can
strive to remain aware of this tendency. Second, we can use elicitation methods that are
designed to minimize the role of, and hence the opportunity for interpretation of, the
interviewer or knowledge engineer. These methods (chapter 7) used for obtaining data on
the expert's answer and/or problem-solving processes, place the emphasis on the expert.
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Because the focus is on learning the expert's thoughts and words and using them to pursue
questioning, there is less room for the views of the data gatherer to intrude. In addition,
the data gatherer can adopt the goal of being like a blank slate to avoid translating the
expert's data into her own concepts. (See the section in chapter 3, Countering or Reducing
Bias--More Art Than Science.) Last, we can use analysis methods that require the making
of minimal assumptions, as described in the section Philosophy Guiding the Analysis in
chapter 1.

Experts are Limited in the Number of Things that They
Can Mentally Juggle

There are limits to the amount of information that we can process in solving
problems. The classic paper by Miller (1956) identifies the number of things that people
can accurately discriminate. In these studies, the subjects were differentiating things on the
basis of one attribute, such as the volume of the sound. For example, when subjects were
played a sound at varying levels of loudness, they could accurately discern about seven
levels. Experiments were also conducted on differentiating the size of drawn squares, on
the saltiness of various solutions, and on musical notes. From many such experiments,
Miller determined that seven is the limit of our processing capacity because the number of
errors increases greatly after that point.

The number seven is not a strict limit because, under particular conditions, we
exceed it. We can go beyond the limit when we consider multidimensional data, when we
perform relative rather than absolute comparisons, and when we make several absolute
judgments in a row. Multidimensional data is the input that we receive simultaneously
from our five senses and assess and act on as functioning human beings. As in our daily
judgments, the limit of seven was exceeded in experiments using multidimensional
attributes. For example, in one experiment which produced combinations of six acoustical
variables, subjects were able to discern, without error, about 150 different categories.
While we are able to judge more things using multidimensional attributes, this capacity also
has its limits. In particular, when the total capacity of our information processing is
increased, our accuracy on any particular item is decreased. In other words, when making
multidimensional judgments, "we can make relatively crude judgments of several things
simultaneously.” (Miller 1956:88)

We can also exceed the limit of seven when we perform relative comparisons.
Relative comparisons allow individuals to judge things with respect to one another and are
frequently done on two things at a time. For example, A could be compared to B, B to C,
Cto A, and so on.

When several absolute judgments are made in a row, the information must be stored
in short-term memory. Memory has its own limitations, such as the number of things that
can be retained for short-term consideration. Memory limits can be expanded because
humans have the capability of grouping or organizing more information per thing. This
principle is called chunking. For example, a person learning radiotelegraphic code, first
hears each dit and dat as separate chunks. Later, this person can organize letters, words,
and even phrases into chunks. Experts have been found to be much more proficient at
chunking data than novices. For example, skilled electrical technicians, in contrast to
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novices, can briefly view a circuit diagram and immediately reconstruct most of it from
memory (Egan and Schwartz 1979).

The information mentioned in this section has several implications for expert
judgment. At the very least, an interviewer would not want to create an elicitation situation
where the experts had to mentally juggle more than seven items at a time. Miller’s research
suggests that rating scales with seven or less gradations are the most useful because in
larger samples finer discriminations are lost. If the project demands that a high number of
distinctions be made simultaneously, the experts will judge these more crudely than if they
had considered them separately. In contrast, methods requiring subjects to compare two
items at a time will avoid the limit of seven and produce more precise judgments. In
addition, experts, as opposed to nonexperts, may be more capable of receiving and
handling larger magnitudes of information because of their ability to chunk it.

The Level of Detail in the Data (Granularity) Affects the
Analyses

The term granularity has its origins in fields such as numerical analysis and artificial
intelligence. In artificial intelligence, granularity is defined as "the level of detail in a chunk
of information” (Waterman 1986). An example of coarse granularity might be the basic
functions of a nuclear power plant; an example of finer granularity could be the
subfunctions of one such function. In numerical analysis, granularity refers to the
computational grid size used for defining the level at which the computations are made.
Granularity is the level of detail at which the data is gathered, processed, and interpreted.
Therefore, this level establishes the framework of operation for the problem.

The granularity, or level of detail, is an inherent part of the experimental design of a
study. In most applications, this level is dictated by some limiting aspect of the problem,
such as the goals of the study or the complexity of the questions asked. Thus, in most
problems, the selection of the level is done implicitly and not as a separate, conscious
decision. For example, in the design of a simple voter poll, the goal of the problem
defines the granularity. If the goal is to determine for which party an individual voted, it
would not be necessary to gather information on the voter's property holdings. If,
however, one of the election issues was to determine who would support an increase in
property taxes, this finer level of property information might become important. The latter
goal is at a more specific level, and the information required must be correspondingly more
detailed. Generally, providing data to answer the question why requires that a finer
granularity of data be gathered.

The level of detail is also dependent upon the complexity of the problem. On
simpler questions, such as those whose answers can be verified (e.g., almanac questions),
the subject's problem-solving processes tend to be more structured and detailed. Thus,
they are easier for the interviewer to record and for the analyst to model in full detail. On
complex problems, the information tends to be more plentiful and less structured or clear.
The subject and the interviewer may encounter the limitations to information processing
mentioned in the previous section, Experts are Limited in the Number of Things that They
Can Mentally Juggle. The subject is driven to using heuristics to simplify the problem
solving. The subject struggles to report these complex processes, usually simplifying them
or leaving out parts in the translation. In attempting to follow the interviewee's account,
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the interviewer is likely to further screen and abstract the information. As a consequence,
even though there is a fine granularity of data associated with solving complex questions,
this level of detail is not as easy to extract or document as it is on simpler problems.

The level of granularity greatly affects model formation and interpretation and the
conclusions reached. For example, different models can be formed depending on the
chosen level of granularity. Typically, the analyst must construct a model whose level of
detail is dictated by the data content of the subject who has provided the least or the most
general information.

Granularity is also an issue in the interpretation of the data. The analyst sees data
from her own perspective, which is not necessarily the same perspective as that of the
subject from which it was gathered. When the analyst screens, transforms, and constructs
problem-solving models, the granularity becomes a function of the analyst's thinking. The
analyst is led, often unconsciously, to force the data into the desired level for fitting a pre-
conceived model or hypothesis (See also the first pitfall under Common Pitfalls:
Interviewers, Knowledge Engineers, and Analysts Can Introduce Bias.). Thus, the
analyst's preconceptions can affect the way in which the data is represented. This pitfall is
especially likely to occur when the data is highly qualitative, with high uncertainties, as is
often the case with expert judgment.

An example of how granularity affects conclusions can be seen in studies of
interexpert correlation (Booker and Meyer 1988a, Meyer and Booker 1987b). In the first
study, (Booker and Meyer 1988a), where the problem-solving of expert statisticians were
being studied, the technical questions asked of the experts were of simple construction.
Very specific problem-solving features could be modeled and the statisticians were
compared using standard general linear models. The conclusion was that experts using
similar rules of thumb and assumptions reached similar solutions. Therefore, correlation
among the experts appeared to exist at the detailed level of their problem-solving models.
In the second study (Meyer and Booker 1987b), the technical questions asked of nuclear
engineers were more complex in structure. The specific heuristics and assumptions that
they used were so varied that the design matrix was prohibitively sparse for use in standard
models. Thus, the problem-solving models had to be constructed at a more general level.
When these models were constructed at a more general level, which mirrored the ways that
the experts processed the magnitudes of information, the answers were found again to
correlate with the expert's problem-solving techniques. If conclusions for the second study
had been drawn at the same level as in the first study, there would have been no evidence
for any interexpert correlation. This effect occurs because finding correlation depends on
having the right data-to-noise ratio, something that the level of granularity determines.
(Glen Shafer, originator of the Dempster-Shafer theory of belief functions, currently at the
University of Kansas, is credited with calling this relationship to our attention.) In sum,
conclusions can differ depending on the granularity of the models chosen.

The Conditioning Effect Poses Difficulties in Gathering
and Analyzing Expert Data

The data that the expert gives can be conditioned on a wide variety of factors,

ranging from the wording of the problem, the elicitation site and reference materials that it
contains, the expert's internal state at the time of questioning, the expert's method of
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solving the problem, the interviewer's or other's responses to the expert's data, to the
expert's skill at articulating his thoughts. The authors believe that expert data is more
highly conditioned than other kinds of data and that this attribute complicates the study of
expert data.

The conditioning effect poses problems for the elicitation and analysis of expert
judgment. Many of the factors are ones that the researcher has little or no control over.
For example, in an elicitation session, the interviewer has little control over the state of
mind that the expert brings to the session, particularly if that state has been affected by
some event in the expert's private life. Furthermore, the factors often overlap and cannot
be separated for analysis of their effects on the data (Meyer and Booker 1987a).

The conditioning effect relates to the problem of bias in expert data. Some of the
conditioning effects could be labeled as causes of bias. That is, they lead to an altering of
the expert's responses, or they lead to judgments that do not obey mathematical and
statistical standards. For example, the interviewer's negative response to some aspect of
the expert's problem solving could alter, or bias, the expert's subsequent problem solving.
Then too, the expert's use of a shortcut in problem-solving (heuristic), such as using the
present as a baseline from which to estimate future patterns, could bias his answer
(Hogarth 1980).

A two-step approach is recommended for handling the conditioning effect and its
offshoot, bias: (1) control those factors which can be controlled, and (2) gather as much
data as possible on those factors that cannot be controlled so that the data may be analyzed
later for their effect. For example, factors that relate to the question or the elicitation
situation (e.g.,the wording of the question, its timing, the elicitation method, response
mode, and dispersion measures) are under the discretion of the project personnel and can
be designed with the conditioning effect in mind. Other factors, such as the expert's
internal state, personality attributes, and professional background are not as easily
controlled by project personnel. However, data can be gathered on them through a series
of demographic questions administered before or after the expert solves the problem. In
these two ways, the effects of conditioning can be examined, if not reduced.
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Background on Human
Problem Solving and Bias

In this chapter we provide a general background on how humans solve problems.
In addition, we discuss the effects of bias and propose a program for handling its
occurrence.

Why Is It Necessary to Have an Understanding
of Human Problem Solving?

It is a premise of this book that awareness of how people solve problems or of the
causes of bias is necessary to optimally designing an elicitation method. For example, if
the interviewer were not aware that an expert's reasoning in solving a problem was only
briefly available in his short-term memory, she might ask the expert for this information
hours after it was gone. Similarly, if the researcher were not aware of the potential for
bias, she would not design measures to detect or counter it. Bias is just beginning to be
addressed as a problem affecting the quality of expert judgment.

What Is Involved in Solving Problems and
Responding?

Frequently, those new to interviewing are unaware of the magnitude of the
cognitive tasks that they are demanding of the expert in problem solving. After all, they
reason, the experts solve problems every day. However, problem solving is not a simple
task, and quite often the elicitation methods place additional cognitive burdens on this
natural process like requesting the expert to answer using difficult response modes, such as
logarithms.
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The Four Cognitive Tasks

The expert is likely to perform four cognitive tasks during elicitation (Mathiowetz
1987):
. Understanding the question
. Retrieving the relevant information
. Making judgments
. Formulating and reporting an answer

Wi -

The first task can be described as involving the expert's comprehension of the
wording and context of the question. The interviewer may use a different nomenclature
than the expert knows or she may use terms familiar to the expert but the terms may mean
something different. The expert must also determine the aims of the question and limit his
analytic frame to focus within that context.

The second task consists of the expert's retrieval of relevant information for
answering the question. To retrieve this information, the expert must have previously
received it and stored it in memory.

It should be noted that humans do not perceive and store all the data that is available
to them. Instead, we tend to selectively notice data that supports information which we
already possess. This failing is part of the reason why humans are not Bayesians (for
further information, see Are Experts Bayesian? in chapter 2). For example, studies have
shown that we pay attention to data that supports our hypotheses but ignore data that
conflicts (Armstrong 1981). In addition, it is not raw data that is assimilated by a person
but data that is interpreted in light of what the person has learned either individually or as a
member of a particular culture. Thus, the expert retrieves data that has had at least one level
of interpretation above that of objective reality.

Not all information is stored to be later accessed. Then too, mistakes are made in
accessing memories. Often, the association used to access the memory can impact on what
is retrieved. For example, if the expert accessed the information through a time frame, a
different reconstruction of the memory could result than if he accessed it by way of a key
word. In addition, the expert may not be able to distinguish between similar or related
events. He may combine memories of separate events, confusing their characteristics and
the time when they occurred.

The third task, making judgments, involves processing the information.
Typically, people use mental shortcuts, heuristics, to assist in integrating and processing
the information (Tversky and Kahneman 1974; Hogarth 1980). In simplifying the
processing, these heuristics often skew the answer reached. For example, one heuristic is
termed anchoring and adjustment. This heuristic is defined by Tversky and
Kahneman (1974) as occurring when an individual reaches a final answer by starting from
an initial value and adjusting from it. The initial value can be supplied with the question, or
it can be determined by the expert through his impressions or computations. Usually, the
final answer reflects, or is skewed toward, the initial value. For example, if an expert were
trying to evaluate how well a complex computer code predicted experimental results, his
first impression might be that it did a good job. After considering the problem in more
depth, he might find a number of places where the code failed to adequately predict the
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experimental results. Yet, the expert would be likely to give a final rating that was closer to
his first impression than to his second thoughts (Meyer and Booker 1987b).

Tke fourth task, formulating a response, requires that the subject report an
answer. If the expert is to use a particular response mode, this task includes his translation
of his internal answer into the response mode. The expert may use some algorithms in
selecting the response option that best expresses his concept of the answer. Often,
response modes, such as probabilities, are governed by logical rules. Thus, the expert may
also consider these rules. For example, in putting his answer in the desired form he may
say, "my probabilities need to be values between 0.0 and 1.0."

A Simple Mechanistic Model of Human Information
Processing

These cognitive tasks can be described mechanistically using the simple model of
Ericsson and Simon (1980). We chose this model because it makes minimal assumptions
about these relatively unknown processes.

The expert's thought processes can be described as involving a central processor
and several types of memory that possess differing capacities and capabilities. For
example, the short-term memory (STM) is of limited capacity and intermediate duration.
The long-term memory (LTM) is of large capacity and relatively permanent duration.
Information recently acquired (by the central processor) relating to the problem is kept in
the STM for further processing. Only the most recently heeded information is accessible in
the limited storage of the STM. Thus, in solving a problem, information is moved back
and forth from the STM to the LTM. The expert's LTM can contain information from
previous experiences, or it can have by-products of his current efforts in solving the
problem. For example, if the expert needs the solution to an equation as a step in solving
the problem, he may pull the equation from LTM. He may solve the equation and proceed
with its product, relegating the intermediate variables and equation back to LTM. The STM
has pointers to information in LTM. A portion of STMs are fixated in LTM before they are
lost and can sometimes be retrieved from LTM.

According to this model, the optimal time for eliciting the expert's thinking would
be while these thoughts were still in STM. Later, only a portion of what was in the
expert's STM will have been fixed in his LTM and only a portion of that fixed in the LTM
might be successfully accessed and retrieved. Thus, instead of the expert giving a simple
report of his problem-solving processes at the time, the expert will have to recall what he
did as a separate problem.

Bias

Another aspect of how people solve problems is bias. Bias is a skewing of the
expert's judgment from what it is thought that it should be. There are reference points on
what expert judgment should be: (1) the expert's thinking or answers; and (2) data which
follows particular norms or standards. These reference points form the two definitions of
bias--a skewing from the expert's natural way of thinking or from objective standards. The
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two views on what constitutes bias come from the literature on expert judgment, judgment
theory, decision analysis, and knowledge acquisition.

Two Views of Bias

The first view of bias, sometimes termed motivational bias, proposes that bias
occurs when the expert's reports of his thoughts or answers are altered by the elicitation
process. Thus, if the expert gives a different response than he believes because of
comments from the knowledge engineer, this constitutes bias. This view of bias comes
from the soft sciences, particularly psychology and ethnology (cultural anthropology).
Proponents of this view consider the expert's thinking to be the gold standard that they
wish to capture through the elicitation or the building of a knowledge-based system
(Henrion and Cooley 1987).

The second view of bias, sometimes termed cognitive bias, defines bias as
occurring when the expert's knowledge does not follow normative, statistical, or logical
rules. To illustrate, if an expert would give probability estimates on all outcomes to a
problem (previously defined as being mutually exclusive) and these probabilities did not
sum to 1.0, this data would be considered biased. This view of bias comes to knowledge
acquisition from the fields of decision analysis and statistics (Mumpower, Phillips, Renn,
and Uppuluri 1987). The goal of this position is not to mimic the expert's thinking but to
improve on it (Henrion and Cooley 1987), such as by bringing the bias to the expert's
attention for correction.

Potential Impact of Bias

Bias can degrade the quality of the data, whether the bias is judged from the
standard of the expert's problem-solving processes or from the standard of statistics and
logic. To illustrate how motivational bias can affect the data, suppose that the interviewer
asks the expert if he mentally models the problem using a decision tree structure. The
expert may be led to answer "yes" even if he did not use this means of modeling. The
interviewer than faces the difficulty of resolving the discrepancies that are likely to arise
between the expert's claim and his answers (Meyer, Mniszewski, and Peaslee 1989).
Cognitive bias has been found to affect expert judgment and to result in solutions that are
not mathematically optimal. For instance, in making judgments people often use
simplifying heuristics that skew the answer reached (Tversky and Kahneman 1974,
Hogarth 1980).

Because expert data is often used as input to important decisions and computer
models, bias can contribute to the problem of garbage in, garbage out The same is true in
building expert systems.

The problem of bias also needs to be addressed because of its impact on the
credibility of a project. Regardless of whether or not bias was expected to pose problems,
a study is open to criticism if it has failed to address bias through experimental design.
Bias needs to be monitored or controlled and analyzed for its impact.

The topic of expert bias has recently come into vogue. In particular, many have
become aware of how the interviewer or others can lead the expert's thinking. For this
reason, we have found that outside reviewers are particularly critical of methods where
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there has been no attempt to control for these influences. For instance, one of the first
criticisms a review panel (Kouts, Cornell, Farmer, Hanauer, and Rasmussen 1987:7) made
of the expert judgment methods used in a Nuclear Regulatory Commission project, the
1987 draft version of NUREG-1150, was that "each expert should be free to make this
characterization [of the problem areas] independently of decisions by others."

Causes of Bias

While the basic cause of both types of bias is the human being, the exact
mechanisms by which bias is induced differ. Motivational bias is caused by our needs,
such as for acceptance; cognitive bias is induced by the way in which we process
information.

Motivational bias

Motivational bias can occur as a result of the following circumstances: (1) the
expert does not report what his solutions or thought processes actually were, (2) the
interviewer or knowledge engineer misinterprets the expert's report, or (3) the analyst
misrepresents the expert's knowledge.

In the first aspect of motivational bias, altering of the expert's reporting, the
phrasing of the interview questions could cause the expert to change his descriptions of his
thinking. For example, if the interviewer asks the expert if he used subgoal x in solving
the problem, the expert may answer "yes," even if he did not, and then he may begin using
subgoal x on future problems. The mode in which the expert is asked to respond can also
bias the expert's answer if he cannot accurately encode his final judgment in that mode.
Some common response modes are probability distributions, continuous linear scales,
Saaty's paired comparisons, ratings, and rankings. Then too, the interviewer's verbal or
nonverbal responses can influence the expert's thinking. For instance, if the interviewer
leans forward, displaying intense interest in something that the expert is saying, the expert
may unconsciously respond by exaggerating his statements on this topic. Other experts, in
interaction with the expert, can have similar effects on the expert's thinking. Furthermore,
experts' descriptions of their thinking can be affected by their perception of how those not
physically present, such as clients or supervisors, might view their responses. For
example, if an expert judged that his response might irritate his supervisors, he might let
that fact influence his reporting of his data.

There are several reasons why the expert's thinking can be influenced by others.
First, most people have an emotional need to be accepted and to receive approval
(Zimbardo 1983). Second, people are generally unaware of how they make decisions
(Hogarth 1980:ix), such as in solving problems. Yet, it is difficult for them to admit
ignorance because western scientific tradition assumes that the problem-solving process can
be precisely stated (Denning 1986:345). Thus, in elicitation situations, the expert is likely
to be responsive to what he believes the interviewer, knowledge engineer, or other experts
wish to hear. Their expectations or wishes are communicated, often unconsciously,
through their questions, responses to the expert, and body language. The expert is likely
to acquiesce unconsciously to suggestions of an acceptable answer or to means by which
he might have solved the problem.
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The expert's thinking can be biased by another source--the interviewer or
knowledge engineer's interpretation of his thinking. We, as humans, tend to
perceive and interpret incoming information in a selective way that supports what we
already believe. Sometimes, this tendency leads to a misinterpretation, or biasing, of the
information. For instance, when the expert mentions a new term, we tacitly assume a
meaning based on our experience with similar sounding words. Likewise, we may think
that we hear the solution that we expect. Knowledge engineers can be particularly prone to
this bias because of a method that they have used for learning the expert's field. This
method is to study the expert's domain, build mental constructs representing the
knowledge, and then to understand the expert's knowledge structure by comparing to one's
own. This comparative means of learning the expert's knowledge structure would seem
prone to bias because the knowledge engineers interpret the expert's thoughts through the
filter of their own.

The expert's thinking can also be altered by the representation of it.
Expert data is often modeled for analysis or represented in a computer program. The
individual performing these tasks makes many tacit decisions and assumptions about the
data's appearance and performance. For example, when an analyst selects a model for the
data, the model assumes particular properties of the data, such as its distribution. These
assumptions may not be valid. Then too, an analyst may have to aggregate multiple and
differing expert judgments to provide one input value. Mathematical aggregation schemes
often require assumptions, and different ones, like the mean versus the weighted average,
can produce different answers. The knowledge engineer also makes decisions about the
organization of the knowledge in the system and its representation that determine how the
data are implemented.

Cognitive bias

In the definition of cognitive bias, bias is a consequence of the way in which we
think. The following are some characteristics of the way that we think.

Humans model their world to understand, predict, and control it (Clancy 1989:11).
It is important to note that there cannot be a perfect match between the model that the expert
uses in problem solving and the reality being modeled. We selectively take in information,
often perceiving those data that support rather than contradict our beliefs.

Probably the human mind is limited in how much information that it can process
and in how much it can remember Hogarth (1980:9). In order to reduce the cognitive
burden, people tend to take short cuts when solving a complex problem. Thus they start
with a first impression and integrate the information in a sequential manner, making only a
few minor adjustments. Later, if additional information is received, they probably will not
adjust their initial impression to give a more accurate judgment. In other words, if an
individual who has already reached an initial solution is given contradictory data, he will
probably not take this data sufficiently into account when generating a final answer. In
particular, this sequential means of integrating information handicaps us in making
predictions where large or sudden changes are involved. This limiting effect is called
anchoring or anchoring bias.

The human mind has limited memory capacity for information processing. As
Miller (1956) has noted, most individuals can not discriminate between more than seven
things at a time. This limitation in information processing causes people to be inconsistent
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in working through the problem. For instance, people commonly forget an assumption
made earlier and contradict it, thus causing inconsistency bias.

Then too, some data is more easily recalled than others. For instance, data
involving catastrophic, familiar, concrete, or recent events may be easier to recall (Cleaves
1986, Gold 1987). This effect, termed availability bias, can lead to the overestimation of
the frequency of some events.

List of Selected Motivational and Cognitive Biases

The following is a brief list of the biases that we have commonly encountered
during the process of elicitation and analysis. For convenience, they have been separated
into two categories, cognitive and motivational. Motivational biases, such as those
produced by social pressure, have as their source the emotional needs and wishes of the
expert. Cognitive biases have as their source the workings of the human mind. As
mentioned earlier, experts and people in general can unconsciously conform to other's
views because of their need to be accepted and receive approbation. [For a more thorough
catalogue of biases, particularly of the cognitive variety, see table 9.2 of Hogarth's
Judgement and Choice (1980)].

Motivational biases
SOCIAL PRESSURE is the altering of the expert's descriptions of his
thoughts arising from the desire to be accepted and to see himself in the
most positive light. This altering can take place consciously or
unconsciously. The social pressure can come from those physically
present, such as the interviewer or other experts, or from the expert's
internal evaluation of others' reactions.

When the social pressure comes from other experts in a face-to-face
group situation, the resulting bias is termed group think. Group think
occurs when an individual alters his thoughts or his reporting of his
thoughts to conform to the group judgment or to the judgment of someone
respected in the group. For example, Janis' study of fiascoes in American
foreign policy (1972) illustrates how presidential advisors often silently
acquiesce rather than critically examine their own thoughts or those that they
believe to be the group judgment. Group think is more likely to be a
problem if the members of the group have worked together before, if they
have qualms about bringing up conflicting points of view, or if there is a
dominating leader (Meyer 1984). The tendency toward group think has also
been called the bandwagon or the follow-the-leader effect.

When the source of the social pressure is the interviewer or persons
who are not physically present, the bias may be given the general label of
impression management. The interviewer's verbal and nonverbal
responses can lead the individual. Even when the interviewer is not
physically present, the individual may try to answer in such a way as to
bring the most approbation (e.g., from the person who has written the
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questions). Then too, he may try to respond in such a way as would be
acceptable to his employer or to society in the abstract.

MISINTERPRETATION is the altering of the expert's thoughts as a result of
the methods of elicitation and documentation. (See chapter 2, Pitfalls:
Interviewers, Knowledge Engineers, and Analysts Can Introduce Bias.)
While this effect is prevalent, it has not received much attention.
Misinterpretation occurs when the elicitation is done from the interviewer's,
rather than the expert's, viewpoint. For example, we have all had the
frustrating experience of trying to force fit our views into the limited
response options of a mail survey. Additionally, misinterpretation
frequently occurs as a result of the response mode. If the expert can not
adequately translate his judgment into the response mode, misinterpretation
will result. We have noticed that experts seem to have more difficulty with
the response modes of probability distributions, ranks, and percentiles.

MISREPRESENTATION is the altering of the expert's thoughts or answers as
a result of modeling or analyzing this data. The person who is modeling the
expert data for entry into a computer program or for analysis makes tacit
assumptions about the data's appearance and performance. For example,
the analyst might assume that the expert data were normally distributed. If
these assumptions are not warranted, the expert data will be misrepresented.

WISHFUL THINKING is caused when the expert's hopes or involvement in
the area on which he is being questioned influence his response (Hogarth
1980). For example, people frequently give overly optimistic estimates of
what they can accomplish in a given amount of time because of wishful
thinking (Hayes-Roth 1980). The wishful thinking effect is strongest when
the subjects are personally involved or would somehow gain from their
answers. Hence, this bias is also called conflict of interest. For example,
conflict of interest could occur if an expert was asked to evaluate the
services provided by several companies, one of which employed him or had
offered him money for a good evaluation.

Cognitive biases

INCONSISTENCY is the inability to be consistent in solving a problem,
especially through time. Of all of the biases mentioned here, this is the most
commmon. Individuals often unintentionally change definitions,
assumptions, or algorithms that they meant to hold constant throughout the
problem. These inconsistencies may result in answers that do not make
logical or Bayesian sense. For example, a series of answers proposing that
factor A was more critical than B, B more than C, and C more than A would
not make logical sense. Similarly, if an expert gave the same probability of
A for two situations, one of which involved an influential factor C and one
which did not, his answers would not be coherent from the Bayesian
viewpoint. ‘

ANCHORING is the failure to adjust sufficiently from a first impression in
solving a problem. For example, members of a group of experts often
discuss the issue before giving their final estimates. A member's last
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estimate is likely to be closer to his initial impression than it would be had
he fully taken into account the factors discussed.

AVAILABILITY refers to the differing ease with which events can be retrieved
from LTM. Data involving catastrophic, familiar, concrete, or recent
events may be easier to recall (Meyer 1986). Availability bias affects
people's ability to accurately estimate frequencies and recall other aspects of
the event. For example, the incidence of severe accidents in reactors tends
to be overestimated, in part, because of its catastrophic and newsworthy
nature.

UNDERESTIMATION OF UNCERTAINTY is the failure to account for the
actual amount of uncertainty in the answers given. For example, when
people are asked to put a range around an answer such that they are 90%
sure that the range encompasses the correct answer, their ranges only cover
30 to 60% of the total (Capen 1975). Even when people are given quizzes
and feedback on their performance, they cannot break the barrier of
covering only 70% (Capen 1975:846). A popular explanation for this effect
is that we are uncomfortable with the amount of uncertainty in life, and thus
minimize it. In particular, we may avoid confronting the large uncertainties
in our judgments.

In summary, it is difficult to judge the impact of these and other biases on expert
data because there are few bases of comparison. One cannot compare the expert's data to
what it would have been before the bias occurred. Similarly, one cannot judge the degree
of bias by comparing the expert's judgment to the right answer because generally the right
answer is not known. While the impact of such biases may not be discernible, the relative
frequency of particular biases is more obvious. The biases most likely to be encountered
are those resulting from the expert's inconsistencies. The next most common bias, in our
experience, has been that of anchoring. We have observed experts using the anchoring and
adjustment heuristic to allow them to solve complex problems. By contrast, we have not
found group think bias to be as common in our research as the literature would have led us
to expect. Similarly, wishful thinking has only emerged in a few projects where the
experts were managers having to forecast whether their projects would reach various
milestones on schedule (Meyer et al. 1981).

Countering or Reducing Bias--More Art Than Science

Approaches to handling bias are rare and in their early stages. They are perhaps as
much art as they are science. While research on judgment has drawn attention to the
presence of expert bias, little has yet been done to deal with its occurrence during elicitation
(Cleaves 1986:9-9). Typically, practitioners have developed their own means for dealing
with the biases they commonly encounter. The program proposed here is no exception.
This section and discussions in later chapters on handling bias should be viewed as
reflecting the authors' experiences.

One reason that there are not more programs for handling bias is that bias is a
difficult topic to study. Studying, much less trying to counter bias, is complicated by not
having a readily available baseline by which to determine the direction and magnitude of the
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bias. For the questions that expert knowledge is elicited, there are frequently no known
single right answers or empirical data. Thus, the expert's data cannot be simply compared
to an answer looked up in a reference or to the result of modeling data. Measurement of
motivational bias is further complicated by the absence of objective standards for
comparison. At least with cognitive bias there are traits of the expert's answers that can be
compared to standards. For example, do the expert's exclusive but dependent probabilities
sum to zero as they should? With motivational bias, the baseline of the expert's
knowledge, had its description not been altered, is difficult to determine, especially because
expertise is not static. As Rosenfield (1988:194) argues in his book on memory, higher
mental functions are not fixed procedures but subject to constant reconstruction. While we
recognize that both biases are difficult to detect, we believe that for progress to occur
programs like this one must be proposed and applied to expert judgment.

Our approach differs from the one presented by Cleaves (1986). First, Cleaves'
proposal focuses on cognitive bias; second, Cleaves tries to anticipate biases by the
judgment processes in which they are likely to occur--namely, hypothesis and solution
generation, decision rule articulation, uncertainty assessment, and hypothesis evaluation.
While we agree that biases occur during these processes, we try to anticipate the biases by
the elicitation components that are likely to exhibit them. We assume that many readers will
be lay persons in the areas of human cognition and that this approach may be easier for
them, at least as a starting point.

Another major difference in our program is its real-time emphasis. Given the
evolving nature of expertise, bias is best detected when it is being elicited. This program
stresses monitoring for bias, particularly motivational bias, in real time rather than
mathematically compensating for it afterwards. It is much more difficult to determine that
motivational bias has occurred after the elicitation because the baseline--the expert's
knowledge--is likely to have changed. For this reason, we consider each elicited datum to
be a snapshot that can be compared to a snapshot of the expert's state of knowledge at the
time of the elicitation.

Steps in a program for handling bias

Our program (Meyer and Booker 1989) consists of these general steps:

1. Anticipate the biases to which the planned elicitation is prone and
redesign the elicitation, as needed. We have provided lists of selected
biases and the situations in which they are likely to occur (see chapter 8). These
biases were selected because they represent a range of bias within the two
definitions. Certainly these are not the only sources of bias, but they are ones
that we have most frequently encountered.

To anticipate bias, the interviewer determines the parts of her planned
elicitation and searches the Index of Selected Biases (see the table at the end of
chapter 3) for the biases to which they are prone. For instance, if the researcher
planned to use the interactive group method, she would see that it was prone to
the following biases: social pressure from group think, wishful thinking, and
inconsistency. The interviewer then turns to the section following the table
Definitions of Selected Biases to look up the definitions and causes of the
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selected biases. The definition section can further be used to redesign the
elicitation, if the researcher, as a result of anticipating bias, wishes to do so.

Through the process of looking up these biases in the Index and

Definitions, the data gatherers will become aware of the biases existence and of
their own tendencies to introduce or acerbate them. In addition, the section
entitled Pitfalls: Interviewers, Knowledge Engineers, and Analysts Can
Introduce Bias (chapter 2) can be read to enhance the project personnel's
awareness of bias.
Make the experts aware of the potential for introducing bias and
familiarize them with the elicitation procedures. The experts need to
be informed (as described in chapter 10) about the biases that they are likely to
exhibit given the elicitation situation. In particular, they need to know the
definitions and causes of these biases. Without this information, the experts
will not be able to combat their own tendencies toward bias. The interviewers
can use the Index and Definitions provided for step 1 as a base for informing
the experts about bias.

It should be noted that making the experts aware of the biases helps but
does not completely alleviate the problem. In some cases, the cause of the bias,
such as with the underestimation of uncertainty, is too ingrained to be
completely overcome. In other cases, the experts will not make the needed
effort to counter the natural tendency toward bias. People typically believe that
others, not themselves, will suffer from the biases described. With some
biases, such as anchoring and underestimation of uncertainty, the experts can
participate in tests designed to evoke the bias. Frequently, almanacs are used to
construct test questions, such as: How much rain fell in St. Paul, Minnesota in
1987? While the experts will not know the answers to such questions, the
interviewer can look up the correct answer. The interviewer can read the
answers and allow the experts to score their own. (This procedure is described
further in chapter 10, Introducing the Experts to the Elicitation Process: For an
Interactive Group Situation.) Such a demonstration is often necessary to
convince the expert that he too is prone to the bias.

The experts also need to be made aware of the elicitation procedures. If
they are confused about how and when they are to respond, the data gathered as
well as the expert's cooperativeness is negatively affected. One aspect of
elicitation that is often confusing is the response mode, if the expert is not
accustomed to using it. The use of unfamiliar response modes should be
rehearsed by the experts during the training session. Information on how to
familiarize the expert with the elicitation procedures is given in chapter 10.
Monitor the elicitation for the occurrence of bias. Prior to the
elicitation sessions, the data gatherer looks up the signs that the biases may be
occurring in Signs of Selected Biases below. For instance, if group think bias
was anticipated, the data gatherer would look up this bias in the Signs section
and read about indications of its presence. One sign of group think is that the
experts appear to defer to another member of the group or to each other. The
interviewer, knowledge engineer, or a trained observer then watches for this
sign of group think during the elicitation. In general, monitoring biases, as
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described here, requires that the experts verbalize their thoughts and answers.
Without this feedback, we have found the monitoring to be much more difficult.

4. Adjust, in real time, to counter the occurrence of bias. In this step,
the interviewer looks up the suggestions for preventing a particular bias in
Suggestions for Countering Selected Biases. These suggestions vary because
we have used two approaches: (1) controlling those factors contributing to a
particular bias, or (2) employing the opposite bias. The first approach involves
controlling the factors that contribute to the bias. For instance, fatigue is a
factor that leads to increased inconsistencies in expert judgment. The
interviewer can stop the elicitation sessions or schedule breaks before the
experts become fatigued as a means of controlling this contributor to
inconsistency. The basis of the second approach, fighting bias with bias,
comes from Payne (1951), the grandfather of survey design. Payne believed
that all interviewing was biased and that one should therefore aim for equal but
opposite biases. An example of this technique is to try to have experts anchor
to their own judgments in attempts to counter a group-think situation. Having
the experts write their judgments encourages them to form and keep their own
opinions even when they hear the opinions of others.

5. Analyze the data for the occurrence of particular biases.
(Suggestions on how to test for bias are given in chapter 16.) If step 5 is the
only step of the program being followed, the analysis will necessarily be
simpler than if step 4 were also followed. If the steps 3 and 4 were followed,
they would provide the additional data needed for performing more complex
analyses. In general, adequately testing for one of the motivational biases
requires this more complex testing. Occurrence of a cognitive bias, such as the
underestimation of uncertainty, can often be determined by simple mathematical
tests. For example, we analyzed the expert's ranges on their likelihoods of
reaching particular magnetic fusion milestones. Their ranges were within one
standard deviation of their pooled answers. This result indicated that the
experts thought that they were adequately accounting for all of the uncertainty
when they were only accounting for about 60% or less of it (Meyer et al. 1982).

Determining which steps to apply

The steps of the program above can be applied in sequence or singly, depending
on the needs of the project. For example, if information on bias was not important to the
project, none of the steps or only step 5, analyzing for bias, would be necessary. If on the
other hand, the interviewer wished to follow some but not all of the steps, she could
perform steps 1 and 5, or 1, 2,and 5, or 1, 3, and 5, or 1, 2, 3, and 5. We suggest that
step 5 always be done regardless of the other steps because it provides a general check on
the expert data.

To pick steps for use in a project, consider the following: (1) the reason for
addressing the problem of bias; which view of bias, motivational or cognitive, will be
employed; and (3) which biases are of special interest.
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The reason for focusing on bias

The reason for focusing on bias can provide a criteria for determining which steps
of the program to implement. For example, if the project personnel's interest in bias stems
from a desire to avoid having reviewers criticize aspects of the project, their selection of
steps would probably differ from those whose goal is to study the occurrence of bias. In
the first example, all the steps might be used. In the second, steps 1, 3, and 5 might be
used to anticipate which biases are likely, to design the study around the factors likely to
affect their occurrence, to monitor the elicitation sessions for their appearance, and to
analyze the data for their occurrence.

The steps are suited to accomplishing different aims. For instance, steps 1,
anticipate the biases, and 2, make the experts aware of the potential for bias and familiarize
them with the elicitation procedures, accomplish educational goals. Performing them gives
the data gatherers and the experts a preview of how the data will be elicited and an
understanding of why it will be conducted in a particular manner. Thus, these two steps,
especially 2, are often used as practical steps for introducing the participants to the
elicitation process and making them comfortable with it. Step 3, monitoring for the
presence of bias, does not interfere with the elicitation or the results, so it suited to
researching the presence of bias, as is step 5, analysis. In contrast, step 4, adjusting in real
time to counter bias, affects the elicitation and, thus, is more appropriate to situations where
the intent is to control, rather than study, bias.

The selection of the view of bias, motivational or cognitive

The selection of the view of bias, motivational or cognitive can also identify which
set of steps will be most effective.

We ask the reader to select one view of bias because, while both views are equally
valid definitions of bias, one way of construing bias may be more useful for a particular
project. For example, if the focus of the project is learning the expert's problem solving in
order to emulate it, the motivational definition of bias would be more appropriate. If the
project involves estimating the likelihood of future events, the cognitive definition would be
a natural choice. People are inaccurate in making predictions and the cognitive view of bias
would help to combat this weakness. We suggest that the reader select and use only view
of bias at a time to avoid being contradictory. For example, use of the cognitive definition
would propose that a mathematically incorrect judgment be modified. This act would cause
a misrepresentation of the expert's data, a bias, according to the motivational definition of
bias.

As a general rule, if the motivational definition of bias is selected, steps 1 and 2 will
be most helpful. Following step 1, anticipating the biases and redesigning the elicitation,
would allow the project personnel to tailor elicitation methods (as described in chapter 8) to
reduce their tendency to lead the expert or to misinterpret his data. Use of steps 1 and 2
(making the experts aware of the potential for bias and familiarize them with the elicitation
procedures) would inform the data gatherers and experts about bias, and hopefully make
them less prone to it. In this book, we have focused on presenting methods of elicitation
and analysis which we believe minimize influencing the experts and force fitting their data.
Thus, just using the methods suggested in this book, regardless of any program for
handling bias, should provide some protection from motivational bias.
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If the cognitive definition of bias is selected, step 5, analysis, is particularly
effective. Analysis is generally more effective with cognitive than motivational bias
because cognitive bias can be determined mathematically or statistically. Cognitive bias can
usually be measured because it is defined as a violation of logical or statistical standards.
Thus, one of the cognitive biases, underestimation of uncertainty, can be analyzed using
the experts' ranges on their estimates (as described in chapter 17).

Interest in particular sources of bias

Interest in particular sources of bias will favor the use of some steps over others.
The reader will have to identify which biases he or she is most interested in and then select
those steps that address these biases. For example, if social pressure by the interviewer
was a concern, use of steps 1 and 2 would be helpful. In step 1, the interviewer would be
led to select elicitation methods (as described in chapter 7) that were nondirective, like the
verbal protocol, to minimize her tendency to influence the expert. In step 2, the expert
would be made aware of this bias so he would be able to guard against it. Another bias that
people commonly worry about is wishful thinking. The step that we have used to deal with
wishful thinking is step 1. In anticipating this bias, we have redesigned the elicitation to
select those experts less likely to exhibit wishful thinking, those who had less at stake in
the judgments. Additionally, we required that the experts explain their reasoning for their
estimates to make it more difficult for them to give highly optimistic estimates. A third bias
that often draws attention is group think. All of the steps would be helpful in countering
group think. However different steps could be used depending on the project personnel's
reason for focusing on this bias. If the intent was to study group think bias, the following
steps might be used: step 1 to design the experiment, step 3 to monitor the presence of the
bias, and step 5 to analyze its occurrence. On the other hand, if the purpose was to try to
eliminate group think bias, more steps could be used. For instance, use of step 1 could
lead the project personnel to redesign the elicitation situation (as described in chapter 8) to
preclude expert interaction. In a less extreme case, step 1 might simply be used to
anticipate the occurrence of this bias in an interactive group setting, step 2 to alert the
experts to this danger, step 3 to look for the signs of its occurrence, and step 4 to take the
suggested actions.
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Index of Selected Biases

Elicitation Component

Elicitation Situations:
Individual Interview

Delphi

Interactive Group

Response Modes
Complex ones such as
probabilities, Bayesian
updating, and uncertainty
measures

Aggregation
Behavioral Aggregation

Mode of Communication

Face-to-Face

Telephone

View of Bias

Motivational
Motivational
Cognitive

Motivational
Cognitive
Cognitive

Motivational
Motivational
Cognitive

Motivational

Cognitive
Cognitive

Motivational

Yiew of Bias

Motivational
Motivational
Cognitive

Motivational
Motivational
Cognitive
Cognitive
Cognitive

Motivational

Motivational
Motivational
Cognitive
Cognitive
Cognitive
Cognitive

_ Source

Social pressure from interviewer
Wishful thinking
Inconsistency

Wishful thinking
Inconsistency
Anchoring

Social pressure, group think
Wishful thinking
Inconsistency
Misinterpretation by expert

Inconsistency
Underestimation of uncertainty

Social pressure, group think

Source

Social pressure from interviewer
Wishful thinking
Underestimation of uncertainty

Social pressure from interviewer
Wishful thinking

Availability

Anchoring

Underestimation of uncertainty

Social pressure, impression
management

Wishful thinking

Misinterpretation by analyst

Inconsistency

Availability

Anchoring

Underestimation of uncertainty

45



Chapter 3

Definitions of selected biases
Motivational Bias--Altering of the expert’s thoughts through social pressure, wishful
thinking, or misinterpretation.

Social pressure. Social pressure is the altering of the expert's thought
processes or descriptions of those thoughts arising from the desire to be accepted and be
seen in the most positive light possible. This altering can take place consciously or
unconsciously. The social pressure can come from those physically present, such as the
interviewer or the other experts, or from the expert's own internal evaluation of others'
reactions.

Social pressure from the interviewer is most likely to occur in those methods where
the interviewer is meeting in a face-to-face situation with the experts, such as in the
individual interview and the interactive group. In face-to-face situations, the interviewer
can intentionally or unintentionally influence the expert through body language, facial
expression, intonations, and choice of words. We expect this source of bias to be weaker
in telephone conversations and weaker still in communications by mail. These last two
modes do not allow some of the above-mentioned means of expression that the face-to-face
mode does. In addition, social pressure bias is more pronounced when the interviewer is
asking leading questions. Thus, it is weaker when the interviewer is using the verbal
protocol, verbal probe, or ethnographic technique. The verbal protocol avoids leading the
expert because it does not involve questioning him; the verbal probe uses general,
nonleading phrases; and the ethnographic techniques uses the expert's own words in
formulating questions.

Social pressure from others in the group induces individuals to slant their responses
or to silently acquiesce to what they believe will be acceptable to their group (Meyer 1986:
89). The psychologist Zimbardo (1983) explains that it is due to the basic needs of people
to be loved, respected, and recognized that they can be induced or choose to behave in a
manner that will bring them affirmation. There is abundant sociological evidence of
conformity within groups (Weissenberg 1971). Generally, individuals in groups conform
to a greater degree if they have a strong desire to remain a member, if they are satisfied with
the group, if the group is cohesive, and if they are not a natural leader in the group.
Furthermore, the individuals are generally unaware that they have modified their judgment
to be in agreement with the group.

Group think. One mechanism for this unconscious modification of opinion is
explained by the theory of cognitive dissonance. Cognitive dissonance occurs when an
individual finds a discrepancy between thoughts that he holds or between his beliefs and
actions (Festinger 1957). For example, if an individual holds an opinion that conflicts with
that of the other group members and he has a high opinion of the other's intelligence,
cognitive dissonance will result. Often the individual's means of resolving the discrepancy
is by unconsciously changing his judgment to be in agreement with that of the group
(Baron and Byrne 1981). For example, Janis' study of fiascoes in American foreign policy
(1972) illustrates how presidential advisors often silently acquiesce rather than critically
examine what they believe to be the group judgment. This phenomena has also been called
group think bias, the follow-the-leader or bandwagon effect.

Group think is only likely to be a concern in an interactive group situation. It is
further likely to occur in situations where behavioral aggregation is used because this type
of aggregation requires that pressures toward conformity be encouraged.
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Impression management. Another type of social pressure can occur as the
expert imagines the reactions of those not physically present. This effect can occur in any
elicitation situation. However, it seems to be more noticeable when it is not covered by
other effects, such as social pressure caused by the interviewer. For this reason, its
occurrence is most noted in mail surveys. The individual may try to answer in such a way
as to bring the most approbation, such as from the person who has written the questions.
Then, too, he may try to respond in a way that would be acceptable to his employer or to
society in the abstract. For this reason, this source of social pressure has been termed
impression management (Goffman 1959). Payne (1951) has found evidence of individuals
giving the responses that they perceived to be the most socially acceptable rather than those
which accurately portrayed their thoughts or actions. For example, on surveys, people
claim that their educations, salaries, and job titles are better than they are. Often there is a
10% difference between what is claimed for reasons of prestige and what objectively is
(Meyer 1986: 90).

Wishful thinking. Wishful thinking occurs when an individual's hopes
influence his judgment (Hogarth 1980). What the subject thinks should happen will
influence what he thinks will happen. To illustrate, presidential election surveys show that
people predict the winner to be the candidate that they expect to vote for (Armstrong 1981:
79). The above instance is one where the subjects stand to gain very little personally from
their answer. The wishful thinking effect is stronger where the subjects are personally
involved or would gain from their answers. Hence, this bias is also called conflict of
interest. In general, people exhibit wishful thinking about what they can accomplish in a
given amount of time: they overestimate their productivity (Hayes-Roth 1980).

Wishful thinking is not particular to any elicitation method. Instead it relates to
selection of experts and the assignment of them to specific questions or problems. If they
have a special interest in the answer, wishful thinking is likely to occur whether the
individual interview, interactive group or Delphi elicitation method is used or whether the
communication is face-to-face, by telephone, or mail.

In general, wishful thinking effects will be most pronounced when the expert does
not have to explain his reasoning. The experts' highly optimistic responses are checked by
having him disaggregate the problem and explain his problem solving. For example,
Hayes-Roth (1980) found that having people break down the tasks that they had earlier
thought they could accomplish in a given time led to more realistic estimates.

Misinterpretation. Misinterpretation is the altering of the expert's thoughts
as a result of the methods of elicitation and documentation. While this effect is prevalent, it
has not received much attention. (For further information, see the pitfall, Interviewers,
Knowledge Engineers and Analysts Can Introduce Bias). Frequently misinterpretation
occurs as a result of the response mode. If the expert can not adequately translate his
judgment into the response mode, misinterpretation will result. We have noticed that
experts seem to have more difficulty with the following response modes: probability
distributions, ranks, and percentiles.

Misinterpretation is also more likely with elicitation and documentation methods that
are written from the interviewer's, rather than the expert's, viewpoint. For example, we
have all had the frustrating experience of trying to force fit our views into the limited
response options of a mail survey.
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Cognitive bias--Data failing to follow mathematical and logical standards because of
inconsistency, anchoring, availability, or underestimation of uncertainty.

Inconsistency. Inconsistency is the inability to be consistent in solving of
problems, especially through time. Of all of the biases mentioned here, this is the most
common. Individuals often unintentionally change definitions, assumptions, or algorithms
that they meant to hold constant throughout the problems. Inconsistency in an individual's
judgment can stem from his remembering or forgetting information during the elicitation
session. For example, the individual may remember some of the less spectacular pieces of
information and consider these in making judgments later in the session, or the individual
may forget that particular ratings were only to be given in extreme cases and begin to assign
them more freely toward the end of the session.

As Dawes, Faust and Meehl (1989:1671) have noted, such factors as fatigue, recent
experience, or seemingly minor changes in the ordering of the information or in the
conceptualization of the task "can produce random fluctuations in judgment. Random
fluctuation decreases judgmental reliability and hence accuracy." These inconsistencies
may result in answers that do not make logical or Bayesian sense. For instance, a series of
answers proposing that factor A was more critical than B, B more than C, and C more than
A would not make logical sense. Similarly, if an expert gave the same probability of A for
two situations, one of which involved an influential factor C and one which did not, his
answers would not be coherent from a Bayesian viewpoint.

The natural tendency toward inconsistency is acerbated by several conditions such
as memory problems, confusion, and fatigue. During elicitation sessions of more than 30
minutes, people often forget the instructions, definitions, or assumptions that they were
requested to follow. For example, the experts may forget that a rating of nine meant a near
certainty and assign it more easily than the definition specified. Thus, unstructured
elicitations, which do not have periodic reviews of the question information, are more
likely to have high inconsistency. This inconsistency can be between experts' answers
(e.g., the experts meant different things by the same numerical answer) or within an
expert's answer (€.g., sometimes the expert gave a specific rating more easily than at other
times). Also, situations where the expert's understanding through time cannot easily be
monitored are more prone to inconsistency. These situations include the Delphi or mail
survey.

Confusion can also lead to inconsistency. Thus, any of the more complicated
response modes, such as probability distributions and percentiles, are more prone to this
problem. This confusion is why training the expert in the use of these modes is
recommended. In addition, if the experts must mentally juggle more than five to seven
things, such as in rating them, they are likely to become confused and inconsistent. It is
for this reason that the Saaty paired-comparison mode is used even though it is more time
consuming than some of the other response modes.

Anchoring. Anchoring is the failure to adjust sufficiently from one's first
impression in solving a problem. We would rate it next to inconsistency in terms of
frequency of occurrence. Sometimes this tendency is explained in terms of the Bayesian
philosophy as peoples' failure to adjust a judgment in light of new information in the
manner specified by Bayes Theorem (Meyer 1986:88). Spetzler and Stael von Holstein
(1975) and Armstrong (1981) describe how people tend to anchor to their initial response,
using it as the basis for later responses. Ascher (1978) has found this problem to exist in
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forecasting where panel members tend to anchor to past or present trends in their projection
of future trends. Ascher determined that one of the major sources of inaccuracy in
forecasting future possibilities, such as markets for utilities, was the extrapolation from old
patterns that no longer represented the emerging or future patterns. Another example of
anchoring occurs when a member of a groups last estimate is closer to his initial impression
than it would be had he fully taken earlier group discussions into account.

Anchoring is most prevalent in situations where the expert is not likely to
experience the opposite bias of being influenced by the interviewer or the group, such as in
the Delphi method. In addition, those modes, such as mail or telephone communications,
where the expert's thoughts cannot be easily monitored by having the expert think aloud,
are prone to this bias. In addition, we have noted that experts are more likely to stick with
their anchor if they have either described it orally or in writing and fear losing face for
changing their mind.

Availability. Availability bias arises from the differing ease with which
events can be retrieved from long-term memory. Data involving catastrophic, familiar,
concrete, or recent events tend to be easier to recall. Availability bias affects people's
ability to accurately estimate frequencies and recall other aspects of the event. For example,
the incidence of severe accidents in reactors tends to be overestimated in part because of
their catastrophic and newsworthy nature.

Availability bias is more common when the expert does not receive any information
from others and, thus, does not have a chance of triggering other, less accessible, memory
associations. For this reason, the individual interview is the most prone to availability bias,
and the interactive group, the least. With individual interviews, a series of different
scenarios is often used to help the expert enlarge on the sample of things contributing to his
final answer.

Availability bias is also more common with telephone and mail modes of
communication because the expert is usually not given much background before being
asked point blank for the answer. A structured hierarchical presentation of the information,
such as from the general to the specific, can alleviate this weakness.

Underestimation of Uncertainty. People will underestimate the amount of
uncertainty in the answers that they give. For example, when people are asked to put a
range around an answer such that they are 90% sure that the range encompasses the correct
answer, their ranges only cover 30-60% of the dispersion (Capen 1975). Even when they
are given quizzes and feedback on their performance, they cannot break the barrier of
covering only 70% (Capen 1975:846). A popular explanation for this effect is that we are
uncomfortable with the amount of uncertainty in life, and thus, minimize it. In particular,
we may avoid confronting the large uncertainties in our judgments.

Although this effect is very widespread, Martz, Bryson, and Waller (1985:72) have
noted that it is more pronounced with probability and chance estimates than with some of
the other response modes. Chance estimates, also called odds, are given as 1 chance in a
total, such as 1 in 1000.

Signs of selected biases
Group think. There are several signs that a group-think situation may be
developing. Generally, no difference of opinion is voiced, and the experts appear to defer
to another member of the group or to each other (Meyer 1986: 95).
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Wishful thinking. Wishful thinking is indicated if the experts were
previously judged to have something to gain from their answers and if the answers were
given quickly with very little thought.

Inconsistency. A number of signs can indicate inconsistency. The
interviewer can hear many of these, if the experts are verbalizing their thoughts and
answers. In particular, she can detect when a response mode or rating is being applied
more easily through time (Meyer 1986:94). Experts tend to apply the extremes of a rating
scale more easily as they become fatigued. The interviewer can also hear when the expert
is contradicting an assumption that he made earlier. For example, a tank expert chose two
very different routes through the mapped terrain because the second time he unconsciously
assumed that his company was the main effort and had to push hard.

Inconsistency can also be monitored by the use of Bayesian-based scoring and
ranking techniques. During the elicitation, the expert's judgments can be entered into a
scoring and ranking program, such as that of Saaty's Analytical Hierarchical Process
(1980), to obtain a rating of their consistency. Then, if the inconsistency index from this
method is too high, indicating significant inconsistency, the experts can redo their
judgments as described in step 4.

Availability. A potential problem with availability bias is indicated if the
expert does not mention more than one or two considerations in giving his answer. If the
expert only considers a few things, these were probably the most easily remembered and
the answer is likely to be skewed to reflect these few.

Anchoring. Anchoring bias can be suspected if the experts receive additional
information from experts or other sources during the elicitation but never waiver from their
first impression. For example, reactor code experts were asked to compare the
performance of their computer codes to plots of experimentally generated data. Often they
commented on their first impression. When they examined the plots more closely, they
typically found places where the computer code did not capture the experimental
phenomena. However, the experts usually simply adjusted upward or downward of their
initial assessment rather than revising it completely (Meyer and Booker 1987b).

Suggestions for countering selected biases

Group think. Social pressure from group think can be countered using
techniques from two approaches (Meyer 1986:95-96). Using the first approach, the
interviewer can try to prevent those factors that contribute to group think. For instance, the
interviewer can stop the elicitation and warn the group members about group think. If there
is an official or even a natural ex officio leader in the group, that individual can be asked to
give his responses last, or privately, so as not to influence the other group members. In
addition, if someone other than the interviewer has been leading the group meeting, he can
be encouraged to be nondirective during the meetings. An explanation of the group-think
phenomena usually convinces the leader that better discussions and data will result from
their avoiding leading.

The other approach is to try to counter the effects of group think with an opposite
bias--anchoring. One technique for fostering anchoring is to require the group members to
write down their judgments and reasoning. In this way, they are more likely to anchor to
their own judgments rather than silently acquiesce to someone else's. If the experts are to
discuss their judgments, each person can record and report his before the floor is opened to
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discussion. Once individuals have publicly announced their view, they are unlikely to
spontaneonsly modify it . (They will still modify their view if someone raises a valid point
that they had not previously considered.)

Wishful thinking. The tendency toward wishful thinking can be countered
by making it more difficult for the expert to indulge in it. If the expert must explain his
answer in detail, it will become apparent whether there was any objective basis for his
response.

Inconsistency. Inconsistency can be reduced by using two techniques.

The first technique is to address the aspects of the elicitation that are contributing to
the inconsistency.

As mentioned earlier, fatigue is a contributor to inconsistency. If the interviewer
has noted that the experts are becoming more inconsistent with time, she can quickly end
the meeting or schedule a break. In general, two hours is the maximum amount of time that
experts participate in discussion or problem solving before becoming tired. (Experts often
signal their fatigue either by briefer responses or by leaning way forward or back in their
chairs.)

Another contributor to inconsistency is faulty memory. If at the beginning of every
session the statement of the question, definitions, assumptions, and response mode are
reviewed, the experts will be more consistent in their judgments (Meyer 1986: 96). They
will be more consistent between and within themselves. In addition, if there is much time
between this first review and when the experts' judgments are requested, the question can
be worded to include some of the above information. For example, What rating would you
give to the importance of element X over Y to the reaching of goal Z? If they are using a
response mode, in this case a Saaty paired comparison, they will need to have the
definitions of the scale available in front of them.

A second technique for reducing inconsistency is to have the group members
monitor their own consistency (Meyer 1986:96). This techniques was successfully used in
a simple interactive group elicitation where the experts were able to watch the interviewer's
monitoring of inconsistency and then mimic it. (Meyer, Peaslee, and Booker 1982). The
experts were given copies of a matrix of the elements being judged, the criteria on which
these elements were being judged, and their past judgments. When experts monitor their
own consistency they may wish to change an earlier judgment to be in line with their
current thinking. If their reasoning does not violate the logic of the model or the
definitions, they can be allowed to make the change. Often in this process the expert may
discover that he had forgotten to include some pertinent information. After this addition,
some of the judgments may need to be redone.

If Saaty's Analytic Hierarchy Process (1980) had been used and its results indicated
high inconsistency, the experts could review and redo the affected judgments.

Availability. Availability bias can be countered by stimulating the expert's
memory associations. In general, group discussion will cause the expert to think of more
than just the first readily accessible information. In addition, free association can be
introduced to single experts or those in groups. (Free association is having the expert or
experts quickly generate any and all elements that might have bearing on the question
(Meyer 1986:94)). Free association is similar to brainstorming or the Crawford Slip
method (Boose and Gaines 1988:38). The experts are asked to refrain from being critical
in order to generate the widest possible pool of ideas. (The number of ideas is later
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narrowed to those judged to be most pertinent to the question.) A related technique is to
hierarchically structure the presentation of question information so that it flows from the
general to the specific. In this way, the expert is able to consider the pertinent information
before having to reach a solution. Again this strategy is to fire as many memory
associations as possible so that the maximum number of relevant ones will enter into the
expert's final judgment.

Anchoring. Techniques similar to those used to counter availability bias are
used to counter anchoring. In particular, giving the expert input from other experts as in a
Delphi situation or an interactive group makes it more difficult for the expert to anchor to
his first impression. Another technique is to ask the expert for extreme judgments before
getting his likely ones (Cleaves 1986:9-10).
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Selecting the Question
Areas and Questions

The process of selecting questions that will be asked of the expert is a slow and
evolutionary one. But, as the question list evolves, the selection process seems clearer in
retrospect. The purpose in this chapter is to illustrate the steps involved in selecting the
questions: (1) definition of the project's purpose, (2) selection of the general question
areas, and (3) identification of the specific questions. In particular, information is given on
which persons--clients, data gatherers (interviewers and knowledge engineers), analysts,
or experts--can help with each of these steps and how. In addition, in this chapter we
cover when selecting and motivating the external experts need to be done in parallel with
the steps mentioned below. Following on with the process, how to refine the questions is
the subject of chapter 5.

Steps Involved in Selecting the Questions

Selecting the questions to be asked of the expert is one of a sequence of steps where
the information from one step is needed to accomplish the next, more detailed step. The
steps are summarized as follows.

Step 1: Defining the project's purpose or goals
The project's purpose is simply what the project is to accomplish. For instance, the
purpose of the reactor risk project, NUREG-1150, was to examine the risk of accidents in
a selected group of nuclear power plants. The purpose of the project is not always as clear
as the one stated in the above-mentioned project. Sometimes, the persons in charge of the
project have only a vague idea as to the project's aims, or they are unable to express what
they envision the project accomplishing.

Step 2: Selecting the general question areas
A question area is a specific issue for investigation. For example, from the
above-mentioned reactor risk project, nine question areas were formed. These areas were
internal events that could lead to core damage, such as the failure of the emergency core
cooling system due to venting or containment failure.
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Question areas are developed by considering such information as the goal of the
project, the client's directives, and the practicalities of gathering expert judgment on this
topic (e.g., whether experts exist and whether their expert judgment would be considered
proprietary information). Of the question areas initially considered, only a few may emerge
as the final areas.

Step 3: Identifying the questions

Questions are concrete, detailed points within question areas that the experts are
asked to answer. The test for whether something qualifies as a question is if the expert
finds it sufficiently specific to be answered. If an expert cannot address the question in its
present form, it probably resembles a question area more than a question. To illustrate, the
question area on an emergency core cooling system failure can be broken into different
accident scenarios, each of which could lead to a cooling system failure. The experts can
answer the specific questions on the probability of one of the scenarios occurring within a
particular nuclear plant.

Sometimes the questions are technical problems that the expert is to solve to allow
the data gatherers to examine his problem-solving processes. For example, experts in
statistics could be asked to judge whether lists of numbers are random or not as a means of
learning their mental rules for determining randomness.

The reader needs to assess which of the above three steps has already been
accomplished. Frequently, the defining of the project's goals has already been made by the
person who is sponsoring the project. Then too, the reader may have previously decided
on the question areas. If one or more of the above steps has been completed, the reader
may wish to skip ahead to the next step, Executing the Steps with the Assistance of Clients,
Project Personnel, and Experts. The section below illustrates the possible variety in project
goals, question areas, and questions.

Illustrations of the Variation in Project Goals, Question
Areas, and Questions

The project goals, question areas, and specific questions can vary tremendously.
The three examples below--on reactor risk, sources of interexpert correlation, and army
exports--illustrate what the project goals, question areas, and questions could be in
different projects. In particular, these examples can provide assistance in formulating the
goals, question areas, and questions for a particular application.

In the first example, the reactor risk project (NUREG-1150) mentioned above, the
goal was to perform risk analyses of five different U.S. light water reactors to provide data
on the likelihoods of severe accidents and their consequences. The data requirements for
this application were large and complex. The areas selected for receiving expert judgment
were a reduced set that met the following criteria: (1) they were within the scope of
NUREG-1150; (2) they were areas of significant importance to the estimation of risk or the
uncertainty of risk; and (3) there were no other sources of data available (Wheeler, Hora,
Cramond, and Unwin 1989). Questions were developed for each area. For example, an
area of investigation in the risk project was the failure of a Westinghouse reactor coolant
pump's shaft seals under station blackout conditions. A question asked in this area: "What
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is the failure probability per year for severe seal leakage?" This question included
definitions of severe leakage and the sequence of events leading to this failure.

In the second example, a study of interexpert correlation, the goal was to determine
if expert's answers correlated, and, if so, what caused the correlation. Given this general
goal, the question areas, even the field of expertise from which the experts could be drawn,
were completely open. The areas selected were those that would be comprehensible to the
researchers, have readily available experts, and have nonproprietary data. One of the areas
selected included the type of questions encountered in walk-in statistical consulting
situations. For example, one question gave the sample correlation coefficient, 7, between
two measurements of geologic core samples as 0.70 and asked for the sample size at which
this value of r would be significant at the 5% level for a one-tailed test.

In a third example, an army export project, the object was to extract from experts
those factors that impacted on decisions to transfer militarily critical army technologies,
services, or data to foreign countries or persons. The purpose was to represent these
factors in a structured manner that would promote better, more defensible decisions. The
question areas were the perspectives of the various army offices (intelligence, political,
military, and technical) in viewing potential technology transfers. For example, one
question area was the factors that the intelligence office representatives would consider in
making their decisions. The first question in the intelligence area was to evaluate whether
the requesting country was vulnerable to having the particular technology compromised.
This question included a definition of the concept of technology compromise and a
description of the technology being considered.

Sources of Variation

The major sources of variation in projects' purposes, question areas, and questions
are noted below to allow the reader to compare his or her situation to other situations. The
reader is asked to do the following:

® Determine whether the objective is to gather the experts' answers

or to gather their problem-solving processes. While both the expert's
answers and problem-solving processes are frequently gathered for an
application, one is considered to be of the first priority. For example, for most
applications, especially in risk or reliability analyses, obtaining the expert's
answer is the primary aim. There may be some attempt to document the
expert's reasoning, but this is done to support the answer and is not usually the
main focus. Obtaining problem-solving data is more common to artificial
intelligence projects or to research into human cognition. While the experts'
answers are usually gathered in these studies, they are considered only part of
the problem-solving data.

¢ Compare the complexity of the areas and the questions. For

instance, the questions of the reactor risk application mentioned above were
more complicated than those classical statistical problems asked in the study of
correlation because of the former's subject matter--reactor phenomenology.
The reactor risk questions were extremely complex because they involved a
variety of physical systems, components, and things happening to these
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systems. As a general rule, complex question areas require more honing to
form questions than simpler areas do.

e Assess the magnitude of the data required. For example, in the reactor
risk application, a tremendous amount of data was gathered because the
complex questions had to be broken into numerous scenarios, and the
questions, the experts' reasoning, and their answers had to be documented.

¢ Further assess the level of detail that will be needed in each chunk
of data. For the most part, applications where the goal is to gather problem-
solving data (such as for building an expert system) require more detailed
information than their answer-gathering counterparts. In general, gathering
more detailed data coincides with fewer experts and longer elicitation sessions.
In addition, the level of detail varies according to how difficult the problems are
to solve. For example, in the second example above of the study of interexpert
correlation, the solving of the statistical questions was straightforward
compared to the solving of the questions in the follow-on study where the
experts were asked to evaluate how well computer-modeled results matched
experimentally obtained results. The expert's interpretation was involved to a
greater degree in answering the questions on the computer-modeled results than
in answering the statistical questions of the first study. The follow-on study
yielded more detailed data on the expert's problem-solving processes than the
first study. The level of detail in questioning affects later analyses, especially
involving the detection of correlation and bias (chapter 14), the aggregation of
experts' answers (chapter 16), and the drawing of conclusions (chapter 18).

¢ Evaluate the scope of the application as illustrated by the number
of experts that are likely to be used, the personnel available to
elicit, and the amount of time needed to produce the product. For
instance, the reactor risk study, NUREG-1150, had the largest scope of any of
the expert judgment applications that we have encountered; it had the greatest
number of question areas (over 15), of questions per area (3 or more), of
experts (50), and of project personnel from different organizations (40 or more
persons).

Executing the Steps with the Assistance of Clients,
Project Personnel, and Experts

The generic roles of persons who are likely to be working on expert judgment

projects and who could assist in developing the questions follow.

Clients are the persons requesting the gathering of expert judgment. The client
may also be the person funding the project or a decision maker who may
eventually use the project results.

Project personnel include the in-house managers, data gatherers, and analysts. The
data gatherers may be interviewers or knowledge engineers.
Interviewers are sometimes referred to as elicitors.
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Advisory experts are outside consultants or in-house personnel who are
considered expert in the subject matter. They can assist the project personnel in
the design of the elicitation methods. Generally, they do not serve as the
experts for the final elicitation but assist in developing the elicitation methods by
helping to select question areas, create the questions, and test each step for
possible difficulties.

Experts, sometimes called the external experts to distinguish them from the
advisory experts, are the ones who will later answer the questions. The
external experts can fulfill the function of the advisory experts by selecting and
refining those questions that they will later answer. Whether or when the
external experts will help in developing the questions is a critical decision. For
more information on making this decision, see the later section Determining in
Which Steps the Advisory or External Experts Will Assist.

Recognize that these categories of persons are not mutually exclusive. For
example, if the project were self-instigated, the client could be one of the project personnel.
Then too, the advisory expert could be from in house and thus, a member of the project
personnel.

Step 1: Defining project purpose

The client determines what, in general, needs to be investigated and should know
what information will be needed from the experts and what resources can be provided. For
example, the client may be able to state what is expected as a final project, when it is due,
and what level of funding will be available. In addition, the client may be able to provide
direction on the scope of the project (number of experts, question areas, time frame), the
data to be gathered (primarily answers or problem-solving), and the level of detail needed
in the data.

Step 2: Selecting question areas

Project personnel generally work with the client, advisory experts, and external
experts in selecting the question areas. Occasionally, the project personnel are experts in
the question areas and could forego receiving the input of the client and experts. However,
even if this is the case, we recommend the involvement of the client and the experts for two
reasons. First, with more persons working on selecting the areas, there is less chance of
overlooking an area or having the areas reflect one narrow viewpoint. Second, people who
were involved in the selection process are more likely to be supportive of the final selection
than those who were not. Indeed, for this reason the external experts should participate in
question selection, whenever this is possible. Sometimes this option is not possible
because the experts cannot be selected until the areas of expertise as delineated by the
question areas are decided.

Sometimes the client is not able to help in this step because he has not thought as far
as the question area or has difficulty articulating his ideas for question areas. If this is the
case, the project personnel can interview the client to determine what the areas should be
(e.g., what is the purpose of this project, what are its constraints in terms of time and
funding, and so on).
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In our experience, the project personnel have usually set the criteria for the selection
of question areas either by themselves or in combination with the client. Some examples of
criteria were given in the earlier section Steps Involved in Selecting the Questions.
Regardless of whether time is specified as a criteria, we have noticed that time limitations
are often responsible for paring down the list of areas. The advisory and external experts
can also assist in determining the question areas. The following are critical points best
addressed by the experts.

e The potential question areas possible, given the purpose of the project.

e The approximate number of those who are experts in each area.

¢ Ideas on what would motivate the external experts to participate in the project.

¢ How much the question areas would need to be broken into their parts to

become questions later answerable by the experts.

® Whether the question area has been sufficiently defined to proceed to the next

phase--creation of its component questions.

While the advisory experts often address any of the above points, the external
experts usually only assist on the last two. This difference exists because the external
experts typically enter the project later than the advisory experts. When the question areas
involve different and specialized expertises, the question areas must be selected before the
project personnel can identify any experts for consideration.

Step 3: Identifying the questions
The project personnel and experts, advisory or external, often work together to
develop questions from the question areas. If the client is qualified in this subject matter,
he or she may also be of assistance.
After the experts have assisted in creating some questions, they can be asked the
following:
® Whether the questions are answerable (e.g., is there any datum, reference, or
experience relevant to the question)
® Whether there is likely to be much diversity of opinion among external experts
in answering the questions
e Whether any of the expert judgment data would be considered proprietary
¢ The number of questions that an expert could answer in a particular period of
ume

Determining in Which Steps the Advisory or
External Experts Will Assist

Experts are needed to select the question areas, identify the questions (steps 2 and 3
in chapter 4) and refine the the questions (chapter S). Either advisory or external experts
can work with the project personnel to perform these tasks. However, when the external
experts become involved in the project is a critical consideration because it affects the order
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in which chapters 4, 5 and 6 should be applied. We recommend that the three following
options be considered and one selected.

The external experts are not involved in question area selection,
question identification, or refinement, except minimally just prior to having
their judgments elicited. In this option, the advisory experts do the majority of the
work, in combination with the project personnel, in selecting the question areas and
identifying and refining the questions. Then, the advisory experts are used to pilot test the
questions for clarity and ease of use. (Pilot testing is discussed in chapter 9.) Surveys or
questionnaires are frequently developed in this manner. Later when the external experts
respond to the questions, their interpretations of the meaning of the questions are recorded
and constitute their refinement of them.

The advantages of this option are as follows.

¢ The development of the questions is controlled by the project personnel (e.g.,

either they make the choices or they direct the advisory experts in making
them).

® The external experts do not have to be selected until after the questions are

finalized (as described in chapter 5).

There are three disadvantages of this option:

® The external experts will not be as motivated to address the questions as they
would have been if they had helped develop them.

® The external experts will have a more difficult ime understanding the questions
than if they had developed them. In particular, experts often have problems in
encoding their responses into the response modes that the project personnel
have picked and with which the expert has no familiarity.

® Those who review the project may believe that the experts were led because the
experts did not develop the questions.

If this option is chosen, read and/or apply chapters 4, 5, and 6 in sequence.

The external experts are presented with the question areas and
identify the questions and refine them, or they are presented with the
questions and refine them. Frequently, as in the NUREG-1150 reactor risk study,
the project personnel select the question areas or questions and the experts modify them
(e.g., add, delete, or reword them). If more than one expert will be addressing a question,
they will need to come to agree on its revision. Otherwise, their later responses cannot be
compared because they will be answers to essentially different questions. For this reason,
the project personnel usually monitor the experts' work in arriving at the final wording of
the questions. This option of partial involvement by the external experts is favored when
the project personnel want some control over the questions. One situation where the
project personnel would wish to have some control over the final questions is when the
client has specified which question areas he wants covered.

The advantage of this approach follows.
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e The project personnel can specify the criteria that they wish met in the
development of the questions and let the experts do the work.

The disadvantage of this approach follows:
¢ Those who review the project may believe that the experts were led because the
experts did not develop the questions.

If this option is chosen, skip to chapter 6 on selecting the external experts.

The external experts are involved in the question area selection and
in the identification and refinement of the questions. This approach works best
when the experts can be gathered together over time to develop the questions. Frequent
meetings require that the experts be located in the same geographical area or organization.
This option is also applied when the experts are not located in the same place but can meet
for a concentrated period of at least a week. For example, on the army export project,
experts from different army offices met for one week to select the question areas, identify
and refine the questions, and answer them for a test case. Another possibility is for the
experts to meet to review and modify those question areas earlier proposed by the project
personnel. Occasionally, the experts do not physically meet until later in the question
refinement but work on the question areas through mail correspondence.

Early expert involvement is used if the external expert's cooperation or views of the
project are critical to the success of the project. For instance, if there were very few
experts in the field, the participation of each would become more important than if there
was an unlimited pool of experts. Additionally, if the client or project funder would
interpret any expert's reluctance to participate as a sign that the project was a failure, expert
participation becomes critical.

The following are two advantages of early expert involvement:

¢ Early involvement has a positive effect on experts' willingness to participate in

the study and later provide their judgment.

e Experts will be more supportive of the product of the project because they will

view it as the fruit of their labors.

The following are the disadvantages of this approach:

e The project personnel will not have complete or direct control of the
development of the questions.

® Working with a group of experts to develop the questions requires special skills
(tact and ability to keep things rolling), and even then it sometimes resembles a
three-ring circus.

® Having the experts meet and proceed to develop the questions requires more
advance planning than the other options. (See How to Set Up for a Delphi
Situation or How to Set Up for an Interactive Group Situation in chapter 10).

If the external experts will do the bulk of the question development, read chapter 6,
Selecting and Motivating the Experts, before continuing with this chapter and chapter 5.
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Checklist for Selected Questions

After the questions have been formulated, they need to be evaluated for their

suitability. The following is a checklist for that purpose.

1. Will the questions provide the data necessary to meeting the goals
of the project? Sometimes the creation of the questions takes on a life of its
own and moves in a direction that has little bearing on the goals of the project.
Frequently, it is helpful to outline on paper the project goals; that is, the type of
expert judgment, answers, problem solving, or ancillary data that is needed for
the project; and the questions that are being considered.

2. Will the questions be within the scope of the project? In particular,
time, funding, and logistics are critical considerations.

Time. A major consideration is whether there are the appropriate number
of questions for the time allotted. Rough estimates of how much time a
question will take can be obtained by considering the type of data (answer only
or answer plus ) it is to gather and the level of detail needed. The chart below
illustrates the amount of time that it takes to elicit an expert's response to
different types of questions. Note that the level of detail usually corresponds to
whether answers only or answers plus will be gathered. When answers plus
problem-solving processes are gathered, the amount of data being gathered
multiplies and each datum becomes more complex.

Rough Time Estimates for Eliciting Expert Judgment in Different Situations

Elicitation Situation Type of Data Level of Detail Approximate Time
Experts in a group Answer only Very low A few minutes
Answer plus a few 5-10 minutes
sentences on their
rationale
Expert alone Answer only Medium 30 minutes
Answer plus problem-  High 1-2 hours
solving data

Funding. The amount of personnel costs for advisory and external
experts is a second consideration For example, on one large project, the costs
per external expert averaged $10,000. The experts traveled to two meetings and
provided in-depth answers and problem-solving data on the questions to which
they were assigned.

Logistics. Will the logistics of eliciting the expert's judgments be
reasonable? For instance, in a problem-solving application where a few experts
are needed for long periods of time, are there experts located nearby?
According to Waterman (1986:192), the availability of experts is crucial in this
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situation. If the experts are not located nearby, could either the project
personnel or the external experts be relocated to be together for the necessary
period of time?

3. Can the expert judgment data be obtained without extreme effort?
For example, will the data be classified or proprietary? We have found
proprietary data to be more difficult to handle than classified. The procedures
for handling classified data are clear, and although time consuming, do not deter
the project. With proprietary data, however, experts may be unwilling to
participate for fear of providing data to their competition. An example of an
application containing proprietary data would be the failure rates of different
manufacturer's pipes in nuclear reactors. If the data is likely to be proprietary,
does the the client or the project manager have enough influence to overcome
the objections to participation? Can the project personnel guarantee that access
to the data will be protected and limited?

Common Difficulties--Their Signs and Solutions

Difficulty: Client can not provide clear information on the project's goal,

the information that is to be gathered, or the question areas. The client
may be uncertain about the project, as many are when it is in a conceptual stage, or
unable to communicate a view of the project. This same sort of difficulty occurs in
most consulting applications--the analyst must extract what it is that the client wants and
needs.

Solution: First, determine at which point the client's conception of the project becomes

unclear. Then, elicit from the client the information that is necessary for the project to
proceed. For example, if the client has only vague ideas on what the project should be,
this basic information needs to be elicited, clarified, and recorded. More frequently, the
client will be able to specify the project's goals but not how those goals are to be
accomplished; the client's reasoning being that the implementation of the goals is your
job, that is why you have been hired. Again, the solution is to interview the client to
obtain as much information as possible on how to proceed within the project scope as
the client has viewed it. Two of the interviewing techniques outlined in chapter 7, the
verbal probe and the ethnographic method, may be helpful in questioning the client.
For instance, the client could be informally questioned using these two techniques and
then interviewed in more depth using the ethnographic technique (chapter 7). The
ethnographic technique allows the client's own words to be used in the questioning; in
this way the exact meaning of his responses can be extracted.

Difficulty: The question developed from the question area is still too
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broad. One sign of a too-broad question is when the advisory expert or external
expert has to break the question into smaller parts or request additional information
before being able to answer. For example, the following question was asked about a
particular nuclear plant in a reactor risk analysis study (Amos et al. 1987): "What is the
frequency of ignition of the hydrogen given that there has been a station blackout
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causing iydrogen accumulation?” One expert felt that the frequency of ignition would
depend on whether there was high or low pressure in the vessel and therefore broke the
question into those two possibilities. Additional information that might have been
necessary to answer the question was an illucidation of the use of the term ignition.

Solution: Ask an expert to solve the question and use his decomposition of it as a starting
point in narrowing the question. For instance, in the above example the question could
have been decomposed into high or low pressure, and ignition could have been
explained as stopping short of detonation. As another check, the expert can be asked if
the questions, in their present form, are basically answerable. If the expert replies that
the questions are still too vague, ask the expert to think aloud about how to make the
questions more manageable. (See chapters 7 and 10 on how to use this method, the
verbal protocol, of interviewing.)

Difficulty: Too many questions have been selected for the amount of time
available. Selecting too many questions to be answered in the available time is a very
common difficulty. An early sign of this difficulty is people's unwillingness to discuss
the number of questions and the amount of available time. Perhaps because most
persons are not aware of how time consuming it is to do an in-depth elicitation, they
tend to estimate time from how long it would take someone to give an off-the-top-of-
the-head answer. Because of wishful thinking, even persons experienced in elicitation
tend to underestimate the amount of time a particular number of questions will take.

Solution: The advisory expert should be asked to provide rough estimates of how long

an expert would need to respond, given the elicitation procedure being considered and
the level of detail needed in the data. This amount of time can be examined in light of
the numbers of experts, the questions planned, and the total amount of time available.
If this rough estimate indicates that there are too many questions, there are several ways
for reducing their number: fewer questions can be selected from each question area, the
number of question areas can be cut, fewer experts can be sampled, the elicitation
method can be made simpler and faster, or less detailed data can be gathered. In
addition, it may be possible to extend the project's deadlines and to avoid any of the
above measures.
" The time-estimate chart shown in the previous section can also be used in
approximating the amount of time that each question will take. As a general rule,
elicitations of individual experts last longer than those done in groups because
individual interviews are used when detailed data are needed. In addition, elicitations
that gather problem-solving data tend to be more lengthy than those which just gather
answers. The greater the amount or detail of problem-solving data that is gathered, the
more time the elicitation will take. For example, it takes less time to obtain the experts'
general rationale--a few sentences documenting their reasoning--than it does to obtain
their definitions, assumptions, heuristics, references, and calculations.
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Refining the Questions

In this chapter we describe how to refine the questions selected in the previous
chapter. The aim in refining the questions is to take human cognitive limitations into
account and create questions whose information can be more easily assimilated and
processed by the expert. We believe that trying to minimize the occurrence of factors
negatively affecting cognition will lead to better quality expert judgment. Chapter 5
includes suggestions for presenting the information necessary to understanding the
question (background, definitions, and assumptions), for ordering this information, and
for breaking the question into more easily understood parts. Finally, the reader is asked to
consider the wording of the question in terms of clarity and bias. In addition, this chapter
describes when the experts should be involved in refining the questions, and when the
stage of selecting and motivating the experts (chapter 6) needs to precede this chapter.

Reasons For Structuring the Questions

The questions are refined through structuring. Structuring questions, asking them
in an organized and controlled manner, is done with the aim of obtaining the best quality
data. Some means of structuring the question include presenting its information in an
orderly way, breaking it into more easily answered parts, representing it in a pictorial or
mathematical way, phrasing it in a careful, nonleading manner, and defining the key
words.

Structuring the questions provides the following benefits:

e It focuses the expert's attention on what he is to provide.

® Tt lessens the cognitive burden of solving the question by presenting it in a more

assimilable and processed form.

e It delimits the question so that the experts are not interpreting it differently and

thus answering separate questions.

e It makes the question more acceptable to the experts because it has been refined

to encompass their views and use their terminology.

Which of the structuring techniques will be used and to which degree depends on
the questions, particularly their complexity. By complexity is meant the amount of
information required to solve the question and whether there is any means of verifying the
correctness of the answer. With simpler questions, there is less information invelved and
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often some means of determining the right answer. An example of a simple question
would be: "At what value would a chi-square statistic of 5.74, with 3 degrees of freedom,
be significant?" (Meyer and Booker 1987b:40). A complex question would be: "What is
the fraction of inventory of radionuclide group present in melt participating in pressure-
driven melt expulsion that is released to containment as a result of melt expulsion?"
(NUREG-1150 source-term elicitations, 4/13/88). The table below summarizes the degree
to which the structuring techniques are likely to be needed, given the question's
complexity.

Need for Structuring Techniques

Question Question Breaking It Represen- Question
Complexity Information Into Parts tation Phrasing
Simpler Little (e.g., Little (e.g., Little High
definitions/ textual
assumptions) description)
More High High High High
complex

With simpler questions, less information needs to be provided to the experts.
Typically, only those data, definitions, and/or assumptions that the experts are supposed to
consider need to be provided. For example, on the simple question mentioned above, the
observed, the expected values, and the chi-square statistic were provided as question
information. In addition, the options for response were provided in a form that was
standard for the experts. For example, the value of 1% was defined as meaning at or
greater than 0.01; 5% meaning greater than 0.01 but less than or equal to 0.05; and so on.
The magnitude of this information can be judged by the space it occupied--less than half a
page. With the complex example, the experts not only needed pages of background
information, but information from each other concerning the question. They shared their
information during briefings before their elicitation sessions.

In addition, simpler questions are not as likely as complex questions to need
breaking into parts because they are already at an answerable level. If a simple question is
partitioned, it is likely to include only a few parts. Because of this simplicity, such
questions are not likely to require a pictorial or mathematical representation. By contrast,
complex questions are frequently diagrammed with trees and charts representing their many
parts and the interrelationships between those parts.

Regardless of the question's complexity, careful phrasing is always critical to the
experts' understanding of the question.
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Techniques for Structuring the Questions

Presentation of the Question Information

It is extremely likely that information beyond the current statement of the question
will need to be given, no matter how simple the question is. The more elaborate the
question, the more information needed, and the more time consuming the planning of this
presentation. Planning the presentation can be divided into two aspects: (1) determining
the types of information needed, such as question background, assumptions, and
definitions; (2) determining the optimal order for their presentation, and (3) roles of project
personnel and experts.

Types of question information needed

Background. One of the first steps is determining the types of information
that will be needed by the experts. Frequently, the experts request information on the
background to the question (i.e., what events have occurred, what events are supposed to
occur, and what the current status is of the thing being evaluated). For instance, in a
project for determining how tank platoon leaders plan their routes, the experts needed
background information on their mission. This background information included maps of
the terrain, the point at which the experts were to start, the general area in which they could
travel, their objective, and the probable location of enemy tanks.

Background can also be given on a physical process, if this is the focus of the
question. For example, when the nuclear engineers were questioned about the performance
of their code in predicting experimental results, they were given background information on
the experiment. In particular, during the elicitation sessions, they were provided with text
on the experiment's procedures, its equipment (lists and schematics), and boundary and
initial conditions (temperatures and pressures). For the more complex questions on severe
accidents occurring in nuclear reactors (NUREG-1150), the experts were sent thick
packages of the latest references, prior to the elicitations.

Background information can also include representations of the question
broken into parts. For example, in complex risk analyses, the possible combinations of
events are depicted with tree diagrams, and the experts give estimates on the likelihood of
the occurrence of the branches. These representations may have been developed previously
by the project personnel and/or by the experts themselves. For example, in a simple
decision analysis project on the relative safety of new automotive fuels, the experts
developed possible accident scenarios (Krupka et al. 1983). The scenarios provided the
framework in which the experts judged the likelihoods of particular accidents occurring for
vehicles run on the different fuels.

Assumptions. Assumptions are another type of information provided to the
expert. It is necessary to present the experts with the assumptions that they are to make in
answering the question. If these assumptions are not specified, the experts are likely to
make varying ones of their own, sometimes completely altering the question’s meaning.
(Thus, the original question may pass unaddressed and the experts may have answered
totally different questions). The tendency for experts to make assumptions that conflict
with the question’s original meaning is more pronounced on complex questions. On
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complex questions, it is difficult to provide the experts with all the details that they believe
they need. They make their own assumptions as a means of filling in the gaps. For
instance, on the question of whether a particular army technology should be exported, the
experts wanted to know how many of the technologies were being requested. They said
that the number being requested would affect their answers. To allow them to proceed in
answering the question, they were asked to make the same assumption--that the request
was for four to six of the technologies (Meyer and Johnson 1985).

Assumptions are also used when the information requested can not be provided,
such as when concerning a rare physical process, but some common base must be
established to allow the experts to continue.

Definitions. Definitions of terms are another type of information commonly
used to refine a wide range of questions. For example, in the export study mentioned
above (Meyer and Johnson 1985:7), it was necessary that the experts define technology
transfer in the same way, so they were asked to agree upon and use a definition (e.g.,
technology transfer is the means by which technologies, goods, services, data, and
munitions that are deemed militarily critical by the Department of Army are transferred to a
Jforeign country, international organization, firm or individual).

Ordering of information

The next step is to determine the order in which the experts will need this
information. One means of doing this is to consider the logical flow of the information. At
each point in the planned elicitation, at each question, what information does the expert
need to respond? A means for checking the flow is to have the advisory experts work
through the question. If they request information that was not provided (e.g., not
considered for inclusion or not available for inclusion), insert it at that point. For example,
in a study of how tank officers planned their routes, the subjects frequently requested more
information on the density of the forests than was offered on the maps (Meyer 1987).
They felt that they needed this information to assess whether the trees would offer
sufficient cover.

Finally, how humans assimilate and recall information needs to be considered in
sequencing the information. People are thought to better take in new information when it
fits within the context of their prior knowledge, their mental models (Waern 1987:276).
Even though the subjects are experts in their field, the question information may represent a
new portion or a different configuration of the data then they possess. Since the experts
need to answer the question, albeit in their own ways, they must have a through
understanding of it. Thus, the experts should be introduced to the various bits of
information, such as the definitions to be used in common, in a manner that facilitates their
mental filing and accessing of it.

In addition, in the complex and dynamic environment of solving problems, people
are prone to forgetting information. For this reason, Payne (1951) has recommended that
any information critical to the interpretation of the question, such as important definitions
and assumptions, be included as part of the question. For example, in a study of severe
accident sequences in nuclear reactors (U.S. NRC 1989), a few questions began with the
assumption--for example, given that x has occurred, what is the probability that y will?. If
these definitions and assumptions cannot be made a part of the question because they make
it confusing or too lengthy, they can be given immediately before the question. For
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example, in a project forecasting the weapon needs of the year 2000 (Meyer et al. 1982:7),
the definition of the weapon was read immediately before the question.

Often the above considerations on how people best assimilate information leads to a
hierarchical presentation of the information, such as from general to the specific or from
specific to inclusive. For example, a general-to-specific ordering would provide the
experts first with the general context of the question, such as its topic and the scenario, and
then provide the definitions or assumptions which narrow the question. An ordered
presentation of the information, whether it be from general to specific or vice versa, is done
to assist the expert in assimilating the necessary information.

Roles of project personnel and experts

As mentioned in chapter 4, these are the generic roles of persons who could plan
the presentation of the question information. Their roles could overlap, particularly if the
advisory experts were also project personnel. In addition, other persons such as the client
could have a role in presenting the question information if they had assisted earlier in
selecting the questions. As mentioned in chapter 4, project personnel can include the data
gatherers (interviewers or knowledge engineers), managers, and analysts.

The project personnel and advisory experts can work together on determining what
information needs to be presented and in what order. One approach would be to have the
project personnel draft the information and the advisory experts review and pilot test it.
(Pilot testing is described in chapter 9.) The project personnel are qualified for this role
because they know the project's aims and how they intend to do the elicitation. The
advisory expert's know the field and can anticipate the experts' information needs and their
response to the proposed question. Another approach would be to have the external
experts state what background would need to be provided, agree on the definitions and
assumptions to be used, and decide on the order of the presentation of this question
information.

Decomposition of the Question

Another typical means of structuring the question is through decomposition, also
referred to as disaggregation (Meyer 1986:88). Frequently, questions are broken into
parts to ease the burden of information processing and to promote accuracy (Armstrong et
al. 1975; Hayes-Roth 1680). For example, Armstrong et al. (1975) asked straight almanac
questions of half of their sample. Of the other half, they asked the same almanac questions
but broken into logical parts. For instance, the question "How many families were living
in the U.S. in 19707" was asked as "What was the population of the U.S. in 1970?" and
"How many people were there in the average family then?" The persons answering the
disaggregated questions gave significantly more accurate judgments. The information on
how to decompose the question is often given to the experts as background, as mentioned
in the previous section.

Complex questions are more likely to require decomposition. On simple questions,
such as the almanac question mentioned above, decomposition is either not needed or done
only slightly. A classic example of where question decomposition is used is in risk
analysis. For instance, on the study of severe accident sequences (U.S. NRC 1989),
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questions were disaggregated by the experts into a case structure. The cases were created
by considering those factors that would have critical effects on the reactor phenomena being
considered. For example, on the question of radionuclide release associated with pressure-
driven melt expulsion in a pressurized water reactor, some factors that were thought to have
bearing were the reactor coolant system (RCS) pressure, and whether the cavity was full,
half full, or dry. Cases were formed of combinations of different pressures and states of
the cavity (e.g., RCS pressures of 2500, 2000, and 500-1000 and a full, half full, and dry
cavity or an RCS pressure of 15-200 with a full cavity).

Considerations in question decomposition

Decomposition is not a simple procedure but one that involves diverse and
overlapping considerations. In addition to the question's complexity, there are several
considerations that impact on how the question is decomposed. One is the purpose in
performing a decomposition and the aims of the project. For instance, if the question is
highly complex and the intent is to aid the expert in his information processing, a more
detailed decomposition is needed. In addition, if the expert's thinking is to be documented
so that someone else can track it, the decomposition will have to be taken to finer levels.

Another consideration is the amount of detail that will be needed in the data. If
more detail is needed, the decomposition will need to be correspondingly finer. For
example, if data on the expert's problem solving is required, this would imply more detail.
As a general rule, the data gatherers must obtain data that is one level more detailed than
that which is needed for analysis.

Another factor in planning the question decomposition is the external experts'
involvement. How much of the decomposition will they do and at what point in the
question's development? It is critical that the decomposition be acceptable to the experts.
As a general rule, we recommend that the external experts be involved in the question
decomposition as soon as possible. For example, the experts could begin refining the
decomposition after it has been developed in-house and approved by the advisory experts.
Or, the experts could decompose the questions by themselves.

A further consideration in decomposition is the relationship between the parts of the
question. For instance, the relationship could be causal, temporal, or logical, as it was in
the almanac example.

In addition to the above considerations, there are several concems guiding
development of a question decomposition. First, there can be problems when the experts’
answers are combined for analysis if they have used different decompositions. The
problem is that the experts will have answered different questions--to combine these is akin
to mixing apples and oranges. Another caveat is that the decomposition be logical, that it
properly model the relationship between the parts. A third problem is having gaps or
redundancies in the decomposition that lead to under- and overrepresentation of the parts
when these are mathematically modeled.

Roles of the project personnel and experts

As mentioned above, the disaggregation can involve the project personnel, advisory
experts, and external experts. One method is to have the project personnel propose the
disaggregation, the advisory experts review and refine it, and the external experts use it as
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is to respond to the question. A second way is to follow the above procedure but to allow
the external experts to modify the disaggregation, as was done on the reactor risk project,
NUREG-1150 (U.S. NRC 1989). Still a third way is to have the experts propose their
own disaggregation. Because there is always the danger that the experts will reject a
disaggregation that they have not, in large part, developed, we recommend the second or
third approach.

Representation of the Question

Questions are likely to need representation if they have been disaggregated in any
detail. Representation is the pictorial or mathematical depiction of the question showing the
factors that have bearing on the question and their relationship to one another (relative
likelihood, consequence, and importance). For example, in probabilistic risk assessments
of nuclear reactors, accident sequences are diagrammed and their outcomes determined.
The accident sequences resemble a decision analytic model (Barclay, Brown, Kelly,
Peterson, Phillips, and Selvidge 1977) in that the sequences consist of branches that
display the possible outcomes that would be arrived at if particular events occurred. The
accident sequences can be represented in two ways:

. . . as event trees, which depict initiating events and combinations of system successes
and failures, and fault trees, which depict ways in which the system failures represented in
the event tree can occur.” (U.S. NRC 1983: 2-3)

In the example below, figure 1, the simple event tree shows events leading to a safe
termination of their sequence or to a specific plant-damage state. Representations can be
used to accomplish the following:
® Guide the external experts in making judgments (e.g., by providing the

disaggregation that has been agreed upon)

Document how the experts reached an answer

Provide future guidance on how the question or similar ones are to be solved

Provide guidance on how the expert judgment is to be processed and analyzed

Note that representation here is distinguished from the term knowledge
representation used in artificial intelligence. Representation only includes the ways in
which the question can be modeled; knowledge representation includes the domain of
knowledge, the language for programming it, and the means for making automatic
inferences. For further references on knowledge representation in artificial intelligence, see
Brachman and Levesque (1985), Sowa (1984), or Skuce and Sowa (1988).

Considerations in representation

Arriving at a representation involves the same sort of considerations and concerns
as decomposition (see Decomposition of the Question above). The main considerations in
selecting a representation scheme are that it be compatible with the question decomposition,
the analysis plans, and the expert's means of solving the question. If one of the existing
representation schemes cannot be applied, a new idiosyncratic one can be created. A few
representation schemes are described below.
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The accident sequence representation, used in performing probabilistic risk
assessments (PRA), is based on causal and sequential relationships. That is, one event can
cause another and lead to particular outcomes. The PRA accident sequence is widely used
in the nuclear risk/reliability community but has general applications to modeling physical
phenomena. For example, a related representation scheme is used to diagram automobile
accidents (Krupka, Peaslee, and Laquer 1985). This scheme depicts the events that could
cause accidents among automobiles run on new alternative fuels. For details on how to do
an accident sequence representation, see the PRA Procedures Guide NUREG/CR-2300
(U.S. NRC 1983).

Initiating
event RP ECA ECB PAHR
A B C D E Sequence
1. A
2. AE-plant
damage
3. AC

4. ACE-plant
Success damage

Failure

5. ACD-plant
damage

6. AB-plant
damage

Source: NUREG CR-2300 (U.S. NRC 1983)

Figure 1. An example of a simple event tree for Probabilistic Risk
Assessment (PRA).

Another type of representation scheme is one in which the parts are temporally
related. These schemes are often used for managing technical programs where for the
accomplishment of the end product, each milestone must be achieved on schedule. Such
representations show which activities or milestones need to be realized in parallel and
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which in sequence. PERT is an early example of this type of representation. PERT was
developed by governmental agencies as an aid to planning and evaluating the costs and
scheduling of objective-oriented work (PERT Coordinating Group 1963).

In another type of representation scheme, the parts are alternatives which are
evaluated in terms of particular attributes they are judged to possess. A common scheme
of this type is Saaty's Analytic Hierarchy Process (AHP). AHP is frequently used by
decision makers or experts to pick, from alternative actions or products, the one that will
best address some agreed-upon criteria (Saaty 1980, 1982). For example, in the export
control project, the AHP representation was used to make decisions on whether a specific
Army technology should be either exported, not exported, or exported with particular
conditions (Meyer and Johnson 1985).

Idiosyncratic representation schemes are those that occur when a new representation
is created especially for the project. Idiosyncratic schemes differ, so the relationship
between their parts cannot be characterized as being one thing, such as causal.
Idiosyncratic schemes are used when one of the existing schemes cannot be applied. Thus,
they may be very suited to one application but not easily generalizable to others. For
example, an idiosyncratic scheme was created for a project that was to forecast the weapon
needs of the United States for the year 2000 (Meyer et al. 1982). This scheme was
developed because the experts needed some framework for thinking in a structured manner
about what potential threats there might be to the defenses of the United States in the
future--that is, what offensive weapons other countries might develop and how the United
States might need to respond to these in their own weapons development.

Roles of project personnel and experts

The roles of the project personnel and experts are the same for representation as
they were for disaggregation. As with disaggregation, the external experts should take a
major role in creating a representation. This is particularly true if the purpose of the project
is to model the experts' problem-solving processes or to create one that will serve as a
guide to future decision making.

Question Phrasing

Another element of structuring is question phrasing or wording. Question
phrasing refers to the wording of the question and of the mode in which the expert is to
respond (response mode). Careful question phrasing maximizes the chances that the expert
will understand the question and not be unduly influenced or biased by it . A biased
wording can cause the expert to describe his thoughts or answers differently than they were
and thus can be considered motivational bias as described in chapters 3 and 8. Specifically,
we consider biased phrasing to be a type of social pressure because the expert's thinking is
unconsciously affected by the perspective he picks up from the wording.

The biasing effect of phrasing has been shown most dramatically by Payne (1951)
through his use of the split ballot technique in survey questions. The split ballot technique
entails giving half of the sample one wording of the question or response option, and the
other, another. For example, one wording of the question might be: Do you believe that X
event will occur by Y time? The other wording might be: Do you believe that X event will
occur by Y time, or not? This second option is more balanced because it mentions both
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possibilities. For this reason, it would be likely to receive a higher percentage of "no"
responses. Often the difference measured by the split ballot technique is 4-15% even when
the rewording has been very slight (Meyer 1986:88).

In another example (Meyer and Booker 1987b), the experts were asked to identify
where two curves (one generated by a computer code, the other by an experiment)
diverged. An early wording of the question asked the experts to mark the places where
they felt the curves diverged. This wording was leading the experts (e.g., to believe that
there must be divergences) and was therefore changed to "mark the places, if any, where
the curves diverge.”" As Payne (1951), the grandfather of surveys noted, all question
phrasings are biasing; the best that one can do is aim for equal, but opposite, biases.

Another problem with unclear wording is that the experts are likely to interpret the
question differently and give answers to essentially distinct questions. For example, in the
study of interexpert correlation mentioned above (Meyer and Booker 1987b), the experts
were found to have separate interpretations of the term diverge. To some diverge meant
where the lines were not exactly the same; to others, it meant where the distance between
the lines increased with time; and to still others, it meant where the differences exceeded the
error bars of 10-20%.

Another factor that has bearing on the question's clarity is its length. Payne (1951)
has found that people's comprehension of written sentences tends to drop off after 25
words. For this reason, we recommend that sentences be kept as short as possible.

Considerations in question phrasing

In phrasing the questions, consider clarity and bias. Clarity can be improved by
having the project personnel and experts review and offer feedback on what the phrasing
meant to them. (This procedure, pilot testing, will be described in detail in chapter 9).
There is no easy procedure for combating bias--the best strategy is to be sensitive to this
issue and to carefully scrutinize the phrasings.

One problem in question phrasing is creating one that will be commonly understood
and acceptable by multiple experts. If a phrasing (or representation or disaggregation) has
been reviewed and tested by only a few experts, it may be slanted (e.g., reflect only their
experiences, views, and use of terms). If only one advisory expert is used, the chances of
slanted phrasing are even greater.

We encountered this problem of slanted phrasing while drafting a linear scale for
experts to use in estimating the magnitude of a computer code's divergence from the
experimental results (Meyer and Booker 1987b). There was a small population of experts,
and we did not wish to further decrease that population by designating more than one
person to be an advisory expert. Thus, only one well-qualified expert served as advisory
expert in helping develop the scale for the experts' responses. However, when we
requested feedback on the scale, we learned that several of the experts did not accept a
major premise of the scale. The advisory expert had equated magnitude of the divergences
with the presence of code deficiencies (e.g., insufficient agreement was associated with
serious code deficiencies that required immediate fixing). (See chapter 7, example 7.2 for
an illustration of the linear scale). Several of the external experts did not make this direct
association. Instead, they considered the possibility that the experiment had not been
conducted as reported. They reasoned that poor agreement between the code's curve and
the experiment's curve could be attributed to the code trying to model an experiment that
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was conducted differently than reported. Thus they did not necessarily equate poor
agreement with code deficiencies. As a result of the scale's wording, adjustments were
being made to the scale much later than was desirable.

Roles of project personnel and experts

The project personnel can propose the first phrasing for the advisory experts'
review. This first draft and later ones should be examined by the project personnel for
bias. This tasking is proposed because the project personnel will be aware of the potential
for bias. The advisory experts can review the phrasing to provide information on the
experts' reaction to it. At the very least, the external experts need to have the opportunity to
modify the question phrasing before their elicitation sessions. Otherwise, during the
elicitations the external experts may state that they do not agree with the question and,
therefore, can not answer it. It is generally best to allow the external experts as major and
early a role in the development of the questions as possible.

When the Refinement of the Questions Should Be
Preceded by the Selection of the Experts

There are three conditions when selecting and motivating the external experts
should precede refining the questions:
e If the purpose of the project is to capture the expert's problem solving or to
serve as a guide to future decision making,.
If there is any indication that the experts may not accept the questions.
If outside reviewers are likely to be concerned about bias in the question
selection or phrasing.

If any of these conditions exist, it is critical to have the external experts do the
primary work on refining the questions and to begin this as soon as possible. Not
adequately involving the external experts in question refinement occurs frequently and leads
to serious problems. For example, in a reactor study, tight time schedules led to an attempt
to save time by having a panel select the questions and the response scale for the experts.
The experts were to have the freedom of modifying these, but when they met, did not feel
that they had sufficient time to do so. As a result, several experts questioned what their
answers would have been otherwise and stated that they did not wish to defend the study
(Benjamin et al. 1987:appendix F). Such statements by the experts impair the credibility of
a study.

If the external experts are selected first, they will assist in creating the presentation
of the information, the disaggregation, the representation, and the question phrasing. Their
early involvement may lessen the need for the use of the separate, and usually in-house,
advisory experts. The external experts' work on refining the questions can occur in
different ways. For instance, the experts may do the above tasks as part of their elicitations
or they may do these as a separate step, depending on the project. For example, on the
export control project (Meyer and Johnson 1985), the experts were convened once to
disaggregate, represent, and phrase their questions and to give their answers. By contrast,
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on the reactor risk study NUREG-1150 (U.S. NRC 1989), the experts met several times to
(1) receive briefings on the project and view the disaggregations proposed by the project
personnel, and (2) to give their answers to their disaggregated questions (i.e.,
disaggregations that they had developed from those earlier proposed).

Common Difficulties--Their Signs and Solutions

Difficulty: There was not enough input from the external experts in

refining the question. Refining includes providing input on what information is
needed to answer the question or assisting with the question's disaggregation,
representation, or phrasing. Because refining the question is an evolving process, at its
early stages the question will not have had sufficient expert input. Then too, given the
means of refining the question (particularly who is doing it and at what stage), the signs
of this difficulty may vary. The earliest signs may be the responses of the advisory
experts who are reviewing the question. They are likely to be confused by the
question, say that they do not view the question in this manner or that they can not
answer the question in its current form. If advisory experts have not been used to
screen the question, this difficulty may be revealed later when the external experts view
the questions for the first time. They, then, may have the same reactions as the
advisory experts. If this problem exists, the external experts are likely to demand more
information on the question, or criticize its disaggregation, representation, or phrasing.
Then, if they are to provide their answers as input into this structuring, they may refuse
to do so. If, they are only to use the structuring as a first cut, they may insist on
extensive modifications of it. In either case, the effects of this problem are serious.
The project can lose its credibility or run over schedule when the experts challenge the
questions.

Insufficient input from the experts in refining the questions commonly happens
because of tight time schedules. When a project has tight time constraints, project
personnel may seek to save on time in several ways. Sometimes, they will try to
minimize the number of times that the experts meet or the number of times that the
structuring of a question is redone. Another means for trying to conserve time is to
have the project personnel do most of the structuring. Thus, the duration of this phase
stays under the project management's, rather than the expert's, control.

Solution: The simplest way to avoid this serious situation is to involve the external
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If one of the above conditions exists in the project, we recommend selecting and
motivating the external experts (chapter 6) before beginning the refinement of the
questions (chapter 5).

Difficulty: The question decomposition becomes too complicated or too
detailed. In this situation, the disaggregation, and hence its representation, exceeds
the level of detail needed for the project's goals and analyses. While it is frequently
necessary to gather data one level more detailed than needed, the level of detail
discussed here is excessive. The desire to disaggregate ad infinitum appears to be a
natural tendency. Perhaps the motivation behind it could be explained as give us
enough rope and we will hang ourselves. Newcomers to disaggregation wish to do a
good, thorough job. In addition, they may be trying to take the question to a more
easily answerable point, such as where experimental data can be applied. This quest is
positive, in moderation, and is the reason that questions are disaggregated. However,
this inclination to divide things ever more finely, if unchecked, can be
counterproductive.

Solution: Usually a person needs to experience excessive disaggregation once or twice to
recognize the tendency in himself and others. If someone else, such as the experts, are
becoming too detailed, you can do one of two things: (1) allow them to continue so that
they can come to their own realization about the practicalities of excessive
disaggregation, or (2) show them through sensitivity analyses when they have more
detail than they need. The first approach has the advantage of producing experts who
are, after their own experience, supportive of the the more general level of
disaggregation proposed by the project personnel. However, this approach has the
disadvantage of being more time consuming.

Difficulty: The questions are ill defined or open to differing
interpretations. This difficulty is the other side of the one mentioned above. It
tends to occur when the structuring of the questions has been rushed due to tight
deadlines. Often, our expressions are not as clear as we would like to believe. To us,
the question, may be perfectly clear because we are reading between the lines and
unaware of some of the definitions and assumptions that we are making. Anyone who
has ever drafted survey questions is aware of how many ways, often other than
intended, a question can be interpreted. It is to be expected that the questions will be ill
defined when they are first being structured. After all, that is why refining the
questions has been designated as a separate phase. However, the questions should be
as specific and structured as needed before the answers are elicited.

If the advisory experts are pilot testing the question, they may provide the first
sign of trouble. If this is the case, they are likely either to request more information or
to try to fill in the question's gaps by making assumptions. The same thing can happen
later with the external experts if the question has not been sufficiently defined in the
meantime.

Solution: To avoid having ill-defined questions during the elicitations, solicit the input of
the advisory experts on the question. For instructions on how to pilot test the question,
see chapter 8. If the worst comes to pass and the external experts are being elicited
with ill-defined questions, you have two options. The first and best approach is to
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gather the experts together and have them refine the questions. Each refined question
should be recorded and declared the new question to be used henceforth. The other
option is to record any definitions or assumptions that the expert individually uses in
attempting to answer the question. The advantage of the first approach is that the
experts are answering the same question and their answers, can be legitimately
combined, if one composite answer is required for analysis.
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Selecting and Motivating
the Experts

In this chapter we detail how to select and motivate the experts for the two types of
applications--those meant primarily to gather the experts' answers and those meant to
gather data on the experts' problem-solving processes. These two applications are so
different that they determine the approach to obtaining the experts' data. For example,
studies that are to gather the experts' answers usually obtain the answers in quantitative
form from 4 to 50 experts. Studies that will gather detailed data on the expert's problem-
solving processes focus intensively on a few experts. Thus, for the first application,
experts are likely to be selected for their diversity and ability to quantify their judgments in
the desired form. But, in the second instance, the experts are frequently chosen for their
willingness to devote a major portion of their time to being elicited and for their ability to
respond to the method; for example, can they coherently think aloud for the verbal protocol
method? The experts may even be screened initially by using a sample of the elicitation
method.

For Applications Whose Data Will Be the Expert's
Answers

For most applications, especially in risk/reliability and decision analysis, obtaining
the expert's solution is the primary objective. There may be an attempt to document the
expert's reasoning behind the answer but this is done to support the solution and is not the
main goal. Usually, the expert's solution is requested in a quantified form, such as a
probability. Thus, the experts need to have knowledge of the subject matter as well as
knowledge of the rules governing the form in which they are to respond.

Who Is Considered an Expert?

An expert is anyone especially knowledgeable in the field and at the level of detail
(granularity) being elicited: the individual should not be considered an expert unless
knowledgeable at the level of detail being elicited. For example, an expert on different
types of reactors would not be knowledgeable on the probability of a specific pipe's rupture
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in a Westinghouse boiling water reactor (BWR). Similarly, a specialized pipe expert might
not know the comparative likelihood of loss of coolant accidents (LOCAs) in Westinghouse
BWRs and pressurized water reactors (PWRs).

What Constitutes Expertise?

Two types of expertise, substantive and normative, enter into projects whose goal
is obtaining answer data. Substantive expertise comes from the expert's experience in
the field in question, such as in rupture rates of Westinghouse pipes. Normative
expertise is knowledge related to the use of the response mode. The response mode is
the form in which the expert is asked to give his judgment (e.g., probabilities, odds,
continuous scales, ranks or ratings, and pairwise comparisons). Normative expertise is
based on knowing the statistical and mathematical principles of the response mode. Several
response modes, such as probability estimation, are supposed to follow particular
mathematical or logical rules (e.g., all probabilities are values in [0,1]). The use of
individuals with expertise in neither or only one of these areas has been a serious problem
in studies of expert judgment (Hogarth 1975). Both forms of expertise enter into the
giving of a judgment, so the lack of either can affect the quality of the judgment. The lack
of normative expertise may be responsible for there often being little difference between the
goodness of substantive expert's judgments and those of inexperienced lay persons
(Armstrong 1981). In particular, substantive expertise does not guarantee normative
expertise as discussed in chapter 2, in sections Are Experts Bayesian? and Do Experts Give
Better Data?

In general, a substantive expert who is experienced in the response mode (e.g., a
pipe specialist with experience in probability estimation) is a better expert than one who is
not (e.g., a pipe specialist without any experience in probability estimation). Two means
for coping with this major pitfall is (1) to allow the experts to give their judgments in the
deterministic mode that they use in solving problems at work, or (2) to try to familiarize
them in use of the response mode. (See the discussion in chapter 9 on training project
personnel in how to familiarize the experts with the response mode.)

When Expertise Matters

The above-mentioned parameters of expertise (substantive, normative, and
knowledgeable at the necessary level of detail) are always of importance in gathering the
expert's solutions. However, under particular circumstances, another aspect of expertise
becomes important--the notability of the experts. Selecting experts who are well known
and respected among their peers and the broader public can lend the study greater
credibility. For example, one study forecasting America's needs and resources was
initially very well received because of the endorsements of its illustrious experts (Club of
Rome, Limits to Growth 1974). Therefore, if the study has the possibility of being
controversial, aim to select experts who are notable as well as qualified along the other lines
of expertise (substantive, normative, and level of detail). Selecting notable experts offers a
side benefit. It often motivates other experts to participate in the study in the belief that they
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will be in august compauny. Thus, obtaining additional experts for the study becomes much
easier.

Additional Considerations in Selecting Experts

Multiple and diverse experts

It is generally advisable to obtain multiple and diverse experts so that the problems
will be thoroughly considered from many viewpoints. Diverse experts are those likely to
view and solve the problem in different ways. For example, Seaver (1976) proposes that
having diverse experts, particularly in face-to-face meetings, leads to better quality
answers. Ascher (1978:202-203) who has evaluated the accuracy of different forecasting
techniques in retrospect, states:

multiple-expert-opinion forecasts, which require very little time or money, do very well
in terms of accuracy because they reflect the most up-to-date consensus on core
assumptions.

Diversity of participants is one way to minimize the the influence of a single individual.
For example, use of a single expert will slant results toward the contents and functioning of
his memory. One expert will differ from another in what he has experienced, the
interpretation placed on these experiences, and the ease with which they can be recalled and
brought to bear on the problem (Hogarth 1980). Expert's answers are also likely to be
affected by the mental heuristics that they used to simplify and solve the problem (Hogarth
1980, Tversky and Kahneman 1974 and 1981, Meyer and Booker 1987b). The use of
diverse experts allows the answers to reflect individual differences in experience, recall,
and use of problem-solving heuristics.

Diverse experts are likely to be important in cases where the experts are to forecast
future events or situations (e.g., predicting the market for nuclear power in the year 2000).
In forecasting, the tendency is to anchor to the status-quo situation and not extrapolate
sufficiently in considering the future (Ascher 1978). Having multiple experts with different
viewpoints helps the group overcome the human tendency to anchor to one, usually
conservative, reference point.

The practice of using multiple experts is being encouraged in knowledge acquisition
(Boose and Gaines 1988). One advantage of eliciting and showing different expert's
judgments is that the user of the knowledge-based system can pick the expert's way of
thinking that he finds most useful or appropriate (Gaines and Shaw 1989).

Other studies on aggregating multiple expert estimates, such as that of Martz,
Bryson, and Waller (1985), support the practice of having multiple experts. Aggregation
schemes tend to show that a combined estimate has a better chance than any single expert's
estimate in getting closer to the true value.

Number of experts

The exact number of experts that multiple constitutes may vary according to the
elicitation method. For example, if a face-to-face meeting is involved, we recommend
having from five to nine experts for each interviewer available to moderate the sessions.
Fewer experts than five does not seem likely to provide enough diversity or enough
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information for making inferences (chapter 18). Nine experts in a session is usually the
upper limit for obtaining in-depth thinking from each expert and yet having enough control
to counter potential effects arising from group dynamics, such as the follow-the-leader
effect.

Selection Schemes

Most of the selection schemes are based on having the experts name other experts.
In many specialized fields (e.g., seismology, high explosives, and nuclear reactor
phenomenology), the experts know one another and can supply the names of other experts.
The researcher starts with a few of the known experts, collects names from them, and
repeats this process until more names are gathered than are likely to be needed.

The problem with using this scheme without modification is that it leaves the study
open to later questions of whether people named those with similar views. Because
diversity of experts is the goal, this basic scheme is often combined with additional
selection criteria, such as having equal numbers of experts from academia, private industry,
and the government, or from the major points of view. Some of the selection criteria may
be used to define the meaning of expert (e.g., criteria beyond being a person who is
recognized as being an expert by other experts). For example, only experts with particular
levels of publication or experience, such as in being a plant operator, might be chosen from
those named.

Then too, logistics play a role in the selection scheme. The scheme must respond to
such concerns as whether the experts will be be willing to participate, have the time to
participate at the necessary level, and be allowed to do so by their employer.

The selection scheme is likely to receive close scrutiny if other aspects of the study,
such as its results, are questioned. The most frequent criticism is that the scheme did not
select experts who were representative of the larger population and that their answers were,
therefore, skewed. It is commonly believed that skewed results arise from taking the
majority of experts from one place such as the same organization (e.g., especially from the
same organization as the rest of the project personnel), a class of organizations (e.g., from
academia, industry, or government), or one point of view. Our studies (Booker and Meyer
1988a, Meyer and Booker 1987b) have not found the expert's affiliation or education to be
a significant factor in explaining similarities or differences between expert's answers.
However, in the interest of trying to represent different views and to avoid criticism, we
recommend selecting a balanced group of experts.

Motivating Experts to Participate

The first step of motivating the experts is to consider the proposed study from the
viewpoint of the experts. Theories on interviewing predict that obtaining participants
depend on maximizing those factors of the situation that experts would consider
motivating, such as recognition, and minimizing those that they would find inhibiting, such
as having to devote large amounts of their time (Gorden 1980).

For example, two aspects of risk assessments that could be maximized to motivate
the experts are the opportunity to affect the study or contribute to the field and the
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opportunity to receive recognition. If the potential experts are told that they will have input
into the methods used, they will be more likely to volunteer. Generally, if individuals have
control over a process, they feel better about it and will lend support to the methods used or
to the conclusions reached. This optimistic attitude stems from the belief that if I did it, it
has to be good. Also, if the experts judge that the study will be done in a manner that will
bring credit to them or that their reputations will benefit from being included in this
company of experts, they will be more willing to participate.

Care needs to be taken to remedy those aspects of the study that may be viewed as
inhibiting the experts' participation. Generally, having to devote large amounts of time to
participating in the study is a common inhibitor in risk assessments. This inhibitor can be
minimized directly by reducing the time required for the study or indirectly by either
increasing the attractiveness of other aspects of the study, such as offering the experts a
larger role and thus a greater chance for recognition, or, if all else fails, offering to pay
them for their time.

Motivating the experts through pay

Generally, we believe that paying the expert should be reserved for those situations
where there are no aspects of the study that can be used to motivate participation or where
participation requires major investments of the expert's time and thought. Focusing on
how the intrinsic aspects of the study can be developed to encourage participation can
produce more effective motivators and also improve the design of the study. Paying
experts for their time should be a last resort for several reasons: it is costly; it may attract
one type of participant and slant the results (Gorden 1980:118); or it may have unexpected
affects on the participants' view of the study.

Payment can affect the expert's views through a means of psychological adjustment
(cognitive dissonance) illustrated below. If the expert is not paid, he must convince
himself that he is expending his time and effort for good reason, or he will feel duped.
Studies have shown that the participant unconsciously resolves this dilemma by focusing
on the merits of the study and on the benefits derived from participation (Baron and Byrne
1981:122). If, on the other hand, the expert is paid, he is not led to consider the positive
aspects of the study. Then too, the expert may view the payment as a bribe for
participating in a study that could not obtain experts in any other way (Baron and Byrne
1981:124). In an unconscious effort to show that his cooperation can not be bought, the
expert may take an extremely critical stance toward the study. One exception to the policy
of not paying the expert is in the area of travel and lodging expenses. Experts are not likely
to interpret this practical coverage of expenses as payment for their time or cooperation:
thus they should be paid for travel and lodging as required.

Motivating the experts through communication of intrinsic
aspects of the study

How aspects of the study are communicated to the expert is likely to affect his
desire to participate. For this reason, we recommend that a brief memo (about one page) be
drafted as preparation for requesting participation. This memo can be used as a script for
the telephone conversation or face-to-face meeting with the expert to request his
participation. Generally, more individuals will respond to a request delivered in person
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than by mail. For this reason, it is recommended that the experts be contacted or called first
and then sent the memo.

Guidelines abstracted from communications theory (Stroud 1981, Gorden 1980)
and the authors' interviewing experiences suggest that particular items of information be
communicated. Typically, the potential participant will want to know this information and
in the following order of importance:

1. The reason that he is being contacted. It is a good practice to phrase the
first sentence requesting the expert's participation in a manner designed to
motivate. For example, I would like you to participate in a study of Y because
of your considerable knowledge of X. This request could be considered
motivating because it is a personal appeal for assistance (e.g., I would like
you. . . ) and because it recognizes the person's expertise. It is important that
this introductory sentence be motivating because many individuals decide in the
first few seconds of scanning a letter whether they are interested or not and if
not immediately throw away the letter. Thus, if the experts can not be called or
contacted in person, the first part of the letter is a critical point in creating
interest.

In the authors' experience, scientists have responded well to these
motivators:

® Recognition. This recognition can come from the project personnel's
selecting the experts to participate or from other experts in recommending
prospective participant names. The opportunity for further recognition
would come from the expert's work in the study.

® Altruism. Altruism can range from helping another person (e.g., the
interviewer, by agreeing to participate) to helping the human race by
contributing to the advancement of science. Most scientists will be
interested in taking the state of the art a little further or in examining
problems with current methods.

e Experiencing something new and different. Most people enjoy an
occasional break in their routines, and scientists are no exception. In fact,
they may have more active curiosities. (A few sources on scientists'
personality traits are Mahoney 1976; Roe 1952 and 1963; Cattell 1963; and
Knapp 1963.)

e Need for meaning. Often scientists are interested in how their work fits
into the larger picture. For example, a computer modeler of reactor
phenomena might be interested in how his data is used in assessing risks
and setting new standards. An individual's work becomes more
meaningful if he can see how it will be used or how it will affect others.

2. Who is conducting/sponsoring the study. This information would
generally be given before item 1 in a conversation, as opposed to a letter. For
example: Hello Dr. Jones. I'm John Smith of the Research Division at the
NRC. Because of your expertise in dry subatmospheric containment in
Westinghouse PWRs, I would like you to participate in a risk assessment study
of the Surry plant. The expert may have some impression of past studies done
by this organization. If the expert's impression is likely to be negative, mention
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how this study differs from previous ones (e.g., it attempts to rectify particular
problems or to develop better methods in some area).

. How much time/effort this study is likely to take, over what
period of time, and when it will start. Earlier, we recommended that
the reader consider the factors in the study that might inhibit or motivate
potential participants. Most experts will be busy and unable to devote large
portions of their time. However, if the study cannot be made less demanding of
the experts' time, think about how to increase those factors that would motivate
them. For example, the expert may weigh the time that the study will take
against its likely contribution to the field or to his reputation. If the study's goal
is to set new standards and the experts will be contributing to the creation of
these, this information should be mentioned to offset the heavy time demands.
If the study will include the most noted experts in the field, this factor should
also be mentioned as a probable motivator.

. How he was selected or who referred him. Basically, the expert will
want to know how he was selected. Experts will be more interested in
participating in a study for which they were specially, rather than randomly,
selected. (Thus, if the experts were selected at random, it is best to gloss over
this fact.) Even more motivating for the expert is to know that he was
recommended by persons that he respects, some of whom may also be involved
in the study. If the latter is the case, it should be mentioned to encourage the
expert to assist in the study.

. What, in more detail, would he be doing in the study. Before
committing himself, even tentatively, to the study, the expert may wish to know
his tasks or role. Try to avoid using technical jargon to refer to the methods for
eliciting or modeling the experts' responses. The following is an example of a
general description of the tasks abstracted from another study (Bernreuter et al.
1985): Your role will consist of three parts: (1) helping define seismotectonic
zones east of the Rocky Mountains, (2) giving your opinion on the occurrence
rate and magnitude distribution of earthquakes within the zones; and (3)
reviewing/refining your input and that of the other experts.

If the tasks seem very demanding, the expert may request the provision of
background materials or training. If the details on providing these to the experts
have not yet been worked out, state that background materials and training will
be provided, as needed.

The expert may also want to know if he will be required to give answers on
tasks or on areas where he is not knowledgeable. Scientists often raise this
issue when they are still new to the study and concerned about their ignorance.
Tell the expert that he will not be asked to provide his judgment until he has
received training in the response mode and has become familiar with the study.
[Note: If after the expert has received the training and briefings, he is still
reluctant to provide his judgment, he should not be forced for two reasons: (1)
he is probably not an expert in this area if he does not feel qualified to give his
judgments; and (2) his reaction to being forced is likely to be negative and to
detrimentally affect his view of the entire study. This reaction is illustrated by
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reviewer's statements about a study: "The participants were forced to provide
unsubstantiated guesses as input.” (Benjamin et al. 1987:F-5,6)].

In general, the expert can be told that he will not be forced to give
judgments where he is not expert because that would detrimentally affect the
quality of the data. Emphasize that the goal of the project is to collect judgments
that are based on careful consideration and experience.

. Will the judgments be anonymous, and if so, how will

confidentiality be maintained. If the study will be sensitive in nature
(e.g., very hot politically), potential experts will probably want to know how
confidentiality will be handled before learning about the study in more detail.
Thus, for a sensitive study, the information on confidentiality should be given
before the details of the study listed in item 5. In the case of a sensitive or
controversial study, consider making the experts' estimates and comments
anonymous. However, it is best to be guided by the experts' wishes on this
issue. If there is some question about anonymity at the time of contacting the
experts, the experts can be asked to help establish how anonymity will be
handled. It may be that the experts wish to have their estimates or thoughts
identified if they perceive the study as being important and if they have had a
significant role in shaping it. However, expert judgment studies have
traditionally followed the social or behavioral science norm of confidentiality, of
not identifying the expert's data.

Some levels of confidentiality are to list the organizations or offices that
have contributed experts, to list the names of the experts plus their affiliations,
or to identify the data provided by each expert in addition to listing them and
their affiliations.

Generally, the wishes of those experts who request the highest level of
confidentiality should be applied. For example, the majority of experts may
want their judgments kept anonymous but want to be listed as having
participated in the study. One expert may oppose being listed as an expert or
even having his organization named as having provided a representative. The
one expert should be given the level of anonymity he requests, even to the point
of extending this level to include all the experts, if necessary.

For the occasional highly sensitive study, the potential participants may
wish to hear exactly how confidentiality will be maintained (e.g., how the data
files will be stored and who will have access to them). They will use this
description to judge whether they would be likely to lose the protection of
confidentiality if they chose to participate.

. The anticipated product of the study and their access to it.

Generally, one product of the study will be a report and the experts will wish to
know if they will be sent copies. For many people, knowing that there will be
something tangible to show for their efforts is a major source of motivation.

. Whether participation will be required or voluntary. For most

studies, participation will be voluntary, and this fact should be stated.
However, usually this statement need not be made until after the benefits of
participation have been fully elaborated.
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For Applications Whose Data Will Be Problem-
Solving Processes

It has become more common to obtain problem-solving data, perhaps as a result of
the influence of artificial intelligence. However, this focus occurs for a variety of reasons,
such as when the application is to do one of the following:

® Determine how problems are currently being solved and perhaps set new

standards

® Use the data for evaluating novice's methods of solving problems and for the

training of novices

® Gather data for the building of an expert- or knowledge-based system

While the expert's answer is usually gathered in these studies, it is not considered
the main data but rather a part of the problem-solving information.

What Is Needed in an Expert

Applications whose goal is to gather problem-solving data require more of the
expert than those whose goal is primarily to gather answers. The expert needs to be
extremely skillful in solving problems (Welbank 1983:8), articulate in describing his or her
problem-solving processes (Waterman 1986:192), and willing to commit to this difficult,
time-consuming task.

In particular, articulate experts are rare. In the process of becoming expert, many
of the expert's basic thought processes have become automatic or unconscious and thus
inaccessible for articulation. It is thought that humans progress from learning and
consciously manipulating rules, such as those of grammar, to more abstract thinking and
less conscious use of rules or procedures (Dougherty 1986, Denning 1986). Yet, experts
must somehow regain awareness of their thoughts to assist in explaining, representing,
checking, and refining that process.

In general, the expert must be available for providing this information. Usually,
availability requires that the interviewer or knowledge engineer and the expert be in the
same city. How accessible the expert is can be a separate concern. Frequently, even with
the expert being in the city, he becomes less accessible as the project drags on and his
interest decreases.

If the goal of the project is to gather problem-solving data for building an expert- or
knowledge-based system, the qualities of the expert become even more critical. McGraw
and Harbison-Briggs (1989:99) list the following personal characteristics and attitudes as
desirable:

domain experience, sense of humor, good listener, sense of committment, patience,
ability to communicate ideas and concepts, introspective of own knowledge, willingness
to prepare for the session, honesty with self and others, and persistence.
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Method-Driven Selection

Often, the interviewer or knowledge engineer does not have a choice of experts--the
expert is simply appointed by the organization that is funding the work. If this is the case,
then the methods of elicitation must be tailored to the expert so that he is able to respond to
them. If however, there is a plethora of experts, they can be selected according to the
methods planned. Because of the in-depth nature of this application, the focus is usually
either on one expert or one elicitation method at a time. Thus the expert can be chosen for
his willingness and ability to be elicited by a particular method. (See chapter 7 for a
description of the elicitation methods.)

A trial of each elicitation method can be conducted on each expert to determine
which combinations of expert/method work best. (To run a trial, select a sample problem
and follow the instructions in chapter 10 on how to administer the verbal protocol, the
verbal probe, or the ethnographic technique.) Of the elicitation methods, the verbal probe
and ethnographic technique can be used on the greatest number of people. The verbal
protocol is more restrictive in that some experts can not use it. We have found that about
one in thirty experts becomes extremely frustrated in using this method because it interferes
with their thinking.

Motivating the Expert

As mentioned in the section on motivating experts to participate in answer-gathering
applications, the goal in problem-solving applications is to maximize those aspects of the
study that humans find motivating and minimize those which have the opposite effect (see
Motivating Experts to Participate above). The information is then communicated to the
potential participant in the same manner as detailed in Motivating the Experts Through
Communication of Intrinsic Aspects of the Study. The differing aspects of motivating
participation in a problem-solving application is described so that the communication to the
expert can be adjusted accordingly.

The main factor discouraging expert's participation in the problem-solving
application is the great amount of time that it requires. Sometimes, the burden on an expert
can be lessened by using several experts. However, if the number of experts is limited or
if learning one expert's thinking in depth is important (as is common at the beginning of
such projects), this may not be possible. A second inhibitor can be the experts' fears that
the model/system could replace them or show their thinking to be faulty. For example, if
management volunteered their participation, they may be suspicious of why management
wishes to examine their thinking. These fears can be alleviated by explaining the purpose
of the project and eventual capabilities of its product. To further reassure them, state that
there are no right answers, explain that this is not a test, and convey a nonjudgmental
interest in learning their thinking. A third inhibitor is the experts’ concern that they will not
be able to tell how they solve problems because they do not know. Their concerns can be
answered by explaining that this lack of awareness is part of being an expert and that
methods have been developed to extract the information. (For inhibitors specific to experts
involved in building expert- or knowledge-based systems, see McGraw and Harbison-
Briggs, 1989:117-125.)
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Just as the problem-solving application presents additional inhibitors, it offers
stronger inducements for participation than its answer-gathering counterpart. In addition to
the motivators mentioned earlier for the answer-gathering application, the problem-solving
application offers a greater opportunity for motivation through altruism and the
experiencing of something new and different.

Some of the altruistic rewards offered by problem-solving applications are the
opportunity to help different groups of people. For example, there is an opportunity to aid
students if the application is to provide the expert's thinking as instruction as in Elston et al.
(1986). Others in the expert's field can benefit if the application performs a function such
as identifying likely locations for petroleum deposits (PROSPECTOR) or offering
decision-making guidance in export control (Meyer and Johnson 1985). The work can also
serve the larger public if the application is to provide a service, such as medical diagnostics
(MYCIN).

Problem-solving applications offer participants the opportunity to experience
something new and different--insight into how they think. While this opportunity is
appealing to most people, it is especially so to scientists. In fact, scientists will often
request references on how practitioners in their field think and act. (Mahoney 1976, Roe
1952 and 1963, Cattell 1963, and Knapp 1963 are good sources for this information).

Lastly, if the product of the application will be marketed, recognition and financial
gain can be incentives for participation.

A major problem is keeping the expert motivated through time. Generally, the
incentives that were used to interest the experts in the project can be used to maintain their
interest. As Waterman (1986:194) notes:

Making the expert feel like an integral part of the system-building process will motivate
him or her, as will showing the expert how the system will ultimately produce a useful
tool.

He adds that long periods between interviews should be avoided because they diminish the
expert's interest. Welbank (1983:10) recommends the following means for recharging the
expert's enthusiasm: selecting an interesting problem, such as one which has received
recent publicity; holding panel discussions in the belief that many experts enjoy criticizing
one another; and producing a prototype of the expert's thinking for him to review.

Common Difficulties--Their Signs and Solutions

Difficulty: The experts do not wish to participate. In most applications,
somewhere between one-third and three-quarters of those experts called will
initially agree to participate. If fewer than one-third agree to participate, be alerted
to a potential problem in motivating the experts.

Solution: While it is likely that the communication with the expert is the culprit, we
recommend gathering more specific information before reworking the presentation
of the rewards of participation. One of the experts earlier contacted can be
questioned to learn what may be inhibiting participation. If one of these experts is
an acquaintance or known to be outspoken, he would be a natural choice. Ask this
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expert to provide, in confidence, his real reasons for not participating. If asking an
expert for this information seems awkward, consider asking the advisory experts.
The advisory experts, because of working on the project, are likely to have a
different view of it than the external experts. For this reason, the advisory experts
are not our first choice. The advisory expert will need to be briefed on what was
said to the other experts and on the experts' responses. Ask the advisory expert to
place himself in the expert's place and to suggest reasons for the low participation
rate.

If the above suggestions are inappropriate or unsuccessful, itemize the
motivators and inhibitors of the study again. It is likely that the motivators are not
strong enough to overcome those things inhibiting the expert's participation.
Inhibitors may be discovered that were not taken into account. In our experience
the one factor that most causes experts to balk at participation is the belief that their
effort and judgment will not be used. We have been told, in some such cases, that
the experts thought that decisions had already been made at high levels and that their
judgments would not be used as input. If this perception, true or false, is hindering
expert participation, it needs to be addressed. The project's client and the other
project personnel can be helpful in suggesting solutions.

Difficulty: Everyone, including nonexperts, wishes to participate. The

participation of everyone may seem to be an embarrassment of riches to those
encountering the difficulty mentioned above. However, it is a difficulty even
though it can be easily resolved.

Solution: Everyone can participate, if participation is broken into classes and run

according to a few rules. In general, the volunteer participants should be grouped
according to their expertise. For example, in the army export control project, most
of the experts were knowledgeable in one specific question area but wished to
provide their inputs to all the areas. All the experts were allowed to present their
views and answers in a structured manner. However, only those experts who had
been previously designated as experts in the area gave their answers as votes,
which were then documented for analysis. The other expert's answers were
simply recorded as commentary. Both groups were satisfied. The nonvoting
experts had had the opportunity to express their views and ensure that the voting
experts were not overlooking some important information. The voting experts
knew that their expertise had been acknowledged and that their answers would be
used to establish policy.

Frequently, the participants can be asked to sort out their participating rights
and statuses. In the above example, it was the participants who suggested the
voting scheme.

Difficulty: The real experts are too busy to participate at the needed level.
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Solution: If this difficulty occurs when the experts are first being called, the problem is
in the communication. Refer to the suggestions given above. Note that the best
experts are often more busy than those less expert or that they may need greater or
different motivators to be persuaded to participate. Consider asking the expert what
would convince him to participate.

Difficulty: The system for selecting experts is criticized. We have observed
that selection schemes are frequently criticized. The most common complaints are
that the selection is biased or that it does not include the real experts.

Solution: If the credibility of the selection is questioned after the expert judgment has
been elicited, there is little that can be done. The only thing that can be done is to
document the selection scheme as a means of explaining and defending it. We
recommend recording the selection criteria, the reasoning behind the use of the
criteria, and the number of those who were invited to participate versus those who
actually participated.

If the selection scheme is criticized while it is still in the design stage, there
are two approaches. One approach is to rethink the selection scheme. We suggest
targeting the top experts in the field and trying to motivate as many of them as
possible to participate. If the top experts accept, the selection will not be open to
the common criticism that no real experts participated. If the top experts cannot
participate full time, accept their partial help. If none of the top experts will
participate, at least their participation was sought. In addition, we recommend
designing the selection scheme around features that are expected to make the
judgments of the experts' differ. For example, the experts are often expected to
differ according to where they have worked or gone to school. Experts can be
selected to represent these different features.

Another approach to handling criticism of the selection scheme is to put the
criticizers in charge of designing a selection scheme. Having to design a selection
scheme will make them more appreciative of the difficulties involved. Double
check their selection scheme to ensure that it is not open to one of the common
criticisms. Then, use them as manpower in calling the experts. The experience of
trying to implement their selection scheme will make them aware of how things
often go awry. If they do not participate in making the calls, they may later wonder
why their scheme was not implemented exactly. If they assist in the calls, they will
understand that some experts could not participate and that substitutions had to be
made.

Difficulty: There is a conflict between those wanting to identify the
expert's data and those wanting to preserve anonymity. The conflict
stems from the two views of identifying the expert's judgments. One view is that
the expert data will be more credible if it is labeled by the expert's name.
Proponents of this view believe that the experts will exercise more care in giving
their judgments if these judgments are attributed to the experts and that better quality
data will result. The second viewpoint favors anonymity in the belief that the
experts will not give their true answers if others can trace the answers back to their
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sources. Proponents of this second view argue that the confidences of interviewees
have traditionally been protected.

A sign that this difficulty is occurring is disagreement among project
personnel, clients, or experts on anonymity.

Solution: The means for resolving this conflict of views is to have the experts decide
how they wish to have their judgments identified. The experts are the persons to
make this choice because they are the providers of the data and they may withhold
their judgments if they are uncomfortable. Explain to the experts that their decision
on anonymity will be followed but that they will have to reach a consensus. This
puts the burden on them for swaying the members of their own party that have
differing ideas. If the experts fail to reach a consensus, impose the highest level of
protection requested, even if only one expert wishes his judgments to be
anonymous.
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Selecting the
Components of Elicitation

This chapter is designed to guide the reader through planning what is needed to
obtain and later analyze expert judgment data for a particular application. It offers the
checklist shown below to assist the reader in determining which of the five basic
components, the building blocks, of elicitation will be needed. Then, in subsequent
sections, it aids the reader in selecting the most appropriate methods from within the
selected components. For example, the reader might use the checklist below to decide that
the expert's problem-solving processes need to be elicited. The reader may then select the
verbal protocol and the verbal probe as the best combination of methods for accomplishing
this task.

The basic methods are presented because people often wish to use an existing
method rather than try to create a new one and possibly reinvent the wheel. Also many
people prefer to use an existing and accepted method in the belief that it will enhance the
credibility of their work.

In the next chapter (chapter 8) information is provided on how the methods selected
in this chapter can be tailored to the reader's application.

Determining Which of the Five Components
Are Needed--Checklist

Check When a Component Is Needed

1. An elicitation situation is needed if expert judgment is to
be gathered. Regardless of specific project requirements, some
staging is necessary for arranging how the experts and data
gatherers will meet and how the expert judgment will be obtained.
Definition of Component: An elicitation situation is the setting in which
the expert’s judgment is elicited. Expert’s judgments can be elicited in private, in a
group setting, or when the experts are alone but receiving information on the other
expert's judgments. More than one elicitation situation can be used in a project.
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For example, the experts could meet as a group to discuss and revise the questions.
Later, they could be interviewed separately for their final judgments.

A response mode/dispersion measure is needed if the
expert's answers must be in a specific form and if the experts will be
asked to make this conversion mentally as opposed to having someone
later translate their judgments into the desired form. Often, project
personnel wish to use a particular model and therefore want the
expert's answers to be in a particular form. This means that either the
expert must conform to the desired mode or the analyst must
transform the expert's judgments into that form. In general, we favor
using a response mode rather than converting the expert's judgment
into the desired form later. We believe that the former practice is less
likely to lead to misinterpretation or misrepresentation of the expert's
data, providing that the expert can accurately encode his thoughts into
the requested response mode (either naturally or with training).
Definition of Component: A response mode is the form in which the
expert is asked to encode his judgment. Some modes that are handled in this book
are estimates of physical quantities, probability estimates, odds-ratio, probability
distributions, continuous scales, ratings or rankings, pairwise comparisons, and
Bayesian updating. Additionally, the expert is often asked to provide a measure of
dispersion on his judgment (e.g., 0.9 £ 0.1). A dispersion measure is the amount
of variation or spread in the data. Dispersion measures can also indicate the
amount of uncertainty in the data. The dispersion measures covered below are
ranges, percentiles, and variances or standard deviations.

Elicitation of problem-solving processes will be needed,
if

(a) the goal of the project is knowledge acquisition, such as in
building a knowledge-based or expert system;

(b) there is likely to be interest in how the experts arrived at their
answers;

(c) the answers are to be aggregated. If the experts defined the
questions differently, combining their answers could be like mixing
apples and oranges. Use of data on their problem solving could
prevent this mistake.

Definition of Component: Elicitation of problem-solving processes involves
obtaining data on how the subject solved the problem. Data on problem-solving
processes can be gathered to any level of depth.

Aggregation of expert's answers is needed if multiple

experts (and, therefore, usually disagreeing experts ) will be used and
a single representation of their answers is needed. For example, one
might want to combine several expert's problem-solving procedures to
produce one procedure for use in an expert system. Similarly, in a
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risk analysis application, one might aggregate several expert's
estimates to enter one estimate into the model.

Definition of Component: Aggregation is a means of obtaining a single
datum from multiple and differing expert data. For example, experts can

be required to agree among themselves as to what answer they give or they can be
allowed to give different answers that are then, later, mathematically combined

(chapter 16).

5. Documentation is needed if having a permanent or semi-
permanent record of the expert's answer and problem-solving
processes is desired. Documentation can include information on
which expert gave each estimate and their reasons for giving these
answers. Documentation is often used to provide traceability on the
expert's decision. Traceability becomes important if the judgments are
likely to be reviewed or to require updating.

Definition of Component: Documentation is a record of the expert's
Jjudgment andlor of how that judgment was reached.

Selecting From Within Each Component
Selecting From Elicitation Situations

There are three major methods or situations for eliciting the expert's judgment: with
the interviewer in a private face-to-face interview with the expert; with the interviewer in an
interactive meeting of the experts; and with the expert in physical isolation from the
interviewer or other experts but communicating his data by mail (electronic or postal) or
telephone. These situations can be tailored and combined to fit the application. For
example, the interactive group could be structured to be like a technical conference where
each experts is scheduled to present his views prior to the group's discussion. The use of
the interactive group method could be combined with that of the individual interview to
elicit each expert's judgments apart from that of the other experts.

Interactive group

The interactive group is where the experts meet in a face-to-face situation with one
another and a session moderator or interviewer. The expert's interactions with one another
can be structured to any degree. An unstructured group resembles a traditional meeting; a
highly structured group is carefully choreographed to prevent spontaneous interaction (to
limit the negative effects of interaction, such as group think).

Advantages: Generates more accurate data , particularly for predictions, and a greater
quantity of ideas than the other two situations. (These two results are
attributed to the synergism created by expert's sharing their thoughts .)

Disadvantages: Possesses the potential for group-think bias. Poses logistical problem
in scheduling and handling multiple interacting experts, particularly if
there are more than four or five .
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Summary of studies: According to Seaver (1976) who did comparative studies of these three elicitation
situations, the interactive group method produces a greater quantity of ideas and higher member satisfaction
with the product than the Delphi He also noted that the majority of subjects in a group of diverse
membership improved their accuracy following a discussion. Fogel (1967:375) commends the interactive
group for solving problems that require "originality and insight” and not routine tasks. He found that
predictions made by groups were more often correct than those made by individuals. In general, studies
comparing a structured interactive group with one or more of the other methods favor the former (Seaver
1976, Armstrong 1981, Gutafson et al. 1973, Gough 1975, and Van de Ven and Delberq 1974).

Delphi
Delphi is where the experts do not directly interact with one another or the
moderator. The experts, in isolation from one another, give their opinion data. These are
collected by the moderator, made anonymous, and distributed to the experts to allow them
to revise their previous judgments. The experts can be allowed to revise their estimates
until consensus, if it is desired, is achieved. This method was developed by RAND to limit
the biasing effects of interaction.
Advantages: Designed to avoid biases arising from group dynamics. (However,
some question whether it accomplishes its design purpose.)
Disadvantages:  Limited in the amount of data that can be gathered (e.g., not suited to
gathering data on how the experts solved the problem, except for their
sources of reference. Less synergism than in the interactive group.
Usually, the most time consuming of the three situations because of
the turnaround time through the mail. (If the Delphi were done by
electronic mail, it would be less time consuming.)
Summary of Studies: For all of its use, the Delphi method has not had extensive empirical
investigation, and its reviews range from the positive to the negative. Several researchers consider the
structured interactive group to be better than the Delphi in terms of avoiding the bias the Delphi was
designed to avoid (Seaver 1976 and Armstrong 1981). It would be natural to hope that the experts have
converged on the "right” answer when they have reached consensus in the Delphi. However, Dalkey
(1969) found that the number of rounds in Delhi corresponded to increasing agreement but not to
increasing accuracy.

Individual interview

Individual interview is where the expert is interviewed alone, usually in a face-to-
face situation with the interviewer. This situation can be structured to any degree. An
unstructured interview occurs when the interviewer has not outlined data-gathering goals or
questions in advance.

Advantages: Best method for obtaining detailed data. Main method used for
obtaining data on the expert’s problem-solving processes. Avoids
potential bias from group dynamics and data can be combined
later, usually by mathematical aggregation.

Disadvantages: Time consuming. No synergistic effects from interexpert discussion.

Summary of Studies: Seaver (1976) found that mathematically combined estimates from individual
interviews outperformed single estimates. When the answers from the individual interviews are
mathematically combined, the individual interview is termed the staticized or nominal group method.
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Results from the staticized group situation have been judged poorer than those from interacting groups
(Stael von Holstein 1971). However, it should be noted that the above-mentioned studies were not using
the individual interviews to elicit deep problem-solving data, the task for which it is most suited.

EXAMPLE 7.1: Relative Interactiveness of Elicitation Situations
Individual
Hieh Interview
18 Interactive
Group

Interviewer-expert .
Interaction Delphi
L Traditional 'I{A‘radi.tional
ow Mail Survey eetng

High

Low  pxpert-Expert

Interaction

(This figure was excerpted in part from Armstrong 1981:104)

Selecting from Response Modes

The response modes given below are organized according to the forms that are
commonly needed to answer the types of questions asked of experts. For example, a
question on the number of homeless currently in the United States would require an
estimate of a physical quantity. In contrast, a question on the likelihood of some
occurrence would need probability estimates, odds, or distributions. Questions based on
the comparison of two or more things would require pairwise comparisons, continuous
scales, or ranks or ratings.

In addition, some questions require single estimates, such as one probability value,
while others need multiple estimates, as in an expert's probability distribution. Of the
response modes listed below, the estimate of a physical quantity, the probability estimate,
the odds ratio, the ranks or ratings, and the continuous scale are utilized to obtain single
estimates. Probability distributions, Bayesian updating, and pairwise comparisons are
most frequently employed to obtain a set of estimates from the expert, although the
continuous scale, and ranks or ratings can also be used for this purpose.

To help the reader find the response modes appropriate to his questions, the modes
are listed separately as well as under the more inclusive mode to which they belong. For
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example, odds ratios are listed separately and also as one of the ways of eliciting a
probability response.

Estimate of physical quantity

The expert gives an estimate of a physical quantity, such as of temperature, time,
pressure, volume, or flow rate, in response to a technical question. For instance, the
expert could be asked to provide the engineering specifications for a component, the
parameters needed to achieve a particular milestone in magnetic fusion, or the amount of
coal reserves currently in the United States. Sometimes estimates of physical quantities are
part of the phrasing of the question and thus can be used in combination with other
response modes. For example, in a magnetic fusion project (Meyer et al. 1982:424), the
parameters needed for confinement were elicited from an advisory expert, refined by an
external expert, and then used in questioning several experts. These experts estimated the
time needed (a physical quantity) and the probability (another response mode) for achieving
these physical parameters. Similarly, in the reactor risk project NUREG-1150 (Ortiz et al.
1988), the values of physical variables were sometimes elicited at given cumulative
probabilities (e.g., what is the inner core temperature such that the probability is 0.90 for
that temperature or higher?).

Advantages: A convenient and flexible form for answering questions on poorly
understood or difficult to measure physical processes. The expert has
little or no difficulty in understanding estimates of physical quantities
as response modes because he uses them in his work. Thus, the expert
does not need to be trained in the use of this response mode.

Summary of Studies: To our knowledge, there are no studies that evaluate estimating physical
quantities with respect to some other response mode. However, there are two types of studies that address
estimates of physical quantities: (1) studies (e.g., Ascher 1978) that examine in retrospect the accuracy of
experts’ predictions, such as the size of United States’ market for petroleum in some year; and (2) studies
that examine properties of human judgment by asking questions whose answers can be determined. There
are many more studies of the second variety and most of these have used almanac questions (e.g.,
Armstrong et al. 1975, Martz et al. 1985), where the subjects estimate physical quantities, such as a city’s
population of persons over age 50. The results of these studies have shown that the accuracy of expert’s
estimates of physical quantities can be affected by the assumptions that the expert makes (Ascher 1978) and
by decomposition of the question--decomposition being associated with greater accuracy. (These results are
thought to apply to the other response modes also. )

Probability estimate

A probability estimate is a single value given by the expert (e.g., 0.45) in response
to the question. Usually probability estimates are used to predict the likelihood of some
event occurring. Probability estimates can be asked for in different ways: What is the
probability that an event will occur? (fixed value); what are the number of occurrences in n
total trials using a log scale? (log odds); and what are the number of occurrences or events
in n total trials? (See Odds Ratio below.) Multiple experts' estimates to the same question
are sometimes linked to form a probability distribution, which is then used as the answer.
(See Probability Distribution below.)
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Advantages: Commonly used in decision analysis. In fact, one advantage in using a
probability-based response mode is the existence of established
elicitation and analysis techniques. (For this reason we recommend
the use of decision analysts and decision analysis techniques if this
response mode is chosen.) In general, probability estimation is a
very convenient form for modeling and analysis.

Disadvantages:  Most experts are not good estimators of probability values and may be
reluctant to use this response mode. (The use of probability wheels and
training in probability estimation can mitigate these problems.) Done
correctly, probability estimation is a very time-consuming process. It
can fatigue the expert.

Summary of Studies: It has generally been shown that humans are biased in their estimation of
probabilities (Tversky and Kahneman 1974), that they do not properly interpret probabilistic phenomena--
like randomness, statistical independence and sampling variability (Hogarth 1980), and that most do not
feel capable of using this response mode (Spetzler and Stael von Holstein 1975, Welbank 1983). Hogarth
(1980:149), who has done extensive studies on cognitive and motivational biases, acknowledges that
"probability theory itself is difficult to learn and apply” but argues that it is the best choice for expressing
uncertainties. He cites the numerical precision of probabilities and their logic for structuring relationships
between events as reasons for using probabilities. Welbank (1983:28) notes that the precision of
probabilities is not always needed or justified but states that probabilities may be useful where the
knowledge is vague and where there is need for weighting of the answers.

Odds ratio

An odds ratio is a response that follows the form of x chances out of n total trials.
For example, an expert could state that there is 1 chance in 1000 of a particular event
occurring. The odds ratio is most frequently used to estimate the frequency of rare
physical events. (Odds ratio is also mentioned above under Probability Estimate and next
under Probability Distribution.)

Advantages: A convenient form for estimating the likelihood or frequency of rare
events. We believe that it is easier for most people to think of rare
events in terms of odds (e.g., 1 in 1000) rather than in probabilities
(e.g., 0.001).

Disadvantages: If the expert is given the total number of trials (n) from which he is
to estimate the occurrence of some event, setting too small a total can
affect the expert’s judgment andlor frustrate him.

Summary of Studies: In general, humans tend to overestimate the likelihood of rare events.
According to Seaver et al. (1983:2-7), odds are one of the best procedures for estimating relatively unlikely
events, especially if the odds are on a logarithmic-spaced scale. In general, rare event estimates are thought
to be less biased when they are elicited as odds, such as 1 in 1000, than when they are elicited as decimals,
such as 0.001 (Boose and Shaw 1989: 71).

Probability distribution

Probability distribution is used here in a very broad sense to mean a set of
possible values for the estimate and the associated likelihood or probability for each value's
occurrence. The set should include the absolute maximum and minimum values possible.
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The set is ordered into a distribution of values. Functional forms of probability
distributions are commonly used to represent the probability per unit interval of values.
These are probability distribution functions, f(x), and they are equations in terms of
the estimate, called a random variable, x. (See chapter 11 for a more detailed discussion
of both of these terms.) The Gaussian curve or bell-shaped curve are common names for
the normal probability distribution function.

The questions for eliciting the probabilities associated with each value in the set can
be asked in different ways: What is the probability that an event will occur? (direct value);
given a probability, what is the value or lower of the variable in question? (cumulative
probability); what are the chances in n trials of an event occurring on this log scale? (log-
odds); and what are the chances in n trials of an event occurring? (odds ratio). For
example, the estimate for the probability of a pipe rupture in a specified sequence of events
would be given by the following:

Pipe Break Probability of That

Estimate Estimate or Less
0.001 0.01
0.005 0.05
0.010 0.10
0.05 0.20
0.10 0.50
0.15 0.70
0.20 0.90
0.25 0.95
0.27 0.99

Advantages: Commonly used in decision analysis. In fact, one advantage in using a

probability-based response mode is the existence of established
elicitation and analysis techniques. (For this reason, we recommend
the use of decision analysts and decision analysis techniques if this
response mode is chosen.) In general, this is a very convenient form
Jor modeling and analysis.

Disadvantages:  Most experts are not good estimators of probability values and may be
reluctant to use this response mode. (The use of probability wheels and
training in probability estimation can mitigate these problems.) In
addition, the concepis of probability distribution may not be fully
understood by the experts and training may be required. Done correctly,
probability estimation is a very time-consuming process. It can fatigue
the expert.

Summary of Studies: It has generally been shown that humans are biased in their estimation of
probabilities (Tversky and Kahneman 1974); that they do not properly interpret probabilistic phenomena,
like randomness, statistical independence and sampling variability (Hogarth 1980); and that most do not
feel capable of using this response mode (Spetzler and Stael von Holstein 1975, Welbank 1983). Hogarth
(1980:149), who has done extensive studies on cognitive and motivational biases, acknowledges that
"probability theory itself is difficult to learn and apply” but argues that it is the best choice for expressing
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uncertainties. He cites the numerical precision of probabilities and their logic for structuring relationships
between events as reasons for using probabilities. Welbank (1983:28) questions whether the precision of
probabilities is needed, at least in expert systems, but states that probabilities may be useful where the
knowledge is vague and where there is need for some weighting of the answers.

Continuous scales

Continuous scales have continuous number lines either with linear or log spacing of
values. The end points of the scale should represent extreme values and be labeled with
text or numbers. Thus, the scale could be labeled with integers, textual categories,
probabilities, odds, categories, ratings, or measurements of physical quantities such as
temperature. The expert can mark his answer at or between any of the delineations on the
scale. We recommend that the labels on the scale be clearly defined, especially if they are
not measurements of some physical quantity. Frequently, categories or rating require
additional clarification, such as given in the linear scale in the example 7.2. This scale was
used by the experts to compare the data gathered from an experiment to the results
generated from a computer code that simulated the experiment. The experts used the scale
to rate (1) the agreement between these two sources of results, and (2) the performance of
the code in capturing the experimentally generated reactor phenomena (Meyer and Booker
1987b).

Advantages: Requires little instruction in how to use. Easily converted to
numerical, continuous variables for analysis. Most people seem to be
reliable estimators when using these scales.

Disadvantages:  Developing a continuous linear scale to fit a particular application
requires time. Care must be taken to guard against biased wording of
either the labels or of the definitions of these labels. Training may be
needed if log scales are used.

Summary of Studies: Seaver and Stillwell (1983) compared pairwise comparisons, rankings or
ratings, and continuous linear scales. The continuous linear scale (labeled by probabilities) was ranked by
them on the basis of their experience cs being an empirically tested means of estimating probabilities and as
requiring little preparation for analysis.

EXAMPLE 7.2: A Continuous Linear Scale

EXCELLENT AGREEMENT NO UNACCEPTABLE CODE DEFICIENCIES

MODERATE AGREEMENT — . ACCEPTABLE CODE DEFICIENCIES
(i.c., can still apply the code with confidence)

MINIMAL AGREEMENT MINIMALLY ACCEPTABLE

INSUFHICIENT AGREEMENT SERIOUS CODE DEFICIENCIES
(i.e., must fix code immediately)
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Pairwise comparisons

Pairwise comparisons is a process of having experts rate a set of objects, events, or
criteria by comparing only two at a time. Comparisons can be made in terms of
importance, likelihood of occurrence, or possession of some characteristic (e.g., cost). If
there is a set of n things, n(n-1)/2 comparisons are required to do all possible pairwise
comparisons. Comparing element A to B is considered the reciprocal of comparing B to A.
Thus, if A is considered more likely to occur than B, B is less likely to occur than A.
Using Saaty's (1980) type of pairwise comparison, the expert might be asked Which is
more important, A or B? and then how much more important? To answer the latter, the
expert would use a scale of values, such as the one listed below that Saaty designed for pair
comparisons (see chapter 11, figure 11.8 for the complete scale). A response of "3" would
indicate that he considered A to be weakly more important than B.

Number Description
3 A slight favoring of the first item over the second
5 A strong favoring of the first item over the second
7 A demonstrated dominance of the first over the second
9 An absolute affirmation of the first over the second

Advantages: Most people are reliable estimators using pairwise comparisons, in part
because they only have to consider two things at a time. Thus, they do
not exceed the capabilities of their information processing, as described
by Miller (1956). Some methods, such as Saaty’s (1980) Analytic
Hierarchical Process, offer means for verifying the mathematical
consistency of the expert’s estimates. After a brief introduction,
experts find pairwise comparisons an easy method to use. Another
advantage of pairwise comparisons is that they can provide a
numerically based analysis for qualitative data.

Disadvantages:  Time consuming to elicit all possible combinations. Pairwise
comparisons provide only relative data relations. A baseline scale or
value is needed to translate relative comparisons into an absolute
relation (Comer et al. 1984).

Summary of Studies: There is a body of research showing that people make better relative, indirect
Judgments, such as with pairwise comparisons, than direct estimates. (See Stillwell, Seaver, and Schwartz
1982 for a review.) In a study by Seaver and Stillwell (1983:2-12), pairwise comparisons was ranked by
the authors, on the basis of their experience, as being acceptable to experts, as producing a high quality of
Jjudgment, and as having a strong theoretical base. Another study examined the usefulness of paired
comparisons and continuous linear scales (labeled by probabilities and matching odds ratio) for obtaining
estimates of human reliability in reactor risk assessments (Comer et al. 1984). The study’s conclusion was
that the analyses did not dictate the selection one response mode over another, but practical considerations
could lead to a preference. The paired comparison method used required more experts and more of the
expert's time than the linear scale.
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Ranks or ratings

Ranks or ratings involve assigning numbers or descriptions to the objects, events,
or values in question. They are listed together because the judgments that they require are
thought to be based on the same underlying psychological model (Comer et al. 1984).

Ranks can be integer numbers in ascending or descending order or ordinal
descriptions, such as good, neutral, and poor. For example, to select the questions that
would be addressed later in the elicitation sessions, the experts could rank them in
importance (e.g., a "1" for the most important to address and a "5" for the least important).

Ratings are usually numbers or choices from a given scale or set of choices, such as
a scale from 1 to 10 or a multiple choice set. We recommend using both numbers and
words to further describe the ranks or ratings if there is a chance that their labels will not
mean the same thing to each expert. For example, the qualitative term small chance has
been found to mean from 1% to 40% depending on the expert's interpretation (Keeney and
von Winterfeldt 1989). To foster consistency in experts' interpretation of the ranks or
ratings, try to use both numerical and qualitative descriptors. For example, weapon's
planners gave one of the numbers below (example 7.3) to rate how potential weapons
related to a U.S. defense need (Meyer et al. 1982). The textual descriptors on the right
were provided as part of the scale to prevent inconsistent use of the numerical values.

EXAMPLE 7.3: A Rating Scale

K JE— Completely related, approximately 80% related
p R — Significantly related

) [— Slightly related, approximately less than 20%
| J—— Not at all related

The possibility of having experts make different interpretations of the rating was the
reason that Sherman Kent developed the rating scale (example 7.4) below for government
use.

Advantages: Experts find ranks and ratings easy to use, with little instruction.
Ranks and ratings are good for applications with qualitative
information or with only a limited set of possible answers. Many
analysis techniques are available for rank data (Conover 1971).

Disadvantages:  People have difficulty keeping more than 7 (+ 2) things in their minds
at once (Miller 1956); therefore, comparing and ranking many items is
difficult and inaccurate. Comparing more than 7 things requires either
the use of more experts or the use of more time with fewer experts
(Seaver and Stillwell 1983).
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EXAMPLE 7.4: Sherman Kent Rating Scale

Order Of Chances
Likelihood Synonyms In 10 Percent
\vlvirtually (almosetz1 certain 99
. e are ‘convinc
Nearly Certain Highly probable 9
Highly likely
8 80
Likely
Probable we believe 7
Chances are good
It is probable 6 60
Chances slightly better than even
Even Chance Chances about even 5
Chances slightly less than even
4 40 __
Improbable %rrﬁ?ﬁglg not 3
We believe not
2 20
Nearly Almost impossible
Impossible Only a slight chance 1
Highly doubtful 10

Summary of Studies: Seaver and Stillwell (1983:2-12) compared pairwise comparisons, rankings or
ratings, and continuous linear scales. On the basis of their experience, they evaluated ranks or ratings as
being relatively easy to collect and acceptable to the experts. Also they considered the use of ranks or
ratings to have sound theoretical justification.

Bayesian updating

Bayesian updating is a process of revising estimates by combining different sources
of information. Bayesian updating can be done by combining measured data with expert
judgment data, by combining data previously supplied by one expert with that of the same
expert at a different time, or by combining expert judgment from different experts. The
expert judgment can be elicited using any of the previously mentioned response modes.
This technique is also a means of aggregation because it is used to combine data sources.
(Some background on Bayesian methods is given in chapter 11, and some applications are
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found in chapters 16 on aggregating estimates and in chapter 17 on handling uncertainties.)
For example, suppose a component was being tested for failure and O failures were found
in 10 tests. Imagine also that an expert provided an estimate of 1 failure in 100. Using a
binomial process for the data and assuming a beta prior distribution for the expert's data,
Bayes updating would combine the test data and the expert's estimate as

0+1 _ 0009
10+100
Advantages: Provides a convenient way to combine various information sources and

accounts for the conditional nature of the data.

Disadvantages:  Requires assumptions about the distributions of each source of data.
May also require additional estimates by the experts for the parameters
of the assumed distributions.

Selecting from Dispersion Measures

The expert gives a dispersion measure when he is asked to provide some
measurement of the amount of variation or uncertainty in the data, such as the error bars on
experimental measurements. In addition, the expert's answer itself can be the datum on
which a dispersion measure is requested. For instance, the expert could be asked to
provide the absolute maximum and minimum possible value on his estimate of a physical
quantity or a probability. The dispersion measures covered below are ranges, percentiles,
and variances or standard deviations.

Ranges
Range is the difference between two values that represent a likely interval where the
estimated value lies. Usually the expert is asked to provide an absolute maximum and
absolute minimum possible value. The expert may be asked to provide two values that
represent his version of what is likely. Error bars and uncertainty ranges are examples of
these. For example, an expert estimates the probability of an event as 0.001. He is then
asked to estimate a minimum and maximum on that event. He gives the minimum as
0.0001 and the maximum as 0.005.
Advantages: Ranges are easily elicited. Ranges are an acceptable measure of
dispersion for analytical purposes.
Disadvantages: = Humans are not very good estimators of absolute maxima and minima.
They tend to underestimate maxima and overestimate minima. Ranges
may not be sufficiently defined to analyze. For example, if the expert
is asked to give a range and supplies two numbers, the analyst will not
know what interpretation to place on these values. Similarly, if the
expert is requested to mark specified ranges, such as *+0.10, the analyst
cannot assume that the expert’s values represent +0.10 because people
are known to generally underestimate such intervals.
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Volunteered ranges

Volunteered ranges are the same as ranges except that the experts are not asked to
provide any ranges of dispersions during the elicitation. For example, in a project
evaluating the performance of a computer code (Meyer and Booker 1987b), the experts
used a linear scale, marked their best estimate with a tick mark, and then voluntarily made
two marks on either side:

EXAMPLE 7.5: Volunteered Ranges on A Best Estimate

P - i
-
/ .
Ranges < -+ Best Estimate
S~
~ ~ el
- m
Advantages: Can be used to represent additional values of those elicited. Thus, the

volunteered ranges can be used to fill out the sample of expert
estimates. The values indicate the expert’s uncertainty in his original
estimates. Obtaining volunteered ranges requires no special efforts,
except perhaps to use a response mode like continuous scales that
encourages the experts to mark their ranges.

Disadvantages:  Itis difficult to interpret the meaning of the ranges and therefore
difficult to analyze.

Percentiles

Percentiles are where the expert estimates are specified values of a distribution
such that the distribution is cut into the predesignated pieces. The expert may be asked to
provide an estimate such that 5% of the values are smaller than that estimate, or such that
95% of the values are larger than that estimate. Confidence interval estimation is the same
as estimating two different percentiles. For example, the expert estimates the failure
probability for an event as 0.001. He is asked to give an estimate of the probability of
failure such that there is a 5% chance or less or that the probability will be less than the
estimate. He estimates this Sth percentile to be 0.0001. He is then asked to give an
estimate of the probability of failure such that there is a 95% chance or more that the
probability will be greater than the estimate. He estimates this 95th percentile to be 0.01.
This interval of (0.0001, 0.01) is the expert's estimate for a 90% coverage interval.
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Advantages: Convenient for many analyses and modeling techniques.
Disadvantages:  Humans are not very good estimators of specified percentiles.
Training may be needed for the expert to understand what a percentile is.

Variances, standard deviations

Variances, or standard deviations, are statistics estimated by the expert. The
variance measures the average squared deviations of all possible values of the estimates
from the arithmetic mean. The standard deviation is the square root of the variance. For
example, the expert could give a best estimate for the probability of an event as 0.001. He
might estimate that the variance about this value is 0.000001.

Advantages: Convenient for many analyses and modeling techniques. Standard
deviations are easier to estimate than variances because they are for the
same order of magnitude as the estimates themselves; whereas, the
variances are squared quantities.

Disadvantages:  Humans are not good estimators of variances or standard deviations.
Experts must be trained in the concepts of variance or standard deviation
to use this response mode.

Selecting from Methods for Eliciting Problem-Solving
Processes

Three very simple means of eliciting the expert's problem-solving data are the
verbal protocol, the verbal probe, and the ethnographic technique. While these are not the
only methods for obtaining problem-solving data, they are three of the easiest and least
prone to introducing bias. For additional information on methods, see McGraw and
Harbison-Briggs (1989), LaFrance (1988), and Spradley (1979)

Verbal protocol

Verbal protocol involves instructing the expert to think aloud as he progresses
through the problem (Ericsson and Simon 1980 and 1984). For example, the expert is
given a written copy of the problem as follows:

What feed program would you start this colt on? The colt is 6 months, 550 Ibs., has an
average metabolism, and will receive light exercise through ponying. Please solve this
problem as you do others that you receive in this field. Please try to think aloud as you
work your way through the problem. Your thinking aloud is as important to me as the
answer that you reach.

The expert's verbal protocol resembles someone talking to himself or herself. This
technique is from psychology.
Advantages: Avoids introducing motivational bias (altering the expert’s reports of
his thinking) because the interviewer does not question the expert and
thus is less likely to "lead” the expert (Meyer et al. 1959).
Disadvantages:  Must be used only on one expert at a time. Not suited to group
situations or those where the expert and interviewer are
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communicating by telephone or mail. Very time consuming. It
usually takes the expert at least twice the time to verbalize his thoughts
as it does to simply have them. The expert may not be able to
verbalize all of his thoughts, as is a problem with all elicitation
methods. These thoughts may be unconscious or they may be difficult
to articulate because they must be translated from one form into
another, such as from a mental picture into words.
Summary of Studies: A main concern with this elicitation method has been that the process of
verbalizing may negatively influence (bias) the expert’s problem-solving. Ericsson and Simon (1980) , the
authorities on this method, argue that the introduction of bias depends on the presence of the data in short-
term memory and the type of information that the expert is asked to verbalize (McGraw and Harbison-
Briggs 1989:335). If the information is in the expert’s short-term memory, thinking about it should not
alter it. Similarly, if the expert is to simply report his considerations and steps, less bias is expected to
occur than if the expert were to conceptualize about his reasons for these steps.

Verbal probe

Verbal probe is questioning done at a particular time and in a specific manner.
The type of verbal probe discussed here is used immediately after the expert has reached a
solution. The probe focuses on only one problem, the one that the expert has just solved,
and is indirectly phrased so as to minimize influencing the expert's thinking. For example,
immediately after the expert has solved the problem and given the answer, the verbal probe
is used to learn why that answer was given.
Interviewer--Why did you give that answer--that feed program?
Expert--Well, it provides the right amount of protein, calcium, and phosphorus for a

horse to grow at this age.

Advantages: Quick means of obtaining general data on the expert's reasoning in
solving the problem. Can be used on experts individually or in
a group (Meyer et al. 1989).

Disadvantages:  The verbal probe is best used where the expert can respond verbally in a
face-to-face situation. Written responses to the probe are generally
inadequate. The verbal probe is slightly more likely to induce
motivational bias than the verbal protocol because the probe’s
questioning can cause the expert to invent descriptions of this thinking
(e.g., plausible reasoning).

Ethnographic technique

Ethnographic technique involves transposing the expert's words into
questions. For example, the ethnographic method could be used to probe on one of the
expert's responses to obtain an operational definition that could then be entered into the
knowledge base. The expert has just said that the colt's feed program may need to be
adjusted if the colt is not keeping his weight on.
Interviewer--Not keeping his weight on?
Expert--Yes, not gaining as he should at this time.
Interviewer--At this time?
Expert--At his age, 6 months, he should be gaining between 1.5 and 2.0 Ibs. per month.
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Advantages: Can be used to obtain the greatest amount of detail on the expert’s
problem-solving processes. The ethnographic technique is a relatively
nonbiasing form of questioning (Meyer et al. 1989) because it is based
on the expert’s own words. In addition, this technique can act as a
check on the interviewer's or knowledge engineer’s tendency to assume
that she knows the meaning of the expert’s terms (misinterpretation
bias).

Disadvantages:  Generally time consuming, except when used to elicit a few
definitions. The ethnographic technique is not suited, in its usual time-
consuming form, to group elicitations. Also this technique should not
be administered while the expert is still solving the problem because it
can distract him.

Selecting the Type of Aggregation

Frequently there will be a need in the project to obtain a single answer from multiple
and differing expert answers. There are two basic ways of obtaining a single response: (1)
have the experts work until they reach a single consensus response, or (2) have the experts'
answers mathematically aggregated into one answer.

Behavioral aggregation

Behavioral aggregation relies on the experts reaching a consensus (Seaver
1976). The aggregation occurs during, rather than after, the elicitation session. In
interactive group situations, the experts are informed by the group moderator that they must
reach a consensus and usually use persuasion and compromise to do so. In the Delphi
method, successive iterations are used to reach one datum. (How to set up for behavioral
aggregation is discussed in chapter 8.)

Advantages: Produces an aggregated result during the session. Behavioral
aggregation protects anonymity because no individual can be linked to
the consensus response. Encourages the experts to support the product
of their labors and view it as a group effort (e.g., perhaps from the
thinking of "if we do not hang together, we will all surely hang
separately”).

Disadvantages:  Needs advance planning because it should be used in conjunction with
particular elicitation situations and measures for countering bias. In

__particular, it can foster a group-think situation where no one truly

thinks but simply unconsciously acquiesces. Behavioral aggregation

' can be very time consuming if group think is not facilitating
unconscious agreement. Employing behavioral aggregation can
suppress expressions of difference and thus the chances of discovering
the "right" answer. This means of aggregation obscures the differences
between the experts’ answers and the reasons for the differences, both of
which can be critical to the understanding, analysis, and use of this data.
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Mathematical aggregation

Mathematical aggregation is the use of mathematical means to combine multiple
expert's data into a single estimate or single distribution of estimates. Some mathematical
methods weight the experts' data equally, such as the mean; others weight the experts' data
differently in attempts to give higher weights to the "more expert" or more valued data
(These methods are not included in chapter 8 but in chapter 16 because they can be
considered after the elicitation.)

Advantages: Does not have to be planned as early or as closely in conjunction with
the elicitation methods as the behavioral aggregation. (However, the
choice of the response mode may limit which aggregation methods can
be applied.) Also, different mathematical schemes can be applied in
succession to the individual’s data, whereas with the behavioral
aggregation the process can usually only be done once.

Disadvantages:  Like any type of aggregation, it obscures the differences between the
experts’ answers and the reasons for the differences. It is easy to do
mathematical aggregation incorrectly, such as by combining the
estimates of experts who have made such different assumptions in
answering the question that they have essentially solved different
questions. Then too, mathematical aggregation can lead to the creation
of a single answer that all of the experts would reject. For example, if
the experts had given different distributions for describing a physical
process, the aggregation of these distributions might describe a
phenomena that could not occur physically. (For further discussion of
the difficulties of mathematical aggregation , see chapter 16.)

Summary of Studies: The problem of how to aggregate expert’s estimates has received much attention
recently (Morris 1986, Clemen 1986, Schervish 1986, French 1986, Winkler 1986). Most schemes
require that the experts’ estimates be independent, even though experts’ judgments are not known to be
(Booker and Meyer 1988a:135). The few exceptions are those discussed by Winkler (1981) and Lindley and
Singpurwalla (1984) but the latter two schemes assume that the structure of the correlation in the expert’s
estimates is somehow known or estimable (Booker and Meyer 1988a:136). Comparisons of different
aggregation schemes indicated that the equal weighting of experts’ estimates performs the best in covering
the right answer (Martz et al. 1985).

Selecting From Methods for Documentation

There are two major options for recording expert judgments: (1) recording the
expert's answers, and (2) recording both the expert's answers and any information on the
expert's problem-solving processes, including the expert's background. The second
option can be done to any level of detail. We describe three levels, or documentation
schemes, for the second option: summary documentation, detailed verbatim documentation,
and detailed structured documentation.

Answer-only documentation

Answer-only documentation is a written record of only the answers or solutions.
Advantages: Is the quickest and easiest method of documentation.
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Answer-only documentation
Answer-only documentation is a written record of only the answers or

solutions.
Advantages:
Disadvantages:

Is the quickest and easiest method of documentation.

The details of how answers were reached cannot be reconstructed later, if
this becomes necessary. These details, then, cannot be critically
reviewed, a seeming blessing but at closer inspection, a true
disadvantage (i.e., what cannot be reviewed cannot be improved).

Answer plus problem-solving documentation

Answer plus problem-solving documentation is written records of the
experts' answers and how they arrived at these answers They can vary in their degree of
detail. Three levels of detail are listed in Advantages below.

Advantages:

Disadvantages:

Allows for the defense of the judgments or the processes of elicitation.
Provides the data for revising or updating the judgments. Provides the
data for conducting detailed analyses on which factors (e.g., of the
expert’s problem solving or background) may correlate to the answer.
On the other hand, the data is documented and can be criticized by
reviewers. We believe that it is better to document how the experts
arrived at their answers and receive possible criticism of specifics than
it is to not document this information and to be criticized for
inscrutability. There seems to be a growing trend among reviewers 10
lambast studies for missing or confusing documentation (e.g., the early
drafts of the NUREG-1150 reactor risk study).

SUMMARY DOCUMENTATION

Summary documentation is when experts or project personnel provide a few
sentences or paragraphs on their thinking (e.g., references used, major assumptions, and
reasoning). Sometimes this type of documentation is used to annotate the expert's answers
or to compare them to each other or to some other baseline.

One version of summary documentation gives a few sentences of explanation for
each answer. Experts from Army offices rated the importance of particular factors to the
export decisions. For example, the importance of the factor "Triggers US Conventional
Arms Transfer Restrictions" was given the high rating of "3" because "these restrictions are
set by Congress and are outside of the Department of Army's control” (Meyer and Johnson

1985:50).
Advantages:

Disadvantages:

Less labor intensive or time consuming than the other means of
documenting problem solving.

Generally does not provide enough detail for tracing an expert’s
thinking.

DETAILED VERBATIM DOCUMENTATION
Detailed verbatim documentation involves transcribing, usually from an
audio or video recording, the expert's elicitation session. This method is more common to
knowledge acquisition applications in artificial intelligence.
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Advantages: Requires minimal advance planning of what should be recorded
and how.

Disadvantages:  Transcribing tape recordings is very time consuming and labor
intensive. Frequently, verbatim documentation provides too much and
too undifferentiated data to be useful in tracing the expert’s thoughts.
We have also noticed that project personnel often prefer to recontact the
expert to clarify some question rather than search through tapes or
transcribed records of that expert’s session.

DETAILED STRUCTURED DOCUMENTATION
Detailed structured documentation usually involves providing the person

tasked with documentation with a format of what is to be recorded. The format lists those
aspects deemed to be the most important (e.g., answers and uncertainty levels,
assumptions, and rules-of-thumb) and to the level of detail desired. For example, in the
large reactor risk study NUREG-1150 (U.S. NRC 1989), the experts and project
personnel recorded the following:

1. The issue name (e.g., the Temperature Induced PWR Hot Leg Failure)

2. The sources of information (e.g., analysis of results of running computer codes
RELAPs/SCDAP)

3. Subissues into which the issue was divided (e.g., likelihood of hot leg
circulation cell and ballooning occurring, ...)

4. Assumptions relating to the subissues (e.g., that hot leg nozzle and pipe and
surge pipe are maintained as designed, ...)

5. Answers (e.g., plot of probability of failure, given temperature)

Advantages: Provides the most traceable and analyzable problem-solving data.
Disadvantages:  Requires the most planning and coordination. Very labor or time
intensive.

Common Difficulties--Their Signs and Solutions

Difficulty: The literature on the different methods is either scarce or

114

conflicting. When the project personnel are selecting the components of their
elicitation, they would like the literature to provide them with guidance.
Specifically, they would like to be able to look up which method would be best for
their particular application or situation. Unfortunately, there is little comparative
literature on the methods, and the few sources that exist may provide conflicting
advice.

There are several reasons for this state of the literature on elicitation components.
One, it is very difficult to evaluate which methods provide the best results, if the
result, the experts’ answer to the question, is not something which can be externally
verified, such as through measurement. Certainly this is a problem with evaluating
the individual interview, Delphi, and interactive group methods, the response
modes/dispersion measures and aggregation schemes. For this reason, elicitation
components are more often compared on practical considerations such as how
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acceptable they are to the experts or how much time they take to administer (e.g.,
Seaver and Stiliwell 1983). Sometimes the results of one comparative study
conflict with another. One reason for this difference may be that authors define
methods differently. For example, the term Delphi has been used to refer to a
variety of elicitation situations--some where the experts are kept physically separate,
their data made anonymous and redistributed to the experts and others where the
experts are together but restricted as to when they may interact. Then too, the
authors may have different views about what is valuable in a method. For instance,
response modes/dispersion measures can be compared in terms of how easy they
are for the expert to use or how tractable they are computationally. While pairwise
comparisons are easier for many experts to use than probabilities, they are not as
easy to analyze. Depending on the importance that different authors attribute to
these almost opposite considerations, different methods could be recommended for
the same type of application.

Solution: To select the best elicitation components for a given situation, we recommend
the following two steps. The first step is to review the relevant literature on
methods. The references mentioned in the above text, particularly in the Summary
of Studies paragraphs found throughout the section Selecting from Within Each
Component, should provide a starting point. In addition, there are a few new
attempts in the field of knowledge acquisition to compare and evaluate different
elicitation techniques (see Dhaliwal and Benbasat 1989; Shaw and Woodward
1989).

The second step is to list the possible elicitation components and their strengths
and weaknesses for the situation being considered. This list will serve as a decision
aid in selecting the components of the elicitation for the application. The
information on the method's strengths and weakness can be gleaned from the
literature and also from the views of the project personnel. Try to use the
definitions of the methods rather than the author's names for them as the basis of
comparison. Points where the different sources of information truly differ, that is
support the choice of different methods, should be noted and as much explanatory
information should be provided as possible.

Later this list can be used to justify the selection of methods, such as in the final
report for the project. We suggest that the report give the theoretical and logistical
reasons for selecting the particular method. In addition, if the standard methods
were tailored in any way, the documentation should explain why.
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Designing and Tailoring
the Elicitation

In the previous chapter the reader was guided through the selection of the building
blocks or components of elicitation for gathering expert data. This chapter is designed to
assist the reader in tailoring these components to a particular application. Five
considerations are presented in the following sections to guide the tailoring of the
elicitation: (1) Logistics and Costs of Convening the Experts or Interviewing Them
Separately, (2) Structuring the Elicitation Process, (3) Handling Bias--A Starting Point, (4)
Documentation During and After the Elicitation Sessions, and (5) Presentation of the
Question--A Quick Check. There are so many possible combinations, given the
components of the elicitation and these considerations, that arriving at the appropriate
elicitation design requires detailed planning on paper. In general, people often neglect this
planning phase, only to regret it later. Indeed, the design is not final even after following
all the guides in this chapter. In chapter 9, Practicing the Elicitation and Training of In-
House Personnel, a description is given of how to find any remaining glitches by testing
the elicitation design.

Considerations in Designing the Elicitation

Frequently the elicitation design is driven by a combination of the considerations
mentioned above and project-specific constraints, such as schedule. However, if this is not
the case, the reader can selectively read those sections below pertaining to his or her areas
of concem.

Logistics and Costs of Convening the Experts or
Interviewing Them Separately

Even though the basic elicitation situation for extracting the expert's data has been
selected (chapter 7), it can be tailored by adding or substituting other methods. Other
elicitation situations and modes of communication (face to face, telephone, and mail) are
frequently combined to create the quickest and least expensive means of elicitation. In
particular, if the interactive group has been chosen as the basic elicitation situation, it could
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be combined with less expensive situations, such as the Delphi and the individual
interview. The expense of the interactive group situation lies in having the experts and
project personnel meet together. It is usually cheaper for the interviewer to communicate
by mail or telephone with the experts, as in the Delphi, or to meet with each expert
separately, as in the individual interview. In addition, it is logistically difficult to schedule
more than a few, usually busy, persons to meet for a week or for a series of shorter
periods. Given the high expense and difficulty of gathering experts together, these
meetings are often reserved for when they are absolutely necessary Other situations, such
as the Delphi and individual interview, and modes of communication are substituted for the
group meetings.

Frequently, other methods of eliciting besides the interactive group method are
used for the first, second, and fourth stages of the larger elicitation process. The stages are
as follows:

Stage 1. The selection of the question areas

Stage 2. The refining of the questions

Stage 3. The elicitation of the expert data

Stage 4. The documentation of the data

For example, in the NUREG-1150 reactor risk study (Ortiz et al. 1988), individual
interviews had been selected for the eliciting of the expert data, stage 3, but other means
were used for the rest of the stages. A preliminary set of questions were selected by the
project staff and then sent, with background information, to the experts (stage 1). The
experts were given several months to review these on their own and modify them, if they
so chose. Then, the experts met together to be briefed on the use of the response modes
and on techniques for refining the questions through decomposition. This refinement of
the question (stage 2) continued as follows: the experts separately prepared their
preliminary disaggregations; they met a second time to present their preliminary results so
that they could benefit from the exchange of information; and they met as an interactive
group for a third time to do a final refining of the questions and to discuss their problem-
solving approaches. Their answers and aspects of their problem-solving process were
elicited through individual interviews (stage 3). They were contacted singly after their
elicitations to review the documentation of their data (stage 4).

The one exception to using different methods for the other stages occurs when the
individual interview has been selected for eliciting in-depth, problem-solving data.
Obtaining in-depth data in stage 3 must be preceded by working toward that level in the
other stages. Thus, group situations (the interactive group) or ones in which the expert is
physically isolated from the interviewer (the Delphi) cannot be used in the other stages
because they are not suited to obtaining detailed data. For this reason, if the individual
interview is being used for the 3rd stage, the other two situations cannot be used in the
other stages.

Three modes of communication

Different modes of communication can also be employed in creating the optimal
means of elicitation. The three modes of communication that can be used are face to face,
by telephone, and by mail. Each has its advantages and disadvantages.
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Face to face. The face-to-face mode is particularly adapted to obtaining
detailed data. In fact, if eliciting deep problem-solving data is the goal, this is the only
suitable mode of communication. Usually this type of information is elicited from one
expert at a time through intensive interviews. For example, one project focusing on crisis
managers required two 2-hour interviews with each of the experts. With projects whose
goal is extracting the expert's problem-solving processes for building an expert system, the
interviews are likely to be even longer. The latter can be a "prolonged series of intense,
systematic interviews, usually extending over the period of many months" (Waterman
1986). The knowledge engineer usually travels to the expert's place of work and
investigates the expert's problem solving in situ.

Telephone. One advantage of telephone communications is that it is generally
less expensive than either face-to-face interviews or gathering the experts together.
Another advantage of telephone communication is that it has a shorter turnaround time than
the traditional postal method. The data can be obtained while the interviewer is still on the
telephone, rather than later by mail.

On the other hand, the telephone is not good for relaying detailed or long pieces of
information. For example, the telephone could be used to learn the expert's major reason
for giving a particular answer or the main reference that he used. The telephone would not
be suited to probing for the assumptions that the expert made in arriving at an answer.
However, the telephone could be used for obtaining answers, such as to questions sent in
the mail.

Traditionally, the mail survey has been used in combination with the Delphi, but the
telephone could also be used, if only limited bits of information were being communicated.
For example, the experts could give their responses (answers, a sentence or two on their
reasoning, and/or the names of the references that they used) over the phone. The
coordinator could make this information anonymous and relay it to the other experts. If
there were many experts and thus magnitudes of data to be relayed, the above-mentioned
information could be sent by mail. After the experts had received the mailed information
they could be interviewed by telephone for their revised responses.

Mail. Traditionally the mail survey has been conducted by post but electronic
mail is beginning to be used for this purpose. The traditional mail survey is good for
eliciting simple data from a large sample just as the individual interview is suited to
obtaining more detailed data from a small sample. Like telephone elicitations, mail surveys
are much cheaper than face-to-face interviews or meetings of the experts.

The mail survey has the greatest problem of all of the modes of communication in
its response rate, probably because it is easier to ignore a mailed request than to refuse one
made in person or over the phone. In addition, recording one's thoughts and mailing them
requires more effort than verbally reporting them. Again, the added effort of writing one's
response leads many to abandon the attempt. For this reason, a mail survey is not
recommended if it is critical to receive a response from a high proportion (i.e., over half) of
the targeted population. The response rate can be boosted by calling the sample to request
their response, but these attempts usually generate only half again as many as that of the
carlier rate. (Note that electronic mail surveys may have higher responses rates than those
sent by post. In addition, electronic mail surveys may have faster turnaround times than
the traditional surveys.)
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Neither the mail nor the telephone are suited for the transmission of complex
instructions or detailed problem-solving data. For this reason, complicated response
modes that require training should not be used with either of these modes of
communication. Similarly, interviews for eliciting in-depth problem-solving data should
not be conducted by mail or telephone. In particular, the verbal protocol, or thinking aloud
method, should never be used in mail or telephone communications with an expert.

In the final method decision, the reasons for gathering the experts together will need
to be balanced against the possible costs. These reasons and costs are listed below to aid
you in making this decision. (For additional information on the relative costs and speed of
these modes of communication, see Armstrong (1981:104-108,122).

Reasons for gathering the experts together

The reasons for gathering the experts together are as follows:

1. If complex response modes and dispersion measures, such as
probability distributions or percentiles, have been selected for use
with more than a few experts. The experts will require training in these
complex modes and measures, and if there are more than a few experts, it is
convenient to give them their training at the same time. In addition, a less
complex response mode, Saaty's pairwise comparison, should also be
introduced in an interactive setting. Experts sometimes experience initial
confusion in using this mode (e.g., Does a three indicate that A is weakly more
important than B, or the reverse?). For this reason, they need the extra
clarification that being in a face-to-face situation offers.

2. If the synergistic effect of group discussion is necessary to the
elicitation process. For example, if the experts in this field have not
previously or recently gathered, if the field is evolving, or if the questions
require knowledge of the field's state of the art, then meeting together as a
group would be advisable. In addition, if it is critical that the group of experts
identify with the outcome of their problem solving (i.e., see it positively as the
product of their labors), meeting as a group is recommended. Member
satisfaction with the product is higher in interactive groups than in Delphi ones,
according to Seaver (1976).

3. If the experts will not be able to give their uninterrupted attention
to the project because of other demands on their time. Having the
experts meet in a place of your designation allows you to place controls on
other's demands on the expert's time. For instance, controls can be placed on
when and how the expert's telephone messages are delivered to the meeting
room. Occasionally, we have had the experts themselves request that the
meetings be held away from where they could be easily reached by their offices
so that they could focus on the project (Meyer and Johnson 1985). We believe
that gathering the experts together is especially helpful if their management has
not given your project top priority.
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Expenses for gathering the experts together

Possible expenses for gathering the experts together are as follows:

1. Payment for the experts' travel and lodging, if they do not reside in the
same geographical area.

2. Payment for the meeting room and any refreshments (e.g., coffee to
help keep the experts awake).

3. Payment for having the sessions videotaped. This record is not only
useful for documenting the data but for allowing the experts who have missed a
session to catch up. For example, in the NUREG-1150 reactor risk study, the
experts gave presentations to the group on issues related to the technical
question. These presentations and their subsequent discussions were taped.
These tapes can then sent to the experts who were unable to make the
presentation meetings so that they will receive the same information as the other
experts.

4. Payment for miscellaneous administrative costs, such as for typing,
copying, and mailing any background material that the experts need to see
before coming together as a group. Copying may need to be done throughout
the meetings. For example, after the experts have met, often they have
materials that they wish to share with the other experts. In addition, toward the
end of the process, the copying machine can be used to provide copies of the
project personnels’ documentation of the experts' data for the experts' review.

5. Payment for the expert's time, if this was part of the project budget.

Structuring the Elicitation Process

Structuring means imposing controls on the elicitation process. Structuring with
respect to presenting the expert with a clear and assimilable statement of the question was
discussed earlier in chapter 5. When the concept of structuring is applied to the larger
elicitation, it can include using a predesigned set of questions to guide the elicitation,
allowing only particular kinds of communication between the experts and requiring that the
experts answer using one of the response modes.

Why structuring is done

Structuring the elicitation is done for a purpose, such as aiding the interviewer in
interviewing, making the elicitation easier for the expert, or limiting the introduction of
bias. For example, the structuring may be imposed by the use of a specially designed
interview instrument--one that prompts the interviewer to ask particular questions at
specific times (e.g., as described in Meyer 1987). The structuring may be put on the
experts’ group interactions to prevent some experts from acquiescing, without thinking, to
other experts, as occurs in group think bias. For example, the Delphi was designed to
counter biases arising from group interactions and thus is structured in this manner.

In general, we have observed that structuring the elicitation limits the intrusion of
extraneous factors, such as bias. It seems to keep the field of observation clearer and thus
eases the task of gathering and analyzing the expert data.
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Degrees of structuring

Structuring can be done to varying degrees to different aspects of the elicitation
process. As a general rule, use of one of the following components imposes structure: the
response mode and dispersion measure, a method for eliciting problem-solving processes,
the use of behavioral aggregation, or a documentation scheme. Using one of these
components means that there is a plan in place and a specific procedure that will be used.
For example, if the pairwise comparison response mode is used, the experts’ judgments
will be elicited by the interviewer or moderator asking particular questions and by the
experts responding with answers on the appropriate scale. The response mode or
dispersion measure, methods for eliciting problem solving, and behavioral aggregation are
typically used when the expert data is being extracted (stage 3). The documentation
component is often used in the last stage, 4, to record the data or the data-gathering
methods.

Examples of structuring applied to each of the stages of elicitation are given below.
The more that these options are applied, the more highly structured the elicitation situation
becomes.

Structuring options applied to the stages of elicitation
Stage 1. Selecting the questions. For most elicitation situations, any one of the
three structuring options could be applied to selection of the questions.

e Input could be obtained from the advisory experts on what would be good
questions to pose to the external experts. This option is used frequently when
the project personnel are unfamiliar with the field or if the project funder has not
requested specific questions.

® The project personnel or the external experts can rank and select the questions
according to some criteria. For example, on the reactor risk study NUREG-
1150, (U.S. NRC 1989), the questions were initially selected by the project
personnel according to which held the greatest potential to produce uncertainty
in risk. The experts then reviewed the proposed set of questions and added,
deleted, or modified these with respect to their own criteria.

® Alternatively, the external experts could be polled to learn, in advance, which
problems they consider themselves qualified to address or which they would
like to work on.

Stage 2. Refining of the questions.

¢ In interactive group situations, the experts and/or project personnel can work
together in disaggregating the question. The experts or project personnel can
present to the other experts and to the group moderator their interpretation of the
question, means of disaggregating it, or any other relevant information.

® In any face-to-face situation, the experts can be required to review the
definitions, the assumptions, or any other information that defines the question
and then to refine the question for the last time.

¢ Inindividual interviews, the external or advisory expert could work on refining
the questions that will be asked of him or other experts. For example, the
expert can assist the interviewer in determining how to word the question and
how to define particular variables.
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In a Delphi situation or a mail survey, the external experts can be sent
information on the question and asked to provide information on how to set it
up. For example, in a seismic study (Bernreuter et al. 1985) the experts were
asked to break the Eastern United States into various earthquake zones in
preparation for defining the question. It is also possible to have qualified
project personnel, such as advisory experts, do most of the work in refining the
question and then have the external experts review and modify it. For example,
in the NUREG-1150 reactor risk study, the project personnel created sample
disaggregations of the question, and the experts had the options of using these
disaggregations as the starting points for their own.

Eliciting the expert data:

During elicitations in interactive groups, the external experts can record their
own data on a documentation format. The experts can also be asked to
verbalize their judgments or thinking to the group and/or to the group
moderator. For instance, the experts could state their names and their answers
in the desired response mode. Only some of the experts need give data on
particular questions; namely, those who were earlier judged (by themselves or
the project staff) to be the most qualified. On the export control project, all the
experts voiced their opinions in the early discussions, but only those experts
who were assigned to particular questions were allowed to vote on the answers
(Meyer and Johnson 1985). If a group of experts are verbally giving their
responses, one expert can present his response while the rest are asked to
remain silent. The natural and official leaders in the group can be asked to give
their responses last or privately, if group think is a concern. The verbal probe
or ethnographic technique can be used briefly to question the experts on aspects
of their problem solving.

In the Delphi method, the experts can be sent questions and asked for their data
(e.g., their answers, a few lines of explanation for each answer, and a footnote
of the references used). This data can be made anonymous and redistributed to
the experts to allow them to revise their earlier answers. This process can be
repeated as long as necessary, until consensus (behavioral aggregation) is
achieved. If the experts are to give their answers in a particular response mode,
they can be sent a format, such as a copy of a continuous linear scale, and
instructions on how to use it.

In individual interviews, the questioning can be guided by a list of topics that
the interviewer has prepared. Alternatively, the interviewer could be guided by
the format on which the data is to be recorded. Or, the interviewer can simply
let the use of one of the pre-existing methods for eliciting problem-solving data,
(e.g., verbal protocol, verbal probe, or ethnographic technique) guide her
gathering of the data.

Documenting the data and/or the process by which it was
obtained:

In interactive group situations, the experts can use one of the documentation
schemes to guide them in filling out their own records of their answers or
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problem-solving data. Similarly, the group moderator can use one of these to
guide her in gathering and recording all the required data.

® In a Delphi, the documentation format, along with instructions, can be sent to
the experts.

¢ In individual interviews, the expert or interviewer can use the documentation
scheme to record the desired information. A computer program that prompts
the expert for his inputs and/or reasoning would serve this same purpose as a
written documentation scheme (Meyer 1987).

General rules in structuring the elicitation

As a general rule, the more structuring that is imposed on the elicitation, the greater
the time needed to plan and conduct it. However, these greater demands are balanced by
the greater effectiveness of the structured techniques. For example, unstructured individual
interviews are described as being less effective than their structured counterparts, at least in
knowledge acquisition (Hoffman 1987, McGraw and Harbison-Briggs 1989:73).

A higher degree of structuring also seems to correspond to the gathering of more
detailed data. It makes sense that a structured approach allows the interviewer to focus the
questioning to a finer level. In an unstructured interview, there is less to prevent the expert
from jumping from one topic or level to another, often to the interviewer's dismay.

We would also emphasize that conducting a structured elicitation often demands
more tact than administering an unstructured one. This is because the experts do not
always follow the structuring. They may be confused or ignorant about what they are
supposed to do, or they may simply decide that following instructions takes too much
effort. Tact is needed in getting the experts to follow the plan because the interviewer is
dependent upon their good will for obtaining data. For example, imagine that the
interactive group method has been structured to minimize the occurrence of group think
bias, otherwise known as the follow-the-leader effect. The experts have been asked to
present their views to the group before entering into a discussion of all the presentations
Additionally, the natural leader of this group has been requested to go last in stating his or
her views. However, that which was requested is not what happens. The leader interrupts
and criticizes others' presentations. Diplomacy is needed to make this session run again
according to the plan. One way of handling this problem would be to take the leader aside
and tell him or her about the group think bias and how it negatively affects people's
thinking. In addition, the experts could be briefed again, as a group, on the elicitation
procedure and the reasons for structuring it in this manner.

Handling Bias--A Starting Point

Designing elicitation with regards to bias, as we advocate, is a new approach. The
information presented here was largely developed from our own experiences. For this
reason, it is intended to be a starting point for those who wish, as we did, to become more
aware of bias and how to handle it. There is a small but growing body of literature on
human biases that can be applied to handling bias in expert judgment--Payne 1951; Hogarth
1980; Tversky and Kahneman 1974 and 1981; Kahneman and Tversky 1982; Cleaves
1986; Meyer et al. 1989; and Meyer and Booker 1989).
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There are two reasons for paying attention to bias: First, the occurrence of some
biases has been shown to degrade the quality of the results (Hogarth 1980, Kahneman and
Tversky 1982); and concerns about its presence, such as among reviewers of a project,
affect the project's credibility.

There are two views or definitions of bias, as mentioned in chapter 3.

The first view of bias, sometimes termed motivational bias, proposes that bias
occurs when the expert's reports of his thoughts or answers are altered by the elicitation
process. (For an explanation of why this altering occurs, see chapter 3, Causes of Bias--
Motivational bias.) For example, if the expert gave a different answer from what he
believed because of the interviewer's comments, this would be considered bias. Using this
first view, if the expert's estimates or problem-solving data do not represent the expert's
thinking, these are not quality data. In addition, reviewers or clients are liable to question
the validity of this data if they suspect that the experts have been led by the interviewer. In
our experience, reviewers have been most sensitive to biases occurring because the
interviewee was led either by the interviewer or by other members of the group to give an
answer other than the one in which the interviewee believed. Also, many people are
familiar with bias arising from a conflict of interest, such as when the expert's wishes or
interests influence his judgment. (This bias is called wishful thinking in this book). These
biases need not actually occur to impair the credibility of the work; they need only to be
suspected of having occurred.

The second view of bias, sometimes termed cognitive bias, defines bias as
occurring when the expert’s estimates do not follow normative, statistical, or logical rules.
Cognitive bias is frequently determined by checking the expert's data against the
mathematical and statistical standards that apply to the response mode that he has been
asked to use. To illustrate, if an expert gives probability estimates on all outcomes to a
problem (previously defined as being mutually exclusive), and these probabilities do not
sum to zero, these data would be considered biased because they do not follow normative
statistical rules. While the majority of people are not yet as aware of cognitive bias as they
are of motivational bias, this situation is not likely to continue. Such authors as Hogarth,
Kahneman, and Tversky are leading the field in showing the cognitive limitations to which
the human mind is prone. The old view that the brain acts like a computer (i.e., in being
mathematically correct) is rapidly being debunked.

The approach proposed in the section below is to anticipate which biases are likely
to occur given the planned elicitation and then to tailor the elicitation methods accordingly.
This step, Anticipate the biases, is followed by others in the later chapters: Make the
Experts Aware of the Potential for Introducing Bias and Familiarize Them with the
Elicitation Procedures--Step 2 (chapter 10); Monitor the Elicitation for the Occurrence of
Bias--Step 3 (chapter 10); and Adjust, in Real Time to Counter the Occurrence of Particular
Biases--Step 4 (chapter 10). Analyze the Data for the Occurrence of Particular Biases--Step
5, is discussed generally in chapter 14. In chapter 3 in Determining Which Steps to Apply,
we describe how the reader can determine which of the above-mentioned steps to use.

How to anticipate bias is described below.
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Anticipate the biases to which the planned elicitation is prone and
redesign the elicitation, as needed--Step 1
Applying this step presupposes that the reader has selected a motivational or
cognitive view of bias, as described in The Selection of the View of Bas---chapter 3,
subheading Determining Which Steps to Apply. While we consider the cognitive and
motivational views to be equally valid definitions of bias, we believe that one way of
construing bias may be more useful than another for a particular project. We suggest that
the reader select and use only one view of bias at a time to avoid being contradictory. For
example, use of the cognitive definition would propose that a mathematically incorrect
judgment be modified. This act would cause a misrepresentation of the expert's data, a
bias, according to the motivational definition of bias.

Selected biases and situations in which they occur

To anticipate some of the biases to which an elicitation method is prone, determine
the components of elicitation and/or modes of communication that you intend to use and
look them up in the table Index of Selected Biases in chapter 3--Steps in a Program for
Handling Bias. The index will list some of the biases to which particular situations are
prone. To obtain more information on the motivational and cognitive biases, locate the item
in the section following the table Definitions of Selected Biases (chapter 3). It should be
noted that the biases listed in the Index and Definitions are not the only ones that can occur
in gathering expert data. However, they are the biases that we have frequently encountered
and have developed means for handling. These sections are meant only to give the reader a
start in dealing with bias.

The other option for accessing information in this section is to go directly to the
segment Definitions of Selected Biases and skim it to learn if the planned elicitation is likely
to be susceptible to one of the selected biases. The elicitation situations and components
that are prone to these biases have been underlined in this segment to allow them to be
found more easily. This segment also provides information on why the elicitation is prone
to a particular bias.

The information on why the elicitation is prone to bias can provide the reader with
ideas for redesigning the elicitation, if the reader wishes to do so now. For instance, under
wishful thinking bias the following information is provided in chapter 3: "that its effects
will be most pronounced when the expert does not have to explain this reasoning.” Thus,
if wishful thinking bias was a concemn, this information could be instrumental in modifying
the existing elicitation to require that the experts provide explanations of why they gave
their answers.

Documentation During and After the Elicitation Sessions

How the expert data will be recorded is one of the considerations guiding the
tailoring of the elicitation. The other considerations mentioned so far have been the logistics
and cost of having the experts meet together; the structuring the elicitation; and the treatment
of bias. Before we can present the options for who performs the documentation and when,
we need to describe what can be documented.
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What documentation can include

1.

The statement of the question, in its final version. This statement
would include (1) any background information that clarifies the question, such
as scenarios, and (2) definitions or assumptions that the experts are to use.

Stating the question is not as easy as it sounds because often the statement of
the question is changing until the actual beginning of the elicitation, or in some
cases until the expert gives an answer. For example, in the NUREG-1150
reactor risk study, the experts were developing their own disaggregations of the
questions, essentially their statements of the question, until the moment that
they gave their judgments.

. The identity of the experts. The names of the experts may need to be

recorded in order to answer questions about the expert's responses or to update
their responses after the elicitation. For example, if the experts are to review the
project personnel's documentation of their responses, records must be kept of
each expert's response, name, and date of elicitation. In addition, records of
the expert's identities and responses will be needed for report writing.
However, even when all of this information is recorded, it need not be divulged
in areport. There are three ways of presenting the expert's identities depending
on the level of confidentiality that has been selected. (In chapter 6, see item 6
Will the Judgments Be Anonymous... under Motivating the Experts Through
Communication of the Intrinsic Aspects of the Study.) These three ways are to
either list (1) the organizations or offices that have contributed experts; (2) the
experts names and affiliations; or (3) the expert's names and affiliations in
connection with their responses. The last of these is the most demanding in
terms of the records that will have to be kept.

The identity of the experts can also refer to aspects of their professional
background, such as how long they worked in their area of expertise and where
they went to school. We recommend recording and testing this information to
learn if it correlates to the expert's answers or other factors. In our experience,
people intuitively expect the experts' answers to correlate to some aspect of their
background, such as where they went to school. Although we have found no
such evidence of correlation (Booker and Meyer 1988a, Meyer and Booker
1987b), we suggest documenting this information for testing.

The methods by which the expert data was obtained. The elicitation
methods need to be documented if any of the project personnel intend to use
them again, if the project is likely to be reviewed by outsiders, or if a written
report is a required product of the study. In general, if the methods are to be
documented in a report, we suggest that two types of information be supplied:
(1) a summary of what methods were used and how they were applied; and (2)
an explanation of why each method or combination of these were selected.
Support for the use of the methods can include references from the literature and
other considerations such the data-gathering objectives of the project and the
need to reduce costs, time, or the occurrence of particular biases. This support
can also include descriptions of how the methods were pilot tested or rehearsed
and revised. In addition, the supporting information can include statements on
what the documentation of the expert judgment represents. Readers of the
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report may not know that the documentation represents the expert's state of
knowledge at the time of the elicitation. For this reason, it may be necessary to
state that the expert might, with time and new knowledge, give a different
answer to this same question.

4. The expert's responses. The expert's responses can be documented using
several schemes. The documentation schemes, described in chapter 7, are
basically of two types: where only the expert's answers are recorded and where
both the expert's answers and thoughts in arriving at these answers are
recorded. There are approximately three ways of documenting the second type.
The first is a summary documentation where the expert's answer and a few
sentences or paragraphs on his thinking is provided. The next is detailed
verbatim documentation where everything that the expert says or does is
written. Often this scheme involves mechanically recording the elicitation
session and then transcribing it. The last and most involved means of
documentation is the detailed structured scheme. In this method, there is
usually a format to guide the person doing the documentation. The format
includes blanks labeled for the recording of the aspects of the elicitation that are
considered most important, such as the sources of information (e.g., code
simulations, references, experiments, personal communications), assumptions,
algorithms, and equations that the expert used in solving the problem.

The documentation can be used in a report in its original form or it can be rewritten
to be more general; that is, the report can include less or more general data than was
gathered but not the reverse. For example, if the expert's names were not originally
recorded with their responses, this data will not be available for inclusion in a report.

Logistics of who will record and when

The documentation of the expert judgment can be written by the project personnel,
by the external experts, or by a combination of the two. For example, the judgments can
be written by the data gatherer and reviewed for accuracy and completeness by the expert.
In addition, there is sometimes an option for when particular types of information are
documented--before, during, or after the elicitation session.

Step 1: The first consideration in determining how to do the
documentation is the decision of who is qualified and motivated to do it.

This information is listed below according to what is being documented.

1. The final statement of the question. The project personnel, such as the
data gatherers (interviewers and knowledge engineers) are usually the most
qualified and motivated persons to document this information. The one
exception would be if the external experts had been totally responsible for the
refining of the question. Then, the experts would be the most qualified,
although, not necessarily the most motivated, to record this information. (The
experts are generally not as concerned with documenting the elicitation as they
are with solving the problem.) For this reason, even when the experts are the
most qualified to document the statement of the question, the project personnel
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often do it. The project staff may request the latest statement of the question
from the experts and then record it.

The expert's identity. Writing the expert's names by their responses does
not demand as much qualification and motivation as recording the types of
information mentioned, described in items (1), (3), and (4). Noting the
expert's identity can be done by whoever is recording the expert judgment. If
the experts are recording their own judgments on a special format, they can
simply enter their names on the predesignated blank. If the data gatherers are
using formats (writing the expert's responses in an organized manner on the
board or using interview guides), they can label the responses by the expert's
name. If the data gatherers are mechanically recording individual interview
sessions, the tape can be labeled in the same fashion. In general, the labeling
should be double checked because the documenter can forget to record a name
or record the wrong one. Occasionally the data gatherer records characteristics
of the expert, in addition to the expert's names and responses. These
characteristics are gathered when later analysis is planned, such as for learning
if the characteristics correlate to the expert's data. Some commonly recorded
attributes are the expert's education, years of experience, job title or position,
area of specialization, and psychological test results.

. The elicitation method. We consider the project personnel, specifically

those who conduct the elicitation, to be the most qualified and willing of
persons to record information on the elicitation methods. Information on the
elicitation methods is the only one of the four types of information under What
Documentation Can Include that can be written both before and after the
elicitation. The elicitation methodology can be initially written up after its last
revision (chapter 9). Then after the elicitations, the description of the methods
can be updated because they may have been conducted slightly differently than
planned.

. Expert's responses. Who is qualified to record the expert responses

depends on how detailed or technical this data is. Almost anyone is sufficiently
qualified to write down a short answer (e.g., a probability estimate, rating, or
ranking). Frequently, the project personnel record this information if it is given
verbally in an interactive setting (e.g., group or individual interviews). If the
elicitation is conducted over the telephone, the interviewer records the answer.
On simple mail surveys, the expert records the answer, using the desired
response mode.

If, however, the expert data includes detailed problem-solving data, the
expert is the most qualified to document it. Unfortunately, experts are not
usually as well motivated as the project personnel to document this information.
Generally, they are more willing to deliver the data verbally than they are to take
the time to record it in written form. Thus, documenting the problem-solving
data needs to be made as easy as possible to increase its chances of being done.
Documentation formats (also called interview instruments or forms) are often
used for this purpose. (See sample forms included at the end of this chapter.)
The data gatherer or the expert can be guided by these formats in documenting
the information. Please note that if the experts fill out the formats, the
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completed formats should be checked by the project personnel before the
experts leave. Experts frequently fail to document their thinking as they were
instructed to do. They may have misunderstood the instructions or simply tired
of writing their data. Similarly, if the project personnel did the documentation,
the expert should check the notes for accuracy and completeness. For example
in the NUREG-1150 reactor risk study, an extra precaution was taken--the
experts signed the final documentation to show that they had approved it. Then
too, if the elicitation is tape recorded, someone should check that the expert's
voice is audible and understandable, especially if this will be the only record of
the session.

If the data gatherer is unfamiliar with the field and if complex questions are
being asked of the experts, the data gatherer may no longer be the most
qualified to document. Arrangements beyond those mentioned above may be
needed. For example, in the NUREG-1150 reactor risk study (U.S. NRC
1989), the elicitations were performed by decision analysts who were
experienced in the elicitation but not in the technical areas. For this reason,
project personnel who were knowledgeable in the question areas attended the
sessions and, like the decision analysts, provided written records. In addition,
all sessions were tape recorded and the expert was encouraged to document his
reasoning for his judgments immediately after the elicitation (Wheeler, Hora,
Cramond, and Unwin 1989, 3-7).

Step 2: The second consideration is whether the persons

tentatively selected for the documentation role will be able to do it.

The selected person may be too busy eliciting the expert data or solving the question

to do the documentation. A list of tasks that people can do simultaneously is given below

to help
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you make this assessment.
Experts
® Experts can solve the problem and verbally deliver or write down the
answer
IF it is a short answer
IF it is given in a manner (response mode) that the expert is used to
® Most experts can solve the problem and verbally describe their problem
solving. A few have difficulty doing these two tasks simultaneously, as
noted in chapter 7 in the description of the verbal protocol.
® Most experts cannot solve the problem and write down their thought
processes in solving it
IF their thought processes are to be recorded in any detail

Interviewers or knowledge engineers:
Working with a single expert
® The interviewer is able to request the expert's answer, record it on a
documentation format, and run the tape recorder.
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¢  In addition, to the above tasks, the interviewer can usually also document
the expert's problem solving
IF the interviewer is familiar with the subject area

Working with multiple experts face-to-face
®* The interviewer can request the expert's answer and record it on a
documentation format
IF obtaining the expert's answer does not require in-depth
elicitations
IF the experts will be orderly in giving their answers, as in a
structured elicitation situation
IF the interviewer is not also running mechanical recording
devices
® In addition to the above tasks, the interviewer can usually document the
experts' problem solving
IF only one or two sentences are needed (e.g., on the references that
the experts used or the group's rationale for their answer)
IF the interviewer is familiar with the subject area

Working in any elicitation situation
® Interviewers cannot write all of an expert's problem solving as the expert is
verbalizing it
IF this is being elicited in great detail (because people usually
verbalize their thoughts much faster than the average person can
write. Peoples' rate of speech is one of the reasons that tape
recorders and stenographers are used as backup to notetaking).

Note: More is involved in running a tape recorder than there might seem. In all sessions,
someone needs to turn the tape recorder on, check that the tape head is turning, and change the tape
cassette as needed. In group situations, the omnidirectional microphone needs to be turned on and
have its batteries checked. In individual interviews, the expert's lapel microphone needs to be
attached and detached so that the expert does not walk away with it, tape recorder dangling.

Step 3: If the documenter is asked to do more than what was
listed as feasible in step 2, consider the three following aspects of
documentation. It may be that manipulating one of more of these will
lighten the documenter's load:

1. Who does the documentation or how many others assist in it? For
example, if the data gatherer is to do the documentation, could the expert help?

Could additional project personnel (e.g., a stenographer, secretary, or editor

familiar with the technical area) assist the data gatherer, such as by taking notes

or running the tape recorder during the session?
2. The timing of when the documentation is done. It may be that some
of the documentation can be done in advance of, or after, the elicitations.

Frequently, the statement of the question, the elicitation methods, and the
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expert's identities can be documented in preliminary form before the elicitation.
Then, during the elicitation, brief notes can be taken on any changes that were
made. For example, the statement of the question often evolves or changes
during the process or elicitation. Similarly, the list of experts assigned to the
questions may change if some of the experts do not come and substitutes are
used.

®The leeway in timing the documentation of the expert's
problem solving. The problem-solving data cannot be recorded in total
before the elicitation because it often changes significantly during the session.
However, you may be able to document some of the basics of the expert's
problem solving if it has been written prior to the elicitation. For example, in
the NUREG-1150 reactor risk study (U.S. NRC 1989) the experts
disaggregated their questions before the sessions in which their answers were
elicited. However, even in this project, the experts changed their
disaggregations and thoughts during the elicitation. Documenting the problem-
solving data totally after the elicitation does not work either. Waiting to
document this data results in portions of it being forgotten and lost. Tape
recording the problem-solving data, although helpful, is not a panacea because
much of what people say is unclear without their expressions or gestures. (We
recommend that tape or video recording be used only as a backup to note taking
because the mechanical recordings often malfunction and they are very time
consuming to play back, e.g., to clarify particular points or to transcribe.).
Thus, some documentation of problem solving must be done during the
elicitation if this data is to be recovered and reported later.

®The amount of time needed to verify the expert's data.
Generally, more time is needed to verify expert data if it was documented after
the elicitation rather than during. For example, if the experts' problem solving
was documented after they had left, they will have to be contacted to verify
what has been written. Therefore, verifying documentation long after the
session is more time consuming than verifying it during or shortly thereafter by
having each expert read and initial it while he is still present.

. The level of documentation. If none of the suggestions mentioned above

resolve the documentation problem, simplifying the documentation demands
may be the last resort. Would a less detailed or structured documentation
scheme still provide the necessary data? The general documentation schemes
listed in chapter 7 are listed in order of the simplest, or least demanding, to the
most demanding.

Sample documentation formats
Formats serve as guides for the project person or the expert who is taking down the

information. For instance, formats have been developed for questioning the expert on the
subject area (Spradley 1979); for obtaining background on the expert (McGraw and
Harbison-Briggs 1989, Meyer 1987, Meyer and Booker 1987b); and for obtaining short
explanations of the expert's problem solving (Meyer 1987, Meyer, Booker, Cullingford
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and Peaslee 1982). Formats that have been designed specifically for knowledge acquisition
projects are given in McGraw and Harbison-Briggs (1989).

Two generic formats for recording the expert's answers and their problem solving
are illustrated at the end of this chapter. The first focuses on documenting experts' ratings
and only gathers a few notes on why the expert gave these ratings. The second focuses
more on the expert's problem solving. It documents the experts' disaggregation of the
problem, their answers, and their reasons for giving both of these.

Presentation of the Question--A Quick Check

Although this topic was covered in chapter S, we readdress it at this time to ensure
that the presentation of the question fits the revised elicitation. In chapter 5, the question
was refined by considering the information that the experts needed to answer it (e.g., the
background, assumptions, and definitions), the order in which the information needed to
be presented (e.g., general to specific or specific to inclusive), the decomposition of the
question, and the phrasing of it. Now these same aspects of presenting the question need
to be reconsidered in terms of the revised elicitation.

In general, you need to note the changes that you have made to the elicitation as a
result of following the suggestions in this chapter and ask whether the presentation of the
question still fits. A few considerations follow:

1. If the components of elicitation have been structured, is the

presentation of the questions structured to a comparable degree?
For example, if the elicitation components were structured to provide a clearer
field for observation, an unstructured presentation of the question could
compromise this aim. An example of an unstructured presentation would be to
ask a question without having determined which wording was clearest and what
information would be needed to answer it.

2. If the basic elicitation situation was modified to include a
combination of the other situations, will the planned presentation
need changing? For example, imagine that you decided to break an
interactive group situation into individual interviews to avoid the possibility of
group think during the elicitation. If you had planned to present the question
(i.e., its background, definitions, and assumptions) only once to the group, you
would have to rethink this presentation for the individual. The question could
be announced to the group before individual interviews began but if there was
much of a delay before interviewing the last expert, the question would have to
be presented again to refresh the expert's memory. In a case like this, the
question could be presented on paper and then verbally reviewed by the
interviewer at the onset of each elicitation.

3. If the telephone or mail was to be used as an alternate mode of
communication, will the means by which the question was to be
presented need changing? For example, if the plan was to save on costs
and time by eliciting the expert's solutions over the telephone, can a simple and
brief presentation of the question be given over the telephone? If not, perhaps
the question can be sent by mail and then the experts called for their answers.
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4. Does the documentation scheme support the presentation of the
problem and vice versa? For example, if a detailed structured
documentation scheme was selected, the presentation of the question should
exhibit comparable care.

Any remaining conflicts between the presentation of the question and the elicitation
methods will become known when the pilot testing is done. The pilot testing described in
chapter 9 will be the last stage in refining the elicitation process before the elicitation is
conducted.

Common Difficulties--Their Signs and Solutions

Difficulty: Realization that sufficient time has not been allotted to planning
the elicitation. This is one of the most common problems that we have observed.
Often people view the planning stage as an unnecessary delay to starting the elicitation.
Signs of insufficient time for planning usually come when the project personnel are
looking at their project schedule. The schedule may show that the elicitation, not its
planning, is to begin now.

Solution: One remedy is to determine if the planning can be dropped without severe
consequences later. Planning is less necessary, if only a few experts are being
interviewed, especially face to face. For this situation, you do not have to coordinate a
group of interacting experts nor polish the elicitation materials that you would send to
another group of experts (e.g., a Delphi group). You have greater license to plan as
you go because there are fewer things requiring advance preparation. Planning is also
less necessary, if unstructured techniques are used. As mentioned earlier in the
chapter, the more highly structured techniques require more planning. We believe that
the structured techniques offer, in compensation for their greater planning time, greater
effectiveness in elicitation and analysis. For all other situations, planning is likely to be
critical. If sufficient time for planning has not been allowed, we urge you to consider
modifying the schedule.

Difficulty: Ignoring the possibility of bias. Frequently, the possible occurrence
of bias is disregarded because of the project staff's ignorance. They may have been
totally unaware of its existence, or they may have chosen to ignore it. Both of these are
understandable responses. The topic of bias in expert judgment has not commonly
been addressed and the physical scientist, in particular, is not accustomed to dealing
with it.

However, ignorance is definitely not bliss. We have seen an increase in external
reviewers' criticism of expert judgment studies. Generally, these reviewers have been
sensitive to the bias that results from the interviewer's leading of the experts. For
example, a committee that reviewed NUREG-1150's early use of expert judgment
(Kouts et al. 1987) criticized this effort for having the experts work from questions
proposed by the project personnel. They advocated allowing the experts to
independently generate and refine their own questions. Another frequent concern with
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external reviewers is the possibility of group think, perhaps because of the influence of
Janis' book (1972). The concern is that some experts may have mouthed or tacitly
accepted the opinions of others without thinking or expressing their own thoughts.
Conflict of interest, called wishful thinking in this book, is another source of bias that
seems to catch reviewers' attention. When this bias is present, the expert's judgments
tend to reflect what the expert would like to happen, or in an extreme case, the position
that the expert has been paid to support.

Solutions: One approach would be to use this chapter's section on anticipating bias to
design the elicitation before proceeding. Another narrower approach is to selectively
focus on handling the three biases mentioned above (social pressure from the
interviewer, group think, and wishful thinking). Still another approach is to proceed
with the idea of gathering enough data to test for the presence of selected biases after
the elicitation. The analysis techniques for testing bias are described in chapter 14.

For example, on a magnetic fusion project (Meyer et al. 1982), two tests were run to
examine the problem of wishful thinking. The purpose of the study was to obtain
estimates from those working on the fusion project of whether they would meet
scheduled milestones. After the elicitation, the sample of experts were divided into
those with more to gain from their answer--the managers, and those with less--the
scientists working on the hardware. Their data was analyzed. These two groups could
not be found to give significantly different answers to the same questions. The experts
answers were also compared to the wished-for outcome. That is, the expert's
predictions of when they would meet various scheduled milestones were compared to
the planned schedule and found to differ significantly.

The last approach, not considering bias until during the analysis, has one advantage
over doing absolutely nothing about bias. If reviewers of the work raise questions
about a particular source of bias, the results of the analysis can be presented. If the
results show no evidence of the bias and the reviewers find no fault with the methods
of analysis, the reviewers can turn their attention to other matters.
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EXAMPLE 8.1: Sample Format for Documenting Mainly Answers

Expert's
name:

Date:

Time: to

Interviewer:

Definition of question:

Variablel  Variable 2 Variable 3 Variable 4

Variable w

Variable x

Variable y

Variable z

Expert's comments on reasons for giving estimates:

Variablew and1:

Variable x and 2:

Variable y and 3:

Variablez and 4:
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EXAMPLE 8.2: Sample Format for Documenting Answers and Problem
Solving

Expert's
name:

Date:
Time: to

Interviewer:

Question name:

Information defining the question:

Sketch and label each question, subquestion, and branch, as shown in the example.
Provide a few sentences on the expert's reasoning for each point, as shown in the example.

Footnote any references that the expert uses.

Example Reasoning
T1
4 o
Prime T2 3 T3:
P1:
73— P2
. P3:
Reasoning: ~ /\ /
P4:

137/63‘1



Practicing the Elicitation

and Training the In-
House Personnel

The purpose of this chapter is to provide the last check on all aspects of the
elicitation design before conducting the elicitation, which is described in chapter 10. The
logistics, ease of use, interface, and timing of the parts of the elicitation process are
examined to find any remaining glitches and resolve them. The problems are identified by
practicing and pilot testing the different parts of the elicitation.

Practicing the Elicitation

The following aspects of the elicitation are frequently practiced: the briefings given
to the experts; the elicitation procedures; and the documentation, aggregation, and entry of
the data into the model. Practice is defined loosely here to mean rehearsing some act to
become more proficient in it. Practicing serves another purpose--the training of in-house
personnel. One subset of practice is pilot testing. Pilot testing involves taking a very
small sample of the expert population, presenting them with the aspect of the elicitation that
is to be tested, obtaining these experts' feedback, and revising the elicitation accordingly.

What Needs to Be Practiced?

The following items should be rehearsed to resolve any difficulties and to learn how

long they will take.

1. Introduction of the experts to the elicitation process. Introducing
experts to the elicitation process includes familiarizing them with the general
steps and schedule that will be followed, the questions or problems that they
will address, the response mode that they are to use, and the biases to which
they may be prone. If the experts were not heavily involved in developing the
elicitation, they will need clear and concise briefings on what they are to do.
Conducting such briefings do not occur naturally but requires practice. If the
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expert is confused about any of the above-mentioned topics, his confusion

could make him more prone to bias, such as inconsistency. It could also make

him reluctant to participate. Practicing these items will make the communication
of them clearer and will give the project personnel greater confidence.

Introducing the experts to the elicitation process is such a critical step in
establishing the project's credibility and the experts' understanding of their
tasks that we offer the following suggestions. (The most appropriate time to
introduce the experts to the elicitation process is after they have been briefed on
the general elicitation procedures.)

e We suggest that the experts be given sample questions to work so that they
can practice using the response mode. If there are any techniques for
properly using the response mode, they can be introduced and practiced
here. For example, if the response mode is probability distributions,
Hogarth (1980:149) offers eight keys to assigning probabilities.

e We recommend that the experts be briefed on the biases that were identified
in chapter 8 as being likely to occur. This briefing should include an
explanation of why the selected biases occur and of how the expert can
reduce his tendency to commit them. (The section Definitions of Selected
Biases in chapter 3 provides examples of this type of information.)

The bias briefing should include exercises that are designed to evoke the
selected biases. The interviewer can read the correct answers and allow the
experts to score their own exercises. These exercises can convince the
expert that he, like everyone else, is prone to these biases. If the briefing is
given without exercises, we have noticed that the experts are not as effective
in countering their tendencies toward bias, perhaps because they were never
convinced that they, too, would be biased.

. The elicitation procedures. Even when the elicitations have been carefully

planned, much can be learned by testing them on sample experts. For example,
you may observe that the elicitations last longer than expected and that the
sample experts become fatigued during them.

. The documentation procedures. Pilot testing the documentation will

provide information on the logistics and the format, such as whether or how
these need to be revised. For example, the pilot tests may show that the
interviewer cannot conduct the elicitation and simultaneously fill in the
documentation format.

The mathematical aggregation of the expert's answers, if this will
be used. Although mathematically combining the expert's responses may
seem straightforward, there are many methods available and some may not be
appropriate to the data elicited (chapter 16). Therefore, it is advisable to practice
the chosen method. At the very least one can learn how long this procedure is
likely to take, and if necessary, automate it. The data from the limited pilot tests
are used to practice the aggregation. In addition, if the experts have broken the
problem into its logical parts and the project personnel will reaggregate the
experts' responses, as in the NUREG-1150 reactor risk study (U.S. NRC
1989) this step should also be practiced.



5. The entry of the data into a model, if this is planned for its
analysis or end use. The data gathered from the limited pilot tests, as
described below, is used for rehearsing the entry of the data into a model.
Frequently, this rehearsal reveals a major disconnect between the form in which
the expert's data was obtained and that which is needed for the model.

What Needs to Be Pilot Tested?

The procedures that need to be pilot tested are those that the expert participates in,
such as in giving his judgment. The expert's understanding is critical to his participation.
Therefore, anything that the expert must understand, is a good candidate for pilot testing.
Usually, however, a smaller set of all those things that the expert must understand are pilot
tested because pilot testing is time and expert intensive. As a general rule, pilot testing is
done on the expert's understanding of instructions whether these are given orally or in
writing, such as on how to fill out a survey. The following parts of the elicitation are
suggested for pilot testing.

1. The expert's understanding of the problem or question. Sometimes
the statement of the question or problem has already been developed and is
being presented to the experts for their solutions. In other projects, such as the
NUREG-1150 reactor risk study, the experts are to evolve their own statement
of the problem from a beginning version. In the first case, the pilot test
provides information on the expert's interpretation of the problem. If the
project personnel did most of the question development, their interpretation is
likely to differ noticeably from that of the experts. In the second case, the pilot
test checks that the expert understands that he is to take the basic problem area
and refine it.

2. The expert's use of the response mode. The pilot test allows you to
check that the expert understands how to use the mode. The expert's response
can be checked against both the instructions and logical or mathematical
standards. For example, probabilities for all mutually exclusive events should
sum to one.

3. The expert's understanding of the elicitation procedures that he
will be expected to follow. For example, if verbal protocol was to be
used, it would be important to check that the expert knew that he was to think
aloud and that he could do it.

4. The expert's use of any documentation format, such as on a mail
survey, if he, rather than someone on the project, is to fill it out.
The pilot test provides feedback on the expert's understanding of the directions
on how to fill out the format. We have found that experts typically do not
provide as thorough a documentation of their judgment as they are requested to
do.
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How to Pilot Test

Sample selection and sizes

In pilot testing, it is desirable to have experts who represent the range of experts
who will later be elicited. For instance, if the experts have been drawn from positions in
the government, private industry, and academia, the pilot sample should contain members
of each of these positions. Consider the factors that were used in selecting the expert
populations and use these in choosing the sample for pilot testing. In selecting an expert
pilot sample, consider that this selection decreases the pool of experts whose judgments can
be elicited later. Generally, it is not advisable to use the pilot test sample or those who have
otherwise assisted in the method's development in the final elicitation. Similarly, we
would caution you to avoid using the advisory experts, those who have helped develop the
questions, in the pilot sample. The advisory experts will not be able to approach the test
materials from a fresh perspective if they helped develop them.

The size of the test sample will depend on the size of the expert population for the
elicitations. Test samples for expert elicitations rarely, if ever, have the large sample sizes
(10% of the total) associated with traditional mail surveys. Typically, expert samples for
pilot tests are five persons or less because the largest expert population does not usually
exceed 50. Because of these small sample sizes, the strategy for pilot testing in expert
judgment studies has been to test intensively. In other words, try to obtain as much benefit
or feedback as possible from these few experts.

There are two types of pilot tests mentioned below. We recommend conducting the
intensive pilot test first, if you intend to do this test. The intensive pilot test was
developed (Meyer, 1986:92) to trace the expert's understanding. It consists of structured,
in-depth interviews and observations. The other type of pilot test is called limited to
distinguish it from the traditional (high sample size) and the intensive pilot tests mentioned
above. Limited pilot tests are best done after intensive pilot tests have been performed and
the elicitation revised. The limited pilot test allows the in-house personnel to practice the
elicitation procedures, time their duration, and check how these procedures fit together.

Sequence for pilot testing

The sequence for performing these pilot tests follows:

1. Apply part one and part two of the intensive pilot test (as
described on the next page) to the elicitation.

2. Use the pilot test results to revise the tested parts.

3. Practice the entire elicitation process from beginning to end with
limited pilot tests done on those parts where the experts will be
involved. For example, the in-house personnel would rehearse their
introduction to the elicitation in front of the experts for the limited pilot tests.
The in-house persons would practice the elicitation procedures on these experts.
The expert data from the practice elicitations would be used to check the other
steps of the elicitation. Specifically, the data would be documented,
aggregated, and used as input just as it would be when the elicitation is done for
real. Each of the elicitation procedures is timed during the practice.
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How to conduct intensive pilot tests

This type of pilot test is the only one to our knowledge that allows people's
thinking to be tracked through information presented in written form. The intensive pilot
test provides two kinds of information: (1) how, in general, the expert progresses through
the information, his general impressions, and when and why he decides to respond to
particular questions; and (2) how the expert specifically interprets each direction, statement
of the question, or response mode option.

First, the materials to be pilot tested are selected using the list provided above under
What Needs to Be Pilot Tested? A typical selection would be the set of problems; any
written directions on assumptions or definitions that the expert was to use; directions on
what information the expert was to document on the form and in what manner, such as on a
continuous linear scale.

Intensive pilot testing is done with one expert at a time in a face-to-face situation.
The interviewer sits to the opposite side of the expert's handedness to allow easy viewing
of his writing; that is, the interviewer sits to the expert's left, if the expert is right handed.

INTENSIVE PILOT TEST--PART 1. For the first part of the intensive pilot
test, the expert is instructed to fill out the written materials as he would naturally if no
observer were present. The expert is also asked to think aloud (verbal protocol) as he reads
through the written materials. The interviewer has a copy of the same materials given to the
expert for recording the data.

While the expert pages through the written materials, the order in which he looks at
the materials, his pauses, gestures, facial expressions, and words are recorded by the
interviewer on the interviewer's copy. For example, the expert may skim through the
introduction, cover letter, or directions and then flip through the rest of the materials before
returning to read each of these more thoroughly. The expert may make such comments as:
"I have problems with this page and will probably let it sit on my desk for several days."

In addition, if the intensive pilot tests will not be followed by limited pilot tests, the
interviewer can record the expert's starting and ending time on the first part of the intensive
test. The limited pilot tests described in the next section provide better time estimates
because the expert is not having to think aloud throughout the interview. However, some
data on time is better than none, so this data should be gathered now, if they will not be
gathered by other means. Note, if you are trying to obtain time data, you will have to save
your questions of the expert until the second part of the intensive test. Otherwise, your
questions will inflate the time estimates of how long the expert takes to respond to the
written materials.

The intensive pilot test provides better time estimates than might be expected. It is
reasonable to expect that the time estimates obtained from the first part of the intensive pilot
test would be very high because the expert continuously verbalized his thoughts (and will
not do so for the actual elicitation). However, we have found that this measurement
provides an adequate estimate of the upper limit of time needed. This is because the experts
selected for the pilot test may not represent the range of experts, some of whom could take
a significantly longer time to finish. For instance, we have had pilot tests last two hours
and the actual elicitations range from 1 hour to 2 hours and 15 minutes.

Frequently, the expert is allowed a brief break between the first and second part of
the intensive pilot test.
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INTENSIVE PILOT TEST--PART 2. During the second part of the intensive
pilot test, the expert is asked to paraphrase in his own words, the meaning of each
direction, question, or response option. This information allows the interviewer to track
the expert's interpretation in detail. It has always amazed us that something could be
interpreted in so many different ways, ways that we had not thought of because we knew
what we meant The interviewer can also question the expert about any reactions, such as a
look of puzzlement, noted at one of the questions during the first part of the pilot test. This
questioning can jog the expert's memory so that he can give a more thorough description of
his impression.

All information is recorded on the interviewer's copy of the written materials, and
the expert's hard copy is collected. The expert is thanked and asked not to discuss the
details of the pilot test with anyone else because it could influence their responses The data
from the intensive pilot test is examined and used in revising the elicitation procedures or
the logistics of who performs the different tasks. If limited pilot tests are planned, they are
the next step.

How to conduct limited pilot tests

In limited pilot tests, the elicitation procedures are conducted as closely as possible
to the way that they will be done for the actual elicitation. There would be little point in
examining the expert's responses to a form or a procedure that did not resemble the one to
be administered. For this reason the intensive tests are done first to allow the methods to
be revised. Thus, in the limited pilot test, the experts are given the briefings or the
introductions that have been planned for the larger population of experts. Similarly, the
sample experts receive whatever forms and instructions on providing their responses that
will be used during the actual elicitation sessions.

The interviewer elicits the data in the planned manner and obtains the experts
responses. In addition, data is gathered on how long each elicitation lasts so that this can
be added to other time estimates to produce a total. If the elicitations are being done in
person, the interviewer may also record the amount of time it takes an expert to respond to
a particular problem.

The following is an illustration of how the timing data is used. The practice
briefing of the group of sample experts lasted 2 hours and one elicitation lasted 2 1/2 hours
(counting the expert's review of the documentation of his responses). Assuming that there
is only one elicitation team to perform 10 individual interviews, about 27 hours would be
needed just to perform the elicitation.

As with the other pilot test, when the expert finishes, he is thanked for his
cooperation. The data from the pilot test is used in practicing the other stages of elicitation,
mathematical aggregation and modeling, as was mentioned in the Sequence for pilot testing
above.

In addition, the limited pilot test may be used in training in-house personnel, as will
be discussed below.
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Training In-House Personnel

Project personnel are frequently lay persons in the area of expert judgment and
require training in elicitation methods. Even those experienced in expert judgment may
need training if they are unfamiliar with the specific methods selected. Training provides
the personnel with instructions (directions) and the opportunity to practice until they
become proficient.

Training is done in the same areas that are practiced.

1. Introduction of the experts to the elicitation process.

2. The elicitation procedures.

3. The documentation procedures

4. The mathematical aggregation of the expert's answers if this will be used.

5. The entry of the data into the model if modeling it in some way is the end use.

The training can be done to differing levels of proficiency depending on what the
project demands and the personnel desire. For instance, if the experts were likely to be
reluctant to give their judgments, we would recommend that the data gatherers be trained
to a higher level of proficiency to obtain the judgments. In addition, there are particular
situations that make training necessary.

When Training Is Needed

Training the in-house participants is especially necessary under the following

conditions.

1. When different people have planned the elicitation than will be
conducting it. In many projects, the elicitation methods have been designed
by experienced persons or selected by a committee. However, the task of
implementing the methods is often given to those who are less experienced and,
perhaps, those who did not participate in the selection of methods.

2. When the persons who will be performing the elicitation and
documentation are uncomfortable with this assignment. This
reaction may stem from the situation mentioned in item 1. Others, such as their
managers, selected the methods, and now they are being asked to implement the
methods even though they have not had any input into the selection process.
Then too, the persons who are to perform the elicitations may be initially
reluctant to do so because of their inexperience. Training can make them feel
more confident of their ability to perform these tasks.

3. When more than one person or team will be gathering and
documenting the expert data. With more persons, there is the chance that
each will perform the tasks differently and that data will be inconsistent.
Training the data gatherers promotes consistency in these tasks. In addition, the
process of providing instruction often allows the instructors to identify any
looseness in the procedures and to provide stronger guidelines.

4. When more than one in-house person will be involved in an
expert's elicitation. More than one person may be required to perform the
elicitation if one cannot do all the tasks simultaneously. Then too, the elicitation
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can require very different skills, such as in interviewing and in the technical
subject area. Frequently, several people are used because there is not time to
train one person in both skills (e.g., train the technical person to interview).
Thus, one person may elicit one type of information from the expert and a
second person another. For example, in the NUREG-1150 reactor risk study, a
decision analysis method of elicitation was selected, and three decision analysts
were brought in to do the elicitations (U.S. NRC 1989). However, the
information being elicited on reactor phenomenology was so technical that an
in-house person needed to participate in the elicitations to answer the expert's
technical questions about the problem, to record, and to check the expert's
technical data for gaps. In another project examining tank tactics (Meyer 1987),
one person obtained the expert's reasoning as he responded to a computer-
simulated battleground, and the other ran the computer. The computer person
who was familiar with the computer program, ensured that the computer ran
properly and answered any of the expert's questions on it. If a two-person
interviewing situation exists, the in-house persons must rehearse their roles
together. Otherwise, they can appear like a slapstick comedy routine--bumping
into one another, interrupting and confusing each other and the expert.

How to Train

There are different means of training in-house personnel to execute the five items
mentioned earlier in What Needs to be Practiced. The paraphrased items are listed below
and followed by training suggestions.

1. The briefing of the experts on the elicitation. The in-house personnel
can simply rehearse this talk in front of an audience, preferably one unfamiliar
with the planned elicitation.

2 and 3. The elicitation and any documentation done during it. It is
more difficult to train personnel in these two areas because the areas are more
complex than those mentioned in 1, 4, and 5. Elicitation and documentation
involve interactions with the expert and perhaps simultaneously with another
data gatherer. The instructions that can be given do not encompass all that
could happen in the elicitation. Therefore, these tasks must be rehearsed with
someone playing each role as it will be done in the actual procedure.

Three training options and their advantages and
disadvantages.

The first option is to instruct the trainees in the procedures and then
have them conduct the limited pilot tests as practice. The advantage of the
first training option is that it does not require a large pilot test sample nor
much time.

The second option is to have the experienced data gatherers perform
the first limited pilot tests while the trainees observe quietly and then have
the trainees conduct the last tests. The advantage of the second option is
that the trainees are able to learn by observing before doing. The
disadvantage of this option is that it requires a large enough sample for more
than a few tests.
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The third option is to have the trainees observe the limited pilot tests
or videos of them and to practice their skills by taking turns role playing the
interviewer and the expert. The advantages of the third option are (1) that
there is no special requirement for a particular number of pilot tests, and (2)
that there are benefits derived from role playing the expert. The trainees
who play the experts gain insight into the elicitation from the expert's
perspective and become better interviewers. When they play the experts,
they learn first hand how the interviewees wish to be treated. For example,
the trainees as interviewees may view some of the procedures as
condescending and dictatorial.

4 and 5. The mathematical aggregation and entry of the the data can
be done simply. The trainees can be given the data from the limited pilot
tests, instructed on what to do with it, allowed to perform and time these
operations, and asked to report any problems.

Common Difficulties--Their Signs and Solutions

Difficulty: Pilot tests show that the sample experts have significant

difficulty with the response mode. If there are problems in using the response
mode, the intensive pilot tests will have indicated this. The sample experts may have
paused on the section describing the response modes; they may have seemed confused;
or they may have remarked that they did not understand. In addition, the answers may
give further evidence of the expert's difficulties. For example, it may be that the
response mode is to follow particular logical or statistical standards. If the sample
expert's responses consistently violate these, there is a problem.

Solutions: One of the first approaches is to rethink the briefing on the response mode

that was given to the experts. Perhaps, this briefing or the written instructions on the
response mode were not clear. The revised briefing should be given to a new sample
of experts, and the use of the response mode should be intensively pilot tested again.

If this sample of experts has the same amount of difficulties, you may wish to
reconsider using this response mode. In selecting another response mode, consider
what would fit with the other phases of the elicitation, such as the aggregation and
modeling of the responses.

Difficulty: Pilot tests indicate that the elicitation is likely to need more

time than is available. 1t is a common occurrence to find that your elicitation
requires more time than you have allotted. This discovery is evidence that all of us are
prone to wishful thinking--to overestimating how much we can do in a given amount of
time and to underestimating uncertainty--forgetting those things that can take more time.
Signs from the limited pilot test indicate that the interviews by themselves or perhaps in
combination with the other stages, such as aggregation, sum to more time than was
scheduled.

Solutions: A first option is to review the information from the limited pilot tests on how

long the different stages take and decide which of these stages could be done differently
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to cut time; redo the stage; pilot test the elicitation again; and record its new duration.
A second option is to change the schedule. In our experience, people have often
chosen the second option because it does not require the careful consideration that the
first option does.

Difficulty: In-house personnel resist the training. Personnel can resist
elicitation training for several reasons: they do not view elicitation as part of their job;
they do not feel qualified to perform elicitation; they fear being blamed if the elicitation
fails; and they resent having to do something that they did not help plan. If those
receiving the training appear uncooperative or object to the training, you need to find
out why.

Solutions: Any solution rests on learning the person's reasons for resistance and
addressing those reasons. If only a few persons seem to be inspiring this reaction in
the rest, addressing the concerns of the minority may resolve the problem.

Difficulty: The rehearsal shows that the documentation scheme does not
meet the other needs of the project. The documentation can fail to mesh with
the rest of the elicitation process if it is at a different level of detail (granularity) or form
than needed for the later reporting, aggregating, inputing, or analyzing of the data. If
the documentation scheme was not pilot tested, this difficulty is often not discovered
until after the elicitations have been conducted.

Signs of the above situation will show up during the pilot testing as processes that
do not fit or flow. For example, you may have tried to aggregate the expert's solutions
mathematically while taking into account their differing assumptions so as not to mix
apples and oranges. Imagine, however, that this data is missing or that it is in a fuzzy
form and cannot be used for comparing the experts' solutions. Another example could
be that the documented data cannot be input into the model. It is in the wrong form.
The expert's solutions were given on a linear scale of 1 to 5 and the computer model
requires probability distributions with confidence ranges. Similarly, you may have
tried to analyze the effect of some variable on the expert's problem solving only to find
that you did not have the necessary data. Perhaps, you used a summary documentation
scheme and could not find any record of this variable.

Solutions: If this problem is caught before or as a result of pilot testing, the solution is
simple. Select and develop another documentation scheme (chapters 7 and 8) that will
address these needs. Perform limited pilot tests again and use the data gathered in them
in testing the aggregation and the entry of the data into the analysis model.

If this problem is not detected until after the elicitations have been completed, the
options are limited. Basically, the aggregation, report, or analysis cannot be done as
planned. If the documentation was in the wrong form, perhaps, it can be translated into
the desired one. However, in translating the data from one form to another, there is
always the risk of misrepresenting it, of making an assumption that is not valid, such as
concerning its distribution.

Difficulty: The documentation of the expert's problem solving has been

done differently or to different levels. We have frequently encountered this
difficulty and have observed many other situations in which it has occurred. Generally,
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inconsistency in the documentation occurs when (1) multiple project people or experts
have done the documentation, or (2) when the documentation includes questions of
differing complexity.

For example, in the NUREG-1150 reactor risk study, some of the final
documentation was done by the decision analysts who were performing the elicitation
and some by the project staff who were familiar with the technical area of the expert's
problem solving (U.S. NRC 1989). Given the differences in these documenter's
backgrounds and the information that each was to record, they could not, in all
likelihood, have produced the same documentation. In another instance, our
documentation was inconsistent even though it was done by the same person using
approximately the same documentation format. The expert's means of solving
problems were gathered in detail--first on classical statistical questions and then on
judging the adequacy of a computer code in modeling reactor phenomena (Meyer and
Booker 1987b). While the statistical questions could not be called simple, they were
simpler than the evaluations of the code. The experts seemed to think and verbalize
very differently about solving the simpler versus the more complex questions. Thus, it
was difficult to document the same level of detail on these two questions.

Solutions: If this problem has been detected during the practice elicitations, the
rehearsals have served one of their purposes: There are several actions that can be
employed to promote consistency in the documentation. First, the guidelines on the
documentation can be tightened. Often, one of the reasons that people have done their
documentations differently is that their instructions on the format have been open to
differing interpretations. Second, additional training on documentation could be
offered. If project personnel will be doing the documentation, they can rehearse it by
doing limited pilot tests and taking turns at playing the experts. They could tumn in their
practice documentation for review and feedback on which aspects of their elicitation still
needed to be changed. If the experts will be doing the documentation, the instructions
and format given to them should be carefully pilot tested for clarity.

As a final check on documentation, a qualified person can be appointed to review
each record as it becomes available after the real elicitations. The project person who
will be aggregating, modeling, or programing the expert data or writing the report
would be a natural choice for this task. The designated individual could be asked to
check each record, preferably before the experts left, if the experts had been convened
for the elicitation sessions. The appointed person could quickly check that all the
needed information was there and that it was legible and comprehensible. This type of
check is particularly necessary if the experts will be documenting their own solutions or
problem solving.

If the documentation problem was not discovered until after the elicitations, which
is when it is typically found, the options for resolving it are more limited.

The first option is to try to reconstruct the elicitations to fill in the gaps. This entails
using all the records, both written and mechanically recorded, to find the missing
information. If the information cannot be found, recontacting the experts may be
necessary, perhaps even to have them rework some parts of the problem. This option
is so tedious and embarrassing that it is rarely done.

The second option, is to adjust what and how the data is reported so there will be
no gaps. Usually this means reporting or modeling the data at a more general level, a

149



Chapter 9

coarser granularity. For example, if some of the notes on the expert's problem solving
are more detailed than others, the less detailed will have to be used as the common
denominator.
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10

Conducting the
Elicitation

This chapter provides details on how to schedule, set up, and conduct the
elicitation. The different elicitation situations and the three techniques for eliciting problem-
solving data are covered. In addition, guidance is given on how to monitor and adjust for
bias during the elicitations.

In Part III, information is given on how to analyze the data collected from the
elicitations.

Scheduling the Elicitations

There are several fine points in scheduling and confirming meetings that will make
this phase go more smoothly. In general, these are simple courtesies that set the stage for
good relations with the experts. The next two sections--Scheduling the Meetings and
Confirming the Scheduled Meetings--may be skipped if there will not be meetings with the
experts, such as if the mail survey, Delphi, or telephone interview are to be used.

Scheduling the Meetings

To schedule the meetings, such as for individual interviews or interactive group

situations, call the expert and follow the steps given below:

¢ Introduce yourself and your affiliation for this project. For
example, Hello, Dr Jones, this is Mary Smith calling for the Division of Risk
Analysis, Nuclear Regulatory Commission (the name of the organization that is
funding the study).

e Ask if it convenient for the expert to talk for a short, specific
amount of time now. An example of how to ask this is, Is it convenient for
you to speak to me for about five minutes at this time? We have all had the
frustrating experience of answering the telephone when we are busy, having the
caller speak nonstop, and not being able to interrupt to explain that we cannot
talk at this time. Similarly, it can be irritating to the expert to be called when he
is leaving for a meeting or holding one in his office, and his irritation may
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emerge later (e.g., in his reluctance to be scheduled for an interview). For this
reason, we recommend checking that the call is at a convenient time. The
following illustrates such a check, Have I called at a convenient time, or am I
interrupting something? If the expert answers in the negative, quickly ask when
it would be a good time to call back.

State your intention--to schedule a meeting for interviewing the
expert. Briefly explain to the expert that the purpose of this call is to schedule
an interview with him. In general, we have found that it is best to say
interviewing rather than obtaining answers. The latter seems to lead many
experts to think that they will be asked point blank for their answers. This
imagined scenario seems to make them uncomfortable or leads them to doubt
the validity of the caller's intentions (e.g., anyone who thinks that these
answers can be given so easily must not be very knowledgeable).

Tell the expert about how long the session will last. This time
estimate will allow the expert to decide when he can block out an appointment
of the necessary length. If pilot tests were performed (as described in chapter
9), estimates of the length of an elicitation will be available. We frequently say
something like the session is likely to last from one to two hours, depending on
you. (Later, if the expert complains about the amount of time that his session
took, emphasize again that the duration depends on the expert, and then thank
the expert for his thoroughness.)

Emphasize selecting a date and time that is at the expert's
convenience. We have found it effective to emphasize our wish to schedule
the meeting at the expert's convenience. This courtesy initially promotes the
expert's good will. If the meeting will include other experts, mention the times
that the other experts have suggested and ask this expert which ones are the
most convenient. (Continue this process until one preferred time and one
alternate time are found that are acceptable to all the experts.) If the meetings
will involve only one expert, ask the expert to pick a convenient time. For
example, Could you pick a convenient time for a two-hour meeting within the
next two weeks? Request that the appointment be in the next few days, few
weeks, or months, depending on the deadline for completing the interviews.
After the expert has selected a time and date, verify this
information by repeating it. Repeating this information gives both the
caller and the expert time to record the appointment and to catch any
misunderstandings. Also repeat the location of the meeting, especially if it will
be held somewhere other than the expert's office. If this is the case, either give
or request directions to the meeting place.

State that the appointment will be confirmed. For instance: I will try
to call on Thursday, the day before, to check that the meeting time is still
convenient.

Thank the expert.
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Confirming the Scheduled Meetings

Introduce the caller and state the intention of confirming the
meeting. For example: Hello, this is Mary Smith calling about our meeting
Jfrom 9:00 to 11:00 a.m., tomorrow, the 31st, in your office. Is this meeting
time still convenient? Confirm the meeting the day before or on a Friday, if the
meeting is on a Monday. (If the experts will be traveling to the meeting,
confirm the meeting a few days before their trip.) This simple reminder has
saved us many frustrations and wasted trips.

If the meeting was to be with only one expert who then needs to
cancel, reschedule the meeting. If the meeting involved other
experts, offer to call the expert back after talking to the other
participants. The following things need to be considered in rescheduling a
meeting: whether other experts or only this one will be unable to attend,
whether the meeting could be video taped, whether there will be costs
associated with cancelling (e.g., travel, lodging, or meeting room), and whether
it is possible at this late date to contact the other experts to cancel the meeting.
Offer to call the first expert back after talking to the other participants. If only
one expert cannot attend, he could be shown a video tape of the session and his
interview could be conducted later. If several experts cannot attend, consider
using the alternate (backup) date.

Setting Up and Conducting the Elicitations

Tips on Setting Up for the Elicitations

Setting up for the elicitation means bringing the necessary papers and or supplies
and physically arranging the meeting room. Many of these preparations are not critical to
the success of the elicitations but make them easier or more pleasant. The preparations are
listed below and can be used as a checklist or memory aid, if so desired.

How to set up for an individual interview
For an individual interview, we recommend that you assemble the following:

1.

The expert's name because forgetting it in the midst of the elicitation can be
embarrassing. It is also a good idea to take the address and telephone number
of the meeting place if there is a chance of becoming lost or arriving late. Maps
of the area are useful.

A short letter on the project that includes who is sponsoring it, who is
conducting it , and what its product will be. (A longer version of this letter is
described in Motivating the Experts Through Communication of Intrinsic
Aspects of the Study, chapter 6). This information on the proper letterhead
helps establish the interviewer's and the study's credentials and refresh the
expert's memory on the project. In addition, we recommend stating this
information to the expert, rather than just handing it to him for reading.
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Conveying this information verbally will get the interview started and ensure
that the expert has heard the necessary information at the beginning of the
interview.

. The documentation format, list of question topics, or any form that

will be guiding the questioning. These can be labeled with the interview's date
and the expert's name or identification number prior to the interview.

. Copies of the questions and/or background materials (references,

charts, tables, etc.) that the expert will be using. The expert will need one copy
and the interviewer will need another in order to follow what the expert is
viewing or commenting on. Again, the expert's identity can be recorded in
advance on these papers.

. Extra pencils or papers for note taking.
. The mechanical recording device, cassettes, extra batteries, and/or

an extension cord. The tape cassettes can be labeled in advance with the
expert's name and the time and date of the elicitation. This labeling is
particularly important if an expert will be interviewed more than once on the
same question because his thinking is likely to change with time.

How to set up for a Delphi situation

Setting up for a Delphi is different than the other two situations because its
communications will be by mail and/or by telephone. As mentioned in chapter 7, one of
the greatest problems with the mail survey is that it has a low response rate. It is therefore
advisable to put as much effort as possible into communications with the expert to increase
the chances that he will respond.

If the experts will be receiving and returning the questions by mail, the following
need to be prepared.

1. The cover letter for the set of questions. The cover letter contains an
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abbreviated version of the letter first sent to motivate the experts to participate.
(See chapter 6, Motivating the Experts Through Communication of the Intrinsic
Aspects of the Study) The cover letter should be carefully composed because it
is one of the most important tools for encouraging the experts to answer.

. Copies of the set of questions. These are assumed to include instructions

on how to fill out the questions, explanations of the response mode, and
directions on how the expert judgments should be returned. If the expert's data
is to be returned by postal mail, we recommend self-addressed envelopes with
stamps, if possible. Self-addressed envelopes have been found to increase
response rates on mailed surveys.

. The names, addresses (electronic or regular mail), and telephone

numbers of the experts. If the list of addresses is likely to be outdated,
current mailing addresses should be verified by calling the experts.

. Advance publicity to increase the response rate. If the experts work

in the same organization, a brief article can be inserted into the organizational
news bulletin or a memo can be sent from the expert's management. If the
experts are not all in the same place, call them before sending the set of
questions. In general, we recommend calling the experts in addition to
publicizing the study through the use of articles and memos. Frequently, so
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much time will have elapsed between the time when the experts were selected
and when they receive the set of questions that they will have forgotten about
the study.
If the expert will be giving his answers to the interviewer over the telephone, the
same things as above will need to be done, with only slight modifications. Usually with a
telephone interview of this sort, the expert is mailed the information and then called to
obtain his judgments. The interviewer goes through each question over the telephone with
the expert. Please note that the telephone communication between the expert and
interviewer should not last more than about fifteen minutes per call. As with scheduling
interviews, the interviewer should ask the expert if it is a convenient time to talk before
proceeding. The interviewer can use the written cover letter as a guide in introducing the
expert to the elicitation. We do not propose that the interviewer actually read the cover
letter over the telephone because this practice causes most people to sound repetitive and
flat.

How to set up for an interactive group situation

Many of the support materials listed below are things that a visitor or meeting
coordinator could assist with, if one were available. In any case, we recommend having
the following papers and supplies ready for the experts:

1. Materials that the group moderator/interviewer will need, such as
lists of participants, the introduction to the elicitation, copies of the expert's
background materials and statements of the problem, the
moderator/interviewer's question topics, and documentation formats.

2. The mechanical recording devices, cassettes, and extra batteries or
extension cords needed. If the sessions are to be video recorded, the equipment
(and the experts' seating) should be set up in advance and tested. Itis a good
idea to test everything in place to determine if the machine can receive sound or
picture from each location. The cassettes can be labeled by the meeting date
before the meeting.

3. Name tags for the experts, especially if they are not all known to the
meeting moderator or each other. With large groups, we recommend that the
names be printed across each side of 8 1/2- by 11-inch papers that have been
folded lengthwise and placed before the expert for easy viewing. If the experts
are supposed to sit in particular seats, their name tags can be set out in advance
to show them where to sit. Otherwise, it is very effective to present each expert
a packet of the materials listed below and labeled by his name tag.

4. The program schedule. A general schedule includes the goals and
deadlines. More detailed schedules include the names of speakers, topics of
discussion, and their times. On projects where there will be presentations, we
recommend listing the speaker, title, times of the talks, and the person in charge
of each session. This procedure has been effective in keeping elicitation
meetings on schedule. Please note that time overruns are sometimes necessary,
such as when the experts are clarifying a question. The person listed as being
in charge of the session can be asked to decide if the discussion should continue
or if it is being unproductive and should end.
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5. The expert's copy of background materials, statements of the
questions, and documentation formats, if the experts will be recording
their own data. Often the experts will wish to provide current references to be
distributed at the meetings. It is much easier to receive and copy these in
advance of the meeting than during it.

6 . Refreshments. If the experts will be meeting for more than a few hours or
for more than one day, the use of caffeinic beverages and snacks can prolong
their productivity. Sweet, fatty foods, such as doughnuts, should be avoided
because of their sedating effects.

7 . A list of restaurants and things to do (sights, tours, and activities), if the
meetings will last more than a day and are being held outside of the experts'
work places. We have found that the extra effort of treating the experts like
VIPs is more than rewarded by their good will and favorable impression of the
project. As a professional visitor coordinator told us, "People may not
remember the technical content of the meetings but they will remember how
they were treated."

8. Extra note paper and pens for the experts' use.

Tips on Conducting the Elicitations

For convenience we have divided the elicitation sessions into several parts:
introducing the experts to the elicitation process, gathering and recording the data, and
monitoring the session for bias. General suggestions are offered below on how to do each
of these. However, we recommend that you use what was learned from practicing or pilot
testing as your primary guide in conducting the elicitation.

Introducing the Experts to the Elicitation Process

This section represents step 2 in the program for handling bias, as discussed in
chapter 3 Steps in a program for handling bias. However, the procedures mentioned below
are so generally beneficial to the expert's performance that we recommend following them
even if the bias program will not be used. If the program for handling bias will not be
used, one procedure, that of briefing the expert on the biases to which he may be prone,
can be omitted without detriment.

Make the Experts Aware of the Potential for Introducing Bias and
Familiarize them with the Elicitation Procedures--Step 2

HOW TO SET UP FOR AN INDIVIDUAL INTERVIEW

1. Introduce yourself, if you have not already met the expert. Give the expert
the cover letter (mentioned in Setting up for the Individual Interview) to
establish the interviewer's credentials. If the expert will be questioned on
classified matters, show the expert further identification, and name a person
known to him who will vouch for you. After the expert has glanced at the
cover letter, quickly deliver this same information verbally. (Giving the
information verbally ensures that all the experts will receive the same
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information, something that cannot be said of their reading it.) For example,
we usually mention the sponsor of the study, how the expert was selected, what
the expert will be doing, how long it is likely to take, how his data will be
protected, and the anticipated product of the project and the expert's access to it.
At the end of this description, ask the expert if he has any questions. Start the
mechanical recording devices, if these are to be used.

. Start with questions on the expert's professional background, if
these will be asked. These simple questions will allow the expert to get into the
flow of being interviewed and will reassure him that he is capable of answering
later questions. Examples of these questions: How many years have you
worked in your present position? What educational degrees do you hold? In
what fields are your degrees?.

. Give the expert some sample questions to familiarize him with the use
of the response mode, if that mode is likely to be a difficult one for him.

. Brief the expert on any biases that were identified as being likely to occur
(chapter 8). Give the expert ideas on how he can strive to counter the tendency
towards these biases. (The section Definitions of Selected Biases in chapter 3
provides examples of this type of information.)

. Give the expert the set of questions and verbally go over any
instructions. Ask the expert if he has any questions.

. Tell the expert that he can begin. Record the expert's beginning time if a
record of duration of interviews is being kept.

HOW TO SET UP FOR AN INTERACTIVE GROUP SITUATION

. Distribute the materials described above in How to Set Up for an
Interactive Group Situation. Turn on the recording devices if these are to be
used.

. Introduce the meeting moderator/interviewer, the project staff,
and the experts.

. Review the purpose of the project, its schedule, and, in general
the elicitation procedures for the benefit of the experts. Some
descriptions of the elicitation procedures are as follows. You will meet together
for this week to develop detailed statements or representations of the problems.
On the last day, Friday, you will vote on what you think the answers should
be. A more detailed overview of elicitation procedures is as follows. You will
meet here three times: First, to become familiar with the project and the
elicitation procedures; second, to present up-to-date technical information and
refine the rough-drafted questions; and third, to give your expert judgment in
private meetings with an interviewer.

. Give the experts sample questions to work so that they can practice
using the response mode. If there are any techniques to properly using the
response mode, they can be introduced and practiced here. For example, if the
response mode is probability distributions, Hogarth (1980:149) offers eight
keys to assigning these.

. Brief the experts on those biases that were identified in chapter 8
as being likely to occur. This briefing should include an explanation of
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why the selected biases occur and of how the expert can reduce his tendency to
introduce them. (The section Definitions of Selected Biases in chapter 3
provides examples of this type of information.) In addition, the briefing on bias
should include exercises that are designed to evoke the selected biases. After
the experts have completed the exercises, the moderator/interviewer can read the
answers and allow the experts to correct their own. These exercises can
convince the expert that he, like everyone else, is prone to these biases. If the
briefing is given without exercises, we have noticed that the experts are not as
effective in countering their tendencies toward bias, perhaps because they were
never convinced that they, too, would be vulnerable.

6. Ask if there are any questions. Afterwards, state that the introduction is
concluded and the sessions will now begin.

HOW TO SET UP FOR A DELPHI SITUATION
If the entire Delphi will be conducted by mail, the expert will not be introduced to
the elicitation by the moderator/interviewer in person. Instead the expert will receive the
cover letter and set of questions described above.
If part of the Delphi will be conducted by telephone, call the the expert to assist him
in understanding the set of questions or just to obtain his answers. Use the items listed for
individual interviews above as a basis for introducing the expert to the elicitation process.

Gathering and Recording the Expert Data

Using the individual interview, group interactive, and delphi
situations. As a general rule, let this phase be guided by the results from the practice
runs or pilot tests (as described in chapter 9). If the elicitations were not pilot tested, we
recommend reading Common Difficulties--Their Signs and Solutions at end of this chapter
before proceeding. Reading the section on common difficulties may prevent you from
encountering some of them.

Using the three techniques for eliciting problem-solving data. The
three techniques for eliciting problem-solving data--verbal protocol, verbal probe, and the
ethnographic technique--are frequently used in combination with individual interviews.
Occasionally two of them, the verbal probe and ethnographic technique, are used with the
interactive group situation to gather a few sentences on how the experts solved the
problem. Details are provided below on how to administer these techniques.

Verbal protocol. To review, verbal protocol involves instructing the expert
to think aloud as he progresses through the problem (Ericsson and Simon 1980). For
example, the expert is given a written copy of the problem:

What feed program would you start this colt on? The colt is 6 months, 550 Ibs., has an
average metabolism, and will receive light exercise through ponying. Please solve this
problem as you do others that you receive in this field. Please try to think aloud as you
work your way through the problem. Your thinking aloud is as important to me as the
answer that you reach.

The expert's verbal protocol resembles someone talking to himself. This technique is from
psychology. The following are suggestions for setting up to conduct the verbal protocol.
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Place the interviewer's chair slightly behind the expert and to the
opposite side of his handedness (i.e., for a right-handed expert, the
interviewer is on the expert's left). There are several advantages to this
positioning. First, the expert will not be as able to see what or when the
interviewer is taking notes. If the expert becomes aware of what the interviewer
is interested in, this awareness may influence, or bias, the response. Second,
this position allows the interviewer to see, unobtrusively, what the expert is
looking at, marking, or writing.

Design the questions, at least initially, so that they are like those
in which the expert has expertise. Otherwise, there is little point in using
the expert. The elicitation sessions should be set up so they resemble, as much
as possible, the environment in which the expert usually solves such problems.
Otherwise, factors may be introduced into a particular elicitation session that
change the expert's usual way of thinking and make him inconsistent. The
sessions can be conducted in the expert's customary work place, if interruptions
can be controlled. For instance, telephone calls can be handled by call
forwarding.

Obtain copies of whatever visual aids (e.g., tables, graphs, and
equations) or references the expert will be using. This practice
allows the interviewer to follow what the expert is viewing even when it can not
be seen over his shoulder because of the distance and the print size. It also
provides a hard copy for recording what the expert is looking at and marking.
Hard copies should also be obtained if the expert is solving problems on a
computer. In the later case, the hard copies are copies of the computer screens.

Take notes rather than rely solely on the expert or recording
devices. Experts are unreliable in taking notes and should not try to provide
detailed written accounts because this activity is likely to be done at the expense
of their thinking. Thus, not only is little data obtained but it is likely to be
unreliable as well. Recording devices, by themselves, do not provide complete
records. For example, they do not show the marks that experts make on their
papers as they think. In addition, recording devices malfunction, so a backup
copy, your's, is likely to be needed.

Emphasize that the expert is to work through the question rather
than talk hypothetically about how it could be solved. Experts are
often unaware of, or mistaken about, how they actually solve a problem. They,
therefore, provide more reliable (less biased) information if they are verbalizing
while they are solving the problem. The message on actually working the
problem need only be delivered the first couple of times that you work with the
expert.

Stress the importance of thinking aloud when instructing the
expert to begin solving the question. The first time an expert solves a
question may remind him of a test situation in school. As a result, his tendency
may be to rush through the question to give the solution. The interviewer must
contrive to convince the expert to think aloud and must be careful not to
emphasize the importance of verbalizing at the expense of problem solving.
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The latter alters the way the expert would normally work the problem and is
therefore undesirable.

Example 10.1: Illustration of the Verbal Protocol

The interviewer in this example wishes to learn, in general, how the expert plans a
feed program, what information on the horse and on the types of feed are needed, and what
concepts (e.g., the horse's metabolism) are considered. The expert is presented with a
written copy of the problem:

What feed program would you start this colt on? The colt is 6 months old, 550 Ibs., has
an average metabolism, and will receive light exercise through ponying. Assume that the
colt has normal good health.

Interviewer--Solve this problem as you do others you receive in this field. Please try to
think aloud as you work your way through the problem. Your thinking aloud is as
important to me as the answer that you reach.

Expert--(The expert slowly reads the question aloud.) The first thing that I'll need to find
out is what this colt would weigh full grown. (The expert scans some xeroxes that
were previously copied from reference books.) Let's see, at six months and 550
1bs., he will be about 1100 to 1300 lbs. full grown.

Next, I need to find the balance between hay and grain that I'd feed a horse of
this age. (The expert looks at another table.). Four lbs. of hay and 8 Ibs. of grain.
However, I like to feed more hay, so I will aim for 6 1lbs. of hay and 7 Ilbs. of
grain.

Other constraints that I have are the amount of protein in pounds needed for a
colt that will mature to a 1100- to 1300-1b. horse. (The expert refers to another
table.) T'll want to balance between 1.74 and 1.89 1bs. of protein per day.

(The expert examines another chart.) I also need to balance protein in the
overall diet to about... 14.5%, calcium to... 6%, and phosphorus to... 0.45%.

Foods that I like to feed in the diet are oats, corn, and soybean meal. I also like
a feed supplement for extra protein, Horsecharge, and alfalfa and timothy hay. I'm
getting their percentages of protein, calcium, and phosphorus from the charts. (The
expert ceases thinking aloud, records the percentages of these feeds, and begins
using a calculator.)

The expert writes a list of feeds and weights and leans back in the chair, signaling
that the exercise has finished.

¢ Frequently, the expert will stop thinking aloud and need
prompting to resume. Several types of prompts are given below.
One reason for using different prompts is to avoid repetitiveness that can be
irritating to both expert and interviewer. Another reason is to use the most
subtle prompt possible to remind, rather than to distract, the expert. Distraction
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can cause experts to lose their place and then solve the problem differently than
they would have otherwise. The prompts are given in order of most-to-least
subtle.

1. Look intently at the expert and lean forward slightly.

2. Look at the expert, lean forward, and clear your throat.

3. State please try to think aloud.
The first prompt would be used with an expert who only needs the occasional
reminder to think aloud. The expert perceives the interviewer's forward
movement almost subliminally and then responds. The second prompt is
slightly stronger because it triggers associations concerning the expert's throat
(e.g., my throat should also be making sounds). The third prompt would be
used on the expert who failed to notice or respond to the first two prompts.

® Generally if the expert is counting or otherwise performing

calculations, a reminder to think aloud would be inappropriate.
The expert could lose his place. If it is necessary to prompt the expert at this
time, the first prompt would be better than the third. The nonverbal aspect of
the first prompt allows the expert to note it without being distracted.

Verbal probe. To review, the verbal probe is questioning done at a
particular time and in a specific manner. The type of verbal probe discussed here is used
immediately after the expert has reached a solution, focuses on only one problem, and is
indirectly phrased so as to minimize influencing the expert's thinking. For example,
immediately after the expert has solved the problem and given the answer, the verbal probe
is used to learn why that answer was given.

Interviewer--Why did you give that answer--that feed program?
Expert--Well, it provides the right amount of protein, calcium, and phosphorus for a
horse to grow at this age.

e If the verbal probe is used in an individual, face-to-face
interview, set up as mentioned earlier for the verbal protocol. As a
general rule, individual interviews are used for pursuing more detailed
information than can be obtained in group settings.

¢ If there will be multiple experts in a group setting, the group
moderator mentions, in advance, that the experts will be asked to
provide their reasons for giving their answers. The experts should be
asked to provide this information verbally because people, in general, do not
provide good written records of their reasoning. Their notes are usually
sketchy and, for this reason, more likely to be misinterpreted by the interviewer
than their more complete verbal counterparts.

Example 10.2: Illustration of the Verbal Probe

Assume that the expert has used verbal protocol, as previously illustrated, and is at
the point in time where the problem has just been solved. In this example, the expert will
be asked for an answer and then administered the verbal probe to learn why that answer
was given.
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Interviewer--What was your answer?

Expert--The diet, per day, that I would recommend for this horse is 4 1bs. of oats, 1.5
1bs. of corn, 0.5 lbs. of soybean meal, 1 1b. of Horsecharge, 4 1bs. of alfalfa, and 2
Ibs. of timothy. This is, of course, only the starting point.

Interviewer--Why did you give that answer--that feed program?

Expert--Well, it provides the right amounts of protein, calcium, and phosphorus for a
horse to grow at this age.

L

® Word the verbal probe in the past tense (e.g., Why did you give
this answer?) to emphasize your wish to know how the expert
actually solved the problem. Some experts will begin, even after solving
a problem, to describe how they or a colleague could have solved it. The
interviewer's response to such a beginning should be something like: I am
interested in your thinking and how you solved this problem.

® Check for tautological responses. Tautologies are reasons that do not
truly provide the why information that is being sought. For example, I gave
that feed program because it seemed right is a tautological response. Although,
the tautology here is obvious, tautologies can be difficult to discern in an
unfamiliar domain, vocabulary, and/or when fatigue sets in. Frequently, the
desired information can be obtained by using the ethnographic technique to
probe on the tautology.

Ethnographic technique. The ethnographic technique involves restating
the expert's words into questions. For example, the ethnographic method could be used to
probe on one of the expert's responses to obtain an operational definition that could then be
entered into the expert program. The expert has just said that the colt's feed program may
need to be adjusted if the colt is not keeping his weight on.

Interviewer--Not keeping his weight on?

Expert--Yes, not gaining as he should at this time.

Interviewer--At this time?

Expert--At his age, 6 months, he should be gaining between 1.5 and 2 1bs. per month.

e How the ethnographic technique is set up is usually determined by
the setup for the other techniques used or by the situation in
which it is used alone. For example, if the ethnographic were used with
the verbal protocol, the verbal protocol's setup would be used. If the
ethnographic technique is to be used by itself, no special set up would be
needed. For example, if it is to be used on one expert at a time, it can be set up
as a conversation would be (e.g., with the interviewer sitting adjacent to or
across from the expert).
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Example 10.3: Illustration of the Ethnographic Technique

The expert has just answered the verbal probe explaining why that answer was
given. The ethnographic technique could be used either to investigate this information or
information given earlier. Earlier, the expert had given the feed program and added, Of
course, this is only the starting point. For the purpose of this illustration, the ethnographic
technique will be applied to the reply to the previous verbal probe and then to the subject as
it develops.

Interviewer--A starting point?

Expert--Yes, because the rations may need to be adjusted, if the colt is getting fat or if
he's not keeping his weight on.

Interviewer--Not keeping his weight on?

Expert--Yes, not gaining as he should at this time.

Interviewer--What do you mean by "at this time"?

Expert--At his age, 6 months, given his expected total weight, he should be gaining
between 1.5 to 2 Ibs. per day.

]

The ethnographic technique was used to follow a line of the expert's thoughts to a
detailed level where an operational definition of not keeping his weight on was obtained.
The interviewer stepped down three levels in questioning, as shown in the figure below.
The ethnographic technique is effective at taking the questioning to the desired level of
granularity, in this case to a definition that would be represented and programmed. In
another case, the ethnographic technique could be used to branch across several topics at a
more general level.

Example 10.4: Illustration of a Series of Ethnographic Questions

| 1) A starting point?

2) Not keeping his weight on?

3) At this time?

]

® Vary the length of the ethnographic questions so that they do not
become tedious. For example, if the expert said, The books give samples
and I start with these, a short ethnographic query would be, samples? For
variety, a longer query would be, What samples do the books give?

163



Chapter 10

e If the ethnographic technique is used in problem-solving
sessions, plan to use it only after the expert has reached the point
in problem solving that satisfies the interviewing goals. Otherwise,
the expert is likely to lose what he has in short-term memory while responding
to questioning. Then, if the interviewer resumes questioning where the
interruption occurred, the expert will have to guess at his previous thoughts.
Bias can result. For this reason, the ethnographic technique is best used after
other techniques or by itself. Occasionally, the ethnographic technique can be
inserted during the use of another technique but only if it is asked quickly and
not pursued to fine granularity.

Monitoring and Adjusting for Bias During the Elicitation

During the gathering and recording of data mentioned above, bias can intrude. This
section includes steps three and four of the program that we propose for handling bias.
The program includes the following steps:

1. Antcipate which biases are likely to occur in the planned elicitation (chapter 8)

2. Make the experts aware of the potential for introducing bias and familiarize them

with the elicitation procedures (chapter 10)

3. Monitor the elicitation for the occurrence of bias (chapter 10)

4. Adjust in real time to counter the occurrence of these biases (chapter 10)

S. Analyze the data for the occurrence of these biases (chapter 14)

How to perform steps 3 and 4 is described below.

Monitor the elicitation for the occurrence of particular biases--
Step 3.

For many of the selected biases, there are signs that indicate their occurrence. The
interviewer or a trained observer can watch for these signs during the elicitation. In
general, monitoring biases, as described in this book, requires that the experts verbalize
their thoughts and answers. Without this feedback, we have found the monitoring to be
much more difficult.

Signs of selected biases (group think, wishful thinking, inconsistency, availability,
and anchoring) are given in chapter 3 in Steps in a program for handling bias; Signs of
selected biases.

Adjust, in real time, to counter the occurrence of particular
biases--Step 4.

This step is perhaps the most delicate one in the program for handling bias because
if done carelessly it could confuse the results and any later analyses. The interviewer needs
to decide in advance on the timing of the adjustment because these adjustments change the
conditions under which the data is gathered. If a condition leading to bias is corrected
before the analyzable data has been gathered, there is no problem. If, however, the
analyzable data has been gathered under two conditions, when bias was occurring and then
when it was corrected, the data will be mixed. Unless the situations can be clearly
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separated, such as before and after correction of a particular bias, testing for the presence of
this bias is not possible.

Mentioned below are some of the techniques that we have used to adjust for bias.
In general, our approaches have been to (1) impede those factors contributing to a particular
bias, or (2) to employ the opposite bias. For example, the interviewer's tendency to lead or
influence the expert contributes to social-pressure bias. When using the first approach, we
have advocated the use of elicitation methods--verbal protocol, verbal probe, and
ethnographic technique--that curb this tendency (Meyer et al. 1989). Another example of
this approach is focusing on the fatigue and confusion that contribute to our natural
tendency to be inconsistent. The elicitation sessions can be scheduled to stop before the
point when most of the experts become fatigued. The basis of the second approach,
fighting bias with bias, comes from the grandfather of survey design, Stanley Payne
(1951). Payne believed that all interviewing was biased and that one should therefore aim
for equal but opposite biases. An example of this technique is to try to have experts anchor
to their own judgments in attempts to counter a group-think situation.

Suggestions on how to adjust for selected biases (group think, wishful thinking,
inconsistency, availability, and anchoring) are given in chapter 3 under Steps in a Program
Jor Handling Bias; Suggestions for Countering Selected Biases.

Common Difficulties--Their Signs and Solutions

Difficulty: The experts resist the elicitation process or resist giving
Jjudgments under uncertainty. We have seen this situation develop in a few
interactive group situations, especially among engineers who were unaccustomed to
thinking in terms of uncertainty. One of its first signs is the experts' reluctance to give
their judgments. They may mutter amongst themselves or they may openly criticize the
elicitation procedures and refuse to give their data.

An expert who is reluctant to give his judgment should not be forced for two reasons:
(1) he is probably not an expert in this area if he does not feel qualified to give his
judgments; and (2) his reaction to being forced is likely to be negative and to
detrimentally affect his view of the entire study. This reaction is illustrated by
reviewer's statements about a study: "The participants were forced to provide
unsubstantiated guesses as input” (Benjamin et al. 1987:F-5,6).

Solutions: In general, the solution to this problem must rest on addressing the experts'’
reasons for resistance. We recommend that the objecting experts be individually taken
aside and asked in a pleasant manner why they are reluctant to give their judgments.
Ask the experts separately because asking them as a group may not reveal the individual
reasons and it may reinforce their resistance. We have been given the following
reasons for experts' resistance: (1) that they had misgivings about an elicitation process
that they were involved in developing, (2) that the experts did not trust the use to which
their judgments would be put, (3) that they thought there would be new data related to
the question and that they would they would not be able to use it in making their
judgments, (4) that they feared that their judgments would be misinterpreted, taken out
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of context, and unfairly criticized, and (5) that they did not think they could give
reliable estimates given the high uncertainty of the subject area.

The means for resolving this difficulty lies in addressing its underlying causes. For
instance, if the experts implicitly feel that they did not have sufficient input into
developing the questions as described in (1), allow them to refine the questions now.
In addition, let them know of the design considerations and constraints that led to the
creation of the current methods. This information will help convince them that the
elicitation was not ill conceived and will save you from having to accept everything that
they suggest. That is, you will be able to point out which of their proposed
modifications would not meet the project's constraints.

The other reasons for resistance mentioned above can be similarly resolved:

If the experts do not trust the use to which their judgments will be put (2), show
them an outline of the project report or arrange for the eventual users of their judgments
to brief them.

If the experts were concerned about using the most current information in making
their judgment (3), help them circulate this information before the elicitation sessions.
Explain that their judgment is a snapshot of their knowledge at the time, that it is likely
to always be in a state of change, and that there must be some cutoff point for writing
up the results of the study.

If the experts were worried about misinterpretation of their judgments (4), explain
that they will be asked to review the documentation of their judgments after the
elicitation situations. If possible, show them an outline on how their judgments will be
presented in the report or model.

Address the experts' doubts about giving judgments in areas of high uncertainty (5)
by acknowledging the validity of this concern. Explain that the high uncertainty in the
field is one of the reasons why their judgment must be elicited--that other data is
lacking. Also summarize how the elicitation practices will help them give more reliable
estimates.

Questioning the experts on their reasons for resistance also helps identify those
experts who are the most vocal in their reluctance. Sometimes only one or a few
experts are causing the rest to question the elicitation. We have found it effective to
first address the concerns of these few natural leaders. Again, we suggest talking to
these experts separately and privately. If you cannot resolve the leaders' concerns, you
may be able to balance them with the positive things that can come out of the project.
For example, one expert was very concerned that the funder of the project would use
the expert data inappropriately, something which we could not absolutely prevent (i.e.,
people can always pull data out of context and misuse it). Aside from emphasizing the
good that would come from the study (the opportunity for the experts to meet together,
to pool their most current data, to identify gaps, to conduct further research, and to
cause the field to progress), we could not completely assuage this expert's worries.
However, we were able to convince this expert to proceed, and thus the others, by
privately appealing to him for his assistance. We explained that he was a natural leader
in this group, that the others were being influenced by his views, and that we needed
him to agree to be elicited.

If all else fails, consider doing as much of the elicitation process as possible with
one expert at a time. For example, perhaps the experts' data can be obtained from
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individual interviews rather than from group situations. In this way, you only deal
with one uncooperative expert at a time and can be more flexible in responding to their
individual needs.

Difficulty: The experts seem confused about what they are to do or how
they are to do it. The experts may progress very slowly through the elicitation
procedures and look puzzled. Sometimes it may be hard to discern if they are confused
about the elicitation or stalling because in both cases they will be slow to provide their
judgments. If the experts were introduced to the process by working sample questions
and using the response mode, these exercises will provide the first evidence of their
confusion. If they have not been given any explanation of what they are to do, then the
existence and source of their confusion can almost be assumed. Intensive pilot tests, if
performed, will have given some warning as to which parts of the elicitation were likely
to cause confusion.

Solution: The first step, as in the above-mentioned difficulty, is to identify the cause of
the expert's reaction. The cause may stem from the general procedures for the
elicitation, such as when the experts are to meet together and when separately for
individual interviews; it may stem from the response mode that they are to use; or it
may be confusion over some instructions. One of the special problems with confusion
is that people are often unable to express what they are confused about One way of
identifying the source is to quickly go through the information that was already
presented and ask the expert to signal the points that are unclear. Then, it should be
conveyed that the problem has resulted from a lack of clarity in the presentation rather
than from a lack of understanding on the part of the expert.

We urge working with the expert until his confusion is resolved because not doing
so can have severe ramifications. In the one situation where we saw experts pushed to
provide data when they were confused, the experts later criticized the elicitation
methods and raised doubts as to the data's validity.

Difficulty: The final statement/representation of the question or the
expert's last data were not documented. The main cause of this common
difficulty is the evolutionary quality of elicitations. The phrasing of the question often
evolves gradually during a group session, and there is usually no special sign that
signals its entry into its final form. Then too, in the individual elicitations, the expert
may try to solve the question in different ways, backtracking a few times, before
settling on a process and arriving at a final judgment. Thus, the failure to record the
final form of the question or its solution often goes undetected--unless it is caught by
those who worked on it. To detect this difficulty, the involved persons must review the
documentation while their memory of this information is still sharp. We recommend
that the interviewer request the group or the expert to review the final form while it can
still be easily corrected.

Solution: If this difficulty is detected immediately following an elicitation session, the
group or the expert and interviewer can update their copy using their memories. If not,
the interviewer will have to replay the mechanical recordings to update the
documentation. The latter is usually very time consuming and difficult because the
communications are not as clear in retrospect as they were when they occurred.
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Difficulty: Bias may have occurred but its presence was not monitored
during the elicitations. Bias has not usually been considered in designing or
conducting elicitations. For the majority of studies, the possibility of bias is not
considered until the end of the elicitation and only then because some one has raised
this question. When the question of bias is raised so late, there are fewer options for
detecting its presence than there would have been earlier (e.g., anticipating which were
likely to occur and then monitoring the session for their intrusion). However, if
sufficient data was gathered, it may be possible to test for the presence of a particular
bias.

Solution: A detailed description of how to analyze the expert data for bias is given in
chapter 14. If this analysis is being performed at the request of others, they may
identify the biases that they want to test for. In our experience, people have been most
worried about three biases: the one that occurs because the interviewee's thinking was
led by the interviewer; the one that occurs when the expert is led by other experts, such
as in a group-think situation; and the one that arises from a conflict of interest, from the
expert's wishes or interests influencing his judgment. These three can be considered
motivational biases because they arise from human needs and desires.

The data can also be analyzed for the presence of particular cognitive biases, and
often more easily (Meyer and Booker 1989:13). For example, on one project, we
tested for the underestimation of uncertainty (Meyer and Booker 1989). The experts
had estimated the likelihood of achieving national magnetic fusion milestones within
particular time periods. They gave probability estimates, such as 0.90, and ranges,
such as £ 0.10. The experts' ranges were analyzed and found to be within one standard
deviation of the set of probability estimates. This result indicated that the experts
thought they were adequately accounting for uncertainty when they -were only
accounting for about 60% of uncertainty (Meyer, Peaslee, and Booker 1982).

As a general rule, we recommend that the data be analyzed for the presence of
whatever biases are possible and that these results be included in the project report.

Difficulty: There is wide disagreement between the expert's data. Although
differences in the expert data may not be a problem, they are frequently perceived as
being such. Some view interexpert disagreement as an indication that the elicitation
process failed--that it did not produce the one right answer or means of solving the
question. However, as mentioned in chapter 1, experts can legitimately solve the
question in different ways, and the ways that they solve the question affect the answer
that they reach (Ascher 1978, Booker and Meyer 1988a, Meyer and Booker 1987b).
Handling varying expert data can pose problems if this data is to be brought together
such as in a program for a knowledge-based system or if it is to be mathematically
aggregated.

Solutions: Before a solution can be offered, it must be determined whether there is truly
a problem--whether the expert disagreement was caused by a weakness in the elicitation
or by the natural differences between the experts. To answer this question, data is
needed on the experts’ problem-solving processes, in particular their definitions and
assumptions. If the expert's questions were only loosely defined, the experts will often
make their own definitions and assumptions in clarifying the question. In so doing,
they can create different questions, use different problem-solving processes, and give
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correspondingly different answers. If this has happened, there is indeed a problem. If,
however, records show that the expert's used the same definitions and assumptions
(i.e., answered the same questions), any differences can be assumed to result from
their use of acceptable but different means of solving the question. In this case, if there
is a problem, it is one of perception.

If the expert's differences were found to be caused by their answering different
questions, there is little that can be done. One option is to separate the expert's answers
according to the questions that they answered. Sometimes, this operation is used to
declare the answers of one or more experts as being inapplicable to the question. That
is, their answers differed from the rest because they answered a different question, one
that is outside the study's selected questions. Another option is to recontact those
experts who used the discrepant definitions and assumptions and ask them to use the
agreed-upon definitions or assumptions and solve the question again. Recontacting the
experts to have them solve the problem again can be very time consuming and can,
unless carefully done, cause others to question the competence of the project staff.

If the experts legitimately differed, you may still find that you have problems--those
of other's perceptions. Frequently, those funding the project or the outside reviewers
interpret expert differences as a negative sign. We recommend that they be made aware
that expert disagreement is valid and that the differences arise from variation and
uncertainties in the experts' answers. Also, they should be provided with any evidence
that the differences were not induced by the elicitation (e.g., the experts used the same
definitions of the questions).

For detailed information on how to aggregate experts' answers, see chapter 16.
Suggestions on how to integrate differing expert's knowledge is given in chapter 9 of
Knowledge Acquisition (McGraw and Harbison-Briggs 1989).
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11

Introducing the

Techniques for Analysis
of Expert Judgment Data

The analysis of expert judgment data is viewed by some analysts as ad hoc at best
and impossible at worst. There are no standard forms of modeling and analysis that are
applicable to all types of problems in the world in general, and there are no standard forms
for analyzing all expert judgment data. Part III, therefore, contains a compendium of
techniques whose applications vary depending upon the design of the elicitation and upon
the goals of the study. In this chapter (11) a detailed explanation of these techniques for
those unfamiliar with them is provided. In the following chapters, 12 through 18, we
mention the various statistical and computational techniques and make suggestions for their
use.

Some statistical concepts are needed to understand the analyses and techniques
suggested. The glossary provides basic definitions of these concepts and some discussions
are presented below. Special attention is given below to the concepts of random
variables and probability distributions.

Techniques are discussed in the remaining sections of this chapter. These
techniques cover three basic areas of statistical methods: (1) simulation techniques, (2)
data analysis techniques, and (3) Bayesian techniques. The simulation section describes
the uses, advantages and disadvantages of Monte Carlo and bootstrap simulation
methods. The data analysis section describes multivariate techniques such as correlation,
cluster, factor, and discriminant analyses; analysis of variance; and a decision
analytical tool called Saaty's method. The methods developed from Bayes Theorem and
its applications are discussed in the third section. In all sections the descriptions are brief
and limited to the applications for expert judgment data analysis. References are furnished
for outside works where further details and applications can be found.

Random Variables and Probability Distributions

The basic premise for the concept of the random variable is that for all quantities of
interest which are being measured or observed, there is a set of possible values that
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quantity of interest can assume or take on. That quantity of interest is called a random
variable, or simply variable, and the values that it can assume come from this possible
set. When a measurement is done, an observation is made, or a datum is gathered, the
random variable is assigned one of those possible values. The assignment process is
represented by a real-valued function. The function that does the assigning is a
probability distribution function for that random variable.

Probability distribution functions (pdfs) or, more simply, probability distributions
are nonnegative functions that allocate unit mass to points on the real line. The two
properties of pdfs are that each value of the pdf is greater than or equal to zero and that the
area under the entire curve is equal to 1.0. In terms of probability, the interpretation of
f(X) is not the frequency or probability of x, it is the probability per unit interval of a small
increment of x, dx.

An easier probability interpretation is available by accumulating the areas under the
curve of the pdf for a range of values of the random variable. The function resulting from
such an accumulation or integration is the cumulative distribution function or cdf. The
notation for the cdf is F(x), and the interpretation for F(x) is the probability that X <x. In
other words, the cdf gives values for the probability that the random variable is less than or
equal to a value of the random variable.

The pdf and cdf have the following relationships. The cdf is the integral of the pdf.
The pdf is the derivative of the cdf. Therefore one can be calculated from the other using
calculus.

Examples of random variables are (1) the probability of an event, (2) the failure rate
of a component, (3) the amount of time to repair a component, (4) the time to failure of a
component, (5) the number of failures for a component, (6) the age of an expert, (7) the
colleagues working with the expert, (8) the rank of one alternative relative to another, (9)
the odds of winning a race, and (10) just about anything else that is determined in an
experiment, an observation, an elicitation, or other data-gathering process. The symbol for
a random variable is usually a capital letter such as X. The values that X can have are
generically listed as x.

Examples of probability distribution functions are (1) the normal, Gaussian or bell-
shaped curve with one mode (hump) at the center and with half of the curve cut at the
mode forming an exact mirror image of the other half; (2) the lognormal distribution with
the log(X) distributed as a normal and with a single mode shifted to the left (skewed right)
such that the right tail is long and drawn out; (3) the beta distribution with possible values
of X restricted to the range of 0 to 1.0 and with many shapes possible such as U-shaped,
horizontal line, decreasing curve, skewed right curve, and bell-shaped curve; (4) the
uniform with the equal probability assigned to each value of X such that the distribution is a
straight, horizontal line; and (5) the exponential with the values decreasing in a decay
function shape. The symbol f(x) is used to denote the distribution function and to
designate the value of that function at X =x.

To this point, the pdfs and random variables discussed are continuous pdfs and
continuous random variables. This means that x and f{x) can be any value along the real
number-line. For random variables that can only fake on a finite number or discrete
number of possible values, the corresponding pdf is a discrete distribution function. For
discrete distributions, the value of the function is the probability that X = X, Pr(X=x).
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Cumulative distribution functions for discrete distributions are found by summing all the
probability values rather than by integration.

Examples of discrete distribution functions are the binomial and the Poisson
distributions. The binomial characterizes the number of success as x in a given set of n
trials where each trial has the probability of success as p. The Poisson characterizes the
number of occurrences (failures), x, in a given, fixed ¢ units of time where the failures are

independent and at a constant rate, A.

Descriptions and Uses of Simulation Techniques

With the availability of fast and personal computers, the use of simulation
techniques has recently grown. New data sets can be formed from the original data set
(bootstrap simulation) or from specified distributions representing the data (standard
Monte Carlo simulation). Both are useful in gaining new insights about the data set and
for forming estimates that might not be available.

Monte Carlo Techniques

What is Monte Carlo simulation?

Traditional simulation, as described here, is often referred to as Monte Carlo
simulation. The basic idea is to form new samples or distributions of data either from
existing samples or from specified distributions. The formation process is done by
randomly selecting values from the existing samples or specified distributions, making
some calculation, performing this several hundred or thousand times, and collecting the
hundreds or thousands of calculated values into a table or distribution for inference
purposes.

The following steps illustrate how to perform a simple Monte Carlo simulation to
solve a problem that has no tractable mathematical solution. The steps may be summarized
as follows:

Step 1: Determining the desired quantity to be estimated.
For example, the product of two random variables is desired. Each variable has a
specified distribution; however the product of these distributions is not in a closed or
known form.

Step 2: Determining the distributions from which sampling is
done.
For example, each of two random variables is distributed as normal--one with mean
0, variance 1 and the other with mean 1, variance 0.5.

Step 3: Finding or code a computer program that randomly

selects a value from each of the specified distributions from step 2.
A random number generator is needed to randomly select values, and an algorithm
is needed for mapping that value onto the specified distributions. Many such codes are
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available. In appendix B, a code is given that selects values from beta distributions. In
appendix C, a code is provided that forms empirical, or data-based, distributions for
simulation. For a more complete guide on simulation techniques see Ripley (1987) or
Johnson (1987).

Step 4: Determining the number of samples, N, to be taken.
With most modern computers, 1000 samples is not too expensive or time
consuming and gives accuracies for nearly two decimal places.

Step 5: Constructing a program for taking the N samples.

For each sample, the random values are chosen and mapped onto the function or
distribution. The desired quantity (e.g., the product of the two normals from step 1) is
then calculated. Upon completion of the N samples, there will be N values of the desired
quantity.

Step 6: Collecting the values of the desired quantity for making
inferences.

The N values of the desired quantity form a distribution of possible values for that
quantity. Estimations are possible using this distribution. For example, estimates for the
mean and the variance of the products of the two normals are available. First, the 1000
(N=1000) values for the 1000 products of two normals are collected and ordered. The
mean of these 1000 values is the estimate of the desired mean quantity, and the variance of
these 1000 is the estimate for desired variance quantity. Percentiles are also available from
this distribution. Sometimes the interest is purely in the resulting distribution rather than in
an estimator (such as a mean, variance, or percentile). Quantities of interest in the
resulting distribution are the shape, center, tails, spread or range, and modes (humps).

Example 11.1 uses Monte Carlo simulation in a reliability analysis application.

EXAMPLE 11.1: Monte Carlo Simulation
The reliability of a component, r, is often characterized by the beta probability
distribution function:

= 1 x-1(1_r\t-x-1
) = gy A

where the parameters n - x and n are interpreted from the number of component failures, x,
in n trials, and B is the beta function (Martz and Waller 1982).

For a system composed of two components, r; and r2, in series, the system
reliability is the product of the reliability functions. If the reliability function for each
component is distributed as a beta distribution, then the system reliability is the product of
two beta distributions. Simulation is used to find the distribution of this product that
represents the system reliability.

It is known that the first component failed in four out of seven trials; therefore, x} =
3 and n; = 7. There is no data on the second component, but an expert estimates that its
average reliability is 0.90 and that a 95th percentile value for the reliability is 0.99 (i.e.,
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there is a 5% chance that the reliability is greater than 0.99). The parameters of the beta
with that mean and 95th percentile are xp = 11.7 and ny = 13.0. The notation for this beta
is beta (x,n-x) or, in this case, beta (11.7,1.3). These parameters are found using the code
in appendix B.

Comparing the two components, the reliability of the first is much worse than the
second. Their beta distributions below reflect this:

Beta 1

\

Beta 2

Using the steps for simulation, the system reliability was determined:

Step 1: The desired quantity is the product of the two reliabilities, rj * rp.

Step 2: The reliability for component 1 is distributed as a beta (3,4), and the
reliability of component 2 is distributed as a beta (11.7,1.3).

177



Chapter 11

Step 3: A computer code was written using a uniform random number generator
to select values of 1 and r, from the two betas.

Step 4: The chosen value of N, the number of samples, is 1000.

Step 5: A computer code was written to determine the random values of ry and r;
from their respective beta distributions. A uniform random number generator
chooses a random value for the probability of the reliabilities of r1 and . The
code determines the values of r; or r2 by mapping the chosen probabilities
through each beta distribution. This is an inverse process; i.€., the probability
values for the beta are chosen as random numbers; then they are mapped
through the beta function to determine the reliability value, ». This is done for
r1 and again for r in each of the N samples. In each sample, the chosen value
of ry is multiplied by the chosen value of r2. The code for the beta sampling
and simulation is given in appendix B.

Step 6: The 1000 product values are stored and sorted. They are plotted to
indicate the shape of the system reliability distribution. The results follow:

The mean of this simulated distributionis 0.36
The standard deviationis 0.16

The 5th percentileis  0.12

The 95th percentile is  0.65

—

Betal - Beta2

Therefore, the system reliability is not very good. It is dominated by the poor reliability of
the first component.

The product of two beta distributions does not usually produce a known type of
distribution function. However, research (Bruckner and Martz 1987) indicates that this

final distribution is not too far from being in the beta distribution family.
[
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Advantages and disadvantages

The major advantage of Monte Carlo simulation is that it allows the analyst to
determine estimates of desired quantities that would be either impossible or extremely
difficult to determine by theory or mathematical computation. (Some analysts rely on the
phrase, "when in trouble, simulate!”) This major advantage is very important in risk
analysis and reliability applications where many system components interact, but the
performance of the entire system is needed for study. It is also advantageous for
uncertainty calculations where uncertainties are often characterized by distribution functions
and these functions are combined to determine the uncertainty of a larger system.

Monte Carlo simulation, especially the sampling and collecting steps, is relatively
easy to program. Many such programs already exist, and most computers have random
number generators available.

Simulation is a tool for increased understanding of the data. Many times new
features in the data can be identified. Through simulation, sensitivity studies can be done
to determine which characteristics or components are most important to the system.

The disadvantages of simulation are related to the advantages listed above.
Programming can be difficult if complex distributions are required or if packaged
distribution programs are not available. Bad random number generation or improper use of
sampling techniques can wildly distort results. Care is needed in programming and in the
use of packaged routines.

Simulation can be expensive and consume computer time. However, that is less of
a problem today than it was even 5 or 10 years ago.

Uses for Monte Carlo simulation

Widespread use of this technique can be found in risk and reliability studies. As
mentioned above, in these studies there are a large number of components (random
variables) comprising a system, and system behavior is required for making inferences.
Each component can affect the system or other components. The result is a complicated
expression describing the system behavior in terms of the various components.

In addition, each component may have a behavior that is random or uncertain in
nature. In this case, each component can be characterized by a probability distribution
function. The system is then a complex combination of these component distribution
functions. This is the type of situation where simulation provides a way of obtaining
information about the system. This situation also describes how simulation can be used in
an environment characterized by uncertainties (chapter 17 gives more details on this).

Monte Carlo simulation is the backbone of other data-based analysis techniques,
such as the bootstrap. These techniques have there own advantages such as uses for
exploratory data analysis and the handling of small sample-size problems.

Bootstrap Sampling and Estimation

What is the bootstrap?

One of the more recent developments in the simulation community is the increased
use of empirical distributions. Empirical distributions are distributions resulting from the
original data set. Constructing distributions from the data without making assumptions
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about the form of the distributions (e.g., that the data is distributed as a normal) falls under
the general heading of nonparametric techniques. Because the original data is used over
and over again in a simulation method, construction of empirical distributions is often
referred to as resampling techniques. Both descriptions apply to the technique known as
the bootstrap (Efron 1979).

Advantages and disadvantages

The bootstrap has the advantage of relying solely on the original data itself without
assuming that the data follow a particular probability distribution. Bootstrap simulation
allows the formation of distributions of any desired quantity (such as the sample median).
The resulting simulated distribution of that quantity provides estimates of the variance and
percentiles of that quantity. Statistical biases resulting from the bootstrap estimation
process are possible but are also estimable. (Statistical bias means that the expected value
of the estimated quantity does not equal the parametric or theoretical value.) The extremely
small samples that are common in expert judgment data are troublesome with many
techniques, parametric or nonparametric. However, the bootstrap does reasonably well for
smaller samples (Efron and Gong 1983).

The major disadvantage of the bootstrap technique is that the formation of samples
in the simulation is limited to the range of the original data. This limitation tends to form
empirical distributions with truncated (chopped off) tails (at both ends). Another caution in
using the bootstrap deals with a statistical bias that may be induced in the estimation
process. That is, the bootstrapped value for a chosen estimator may not be unbiased.
However, the statisical bias can and should be monitored as part of using the technique.

Uses for the bootstrap

In general, the bootstrap technique is used for providing estimates of parameters
that would normally be obtained by assuming a distributional form of the data or of the
parameter. The bootstrap avoids the necessity of these assumptions and therefore can be
used in any application or problem setting. In expert judgment problems, its use is ideal
because information regarding distributions of expert judgment data is lacking. The
bootstrap is also useful for the small sample sizes that are usually found in expert judgment
applications.

In this book, the bootstrap will be used in three different ways. First, it will
provide ways of investigating the correlation structures and biases (motivational and
cognitive) in the data. Second, it will be used as a simulation method to characterize and
analyze uncertainties in the experts' estimates. Finally, it will provide a convenient way for
aggregating the multiple expert's estimates into a single estimator and corresponding
distribution.

How to implement the bootstrap

The implementation of the bootstrap is easily done on any programmable computer
or calculator. The original sample data, that is, the responses to a single question, is
denoted as {x1, x2, ..., x,} for the n experts. The parameter to be estimated is denoted by
6. Then the estimate of 8 from the bootstrap results will be 8. A simulation is done by
randomly forming many samples, N, (usually of the original size, n) from the original data.
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The samples are formed by replacing sampled data points back into the original data set so
that they can be sampled again. In other words in forming the first sample, if x3 is chosen
at random, it could be chosen at random again, appearing twice in the same sample. This
method is called sampling with replacement. The basic idea of the simulation is to calculate
the estimate of 6 for each sample formed. The various values of 8denoted as § ji=12,
..., N), are then ordered to form an empirical distribution for 6 in the same manner that the
resulting distribution of values is formed in Monte Carlo simulation. The following steps
summarize the bootstrap technique.

Step 1: Determining the desired quantity to be estimated,
estimator
For example, the estimator or quantity of interest is the sample median of a sample
of size n.

Step 2: Deciding on the number of bootstrap samples to be
taken, N
One thousand will usually give an acceptable standard error (to within two decimal
places.)

Step 3: Forming of N random samples of size n from the original
data by sampling with replacement (replacing each sampled value back into
the data set so that it is available to be chosen again)

Step 4: Doing N times: Calculate the desired estimator for each
sample (e.g., the median)
These individual estimators are 8 ;.

Step 5: Calculating the overall bootstrap estimator of 6, 8 using

N ~

2 6

Step 6: Calculating the standard error of the estimator, o, using

2, (6;-6)
N-1

Step 7: Ordering the N estimates of 6 jto find (1-2a)% putative
central coverage intervals for 6
These intervals represent the central (1-2a)% area of the bootstrap distribution. In

the case of the median, for a = 0.5, then this area corresponds to the middle 90% of the
median values generated in the N bootstrap samples.
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Step 8: Finding the two values of the 6 j that correspond to the
0% and (1-a)% in the ordered list
These two values, 8 (a) and 0 (1-a), are the a-th and (1-o)-th percentiles of the

bootstrap distribution for 8, and they form the (1-2a)% putative central confidence
interval.

Step 9: Calculating the stattsttcal bias induced by the bootstrap

technique by calculating the value of 6 from the original sample, 00

Statistical bias in the technique is the difference between the value of the estimator
calculated from the original sample, éo and 6 calculated from step 5. If the bias is large
(more than 10% of either of the two values), then the use of the bootstrap technique might
not be appropriate.

These steps are easily programmed into a code. A FORTRAN version is included
in appendix D, and an illustration of this code is given in example 11.2

EXAMPLE 11.2: Bootstrap Simulation
Fourteen experts provided value estimates for a quantity on a continuous linear
scale from 0 to 1:

(0.07, 0.50, 0.28, 0.63, 0.95, 0.70, 0.62, 0.70, 0.58, 0.78, 0.4, 0.68, 0.43, 0.60)

If the data are plotted, it can be seen that the distribution of these values is not
symmetric. The median is a commonly used aggregation estimator to represent such
asymmetric data. The median of this data is 0.61. However, since the exact form of the
distribution of this data cannot be assumed, there is no available estimator for the variance
of the median. The bootstrap sampling method provides such a variance estimate, and
more.

Following are the steps outlined in the bootstrap method:

Step I: The parameter of interest is the median.

Step 2: One thousand bootstrap samples will be taken.

Step 3: One thousand random samples of size 14 were taken from the original set
of data using the bootstrap code in appendix D.

Step 4: To form each sample, 14 data points were selected from the original set,
with replacement; e.g., a single value could be chosen more than once in a
given sample. For each sample, the sample median was calculated; therefore, a
set of 1000 medians resulted.

Step S5: The average of these 1000 medians was 0.597.

Step 6: The standard deviation of these 1000 medians was 0.058.

Step 7: The 1000 medians were sorted in order.

Step 8: To form the 90% putative interval for the median, the Sth and 95th
percentiles were calculated by finding the 50th and 950th values from the
ordered median set. These values were 0.465 and 0.680, respectively.
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Step 9: The bias is 0.610 - 0.0597 = 0.013, which is less than 10% of either
value, making the bias induced by the bootstrap method acceptable.

Thus the median is 0.597 with a variance of 0.003, and the 90% putative intervals
for the median are 0.465 to 0.680. This forms a complete description of the chosen
aggregation estimator for this data set.

|

Descriptions and Uses of Data Analysis Techniques

Multivariate Techniques

Multivariate analysis techniques refer to statistical methods designed for the
analysis of data sets with many random variables (multivariate). Most data sets are
multivariate in structure; however, the study of the possible variate relationships is often
ignored or assumed without analysis. In such cases important results are not considered in
drawing conclusions.

The variates are of two types: (1) answer, response, or dependent variates,
and (2) ancillary, conditional, or independent variates. The names differ, but the
relationship between these two types is the same; the independent variates are measured or
fixed variables that influence or are functionally related to the dependent variates. The
independent variates are usually thought of as variables that can be controlled by the analyst
in the data-gathering process, and the dependent variates are usually thought of as variables
that are unknown and uncontrolled and are the values being gathered in the study. The
dependent variables are dependent upon the independent variables.

Correlation analysis

Correlation refers to the linear relationship between two variables. If the two
variables have values that are completely identical, their correlation is 1.0. A graphical
interpretation is that if the values of the two variables are plotted and they fall exactly on a
line with positive slope, then the correlation is 1.0. If the values fall exactly on a line with
negative slope, then the correlation is -1.0. In most applications, the values do not all lie
exactly on a line. Instead the values of the two variables form a general scatter with either a
positive trend, negative trend, or no trend. For these cases the correlation is near 1.0, near
-1.0, or near 0.0, respectively. The closer that the correlation values are to 1.0 or -1.0, the
stronger the linear relationship between them is.

The most common measure of correlation uses the Pearson product-moment
correlation coefficient, . For two variables, x and y, that coefficient, r, is calculated by

DO
Va0

r=

b
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where x and y are the mean values of x and y, and the summations are overall values of x,
y,and xy pairs. Example 11.3 illustrates how the correlation coefficient is calculated.

EXAMPLE 11.3: Correlation Analysis
The following answers to two questions were elicited from 10 experts. Are the two

answers correlated?

Expenrt Answer 1.4 Answer2 A,
1 0.10 0.15
2 0.05 0.00
3 0.15 0.20
4 0.11 0.10
5 0.10 0.12
6 0.14 0.10
7 0.00 0.05
8 0.00 0.10
9 0.15 0.20
10 0.09 0.09

x = 0.89 3y = 111
2x2 = 0.11 Xy = 0.16
2xy = 0.12

A calculator formula for the correlation coefficient is

re Zxy - ZxZyin _ 0.12 - 0.89 - 1.11/10
V=2 (z02n] A sy2(Zp)ym]  V(0.11-0.89%10) « ¥(0.16-1.11710)

Using the above values, r = 0.64. For 10 experts (n=10), an r value greater than or
equal to 0.63 is considered different from r = 0 (no correlation) using a 5% level of
significance. Therefore, this x, y relationship is strong (significant at 5%) and is
positive in nature (as x increases, y increases). Tables are available in most statistics
books indicating the cutoff values for r for various significance levels and sample sizes.

H

Other correlation measures exist, such as nonparametric ones based on ranks and
agreement between x, y pairs. For the Pearson correlation, if the data for x and y are
normally distributed, then a zero correlation can be interpreted as x and y being two
variables that are statistically independent. More discussions on the correlation or
dependence of variables are available in chapter 14,
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Cluster analysis

Clustering refers to the grouping structure of the data. Clusters can be formed as
(1) how the values from a single variable (quantity of interest) are grouped, or (2) how the
different variables are grouped. The groups are formed based upon how closely related the
values or variables are to each other. Cluster analysis traditionally refers to methods of
determining how the values of one or more variables can be grouped together. Most
methods form hierarchical clusters -- beginning with all the data in one cluster, splitting it
into two, then three, etc., until each datum forms its own cluster.

Cluster forming is determined by many different methods (Duran and Odell 1974).
Basically, the methods compute and then compare some measure of the distance between
clusters. For example, some methods form clusters by maximizing the distance between
cluster means. If the squared Euclidean distance is used, then the method is the centroid
method. Other methods, called linkage methods, form clusters by maximizing distances of
individual observations in the clusters. Still other methods minimize variances to determine
clusters.

For a multivariate data set, clusters formed by grouping similar variables are of
interest. Variable cluster analysis uses the correlation or covariance matrix of the variables
to determine the clusters of the variables. Again, many techniques for variate cluster
determination are available.

In either the data or variable hierarchical clustering, the clustering process by the
various methods begins with the formation of one large cluster and ends with each
observation or variable in its own cluster. It is up to the analyst to decide which set of
clusterings between these extremes is to be used for interpretations and conclusions. Many
packaged programs provide graphical trees to aid in this decision. The distance
measurements are plotted against the cluster groupings to help determine which grouping to
use. Example 11.4 illustrates how this is done using the SAS® software for data and
variable clustering.

EXAMPLE 11.4: Cluster Analysis of Variables and of Data
The following data was gathered on 11 experts.

YRSEXP  -- total years of professional experience

YRSED -- total years of college education

YRSJOB  -- number of years on the current job/project

DEGAREA -- code (1-3) for discipline of highest degree/education
EXPAREA -- code (1-5) describing major area of experience

ANSWER -- answers to the question on a continuous number scale [0,1]
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Expert ANSWER YRSEXP YRSED DEGAREA YRSIOB EXPAREA
1 0.11 6.00 4 1 0.75 S
2 0.12 4.50 6 2 1.00 5
3 0.90 8.50 8 3 1.25 5
4 0.78 3.00 6 3 2.25 4
5 1.00 5.00 6 2 3.00 5
6 0.17 4.75 5 2 1.00 4
7 0.14 4.25 6 2 3.25 3
8 0.83 5.00 6 2 3.00 3
9 1.00 7.00 6 2 2.50 2

10 0.88 8.25 7 1 3.00 2
11 0.20 4.00 5 1 1.00 1

I: Cluster analysis of all six variables

Cluster analysis of the six variables indicates the following cluster formations.
Each formation is based on the proportion of variance explained by the clustering--the
higher the proportion, the tighter the individual clusters and the larger the separation
between clusters.

Pr ion of i Cluster Formation

0.37 All 6 variables in one cluster -

0.63 YRSEXP YRSED YRSJOB ANSWER Cluster 1
DEGAREA EXPAREA Cluster 2

0.76 YRSEXP YRSED Cluster 1
DEGAREA EXPAREA Cluster 2
YRSJIOB ANSWER Cluster 3

0.85 YRSEXP YRSED Cluster 1
EXPAREA Cluster 2
YRSJOB ANSWER Cluster 3
DEGAREA Cluster 4

The decision of which cluster formation to use can be based upon the proportion of
variance values. The proportion is doubled from the all-in-one cluster formation to the
two-cluster formation. This increase makes the two-cluster formation an attractive choice.
The remaining formations do not indicate as great a change in the proportion.

Cluster interpretation is just as important as deciding which cluster formation to
use. If the clusterings in a particular formation do not make sense, then using that
formation makes no sense no matter how good the clustering is (in this case, how large the
proportion of variance is). In the example, the two- cluster formation does make sense.
Cluster 1 contains the years-related variables and the answer. Cluster 2 contains the
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variables related to the experts' areas. Based on interpretation and proportion of variance,
the two-cluster formation is the logical choice.

II: Cluster analysis of the experts using the answer variable

It is notable that the answers given by these experts cover the entire available range
on the offered number-line from O to 1: some experts are high, and some experts are low.
A cluster analysis on the answer variable can be done in a number of different ways. One
way is to use only the answer variable itself, disregarding the other variables. Another way
is to use the other variables to help determine how the answers cluster. Yet a third way is
to use a subset of the other variables. A natural choice for such a subset would be the set
of variables that provide similar information about the answers. From the above variable
cluster analysis, this subset would include the three variables describing the number of
years for various items.

Again, a number of viable cluster formations results from the cluster analysis of the
answer variable. Criterion, such as distance measures between clusters, can be used to
determine which formation is a logical choice. Again, logical or reasonable interpretation is
equally important.

Only the answers are used to determine the following cluster formations from an
analysis based on the centroid method. The expert numbers are listed, and the centroid
distances are listed for the different cluster formations.

Cluster Formation Centroid

(clusters are connected by underlines) Distance
5 9 3 104 8 1 27 6 11 1.33
S 9 3 104 8 12 7 6 11 0.27
5 9 1 2 7 6 11 3 104 8 0.15
59 1. 2 7 6 11 3 _10 4 8 0.11
5 9 1 2 7 6 11 3 10 4 8 0.09
59 1 2 7 6 11 3 10 4 8 0.05
5 9 1 2 7 3 10 6 11 4 8 0.04
S 9 1 2 3_10 7 6 11 4 8 0.04
5 9 1 2 3 10 7 6 11 4 8 0.02
59 1 2 3 10 7 6 11 4 8 0.00

The greatest change in the distance measure is from the single-cluster formation to
the two-cluster formation. This change delineates the major division between the high-
answer experts and the low-answer experts. All other cluster formations differ very little in
the distance measure and do not have any better interpretative value.

III: Cluster analysis of the experts using three variables

A cluster analysis on the answers was performed including the three variables
describing years of items. Again, the centroid method was used, and the distance measures
were used for cluster formation determination.
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Cluster Formation Centroid

(clusters are connected by underlines) Distance
S 4 8 7 6 112 19 103 1.14
S . 4 8 7 6 112 9 103 0.84
5 4 8 7.6 112 9 103 1 0.70
S 4 8 7 6 112 9 10 1 3 0.63
5 4 8 7 6 11 2 9 10 1 3 0.59
2 8 17 6 112 9 10 1 3 4 0.51
5 8 17 6 112 1 3 4 9 10 0.34
5 8 6 112 1 3 4 1 9 10 0.31
3 8 6 11 1 2 3 4 1 9 10 0.23
5 8 1 2 3 4 6 1 9 10 11 0.05

These cluster formations are different from the ones in part II of this example. The
reason for this difference is that the information from the other three variables is being used
to determine clusterings. The new information forms clusters differently from those
formed using just the answers.

Again, there is a substantial change in values from the single-cluster formation to
the two-cluster formation. This change indicates that the two-cluster formation is
reasonable. However, the experts in these two clusters do differ from those in the two
clusters in part II. This discrepancy indicates that the three added variables make a
difference in the results. For this example, other modeling is indicated to use the other
variables in combination with the answer variable. Chapter 15 discusses model formation
and uses. However, valuable information has been gathered from the cluster analyses
about variable relationships. Cluster analysis can be a useful tool for such investigation.

]

Factor analysis

A related method to variable clustering is factor analysis. Factor analysis analyzes
the relationships among a set of variables through their correlation and covariance to
determine what information is shared among subsets of the variables (common factors) and
what information is unique to each variable (unique factors). A common factor is an
unobserved, imaginary variable that shares information with (or contributes to the variance
of) at least two of the original variables. A unique factor is an unobserved, imaginary
variable that represents information from only one of the original variables. It is assumed
that all the unique factors are uncorrelated with each other and that the unique factors are
uncorrelated with the common factors.

Factor analysis can be done using many different methods. Some methods rely on
the use of principal components (Kshirsagar 1972). Other methods use least squares
methods or maximum likelihood techniques. Still others formulate scores that are based on
correlations. There are many ways of transforming the variables, called rotation, so that
the formation of the common and unique factors is both optimized and logical. Example
11.5 illustrates the principal factor method for an unrotated set of variables.

It is not recommended that factor analysis be used casually. To select the proper
factor method and use of rotation requires experience and knowledge of the various factor
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methods. To interpret the results requires even more knowledge. Only if the variable set
has a good underlying structure can a simple factor analysis reveal important information.
A successful result can then be used to reduce a large number of variables to a smaller
number of variables containing the common factors. However, in most applications, the
(common) factors produced are not interpretable and are useless.

EXAMPLE 11.5: Factor Analysis

A principal components factor analysis using SAS® was done on the set of six
variables from example 11.4. The (common) factor loadings listed below indicate how
each variable maps onto each factor. A successful result would be for each variable to map
nearly completely (e.g., 0.8 or greater) onto one factor and for the set of factors to be much
smaller than the original number of variables. Then success must also be measured in the
interpretation. Can meaning be attached to each of the factors based on the variables that
constitute (load onto) them? This is the same problem faced in interpreting the results of a
cluster analysis.

The principal components factor analysis resulted in six factors for the six
variables. This result does not indicate that a successful reduction in the number of
variables is possible. Each factor represents a portion of the original variation of the six
variables. Examining these portions can help determine which factors are the most
important:

Factor
1 2 3 4 5 6
Portion 0.42 0.25 0.18 0.08 0.05 0.02
Cumulative 0.42 0.67 0.85 0.93 0.98 1.00

The first three factors account for 85% of the variation. While 85% of the variation
would be considered very good for one factor and good for two factors, it is not a good
result for three factors.

The six variables map or load onto these three (common) factors as follows:

Factor

1 2 3
ANSWER 0.88 -0.13 -0.06
YRSEXP 0.56 -0.20 0.79
YRSED 0.90 0.10 0.13
YRSJOB 0.60 -0.43 -0.54
EXPAREA 0.02 0.88 0.16
DEGAREA 0.53 0.71 -0.33

This mapping of the variables is not very good. ANSWER loads well onto the first
factor, and so does YRSED. EXPAREA loads well onto the second factor. However,
YRSEXP, YRSJOB, and DEGAREA spread their loadings over all three factors. If an
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interpretation were attempted, the first factor would represent some combination of
ANSWER and YRSED, the second factor would represent the two AREA-type variables,
and the third factor would represent some combination of YRSEXP, YRSJOB, and
DEGAREA. Such an interpretation is not very clear. Thus, this example would not
represent a successful factor analysis. For a more successful analysis, see chapter 15 on
model formation.

u

Discriminant analysis

In cluster analysis, variables could be clustered, or observations based on variables
could be clustered. Discriminant analysis determines how well other (ancillary or
independent) variables predict the classifications or groupings described by the dependent
or classification variable. If the ancillary variables do a good job of determining the
classifications of the dependent variable, then they can be used to predict into which class
or group that a new observation (a new value of the dependent variable) will fall.

A discriminant function is calculated from the predictor variables based on the
distances between classes and the variation within classes. The theory is based on the data
for the variables following a multivariate normal distribution. This assumption is highly
restrictive. It is unlikely that the data from any expert elicitation would be multivariate
normal. Therefore, this method is offered as an exploratory data analysis and premodeling
tool. It is only a means to other analyses, and not the sole analysis tool. Example 11.6
illustrates how discriminant analysis can be useful.

EXAMPLE 11.6: Discriminant Analysis

The eleven experts from examples 11.4 and 11.5 were asked to make
recommendations based on the answers (scaled 0,1) they gave. The recommendations (1-
4) were given as follows:

Expert Recommendation

— O O 00NN A LN
[N - R IS R O R O R S

(SRS

It is hypothesized that the original answer variable and some of the other variables
might be good discriminators in determining the recommendations. A discriminant analysis
was done. The results of this analysis indicate whether the six other variables are good
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discriminators if they properly classify the recommendations into the four classes. A
discriminant function for each class is calculated using the six other variables. These
functions are used to determine the existing classifications and are also used to predict
classifications of experts who did not make the recommendation but provided information
on the six variables.

The classification was a success based on the following results:

Predicted Class
Expert Recommendation Based on Variables
1 1 1
2 1 1
3 4 4
4 3 3
5 -4 4
6 2 2
7 1 ----1
8 3 3
9 4 4
10 4 4
11 2 2

No misclassifications occurred. The discriminant functions for the classes are as
follows:

-109.2 + ANSWER « 382.6 + EXPAREA « 9.2 +
DEGAREA ¢ -14.0 + YRSED + 19.2 + YRSEXP + 9.0 +

Recommendation 1

YRSJOB « 5.0.

Recommendation 2 = -107.8 + ANSWER + 483.0 + EXPAREA « 7.5 +
DEGAREA ¢ -14.4 + YRSED + 20.2 + YRSEX + 8.3 +
YRSJOB -+ 1.5.

Recommendation 3 = -611.1 + ANSWER + 11459 + EXPAREA » 152 +
DEGAREA ¢ -32.0 + YRSED + 433 + YRSEXP + 17.7 +
YRSJOB - -1.4.

-908.1 + ANSWER + 1398.8 + EXPAREA « 184 +
DEGAREA «+ -40.6 + YRSED + 52.4 + YRSEXP +22.7 +
YRSJO - -2.5.

Recommendation 4

The main result from this example is that the recommendations given are functions
of the values of the other six variables. A careful look at the recommendations versus the
answer variable reveals that there is a very strong positive correlation between them. This
correlation is reflected in the above discriminant functions as well.
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Discriminant analysis assumes a multivariate normal distribution for all the
variables. It is likely that this assumption is not valid for expert judgment data. Therefore,
this technique should only be used as an exploratory analysis tool to gain information about
the variate relationships. Results from the discriminant analysis should be cross validated
by the use of other analysis and modeling tools as described in chapters 13, 15, and 18.

|

Analysis of Variance

Analysis of variance is a broad-based methodology for analyzing data from an
experiment where the dependent or response variables are considered functions of the
independent or ancillary variables. Each independent variable or factor is tested
(controlled) at specified values (levels) of that variable. In most analysis of variance usage,
the experiment is carefully designed using techniques that specify the levels of all the
factors to be studied (Snedecor and Cochran 1978) so that a minimum number of
experimental tests or observations is required to yield information on the importance of all
the factors.

The major inferences made and hypotheses tested in analysis of variance concern
the equality (or lack of it) of the means for the various values or levels of the factors. If the
factor means differ for the responses, then that factor is said to be significant in determining
the response.

Multiple factors are designed and tested in a single set of experiments. Each factor
is tested individually for its influence or effect upon the response. Combinations of two or
more factors can be tested at a time for their combined effect upon the response. These
combinations are called interactions. Interactions are important because the factors
individually may not be significant but their interaction may be significant.

Using analysis of variance for expert judgment studies is not recommended because
there can be no controlled design of the study (experiment). Most of the factors are
gathered during the elicitation and cannot be controlled prior to the study to produce a good
experimental design. At most, only single factors can be analyzed, each in a separate
analysis, as illustrated in example 11.7. Performing several analyses of variance such as
this is not recommended. In doing so, the analyst loses control over the chance of
detecting differences in the factor means when no differences exist. This is the alpha level
or type-I error. Multiple factors must be tested using the analysis of variance technique
in a single analysis and that requires good experimental design before the elicitation.
Because good design is not possible in expert judgment applications, analysis of variance is
used as an exploratory tool for examining simple between versus within experts' values as
is suggested in chapter 14.

EXAMPLE 11.7: One Factor Analysis of Variance

In the previous examples in this chapter, the expert's degree area or discipline was
described using a variable DEGAREA which had three values (levels). These values were
1 = mechanical engineering, 2 = nuclear engineering, and 3 = physics. DEGAREA is
therefore a single factor with three levels that could be analyzed using analysis of variance.

192



Introducing the Techniques for Analysis of Expert Judgment Data

There are three experts with DEGAREA = 1, six experts with DEGAREA = 2, and
two experts with DEGAREA = 2. For a single factor analysis of variance (AOV), this
imbalance of the number of experts across levels is fine. However, if two or more factors
were to be analyzed, a balance of the numbers of experts in each level for both factors
would be necessary in most software programs for a conventional analysis of variance.

For example, suppose the two factors were DEGAREA and EXPAREA.
DEGAREA has three levels and EXPAREA has five levels. For a balanced design of the
experiment, 15 experts would have to be interviewed, one for each combination of all the
levels of the two factors. With such a balanced experiment, tests on the effects of
DEGAREA and EXPAREA would be possible. To have a test for the
DEGAREA/EXPAREA interaction, more than one expert for each combination would be
necessary. To find experts necessary to fit these combinations would not be very practical
or even possible and illustrates the difficulties in designing experiments for expert
elicitation.

The data for this example is as follows:

Factor: AREA

i 2 3
Answers 0.11 12.00 0.90
0.88 1.00 0.78
0.20 0.17
0.14
0.83
- 1.00 -
Sum 1.19 3.26 1.68

To test the differences between the three means for the factor, variance components
are calculated for between (across) the three categories and within the three categories. If
the variance between the three is significantly greater (using an F-test statistic) than the
within variance (which acts as the noise level), then the factor means are not the same. The
idea behind this comparison of variations is that the levels of the factor will influence the
response if the means of the three levels are different. To test if the three means differ, the
variation between the three levels is compared to some noise level. If the between variation
is large compared to the noise level, a difference in the three levels is indicated. This noise
level is determined as the variation within the three levels, the within variation. Thus the
name analysis of variance implies what is actually tested. It is the variations that are
compared and tested to determine if the means of the factor levels differ.

The following analysis of variance table outlines the steps of the variance
calculations and the test (F-test) used to compare the variances:

Term df Sum of Squares Mean Square F-Statistic
Between dfB SSB MSB F
Within dfE SSE MSE
Total afr SST
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MSB represents the variance between the three levels of the factor. MSE
represents the error or noise level calculated using the within-levels' variance. The F-
statistic measures the significance of the between variance relative to the within or noise
variance. If this value for F is larger than the critical value for an F distribution with
parameters of dfB and dfE, then the between variance is significantly larger than the noise.
The conclusion would then be that the means of the factor levels differ and that the factor
significantly affects the answers given by the experts.
The following formulas indicate how to calculate the quantities in the analysis of
variance table:

N = number of observations = 11
T = grand total = sum of all data=1.19 + 3.26 + 1.68 = 6.13
SST = sum of squares of all 11 answers = 0.112 + 0.882 + ... + 0.782 = 5.00
SSB = sum of squares of categories (between) = 1.192 /3 + 3.262 /6 +
1.682 /2 =0.47 + 1.77 + 1.41 = 3.65
C = correction factor = the grand mean =T 2/N = 6.132/11 = 3.42
SST = total sums of squares = SST - C = 1.58
SSB = between sums of squares = SSB - C =0.23
SSE = within (error) sums of squares = SST - SSB = 1.35
dfB = degrees of freedom for between = number of categories - 1 =2
dfT = degrees of freedom fortotal=N-1=10
dfE = degrees of freedom for error=dfT - dfB=10-2 =8
MSB = mean square between = SSB/dfB = 0.23/2 =0.12
MSE = mean square error = SSE/dfE = 1.35/8 =0.17
F = F-test statistic = MSB/MSE = 0.12/0.17 = 0.71

To determine if this F value is larger than the critical value for an F distribution with
2 and 8 degrees of freedom, a table or program of F distributions is required. These are
available in all statistical packages and textbooks (Snedecor and Cochran 1978).

To use the tables, a significance level is needed and is determined by the analyst.
The level represents the chance that the analyst is willing to accept for making the following
error: declaring that between variance is larger than the within variance when, in truth, they
are the same. Usually a 5% value is commonly chosen for the chance of making this error
(called a type-I error). This chance is called the level of significance or &. Sometimes an
extremely safe or conservative value of 1% is chosen. Sometimes a liberal value of 10% is
chosen.

If the significance level is chosen at 5%, then the critical value for this F distribution
(with degrees of freedom two and eight) is 4.46.

F(2,8,0.05) = 4.46

F= 0.71
F(2,8,0.05) < F (no factor effect indicated)
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The F value calculated must be larger than 4.46 for the factor to have a significant
effect. Here the F value is only 0.71; therefore, the factor means are considered the same,
and the factor itself has no effect on the answers provided by the experts.

|

Saaty's Technique for Pairwise Data Analysis

What Is Saaty's Method?

In lieu of asking experts to compare multiple items simultaneously either by
numerical or qualitative evaluations, experts can be asked to make relative comparisons
and evaluations. It is very difficult for humans to simultaneously examine and evaluate
many items. However, with pairwise comparisons, it is only necessary to examine
two items at a time. Paired comparisons can be made by evaluating items relative to each
other in a qualitative evaluation such as better, worse, or equal. Comparisons can be made
in a quantitative evaluation using specified numerical scales. Either way, the
comparisons made by the experts are then quantified using a matrix algebraic approach
resulting in relative numerical weighting factors for all the items being compared. The
paired comparisons technique and one of the scales designed for this technique are part of
the Saaty Analytical Hierarchy Process (AHP) (Saaty 1980).

The AHP has been widely applied in many decision analysis problems. Its basic
appeal for these applications is its ease of use by the experts and its ability to easily quantify
qualitative evaluations.

A simple example illustrates the usefulness of the technique. An expert is asked to
determine which of the following meteorological conditions would be the most likely to
cause a loss of off-site power in a power plant:

. Flash flooding at plant site with 0.5 to 2 inches of water
. Flash flooding with 2 to 4 inches

. Flash flooding with more than 4 inches

. Lightning (direct hit to power lines)

. Direct hit by a tornado

. Winds between 20 to 40 mph

. Winds higher than 40 mph

N A WN -

The expert begins by thoroughly defining and clarifying the seven conditions. The
expert then decides upon an evaluation scheme. If a qualitative evaluation is to be made,
the expert only needs to compare all possible pairs of the seven items (making 21
comparisons) using the terms better, worse, or equal. If a quantitative evaluation is to be
made, then the choice of scale, such as the one below designed by Saaty, is made. The
Saaty scale is listed below with descriptions of the numerical evaluations for the
comparisons:
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Number Description

1 The two items are of equal importance or likely

3 A slight favoring of the first item over the second

5 A strong favoring of the first item over the second

7 A demonstrated dominance of the first over the second

9 An absolute affirmation of the first over the second
2,4,6,8 These are used when compromise is needed
173, 1/5 These values are used to indicate the above relationships
1/7,1/9 when the first item is worse or less likely than the second

The expert begins comparing all possible pairs of conditions. The numerical
comparisons are recorded in a 7 x 7 matrix of values with 1s on the diagonals and the
comparisons in the upper triangular portion of the matrix. The lower portion is filled later
with the reciprocal values of the upper portion. That is, if condition 3 is strongly more
likely than condition 4, the value assigned in row 3 column 4 is S (from the scale). Then,
the value for row 4, column 3 is 1/5.

When the comparisons are made and the matrix is completely filled, the relative
weights of the seven conditions are obtained from matrix theory. Specifically, these
weights are the normalized eigenvectors of the maximum eigenvalue of the 7 x 7 matrix.
The reason why these weights are formulated in such a fashion may not be obvious;
however, the mathematical theory behind it is sound.

Another advantage of using the Saaty method is its ability to monitor the
consistency of the expert's evaluations. For instance, if an expert evaluates condition 1
versus condition 2 as a 4, and evaluates condition 2 versus condition 6 as a 3, and
evaluates condition 1 versus 6 as a 1, then his three evaluations indicate an inconsistency.
Using matrix theory, the Saaty technique provides an index of consistency for the
comparisons made in a single matrix. The expert is warned when his consistency is
lacking by a high value for this index of consistency. When this happens, the experts
should re-examine the definitions and evaluations that were made and resolve the
inconsistencies. Example 11.8 illustrates the pairwise comparisons, the relative weights
and the inconsistency measures for the meteorological conditions described above.

EXAMPLE 11.8: Saaty's Pairwise Comparison Method or AHP
The seven meteorological conditions important for affecting loss of off-site power
(LOSP) in a reactor are as follows:
. Flash flooding at plant site with 0.5 to 2 inches of water
. Flash flooding with 2 to 4 inches
. Flash flooding with more than 4 inches
. Lightning (direct hit to power lines)
. Direct hit by a tornado
. Winds between 20 to 40 mph
. Winds higher than 40 mph

NAVAEWN-
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By comparing these seven using all possible pairs (number of pairs = 7(7-1)/2 =
21), a set of relative weights can be found. The weights are interpreted according to the
pairwise comparisons. In this case, comparisons are made by determining which of the
pairs is more likely to cause LOSP. The pairs are evaluated using the Saaty scale listed
above as follows:

1 vs 2----ceeeem 13 2vs3-oomomeaes 172
1vs3--—-momeme- 1/4 2vS4-ommemeee 173
I R 1/5 2vsS5--meeree- 173
1vs 5-------ememm- 1/5 2 Vs 6---momoeee 112
1vs 6---—----------- 173 2vS T - 173
1 vs T----m-momeeme 1/4

3vs4-memeomeaee 172 L 173
3 v§ §----momemeee 12 4 vs 6---mommee 1/5
3 vs 6------m-m-mm- 1 L 1/4
3 vs 7--memememaeee 172

B 5 6vS 7 ---meeeme- 172
S v§ T-mmeeeomeeeaene 4

These comparisons form the upper triangle of a matrix. The diagonal terms are 1s
and the lower triangle contains the reciprocals of the upper triangle:

1 2 3 4 5 6 7
B 14 15 15 13 1/4
12 13 13 12 173

[y

1 1

2 3 1

3 4 2 1 12 12 1 12
4 5 3 2 1 173 15 1/4
5 5 3 2 3 1 5 4

6 3 2 1 5 /5 1 12
7 4 3 2 4 /4 2 1

The principal eigenvalue of this matrix is 8.001. The weights for the seven factors
are formed by normalizing (so that they sum to 1.0) the seven terms in the eigenvector for
this eigenvalue. These normalized weights are

(0.03, 0.06, 0.11, 0.11, 0.35, 0.15, 0.19)

The Saaty method provides a consistency check in the form of a ratio value, called
the consistency ratio, that indicates the deviation of the principal eigenvalue from the
theoretical eigenvalue of a perfectly consistent matrix. The ratio is also adjusted for the
number of factors, the dimension of the matrix. If a consistency ratio is greater than .10,
inconsistency is indicated.

197



Chapter 11

In this example the consistency ratio is 0.13, indicating some problems. Upon
closer examination of the meteorological conditions comparisons, the following results are
indicated:

1 vs4isthe sameas 1 vs5
2vs4isthesame as2vs 5
3vs4isthesameas 3 vs 5
6 vs 4 is the same as 6 vs 5
7 vs 4is the same as 7 vs 5

These results imply that 4 and 5 are the same; however, 4 vs § is given as 1/3. Also, 6 <
7, but examining 4 vs 6 and 4 vs 7 indicates that 6 > 7. There may be other minor
inconsistencies in the magnitudes of the relationships; however, three major corrections are
made as follows:

Comparisons Correction Objective
4vs5 1 To make 4 and 5 the same
4vs6 5 Tomatch5vs 6
4vs7 4 Tomatch 5vs7

Now the consistency ratio becomes much more acceptable at 0.06. The weights become
(0.03, 0.07, 0.11, 0.28, 0.28, 0.08, 0.15)

The interpretation of these weights indicates only relative comparisons. Direct hit
lightning (4) and tornado (5) are the most likely to cause LOSP. The least likely is the
flooding with 0.5 to 2 inches of water (1) . It is incorrect to draw conclusions based on the
numerical values of the weights; such as, flooding with 2 to 4 inches; (2) is only one-fourth
as likely as a tornado (5).

[

The example problem above consisted of a single matrix evaluation. As the name
AHP implies, most problems using this technique are hierarchical in structure. In the
above example, loss of off-site power may be one of many plant conditions that are of
critical concern to operations. Another matrix could be formed comparing all such critical
concemns. For each of those other critical concerns, a matrix of meteorological conditions
could be attached. These condition matrices do not have to be identical to the one for the
loss of off-site power concern. Thus, an entire hierarchy of as many levels as are needed
can be constructed. Usually, the hierarchy is constructed from the top down, with the top
levels being the more general environmental or scenario factors. The middle levels are
usually the more specific criterion or characteristics under consideration. The bottom level
is usually the list of competing alternative decisions, actions, or choices that must be
decided upon to answer the question.

Each matrix is evaluated at each level resulting in a set of relative weights. The
weights are multiplied down the levels to form a final set of weights for the bottom level
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items. This final set of weights is then used to make the decisions regarding the choices of
the bottom level items. The higher the weights, the more desirable that item is.

There are many codes and packages that perform this technique at various levels of
user interaction. Some codes merely provide the algorithms for the technique; others take
the user through the entire problem from the initial building of the hierarchy to the final set
of weights (Booker, Bryson, McWilliams 1984). For general references on the technique,
Saaty has two books that provide codes and instructions (Saaty 1980 and 1982). A
FORTRAN user-interactive code for a single matrix evaluation taken from the second of
these books by Saaty (Saaty 1982) is given in appendix A.

Advantages and disadvantages of Saaty's method

The main advantages of this technique are its ease of use for the expert, its ability to
monitor consistency of the expert's evaluations, and its ease of quantifying highly
qualitative information. These advantages make it suitable for use in expert judgment
problems.

The major disadvantage is that for application the problem must be structured in a
hierarchical formation. Incorporating feedback cycles and pathways other than straight up
or down the hierarchy are difficult to implement. A single level structured problem can be
used to avoid the hierarchy; however, a single level formation is usually an over-
simplification of the problem.

Uses for Saaty's method

The primary use for the hierarchical design is in decision analysis problems. Here
the weights are used to aid in a decision maker’s choice of the competing alternatives at the
bottom level of the hierarchy. Therefore, the major disadvantage in applying this technique
in expert judgment problems is that usually expert judgment problems cannot be neatly
formulated into a hierarchical structure. Also, this type of forced structure formation is not
consistent with the data analysis philosophy and model formation advocated in this book.
The analyses and models are suggested by the data, not the forced fitting of the data to the
analyses and models chosen.

In expert judgment applications, the scale and quantification features of this
method can be used as a chosen response mode and as a quantification technique,
respectively. It is these limited uses that are the reason for introducing Saaty's method.

Descriptions and Uses of Bayesian Techniques

What is the Bayesian Philosophy?

There are two different statistical philosophies for analyzing data and for
interpreting the roles of probability distributions. These two different approaches are the
classical or frequentist approach and the Bayesian approach.

The classical statistical approach assumes that the data or sample is representative of
the population (the universal set of possible values) for the random variable. It is
common practice to characterize the population as a probability distribution with certain
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features (mean, variance, range, percentiles, mode, median, etc) called parameters. The
parameters are fixed but unknown quantities. The estimates of these parameters are values
calculated from the sample (data), and these estimates are called statistics. For example, if
the population is represented by a normal distribution, then a sample of 20 values randomly
chosen from that normal will represent that population. The population mean was 2.0, but
this is not known. The sample has a mean of 1.82 which is the best available estimate for
that unknown population of 2.0. Using the sample mean (statistic) to draw conclusions
about the population mean (parameter) is the process of inference that is further discussed
in chapter 18.

The Bayesian approach of philosophy is different in interpretation. The population
parameters are not fixed quantities. Instead, they follow probability distributions, called
prior distributions, just as the random variables do. This prior distribution represents
the state of knowledge or information about the parameter before the sample is taken. The
sample (data) also forms a distribution called the likelihood which represents how likely it
was for that sample to be taken from the population. After the sample is taken, the
likelihood distribution can be combined with the prior distribution to form a final combined
distribution called the posterior distribution. The posterior represents the combined
state of knowledge or information from before and after the sample data is taken. The
analytical tool (equation) used to perform this combination is Bayes Theorem. Hence, the
mathematics, the approach, and the philosophy are all labeled as Bayesian.

The philosophy is a logical one. It is common to have information about the
problem before any data or experiment is done. It makes sense to use all available
information to draw conclusions. The Bayesian approach provides a method for doing just
that: combining different sources of information. Application of the technique involves
representing the previously known information as a prior distribution, gathering the sample
data, and using Bayes Theorem to combine the distributions into the resulting posterior
distribution. Bayes Theorem is as follows:

g(6lx) = f(x16) g(0) / fx) .
where

2(6x) is the posterior distribution,
[(x10) is the likelihood or data distribution,
£(6) is the prior distribution for the parameter 6, and

foo={ f(x16) g(6) dBis the marginal distribution that can be considered as a
normalizing constant in the denominator of the above theorem equation.

Therefore, the theorem can be stated as follows: the posterior is equal to the prior

times the likelihood divided by the marginal, or the posterior is proportional to the prior
times the likelihood (Martz and Waller 1982).
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Advantages, Disadvantages, and Uses of Bayesian
Methods

The major advantage of taking the Bayesian approach is that it provides a means for
combining or pooling information from different sources. The philosophy of using all the
available information is a logical and reasonable approach especially when information
from a single source is sparse or lacking as in most reliability applications.

Some short examples illustrate the uses of Bayesian methods--a pooling
mechanism: (1) Expert estimates could provide the information for the prior, and that could
be combined with sparse data; (2) Expert estimates could be combined, one at a time, to
form an aggregation estimate; (3) An expert aggregation estimate (prior) could be
combined with information from a decision maker; (4) Older information from an expert
(prior) could be combined with his new assessment to update his judgment in view of
different conditions or information; (5) Generic data such as an overall failure rate of all
check valves (prior) could be combined with data on a specific check valve; and (6)
Uncertainties (prior) could be modeled with the data. Bayesian methods are suggested and
discussed in more detail for aggregation (chapter 16), for characterizing uncertainties
(chapter 17), and for updating (chapter 7).

The major disadvantage of Bayesian methods lies in the requirement of
transforming all the available information, regardless of its source or form, into probability
distributions. For qualitative data, this transformation is an especially difficult task.
(Chapter 12 discusses ways of handling qualitative data.) Transformations may not be any
easier for quantitative data. Once distributions are formed, the second disadvantage of
Bayesian methods emerges. These various distributions are combined using Bayes
Theorem. This combining may not be a mathematically easy task. However, with modemn
simulation techniques, using the theorem for combining distributions is not as difficult as it
was a decade or so ago.
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12

Initial Look at the Data--
The First Analyses

After the elicitation is completed, the information gathered will seem like a large,
complex mass of words and numbers. The first step is to become familiar with the
information of this mass: that is, examine the data that has been gathered; then, focus on
some important data features, investigate transforming the data or quantifying it, and
formulate a data base for further analysis.

What Data Has Been Gathered?

The components of the elicitation, methods for formulating the questions, response
modes and documentation, are described in chapter 7. Tailoring these schemes for the
particular elicitation is described in chapter 8. Implementing these is described in chapter
10. Having implemented the chosen schemes for questions, response mode, and
documentation, the post-elicitation information base should consist of large amounts of
qualitative and quantitative information from each expert on each question. Following the
documentation guidelines helps reduce some of the volume of information to a more
compact and efficient form at chosen levels of detail. However, this is not much help to the
analyst faced with the qualitative/quantitative data mixture containing a potentially large
number of variables.

The information gathered at the post-elicitation stage consists of two major parts:
(1) the answers to the the questions, and (2) the ancillary information. This ancillary
information is in two groups: (1) the information about the expert such as his background
and experience, and (2) the information called expert data in chapter 1 about how the
expert solved/answered that question and how long since he had seen such a problem.

The qualitative or quantitative structure of the answer data and the ancillary data
depends on the choices of the response mode and the documentation. Usually the answer
data is quantitative and the ancillary data is a mixture. Regardless of the original structure
of either, some quantification of some of the qualitative information becomes necessary for
analysis. One criterion for determining the necessity and method of quantification is to
consider the level of generality or granularity of all the data and of the analyses.
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Overview of the Data

In the process of analyzing the data, often two important overall features of the data
are taken for granted and therefore forgotten by the analyst. These two features of the data
set are important to the analyst at all stages of the analysis and have important effects on the
conclusions reached. The two features are granularity and conditionality.

Granularity is the level of detail defined or chosen for the data, the analysis, and the
conclusions. Two examples of the information recorded on an expert's problem-solving
may be (1) in the form of detailed steps, equations, heuristics, definitions, and
descriptions, or (2) in the form of a general categorization of this problem-solving stating
simply that the expert used a pessimistic approach. The above are two different
granularities for the information regarding the expert's problem-solving process.

Conditionality refers to the inescapable fact that all of the elicited data is conditioned
on many other factors. Some of these factors are controlled, some are not controlled, and
some are unknown.

The Pitfalls section in chapter 2 discusses the importance of these two features for
expert judgment applications in more detail. There are sections on granularity and
conditionality in all the chapters dealing with the analysis of the data.

Establishing Granularity

To some extent, the granularity will have already been established in the selections
of the response mode and documentation recording schemes. The granularities chosen for
each could be different, and the analyses can have a third level or even more. However,
for interpreting the results and drawing conclusions, one level, the most general of all,
must prevail. That level is the only one applicable to the results and conclusions.
Therefore, it is wise to establish that one desired level of detail in the initial planning phase
of the study before the elicitation. If that is not possible, then at least establish the level at
the preanalysis phase and use it throughout all the analysis steps. Otherwise, analyses may
have to be repeated at the proper granularity.

If levels are mixed in the analyses, conclusions can change. For example,
comparisons of variables at the granularity gathered, raw form could reveal some
significant correlations among the variables that vanish if they are compared after being
combined or reduced to a more general level. Of course, such a combining or collapsing
process might not change the significant results among the variables from the raw form, but
it could produce significance where none existed in raw form or it could lose significance
where it existed in raw form. The effects on the results of changing granularity is not
known beforehand.

In the chapters that follow, many stages of data analysis are described. In each, the
granularity is important. At each stage, the results can change if the granularities are
changed. Examining how results can change with different granularities within each stage
and across stages is an exercise consistent with the spirit of investigative data analysis
advocated by this book. However, great care must be taken not to confuse such an
academic exercise with the goal of determining conclusions for the problem at hand. There
is another point to consider when playing with granularities. It is possible to take detailed
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information and make it more general, but it is not possible to do the reverse. To avoid
confusion and problems, it is recommended that one granularity be chosen and used
throughout all analysis stages.

Establishing Conditionality

Often the conditional structure of the data, especially the answer data, is ignored in
the analysis and in the conclusions. Disregarding the conditional structure of the data
produces conclusions that are a mixture of differing effects, or more simply, a mixture of
apples and oranges. Most analysts would agree that such conclusions are worthless.
Indeed, this lack of care in analysis may be the reason why many do not trust expert
judgment data or claim that expert information can not be analyzed.

A recent example will help illustrate the problems in dealing with conditionality. In
an effort to revise the probabilistic risk assessment (PRA) methodology for nuclear
reactors, the Nuclear Regulatory Commission has invested time and money in the
NUREG-1150 project (U.S. NRC 1989). As part of this task, several panels of the
world's top experts were gathered for eliciting their data on many rare, and undefined
events affecting reactor safety. These events were decomposed into decision-type event
trees; decision trees are briefly described in chapter 15 and also by Raiffa (1970). The tree
structures and probabilities for each branch were elicited from the experts. The final
answers came from multiplying these probabilities through the tree. Each answer is
therefore conditioned on the tree and its estimates. This conditioning cannot be ignored.
Two experts could arrive at exactly the same final answer but for very different reasons, or
two experts could arrive at different answers for exactly the same reasons.

Analyses, such as the ones described in this chapter and in chapters 13-15 are
needed to determine what effects, if any, such conditioning has on the final answers. If the
answers are not dependent upon the conditions, then conditioning can be ignored;
however, this determination is necessary before setting conditionality aside.

How to Quantify

Quantification can be useful for preparing the complex post-elicitation data set for
the data base. Both the qualitative data and the quantitative data may require
transformations and cleanup for the data base. Transforming words such as descriptions or
preference scales (worst, worse, bad, neutral, good, better, best) into numerical values will
often be required for analysis of the data using numerically based techniques (such as
statistical techniques). Also, some data that is already numerical in raw form may require
additional numerical transformation to more convenient scales or to the chosen granularity.
In both cases, the transformation process is quantification, transforming the raw
information into a desired numerical form.

Several commonly used methods of quantification are described below. The major
problem with quantification is to not impose additional assumptions about the information
in order to fit the data into the desired form. In most instances this is difficult or impossible
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to avoid. However, sometimes other available information elicited from the experts can aid
in the quantification process as illustrated in example 12.1.

EXAMPLE 12.1: Using Definitions to Quantify

The analyst is attempting to convert a statement of the expert's preference about
how good a reactor system design might be. The analyst can refer back to the expert's
elicited definition of good and use that definition to compare to definitions from other
experts. This comparison can form a consistent numerical scale across experts as follows:

Expert's Definition of Good Numerical Scale Value
System functions outside specifications at all times 5
System functions within specifications at all times 3
System functions within specifications 90% of the time 1

At this stage of the analysis, the reasons for eliciting information from the experts
about definitions, assumptions, and problem-solving processes become obvious.
u

When Is It Necessary to Quantify?

Ideally, all the information gathered during the elicitation should be quantified to a
common numerical scale for comparisons using statistical analyses. However, this form of
quantification is not feasible, nor is it entirely necessary. Many times information gathered
is redundant. The expert will state the same information repeatedly in different forms as
illustrated in example 12.2.

EXAMPLE 12.2: Detecting Redundant Information

An expert gives a lengthy explanation of a physical phenomenon. Five minutes
later, he realizes that he was simply applying a basic principle or law. The information
provided by the expert and the usage of that information has not changed. The expert has
just given the same information in two different forms. Many times the expert does not
realize this redundancy, but the analyst can find it in the course of his analysis if proper
documentation was done.

[

The first items that need quantification are the answers to the technical question. In
most instances the answers will already be in the desired numerical form from the chosen
response mode designed in the elicitation. (See chapter 7, Selecting from Response Modes
and Selecting from Dispersion Measures.).

It may be difficult to quantify assumptions, definitions, and problem-solving
processes initially. Yet, some assumptions about physical quantities such as temperature
are easily converted to a scale of values or ranges of values. Ranges of values should not
be reduced to a single value. The process of such a reduction imposes assumptions on the

206



Chapter 12

involving problem-solving information, experts' background information, and expert
answers.

EXAMPLE 12.3: Dichotomous Quantification

Experts are asked if they applied the first law of thermodynamics. To quantify the
simple yes or no responses, set yes = 1 and no = 0.

Experts are asked if they consider themselves engineers or not. To quantify the
responses, set engineer = 1 and nonengineer = Q.

Experts are asked if the probability of an event is greater than 0.001 or less than
0.001. To quantify the responses, set greater than 0.001 = 1 and less than 0.001 = -1.

u

Rank or rating quantification

If there are more than two choices for representing some information, multiple
integer or numbered values can be used. The values can be in ascending or descending
order (ranks) or the values can be chosen from a specified scale. In either case, these
values reflect an ordering of the information and should not be used unless the information
has a logical ordering. The order implied by ranks is linear, implying equal spacings
between the ranks and relationships, such as a rank of 4 is twice a rank of 2. Example
12.4 illustrates the proper use of ranks.

EXAMPLE 12.4: Rank Quantification

In gathering background information, the experts are asked if they have had any
reactor operator experience. The responses to that question are given in verbal terms such
as none, some, and extensive. The ranks 0, 1 and 2 can be assigned to the answers none,
some, and extensive. The ascending order implied by the ranks is logical.

The experts are also asked to describe their major discipline area. The responses
are given in terms such as nuclear engineer, civil engineer, mechanical engineer, physicist,
and mathematician. The ranks 1, 2, 3, 4, and 5 should not be assigned to these answers
because they do not have a logical order and should not be given an order through the use
of ranks.

[ ]

Number line quantification

As mentioned earlier, accuracy of information content is important in the
transformation process, especially for transformations to the continuous number line.
Accuracy is an issue related to granularity. It is usually considered when determining how
many significant digits can be used to represent the information. The number of significant
digits used in the analysis and in the results is a granularity issue.
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original data by the analyst that the expert might not have had in mind. In general, the
assumptions, definitions, and problem-solving information should be kept in raw form
until the modeling stage of analysis (chapter 15).

The ancillary information or data, such as data on the expert's background and
experience, also needs quantification. This data can be in many different forms and usually
has been elicited without much advanced planning or designing of the analysis. Therefore,
this data may range from completely descriptive information to strictly numeric values and
to everything in between.

Quantification Schemes

The application of the following quantification schemes should be done with
extreme caution. It is so easy for the analyst to impose assumptions on the data to make it
fit into the desired quantification scheme. The higher the degree of qualitative structure, the
more such assumptions are required to transform the raw information to numbers useful for
standard analysis techniques. The Pitfalls section in chapter 2 discusses in more detail the
interviewers, analysts, and knowledge engineers as sources of this bias.

The following methods of quantification cover ways of transforming qualitative
information to quantitative information. Examples of application are included in each
method.

Dummy variables

This method is the one most people think about when dealing with quantification.
The raw data is transformed into artificial or dummy numerical values. Many times the
transformations are done without proper logic or thought . Examples of this transformation
follow:

1. Transforming information where only two options are available into
dichotomous values such as (0,1) or (-1,1).

2. Transforming information to integer values such as in the use of scales or ranks
1, 2, 3, etc.).

3. Transforming information to the real number line, a continuum of values for a
specified interval (e.g., 0.0, 0.1, 0.15, 0.27, 0.96 in the [0,1] interval). The
choice depends on the information gathered, its potential use, and its accuracy
(the number of significant digits).

The reason for transforming to number values is for use in both the data base
formation (discussed later in this chapter) and for the modeling process. Numerical
variables are easy to analyze in most statistical and analytic procedures and are desirable for
that reason. The appropriate formation of the various types of dummy variables is given in
more detail in the following sections.

Dichotomous quantification

Most information, whether qualitative or quantitative, can be transformed to a 0,1
or -1,1 dichotomy (two choices) with little or no assumptions required for the
transformation. Example 12.3 illustrates dichotomous quantification for the cases
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EXAMPLE 12.5: Significant Digits

Experts are asked to provide the number of years experience that they have had in a
field. The number of digits offered by the experts will differ across experts. Some say
about 2 years and mean greater than 1 year but less than 3 years. This is only one
significant digit. Some said 2 years and 6 months or 2 1/2 years. This is 2 significant
digits. Some say 2 years and mean exactly 2.0 years (2 digits) or mean about 2 years (1
digit). Because the number of digits differs across experts, the most general level of detail
must be used for all experts. In this case that means the lowest number of significant digits
(1) would be used for all experts.

Using only 1 significant digit results in a loss of information at the finer level of
detail offered by some of the experts. To avoid this loss, the elicitation of the information
should be more thorough. The first and second experts should be queried for the desired
level of detail using the verbal probe or ethnographic methods described in chapter 7. The
elicitation process can help guarantee that the level of information content is consistent
among experts, thereby minimizing the problems with quantification.

||

Proper elicitation planning and execution also involves understanding why this
information is being gathered and what potential use it will be in the analysis. Knowing
this, the analyst should make sure that the the information is being elicited at the desired
granularity (e.g., number of significant digits) rather than getting mixed levels of detail and
having to transform information to some other level in the post-elicitation phase.

Number-line quantification can be used to combine information from two or more
variables, provided these variables have a common basis of accuracy. One such application
could be the following:

EXAMPLE 12.6: Combining Number Line Quantifications
Experts were asked how much thermodynamics training and experience each
had. The answers were as follows:

School Training Job Experience
Expert No (yrs) (yrs)
1 1.50 0.00
2 0.50 5.50
3 0.00 2.33
4 2.25 3.10
If training is only half as valued as job experience, then the results would be

0.50(1.50) + 1.00(0.00) = 0.75 years
0.50(0.50) + 1.00(5.50) = 5.75 years
0.50(0.00) + 1.00(2.33) = 2.33 years
0.50(2.25) + 1.00(3.10) = 4.23 years

H W=
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It is not recommended that information of a more descriptive structure (words) be
transformed onto the real, continuous number line. Only information gathered in a
continuous, numerical form should be treated in this way.

| |

Ordinal ranks

Ordinal ranks are usually used on descriptive information (nonnumeric) that has
some relative ordering. The rank values assigned are also descriptive (words) in nature.
The variables formed using this quantification can be incorporated into the data base and
can be used in many of the analytic procedures for such analyses as correlation detection
and for understanding the conditional nature of the data base.

Because the ranks are relative comparisons, care must be taken regarding the use of
definitions to achieve and maintain consistency of application. Assuming that the
information from the experts was elicited in the proper fashion, clarifications are available
in the documentation to help the analyst or decision maker assign relative comparisons for
certain quantities.

EXAMPLE 12.7: Assigning Ordinal Ranks

In solving a problem, most experts use a basic principle from thermodynamics but
in varying degrees of emphasis of use. This information can be added to the data base
using the following ordinal rank variable:

Expert No. Descriptive Use

Rank
1 Did not use the principle at all 1
2 Extensively used the principle 6
3 Only mentioned the principle 2
4 Used the principle a few times 4
5 Used the principle once 3
6 5

Used the principle several times
n

The Saaty pairwise comparison technique (chapter 11) is a way of making relative
comparisons using the technique's own quantification to a numerical scale. However,
these resulting numbers or weights can only be interpreted in a relative sense because the
information used in the method is only relative comparisons. A resulting relative weight
from this technique of 0.25 cannot be interpreted as half as good as a weight of 0.50. The
relative interpretation is that the value 0.25 is less important or less preferred than 0.50.
This technique is best used as an elicitation method for obtaining responses from the
experts. However, it can be used as a quantification scheme for post-elicited data. One
major advantage of this method is that the relative comparisons are made in pairs and do not
have to be made simultaneously.
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EXAMPLE 12.8: Ordinal Ranks From Pairwise Comparisons

Of the five experts solving a problem, some used a rule of thumb or a modification
of that rule. The pairwise comparisons on the usage of this rule are determined by
answering the following question: Did expert i apply the rule more completely than expert
Jj? The answers follow:

omparison

Expert |

Same
Yes
No
No
Yes
No
No
No
No
Yes

UV WNNN ==
wnmhaph bbb WN

Using Saaty's method the resulting relative weights for these 5 experts follow:

Expert Weight

0.138
0.138
0.079
0.387
0.257

W\ WN —

These weights indicate that expert 4 applied the rule more completely than the others.
Expert 3 applied the rule less completely than any of the others. Experts 1 and 2 applied
the rule in the same manner. No further interpretation is possible with such a relative
comparison.

B

Categorical variables

In cases where qualitative information cannot be ranked or ordered in preference,
the information can be transformed and stored into groups or categories, usually according
to verbal descriptions. It is not recommended that these verbal categories be coded into an
arbitrary numerical code (a dummy variable). When this is done there is a great temptation
to analyze the numeric data as if the numbers reflected ranks or orderings. Most modern
software can easily handle character (word) information as a part of the information data
base.

Educational information on the experts are usually put into the data base as
categorical or classification variables. Degree titles such as BS, MS, MBA, etc. are
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examples of these categories. Degree disciplines such as civil engineering, mechanical
engineering, nuclear physics, and thermodynamics are other examples.

During some of the later analyses, categories or classes can be consolidated or
collapsed in later analysis stages if there are too many classes and not many experts (less
than 3) in each . Such collapsing does change granularity from specific to more general.

EXAMPLE 12.9: Collapsing Categories
For example, if there are 10 experts with the following disciplines in their highest
degree, these 10 different disciplines might be collapsed into 3 disciplines:

Expert. Elicited Discipline Transformed Discipline
1 Mechanical engineering Engineering
2 Nuclear engineering Engineering
3 Thermodynamics Engineering
4 Hydrodynamics Physics
5 Material science Physics
6 Nuclear physics Physics
7 Mechanics Engineering
8 Computer science Computation
9 Simulation science Computation

10 Knowledge engineering Computation

The definitions and rationale for the above transformation should be recorded and
consistently applied throughout the study. The above process is one of changing the
granularity of the discipline information from a more detailed description to a broader one.
The results of any analysis done on the collapsed version will only be valid for the more
general categorization. For this reason, it is recommended that collapsing be done only
during the later analysis stages and that the categorical data be stored untransformed in the
data base.

Description Variables

It may not be possible to quantify some of the information gathered. This
information should be condensed to as few words as possible and kept for further analysis
uses.

Descriptions of how the experts solved problems can be analyzed as conditioning
variables or can be used in model formation (chapter 15). Usually this information is not
easily translated into numbers or even categories without making some assumptions or
without changing the level of detail. At this initial analysis stage, neither is recommended.

Description variables such as the definitions and assumptions used by experts have
another important use. These variables need to be retained for documentation purposes and
for purposes of updating the experts' answers if new information is considered (chapter
10).
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Forming a Data Base of Information

Once the quantification steps from the previous section are done, the information
can be placed in a data base. This data base could be a computer file or a paper listing of all
the information gathered about each expert including their answers. A suggested list
follows:

Expert ID Name and Number
Interview information Date, time, place, duration, environment
Expert's background:
Education Degrees, dates, schools, disciplines
Experience Years, organizations, colleagues, nature
and type of work
Expert's problem solving Definitions, assumptions, steps, cues,
heuristics
Answers Values and comments

Each expert will then have many quantities (variables) associated with him. Some
information could be missing for some experts. A code word or number is needed to
denote missing information (e.g., miss), and one is also needed for nonapplicable
information (e.g., na) to distinguish these from O values. Many statistical and data-base
packages have their own designations for missing information.

If the guidelines for tailoring the elicitation in chapter 8 were followed, the data
gathered will reflect the design chosen, and the reasons for the choices are already
documented. There is little that needs to be done to the data base to conform to the
elicitation method used.

Because the data base and the elicitation method are so closely connected, the
monitoring and use of granularity is important. The results and conclusions that will be
found from the data base should be either at the same or at a more general level of detail
than the information in the data base. In the analyses suggested in the next chapters,
granularity is continuously monitored. Examples are given where the results change if the
granularity changes. It is important at this data-base stage to be aware of the detail of the
information content in the data base. A quick review of the variables and information in the
data base is usually sufficient. This review can be aided by listing each answer in
ascending order and listing other variables beside the answers for each expert.

During this review, the analyst can get some ideas about model formation (chapter
15). If many variables have missing values, more general-leveled models are suggested.
If the information is complete in the data base, models at the current granularity can be
formed and analyzed.

Also during this review, the analyst can see which and how many variables need
testing for possible conditioning effects on the answers. In addition, some variables may
require testing as sources of correlation or bias among the experts (chapter 14).

If many variables are in the data base (more than 20), there is a strong possibility
that information is being repeated among the variables. Many statistical techniques (from
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chapter 11) can be used to monitor for this redundancy of information among the variables.
In some cases, variables can be eliminated from the data base. These steps are presented in
the next chapter (chapter 13) on understanding the data base.
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13

Understanding the Data
Base Structure

In this chapter analyses are suggested to gain understanding of the relationships
existing among the ancillary variables, among the answer (response) variables, and
between these two sets of variables. The information and knowledge gained from the
results of these analyses are merely for understanding the data base, are not to be
considered as the final results, and conclusions should not be drawn from them. The
analyses suggested are standard, statistical techniques, most of which require assumptions
about the data that would not necessarily hold under expert judgment applications. Instead,
these techniques are suggested as tools for understanding variate relationships and are not
to be used to determine final or significant results. The use of several techniques is
suggested for the purpose of cross-verification of suspected relationships among the
variates.

The words of caution regarding the use of the statistical techniques presented below
are serious words. It is very uncomfortable for the authors to recommend applying a
technique when there is good reason to believe that assumptions required for its use are
being violated. It is also very difficult to recommend using a technique and then strongly
urging not to rely on the results. These statistical tools are used to explore variate
relationships in the data base. If the results from these analyses do not make sense, or if
the results of one test contradict results from another, there could be a very good reason;
namely, the techniques were not used properly. We strongly advise using these techniques
with the help of a statistician.

The analyses presented in this chapter begin with the investigation of potential
relationships between the ancillary variables and the answers. Then a separate analysis of
the answer data is presented for two purposes: (1) to present analyses of the answers when
there are no suspected conditional effects, and (2) to gain additional information about the
answer variables. The separate analysis of the ancillary data is also provided. Finally
analysis techniques are given for analyzing the ancillary data with the answer data.

The analysis techniques used are commonly found on statistical and data analysis
software packages. The software used for most of the examples is the SAS® product.
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Conditionality--Examining Relationships Between
Answers and Ancillary Data

All of the variables formed from the ancillary data have the potential of being
conditional variables that could have affected the answers given by the experts. This
relationship is called conditionality. Some very basic statistical tests and graphic
procedures can be used to begin the investigation of any potential relationships. These are
referred to as bivariate analyses where each ancillary variable is checked against each
answer variable. The multivariate investigative procedures are described in the later section
on Analyzing the Ancillary Data with the Answer Data.

Correlations

The easiest starting place for bivariate analysis of the ancillary data and the answer
data is to calculate Pearson pairwise correlation coefficients for all pairs of numerical
ancillary variables and numerical answer variables. Most statistical and data analysis
packages have correlation routines. If none are available, the formula in chapter 11 can be
used.

In order to determine if any of the correlations indicate potential relationships
between the pairs of variables, a significance level must be specified. If there are a total of
n pairwise correlations calculated, the significance level used to determine if any pair is
correlated should be < 1/n for n > 20 or the customary values of 0.05 or 0.01. Example
13.1 illustrates this determination for a large number of experts.

EXAMPLE 13.1: Correlations and Significance Level

The following 10 correlation coefficients were calculated for 31 experts answering
two questions (@) and Q2) compared to five ancillary variables from their background (Ys
= years since they worked on this type of problem; Ya = years worked as an assessor; Yp
= years worked in applications; Yd = years worked as a developer; and Yn = years worked
on documentation):

Ancillary Variables
lation (level Ys Ya Yp Yd Yn
O 0.095 -0.484 0.167 0.153 0.035

(0.61) 0.006) (0.37) (0.41) (0.85)

Q2 0.322 -0452 -0.095 -0.089 -0.309
(0.08) 0.011) (0.61) (0.63) (0.09)

The significance levels are listed in parentheses below the correlations. A
significance level of 0.05 or 0.01 is indicated because the number of correlations calculated
is less than 20. A conservative (minimizing the chances of an incorrect conclusion) level of
significance for this example would be 0.01. Any correlation whose level is less than 0.01
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would be considered significant, and a relationship would be suspected between those two
variables. In this case, only the Ya / Q) relationship is indicated. The conclusion is that
large values of Ya correspond to small values of Q) (because the correlation coefficient is a
negative value.).

[ )

At this point in the analysis, all the significant relationships should be recorded
along with any possible reasons or explanations. The ancillary variables that are
significantly correlated to the answers are the beginning of a list of potential conditional
variables. However, these significant relationships may not hold when the multivariate
analyses are performed later. Nevertheless, for now, they offer some understanding about
the data base, the reasons for the experts' answers, and some directions for future
analyses.

Graphs

The correlations can only be done for numerical variables. Graphs can be used to
plot potential bivariate relationships between the ancillary variables and the answers.
Graphs can also indicate nonlinear relationships; whereas correlation analysis is only good
for linear trend detection.

To graph qualitative or categorical data, equally spaced intervals may be used on the
axis using the ordering or ranking inherent in the categories. If there is some reason for
using unequal spacing, that should also be tried. If nonlinear relationships are indicated,
transformations of the data by taking logarithms can sometimes produce linear
relationships. Example 13.2 illustrates that such a graph of categorical data can be done.

EXAMPLE 13.2: Graph of an Ancillary Variable and an Answer Variable

The following is an example of a graph of a categorical variable describing the
reactor experience of 13 experts versus the answer variable Q1. The three categories of the
experience variable indicate an order of importance. That ordering is used to place the
categories on the axis.

Q1
1.0 X
X
0.8 X X
XX X
0.6 X
X
0.4 X
XX
0.2 X
0.0

None School Work
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From the above graph, no linear or nonlinear relationships between the two
variables are indicated.
N

Plots like the one in example 13.2 should be done on all possible pairs of the
ancillary variables with answer variables. If the graphs indicate a relationship between the
variables, then the ancillary variable is added to the list of potential conditional variables.
Any explanations or reasons for the relationship should also be kept with the list.

As mentioned above, additional analyses (e.g., multivariate analyses) will be used
to add to and to change the list of the potential conditional variables. Prior to these
analyses, some basic investigation of the answer data is useful especially if conditionality
does not appear to be a problem.

Analyzing the Answer Data

The answers to the technical questions are the prime reason for electing expert
judgment. It has been emphasized that these responses can be highly conditioned on other
(ancillary) information such as the experts' problem-solving processes and response
environment. It has also been emphasized that any scientific investigation must be done
with the understanding of the granularity used at the various stages of the problem: the
information gathering, analysis, and conclusions. These issues, granularity and
conditionality, are considered here in the analysis of the answer data by examining the
between/within variance and multimodal structures of the answers.

Investigating Multimodality

Empirical evidence has shown that the answers given by multiple experts form a
multimodal distribution (Booker and Meyer 1988a; Meyer and Booker 1987a; Baecher
1979). This multimodality was partially responsible for the widespread belief that experts
must be correlated or dependent upon one another. Therefore, the explanation of the
modes or clusters of their answers reflected membership of the experts into groups based
on common backgrounds, educations, or experiences. Until recently this belief and the
reasons for these clusters had not been investigated (Meyer and Booker 1987a).

In many cases the number of distinctive modes formed by the data will be obvious
to the eye. For example, a bimodal case with one mode at high values and the other at low
values with a gap in the midrange obviously splits the data set into two groups or clusters
(as seen in example 13.3). However, some cases may not indicate such obvious groupings
or clusterings. For these cases, a formal cluster analysis is useful for determining the
structure of possible groupings.

As described in chapter 11, cluster analysis forms the clusters from a data set
according to some distance criteria separating the individual data points. Most cluster
analysis programs have several options available for determining this distance criteria, the
most commonly used is the centroid method. The results of the cluster analysis can change
depending upon the method chosen. In any case, the interpretation of the cluster analysis
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results are left to the user. Most cluster programs printout results according to a
hierarchical clustering scheme where clusters are formed beginning with one cluster
containing all the data and ending with clusters containing only one data point each. The
user must decide which of these possible cluster formations to use to characterize the data
set.

There are ways that the user can decide on which cluster structure to use. The
analytically based way is to choose a cluster formation that shows the largest change in
distances between clusters (examples 13.3 and 13.4). Example 13.3 is a frequency data
plot of 31 experts' answers to a reactor safety question with a continuous response scale
from 0.0 to 1.1 (Meyer and Booker 1987a). At first glance, the data appears bimodal in
nature. The results of a formal cluster analysis using the centroid method on SAS® are
given in example 13.4. This graph shows the distance between the cluster centers plotted
for the different numbers of clusters formed (the different cluster formations). The detailed
clusters are also given for all possible cluster formations.

EXAMPLE 13.3: The Frequency Plot of a Raw Data Set

Thirty-one expert responses to one question are plotted below. The responses were
elicited on a continuous scale from 0 to 1, where a 1 was considered the highest likelihood.
One expert (value assigned as 1.1) felt that the event was even more certain than the
likelihoods presented on the scale. Of course, these values could have been transformed
from a 0 to 1.1 scale to a 0 to 1.0 scale for analysis.
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The data form two distinctive groups or distributions. The formal cluster analysis
should also indicate these two major clusters.
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EXAMPLE 13.4: Cluster Analysis Graph

The following graph indicates the distances between all possible cluster formations
for the 31 responses to one question. The distances are based on the centroid method of
cluster analysis.

Cluster formations range from 17 clusters where each value given by an expert
forms its own cluster to 1 cluster where all 31 observations form a cluster. (Some experts
gave the same value, making only 17 distinctive values in the data set.) From the plot,
there is a dramatic change in cluster distances with the two-cluster formation. The next
major breaks in cluster distances occur at the four- and five-cluster formations. By the time
that 17 clusters are formed, the distance measure is at zero value.
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The following table gives the values from the experts belonging to each cluster formation
where individual clusters are marked by square brackets:

No. of Clusters Cluster Formations with Members

1 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13, 0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30,
0.40, 0.44, 0.45, 0.50, 0.75, 0.75, 0.75, 0.75, 0.77,
0.81, 0.88, 1.0, 1.1]

2 [0.0, 0.0, 0.0, 0.0, 0.04, 0.11, 0.13, 0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30,
0.40, 0.44, 0.45, 0.50]
[0.75, 0.75, 0.75, 0.75, 0.77, 0.81, 0.88, 1.0, 1.1}

220



10

11

12

13

Understanding the Data Base Structure

.04, 0.11, 0.13, 0.20, 0.20,
5, 0. 5, 0.25, 025 030 0.30, 0.30,
) 050]

0.75, 0.77, 0.81, 0.88] [1.0, 1.1]

Soo3
(=]

(=]
“9
o2

=

O

NO

ey ey
eeLeo

[
9
kll
=
g9
\l
=
o0
y—a
=
oo
o0
el
L]
y—n
O
p—n
.—a
d

.11, 0.13] [0.20, 0.20,
0.25, 0.30, 0.30, 0.30]
5,075 0.75, 0.75,

NS
oo O]
oo H N

, 0.0, 0.04, 0.11, 0.13] [0.20, 0.20,
.25, 0.25, 0.25, 025 0.30, 0.30, O30]

75 0.77, 0.81] [0.88] [1.0, 1.1]

.0, 0.04] [0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.30, 0.30, 0.30]

45, 0.50]

.75, 0.75, 0.77, 0.81] [0.88] [1.0, 1.1]

SRRERERE
y]o
.Oo
@

9AaNoS UpbN
o
=4
o

— pr—
PS5

[0.0, 0.0, 0.0, 0.0, 0.04] [0.11,0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30]
[040 044 0.45, 0.50]

[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

[0.0, 0.0, 0.0, 0.0, 0.04] [0.11,0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.30, 0.30, 0.30]
[0.40, 0.44, 0.45] [0.50]

[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

[0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40, 0.44, 0.45] [0.50]

[0.75, 0.75, 0.75, 0.75, 0.77, 0.81] [0.88] [1.0] [1.1]

[0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40, 0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77]1 [0.81] (0.88] [1.0] [1.1]

(0.0, 0.0, 0.0, 0.0, 0.04] [0.11,0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40, 0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77] [0.81] [0.88] [1.0] [1.1]

(0.0, 0.0, 0.0, 0.0, 0.04] [0.11, 0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
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[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77] [0.81] [0.88] [1.0] [1.1]

14 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11,0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75,
0.77} [0.81] [0.88] [1.0] [1.1]

15 (The distance from 14 to 15 clusters was the same.)

16 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11] [0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40] [0.44, 0.45] [0.50] [0.75, 0.75, 0.75, 0.75]
[0.77] [0.81] [0.88] [1.0] [1.1]

17 [0.0, 0.0, 0.0, 0.0] [0.04] [0.11] ([0.13] [0.20, 0.20]
[0.25, 0.25, 0.25, 0.25, 0.25, 0.25] [0.30, 0.30, 0.30]
[0.40] [0.44] [0.45] [0.50] [0.75, 0.75, 0.75, 0.75]
[0.77] [0.80] [0.88] [1.0] [1.1]

The centroid distance measure can be used to determine which clusters are
reasonable. The strongest cluster separation splits the data set into two clusters of sizes 9
and 22 experts. This corresponds to the bimodal structure indicated in example 13.1. The
next cluster structure suggested by the analysis forms four clusters breaking off the two
largest answers and the seven smallest answers for the original two clusters. Again this
separation is visible on the graph in example 13.3.

A second way that the decision on clusters can be made is to use the ancillary
information gathered on the experts. For example, if there are two clusters in the data,
which ancillary information corresponds to the experts in each cluster? Perhaps, all the
experts in the first cluster made very optimistic assumptions when answering the question,
and the experts in the second cluster made very pessimistic assumptions. The cluster
dividing lines could then be drawn based on the experts' assumption-making in conjunction
with the statistical clustering results from the formal cluster analysis. Investigating the
relationships between the answer data and the ancillary data is discussed further in the
section below. However, it is always important to keep potential conditional relationships
in mind and to be watchful for them.

Determining the number of modes and clusters will be useful later in the bootstrap
simulation applications for investigating correlation and bias, and for forming aggregation
estimates. The cluster formations that look reasonable and any possible ancillary
information or explanations relating to the clusters should be documented for these later
investigations.

Investigating Between/Within Variation Structure

In most problems where expert judgment data is to be used, several experts are
asked more than one technical question. The multiple technical questions may be either
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totally different, or some could be quite similar in content and structure. In either case,
information regarding any differences in the experts can be gained by examining the
variation in the answer data between and within the experts. A commonly used technique
for analyzing between variation versus within variation is analysis of variance (see chapter
11). Example 13.5 illustrates the mechanics of the analysis of variance technique for
calculating these two sources of variation. (For further details, introductory statistics or
analysis of variance textbooks such as Snedecor and Cochran 1978, chapter 10, are
useful.)

EXAMPLE 13.5: Between and Within Response Variation Calculation

Eight experts were asked four technical questions on scales from [0,1]. The
between expert variance is MSB, and the within expert variance is MSE. Xjj is the
response of the ith expert to the jth question. The overall mean of all 32 responses is C, the
number of experts is ¢ (= 8); the total number of responses is N (= 32); and n; is the
number of questions asked of each expert (= 4).

Expert
Question 1 2 3 4 5 6 7 8
1 090 0.50 0.75 0.65 0.80 1.00 0.22 0.44
2 095 050 0.75 0.65 0.80 1.00 0.22 0.40
3 080 050 075 0.75 030 0.38 0.06 0.40
4 094 048 0.75 0.75 0.65 0.65 0.06 0.38
Total, X; 359 198 3.00 2.80 2.55 3.03 0.56 1.62
Mean, )?,-_ 090 050 075 070 064 0.76 0.14 041

MSB =Y, niX; - C)¥(t-1)
= 1.63/7 = 0.23

MSE=Y, Y (X;i-X;)*/® - 5)
i
= 0.49/24 = 0.02

MSB/MSE = 0.23/0.02 = 11.50

The MSB/MSE is a ratio of variances and it measures the relative difference of
between experts versus that of within experts. This ratio is also an F statistic and follows
an F probability distribution. If the ratio is large, then the differences of the between-
experts values are large relative to those of the within experts. In this example 11.50 is
large because it is in the far upper-right-hand tail of the F distribution with (¢-1) and (n-1)
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degrees of freedom. Therefore, the variation of between experts is significantly larger than
the variation within experts.
[ ]

If two or more questions are similar, then the variation of the responses to these
questions can be used as a source of random or background variation for the experts. This
random source provides a gauge with which to measure the variability between the experts.
The section on Using Analysis of Variance in chapter 14 indicates how this variation
comparison can be used to investigate interexpert correlation. Basically, if the variance
between experts for the similar questions is much larger (e.g., four times larger) than the
variance within experts, then the experts are giving quite different responses, and
correlation among them is not suspected. If not, then the variation from one expert to
another is similar to the individual experts' variation, and correlation among experts might
be a problem.

If all the technical questions are vastly different in either content or structure, then it
is expected that the within-expert variability would be larger than it would be if the
questions were similar. The within expert variability could even be larger than the between
expert variability (Meyer and Booker 1987a). In this case, it is necessary to investigate
why such large within-expert variation is present. Perhaps, some questions were quite
familiar to the experts whereas others were never seen before. Perhaps, the experts had
difficulty in using the response mode. Perhaps, the experts used an anchoring/adjustment
heuristic on some questions and simply guessed on others. Perhaps fatigue was a
problem. Perhaps there was some inconsistency in the elicitation process. With proper
recording of the experts' rationale and monitoring of the elicitation, these possibilities can
be traced and understood.

Even though the multimodality and between/within investigations were done only
on the answer data, explanations and reasons for the results found incorporated the
ancillary information. At this point some investigation into the ancillary data is needed.

Analyzing the Ancillary Data

The ancillary variables and information in the data base can be analyzed separately
from the answer data. However, the conditional relationships between the answers and
this data should not be ignored. The primary purpose for the separate analysis is to
investigate any redundancies in the ancillary variables, thereby reducing the number of
variables in the analysis with the answers later on. A secondary purpose is to gain insight
into the structures and relationships among these variables.

The suggested analysis of the ancillary data is given in a series of steps using
standard statistical multivariate techniques. More detailed descriptions of these techniques
are given in chapter 11.

Step 1: Factor analysis of the ancillary variables

Factor analysis produces a new set of factors from the original set of variables. The
original variables are mapped onto the new factors according to their common information
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content (based on variability). The mappings are sometimes difficult to interpret, and thus
the results may not be very useful. However, if the ancillary variables map well into a set
of new factors, either the new factors can be used as the ancillary variables or the original
number of variables can be reduced.

Example 13.6 illustrates two cases of factor analyses. The first case indicates how
a successful factor analysis can be used. The second case illustrates a factor analysis that is
not useful in trimming down the set of ancillary variables.

EXAMPLE 13.6: Use of Factor Analysis for Ancillary Variables

Case I: Successful factor analysis

There are 12 numeric, ancillary variables gathered from an elicitation of 20 experts.
A factor analysis on the 12 variables resulted in the following factor loadings on four new
factors:

Factors
Ancillary Variable 1 2 3 4
Al 0.054 0.112 0.802 0.032
Ar 0.556 0.236 0.080 0.128
A3 0,754 0.001 0.026 0.219
Ag 0.011 0.218 0.099 0.672
As 0.832 0.064 0.002 0.102
Ag 0.000 0.000 0.347 0.653
A7 0.107 0.883 0.000 0.001
Ag 0.256 0.495 0.202 0.017
Ag 0.109 0.001 0.389 0.501
A10 0.000 0.049 0.076 0.875
A1l 0.672 0.256 0.003 0.069
A12 0.000 0.837 0.006 0.157

The interpretation of these loadings is that variables A3, A3, A5 and A1 comprise (load
onto) factor 1; variables A7, Ag, and A2 load onto factor 2; variables A4, Ag, Ag, and A1g
load onto factor 4; and only variable A] loads onto factor 3. It happens that A, A3, As,
and A1) are the only set of variables containing information on the experts' education.
Variables A7, Ag, and Ay refer to the experts' recent work experience. Variables A3, A3,
As, and Ay refer to the years of work on various related projects. Variable A1 indicates
how long the experts took to interview. With this clean breakdown of variables, the 12
original ancillary variables can be restructured using the four factors. However, the four
new factors have interpretations that are a little more general than the original variables.
Thus, the granularity has changed.

Case II: Useless factor analysis

Suppose the factor loadings were as follows:
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Factors
Ancillary Variable 1 2 3 4
Al 0.054 0.112 0.802 0.032
Ay 0.256 0.236 0.080 0.328
A3 0.754 0.001 0.026 0.219
A4 0.011 0.218 0.099 0.672
As 0.832 0.064 0.002 0.102
Ag 0.000 0.300 0.347 0.353
A7 0.107 0.883 0.000 0.000
Ag 0.256 0.495 0.202 0.017
Ag 0.109 0.001 0.389 0.501
A1 0.000 0.049 0.875 0.076
A1 0.672 0.256 0.003 0.069
A12 0.400 0.437 0.006 0.157

Here there is no clear indication as to which factors variables A,, Ag, and A2 belong.
Also, in factor 3, the variables A; and Aj¢ have nothing in common, making the
interpretation for factor 3 difficult. Furthermore, factor 1 does not include all the
educational variables, factor 2 does not include all the experience variables, and factor 4
does not include all the work variables. These results are not very helpful in gaining
understanding about the ancillary variables relationships or structure.

]

Step 2: Graphical analysis

Factor analysis can only be used on the numeric ancillary variables. Relationships
among qualitative variables or among mixed qualitative/quantitative variables can be
examined using plots or graphs as suggested in the section above on conditionality.

Because the goal in these analyses is to search for interesting and redundant
relationships among the ancillary variables, any graphs that show all the data points falling
on or near a line indicate possible redundant information among the two variables plotted.
A list of such variables should be made and checked against the correlation analysis
suggested in the next step (3). The pairs of variables on this list should be either positively
correlated (for a line indicating positive slope) or negatively correlated (for a line indicating
a negative slope).

Step 3: Correlation analysis of the ancillary variables

Another useful step in understanding relationships among the ancillary variables is
the Pearson pairwise correlation coefficient for all possible pairs of ancillary variables. A
level of significance is needed for deciding whether any correlation is significant (important
enough). The level is based on the number of pairs, n, for which correlations are
calculated. If nis less than 20, then the standard .05 or 0.01 levels can be used. If nis
greater than 20, then the level should be less than 1/n .

Even though correlation analysis is considered a bivariate analysis technique, it is
useful in gaining understanding of all the ancillary data relationships. It is also useful in
verifying graphic results for numeric variables. If any correlation is highly significant (a
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significant level of less than 0.0001 or a correlation greater than 0.90), then redundancy is
suspected. Only one of the pair of variates needs to be considered for further analysis.

Step 4: Categorical analysis

The ancillary variables can be modeled among each other. One way to do this is by
modeling all variables that have integer (ranks, dummy variables, or quantifiable
categories) as dependent variables with the numerical ancillary variables as independent
variables. Categorical analysis techniques will indicate any potential relationships
among the dependent and independent variables. This analysis technique is based on linear
modeling (Grizzle, Starmer, and Koch 1969) and is not discussed or used extensively in
this handbook. Any significant relationships indicated by categorical analysis should be
noted and added to the list for potential redundancies.

Step 5: Cluster analysis for variables
Like factor analysis, cluster analysis can be used to examine how much information
is shared among the numerical ancillary variables. If the variables cluster in distinct and
tight groups, then information is shared among the variables in the group. The variables
from any tightly formed groups should be added to the list of potentially redundant
variables.

By following all or some of the above steps, lists of potentially redundant ancillary
variables are available for interpretation. The following flow chart indicates how the steps
can be used, and the example in example 13.7 indicates how results can be interpreted and
used. Only results indicating the strongest information redundancies should be used for
trimming the set of ancillary variables. Additional similar tests will be done on the
combined ancillary/answer variables data set in the next section.

Summary of Steps for Ancillary Data Analysis

For Numeric Data: For Descriptive Data:
(1) Factor analysis (2) Graphs
indicates shared information indicates possible relationships
(3) Correlation analysis For Integer Data:
indicates possible relationships
(4) Categorical analysis
(5) Cluster analysis indicates possible relationships

indicates shared information

EXAMPLE 13.7. Ancillary Variables Analysis
The 12 ancillary variables from example 13.6, case II, plus 5 more (A13-18)
descriptive variables were analyzed using the five steps. The results are indicated below:
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Step 1: Factor analysis, part II, example 13.6: Indicated no clear redundancies
of information; no new factors could be used in lieu of other variables.

Step 2: Graphs of all pairwise combinations of the 18 variables: Indicated a
strong relationship between A1 and descriptor A13 and between A3 and As.

Step 3: Correlations of all 12 pairwise numerical variables: Indicated one pair
(A3, As) strongly correlated with a significance level of 0.0001 and that several
other pairs were barely significant.

Step 4: Categorical models of all integer variables (A7, Ag, Ag) with the other
numerical variables: Indicated A7 is influenced by A, Ag, and A2 but not
strongly.

Step 5: Cluster analysis of the numerical variables: Indicated a weak clustering
of A7, Ag, A2 and A2 and a weak clustering of A3, As, and Ag.

Interpretation

Weak clusterings and no clear factor analysis results indicate little shared
information.

The only strong result is the A3, A4 correlation. Either of those two could be
eliminated from the ancillary variables set.

All other variables should be kept for further analysis.

Analyzing the Ancillary Data with the Answer Data

Many of the steps for analysis presented in this section are identical to those
described in the previous section, Analyzing the Ancillary Data. The main objective in this
section is to compile lists of possible multivariate relationships--specifically, which answer
variables are related to which ancillary variables. Ancillary variables that are related to the
answers are called conditional variables. The model formations and analyses use
multivariate techniques. Results from these analyses should be consistent with results
found in the previous sections of this chapter.

Step 1: General linear models (GLMs)

As the descriptor general implies, it is tempting to try to formulate one giant model
of all the numerical variables with the ancillary variables as the independent variables in the
model and the answer variables as the dependent variables in the model. Such a general
linear model would describe relationships existing between the answer and ancillary
variables and determine which of the answer variables were conditioned on which ancillary
variables. However, this temptation should be avoided for a couple of reasons. First,
there is a strong possibility that the same information is shared by many variables.
Including all of them in a single model results in erroneous variable relationships. Second,
the variables may be of different types (dummy variables, etc.) and different granularities.
The model would then be a mixture of levels of detail in the information. Finally, some
variables may have missing values. Many computer packages cannot perform the analysis
or will give erroneous results.
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Some logical general linear models can be formed by using some of the information
gained in the bivariate analyses and the ancillary analysis. For example, if any of the
graphs of the answer data versus the ancillary data indicated a trend either in the positive or
negative direction, these variables should be analyzed using the GLM procedure known as
regression. The answer variables are the Y's, or dependent variables, and the ancillary
variables are the X's or independent variables. Likewise, models can be formed using any
of the variables, indicating significant correlations; and models can be formed by using any
other information, such as suspected relationships between the variables.

To assist in regression model formulations, many software packages have
procedures, called stepwise procedures, that indicate which models produces significant
relationships between the independent and dependent variables. However, stepwise
procedures do not make model choices. They only give a set of models. Model choices
should still be based on the information already gathered from previous analyses and
logical variable selections.

Once the models have been run on the regression analysis code or a linear model
package, a list of significant models and relationships among the variables should be
compiled. These significant results should be consistent with the information already
gathered in the previous analyses; however, some differences will result because (1)
bivariate results do not necessarily hold for multivariate models, and (2) weak significant
relationships can change to no significance or to stronger significance depending upon the
procedure used.

Model formations are not restricted to using only ancillary variables for the X's.
One answer variable may be modeled in terms of the other answer variables if it appears
that the answer variables are related or correlated to each other.

The model formations at this stage of the analysis are solely for the purpose of
investigating variate relationships. Model formation for the purpose of obtaining final
results and interpretations is described in more detail in chapter 15.

Step 2: Discriminant analysis

This procedure can be used in addition to or in place of the GLM for investigating
variable relationships. The objective of this modeling is to find a set of ancillary variables
that best discriminates among the values of an answer variable.

Studies have indicated that answer variable values tend to be distributed with
multiple modes, multimodal, (Booker and Meyer 1988a, Meyer and Booker 1987a,
Baecher 1979). In order to determine which, if any, ancillary variables are responsible for
this clumping of values, discriminant analysis can be used. The results of a discriminant
analysis indicate a list of variables that best discriminate among the values of the chosen
answer (dependent) variable. In order to set up the discriminant analysis, the values of the
dependent variable need to be grouped or classified into categories. If there are several
modes, this grouping is obvious. If no value groupings are evident, then discriminant
analysis is not indicated. If a discriminant analysis is done for each answer variable, then
any significant (effective) discriminating ancillary variable indicates a potential variable
relationships. New ancillary/answer relationships should be added to the list, and any old
relationships should be noted as confirmation of a previous result. The variable
relationships found from the discriminant analyses will also be useful in chapter 14 for
correlation and bias detection.
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Step 3: Mulitvariate correlation

Pairwise correlations have been suggested for the ancillary data, the answer data,
and the combined set of both. The information from all these pairwise correlations can be
combined graphically to form an ad hoc multivariate correlation structure. Such a graph
depicts many intertwined relationships among the variables.

One way of constructing this graph is by forming a distance between the pairs of
variables based on their correlations and plotting the variables according to how far apart
they are. Distance measures based on variance and covariance (related to correlation) are
used in cluster and discriminant procedures. A simple distance based on the correlation is
calculated by 1-r, where r is the correlation coefficient. The effect of this calculation is that
the higher the value of r, the closer the distance will be for any pair of variables.

For the graph, distances should only be calculated for pairs of variables that have
significant correlations. The rules for significance are outlined above in the bivariate
correlation step.

Example 13.8 illustrates a graph from the Meyer and Booker study (1987a). Three
separate conglomerates of variables are evident from the significant correlations among the
variables. The first group of variables comes from five different ancillary variables
describing the experts' backgrounds. The second group of variables comes from four
different ancillary variables describing the experts' experiences. The third group of
variables comes from all the answer variables (labeled a), 10 of the variables describing the
experts' problem-solving processes (labeled r), and the single variable which described the
experts' evaluation of the complexity of the technical question (labeled c).

Many interesting results can be seen from such a diagram:

1. There is no connection between the background variables, the experience
variables, and the answer/problem-solving variables. The separation of the
answer variables from the experience and background variables implies little
evidence for conditionality.

2. There is a close connection between the answer variables, the problem-solving
variables, and the complexity variable. This connectivity implies strong
evidence for the answers being conditioned on the problem-solving variables
and the complexity variables.

3. The answer variables are closely interconnected among themselves. The
problem-solving variables are also closely interconnected.
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Example 13.8: Multivariate Correlation Analysis

A answer variables

B background variables

C complexity variable

E experience variables

R problem solving variables

B B

I=

C

—{

R A

The sole purpose of performing GLMs, discriminant analysis, and mulivariate
correlation steps for ancillary and answer data is to search for strong, consistent
relationships among the variables in general and, in particular, to search for answers
conditioned on ancillary variables. From the results of these analyses, an expert judgment
model can be constructed, as discussed in chapter 15.
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14

Correlation and Bias
Detection

In this chapter, the concept of correlation is defined and discussed as it is used in
expert judgment applications.

Correlation among experts is closely related to the concept of dependence, and
distinctions and similarities of both concepts are discussed below in Defining Correlation
and Dependence.

Correlation is also closely related to the various forms of bias, discussed in detail in
Part II; the affinity of these two concepts is addressed in Bias and Correlation
Relationships.

Because correlation among experts is often considered a problem area in analysis of
expert judgment data, the third section, Detecting Correlation in the Analysis, focuses on
various methods of detection. This section is organized as a series of 14 steps. Each step
relates to the usage of several different analysis techniques. These steps and techniques
may appear to be redundant. Indeed, they are meant to be redundant. Comparing results
from different techniques is the only way to verify conclusions about correlation. In
Analysis Summary and Conclusions, we summarize both the 14 steps and the results from
the examples in the steps.

Defining Correlation and Dependence

Correlation among expert judgment answers has typically meant dependence or lack
of independence among expert answers. Thus, to discuss correlation, the concepts of
independence and dependence need to be clarified.

One concept of independence comes from a mathematical definition and is referred
to as probabilistic independence. The mathematical procedures for combining data from
multiple experts require that the data have this type of independence. In probabilistic terms,
two events, A and B, are said to be independent if the probability of A is unaffected by
what happens to B. Stated another way, the unconditional probability of A, P(A), is
unaffected by B such that P(A) = P(AIB), the probability of A given B (Feller 1957).

In the context of examining independence in data, the same definition can be used,
but the process of identifying independence is not so straightforward. Analysts tend to
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think of two pieces of data as being independent if the occurrence of one datum is
unaffected by the other. One way of defining unaffected is to examine ways in which the
data were collected. This examination involves investigating conditionality. If data are
collected under various conditions, they may be unconditionally dependent because those
conditions are affecting the data and the data are affecting each other. Thus, the
observation of one datum is affected by another such that P(A) # P(A|B). However, if the
data are collected under conditions, C, mutually affecting both A and B, they could be
conditionally independent such as P(AIC) is independent of P(BIC). In either case,
conditionality becomes the focal point of investigating independence or dependence.

The terms correlation and dependence have been used interchangeably and
synonymously in expert judgment problem settings. This usage is also mathematically
valid and is in keeping with the probabilistic definition. However, the terms zero
correlation (uncorrelated) and independence can only be used interchangeably when the
data are normally distributed. Only in the normally distributed cases does zero correlation
or uncorrelated guarantee independence. In nonnormal cases, zero correlation could imply
either independence or dependence. Thus, for most of the analyses in this book, the
dependence/independence problem is discussed from the dependence (or correlated)
viewpoint.

In collecting expert judgment data, analysts have historically speculated that the data
were not independent (Baecher 1979, Winkler 1981). The reasoning was that dependence
is likely because the experts had many conditions in common that would affect their
estimates. Analysts considered such conditions as shared training, common work
experiences, and exposure to the same data bases. Through time the speculation about the
effects of these conditions became identified as sources of correlation among the experts.

A simple example can be used to illustrate how this line of reasoning developed.
The following is a sample of probability estimates from five different experts for an event:
(0.1 0.15 0.1 0.6 0.65). The bicluster structure of the estimates is commonly seen
(Baecher 1979, Booker and Meyer 1985, Meyer and Booker 1987b). The analyst looking
at the clustering of the answers tends to arrive at the conclusions that the first three experts
are giving the same answer and the last two are giving the same answer, that there are
really only two independent answers, and that this is not a sample of five independent
pieces of information. The data appear to have a correlation structure with the first three
experts being correlated to each other and the last two experts being correlated to each
other. If the analyst has assumed that experts should be correlated, then the clustering of
the data supports that assumption. However, it should be noted that the clustering is the
only reason for suspecting dependence. No conditions have been examined to support the
dependence idea, nor has any reason been given for dependence.

The reasoning used in the above example was responsible for the development of a
new body of literature on how to deal with data from dependent sources (Winkler 1981,
Lindley and Singpurwalla 1984). The focus of this research was to establish methods for
handling dependent data, assuming that the dependencies existed and in many cases
assuming that the correlation structures were known. The analytical focus concentrated on
these assumptions and not on the real issues. First, the correlation structures are generally
not known. Second, correlation among the experts may not exist or may not be an
analytical problem if it does exist. Third, conditionality and granularity need consideration
in determining and interpreting correlation.
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Two studies (Booker and Meyer 1985, Meyer and Booker 1987b) had the goal of
identifying possible sources of correlation among experts. In both studies, it was not
assumed that experts were correlated nor that clusters of answers implied correlation.
Instead the approach was to investigate any possible sources of correlation using the
definition of dependence based on conditions and monitoring the effect of granularity.
Sources (conditions) were sought from many different forms of information gathered in
intensive interviews of the experts.

For the model formations of each study, the granularities were chosen with the level
in the first study more detailed than in the second. For the chosen granularity, the results
of each study indicated that the answers were conditioned on the problem-solving
processes of the experts. These conditions appeared to be a reasonable source for possible
correlation or dependence among the answers. However, an equally valid result would be
that the answers were conditionally independent, being conditioned on the sources in the
same way. Therefore, discovering conditions affecting answers does not automatically
imply dependence.

Granularity must also be considered in interpreting the results. In both studies, at a
granularity finer than the ones chosen for analysis, the experts had nothing in common in
background, experiences, or problem solving (i.e., there were no conditions that could
induce dependence among them). Applying the conditioning argument at a different
granularity results in the conclusion being that there is no dependence among the experts.
Of course, another equally valid possibility is that sources of correlation could exist at an
even finer level of detail than was gathered. Gathering information at such an extremely
fine granularity might be difficult or impossible because the subjects might not be capable
of providing information at such a level or by providing it the interview would be
prohibitively long.

Therefore, in defining correlation or dependence among experts, the conditioning
argument from the definition of probabilistic independence can be used as a guide. In its
application, care must be taken to use the predecided granularity for the entire problem
because conclusions about correlation and dependence can change if levels are changed.

Bias and Correlation Relationships

In the broadest definition, bias can be related to a number of sources. Bias can be
induced from the interview environment through factors such as the interviewing
technique, the question phrasing, and the interactions with others including the interviewer
present at the interview (motivational bias). Bias can be related to the internal
consistency of the experts' reactions, conditioning, and thinking (cognitive bias). This
bias occurs when the expert is not consistent in his own reasoning or when the expert is not
consistent with fundamental rules of logic. Bias can be induced by faulty memory retrieval
(availability bias). Therefore bias can be considered a conditional phenomenon. It can
be initiated by certain external or internal conditions during the elicitation.

Because bias can be found in any of the above forms, it becomes difficult to
monitor and to control. However, monitors and controls such as those discussed in Part II
should be used and considered an integral part of the experimental design. The various
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ways of handling and minimizing bias are discussed in chapters 3, 7, 8, and 10 in
conjunction with the elicitation techniques.

In the analysis of the data from experts, bias manifests itself as conditions
responsible for correlated data. Therefore, application of bias-minimizing methods is
important for minimizing possible dependence. Of course, answer data can be correlated
for reasons other than bias; however, the original postulated sources of correlation can all
be traced to the different types of bias.

The correlation in the data appears in the forms of interexpert correlation or between
expert correlation. If an expert has a motivational bias that drives him to be consistently
optimistic, then his answers will reflect that bias by being more optimistic than the other
experts. This expert's answers could indicate interexpert correlation but not between-
expert correlation. If all the experts shared the common goal for a project, then their
answers might exhibit between-expert correlation and little or no interexpert correlation.
The remainder of this chapter describes how to detect and analyze correlated data in both
forms regardless of whether a bias or some other condition is the source of correlation.

Detecting Correlation in the Analysis

Several steps using several methods are given below to investigate any potential
correlation among the experts' answers. The main emphasis in each step/method will be on
detecting correlation or dependence in the answers given by the experts using the answer
data itself and the conditionality definition of dependence. In other words, dependence is
sought in terms of possible conditions that may be influencing the answers of multiple
experts or that may be biasing the answers given by a single expert. It is not assumed, a
priori, that dependencies exist. The investigation is done using only the data (except for
step 14) and minimizing the assumptions necessary for using the analysis techniques.

The methods for detection include using the results from correlation analysis,
multivariate analysis, analysis of variance, and simulation techniques, such as the
bootstrap. Detection is also done by using the features of the chosen elicitation method and
using assumed correlation structures and distribution forms. Any one of these steps or
methods can be used individually. However, to maximize the information inherent in the
data, it is suggested that all steps, except the last one (step 14), be done for a data analysis
approach. Because the last step is an assumptional approach, it may not always be
appropriate to use, but it can be done in conjunction with the others or by itself.

The following 14 steps fall into various categories according to usage. These
categories are listed as subsection headings. There may be one or more steps under each
heading.

Using Granularity
Step 1: Defining a level of detail to be used in the analysis and in
the interpretation of the results.

Even after having assumed and established a definite granularity for the problem,
the application of the definition of dependence must be done considering granularity. What

236



Correlation and Bias Detection

does it really mean to say the experts are correlated? With a fixed granularity, the question
becomes, What does it really mean to say the experts are correlated for this granularity of
data and analysis? It has already been shown that the answer to this question can be
different if the granularities are allowed to change. Therefore, the first step and most
important step is to fix the level in the analysis and in the interpretation of the results. The
results of the rest of the steps in the correlation investigation are given in terms of the
granularity chosen in this first step.

Using Hypothesized Sources of Correlation

The next few steps are data preparation steps for some of the remaining methods of
correlation detection. They do offer the analyst an opportunity to hypothesize what
conditions in the ancillary data might be potential sources of correlation. They also offer an
opportunity to do some hands-on data analysis gaining additional insight into the data set
for formal model formation later (chapter 15).

Step 2: Compiling a list of conditions from the ancillary infor-
mation that are suspected or hypothesized as being potential sources of
correlation.

This list could include suspected sources from the literature (Booker and Meyer
1985), such as, the experts’ educational background, commonly shared work experiences,
how recently they worked on a similar problem, assumptions made in the problem-solving
process, and heuristics or rules used in solving the problem. Likely candidates for this list
can come from the results of the multivariate analyses done on the answer data and from the
ancillary data in chapter 13. Any ancillary variables that were significantly correlated to
answer data should be added to this list.

Step 3: Examining the raw data clusterings.

In chapter 13 on understanding the data-base structure, the multimodal structure of
the data was investigated. A raw data frequency plot, such as in figure 13.1, was helpful
in determining the raw data clusters. The important point here is that these clusters of the
raw data do not necessarily imply a correlation or dependence structure. For one reason,
the data may be conditionally independent on one or more ancillary variables. For another
reason, there may not be any rationale for the clusterings. However, it is important to try
and find reasons for the raw clusterings. Also do any of the ancillary variables group the
data according to these clusters? This question is partially answered in the ancillary data
analysis in chapter 13, but a more complete answer to this question is needed in the
correlation investigation. The steps below pursue this answer.

Step 4: Forming clusters of the data using the suspected
conditions. :

New data clusterings can be formed using the conditional variables listed in step 2.

This formation can be done by hand by simply splitting the values of the conditional

variables into categories or clusters and listing the corresponding answer data for each

category. If the answers within these clusters are numerically similar, then the question

posed in step 3 is answered affirmatively. An alternative formation can be done by plotting
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the categories of the conditional variable against the numerical answers to see if clusters
form. In either case, if no cluster formations are evident, information is still gained
regarding the relationships of the data and the ancillary information. This information
should be consistent with the results from the analysis in chapter 13.

Step 5: Compiling a list of unsuspected variables.

This list should be a random selection of the ancillary variables not hypothesized as
sources of correlation. Ideally, this list should be as long as the list in step 2; however, that
may not be possible in some cases either because there may not be enough ancillary
variables left or because such a list would be too long for the analyses in the following
steps.

The purpose of this unsuspected list is twofold. First, a random selection provides
a chance of discovering conditions that might be sources but were not previously
hypothesized as possible sources. Second, this list provides a comparison to the list of
suspected sources from step 2.

The lists compiled in steps 2 and 5 should not be considered final at this point in the
investigation. The results from the remaining steps/methods will help determine if these
hypothesized lists are correct.

Step 6: Forming clusters of the data using the unsuspected
variables.

Graphs or hand listings of the unsuspected ancillary variables and the answers
should be examined to see if the answer data clusters similar to the raw clustering (from
step 3). The clustering for an unsuspected variable could be better (closer to the raw
clustering) than the clustering for the suspected variables (from step 4).

Steps 2 through 6 will give three different clustering mechanisms to interpret and
compare: (1) the raw data clusters, (2) the data clustered by the various conditions
suspected of inducing dependence, and (3) the data clustered by other unsuspected
conditions. If any of the variables forms clusters of approximately the same size and of
similar values to the raw data clusters, then there is reason to suspect that the variables are
sources of correlation. The remaining steps will help verify this conclusion. If none of the
variables produces good clusterings, there may still be correlation among the experts and
the other steps are necessary. Example 14.1 illustrates hand listings of cluster formations
from ancillary variables.

Example 14.1: Clusterings Using Different Variables

From the list of background variables on the eight experts, years of work
experience in the technical area (YRWORK) and one of the variables describing the
expert's problem-solving process (PSRATE) were selected as potential sources of
correlation. Two other variables, not suspected, were also chosen: discipline of highest
degree (DEGREE) and whether or not the expert had any experience in a nuclear
experimental facility (EXPFAC). The answers to the technical question are listed as P.
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Expert P__ DEGREE  EXPFAC YRWORK = PSRATE
1 0.90 Engineer Yes 1.5 1
2 0.50 Engineer Yes 0.5 -1
3 0.75 Engineer Yes 3.0 0
4 0.65 Physics No 3.0 -3
5 0.80 Engineer yes 1.2 -1
6 1.00 Engineer No 10.5 -1
7 0.22 Physics No 7.6 -2
8 0.44 Engineer Yes 4.9 2

Two clusters for each variable can be formed by hand listing as follows:

Variable Clustering Description Cluster 1 Cluster 2
P [0,0.50] & [0.50,1.0] 0.22, 0.44, 0.50 0.65, 0.75, 0.80, 0.90, 1.0
DEGREE Physics & engineer 0.65, 0.22 0.90, 0.50, 0.80, 0.75, 0.44,1.00
EXPFAC Yes & no 0.65, 1.00, 0.22 0.90, 0.50, 0.75, 0.80, 0.44
YRWORK >5.0& [0,5.0] 1.00, 0.22, 0.44 0.90, 5.00, 0.65, 0.75, 0.80
PSRATE [0,2] & [-3,0) 0.90,0.44, 0.75 0.50, 0.65, 0.80, 1.00, 0.22

Here none of the ancillary variables clusters the answer data similar to the raw data
clusters (line P), even though the cluster sizes (2 or 3 for cluster 1 and S or 6 for cluster 2)
are similar for the ancillary variables.

||

Using Correlation Analysis

Step 7: Calculating the Pearson correlation matrices of the
answers.

Calculating the Pearson pairwise correlation matrix (chapter 11) for the experts'
answers to all questions is helpful for finding experts that are numerically correlated in their
answers. This correlation is strictly a numerical correlation, and it does not necessarily
imply dependence of the experts under the definition. However, it is good to know which
pairs of experts' answers are significantly correlated using the Pearson correlation
coefficient. Any significant correlation coefficients can indicate potential expert correlation
that can be further tested under the dependence definition using the remaining
steps/methods.

The correlation coefficients are calculated for pairs of experts by comparing the
numerical similarity between the experts answers to more than two technical questions.
There is an implicit assumption made regarding the similarity of the technical questions
asked. The coefficient calculation assumes that the answers to these different questions
represent repeated measures of each experts' knowledge and problem-solving processes.
This assumption is not a bad one to make if the technical questions are similar in structure
(form and response mode) and if they are similar in content. One way to help verify
similarity among the questions is to check the results of the analysis done in chapter 13. If
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the answer variables were found to be related to each other from Pearson correlation
coefficients, from graphs, from GLMs, or from cluster analysis, then similarity among the
questions is plausible.

Example 14.2 illustrates two different correlation matrices for the data from
example 13.1. The first matrix is the expert correlation matrix of coefficients calculated
across answers to the questions. The second is the answer matrix of coefficients calculated
across experts to help verify question similarity through correlation of the answers.

EXAMPLE 14.2: Correlation Matrices of Experts and Answers
Eight experts were asked four questions that were similar in subject matter and used
the same response mode, a continuous scale from 0.0 to 1.1. The correlation matrix for the

experts is formed using the Pearson correlation coefficients for each pair of experts as
follows:

_E\ _B _Ey _E« _Es _Es _E1 _Is
E1 1.00 -0.41 0.00 -0.46 0.87 0.74 046 -0.15
Ey 1.00 0.00 -0.58 -0.03 0.24 0.58 0.66
E3 1.00 0.00 0.00 0.00 0.00 0.00
E4 1.00 -0.80 -093 -100 -0.69
Es 1.00 096 0.80 0.35
Eg 1.00 0.93 0.52
E7 1.00 0.69
Eg 1.00

The only significant correlations in this matrix (using a 5% significance level) are
the ones underlined. The lower triangular values are not listed because they are identical to
the upper triangle values folded over at the diagonal of 1.00 values. One interesting result
here is the perfect negative correlation of expert number 4 and expert number 7. Usually,
analysts tend to be concerned with positive correlations among experts because that has the
effect of underestimating the true expert variation if ignored. However, if experts are
negatively correlated, the expert variation is overestimated if the correlation is ignored.
Neither effect is desirable and both produce statistically biased estimates of the expert
variation. In any case, correlations (positive or negative) should be investigated.

The correlation matrix for the answers follows:

O O 03 _Oa
1 1.00 0.99 0.51 0.86
(o)) 1.00 0.52 0.87
Q3 1.00 0.85
Q4 1.00

The significant correlation coefficients (using a 5% significance level) are
underlined. Here the answers to the questions are very well connected into a structure.
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This structure indicates that using the answers could serve as repeated measures of the
experts' processes of answering similar technical questions. Therefore, the correlation
results from the first matrix (experts) are also usable. The answer structure can be
diagramed as follows, with the connecting lines representing significant correlations:

o)
A~

Q.4 Or
Q3

Using Multivariate Analysis

Step 8: Determining which clusterings match the raw clusters.

The objective in this step is to determine which of the ancillary variables cluster the
data in a manner most similar to the raw data clusters by using multivariate analysis
methods such as discriminant analysis and by using some of the results obtained from the
analyses done to gain understanding of the data base in chapter 13. If an ancillary variable
clusters the answers well, and this clustering has a basis in terms of cognitive theory, then
a potential source of correlation is identified (Meyer and Booker 1987b). The word
potential is important here because it is not true that the raw clusters of the answer data
indicate the existence of a correlation structure. Additional analysis such as using
simulation techniques and examining variances (in steps 9 and 10) is needed to make such a
determination.

Discriminant analysis could be used to complete the investigations done in steps 3
and 6 where the answer data are clustered according to the ancillary variables from the lists
compiled in steps 2 and 5. Discriminant analysis can be used in two different ways. First,
it can be used to determine which of the ancillary variables best predicts to which raw
cluster each datum belongs. Second, it can be used to determine which ancillary variables
predicts the clustering behavior of any other ancillary variable, such as the variables from
the lists in steps 2 and 5.

To implement the first application, a variable is chosen from either the list in step 2
or in step 5. Categories of values for the clustering are formed using the values of that
variable. For example, the variable PRSOLV in example 14.3, could be categorized as
positive (1) or negative (-1) values. PRSOLYV is the variable describing the experts’
problem-solving score accumulated over several problem-solving characteristics. This
variable was from the list of suspected correlation sources (step 2). Another variable,
DEGREE categorizes the discipline of the highest degree earned by the experts. It is not
suspected as being a source of correlation (from the list in step 5).

EXAMPLE 14.3: Using Ancillary Variables as Discriminators

The answers of 8 experts are listed below as Q1. Two other ancillary variables,
PRSOLV and DEGREE, represent choices from the lists in steps 2 and 5, respectively.
Discriminant analysis is done with each of the ancillary variables to determine if they might
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be potential discriminators for the answers. The results given below indicate how many
answers would be misclassified if the ancillary variable was used as the discriminator.

Expert ID PRSOLV  DEGREE _Q

1 1 1 0.90
2 -1 1 0.50
3 1 1 0.75
4 -1 0 0.65
5 -1 1 0.80
6 -1 1 1.00
7 -1 0 0.22
8 1 1 0.44

Discriminant analysis results using where the asterisks indicate misclassification by
PRSOLYV:

Expert From PRSOLV Classified Into
D Class PRSOLV Cla

1 1 1

2 -1 -1

3 1 1

4 -1 -1

5 -1 ] *%%

6 -1 1 ***

7 -1 -1

8 1 -1 ek

Discriminant analysis results where the asterisks indicate misclassification by
DEGREE:

Expert From DEGREE Classified Into
Id Class DEGREE Class

1 1 1

2 1 0 e ok 3k

3 1 1

4 0 l e sk sk

5 1 1

6 1 1

7 0 0

8 1 0 ok ok
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With so few experts (8), any misclassifications indicate poor discrimination by the
ancillary variable. Thus neither of these variables is a good clustering mechanism for the
answers.

| ]

The second use of discriminant analysis can be done in two ways. Ancillary
variables can be analyzed with each other to see if they are mutual discriminators or their
discriminating abilities can be compared by direct examination of the misclassification
output. In example 14.3, the two ancillary variables did not have the same
misclassification pattern. This difference in patterns indicates that these two variables had
little in common. This result should be consistent with the results from the analysis of the
ancillary variables done in chapter 13.

Using Analysis of Variance

Step 9: Examining between and within cluster variations.

Comparing between-expert and within-expert variations is the basic philosophy of
analysis of variance procedures in statistics (see chapter 11). The formal analysis of
between and within answer variation was suggested in chapter 13 as part of the
understanding of the data-base structure. Interpreting the results from this analysis in the
context of correlation is given in this step.

In the previous steps, analyses have concentrated on data clusterings. How do
clusterings relate to correlation? One way of determining if data within a given cluster are
correlated is by comparing the variance structures of between-expert variation to within-
expert variation. Formal analysis methods such as discriminant analysis are based on
complex, but similar, variation comparisons. If interexpert correlation is suspected, then
within-expert variation can be used as a measuring standard. Within-expert variation is
how closely each expert repeats himself on the answers to various, but similar, questions.

For example, if experts are asked multiple, but similar, questions, then the variation
between experts can be compared to the variation within experts. If the two variations are
the same, the interpretation would be that there is no difference in answers given by
experts. If between-expert variation is much larger than within-expert variation, then this
result indicates that the experts are acting more independently of each other. The variation
comparison approach only works if multiple questions are asked of the experts, and these
questions must be very similar in content, structure, and response mode.

If the multiple questions asked are very different in content or structure, then the
within-expert variation comparison measures a combination of question variation and
within-expert correlation. Even so, the between versus within variance comparison can
still be useful. If each expert answers the various questions differently, indicating no
consistent bias, such as always answering with low values, then the within-expert variation
would be large. In this case, if the between variance is of the same size or larger than the
within variance, correlation among the experts might not be suspected. If the between-
expert variance is small relative to the within-expert variance, correlation might well be
suspected.

Example 13.3 illustrates how these variations are calculated for the eight experts
answering four very similar questions. Here the between-expert variation is 0.23 and the
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within-expert variation is 0.02, significantly smaller by comparison using an F test. By
examining the raw data, a systematic bias among experts 1, 2, 3, 4, 7, and 8 is suspected.
Each of these experts consistently answers the four questions as low or high. Therefore,
the within-expert variation is expected to be a small value and is a good measuring standard
for the between-expert variation. In this case, the between variation is much larger
indicating that the eight experts may not be correlated.

Using Simulation Techniques

A major concern with correlated data is when an aggregation or pooled estimate
must be formed. Most rules for aggregation require the independence of the data (not just
uncorrelated data). However, the chosen aggregation estimator can be used on the existing
data to help determine if correlation is a problem. This determination is made by
investigating the behavior of the chosen estimator comparing correlated and uncorrelated
data sets. A convenient way of determining this behavior is by using simulation
techniques.

Two such simulation techniques, Monte Carlo and bootstrap, are discussed in
chapter 11. Using the median as an example of a chosen aggregation estimator, steps 10
through 12 illustrate how to use simulation for investigating correlation. Heavy use is
made of the bootstrap technique because it does not require any assumed distributional
forms for the data and relies solely on the information content of the raw data.

Step 10: Comparing different stratified bootstrap sample results.

The bootstrap simulation technique can be used to investigate correlation in
conjunction with ancillary variables listed in steps 2 and 5. The resulting bootstrapped
distributions of a chosen estimator (such as the median) are formed for each clustering
using stratified sampling techniques. This sampling is different from the ordinary
bootstrap as described in chapter 11 because the clusters of the data act as the strata. Each
bootstrap sample is formed by randomly selecting one datum from each strata. The
resulting distribution of the median from stratified bootstrapping for a cluster formation
from one variable can then be compared to the results from other clustering variables.

Specifically, this comparison can be made by examining the dispersion of the
resulting bootstrapped distribution of the medians. The dispersion of highly correlated data
(r=0.9) is smaller than for uncorrelated data (=0.0). Dispersions can be measured using
the variances of the bootstrapped distributions, the ranges, or some central probability
coverage interval such as the central 90% putative interval (the difference between the 95th
and 5th percentiles).

If the central 90% putative intervals of the distribution of the median are used as the
measure of dispersion, then these intervals are at least three times wider for uncorrelated
data than for highly correlated data (Booker and Meyer 1988b). Thus by comparing the
90% putative intervals for the bootstrapped medians from different cluster formations,
relative correlation structure can be determined. If one cluster formation (from an
unsuspected clustering variable) results in an interval three or more times wider than from
another (suspected or good) clustering variable, then the data in the first case is
uncorrelated relative to the second case. Again the correlation investigation is geared to
finding conditional variables in accordance with the definition of dependence.
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To form these bootstrapped distributions, a modification is needed in the bootstrap
technique (chapter 11). The first step is to classify the data into clusters using the
clustering variables from the lists in steps 2 and 5. Then form stratified bootstrap samples
(e.g. 1000) by randomly sampling 1 datum from each of the m clusters. The median is
calculated from the m values. For 1000 or so such samples, a distribution of the median is
formed, and the corresponding percentiles (e.g., Sth and 95th) variance or range can be
found, indicating dispersion.

Example 14.4 illustrates the results of stratified bootstrapped median distributions
for 4 ancillary variables and for the raw data itself. Two of the ancillary variables were
from the suspected list (step 2), and two were from the unsuspected list (step 5). The
central 90% putative intervals plotted in the example indicate relative correlations due to the
various clustering mechanisms. By far the raw cluster formation is the most narrow. DEG
is the only other clustering variable indicating possible relative correlation. The other
variables are not very promising as potential sources of correlation.

EXAMPLE 14.4: Ninety Percent Putative Intervals for Bootstrap Medians
Using Different Variables as Strata

Six clusters were formed for each of the five variables; PSP and YRS were from
the suspected variable list, and DEG and ASR were from the not suspected list. Stratified
bootstrap sampling was done forming 1000 samples. The medians of each sample were
calculated and sorted. The 5th and 95th percentiles of these medians are marked by vertical
lines (I---). Each sample was of size six, one point was randomly selected from each of the
six clusters (strata) in the manner of simple random stratified sampling (Cochran 1963).
The variables chosen were as follows:

RAW - theraw data as it clustered numerically

PSP - avariable describing the problem-solving process of the experts
YRS - the number of years since the expert had worked on that type of problem
DEG - the discipline of the expert's highest degree
ASR - the number of years the expert worked as a code assessor
-----1 RAW
I I PSP
! ! YRS
R I DEG
I I ASR

| I I | ! I
0.1 02 03 04 05 0.6 07 08 09 10
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Step 11: Comparing bootstrap distributions using pairwise corre-
lation.

The bootstrap distribution of the chosen estimator (median) for the entire,
unclustered, data set can be used in conjunction with the information from the pairwise
correlation analysis of the answer data (from chapter 13). First, the entire data set is
bootstrapped obtaining the distribution of the chosen estimator. Second, the experts'
answers that were correlated in a pairwise manner from the correlation analysis are
removed from the sample. Next, the bootstrap distribution of the estimator for this
reduced, but perhaps more independent, data set is found. By comparing the dispersions
of the two resulting distributions for the median, the effect of including those highly
correlated experts can be readily seen.

Example 14.5 shows some results of this analysis for a data set of 31 experts
(example 13.3) from the study by Meyer and Booker (1987b). In this example, the
removal of the five correlated experts significantly changes the dispersion of the estimator,
indicating that the inclusion of those correlated experts does affect the dispersion of the
aggregation estimator (the median). The recommendation at this point would be to remove
those five experts' answers from the data set and replace them with an average of their
values. This average represents a single, but more independent, expert in conjunction with
the remaining, uncorrelated experts.

EXAMPLE 14.5: Using the Bootstrap with Pairwise Correlation Results
Thirty-one experts were asked a question with a response mode scaled from 0.0 to
1.1 (Meyer and Booker 1987b). The median was chosen as the estimator for aggregating
the 31 answers. A bootstrap sampling procedure was done for 1000 randomly formed
samples for this data.
In this set of 31 experts, a pairwise correlation of the experts over eight similar
questions resulted in the following significant correlation structure:

Expert 11 -- Expert 12 -- Expert 6

Expert 3
|
Expert 10

A bootstrap distribution for the median was then calculated on the data with the
above five experts' answers deleted from the data set. However, because dispersion is
affected by sample size, the results for a sample of 31 might differ from a sample of 26.
This effect would be more pronounced if the samples were 15 versus 10. In order to
account for sample size changes in comparing these two bootstrapped distributions, a third
bootstrap was done on the original data set deleting five experts' answers from five
randomly selected experts that were not at all pairwise correlated.

The resulting S5th and 95th percentiles for the median from that bootstrapped
distribution are plotted below.
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|mmmemem oo I Original data set,
N=31

| | N=26, without the
5 correlated experts

[ | N=26, without the
S uncorrelated experts

l ! I I ! I I I I I
0.1 02 03 04 05 0.6 0.7 0.8 09 1.0

The results of the three comparisons indicate that the sample size difference between
31 versus 26 has little effect on the median dispersions; however, removing the five
correlated answers indicates a significant increase in the dispersion. Therefore, it is
recommended that those 5 experts be replaced by a single average value for all 5, making a
data set of 27 uncorrelated expert answers.
[

Step 12: Comparing simulation results of the data to known
distributions.

Relative comparisons using bootstrap simulation do not give absolute information
on the correlation structure of the data. To gain this information, the bootstrap results of
the data can be compared to bootstrap results of data sets with known correlation
structures. Comparisons can be done by forming random samples of data from
distributions with known correlations and comparing these dispersions of the chosen
estimator (e.g. median) to dispersions of the estimator for the data.

The major difficulty in this approach is deciding on which known distributions and
correlation structures to compare with the raw data bootstrap results. For example, if a
normal distribution is decided upon, then what values should be used for the parameters?
If the mean and variance are estimated from the mean and variance of the raw data, then the
resulting dispersion of the normal sample with zero correlation will be the same as the
dispersion of the original data with unknown correlation. Such a comparison does not
provide any information about the unknown correlation in the raw data. However, if many
different correlation structures are bootstrapped, the effects in dispersion can be seen for
changes in correlations. For example, the central 90% putative interval of the median
estimator for a normal sample with correlation structure of 0.5 is about twice as much as
the central 90% putative interval for a normal sample with correlation structure of 0.9.

Another way of comparing the data set with distributions of known correlation
structures using the bootstrap technique is by using a mixture of distributions rather than a
single distribution. This method has two advantages. First, the new data set can be
modeled into clusters with means and variances reflecting the raw data set clusters.
Second, the new data set can be mixed according to the results of the correlation analysis
on the raw data set. An example of a mixture is given in example 14.6. Here the
correlations and clustering structure of the 31 experts (Meyer and Booker 1987b) were
used to form a three-mixture distribution using the normal family. The three mixtures are
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formed from the two distinctive raw data clusters and from the set of the five correlated
experts (see example 14.5). The raw data bootstrap compares favorably to the bootstrap
results for this three-normal mixture. Of course, other goodness of fit techniques (Conover
1971) could have been used in making this comparison, but the focus of this section is on
the use of simulation techniques.

EXAMPLE 14.6: Using the Bootstrap for a Normal Mixture

The following answers from 31 experts (Meyer and Booker 1987b) are cleanly
grouped into two distinctive clusters. In addition, a correlation analysis indicates that
experts 6, 3, 10, 11 and 12 are significantly correlated with correlations larger than 0.90.
The data can be divided into three groups using the correlation and raw clustering
information. These three groups are as follows:

T iz Mean Variance Correlation

17 0.24 0.03 0.00
5 0.18 0.01 0.99
9 0.84 0.02 0.00

Using the normal distribution with the above parameters for each group, a sample
of 31 was formed by combining the three groups. This sample was bootstrapped and
compared to the bootstrap distribution for the median of the raw data. The resulting 5th
and 95th percentile values of the medians are given below. The close correspondence
implies that the normal mixture is a reasonable fit for this data set.

[ | N=31, raw data

I I N=31, mixture
normal sample

I I I I I I I I I I
0.1 02 03 04 05 06 07 08 09 1.0

Using Elicitation Methods

Depending upon the elicitation technique used, biases and correlation resulting
from them can be somewhat controlled or monitored. Chapter 3 describes the biases and
some methods for countering, reducing, or handling them. Bias consideration is an
integral feature of designing the expert judgment elicitation as presented in chapter 8. Bias
control and monitoring in conducting the elicitation is discussed in chapter 10.
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Step 13: Examining the correlation or bias relative to the
elicitation method.

Of the three basic elicitation situations, interactive group, Delphi, and
individual interview, the first two are expected to induce correlation among experts.
In these two situations, the analysis steps 1 through 12 above can still be performed, but
the results should indicate much more correlation among the experts than the examples
given in this chapter that were taken from individual interview situations.

In the group and Delphi situations, particular attention should be paid to the
ancillary variables and their clustering or discriminating ability for the experts' answers.
Strong clusterings should be expected. That is, experts should reach similar answers for
similar reasons, especially for the group situation. In the Delphi situation, the analysis
steps 1 through 12 can be performed at the various stages of the process. The results at
each Delphi iteration will indicate how the correlation structure among the experts is
becoming stronger. The answers of the first stage should be no more correlated than those
from an individual interview situation.

In all three situations, the results of the correlation analyses steps can be
summarized as indicated in the final section of this chapter. The conclusions reached from
these steps will be used in the aggregation chapter (16).

Using Assumptions

Step 14: Making assumptions about the correlation structure
based on the analysis or on any additional information.

An example of making such assumptions about the correlation structure was
illustrated in the example 14.6. The results of the correlation and bootstrap analyses
indicated a potential correlation structure for the data set. These results also indicated that
there were 26 uncorrelated experts and 5 correlated experts. One possible conclusion
based on this result would have been to form a 27th uncorrelated expert by using the
average of the 5 correlated experts' answers.

The idea of combining the five correlated experts comes from the concept of
forming an equivalent number of experts (Clemen and Winkler 1985). For k& normally

distributed experts with a common correlation, p, and a common variance, o, the
asymptotic equivalent number of independent experts is

n(c2,p) =k[1 + (k-1)p]-1

The application of this formula can be impractical because n(c 2, p) is much smaller than &
for large values of p, making the number of independent experts extremely small or equal
to one. Another problem in using this concept is the assumption that the experts are
normally distributed with a common correlation and a common variance.

Correlation structures can be assumed using a mathematically convenient model
such as a multivariate normal model with an assumed value of a mutual correlation
coefficient that provides the covariance structure for the data. This model is commonly
assumed and can easily be used to handle the dependence problem. Because normality is
assumed, the concepts of zero correlation and independence are interchangeable. Example
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14.7 gives an example of how such an assumed model and correlation structure can be
used (Winkler 1981). The major problem of this approach is the process of making the
required assumptions. Since very little experimental evidence is available on distributions
and correlations of expert judgment data, many analysts consider these assumptions too
unrealistic to make.

Example 14.7: Dependent Experts With Assumed Normal Distribution

Three experts (k = 3) are asked to estimate the average cost and standard deviation
(in 1000's of dollars) for a newly designed earthquake-proof valve. If each expert's
estimate is normally distributed with means and standard deviations as m; = 60, 57 = 6; my
=62, 59 =5; m3 =70, s3 = 7, then the distribution for all three experts is a multivariate
normal with mean vector, m = (60, 62, 70)! and covariance matrix, £. The elements of 2

are s;j = pyjsisj , where pjj is the correlation coefficient between the ith and jth experts. In
this example the values for these correlations were found from previous estimates of these
experts to be p12 = 0.6, p13 = 0.5, and pp3 = 0.6. The resulting matrix Xis

36 18 21
=118 25 21
21 21 49

One way of formulating a single normal distribution from this multivariate (three-
variate) normal distribution is to use a Bayesian approach. Chapter 16 describes this
approach to aggregation in more detail. The way to reduce this multivariate normal to a
single normal is by combining the multivariate normal with a prior for the parameter of
interest. In this case the parameter of interest is the aggregation estimator for the combined
mean responses. A prior that has little influence on the data would be an improper, diffuse

prior that does not involve £ Combining the above multivariate normal with such a prior
gives a posterior distribution (the aggregation distribution) that is normal with a mean, m*,
and a variance, s*2, where

m* = etIZ-1mfet3-1e
and
s*2 = 1/et3-le

and where e=(1,1,1)! for three experts. This formulation gives weights to the three experts
according to the following:

w,-=§ sij/i i Smj

Jj=1 Jj=1 m=1

The resulting values for this data are

250



Correlation and Bias Detection

m* = 62.0
and
§s*2=228 ,
with the experts' weights being wy = 0.26, wy = 0.67, and w3 = 0.07.

If the experts were considered independent, then the values for p;; would be 0.0. The
resulting values for the mean and variance would be

m* - 63.2
and
s*2=113 ,
with the experts' weights being w; = 0.32, wp = 0.45, and w3 = 0.23.
By ignoring the dependence, a slightly larger mean results and a much smaller

variance results.
]

The mathematical formulations in the above example are not trivial. Yet, the
multivariate normal model is the most simple and convenient model that allows closed form
calculations. If the data does not indicate that a multivariate normal distribution is
appropriate, or if the correlation structures cannot be assumed as known, then even these
formulas are not useful. In those cases, the results from the other steps that rely on the
evidence from the raw data itself must be used to draw conclusions.

Analysis Summary and Conclusions

Investigating the possible existence of correlated data is an important step prior to
aggregation analysis (chapter 16). Many aggregation methods assume that the experts'
answers are independent. The steps (10-12) involving the bootstrap simulation as a tool
for investigating correlation demonstrated the use of aggregation and its relationship with
correlated answers. If dependencies can be identified or controlled, then the aggregation
schemes can be used with the assurance that the independence assumption is not being
violated. Identifying and controlling dependencies was the reason for investigating
ancillary variables that might be affecting the answers. If such conditions were found, the
experts might be conditionally independent. Under conditional independence, aggregation
on a conditional basis can be done without violating the independence assumption.

Conclusions from the analyses done in the above steps (1-14) can be drawn by
using the results collectively and relying on results that are consistently indicated by several
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steps. After performing the above steps, a summary of the results from each step is useful
in determining consistency. In most cases, the same results are indicated by several of the
steps making conclusions obvious.

For instance, example 14.8 shows the summary of the results for a set of 31
experts answering a question (Meyer and Booker 1987b). Most of the results for the steps
can be found in the examples in this chapter. The conclusion from all the steps is that five
of the experts are correlated numerically but the source of this correlation is not known.
The numerical correlation can easily be handled by averaging the answers of those five and
using that average as a 27th expert. The normality fit in step 13 indicates that the data can
be considered a mixed normal distribution. For a single normal distribution, zero
correlation and independence are identical. This equivalence supports the conclusion that
the data could be considered a set of 27 independent experts for the purposes of
aggregation (chapter 16).

EXAMPLE 14.8: Summary of the Correlation Detection Steps

The following summary is for the series of 14 steps outlined in this chapter for the
detection of correlation and bias. The data set used in these steps is from example 13.3 and
consists of 31 experts' answers to eight technical questions. The ancillary information
gathered was reduced to 17 variables relating to the experts' background and problem-
solving processes (Meyer and Booker 1987b).

.Step Step Summary
1 Granularity was chosen at the detail level of the analyzed ancillary variables.

This level was more general than the original data gathered because a
problem-solving score variable was formed for each (8) answer variable from
combinations of the original problem-solving characteristics gathered.

Results or Conclusions: Results will be interpreted and valid at this level of
generality.

2 A list was formed of nine variables suspected as sources of correlation.
Results or Conclusions: These variables represented the experts’ recent background
and problem-solving processes.

3 A cluster analysis was done on the data for each answer.
Results or Conclusions: The data formed two or three major clusters.

4 The data was clustered using the suspected ancillary variables.
Results or Conclusions: The problem-solving scores were the only variables
clustering the answer variables in a similar way to step 3.

5 A list was formed of 11 variables not suspected as sources.
Results or Conclusions: These variables represented the experts’ earlier history.
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The data for each answer variable was clustered using the not-suspected
ancillary variables.

Results or Conclusions: None of these ancillary variables clustered the answer data in
a similar way to step 3.

Pairwise correlation matrices were calculated for the 31 experts and the eight
questions.

Results or Conclusions: The eight questions were all highly correlated. Of the 31
experts, 5 were highly, mutually correlated.

Discriminant analysis was tried on three of the suspected ancillary variables
and on three of the not-suspected ancillary variables.

Results or Conclusions: Only the problem-solving score variables discriminated
between the answers for some of the eight questions.

Analysis of variance was done on the eight answers for the 31 experts.
Results or Conclusions: The within-expert variation was much smaller than the
between-expert variation, indicating interexpert consistency and possibly bias, but also
indicating less correlation among experts.

Stratified bootstrap simulations for the median were done on the six variables
from step 8 for each of the eight answer variables. The descriptions and
results for the remaining steps are only listed for the one answer variable
that indicated potential expert correlation. For this one answer variable, each
ancillary variable was used to cluster the answer data into six clusters of
nearly equal cluster sizes.

Results or Conclusions: Some of the results are in figure 14.4. Of the variables
analyzed, only one of the variables for one of the answer variables (the one for DEGREE)
indicated any potential as a source of correlation. This result may have been because one
cluster of the DEGREE variable was of size one, inducing a bias into the stratified
sampling.

The raw data for the answer variable in step 10 was bootstrapped with the five
correlated experts deleted, five uncorrelated experts deleted, and none of the
experts deleted.

Results or Conclusions: Removing the five correlated experts resulted in a
significant increase in dispersion compared to the bootstrap results with no experts removed
(example 14.5). Removing five uncorrelated experts produced the same results as the case
with no experts removed. Therefore, the five correlated experts are affecting the variance of
the median, and their estimates should be combined into a single value to represent a single
expert that is uncorrelated to the others.

The raw data bootstrap results on the answer variable in step 10 for the
median were compared to a three-normal distribution mixture using different
means, variances, and correlations.
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13

14

Results or Conclusions: The bootstrap results for this mixture modeled the data well
(example 14.6). The correlation structure of the mixture could represent the raw data. If the
data can be modeled using normals, then the concepts of zero correlation and independence
can be interchanged.

The ethnographic method with verbal protocol methods were used in
an individual interview situation.

Results or Conclusions: Biases and correlations during the interview process were
controlled and minimized. No other biases were suspected to affect the results of the data
analysis.

No additional assumptions about the correlation structure were made.

Results or Conclusions: An analysis of a mixture of three normals could have been
developed similar to the one in example 14.7. However, such development would be useful
only as a special case for this problem. The information already gained in the previous
Steps is enough 1o draw some conclusions about correlation for this data set.

Using the results from steps 2-6 ,8 ,10, and 13, two possible conditional variables
were indicated. Steps 6 and 8 indicated a rather strong conditioning effect from the
problem-solving score. However, there was a good reason to doubt the effect of the
DEGREE variable from step 10. Step 9 also indicates that there is not much numerical
indication of interexpert correlation. Some numerical correlation was indicated from the
results in steps 7, 11, and 12, the equivalent number of independent experts for the five
correlated experts would be one expert. This expert would be added to the remaining 26
for a set of 27 pseudoindependent experts. Therefore, the final conclusion would be to
use the 27 experts and consider them conditionally independent upon the problem-solving
score variable which was formed at a more general level of detail than the raw information

gathered.
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Model Formation

In chapters 12 through 14, the emphasis was on investigation and preliminary
analyses beginning with gaining familiarity with the information gathered from the
elicitation. This chapter and chapter 16 focus on what might be termed final analysis
procedures that have the goal of establishing interpretable conclusions. This chapter
concentrates on forming models whose results provide inferences. Chapter 16 concentrates
on forming aggregations or combinations of the experts' judgments also for inference
purposes.

In this chapter, modeling techniques and suggestions for describing the experts'
answers in terms of other variables are presented. These models are chosen based upon
information already gained from the exploratory analyses done on the data base. Some
modeling techniques use standard statistical procedures, such as least squares regression,
as their foundation. These techniques fall under the heading of general linear models
(GLMs). The multivariate structure of the data base lends itself to being modeled using
multivariate methods such as factor, discriminant, and cluster analyses. However, as in
previous chapters, the use of these techniques for final conclusions is not recommended
because of the assumptions required in using them. Other, more applicable modeling
techniques are based on decision analysis methods and can be described as conditional
models.

In general, the model is a functional relationship between the answer variables, y,
and the ancillary variables, x, and is described as

y = f(x)

General linear models define the expected value of the answer variable as a function
of the ancillary variables:
E(y) = fix)

GLMs also define the observed values of y as the function, f, of the observed values of the
x's plus some error residual, €,:

y=flx) +¢€ .

The above model is also applicable in discriminant analysis where fis the linear
discriminant function.
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Model formation based on conditional relationships between the answer variable
and the ancillary variables can be written as

fy/x)

Cluster analysis can be written in terms of conditional relationships between any
and all variables of x and y:

JOIx), fixix'), fiyly’)

Factor analysis can also be modeled in terms of defining new variables, z, from x
and y:

z= f(x,y)

Special problem areas, such as granularity and the structure of the available data
base, arise in model formation. Models can be formed at general or specific levels,
depending upon the chosen granularity and the granularity inherent in the variables. Model
selections are also integrally linked to the elicitation technique used in gathering the
information. As with any analysis technique, the assumptions required for the selected
modeling procedure such as cluster analysis must be examined and/or tested prior to
application.

General Linear Models

General linear models (GLMs) refers to the models formed using the statistical
method of least squares. The least squares method is so named because the model
coefficients (b’s in the equation below) are determined such that the squared distances
between the values of y and the E(y) are minimized. The commonly used techniques that
use the least squares method are regression, analysis of variance, and their multivariate
counterparts. Analysis of variance refers to the cases where the y's are continuous,
numerical variables and the x's are categorical or rank variables. Analysis of variance is
usually not applicable for models. Its uses are discussed in more detail in chapter 11.
Regression usually refers to the cases where both y's and x's are continuous, numerical
variables. Because the x's may be dummy variables, the term GLM better describes the
models discussed in this section.

Full-Scale General Linear Models

In a full-scale GLM, the experts' answers are modeled as functions of the ancillary
variables. The form of the GLM is

y=by+bixi +bxy +...+bpxpt € ,

256



Model Formation

where

y is the dependent variable and is one of the answer variables,

x; (i=1,m) are the independent variables and include many, if not all, ancillary
variables,

b; (i=0, m) are the coefficients estimated in the GLM analysis that are used to
determine the significance of the x; variables, and

€is the random error in the model, the residual that cannot be modeled by the
other variables.

In a full-scale GLM, all the independent variables (the x's) are included in the
model in the same form as they appear in the data base. There are procedures for screening
out redundant variables and insignificant variables to form a streamlined model. Redundant
variables are variables that contain overlapping information so that substituting one for
another does not change the model. Insignificant variables are variables that do not predict
the values of y so that their b values are not statistically different from zero.

The screening procedures for both types of variables are called stepwise regression
and are available on most statistical packages that have GLMs (Snedecor and Cochran
1978: chapter 13). In a step-up procedure, a model is formulated by adding x's one at a
time. The x's are added according to which ones best model or predict the dependent
variable. In a step-down procedure, a model is formulated by starting with the full set of
x's and eliminating, one at a time, those x's that contribute least to the model. In a
stepwise procedure, both the step-up and step-down techniques are done simultaneously to
select the best sets of x's that model the y.

Stepwise procedures are a convenient way to find the best model for y for any
selected number of x's. However, there are cautions and assumptions necessary for using
this procedure. Some cautions are discussed in the last section of this chapter. The
assumptions are the same as for any GLM:

1. The x's (all the x's) are independent variables with no measurement errors.

2. The €'s are distributed as normal random variables with a mean of 0 and a
variance of 62.

Violation of the first assumption occurs when one or more of the answer variables
are included in the model as x's because the answers are considered as variables measured
with error. There may be other x's that cannot be considered as measured without error.
One way to avoid violating the first assumption is to include as x's only the variables that
are measured without error. This, of course, limits model formation possibilities, which
limits discovering some conditional relationships among the variables. The effect of
including x’s with errors is to underestimate the variance of the dependent variable. This
underestimate has the most impact upon the variance associated with predictions made by
the model. Approximations for the prediction variances are available (Booker 1978).
However, predictions using GLMs in expert judgment applications are not usually
necessary nor are they recommended.

Testing for compliance with the second assumption is relatively easy. A quick test

can be done by plotting the residuals, €s, on normal probability paper. If they plot as a
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straight line, then the normality assumption holds. Many statistical packages have tests for
normality, such as the W test. These can also be used to provide easy verification.
However, the violation of this assumption is not as important as the violation of the first
assumption.

A caution that needs to be mentioned in full-scale modeling is that poor models are
possible when many or all the variables have missing values. If there are many missing
values (from the experts) on many of the variables used in the model, an adequate model fit
is not possible using GLM procedures. Appropriate models can be formed from the
original data by collapsing, combining, or redefining variables. In changing the original
variables to more general variables, the granularity of the model changes to a more general
level. The next topic discusses such a model formulation.

Combination Models

In chapter 13, several analysis techniques were suggested for analyzing the
ancillary data. From the knowledge of the relationships among these variables gained in
those analyses, combinations of the ancillary variables are possible. Combinations of
information from many ancillary variables can form new variables that represent scores or
indices.

For example, information (many variables) is elicited on the experts’ problem-
solving processes. These variables may be in the form of rules, assumptions, heuristics,
and problem-solving steps used by each expert. Each expert solves the same problem
differently; therefore, many variables are gathered that have missing values for many
experts (as shown in example 15.1). A full-scale GLM using all these different variables
would not be possible because these variables would form a sparse matrix of information.
If the variables could be combined to form scores with no missing values, then a GLM
analysis would be possible, because each expert would have a value for this score. The
score would be a new variable for the GLM.

EXAMPLE 15.1: Scoring Using the Anchoring and Adjustment Model
Seven experts were interviewed in a face-to-face interview. The information

gathered on their problem-solving processes indicated the use of four different

assumptions. The matrix below gives the usage of these assumptions by the experts:

Assumption No.

Expert No. 1 2 3 4
1 X X
2 X
3 X
4 X
5 X
6 X
7 X X
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Not all the experts used the same assumptions.. The assumption matrix has many holes and
a GLM for these 7 experts and 4 assumptions would not be recommended.

The experts all began solving the problem with some initial impressions. These
impressions could be considered anchors and the assumptions used could be considered as
adjustments made on the impressions forming an anchoring and adjustment model (see
chapter 3, The Four Cognitive Tasks). The following information on the experts' initial
impressions of the problem is used to score the anchoring:

Expert No. Initial Impression Value Assigned to Anchor
1 Highly possible 2
2 Possible 1
3 Not likely -1
4 Not sure about this 0
5 Can never happen -2
6 Don't believe this -2
7 Could be true 1

The following evaluation of the assumptions is used to score the assumptions as
adjustments from the anchors:

Assumption No. Evaluation Value
1 Assuming this gives a pessimistic view -1
2 Assuming this has no effect on the problem 0
3 Assuming this gives an optimistic view 1
4 Assuming this gives an optimistic view 1

To produce the final score, the matrix entries of the original assumptions are
replaced by the assumption evaluations, the initial impression values are added, and the
score is formed as follows:

Assumption Value

Expert No. 1 2 3 4 Anchor Score
1 -1 1 2 14142 = 2
2 0 1 0+1 = 1
3 0 -1 0+-1 = -1
4 1 0 140 = 1
5 0 -2 0+2 = 2
6 1 -2 1+-2 = -1
7 -1 1 1 14141 = 1

Because score or index variables are combinations of several variables, the
granularity of the model with these new variables is more general than the original variables
gathered. Thus, the results and their interpretations must be done at this more general
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level. As in example 15.1, if the problem-solving score variable is found to be significant
in modeling the answers from a GLM analysis, then the interpretation is that the answers
are conditioned on this general score variable, not on the specific problem-solving features
(assumptions and initial impressions) of the experts.

Combination variables can be formed in many ways. Some of the most commonly
used ones are described below.

Anchoring and Adjustment Scores

This variable combination scheme uses the cognitive theory of problem solving
which states that the expert anchors to an initial value or idea and then proceeds with a
series of adjustments from that value (anchoring and adjustment heuristic). To model the
expert's problem solving using this theory, the expert's initial impression (good, bad,
indifferent) of the problem (as in example 15.1) is formulated into a new variable, and then
the expert's adjustments (e.g., up, down, neutral) are formulated into one or more new
variables. Adjustment variables can be formed from any of the relevant problem-solving
information. The one illustrated in example 15.1 relates to assumptions made by the
experts in their problem solving. The new anchor and adjustment variables can be easily
quantified into ranks (1, -1, and 0). A final score or index for each expert is then found by
summing up the new anchoring variable and the new adjustment variables.

Cumulative Scores

Cumulative scoring is a very general variable combination scheme that produces a
final score variable at a general granularity. An example of a cumulative score is the
counting up of all the problem-solving features used by the experts. This accumulation
produces a score that reflects how much effort and thought each expert used in solving the
problem. Of course, there is freedom to determine which problem-solving features are
counted, and there is also the flexibility of weighting the various features to provide a
weighted sum as a score. Example 15.2 uses the information from example 15.1 to
illustrate the formation of a cumulative score.

EXAMPLE 15.2: Scoring Using Cumulative Scores

Using the matrix of assumptions from the experts in example 15.1, a cumulative
score is formed by counting up the number of assumptions used by each expert. No
evaluation of the assumptions is done to establish different weights.

Assumption No.

Expert No. 1 2 3 4 Cumulative Score
1 X X 2
2 X 1
3 X 1
4 X 1
5 X 1
6 X 1
7 X X 2
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The interpretation or meaning of the cumulative score can be vague. In this
example, the meaning refers only to the number of assumptions used by the experts. This
cumulative score variable may not be important for modeling of the answers because it
provides very little and very general information on why the answers were chosen by the
experts.

||

Collapsing Variables

Variables can be combined or collapsed together to form new variables with
different, usually more general, interpretations. Example 15.3 illustrates how information
on the expert's background relating to his education degrees and disciplines can be
combined to form a more general variable reflecting all the information. There are two
items worth mentioning in this process. First, the analyst must be careful not to impose his
own views or interpretations on the original data in order to successfully collapse variables.
Second, the granularity can change through several levels producing an extremely general
variable that may be of little use in conjunction with other variables (at a different
granularity) or be of little use in the interpretation of the results.

Example 15.3: Scoring by Collapsing Variables

Background information on the education of seven experts is listed below. A new
variable is formed by collapsing this information into a single composite variable
representing the experts' education.

Expert No. BS MS PhD
1 1 3 * ] =physics
2 4 4 4 2=mathematics
3 2 3=nuclear engineering
4 6 4 4=mechanical engineering
5 5 5 S=civil engineering
6 3 3 3 6=electrical engineering
7 5 4 4

By assigning weights to the degrees (BS, MS, and PhD) and to the degree
disciplines (the 6 codes*), the above information can be collapsed into an overall education
score. The weights are calculated from ranks of importance for the degrees; i.e., a BS
degree is not very desirable; an MS degree is; a PhD is only slightly better than an MS.
The ranks are normalized so that they sum to 1.0:
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Degree Rank Normalized Weight, wy
BS 1 0.1
MS 4 0.4
PhD 3 0.5
10 1.0

The same ranking, weight calculation process is done for the degree code (the
discipline area). Here the engineering degrees were valued as more relevant.

Degree (Code) Rank Normalized Weight, we
Physics (1) 1 0.05
Mathematics (2) 2 0.09
Electrical engineering (3) 4 0.17
Civil engineering (4) 4 0.17
Mechanical engineering (5) 6 0.26
Nuclear engineering (6) 6 0.26
23 1.00

The collapsed variable is then the combination of the degree weights and the degree
code weights as follows:

Collapsed variable for the i-th expert, V; = Xw.wy

The values for the collapsed variable are given below: .
BS MS PhD
Expert — we wqg =+ we  wd 0+ we  wd = Vi Vinew
1 0.05 0.10 026 0.40 0 050 = 0.11 042
2 026 0.10 026 0.40 026 050 = 026 1.00
3 0.09 0.10 0 040 0 050 = 001 0.03
4 0.17 0.10 026 040 0 050 = 0.12 047
5 0.17 0.10 017 040 0 050 = 009 0.33
6 026 0.10 026 040 026 050 = 0.26 1.00
7 0.17 0.10 026 0.40 026 050 = 025 0.97

Because the maximum possible score for this weighting scheme is only 0.26 and
the variation among the experts is small, the V;'s can be transformed according to the
highest score as follows: V; new = V; /0.26.

i

262



Model Formation

Multivariate Models

In chapter 14, some multivariate analysis procedures were used to aid in the
detection of correlation and bias. These procedures are briefly described in chapter 11.
They can also be used here in the model formation process. However, the assumptions
and circumstances for applying these techniques makes their use limited. Specifically,
factors from a successful factor analysis can be used as new variables in a GLM.
Discriminant analysis models can be used for describing relationships between answer
variables that are categorical in structure and ancillary variables. Cluster analysis can be
used on the variables (rather than on the values of a variable) to model variate relationships.

Factors From Factor Analysis

A successful factor analysis on the set of ancillary variables will produce a set of
new variables, called factors, that are combinations of the original variables from a shared
information analysis. These factors could be used as new variables in a GLM. The key
word here is successful. Success implies that the factor analysis produces factors from
clear-cut subsets of the original variables and that the factors have an interpretation or
meaning that is consistent with the variables that went into the factors' formation. Example
15.4 illustrates these concepts.

Example 15.4: Using Factor Analysis to Form New Variables

There are 12 numeric, ancillary variables gathered from an elicitation of 15 experts.
These 12 are all problem-solving variables: variables H, H3, Hs, and Hj; are variables
describing heuristics used; variables A7, Ag and A2 describe assumptions used; variable
R is a rule of thumb used; and variables C4, C¢, C9, and C19 describe cues used from the
problem. The data is as follows:

Variable
Expet H2> H3 H5 Hil A7 A8 A12 R1 C4 Cé6 €9 (10
1 -1 0 1 0o -1 -2 - 0 -1 0o -2 -1
2 0 0 0 0o -2 -3 -1 o 2 -3 2 3
3 1 -1 -1 1 -3 -3 - o -1 -1 -3 -3
4 2 1 1 2 -1 -1 -1 1 -1 2 -3 2
5 2 2 1 1 -1 -1 0 1 2 -1 -1 -3
6 1 2 2 2 0 0 -1 | (S I 0 0
7 2 1 -1 2 0 0 -1 0 0 0 0 0
8 -1 0 0 -1 0 0 0 0 0 -1 0 0
9 -1 0 -1 0 1 0 0 O 0 -1 1 0
10 2 1 2 2 -1 0 0 1 -1 1 1 0
11 2 2 2 2 2 2 3 1 1 3 1 2
12 1 1 2 2 1 1 1 1 2 2 2 2
13 0 0 0 -1 2 2 3 0 3 2 3 2
14 0 2 2 0 2 2 3 0 3 2 3 2
15 0 -1 0 0 3 3 3 0 3 3 3 2
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A factor analysis on the twelve variables using the principle components method
resulted in the following factor loadings on 2 new factors:

Ancillary Variable Factor 1 Factor 2
Hy -0.23 0.85
H3 -0.35 0.83
Hs -0.21 0.87
Hi -0.27 0.86
A7 0.94 0.15
Ag 0.93 0.27
A12 0.90 0.20
Ry -0.23 0.93
Cs 0.96 -0.03
Ce 0.87 0.30
Co 0.93 0.12
Cio 0.93 0.20

Factor 1 is a new variable that combines the information from the rule of thumb
variable (R1) and the 4 heuristic variables (H2, H3, Hs, and Hyj). Factor 2 is a new
variable that combines the information from the 3 assumption variables ( A7, Ag and A12,)
and the 4 cue variables (C4,C¢,C9, andC1¢). Therefore, the original 12 variables can be
reduced to only 2, factor 1 and factor 2. The values, or scores, for each expert for factor 1
and factor 2 follow:

Expert Factor 1 Factor 2
1 -0.64 -0.64
2 -1.27 -0.87
3 -1.19 -0.84
4 -1.12 0.71
5 -0.99 0.79
6 -0.56 1.07
7 0.10 -1.47
8 -0.02 -0.83
9 0.13 -0.80

10 -0.32 1.17
11 0.78 1.69
12 0.60 1.21
13 1.39 -0.26
14 1.49 -0.76
15 1.64 -0.17

The original twelve variables are now represented by two variables. The meaning
or interpretation of these 2 new variables are factor 1 represents the assumptions and
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problem cues used indicating the problem background items; factor 2 represents the rules
used in solving the problem.

Some information is lost by using the two new factors in place of the 12 original
variables. A measure of how much is lost can be determined from most factor analysis
procedures by examining the percentage of the total variance (from the twelve variables)
explained by the 2 factors. In this example, that percentage is 87%. Therefore, 13% of the
variation is lost using the 2 factors as new variables.

This loss of variance or information can also be interpreted as a change in the
granularity represented by the change from 12 variables to 2. If these 2 new variables are
used in a GLM, the results from that model would have a more general interpretation than a
GLM using the original 12 variables.

]

Discriminant Analysis

Discriminant analysis determines a linear discriminant function, f, which determines
how well the ancillary variables map or classify the categories or groups defined by the
answer variable. The assumptions for using discriminant analysis are (1) the variables
must follow a multivariate normal distribution, and (2) the answer (dependent) variable
must have a structure of groups or classes, e.g., multiple choice responses, qualitative
responses, or naturally occurring numerical groupings. The first assumption is very
restrictive and would not be expected to hold true for expert judgment data. The second
assumption is often very applicable to expert answers. However, the answers should be
distinctively and cleanly clustered and the reasons for this clustering should be evident from
the exploratory analysis results. Example 15.5 illustrates model formation using this
technique under these conditions.

Example 15.5: Using Discriminant Analysis in Model Formation

Eleven experts are asked to estimate the likelihood of a specific event under certain
conditions in a nuclear reactor. The response or answer mode given to them was the
Sherman-Kent scale (in chapter 7), and their percentage answers follow:

(10, 10, 90, 80, 99, 20, 10, 80, 99, 90)

Each expert provided the type of work environment (listed 1-3 for variable W),
used certain cues (listed as 1-5 for variable C), used certain formula calculations (listed 1-3
for variable F), used some rules of thumb (listed 1-5 for variable R), provided information
on background (listed 1-5 for variable B), provided the highest educational degree (listed 1-
3 for variable D), provided information on work experience (listed 1-5 for variable E), and
used certain assumptions (listed 1-3 for variable A). The data are as follows:
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Expert No. ANSWERW C E R B D E A
1 10 2 3 3 1 1 1 5 1
2 10 2 2 1 3 2 2 5 1
3 90 1 5 3 5 3 3 5 1
4 80 3 3 3 3 4 3 4 2
5 99 2 5 2 3 5 2 5 3
6 20 2 2 3 2 5 2 4 1
7 10 2 1 1 3 4 2 3 3
8 80 3 2 3 3 3 2 3 3
9 90 2 4 2 3 2 2 2 2

10 90 1 5 3 4 1 1 2 3
11 20 2 1 3 2 1 1 1 1

The goal is to determine which variables are good discriminators for the five
different answer categories (10, 20, 80, 90, 99). If a discriminant analysis is run on this
data set, most packages will either give a warning, an error message, or will not complete
the calculation for this data because there is a singularity present in the variable set. The
presence of the singularity means that not all the eight variables can be used to model the
answer because one or more of the variables are exact functions of one or more other
variables. In this case variables eliminating variables £ and W would allow a solution.
This problem is common in data sets with either large numbers of variables and/or small
numbers of experts.

Two solutions are possible: (1) run a cluster analysis or correlation analysis on the
variables (as done in chapters 13 and 14) to learn more about the variable structure or to
find the singularity; or (2) use available information to make some discriminant analysis
runs on subsets of the variables. In this example, the cluster analysis in example 15.6 will
indicate a solution, but there is already a clue on how to categorize the eight variables from
their definitions. Four of them (4, C, F, and R) are items that the expert used to solve the
problem, and four of them (B, D, E, and W) are features of the expert's background and
work environment. Two discriminant analysis runs were made using the two sets of
variables.

I. Variables A, C, F, and R as discriminators for the answers

Most discriminant analysis programs supply a table of how well this discrimination
was done and of any observations that were misclassified. The table for this analysis
follows:
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From Classified Into
Expert No. ANSWER ANSWER
1 10 10
2 10 10
3 90 90
4 80 80
5 99 99
6 20 20
7 10 10
8 80 80
9 99 99
10 90 90
11 20 20

In other words, no misclassifications implies that the four variables did a good job
of discriminating the five answer classes.

The model between the four variables, x;, and the categories of the answer variable,
Yj, is very similar to the GLM:

yi=loj+hijx1 + hjxo + 3jx3+ l4jxq
where /j; are table of coefficients below:

Linear Discriminant Function Coefficients

ANSWER
Term in Model 10 20 80 90 99
Constant -2419  -3374  -538.2  -833.0 -438.0
A=x] 26.1 29.1 38.7 47.7 36.0
C=x2 15.3 12.3 20.1 32.1 27.0
F =x3 105.5 130.3 160.4 191.9 134.2
R=x4 100.2 118.2 149.4 185.4 132.0

This table specifies the model of the experts' answers as classified by these four
variables. This model could be used to predict the answer (10, 20, 80, 90, or 99) of a
twelfth expert given his values for the four variables. However, this prediction capability
is not necessary nor important here. The goal is to determine which variables are influential
in determining the answers. To attempt inferences beyond this goal would be stretching the
limit of the information contained in the data gathered.

II. Discriminant analysis using W, E, B, and D.

The following classification table resulted from this analysis:
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From Classified Into
Expert No. ANSWER ANSWER _
1 10 10
2 10 10
3 90 90
4 80 80
5 99 99
6 20 20
.7 10 20*
8 80 80
9 99 90*
10 90 90
11 20 20

The * on experts 7 and 9 indicates that if these four variables were good
discriminators, then expert 7 should have answered with a 2 and expert 9 should have
answered with a 9. While some may argue that this is not too bad a misclassification of the
answers, the four variables in the first run of this example did a better job with no
misclassifications. Also, with so few experts, even two misclassifications are not
considered a good result.

Therefore, the results of these discriminant analyses indicate that the first set of
variables were good discriminators of the answer variable.

[

Because the function determined in discriminant analysis is a linear function, a
model from this technique should be similar to a GLM. In other words, if a particular set
of ancillary variables is found to be significant in affecting the answer variable in a GLM,
that same set should also be significant linear discriminators for the answer variable in a
discriminant analysis. If the results do not match, then perhaps assumptions required for
one or both procedures were violated. As a general rule of thumb, the GLM is a more
forgiving and more widely applicable procedure. It is recommended over discriminant or
even cluster analysis.

Cluster Analysis

The primary use of cluster analysis in chapter 13 was as an exploratory analysis
tool where determinations were made about how the data formed various clusters or
groups. Using cluster analysis as a modeling tool is done by determining variable
relationships according to how the variables are clustered or grouped. Cluster analysis can
also be used as a premodeling tool for discriminant analysis or for GLM. In the
discriminant analysis case, a cluster analysis is done on the answer data to determine if the
data forms clean, definite clusters that form the categories for the discriminant analysis like
the one in example 15.5. The results from a cluster analysis on the variables can then be
used to determine which variables would be good discriminators, as illustrated in example
15.6. The results from variable clustering can also be used to set up a GLM.
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Example 15.6: Using Cluster Analysis in Model Formation

Using the responses and ancillary information from the 11 experts in example 15.5,
a cluster analysis was performed on all nine variables using the centroid method to
determine clusterings of the variables. The results of the first cluster formation indicated
that the two clusters should contain the following variables:

Cluster 1 Cluster 2
(A,F,R,C,ANSWER) (B,D,E, W)
Interpretation Interpretation
The problem-solving The background and
variables and answers experience variables

This result indicates a strong relationship between the answer and the problem-
solving variables. The implication is that these four ancillary variables would be good
discriminators for the answers (as used in example 15.5) and would be good independent
variables for GLM with ANSWER as the dependent variable. The four variables in cluster
2 are not good candidates for discriminator or independent variables for ANSWER.

The cluster analysis done indicates other cluster formations for three to nine
clusters. Deciding on which formation to use is done by using different criteria. One such
criterion is the measure of the proportion of the original variance as explained by each
cluster formation. For this data, 72% for the variation is explained by the following four-
cluster formation:

Cluster Variables
1 (ANSWER, A, C, R)
2 (B,D,E)
3 (F)
4 W)

Another criterion is common sense or logical interpretation of the cluster formation.
Although the above four-cluster formation indicates a sizeable percentage of the variation, it
makes little sense to have clusters 3 and 4 with only one variable each. A better clustering
is the two-cluster formation where the variables in each cluster have common definition,
even though only 50% of the variation is explained by the two clusters.

u

Using cluster analysis as a stand-alone modeling tool provides only a conditional
model. The model is represented as a cluster formation like the two-cluster formation in
example 15.6. This model can be described using a general conditional form of the answer
variables, y, and the ancillary variables, x and x’, as
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f(y/x) for cluster 1
and

f(x/x') for cluster 2

Conditional models such as these are described further in the next section.

Conditional Models

The functional relationship between the answer variables and the ancillary variables
can be modeled using techniques from the decision science community. These modeling
techniques also serve as the response modes for the experts' answers. In other words, the
model selection dictates how the questions are asked of the experts. Therefore, the model
selection process becomes an integral part of the elicitation process (chapter 7) and must be
determined prior to gathering the data. The analysis philosophy of part III of this book has
been to explore the gathered data with the freedom of letting the data and its information
content direct the analyses. Formulating a model prior to the gathering of the data has the
disadvantage of losing some of this freedom and runs contrary to the analysis philosophy.

Two of the more popular decision analytic methods are described below. Their
popularity stems from several advantages: (1) ease of implementation, (2) wide
applicability, and (3) track record of success. The first is based on Saaty's pairwise
comparison technique, and the second is a general technique based on decomposition of the
problem using decision trees or diagrams.

Saaty

The Saaty pairwise comparison method yields a set of relative weights comparing
the items from a set of competing alternatives. This method is, therefore, a decision-
making tool. The resulting comparison weights are not probability or likelihood estimates.
However, they could represent relative likelihood comparisons. A more detailed
description, including advantages and disadvantages of Saaty's method, is given in chapter
11.

The Saaty method acts as both a model formation tool and as a response mode. The
model formed is a very qualitative one structured as a hierarchy of descriptive conditions
under which the alternatives are compared. The pairwise comparisons are made at all levels
of the hierarchy. Therefore, conditional comparisons are made among all the conditions in
all the levels; also comparisons are made of the alternatives, given the various conditions.

The analysis of the hierarchy to determine the weights is a straightforward set of
calculations based on the eigenvalues of the matrix of comparisons at each level. For each
level, the weights for the items being compared are calculated from the eigenvectors of the
principle eigenvalue. Weights are propagated through the levels of the hierarchy by
multiplication so that the final weights for the bottom level of competing alternatives can be
determined.
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The weights at any level are relative comparisons only, and have no numerical
interpretation. For example, if item A has a weight of 0.25 and item B has a weight of
0.50, then A is not half as important (or half as likely or good) as B. The only
interpretation is a qualitative one: item A is more important or likely than item B.

Example 15.7 illustrates how the conditioning and calculations are done for a
simple, two-level problem. Most problems have a much more complex structure than only
two levels. The more levels and items per level in a problem, the more relative
comparisons are necessary, and the more time required for evaluation. For each level of m
items, m(m -1)/2 comparisons are required.

Example 15.7: Using Saaty's Pairwise Comparison Technique for Model
Formation

In reactor safety analysis, the loss of off-site power (LOSP) can lead to other
consequences and important events. Therefore, it is important to investigate how LOSP
can occur. One set of possible events responsible for LOSP is meteorological conditions--
floods, lightning, and high winds. Each of these conditions can occur with varying
degrees of impact on the likelihood of LOSP. Questions such as how much flooding?
where does the lightning hit? how high are the winds? are important for evaluating the
impacts. To answer these questions, a hierarchy of the impacts on LOSP is represented as

follows:
LOSP

Due to Meteorological Conditions

Flooding Lightning Hit Winds (mph)

0-2" 2-4" >4" Direct Indirect 40-60 60-80 >80

The comparisons of the bottom eight specific meteorological conditions are made
conditional on the levels above them. Although a numerical Saaty scale given in chapter 11
is used to make the comparisons on a pairwise basis and the resulting weights are
numerical, the interpretation of the weights is qualitatively done. This interpretation
preserves both the qualitative structure of the input information and its granularity.

The pairwise comparisons are done as follows:

LEVEL 1: LOSP due to meteorological conditions.

LEVEL 2: Which of the 3 general conditions is most likely to cause

LOSP?
Flooding vs lightning? 1/4 (meaning lightning is more likely than
flooding using a 4 on the Saaty scale)
Flooding vs winds? 1/3
Lightning vs winds? 2
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These three comparison form an upper triangular matrix that is filled in by placing
1's on the diagonal and reciprocal answers on the lower triangular portion.

E L W
Flooding 1 1/4 1/3
Lightning 4 1 2
Winds 3 112 1

The weights for F, L, and W are found by normalizing the eigenvector of the
principle eigenvalue of this matrix and are (0.12, 0.56, 0.32), respectively.

LEVEL 3: Which of the specific conditions is most likely to occur
given the general condition of flooding occurs?

0-2 inches vs 2-4 inches given a flood? 2
0-2 inches vs more than 4 inches? 6
2-4 inches vs more than 4 inches? 3

The weights for the flooding matrix are (0.67, 0.22, 0.11).

Which of the specific conditions is most likely to occur
given the general condition of lightning occurs?

Direct hit vs indirect hit given lightning hit? 1/4
The weights for the lightning matrix are (0.20, 0.80).

Which of the specific conditions is most likely to occur
given the general condition of winds occurs?

40-60 mph given high wind? 2
60-80 mph? 8
Greater than 80 mph? 5

The weights for the winds matrix are (0.75, 0.16, 0.09).

FINAL WEIGHTS: By multiplying the weights of levels 2 and 3, the final (unconditional)
weights for the eight specific conditions are obtained as follows:

(0.08, 0.03, 0.01, 0.11, 0.45, 0.24, 0.05, 0.03)
The results indicate that the most likely cause of LOSP is an indirect lightning hit;

the second most likely is winds 20 to 40 mph. These results then would be the important
conditions and causes of concern for LOSP.
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It is not correct to make statements like the indirect lightning hit is almost twice as
likely as is the 20-to-40-mph winds. Such numerically based conclusions are not valid
with a relative (nonnumeric) comparison method.

[

One application of this technique is to use it as a weighting scheme for aggregating
multiple experts (chapter 16). A hierarchy can be done representing a conditional model of
information of each expert. Multiple experts can be aggregated by combining their
hierarchies. This combination is done by making a new level for the experts and placing
their hierarchies beneath it.

Decomposition Diagrams

The hierarchical structure of the Saaty method described in the previous section is
not the only way to diagram conditions. A more established way is to form an event tree
or decision tree structure with branches and nodes (Raiffa 1970). The tree usually begins
as a qualitative description of alternatives or events connected with branches. The tree can
be quantified into a decision diagram, like an event tree, by assigning values or
distributions to the branches. If values or distributions are propagated through the branch
pathway, then the values or distributions at the end of the tree will have a numerical
interpretation. If only qualitative information is propagated through the tree branches, then
the results have a qualitative interpretation such as the results from Saaty's method. In
either case the diagram serves as a model describing the conditions relevant to the final
results.

Using the diagramming approach as a decomposition tool helps the expert evaluate
a complex or large problem in smaller pieces, one piece at a time (U.S. NRC 1989). The
advantages of using the decomposition principle are cited in chapter 5 and in Kahneman
and Tversky (1982). An example of the use of the diagram method is given in example
15.8.

EXAMPLE 15.8: Using Decomposition Diagrams for Conditional Modeling

An expert is asked to determine the probability of failure for an important, but never
observed, event prime. The failure of prime depends on the temperature and the pressure
of the system. The expert is asked to provide a set of potentially fatal temperature values
(T1, T2, and T3) and a set of potentially fatal pressure values (P1, P2, P3, and P4). The
expert then diagrams the relationships between these temperatures and pressures as they

affect prime. The diagram is as follows:
P1
T1 < P2

Prime < T2 P3

3— P4
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This diagram is a qualitative model of prime. To quantify it, the expert provides the
likelihoods or probabilities of the temperatures and the pressures.

0.0001 — P1

0.005 — T1< 0.0005 — P2

Prime <o.000001— 2_ 001 _—Pp3
0.000005— T3 — 0.005 — P4

The values listed for the pressures could be independent of the temperatures (if pressure is
independent of temperature) or the pressure values could be conditional on the given
temperature (e.g., the chance or Py given T is 0.0001). In the above diagram, the
pressures are found to be conditional on temperature because the P values change
depending on whether T or T3 is used.

The resulting probability for prime is determined by multiplying the values across
pathways:

0.0001 — Pl— 0.000005
0.005— T+ (0005 — P2— 0.0000025

Prime < 0.000001-T2— 0.01 — P3—  (.0000001
0.000005—-T3— 0.005 — P4— 0.000000025

or 0.000007625
0.000008

The example 15.8 illustrates a conditional model construction for a single expert
providing single estimates for the branches. In chapter 16, a similar example illustrates
how to combine multiple experts using the diagram approach. In chapter 17 a similar
example illustrates how to propagate probability distributions on the branches.

Model Selection Suggestions and Cautions

This chapter has described some of the ways of formulating functional relationships
between the answers and the ancillary or conditioning variables. In the examples provided,
some of the pitfalls and shortcomings have been illustrated. This section summarizes these
cautions and makes some suggestions for model selection.

1. A fully descriptive model of the answer in terms of the ancillary variables (such

as GLM) is useful for determining and defining which variables are influential.
Such models provide better understanding of the answers given. However it is
not recommended that these models be used for prediction purposes because the
independent variables may not be measured without error. The variable
relationships established from these models should be consistent with the
results from the exploratory data analysis (chapters 12 and 13).

2. The steps necessary to formulate some models may require interpretations or

quantification of variables by the analyst. Interpretations should be avoided,
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and quantification should be held to a minimum and be done carefully. If the
information content or granularity of the elicited or gathered data is insufficient
for forming the desired models, then the model selected is inappropriate. If the
data is all highly qualitative or uncertain in nature, perhaps the model selection
should not be done.

. If more than one modeling procedure is done, consistency of the modeling
procedures chosen is important. The examples listed in this chapter indicate
how the multivariate procedures are compatible with GLM models. Likewise,
the conditional models are compatible among themselves. Only in a very
general way are the statistical and conditional types of models compatible.

. Granularity is important when collapsing or reformulating variables for
modeling. As noted in several examples, the new variables formed are more
general in information content, and the conclusions resulting from the analyses
must also be stated in the more general terms. Granularity is also important
when making relative comparisons, such as with the Saaty method. Even
though numbers are used in the analysis, the results can only be interpreted in
relative comparison terms.

. When using GLMs or multivariate procedures, it may be necessary to consult a
statistician. The regression and multivariate methods results are sometimes
difficult to interpret. The procedures themselves require prepackaged programs
that may be difficult to run, and there may be several different methods available
for the analysis. For example, there are many different ways to do a cluster,
factor, and discriminant analyses, and results do depend on the method chosen.

. The conditional models serve as both elicitation and analysis techniques. They
are somewhat difficult to use because they are time-consuming and may require
training of the experts.

. The philosophy of this handbook is that models should not be selected prior to
gathering the data, nor should they be selected based on popularity or
convenience of the analyst. The elicitation is complicated and compromised by
many choices, and the experts must be motivated to participate in its
implementation. It is easier on the experts and provides more flexibility for the
analyst if the model choice is based upon and directed by the data and the
elicitation.

. The primary purpose of model formation is to describe the answers in terms of
the other variables (information). The results of the modeling effort provide the
appropriate conditional interpretations for the answers. Enough other
information should be available from the elicitation and from the data base so
that these relationships can be understood and so that they can be used for
aggregating experts (chapter 16), handling the inevitable uncertainties (chapter
17), and making the final inferences (chapter 18).
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16

Combining Responses--
Aggregation

This chapter is divided into three major sections. First in Choosing the Aggregation
Scheme we present several recommended and widely accepted aggregation estimators and
also methods for forming aggregation distributions. Next in Application Environments is
presented aggregation using the above methods in various problem settings and
environments that involve multiple experts, decision makers, and analysts. Last, the
similarities of solving the aggregation problem and of solving the problem of characterizing
uncertainties as discussed in chapter 17 is presented.

Choosing the Aggregation Scheme

One of the most difficult analytical problems in expert judgment is how to combine
the experts' answers into either a single value (estimator) or a single distribution of values.
This aggregation is a mathematical aggregation. There is no shortage of techniques
available for mathematical aggregation; however, many of these techniques impose
restrictions on the data, the experts, the analyst, and on the interpretations of results. The
techniques presented in this chapter for both estimators and distributions reflect the general
philosophy of the book: from the elicitation side, the aggregation should not require the
experts to be force-fitted into unknown or uncomfortable modes of providing data; from the
analysis side, the aggregation should not be so complex that a doctorate in mathematics is
required to understand and use it. To achieve both goals, not all available techniques are
represented in this chapter. However, most of the general types of estimators are given in
some form. For a complete report on all the different types of mathematical aggregation
schemes, see a survey paper by Genest and Zidek (1986)

Aggregation Estimators

The most commonly used method of combining a set of answers is to calculate a
single value from a formula called an estimator using all the values in the data set. The
most popular estimators are the mean, median, and geometric mean. As discussed below,
each estimator has its own properties, making it appropriate for different applications.
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Regardless of the estimator chosen, it should be accompanied by an estimate of the variance
of that estimator. For example, both the mean and the variance of the mean are estimated.

The mean, or arithmetic average of the values, has the advantage of an easily
calculated variance of the mean. For any mean value from a large sample (e.g., 30), the
variance for that mean is estimated by the variance of the data divided by the square root of
the sample size, n.

var (mean) = 02(mean) = § ;- mean)Z)/n (n-1) .

1=

This variance formula is from the central limit theorem which claims that the formula is
valid for any sample of sufficient size. However, if the sample size, #n, is small, as it is in
most expert judgment applications, or if the data set is not unimodal and symmetric, the
central limit theorem does not accurately determine the variance of the mean. For samples
of size less than 10 (even for symmetric, unimodal data), the theorem does not work well.
Therefore, in these cases it is recommended that an alternative estimate for the variance of
the mean be used. One such alternative is to calculate the variance of the mean from a
simulation such as the bootstrap.

A second noteworthy property of the mean is that it gives equal weight to each
datum. This equal weighting implies that if one expert gives an answer that is far away in
value from the rest and if there are only a few experts providing estimates, then the mean
value will be greatly influenced by that extreme value. This result may not be a desirable
especially if that extreme value is questionable or seems unreasonable.

To overcome the influence of extreme values in forming an aggregation estimate,
the median or geometric mean can be used. Both of these estimators are influenced by the
central values of the data set and are not so influenced by the extreme values.

The median is the 50th percentile value. It is defined as the middle of the data set
such that half of the data is larger than the median and half of the data is smaller than the
median. If the data set is of odd sample size (n is odd), then the median is calculated by
finding the central value of the ordered data points. If the data set is of even sample size,
then the median is the average or halfway between the two center values. There is no
general or convenient formulation of the variance for the median. As suggested in earlier
chapters, this variance can be found using simulation techniques such as the bootstrap or
Monte Carlo methods.

Another interesting reason for using the median in expert judgment applications can
be found in the studies of Kahneman and Tvsersky (1982). They have shown that when
experts are providing numerical answers, they are really estimating the median value rather
than the mean. If all the values for the answers given by the experts form a distribution that
is symmetric in shape (cutting the distribution in half results in one half being the mirror
image of the other), then the mean and median are the same. However, most expert
judgment data distributions are not symmetric (they are skewed with the mode shifted to
one side of the center and the other side having a long tail); consequently, the mean and
median cannot be considered the same. Therefore it is a common (and recommended)
practice to consider the answers given by experts as median values.

The geometric mean is an average of the data values based on a logarithmic scale
whereas the simple mean is based on a linear scale. The geometric mean is formed by the
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product of all the »n values raised to the 1/ath power. The variance for the geometric mean
is also not readily available and can be determined using simulation methods. The
geometric mean is popular for use in expert judgment applications because of its log-based
nature. Many estimates elicited from experts are small values or probabilities that fit better
in a log scale than in a linear scale.

Example 16.1 shows how the above three different aggregate estimators give
different results for the data set of seven experts estimating a very low probability value of
an event. The variance estimates are from a bootstrap sampling done on the data. The
FORTRAN computer program for this bootstrap simulation is given in Appendix D.

EXAMPLE 16.1: Comparison of Three Aggregation Estimators
Seven experts provided the following probability estimates for a rare event.

) . 0.00001
 J 0.00010
 J 0.00010
, S 0.10000
P 0.00001
G m e 0.00001
y S 0.00005

Expert 4's estimate is several orders of magnitude larger than the others. The three
aggregation estimators--the mean, the median, and the geometric mean--produce the
following results.

Mean = 0.014
Median = 0.000050
Geometricmean = 0.000091

The influence of expert 4's large value is quite noticeable in the large mean value.
The median and geometric mean are much closer and do not reflect the influence of expert
4.

Using the central limit theorem (CLT), the variance of the mean for this data set is

var(mean)cpT = var(data)/7 =0.0014/7 = 0.000054 .

The variances for the geometric mean and the median can be found easily by using
the bootstrap simulation (BS). (The code for this simulation is in Appendix D.) Here 1000
samples of size 7 were formed by sampling with replacement from the original data. The
mean, median, and geometric means were calculated for each of the 1000 samples. The
calculations for the variances from the 1000 means, the 1000 medians, and the 1000
geometric means are as follows:
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var(mean)gs 0.00016
var(median)gs 0.000060
var(geometric mean)gs = 0.000000095

A large discrepancy is evident in comparing the bootstrap variance for the mean
with the variance of the mean from the central limit theorem. This data is a small data set
and is highly skewed (with the extreme value from expert 4). It is not expected that the
central limit theorem would give accurate results for such a data set. It is interesting to note
that in this case the variance for the mean from the CLT is the same as the bootstrap
variance for the median.

In comparing the bootstrap variances for the three estimators, the mean has the
largest, the median is smaller, and the geometric mean has the smallest.

In conclusion, the small sample size and extreme value of expert 4 makes the mean
estimator and its theoretical variance inappropriate. Either the median or geometric mean
estimates are fine for this data. In either case, a variance estimate for that estimator must
come from a simulation such as the bootstrap.

n

Because the mean estimator weights each datum equally and the median does not
give weight to the extreme values, some analysts prefer to use a weighted average or mean.
Each datum (expert answer) is given its own individual weight, and the mean is calculated
as

n n
weighted mean = 2 XiW; /Z w;

i=1 i=1

The advantage of this estimator is that the analyst can control which values (or
experts) influence the estimator. The variance for the weighted mean is also available from
theory; however, due to the small sample sizes and potential skewness of most expert
judgment data sets, simulation is again advised for determining the variance. The biggest
disadvantage is that the weights must be determined for each expert.

Determining Weights

Determining weights is not an easy process. It often requires information about the
experts and how they arrived at their answers. It can lead to the dangerous situation where
the analyst imparts his knowledge and influence (perhaps erroneously) to the results.

However, there are ways of determining weights based on the data itself, on
qualitative comparisons of the experts and ancillary data, and on information from model
formations. There is also a simple rule of thumb for determining weights and that is to use
equal weights.

Data-based determinations

Weights can be determined from the data itself using no other information. For
example, if one expert gives an extreme value relative to the others, that expert can be
assigned a lower weight than the others. To illustrate this use of the data to determine
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weights, example 16.2 shows the effects of different weights on a weighted mean
estimator. In this example, expert 4 must be given a weight of 1/1000 of the other six
experts in order to produce a weighted mean value comparable to the median or geometric
mean. The purpose of this example is not to imply that the goal is to achieve the same
value for the weighted mean as for the median or geometric mean. This example merely
indicates how the three estimators are weighting the seven responses.

EXAMPLE 16.2: Using the Weighted Mean Estimator

Using the data from example 16.1, different sets of weights are proposed for the
seven experts. In each case expert 4 is given a smaller weight relative to the other six.
The other six are all given the same larger weight, and expert 4 is given a weight of 1. The
effect on the weighted mean estimates is shown below.

W1235.63 W, Weighted Mean
1 1 0.014
2 1 0.0039
10 1 0.00086
50 1 0.00021
100 1 0.00013
1000 1 0.000055
1 0 0.000047

For cases where the other six are given weights 1000 times that of expert 4, the
weighted mean is comparable to the median and geometric mean values. The mean with
expert 4 eliminated (w4 = 0) is also comparable with the median and geometric mean.

]

If the analyst truly felt that a weight as low as weight 1/1000th or even 1/50th that
of the others was warranted, why would that person be considered an expert. There is
probably some underlying reason for the extreme value given by that expert. Rather than
eliminating him from the sample, it is better to discover why that expert gave such an
extreme answer rather than resolving the issue analytically with outrageous weights. The
reason for the extreme value can be made by reviewing the rationale recorded by the
experts. The reason may also be found by reviewing the preliminary data analysis results
as prescribed in chapters 12 through 15. These results should contain information about
this expert and his answer relative to the others.

If no evidence can be found that this expert used different assumptions, cues,
problem-solving methods, or any information different from the others, then there is no
reason for giving him a low weight or eliminating him from the sample. His answer is just
as valid and reasonable as the others. In this case, it would be better to use an estimator
that has a wide variance to reflect the wide range of data values. The bootstrap results from
example 16.1 indicate that the variances are wide for the mean and median.

Using only the data to determine weights can lead to the dangerous situation of the
analyst trying different weights to achieve some goal such as the elimination of a particular
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expert. Therefore, other methods of determining weights are recommended. These
methods rely more on finding and using the reasons why experts' estimates differ rather
than on focusing on mere numerical differences.

Saaty weight determinations

Instead of using the gathered data to help determine the weights for the experts, it is
sometimes desirable to determine the weights before the answers are given. The Saaty
pairwise comparison method is helpful in this determination and can be used by the
decision maker, the analyst, or even the experts themselves to determine expert weights.

The determinations are based on other information about the experts. The major
advantage of the Saaty method is that this information can be qualitative in nature, but the
results are a set of numerical weights. However, care must be taken in the use and
interpretation of these resulting weights. In forming the weights, quantification of the
original information has changed the granularity from general to specific. The resulting
weights should not be used as numerical values. They are only relative comparisons in
numerical form. However, relative comparisons can be used to help determine other,
numerical, weights for a weighted mean. If the weighted mean value is calculated using the
Saaty weights, it should be accompanied by a caveat such as this mean is the result of
relative weights that are values from qualitative comparisons and are not exact numerical
values. Because even exact numerical weights are highly uncertain in value or fuzzy in
nature anyway, such a caveat would not be unusual.

A FORTRAN program in Appendix A for a single level (evaluation) of the Saaty
method can be used to determine the weights of the experts. The user (decision maker,
knowledge engineer, analyst, or expert) supplies the comparisons of the experts on a
pairwise basis. The resulting relative weights are normalized to sum to 1.0. Example 16.3
illustrates how this can be done.

Example 16.3 Using Saaty's Method to Determine Weights

The decision maker wishes to determine weights for the seven experts in example
16.1. He is familiar with their qualifications and will make the comparison according to
those criteria before he sees the answers that were elicited. Based on his knowledge of the
seven, he compares them as follows:
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1 versus 2 ----Better
1 versus 3 ----Same
1 versus 4 ----Same
1 versus 5 ----Better
1 versus 6 ----Better
1 versus 7 ----Better

2 versus 3 ----Worse
2 versus 4 ----Worse
2 versus 5 ----Worse
2 versus 6 ----Worse
2 versus 7 ----Worse

3 versus 4 ----Same
3 versus 5 ----Better
3 versus 6 ----Better
3 versus 7 ----Same

4 versus 5 ----Same
4 versus 6 ----Better
4 versus 7 ----Same

5 versus 6 ----Same
5 versus 7 ----Worse

6 versus 7 ----Worse
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Using the Saaty method (and code in Appendix A), these verbal comparisons are
translated using the following recommended numerical scale:

better = 2.72,
same = 1.00,
worse = (.37,

and the resulting relative weights for experts 1-7 are
(0.23, 0.06, 0.19, 0.17, 0.10, 0.08, 0.17)

The consistency ratio for this matrix is 0.06, which is less than the critical value of 0.10
and indicates good consistency among the comparisons.

If the seven expert answers are combined using these weights, the result is
n n
2 XiWi /2 w; =0.017
i=1 i=1

Instead, the weights can be used for determining other numerical weights. The weights of
experts 1, 3, 4 (the extreme-valued expert), and 7 are high relative to those of experts 2, 5,
and 6. A 2-to-1 weighting of the high group over the low group is suggested. With this
weighting, then

i XiW; /i w; = 0.018
i=1 i=1

This value is not much different from the original mean value of 0.014 or the weighted
mean using the Saaty weights (0.017). It is interesting that expert 4 is in the high-weight
group, making the weighted mean estimate even more influenced by his answer.

u

The results from example 16.3 may appear to be disappointing. The decision
maker's information about the experts only added to the problem of over-influence of the
extreme value given by one of the experts. Thus the decision maker did not have any
information about this expert that would suggest that the experts solved a different
problem. In fact, the information used by the decision maker tended to reinforce the idea
that expert 4 should be included just as any other expert.

Model-based determinations

In supplying the weights in example 16.3, the decision maker compared the experts
using a single, cumulative criterion representing the knowledge that he had about the
experts. These comparisons are therefore conditions on the experts' estimates. Other
conditions such as the rationale information recorded in the elicitation session may be
important. This information was formulated into a data base in chapters 12 and 13 and was
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also used to formulate models in chapter 15. Weights can be found by using the
conditional variables found to be significant in model formation.

CONDITIONAL MODELING. The Saaty method is a conditional type of
model for use in formulating relative weights for the experts. Any variables found
significant in other models can also be used as conditional variables and put into a
hierarchical structure for analysis in the Saaty method. If only a single conditional variable
is found important, the hierarchy is a single level and the Saaty method is convenient to
use. If a hierarchical structure of many variables is too complex, becoming not practical,
then other weight-determining methods in this chapter should be used. Hierarchies of a
few levels with a few items in each level are manageable by the Saaty method.

The method has the advantage of making pairwise comparisons among experts
either by a simple better, same, or worse comparison or by a convenient numerical scale
such as the Saaty scale (given in chapter 11) or Sherman-Kent scale (given in chapter 7).
Therefore, quantitative or qualitative conditional variables can be used in this procedure.
Example 16.4 illustrates how a significant variable from a general linear model is used to
obtain relative weights for the experts using a simple scale of better, same, or worse. Here
the analyst uses the conditional variable to determine the weights rather than using his own
knowledge or judgment about the experts.

EXAMPLE 16.4: Using Conditional Variables and Saaty's Method to
Determine Weights

Eight experts provided answers to a likelihood comparison question using a linear
scale from 0.0 to 1.1. A problem-solving variable, ps; was created as a cumulative score
of several heuristic and cue variables (example 15.1). A general linear model analysis
indicated that ps; was the best variable (and the most significant) in predicting the answers,
v1. The second best variable for predicting the answers was an experience variable, yrt,
specifying the number of years that the expert had worked in the particular field of the
problem. The data follow.

AN DS+ yrt
0.20 -2 5.49
1.00 2 6.00
0.04 -3 2.00
0.00 -2 2.00
1.10 6 1.99
0.45 0 4.50
0.00 -3 3.00
0.75 2 4.90

Using the values of ps1 and yrt, pairwise comparisons follow where

S - is greater (better) than,
= e is equal, and
& remmmeemne is less (worse) than.

284



Combining Responses--Aggregation

_psi i P —yrt

1<2 1<2 3<6 3<6

1>3 1>3 3=7 3<7

1=4 1>4 3<8 3<8

1<5 1>5

1<6 1>6 4<5 4>5

1>7 1>7 4<6 4<6

1<8 1>8 4>7 4<7
4<8 4<8

2>3 2>3

2>4 2>4 5<6 5<6

2<5 2>5 5<7 5«7

2>6 2>6 5<8 5<8

2>17 2>7

2=8 2>8 6>7 6>7
6<8 6<8

3<4 3=4

3<5 3>5 7<8 7<8

These two variables can be used as two items in one level of a hierarchy:

Amg

The hierarchical structure is used to combine the influence of the two variables into
a single aggregation measure for weight determination. The above pairwise comparisons of
the eight experts for each conditional variable form the entries of the two matrices (one for
each variable) needed for the analysis. Each matrix results in a set of weights for the
experts. These two sets are combined using weights assigned for the two variables. From
the GLM done on these two variables, psy accounted for most of the model variation, and
yrt added very little. A weighting for the two variables might be 0.9 for ps; and 0.1 for
yrt.

Using the Saaty single matrix code in Appendix A, the weights for the eight experts
for ps1 and yrt are given below. These two sets of weights are combined using the 0.9,
0.1 split on the two variables.

285



Chapter 16

Combination
ps 1 Weights yrt Weights = 0.9¢ps1+ 0.1yr¢
0.08 0.20 0.09
0.18 0.26 0.19
0.05 0.06 0.05
0.08 0.06 0.08
0.15 0.05 0.14
0.16 0.12 0.16
0.08 0.09 0.08
0.22 0.16 0.21

Following is the weighted mean value using the combination weights.

Vi Combination v1*Combination
0.20 0.09 0.02
1.00 0.19 0.19
0.04 0.05 0.00
0.00 0.08 0.00
1.10 0.14 0.15
0.45 0.16 0.07
0.00 0.08 0.00
0.75 0.21 0.16
0.59

This mean value is larger than the original mean of 0.44. The reason for this discrepancy
is simply due to the choices of the variables for weight determinations. Both variables have
large values for large answers, vi; therefore, the weights will be large for large values of
vi. The final mean value is inflated due to this effect. This may seem like a weighting
scheme with a built-in bias. The scheme is based on conditioning which can give a bias.
The validity of the scheme lies in using conditioning variables that are important in
determining the answers.
|

Example 16.4 brought up one problem inherent in weighting schemes. Sometimes
the method for determining the weights induces a bias into the results. The weights in that
example biased the resulting mean on the high side simply by the method used to determine
the weights. The analyst or decision maker determining weights can also induce biases.
Other methods and examples follow that tend to minimize these biases.

GLM MODELING. For example, problem solving variables have been found
to be important in determining answers (Booker and Meyer 1988a and Meyer and Booker,
1987b). Example 16.5 illustrates how one such problem-solving variable can be used to
form weights for the experts based upon the residuals from a linear model regression
analysis done on that variable and the answer variable. The residuals measure how far
away each answer is from the model (line) predicted by the problem-solving variable.
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Therefore, one possible set of weights is the inverse of these residuals. This weighting
scheme gives larger weights to values with smaller residuals.

The advantage in using residuals to determine weights is that the residuals can come
from a model of more than one variable. Therefore, the impact of several conditional
variables can be simultaneously incorporated into the weight determination. However, as
is generally true of multivariate models, the influence of the most important one or two
variables has the greatest impact in the model that impacts the residuals and which
ultimately impacts the weights.

EXAMPLE 16.5: Using Residuals to Determine Weights
Weights for the eight experts in example 16.4 can be determined from a model of

their answers. A general linear model analysis indicated that the problem-solving variable,
ps1, was very significant in predicting the answers, vi. The residuals from a regression of

v] on ps) follow.

v, DS Residual  Weight=1/Residual
0.20 -2 -0.095 10
1.00 2 0.137 7
0.04 -3 0.115 9
0.00 -2 -0.058 17
1.10 6 -0.023 43
0.45 0 -0.045 22
0.00 -3 0.007 141
0.75 2 -0.038 _26
275
Weight Weightev ,

10 2.0

7 7.0

9 0.4

17 0.0

43 47.3

22 9.9

141 0.0

26 19.5

80.06/275 = 0.31 = weighted mean

The mean of the original data is 0.44, and the median is 0.45. Therefore, the residual
weighting scheme did change the mean value, but not significantly, from 0.44.
u

DIRECT ESTIMATION. Other conditional variables that were found to be
important in model formation can be used to determine weights. Specifically, these
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variables may be qualitative- or classification-type variables that were analyzed in cluster
analyses and found to be important in cluster formations.

Weights can be determined from these model variables by direct estimation. This
requires knowledge of how to use qualitative or class variables to form quantitative
weights. As seen in similar quantification problems, the Saaty method is useful for this
type of quantification. Also as previously noted with this type of quantification, the
granularity can change . It is easy to transform the words into numbers and then to use
those numbers for interpreting the results, forgetting that the original data is nonnumeric
and has no numerical meaning. Therefore, any weights formulated from qualitative or
class information should be considered relative weights, as in example 16.3.

With direct estimation, the decision maker or analyst can also form relative weights
without the formal Saaty technique. The criteria (variables) chosen for the comparison can
be evaluated according to how they cluster the data, as in example 16.6. Here the
classification variable is important because it discriminates between the experts according to
a critical assumption made in solving the problem. Such a clear-cut distinction would
provide a valid reason for eliminating expert 4 from the data set. Based on expert 4's use
of this assumption, he was actually solving a different problem from the others. He was
also solving a different problem from the one being asked.

EXAMPLE 16.6: Using Direct Estimation from Cluster Model Variables to
Determine Weights

One of the critical assumptions made in determining the probability of a rare event
was not discovered until the exploratory data analysis and data-base formation was done.
The seven experts made explicit assumptions regarding the constancy of temperatures.
Some assumed that the temperatures would be constant (assumption = 1), some assumed it
would vary negligibly (assumption = 2), and some assumed it would vary greatly
(assumption = 3). Originally, the decision maker assumed that the temperature variation
would not be great and wanted the problem solved without large temperature variation. He
did not realize that this assumption might be important to the problem. However, a cluster
analysis revealed that the seven answers were clustered according to this assumption.

Estimate Assumption /Cluster

0.00001
0.00010
0.00010
0.10000
0.00001
0.00001
0.00005

N == NN =

Only expert 4 made the assumption of the large temperature variability. Therefore, expert 4
was actually solving a different problem from the other experts and from the one intended.
A weight determination was made according to this assumption as follows.
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Estimate Weight EstimateeWeight
0.00001 2 0.00002
0.00010 1 0.00010
0.00010 1 0.00010
0.10000 0 0.00000
0.00001 2 0.00002
0.00002 2 0.00002
0.00005 1 0.00005
9 0.00031/9 = 0.000034

This weighted mean value is not much different from the unweighted mean value
with expert 4 deleted (example 16.2). Therefore, the weights for experts 1through 3 and 5
through 7 made little difference.
]

The basic idea is to make weight determinations using variables or conditions that
influence the experts' answers as determined from models. As with any weight
determinations, the methods presented here must to be done carefully. Because these
variables are known to be important in the experts determination of their answers, they can
induce a bias into the weights that will result in a bias in the weighted mean value. Also,
care must be taken in using qualitative or more general leveled information to formulate
weights. Such formulation can cross levels of detail (granularity is not constant) and make
accurate interpretation of the results tricky at best, or incorrect at worst.

One final word is needed on weight determinations using the methods presented
here or elsewhere. As seen in many of the examples in this chapter, regardless of how
good the choices for the weights are, in most cases the weights make little difference in the
value of the weighted means. The question then becomes, why bother with weights? The
answer follows.

Equal weights

The best recommendation to date on the weight determination problem is to use
equal weights. This idea is not new (Seaver 1978); however, several studies have
indicated that it is still the best idea (Genest and Zidek 1986).

Equal weights are best for combining individual responses from experts. Also, as
demonstrated in the remaining chapter sections, equal weights are best for combining
distributions.

Unless some unusual circumstances arise that clearly indicate why and how some
different weights should be used, equal weights should be used. Example 16.7 below
summarizes the lessons from the first sections of this chapter. These lessons enforce the
idea of equal weights for the two applications used as examples in this chapter.
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EXAMPLE 16.7: Summary of Weight Determinations

In examples 16.1 through 16.3, the seven experts were asked to estimate the
probability of a rare event. Expert number 4 gave an answer that seemed to be different
(much larger) than the other six. In those examples, the mean (equal weights), median,
and geometric mean were calculated. Also, several different weighting schemes were
calculated using various weights and the Saaty method to determine weights. Those results
are summarized below.

Estimator Weighting Scheme Estimate
Mean Equal 0.014
Median Equal 0.000050
Geometric mean Equal 0.000091
Weighted mean wg=2 0.0039
Weighted mean w4=10 0.00086
Weighted mean ws=50 0.00021
Weighted mean w4=100 0.00013
Weighted mean w4=1000 0.000055
Weighted mean wy=0 0.000047
Weighted mean Saaty - decision maker 0.017
Weighted mean Saaty - model 0.000034

Even with all these methods, there are still only two basic results:

1. Estimates of the order of 0.01 resulting from equal weighting of expert 4 with
the rest.

2. Estimates of the order of 0.00001 resulting from deleting expert 4 from the set
with equal weighting for the rest.

The results from simply increasing the weight of expert 4, wy, are of little use
except to demonstrate that severe weights are needed to lessen the impact of expert 4. The
clear decision in this example is either to include or exclude expert 4 entirely.

From the knowledge about the assumptions used in solving the problem in example
16.6, it was discovered that the other six experts made acceptable assumptions for the
particular problem but that expert 4 made an unacceptable assumption. This is valid reason
for deleting expert 4.

It should be noted that the results could have been completely reversed. Expert 4
may have been the only expert making an acceptable assumption and that was why his
answer differed from the rest. In evaluating the results of an elicitation session, the
information on the conditions under which all experts answered the question must be tested
and evaluated. Hopefully, some problem areas such as the expert using questionable
assumptions, drifting from the question, or solving a different problem than asked, can be
corrected during the elicitation. Itis vital that all the experts answer the same question (and
therefore, estimate the same quantity).

In examples 16.4 through 16.5, eight experts estimated the likelihood of an event.
Here there are no experts that appear to give responses different from the rest, but there are
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two distinctive clusters of answers from the experts (experts 1, 3, 4, 6 and experts 2, 5,
8). In this case, any centroid type of estimator (mean, median) will give a result that is
between the two clusters of data (where no actual data exists). A weighting scheme in this
case is useful to pull the aggregation estimator toward one cluster or the other. However,
the same cautions about choosing and using weights in this case still apply. Following are
the results for this data set and the chosen estimators.

Estimator Weight Scheme Estimate
Mean Equal 0.44
Median Equal 0.45
Weighted mean Saaty, 2-variate 0.59
Weighted mean GLM residuals 0.31

All of these estimates are close in value. The residuals tend to lower the original
mean value because the regression model is more influenced by the larger sized cluster,
which is the lower valued cluster. There is a bias built into the Saaty weightings that favors
the larger values. Neither of these weighting schemes are based on conditions that
definitively favor one cluster over the other.

In examining the original data base, no other conditions are apparent for making
such a distinction. In other words, there is little explanation why the two clusters emerged
and no reason to attempt to eliminate one of them from influencing the final estimate.

In conclusion, the equal weighting (simple mean) is appropriate here. The
uncertainty in the data is such that the experts spanned the entire available range of values
(response mode) for their answers. The mean estimator will give a value in the center of
the range and between the two clusters.

L

It is hoped by examining the two problems in 16.7 that the steps are evident for
determining weights for the experts. The choices in both these cases came down to a
simple, equal-weighting mean estimator. By using the data from the data base, many
possible explanations were examined for apparent differences in the answers. In the first
problem, a valid difference was found. In the second, no difference was found. The basic
rule for searching and determining such differences is that all experts must be providing
estimates (answers) to the same problem.

Aggregation Distributions

Rather than restricting the expert to providing a single, best estimate for an answer,
many analysts prefer the experts provide either a range of values or an entire distribution of
values (a set of possible values with corresponding probabilities of their occurrence).
Many experts prefer to give multiple values. These multiple values do not imply that the
experts provide values for different conditions. Giving multiple values for different
conditions would be the case of providing single estimates for multiple problems.

If the problems in handling single-valued estimates from several experts appeared
difficult, the problems are equally difficult in handling distributions or multiple values from
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many experts. In this section the emphasis is placed on the case where distributions
(probability distributions) are available from the experts. In the next section on dealing
with uncertainties, the topic of handling ranges is also included (see also chapter 17).

The aggregation methods presented here are in keeping with the philosophy in this
book. In particular, the methods should be comfortable and easy for the experts to use.
The analyst does not have the luxury of deciding upon his favorite method and then force-
fitting the experts into its use. The methods should also be easy for the analyst to use.
These are the methods illustrated in the examples. Genest and Zidek (1986) reference
others.

Using Bayesian methods

The philosophy of using Bayesian methods incorporates the idea that all
information can and should be used to form final estimations (chapter 11). Bayes Theorem
provides the mechanics for the combination of information from various sources. The
information can be in several or differing forms, such as (1) information from measured
data that is combined with expert judgments, (2) information from the present that is
combined to update previous information, and (3) information from experts that is
combined with information from the decision maker (DM) or analyst.

The first case is the more classical reliability problem that is common in PRA
applications (Martz and Waller 1982). The second case is modified to include
combinations of several information sources (experts) without regard to a time line and is
examined below. The last case is examined in more detail in the Application Environments
section of this chapter.

The major difficulty in applying Bayesian methods is that the information (all
information sources) must be quantified into probability distribution forms. Common
forms such as the beta distribution are easy to use because (1) they require only two
parameters to estimate the entire distribution, (2) they range from 0.0 to 1.0 in values,
which is the range of probabilities, and (3) they combine in a mathematically tractable form
with other common distributions such as the binomial to form the resulting or posterior
distribution.

Example 16.8 illustrates how two estimates provided by each expert can be
combined into a single beta distribution that represents the probability of a single failure, p,
of an event.

EXAMPLE 16.8: Bayesian-Based Aggregation of Distributions

Six experts provided estimates of Sth and 95th percentile values for the distribution
of a probability, p, for an event. Based on previous studies (Kahneman and Tversky
1982), these percentiles really only represent a fraction of the true uncertainty. Therefore,
the given 5th percentile was chosen to represent the 30th percentile and the given 95th
percentile was chosen to represent the 70th percentile.

Assuming that each experts’' percentiles come from a beta distribution with
parameters xg and ng, the values of those parameters are given below:
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Percentiles Beta Parameters
30th 70th _ X0 __no
0.0010 0.004 0.82 242.59

0.0001 0.010 0.19 11.04

0.0010 0.100 0.18 1.52
0.0001 0.010 0.41 41.80
0.0050 0.050 0.41 8.64
0.0100 0.050 0.65 15.30

The values of the beta parameters can be obtained from the beta subroutines in the
beta Monte Carlo code in Appendix B. These parameters have specific meaning in a
binomial process: xg represents the number of failures in ny trials, each with a probability
p of occurrence.

To combine the six different beta probability distribution functions into a single beta
distribution function, f{(p:x,n), where

6
f(p:x,n) = 2 w; fi (pi:x()i,n(),') s

i=1

with equal weights for w; parameter sets are combined as follows (Winkler 1968):

6
x=Y, xp =2.66
i=1
and

6
n=y ny =320.89 .

i=1

There is also a convenient Bayesian method for using this new beta as a prior
distribution to combine with a distribution of a DM to make a resulting posterior. This
combination is illustrated in example 16.10 below.

This new resulting beta distribution is the aggregation distribution for the experts.
It has a mean and variance of

x/n =0.008
and
x(n-x)/(n2(n+1)) = 0.00003 ,
respectively.
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Using assumed distributions

There are other analytical methods for combining assumed distribtuion functions.
An aggregation function is based on the formation of a joint distribution of all the experts.
Using this joint or composite distribution as a prior distribution, the decision maker can

combine the joint distribution of all the experts with his distribution, fo(x:6) in a Bayesian
manner as follows:

f(x:0) = c(x:0) « fo(x:0) f(x:6) ,

where f.(x:60) is the joint distribution function with parameter 6 for the random variable x

of all k experts and where c(x:6) is a joint calibration function for all k experts. Another
way of expressing that equation if all the experts are independent is by

f(x:6) = c(x:0) + fo(x:6) * f1(x:0) * f2(x:0) » ... * fi(x:0) ,

where the individual distribution functions of the experts are factored out. Another way of
saying this is that the joint distribution of all the experts is expressed as the products of the
individual expert distributions. If the expert's distributions are not statistically
independent, then this factorization is not possible.

Joint distribution functions are usually assumed, easy-to-work-with distributions.
In example 16.8, the expert information was characterized using a beta distribution for each
expert. Other distributional forms produce mathematically tractable combinations and can
be assumed for the experts. One common choice is the normal distribution (Winkler
1981). If very few estimates are provided by the experts, or if the experts provide a simple
range of values, then the uniform distribution is appropriate. In this case, the posterior or
resulting distribution will also be uniform .

If the information provided by each expert can be assumed to follow a normal
distribution, then a multivariate normal distribution is the combination distribution. Using
a multivariate normal has the advantage of allowing for a specified correlation structure
among the experts. The disadvantage is that this correlation structure must be known.

Example 16.9 illustrates the information requirements necessary from the experts to
use the multivariate normal. As seen in this example, it may be difficult and uncomfortable
for experts to provide estimates for the required parameters of the normal, the mean, and
the variance. It is also difficult to obtain a correlation structure for the experts. Usually
such estimates are assumed by the DM or analyst. In using the normal, it is assumed that
the quantity of interest (quantity being estimated) follows a normal distribution. Most such
quantities, such as failure rates and probabilities do not tend to be symmetric in shape nor
unimodal (Meyer and Booker 1987b) and cannot be considered normally distributed.

EXAMPLE 16.9: Multivariate Normal Distribution for Aggregation

Three experts are asked to estimate a temperature range that is critical for a
component failure (Winkler 1981). The experts agree that this temperature range should be
distributed as a normal distribution, and they understand how to estimate the mean of this
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normal. The variances of the temperature ranges are known and are not estimated by the
experts. Also the correlation structure of these three experts is known to be as follows:

Correlation of experts 1 and 2 = p12 = 0.60
Correlation of experts 1 and 3 = p13=0.50
Correlation of experts 2 and 3 = p3=0.60

The experts' mean values, 4, and corresponding known variances, 02, follow:

H1 =60 21=36
Uy =62 029 =25
uz3=170 023 =49

The multivariate normal mean vector, y, and variance-covariance matrix, %, are

u =(60, 62, 70)
and
36 18 21
=] 18 25 21
21 21 40| ,

where the diagonal elements of 2 are the variances and the other elements are 0;0;pj;.

In order to combine these estimates, a Bayesian technique is used by assuming a
diffuse (imparts little added information) prior to combine with the multivariate normal (the
joint distribution of the experts) to produce a posterior distribution for the temperature
range. With e being the unit vector of 1s, the posterior mean and variance are

#post = e‘E‘lﬂ/e‘E'Ie = 62.02
and
Zpost = e’)?e = 22.83

The ppos is actually a weighted mean value with weights corresponding to the
following:

w,-=2 a,-/;Zamj ,
J

J
where ajj are the ijth elements of 31, In this case the weights are

wi = 0.263, wy = 0.669, and w3 = 0.068
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The third expert has a small weight due to his large variance and the high
correlations with the other two.

It is difficult to imagine a situation where the variances are known. If the variances
for the experts are estimated, then the posterior variance calculation is much more
complicated (Winkler 1981).

]

The multivariate normal distribution requires estimates for its parameters that may
be difficult to obtain or may rely on assumptions. However, the normal is a convenient
distributional form for a combined distribution. Certainly other distributions could be used
to make multivariate combinations; however, these would also require assumptions and
estimates of their parameters. Other multivariate distributions are not as easy to form or to
work with as the normal, and there is no more precedence for using them than for the
normal. If multivariate forms become too complex or difficult to use, then empirical (data-
based) distribution forms are suggested in conjunction with simulation techniques.

Using empirical distributions
If experts prefer to provide several values or are comfortable giving percentiles
without specifying distribution forms, then empirical or step distribution functions can be
constructed from these estimates. Sometimes interpretations or rules of thumb are needed
to form the distributions. The rules below are based on several studies (Kahneman and
Tversky 1982).
1. When experts provide 5th and 95th percentiles, they really are only giving 30-
40th and 70-60th percentiles.
2. When experts provide maximum and minimum values they really are only
giving 5-10th and 95-90th percentiles.
3. When experts provide their best central estimate, they really are giving a value
that corresponds to a median (50th percentile) rather than a mean.
4. When experts provide a variance, they really are only representing less than half
of the variance.

Empirical distributions are formed from percentiles (i.e., those percentiles using the
rules above rather than what the expert provides directly). The percentiles provide the
points for a step cumulative distribution function. The empirical probability distribtuion
function, f(x), is also formed from these percentiles in the shape of a histogram. For
example, an expert provides

Best estimate 0.3
Sth percentile 0.2
95th percentile 0.4
Minimum value 0.1
Maximum value 0.5

for a random variable, x, with a possible ranges of values from 0.0 to 1.0. The
distribution of x is then a histogram composed of a series of rectangles with starting values
at x;, ending values at x,, and having heights of f:
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_Xi Xy I
0.0 0.1 0.5
0.1 0.2 2.5
0.2 0.3 2.0
0.3 0.4 2.0
0.4 0.5 2.5
0.5 1.0 0.1

These values for f are calculated by
fi = (percentile level of x,,)/(xy, - xp) .

The areas under these rectangles (fi*(x,-x;)) sum to 1.0. There is a program in
Appendix C that forms these empirical distributions for each expert and combines them by
a user-specified aggregation function using Monte Carlo simulation.

The aggregation function is usually of the form that combines the expert's
individual empirical distribution functions, fj(x) and the decision maker's empirical
function, fy(x), by the following weighting scheme (Winkler 1968):

k

F(x) = wofolx) + 3, wifi{x) .

i=1

Determining these weights has the same difficulties mentioned in the first section of
this chapter. The rule of thumb for these weights is also the same: equal weights are best
(Seaver 1978). Distributions can be empirically combined using this equation without
specifying distributional forms (such as normals, beta, or uniforms) or parameters.
Example 16.10 illustrates weighting methods for empirical distributions from two experts.

EXAMPLE 16.10: Empirical Distribution Aggregation

Two experts provide the following estimates for a random variable x, without
specifying any distributional form such as the normal or beta. The given values are
interpreted (used) according to the rules of thumb listed above.

Given As Used As Expert 1 Expert 2
Best estimate Median 0.30 0.10
5th percentile 30th 0.20 0.05
95th percentile 70th 0.40 0.15
Minimum value 5th 0.10 0.01
Maximum value 95th 0.50 0.20

Here the absolute possible range of values for x is from 0.0 to 1.0. The resulting empirical
distributions from the code in Appendix C follow.
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Expert 1

b
k
L

0.0 0.1 0.5
0.1 0.2 2.5
0.2 0.3 2.0
0.3 0.4 2.0
0.4 0.5 2.5
0.5 1.0 0.1
Expert 2
_Xi —Xu |
0.0 0.01 5.00
0.1 0.05 6.25
0.2 0.10 4.00
0.3 0.15 4.00
0.4 0.20 5.00
0.5 1.00 0.06

The following pooled distribution results from using a weighted sum (with equal
weights of 0.5) in a Monte Carlo simulation of the two empirical distributions.

ntile Level Yalue
Ist 0.042
Sth 0.079
10th 0.099
20th 0.13
30th 0.15
40th 0.18
50th 0.20
60th 0.23
70th 0.25
80th 0.28
90th 0.32
95th 0.43
99th 0.58
Mean = (.22
Variance = 0.011
Standard deviation = 0.11

If a pooled (weighted) distribution of just the experts is to be found and used alone
in a non-Bayesian context such as in example 16.10, then the weighting scheme used is
very important. Even if a DM is added to the set, he becomes like another expert in terms
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of influence on the final results. Of course the choice of weights can shift influence slightly
toward or away from the DM or any other expert. However, as seen before, results will
not differ by much unless drastically different weights are used, and such weights require
justification. Lacking good reasons for drastically unequal weights, equal weight
assignments are recommended.

Using Monte Carlo simulation

The use of Monte Carlo simulation has already been demonstrated in the previous
section for aggregation by using empirical distributions from experts. There are other
applications where Monte Carlo simulation is useful for aggregation.

One commonly used method of eliciting and modeling expert information is through
a series of distributions, each representing a phase or characteristic of the problem. The
idea behind this method is to decompose the problem into simpler parts. Information is
then gathered on each of the parts. The information can be in the form of distributions of
variables of interest in the various parts. The difficulty becomes how to recombine the
information from all the parts for each expert and how to combine all the information from
the experts.

In many applications the parts are structured by a tree diagram. This type of
diagram is commonly used in decision analysis applications. Some diagrams could be
hierarchical in structure while others could be quite complex with feedback loops and ill-
defined connections. Whatever the structure, logic must be used in order to determine how
the parts should fit together. It can be very difficult to accurately diagram a complex
problem, but, like any model formation process, it is very important to do it correctly.

In combining different structures for several experts, another difficulty arises. Each
expert will have a structure that is uniquely his own. These structures can be viewed as
conditional models, f(xlc), for the final result or answer, x. Because the structures are
complex, one way of combining them to determine f(xlc) is through simulation. Usually
the information provided for the various parts of the structure is characterized by assume *
or empirical distributions. The connections between the parts (however complex) can be
characterized by arithmetic expressions similar to Boolean expressions for the failure or
reliability of a system fault tree. For each expert, simulation is then done by sampling from
each of the distributions in his structure and combining the sampled values using the
expression to form a result. A final or resulting distribution of the whole structure is found
by performing the sampling and calculations many times. The resulting distributions for
each expert can then be combined using any of the above distribution aggregation methods
including Monte Carlo simulation. Example 16.11 illustrates how this is done for two
experts solving a problem by decomposition.

EXAMPLE 16.11: Decomposition and Aggregation by Simulation

Two experts are asked to evaluate the probability of an event E. The question
posed to them provides a limited set of conditions for determining the probability. These
conditions involve establishing specific values: temperature (T), pressure (P), and flow
rate (F). Both experts agree that these are the three most important conditions; however,
each differs in his assessment of how the three conditions affect the event and what
probabilities are associated with them.
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The probability of the event Pr(E) is found by summing the products of the
conditional probabilities times the probabilities of those conditions:

Pr(E) = Pr(EIT)+Pr(T) + Pr(E\P)Pr(P) + Pr(E\F)Pr(F) .

Expert 1 claims that the probability of T, P, and F are all uniformly distributed with
a value of 0.01. Expert 2 claims that all three follow a unimodal distribution between the
values of 0.0 and 1.0, with a reasonable range of 0.1 to 0.9. This information can be
characterized as a beta distribution with 40th and 60th percentiles of 0.1 and 0.9,
respectively, using the rules of thumb for ranges and percentiles.

The experts are asked to estimate the probability of the event given these values of
T, P, and F. The probabilities associated with the ranges of the three conditions given are
as follows:

Expert 1 Expert 2
Pr(EITy;) 0.1 0.01
Pr(E\T},) 0.01 0.001
Pr(E\Py) 0.01 0.001
Pr(E\Py,) 0.001 0.0001
Pr(E\Fp;) 0.01 0.01
Pr(E\F},) 0.001 0.001

Because a range was given for each condition, this range can be used to determine
the 40th and 60th percentiles of some probability distribution. Again a useful form for
distributions of probabilities is the beta. If these values are used to form betas, the
following beta distributions result.

Expert 1 Beta Parameters
—X0 —no Mean
EIT 0.17 0.83 0.21
EP 0.18 432 0.04
EIF 0.18 4.32 0.04
Expert 2 Beta Parameters
X0 1o Mean
EIT 0.17 0.83 0.21
EP 0.18 4.32 0.04
EIF 0.18 4.32 0.04
T.PF 0.11 0.22 0.50

Using Monte Carlo simulation of beta distributions for the above equation for
Pr(E), a distribution for the probability of E is found for each expert. For expert 1, Pr(T),
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Pr(P), and Pr(F) are constant values (0.01), and the conditional probabilities of E given T,
P, and F are the beta distributions listed in the above table. For the expert 2, Pr(E) is found
as the sum and products of the beta distributions listed in the above table. Those empirical
distributions have the following characteristics.

Mean
Standard deviation

Ist percentile

Sth percentile

10th percentile
20th percentile
25th percentile
50th percentile
75th percentile
80th percentile
90th percentile
95th percentile
99th percentile

Expert 1

0.0028
0.0031

0.00001
0.00006
0.00013
0.00025
0.00034
0.0016
0.0042
0.0053
0.0082
0.0097
0.011

Expert 2

0.045
0.094

0.00016
0.00080
0.0016
0.0032
0.0040
0.0080
0.043
0.064
0.14
0.24
0.47

Using the empirical aggregation program in Appendix C, the two expert's
distributions can then be combined. Equal weights were used for the pooling of the two
distributions and give the following results:

Mean
Standard deviation

1st percentile

5th percentile

10th percentile
20th percentile
30th percentile
40th percentile
50th percentile
60th percentile
70th percentile
80th percentile
90th percentile
95th percentile
99th percentile

0.030
0.060

0.00037
0.0010
0.0017
0.0028
0.0038
0.0049
0.0073
0.013
0.020
0.036
0.078
0.14
0.33

n

As indicated in example 16.11, the decomposition, aggregation problem is a multi-
step, complex procedure. First, much information is needed from the experts. Then, that
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information is formulated into distributions, requiring some assumptions. Next, the
distributions must be combined for each expert. Finally, the aggregation of all the experts'
combined distributions is done. All these steps involve assumptions, information transfer,
and quantification, and all the problems associated with these such as imposing new
information not originally present and changing granularity.

Granularity can change several times in this series of steps, making the
interpretation of the final results meaningless. At best in the above example, the mean
value and its standard deviation might be useful and meaningful for interpretation.
However, this example is a relatively simple one. In practice, there are usually more than
three simple conditions and more than two experts. Recombining such decomposed
information requires more and more assumptions and makes final inference more and more
difficult.

In spite of these obstacles, information is gained that can be used in the inference
process. For instance, in Example 16.11, one interesting feature to note is that the experts
agreed on the basic conditions affecting the event. This agreement indicates that they are
solving the same problem in a similar way. They disagreed as to how these conditions
affected the event on a more detailed level, and that disagreement translated into their
different estimates. Such numerical differences can be interpreted by considering the wide
ranges of values as representing the true uncertainty in estimating the event.

Application Environments

Thinking in terms of inference, it is important to understand who is making the
inferences--the experts, the decision maker, the analyst, or all three? To answer this
question, the problem or application environment becomes important. Choosing an
aggregation method involves considering the application environment. Examples given
below demonstrate the differences in methods for some application environments. The
specific cases examined follow:

1. One expert and one decision maker (DM)

2. DM and several (n) experts

3. One analyst and n experts

When a DM is involved, it is because he has some information relevant to the
problem, just as an expert would. The DM may be an expert of equal expertise, or he may
have erroneous or dated information. The influence that his information has in the
aggregation is up to him. However, his views are subject to change after seeing the
information from the other experts. Because of this influence, it seems a logical
assumption that the DM is not independent of the experts (Morris 1977, Genest and Zidek
1986).

On the other hand, the analyst is supposed to be independent of the experts acting
as a neutral party. He is never to impart his own information or biases into any
assumptions, definitions, or information transformations. This ideal is unrealistic;
however, the steps and recommendations in this handbook are designed to minimize
problem areas and approach the ideal.
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Decision Maker and One Expert

In the situation where the DM has a problem for solving and has his own
information (DM's prior), he consults a chosen expert (usually one he feels has more
information than he does). That expert gives his information (expert data) to the DM. The
DM then combines the information forming a posterior (Morris 1977). This type of
aggregation problem is characterized by a Bayesian philosophy. The DM is imparting
information into the final posterior in several ways:

1. The DM's prior

2. The choice of the expert

3. The aggregation of the information

4. The inference

As previously noted, when using Bayesian methods, the way of combining the
information sources to form the posterior (in this case the DM's prior and the expert's data)
can result in one or the other sources being emphasized. The DM has the power to
determine which source is emphasized in the aggregation (item 3 above). If the DM feels
uncomfortable with his prior, he can reduce its influence even to the point of using a
noninformative prior that imparts little (but some) information into the aggregation process.

Another effect results from item 3 above. After seeing the expert's prior, the DM
may revise his own prior to either match or differ from the expert's. This is also a part of
the aggregation process because the DM has decided on how his information is to be
combined with the expert's information. A simple example, 16.12, illustrates these effects.

EXAMPLE 16.12: Decision Maker and One Expert

The Decision Maker (DM) has knowledge about an event. He has never seen nor
heard of a particular component failing in 10 plants in a combined 60 years of operations.
He asks his favorite plant operator to estimate a failure rate for this component. The expert
estimates that there should be a possibility of one failure in 60 operation-years or one
failure in 120 operation-years. Thus the expert gave a range of values from 1/60 -1/120
failures/operation-years. Using a Bayesian context for this problem, the DM can aggregate
in many different ways.

Part 1: The DM considers his information as valid data and combines it with the expert's
information using that as his prior. He uses the binomial process to characterize his
information (0 failures in 60 years), and he uses the expert's prior information as a beta
distribution with 40th and 60th percentiles of 0.008 and 0.017, respectively.

The DM finds that the mean of the expert's beta is 0.0205 with parameters xg =
0.677 and ng = 33.096. The posterior distribtuion resulting from the Bayesian
combination of the DM's binomial and expert's beta prior is also a beta with mean equal to

xo/np = (0.677 + 0)/(33.096 + 60)= 0.677/93.096 = 0.0073

or a mean value of 1 failure in 137 operation-years and a variance equal to
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x0(ng-x0)/[no>(ng+1)] = 0.000077
Part 2: The DM believes his information is incorrect and uses a noninformative prior for
himself. The expert's information can be characterized as the data from a binomial process
with 0.677 failures in 33.096 trials. With a noninformative prior, the resulting posterior
distribution is a beta distribution with mean equal to

xo/ng = (0.677 + 0.5)/(33.096 + 1) = 1.177/34.096 = 0.035
or a mean value of 1 failure in 29 operation-years and a variance equal to
xo(no-x0)/[no2(ng+1)] = 0.00095

Part 3: The DM believes the expert is too cautious and decides to use a noninformative
prior for the expert, relying more on the DM's information. The DM claimed 0 failures in
60 trials. With a noninformative prior on the expert, the resulting posterior is a beta with
mean equal to

xo/ng = (0.0 + 0.5)/(60 + 1.0) = 0.5/61.0 = 0.0082
or a mean value of 1 failure in 122 operation-years and a variance equal to
Xo(o-xo)[no2(ny+1)] = 0.00013

Part 4: After seeing the expert give a range of values for an estimate, the DM realizes that
he too would be more comfortable giving a range. He likes the expert's evaluation of 1
failure in 60 years and decides to use that for an upper bound. The DM now has a beta
distribution with 40th and 60th percentiles as 0.0 and 0.017, respectively. Because the
beta distribution has a minimum value of 0.0, for calculation purposes it may be necessary
to make the 40th percentile an extremely small value (relative to the other estimates) such as
0.0000000001 instead of exactly 0.0. In doing so the expert has a beta and the DM has a
beta to be pooled into a final distribution that has the following mean:

xo/no= (0.021+0.677)/(0.062+33.096) = 0.698/33.158 = 0.021
or a mean value of 1 failure in 48 operation-years and a variance equal to
x0(ng-x0)/[no*(no+1)] = 0.00060

In the four different parts the DM uses the expert's information in a variety of
ways. The different ways produce very different final mean and variance estimates.

DM binomial and expert beta prior 0.0073 0.00008
DM noninformative and expert beta prior 0.035 0.00095
DM binomial and expert noninformative 0.0082 0.00013
DM beta and expert beta 0.021 0.00060
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It is interesting to note that the lower estimates occur when the DM uses a single
estimate. Higher estimates occur when the DM's information is formulated into a
distribution, either noninformative or beta. In this case the DM's choice on how to handle
his own data drives the final results.

u

The DM should play an important role in the inference process regardless of how
many experts provide information. In the example 16.12 above, the illustrations
concentrated on the answers only. The DM has access and needs to use all the ancillary
information about the expert gathered at the elicitation.

1. Is the expert solving the correct problem?

2. Are the assumptions, cues, definitions and problem-solving methods used by

the expert reasonable and in agreement with the DM?

3. Can the DM spot any relevant effects that this ancillary information might have

on the expert's given answer?

Because the DM is also a knowledgeable party, he can answer these questions.
This simple exercise will ensure that conditionality is monitored. The DM can then use
what he has learned by answering these questions to make any adjustments or different
ways of combining his information with that of the expert.

Decision Maker and n Experts

When a DM is faced with combining his information with that of several other
experts (more than 1), the aggregation becomes more complicated. The DM is immediately
faced with a choice.
Choice 1: He can decide to aggregate all the experts into a single distribution or estimate
(accompanied by a variance or uncertainty estimate) and then combine that result with his

information. This is represented by the following equation where the DM's distribution is
fo and the combined distribution of the experts is f.

ftinal(x) = K « fo(x) « fo(x) , (Morris 1977)
where K is a normalizing constant.
Choice 2: He can decide to aggregate his information with the experts as if he were just
another expert. This is represented by the following equation where the expert
distributions are f;:

Jtinal(x) = K+ fo(x) « f1(x) * ... * fa(x) , (Morris 1977)

or
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Srinafx) = K * wy * folx) + i wi fix) . (Winkler 1968)
i=1

In the choice 2 case, the aggregations posed in the beginning of the chapter are
already applicable. In the choice 1 case, some modifications of these techniques are
necessary. Specifically, the process is to first determine a composite distribution of the
experts and then combine that distribution with the DM.

In terms of the DM's behavior, there may be distinctive differences in the one
expert case versus n experts. It is more likely that the DM will change his own views
(information) if he has information from several experts than if he just has information
from one expert. The exception to this would be if the DM is extremely dogmatic in
personality. Then the DM will not reduce the influence of his information or change his
information in view of the other expert or experts .

The methods for applying the above combinations are modifications of the methods
already mentioned in the Aggregation Distributions section. These methods are illustrated
in the examples below. The examples include using Bayesian methods (example 16.13),
assumed distributions such as the normal (example 16.14), and empirical distributions with
simulation (example 16.15). Weight determinations for combining distributions use the
same methods as discussed in the weight determination section above. These
determinations also suffer from the same problems as mentioned there, and the resulting
conclusion for using equal weights is also applicable (Seaver 1978). Example 16.15 also
illustrates weight determinations and results.

EXAMPLE 16.13: Decision Maker and n Experts: Bayesian Aggregation

A DM has the information elicited from the six experts from example 16.8. The
information was formulated into six beta distributions, one for each expert. The parameters
of these distributions are as follows (Winkler 1968):

__Xp __ng
fix) 0.82 242.59
£2(0) 0.19 11.04
AK) 0.18 1.52
fa(x) 0.41 41.80
f5(x) 0.41 8.64
fe(x) 0.65 15.30

The combination distribution for the six betas is also a beta with parameters equal to
x' and n' where

n
X'=2 wix
i=1
and
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n
n =z win; .

i=1

The DM has reviewed the ancillary information and analysis of this data and has
agreed with the analyst that there are no special conditions or circumstances that make any
expert's estimate different from any other. All experts are using reasonable assumptions,
definitions, cues, and problem-solving processes to solve the same problem (the one at
hand). There is no good reason for unequal weights. With equal weights, the values for
x' and n' are

x' = 2.66
and
n’=320.89

The DM then has to combine his information with the other experts. He estimates
the occurrence of the event as 1 in 100 trials. Because he agrees with their problem-solving
methods, he simply adds his estimates into theirs to make a posterior beta with the
following parameters:

x"=x"+xpy=2.66+1=3.66 |,
and
n” =n'+ nppy = 320.89 + 100 = 420.89

Therefore, the aggregation result is a beta distribution with a mean and variance of

3.66/420.89 = 0.0087
and
[3.66(420.89-3.66)]/[420.892(421.89)] = 0.000020

EXAMPLE 16.14: Decision Maker and n Experts: Normal Aggregation
Using the three experts from example 16.9, the DM wants to combine his estimates
of a mean value of 65 and a variance of 25 into the resulting posterior normal distribution

formed from the experts. The experts' distribution, f:(x), is a normal with mean, po5 =

62.02, and variance, azpos, =22.83 (Winkler 1981). Adding the DMs normal distribution
as the prior results in the following normal posterior with mean and variance parameters

(UDM/F*DM + Hpost / 0'2post)/ (1/c%pm +1/ 0'2post)
= (65/25.00+ 62.02/22.83)/(1/25 + 1/22.83) = 63.44

and
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1(1/0pyr + 1/0%p0s) = (1/25 +1/22.83) = 11.93 .

EXAMPLE 16.15: Decision Maker and n Experts: Empirical Aggregation
with Saaty-Based Weights

A DM is given the empirical distributions functions from the two experts in example
16.10. However, he is told by the analyst that there are certain conditions that were highly
significant in determining the answers given by these experts. These conditions were a set
of five cues used by the experts. The cues came from a set of descriptions listed in the
problem statement that the experts focused upon when solving the problem.

In order to use these conditions to formulate weights for the experts, the DM set up
the cues into a hierarchical structure. He then evaluated each expert's usage of the cues
using Saaty's pairwise comparison method. This method allowed the DM to formulate a
set of relative weights for the two experts based on their usage of the cues.

First the DM evaluates the importance of the cues (C1-C5) relative to the problem
being solved. His pairwise comparisons of the cues are indicated below.

Clvs C2-—-mememee w
C1 vs C3----------- S
Cl vs C4--mn-mmmmmv b
Cl vs C5---—--———-- b
C2 vs C3----------- S
C2 vs C4----------- b
C2 vs C5-——---—--- b
C3 vs C4---------- b
C3 vs C5-----mumv b
C4 vs C5----------- s

The b = important (Saaty weight = 2.72, the natural log base, €); s = neutral (Saaty weight
= 1.00); and w = detrimental (Saaty weight = 0.37, 1/e). The resulting relative weights for
C1 through CS5 are

(0.22, 0.33, 0.26, 0.09, 0.10)

Then the DM evaluates the experts given each of the five cues.

Expert 1 vs 2 given C1 --------------——- b
Expert 1 vs 2 given C2 -------=-=ze-umn- b
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Expert 1 vs 2 given C3 -------e-eeemeee b
Expert 1 vs 2 given C4 ---------=-mu--- w
Expert 1 vs 2 given C5 ---------m-=----- W

The following relative weights result for the experts given each cue.

(0.73, 0.27) for C1
(0.73, 0.27) for C2
(0.73, 0.27) for C3
(0.27, 0.73) for C4
(0.27, 0.73) for C5

To calculate the final relative weights for the two experts, each cue weight is
multiplied by the expert weight for that cue; then these products are summed over all cues.

Expert 1 weight = 0.73(0.22) + 0.73(0.33) + 0.73(0.26) + 0.27(0.09)
+ 0.27(0.10) = 0.64
and
Expert 2 weight = 0.27(0.22) + 0.27(0.33) + 0.27(0.26) + 0.73(0.09)
+ 0.73(0.10) = 0.36

Therefore the relative weights of the experts are 0.64 and 0.36. These are relative weights
and should not be taken at their numerical values. (This is a granularity issue.) From this
analysis the DM can see how the two experts rate relative to each other regarding the
important cues in the problem solving. The DM can then assign numerical values based on
this relative assessment. The DM decides to use weights of 0.7 and 0.3 for the two
experts, indicating that he feels that the relative weights closely represent true weights for
the experts.

The DM now wishes to combine the empirical distribution functions of the two
experts using the following aggregation function:

=071 +03" .

The DM also wishes to combine his information (empirical distribution function) with the
experts.

Median 0.25
30th 0.20
70th 0.30
5th 0.05
95th 0.45

The DM uses equal weights for his distribution, fy and f:

f= 0.5 + 0.5, = 0.5f + 0.35f; +0.15 .

309



Chapter 16

Using the empirical code in Appendix C, the following aggregation distribution, f, results.

Percentile Level Yalue
Ist 0.08
5th 0.12
10th 0.14
20th 0.18
30th 0.20
40th 0.22
50th 0.25
60th 0.27
70th 0.29
80th 0.32
90th 0.37
95th 0.43
99th 0.58

Mean = 0.26
Variance = 0.0097

Standard deviaton = 0.098

This aggregation is not very different from the original two experts, equally
weighted, in example 16.10. One reason for that is that the DM gave estimates similar to
both experts. Another reason is that even though different weights were applied, the
weights did not have a significant impact.

u

Analyst and n Experts

The reason this application environment is listed separately from the ones involving
a DM stems from the anticipated uses of this book by analysts. In the application
environments discussed above involving a DM, the text and examples mentioned that the
analyst is the person supplying the DM with vital information and results in addition to the
answers from the experts. Itis also a part of the analyst's role to help the DM synthesize
and assimilate this information. To do this, the analyst should make the DM aware of the
concepts of granularity, conditionality, and quantification; and the analyst should guide the
DM in the aggregation process.

The DM may view himself as just another expert and rely on the analyst to take the
DM's information, do the analyses, and report back to the DM. There may also be cases
where the DM is not an expert at all. In this case, the analyst is faced with a similar
situation: do the analysis without the DM's added information and report back the findings.

In either case, the analyst is left alone with the information (data). The analyst does
his job and reports his findings.

This application environment has advantages. First, the analyst is the only source
of influence on the information elicited. He is familiar with the cautions and
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recommendations presented in this book designed to minimize his influence on the data.
Second, the analyst either elicited the data or worked closely with the elicitor. He is
therefore familiar with the data and has helped with the development of the elicitation.
Third, the analyst can be an objective bystander who is not concerned with the results and
conclusions of the study. He can be free to let the data speak, and make inferences
accordingly.

The analyst may find it extremely difficult in the reverse environment where the DM
takes the analyzed results and changes them without the benefit of the analyst or the
guidelines presented in this book. Careful analysis of the information can be quickly
destroyed in such a case.

The focus of part III is from the analyst's viewpoint. Most of the examples given
in this book reflect the analyst and n experts environment. However, it is also
recommended that the analyst be an integral part of the elicitation. Facilitators or
moderators of the elicitation and the analyzers of the data must work together. If they do
not, then definitions, assumptions, problem solving, and conditions can change during the
study. Also, granularity can change without notice, making interpretations meaningless.
Common sense and simple consistency in designing and implementing the study from start
to finish are the key to success.

Aggregation and Uncertainty Analysis

Uncertainty analysis is addressed in more detail in chapter 17. However, many of
the problems associated with aggregation are related to uncertainty characterizations. In
fact, many of the techniques are useful for both, such as simulation methods, Bayesian
methods, tree diagrams for decomposition, and the use of distributions rather than single
estimates.

As is illustrated in chapter 17, methods used to characterize uncertainties
automatically aggregate estimates and distributions in the same way that was illustrated in
the examples in this chapter. The difference is one of interpretation. In this chapter, the
ranges and distributions provided by the experts were not specifically labeled as
characterizing uncertainties; although they did represent uncertainty. The primary goal was
to aggregate all the information into a convenient estimate plus variance or into a
distribution. The interpretation of those final estimates and distributions do incorporate and
reflect the uncertainties in the information given by the experts and also the uncertainties
among the experts. The goal and emphasis in chapter 17 is to identify and characterize the
uncertainty.
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17

Characterizing
Uncertainties

There are ways of characterizing and handling all uncertainties even in the restrictive
environment of expert judgment applications. This chapter examines some of the easier
ways. The concept and definition of uncertainty given here is, in a very broad sense,
covering the four basic sources of uncertainty that prevail throughout the data and the
analysis.

To control, or at least understand, this single uncertainty characterization, the
following steps are suggested in this chapter. First, uncertainty measures for the answer
data that are needed are discussed in Obtaining Uncertainty Measures. Second,
uncertainties in the data that can be modeled either separately or as additional terms in the
full data analysis models are discussed in Modeling Uncertainties. This chapter concludes
in Comparison of the Methods with a comparison of various methods for handling
uncertainties. Later in chapter 18 on making inferences, the relationship that uncertainty
has to the inference process is discussed.

Living with Uncertainties

There are different kinds of uncertainties that become important in any sampling or
experimental data-gathering process. Some uncertainties can be controlled and, therefore,
reduced to an acceptable noise level of influence simply by taking larger samples or by
doing careful experimental design and measurements. Other uncertainties cannot be
controlled or reduced by any practical means. These are the uncertainties with which we all
must live. The most that can be done is to understand their importance and effects.

Uncertainties can stem from different sources such as (1) definitions, (2) sampling
errors, (3) nonsampling errors such as missing data, and (4) scientific or modeling
techniques (Stoto 1988). In expert judgment applications, uncertainties come from all four
sources. Uncertainty from definitions can be reduced by careful elicitation as proposed in
Part II of this book. Sampling error uncertainty can be reduced by taking large sample
sizes; however in expert judgment applications, this may not always be practical.
Nonsampling uncertainty cannot be reduced by any simple or practical means. Modeling
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uncertainty can be reduced by proper experimental design (where possible) and even by the
use of cross validation in the analyses.

Obtaining Uncertainty Measures

Uncertainty values for the experts' answers can be obtained directly from the
experts during the elicitation, or they can be estimated indirectly from the post-elicitation
data. In either case, the expert or the analyst may be required to make additional
assumptions or to provide estimates that stretch the limits of their current knowledge.
However, the purposes of estimating uncertainties are (1) to represent the possible
inaccurate estimation of the variables of interest by the experts, and (2) to increase the
chance of estimating (covering) the true answer by allowing for a range of possible values
rather than relying on a single value.

Using Elicitation

Asking experts to estimate uncertainty measures for an answer is, on the one hand,
like asking them to estimate a variance or distribution of values. As noted in chapter 7,
these estimations are difficult and may be highly inaccurate for most experts. On the other
hand, asking for a simple range of possible values from an expert is not much different
from asking for the original answer. Eliciting a range of values requires the same care as
eliciting a single answer. One advantage of eliciting a range of values is that many experts
are comfortable with providing uncertainties in this form, realizing their existence and
importance. In fact, many experts prefer to give a range of possible values, being
uncomfortable with the pinpoint accuracy implied for a single value estimate.

In chapter 7, several dispersion measures were offered for selection. These
included error bars, variances, percentiles, and ranges. All of these can be used to
characterize uncertainties in the answers and can be elicited from the experts along with the
answers. The advantages and disadvantages for each are given below.

Error bars

Most engineers use the term error bars to connote some measure of uncertainty;
however, there is little agreement on a firm definition of how much uncertainty is
characterized by error bars. Therefore, error bars should be elicited using some sort of
definition. Most such definitions will overlap with the other uncertainty measures. For
example, error bars could be defined as plus or minus one standard deviation from the best
estimate (a standard deviation definition), or error bars could be defined as the middle 90%
(percentiles definition) of the distribution.

The philosophy of this handbook is to keep restrictions on the expert to a minimum.
In keeping with that, the expert would be asked to provide error bar values and then
provide his definition of what those values represent. This way is the recommended use
for error bars.
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Variances or standard deviations

Most engineers have heard and used the terms variance or standard deviation but
may not have a good understanding of them. It is also not recommended that the experts be
asked if they are comfortable with these concepts. In general most people do not like to
admit a lack of knowledge or understanding of any concept. The experts can be trained in
these concepts during the elicitation. However, studies have indicated (Martz, Bryson,
Waller 1985) that even experts with expertise on these concepts are not very good at
estimating variances. In general variances are underestimated in value, sometimes by a
factor of two or more. Therefore, using variances and standard deviations will result in
large underestimates of uncertainty.

Because of the unfamiliarity of these concepts by many experts, it is not

recommended that they be used as uncertainty measures.

Percentiles

Percentile estimation involves the concept of a probability distribution of values.
The 95th percentile is the value such that 5% of the distribution is larger than that value and
95% is smaller . As with variances, it has been demonstrated that even statisticians have
difficulty in estimating percentiles. People will also tend to underestimate the uncertainty in
the form of percentiles. When asked to estimate 95th percentile values, people only
estimate about the 60-70th percentile values, and Sth percentile values are really only about
the 30-40th percentile values. There is another problem inherent in this process. Even if
the expert is comfortable with the concept of a distribution, he will tend to think in terms of
a symmetric, bell-shaped distribution. Such an assumed distribution may be totally
inappropriate for the problem. The result is a distortion of the values and percentiles that
the expert is trying to estimate.

Again, because of the difficulty in defining and using the concept of percentiles,
they are not recommended for use as uncertainty measures.

Ranges

As mentioned above, many experts will prefer to give a range of possible values
instead of a single point estimate. This preference reflects their uncertainty in providing a
single value. Many experts will give a range of values whether a range is elicited or not.
There is a problem with interpreting a given range. Usually experts are unwilling (or
unable) to provide a definition of what the range represents. These definitions might also
involve other uncertainty characterizations such as variance that should be avoided.

It is recommended that definitions of ranges not be provided in terms of the other
uncertainty measures. It is also recommended that some rationale be gathered concerning
what the expert has in mind about the ranges: Are they equally possible values? Do they
represent extreme values? It is difficult for the analyst to use ranges that have no meaning
attached; however, as demonstrated in the next section, undefined ranges can be a source of
information for analysis.
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Using Post-Elicited Data

This section provides some suggestions on obtaining uncertainty measures from the
data that are not elicited from the experts and on using such information. Uncertainty
characterizations can come from several sources: (1) directly from the experts, (2)
indirectly from the experts, (3) assumed by the analyst from the data, or (4) any
combination of these three. In any of these four sources, assumptions are being made by
the experts, the analyst, or both. Therefore, following the suggestions given in this chapter
should be viewed with extreme caution because of these assumptions. Different
interpretations of the uncertainties should be tried and compared. In Modeling
Uncertainties it it is indicated how these uncertainty measures can be analyzed and then a
final comparison section is given.

1. As mentioned above, many experts will volunteer ranges of values when
answering a question. It is important to query them about the meaning or
interpretation that they attach to these ranges. Otherwise the analyst is forced to
assume some interpretation such as the 40th percentile and 60th percentile
values. Volunteered range values can be used in uncertainty analyses
calculations as described below. They can be used as repeated measures for
determining variations or parameters for assumed distributions. They can also
be used as repeated measures for supplementing a sparse or small data set. For
example, if five experts give five best guesses and 5 minimum values with 5
maximum values, then there are 15 values for the data set.

2. Experts may also supply ranges indirectly. This can be done in several ways.

First, the expert may give his best estimate and then, later on in the session,
revise that estimate or give another possible estimate. If the rationale is
recorded, many such references to estimate changes in values and assumptions
(if changed) can be noted and recorded. If an expert changes his estimate, it is
vital to find out why. In some cases, he may be updating his thought
processes; in other cases, he may be changing the estimate because the problem
has changed. If he is changing the problem, then the new estimate is not useful
for a range value.

Second, the expert may have recorded his response in such a way as to
indicate a range of values. For example, if a continuous number scale is the
response mode, an expert may use a wide mark or smear his response along the
line indicating a spread of values. This may only indicate a narrow range, but it
is a useful range nonetheless. This kind of volunteered range value is best
considered as a very narrow uncertainty measure and can be used as repeated
measurements to increase the sample size.

3. The analyst can make many assumptions about either the direct or indirect
ranges volunteered by the expert. Percentile values, fractions of standard
deviations, or multiples of standard deviations definitions can be assumed by
the analyst to apply. A common rule of thumb (Kahneman, Slovic, Tversky
1982) is to take the experts' uncertainty range and double or quadruple it to
make a 90% coverage interval (the difference between the 95th and 5th
percentiles). In determining the validity of such a rule, the effects of different
uncertainty measures can be compared or can be studied by using simulation.
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Another way that analysts can use uncertainty measures is by using the
direct or indirect ranges as additional estimates to increase the sample size.
This method is especially useful for applications which have only a few
available experts. Again, a simulation technique such as the bootstrap is useful
for using the range values to increase sample size.

The analyst can also make assumptions even when no ranges are directly
supplied by the experts. Such indirect assumptions can be made by examining
the variation in the given answers. One such method would be to induce a
range of values by doubling the variance of the original set of single estimates
and assume a distributional form for the estimates with this doubled variance
and original mean. A similar uncertainty measure could be determined by
doubling the original range (maximum value - minimum value) of the data. To
assist the analyst in making such determinations, the experts may have provided
some verbal clues about the uncertainties in their estimates. The analyst will be
required to transform any such qualitative statements into quantitative values of
uncertainties. Therefore, any and all such information provided by the experts
should be viewed as part of the uncertainty characterization. \

Modeling Uncertainties

After determining some uncertainty measures for the experts' estimates by the
above methods, modeling or using uncertainties can be done by many different methods.
A few more commonly used techniques are described below, and a comparison of these
techniques is given at the end of the section for the problem described in the examples.

Bayesian Methods

Using one prior

In many risk and reliability problems, expert judgment is used to supplement
existing (but usually small amounts of) data. The expert judgment is used to formulate a
prior distribution that is combined with the data and its distribution using Bayes Theorem to
form a posterior distribution that reflects a composite of all the available information. In
this type of application, the expert judgment information serves two purposes (1) it
augments the data, and (2) it serves to characterize the uncertainty in the data.

The major disadvantage to this approach is that probability distribution forms are
needed for both the expert judgment data (as the prior) and for the existing data. Then the
process of combining these distributions can be difficult from a mathematical viewpoint. In
some difficult cases, numerical analysis techniques are required to find a solution. In other
difficult cases, simulation may be used to find a solution. To avoid mathematical
difficulties in calculating a posterior result, many analysts assume commonly used
distributions that have convenient mathematical properties that provide easy forms for the
posterior distribution. One such commonly used combination of the prior information with
the data is the binomial-beta combination. Here the existing data are assumed to follow a
binomial process--in » independent trials, x failures are observed, with each trial having a
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probability of failure equal to p. The prior information (usually from the experts) is also in
the form of xq failures in ng trials. However, here the prior distribution is a beta
distribution. This beta distribution is the distributional form for the binomial parameter p.
The beta is convenient for three reasons: (1) the beta distribution can have many different
shapes, (2) the beta ranges from 0 to 1 just as p does, and (3) the beta parameters are
interpreted as x¢ failures in ng trials. The resulting posterior of this binomial-beta
combination is also a beta distribution. Its mean and variance are easily calculated
functions of the n, x, ng, and xq values as follows:

. X+ Xp
osterior mean = ————
p n+ng

(x+xp(n+ng-x-xp)
m+ngln+ne+1)

posterior variance =

Two other prior distributional forms combine easily with the binomial process and
are commonly used in situations where little or no prior information is available. These are

the uniform distribution on the (0,1) interval and the noninformative prior k(p-pz)‘l/ 2
where k is any constant. By choosing & in terms of the gamma functions (Martz and

Waller 1982), this noninformative prior becomes a beta distribution with x, = 0.5 and n, =
1.0. The posterior distribution is then also a beta distribution function with the above mean
and variance formulae. The uniform distribution is a special case of the beta distribution
with parameters x; = 1.0 and ny = 2.0. Again the resulting posterior is a beta distribution
with mean and variance formulae given above. Thus for either the uniform or
noninformative priors the above formulae can be used to determine the posterior mean and
variance. One word of caution is necessary here in using either of these priors. The
uniform prior is used when no prior information is available and is sometimes called the
ignorance prior. This prior spreads the information evenly across the entire range of
values, from 0.0 to 1.0. It has almost a negligible impact on the posterior. On the other
hand, the noninformative prior is really a misnomer. This prior is informative and does
have an impact on the posterior. Its name should be the prior of little information.

Choosing the distributional form and corresponding parameters for the prior
distribution can make a significant difference in the posterior. Using the binomial-beta
combination to form the posterior, example 17.1 shows the influence that the prior
parameters can have on the final results.

EXAMPLE 17.1: Using Bayesian Methods for Uncertainty--Forming a
Single Prior
Ten experts have provided estimates for the probability of failure per year of a
subsystem in a reactor as follows:

Estimate of

Expert Failure Rate
 (—— 0.00250
p R — 0.00100

318



Characterizing Uncertainties

 J— 0.05000
. P— 0.00500
L JO— 0.01000
[ J—— 0.02500
g J— 0.00100
 JO— 0.00250
L J—— 0.00010
[ —— 0.00005

It is also known that this subsystem has been operational for 12 years without any
failures. This data follows a binomial process with x = 0 failures in n = 12 years. The 10
experts' estimates can be used to form a prior distribution that is combined with this
binomial data. The major advantage here is that the data alone do not contain enough
information to form a failure-rate estimate. Just using the data would give a failure-rate
value of 0/12 = 0. By combining the data with the experts information, a more reasonable
estimate is possible.

The variation in the 10 experts' estimates represents the uncertainty in the value of
the failure rate. By forming a distribution out of these 10 values, that distribution will
represent the uncertainty. The mean of the 10 values is 0.010; the standard deviation is
0.016. A beta distribution with that mean and standard deviation has parameters xg = 0.40
and ng = 39.5. These parameters represent an average failure rate of xo/ng = 0.010 or 1
failure in 98 years. A beta distribution with the above parameters, x¢ and ng, has the
following characteristics:

Mean 0.0102
Variance 0.00025
Minimum 0.00000023
Sth percentile 0.000012
50th percentile 0.0038

95th percentile 0.042
Maximum 0.074

Combining the expert information (beta prior distribution) with the data (binomial
process) gives the mean and variance of the posterior beta distribution as

1+0 _
98+ 13 0.0091
and
M: 000081
1102(110+1)

The influence of the data and the prior information on the final estimate is
demonstrated by examining changes in the data. Suppose there was 1 failure in 12 years,
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then the final mean estimate becomes 0.018, or twice the original value, with a variance of
0.00016. Here the data is more dominant, increasing the mean estimate. Suppose the data
was O failures in 144 years. Then the final estimates of the mean and variance are 0.0041
and 0.000017, respectively. Here the final mean is dominated by the experts.

Of course, changes in the experts' estimates affect the posterior in a similar fashion.
The purpose of this exercise is to emphasize that the prior and the data both are influential
and care must be taken to represent each appropriately.

[

Assuming distribution forms and determining posteriors can be arbitrary and
difficult. It is therefore recommended that Bayesian methods be used only in the simple
binomial-beta cases such as in example 17.1. For other cases, a statistician should be
consulted.

Using multiple priors

To characterize the uncertainty in each estimate (answer) given by the experts,
Bayesian methods can be used to establish a prior distribution for each expert. Each expert
provides an estimate or best guess and a corresponding range of values for that estimate.
These ranges represent the uncertainties that the experts have about the accuracy of their
single-point estimates. Distributions representing the estimates and their uncertainties can
be formed for each expert using the ranges and the estimates. Example 17.2 discusses
some of the ways of forming these distributions and shows one method in detail.

EXAMPLE 17.2: Using Bayesian Methods for Uncertainty -- Forming
Multiple Priors
The 10 experts in example 17.1 provided uncertainty ranges with their estimates as
follows:

Expert Estimate of Failure Rate Ranges
1 0.00250 0.00100 - 0.0040
2 0.00100 0.00010 - 0.0100
3 0.05000 0.00100 - 0.1000
4 0.00500 0.00100 - 0.0100
5 0.01000 0.00500 - 0.0500
6 0.02500 0.01000 - 0.0500
7 0.00100 0.00500 - 0.0025
8 0.00250 0.00100 - 0.0050
9 0.00010 0.00010 - 0.0100

10 0.00005 0.00005 - 0.0005

Given this information, there are several ways of formulating distributions for each
expert. The type of distribution is the first choice to be made. For convenience, the beta
distribution is chosen. Following are some ways of forming the beta distributions:
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1. The single estimates represent the mean of the beta. The lower range values
represent specified percentiles. For expert 1, his resulting beta distribution
would have parameters xg = 1.90 and ng = 761.9 if his lower range was the
20th percentile. This beta distribution has a mean of 0.0025 and a variance of
0.0000033.

2. The single estimates represent the mean of the beta. The upper range values
represent specified percentiles. For expert 1, his resulting beta distribution
would have parameters xg = 1.08 and ng = 430.8 if his upper range was the
80th percentile. This beta distribution has a mean of 0.0025 and a variance of
0.0000058.

3. The single estimates represent the median of the beta. The lower range values
represent specified percentiles. For expert 1, his resulting beta distribution
would have parameters xp = 0.64 and ng = 142.5 if his lower range was the
30th percentile. This beta distribution has a mean of 0.0045 and a variance of
0.000031.

4. The single estimates represent the median of the beta. The upper range values
represent specified percentiles. For expert 1, his resulting beta distribution
would have parameters xg = 1.32 and ng = 401.8 if his upper range was the
70th percentile. This beta distribution has a mean of 0.0033 and a variance of
0.0000081.

5. The range values represent specified percentiles. The single estimate is not used.
For expert 1, his resulting beta distribution would have parameters xg = 0.31
and ng = 38.6 if his lower range was the 40th percentile and his upper range
was the 60th percentile. This beta distribution has a mean of 0.0080 and a
variance of 0.00020.

6. The range values represent specified percentiles such as the 40th and 60th
percentiles. Beta distributions are formed from these. These betas act as priors
to be combined with the information in the single estimate where the single
estimates represent 1 in p failures such that x = 1 and n = 1/p. For expert 1, the
range values form a beta prior with parameters xg = 0.31 and ng = 38.64. The
single estimate represents a binomial process with x =1 and n = 400.
Therefore, a resulting beta for expert 1 has parameters xo + x =1.31and ng+ n
= 438.64. The resulting beta has a mean of 0.0030 and a variance of
0.00000014.

As seen in the example of using expert 1, the beta parameters and the variances can

change quite significantly depending on the interpretation of the uncertainty range values.
However, the means remain fairly similar to the original single estimated value (except in
item 5, where the mean is not used).

Using the method in item 5., the lower ranges are the 40th percentiles and the upper

ranges are the 60th percentiles. With these percentiles, the following are the beta
parameters for each expert:
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Beta Distribution Parameters

Expert X0 _ng__
1 0.31 38.64
2 0.09 0.60
3 0.09 0.30
4 0.18 4.32
5 0.18 1.25
6 0.26 2.60
7 0.26 42.76
8 0.26 21.64
9 0.09 0.60

10 0.18 76.19

These 10 beta distributions can be combined according to the distribution
aggregation methods from chapter 16, such as using Monte Carlo simulation. The
resulting combination distribution could then be used as a prior to combine with the data or
with a decision maker's distribution to form a posterior. The aggregation by simulation is
performed in example 17.3 in the next section on Monte Carlo simulation.

[

Simulation Methods

In chapter 11, the bootstrap and Monte Carlo simulation techniques were
introduced. These techniques were also used in chapter 14 for exploring correlation among
experts, and in chapter 16 for aggregation of expert estimates. Both techniques are useful
for characterizing uncertainties.

Monte Carlo simulation

One of the easiest and most effective (Martz et al. 1983) ways of propagating
uncertainties through a model is to use Monte Carlo simulation. Simulation can be used to
combine various types of distribution functions without relying on difficult or complex
mathematical formulations of the combinations. The mathematical difficulties in
aggregating expert estimates was seen in chapter 16. Similar problems can also arise in
characterizing uncertainties because uncertainties are commonly represented by
distributions on estimates. These uncertainty distributions must usually be combined in
some manner with original estimates or with other uncertainty distributions to obtain an
overall effect of all the uncertainties.

Example 17.3 illustrates how uncertainty characterizations for the 10 experts'
estimates from example 17.2 can be combined to form a single distribution that represents
the uncertainties in all 10 distributions. In example 17.2, each expert's range was used to
formulate a beta distribution as the uncertainty distribution for his estimate. Using the
ranges and the original estimates, several ways of formulating such beta distributions were
given in example 17.2. In example 17.3, the effect of choosing different distributional
forms for the uncertainty distribution is illustrated. First, the ranges are used to establish
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the upper and lower limits of a uniform distribution. Second, the ranges are used to
determine the parameters of a beta distribution. Then, in both cases, the 10 distributions
are aggregated to determine the distribution of the median (50th percentile value) of the 10
experts' estimates using Monte Carlo simulation. The simulation is done by forming 1000
different samples by randomly choosing one value from each of the 10 expert distributions.
For each sample the median of the 10 values is calculated. The end result is a distribution
of 1000 medians. The variance, percentiles, and mean of this final distribution provides
the estimates of the variance, percentiles, and mean for the median of the 10 experts.

EXAMPLE: 17.3: Uncertainty Characterization Using Monte Carlo
Simulation

Using the 10 experts' ranges given in example 17.2, individual uncertainty
distributions can be determined for each expert. These distributions can then be combined
to form a distribution for an overall estimate of the 10 experts. According to chapter 16 on
aggregating expert judgment, the median of the experts is a commonly used aggregation
estimator. Monte Carlo simulation allows the analyst to determine the distribution of the
median.

In this example, the ranges given by the experts are used to form two different
distributions: (1) the lower and upper range values form the 40th and 60th percentiles of
uniform distributions, and (2) the lower and upper range values form the 40th and 60th
percentile values for beta distributions as done in example 17.2.

Final distribution for the median of the 10 experts is formed from 1000 median
values calculated from 1000 samples of size 10. Each sample is formed by randomly
selecting a value from each expert's distribution.

Two simulations are done. The first uses uniform distributions to represent the
experts' uncertainties in their estimates, and the second uses beta distributions. The two
resulting median distributions have the following characteristics:

Uniform Uncertainty Distributions for the Experts

Mean 0.0047
Variance 0.0000072
Minimum 0.0000013
Sth percentile 0.00030
50th percentile 0.0038
95th percentile 0.012
Maximum 0.026

Mean
Variance

Beta Uncertainty Distributions for the Experts

0.0091
0.00024
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Minimum 0.00000033
5th percentile 0.00038
50th percentile 0.0041

95th percentile 0.034
Maximum 0.14

The variance for the medians from the beta uncertainty distributions is much larger
than from the uniforms. The maximum for the beta is a little larger, and the minimum for
the beta is much larger. However, the medians of both are the same, and the means are
also quite close. Thus the central measures of the final distributions for the median are not
affected by the choice (beta or uniform) of the uncertainty distribution form used for the
experts. The greatest effect from distributional choice is in the variances and the shapes of
the tails of the resulting distributions.

[

In examples 17.2 and 17.3, two problems were identified in translating the experts'
range values into uncertainty distributions. The first problem (example 17.3) is deciding
upon a form for the distributions. The second problem (example 17.2) is deciding how to
use the ranges to form the parameters of the chosen distributions.

In example 17.3, the effect of the first problem was seen. The choice of the
uncertainty distributions (beta or uniform) made a difference in the variances and tails of the
final distributions for the median. One way of handling this problem is to run several
simulations, each using a different, but reasonable, distribution choice. Results from
different choices should be consistent with each other, or inconsistencies should be
resolved based on the assumptions that were made. For example, in 17.3 the wider
variance in the beta case is a result of the interpretation made about the experts' range
values (the second problem). If the ranges had been used to represent the Sth and 95th
percentiles, then the resulting variance from the beta case would have corresponded better
to the uniform case.

There are some logical choices for distributions that can be tried and compared for
various types of estimates. For probability estimates, the uniform and beta distributions are
logical choices. The normal distribution is also commonly used; however, care must taken
not use a normal distribution that gives values for probabilities which are negative or
greater than 1.0. The normal, lognormal, and gamma distributions are often used to
represent estimates of physical quantities, such a temperatures or of failure rates.

Another way of handling the first problem is to do the simulation using a technique
such as the bootstrap that does not require a distributional assumption. This technique uses
the data itself to form an empirical distribution for the simulation. Details on this technique
are given below.

In handling the second problem, understanding that experts underestimate
uncertainty is useful. Because experts do underestimate uncertainty, it is recommended that
either the range be doubled for use as tail percentile values (e.g., 5th and 95th) or that the
range values represent inner percentiles, such as the 30th to 40th and 60th to 70th
percentiles. As in example 17.2, different interpretations should be tried. Usually the
different interpretations will tend to affect the variances of the uncertainty distributions
rather than the centers of the distributions. The basic idea is to represent the uncertainties in
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the quantity being estimated. If the experts feel that the uncertainty is great, then larger
variances are to be expected, and these variances may even be larger than the experts
expect.

Bootstrap simulation

Distributions can be formed by sampling and resampling from the original data set.
This sampling and resampling process is referred to as sampling with replacement. To
form a single sample of size n, n values are randomly chosen from the original data set. If
a particular value is chosen once, it can be chosen again in the same sample. The
simulation is done by forming N such samples (N = 1000). As in the Monte Carlo
simulation, a calculation or model is formed for each sample. The N results of this
calculation or model are collected to form a final distribution.

The main advantage with bootstrap sampling is that no distributional assumptions
are required on the data. Its main disadvantage is that the sampling/resampling procedure
produces a final distribution with a small variance. In other words, the variation of the
final distribution is limited to the variation of the original data set.

One way to overcome the restricted variance problem is to induce more variation
(more uncertainty) into the original data set. The ranges of values that represent the
uncertainties in the values serve to expand the variation of the original data. Therefore, if
the ranges are included in the original data set, the results from a bootstrap simulation will
have a wider variation than the original sample without ranges. Example 17.4 illustrates
the difference in the bootstrap final results when calculating the median of the 10 experts'
estimates for cases without the range values and with the range values

EXAMPLE 17.4: Uncertainty Characterization Using the Bootstrap

Using the data from the 10 experts from example 17.1, a bootstrap sampling
procedure of those 10 estimates represents the uncertainty in the estimates. Samples are
formed in a similar manner to the Monte Carlo simulation except random selections are
taken from the original data set and not some specified distribution. For each sample, a
single datum can be chosen either once, more than once, or not at all.

By forming 1000 such random samples from the original 10 estimates and
calculating the median value of each sample, a distribution of 1000 medians is formed with
the following characteristics:

Mean 0.0044
Variance 0.0000085
Minimum 0.0010
5th percentile 0.0018
50th percentile 0.0037
95th percentile 0.010
Maximum 0.027

The central values (mean and median) are the same as the ones in example 17.3.
However, here the variance is between the two results in 17.3. It was noted in that
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example that the smaller variance probably reflected the tendency of the experts to
underestimate uncertainty. It is also known that the bootstrap simulation produces a small
variance--a variance limited by the variation in the original data set. Therefore, the resulting
variance of the median may also be too small to adequately represent the uncertainty .

One solution to this underestimation of uncertainty is to expand the variance of the
original data set by including the range values given by the experts. One way of doing this
is to supplement the data set by adding these upper and lower range values as if they were
additional estimates. Now the original data set is increased to 30 values. However, when
performing the bootstrap simulation, the sample size of 10 is recommended so that false
benefits from an increased sample size are not induced into the simulation.

Results for the bootstrapped median with range values follow:

Mean 0.00083
Variance 0.00000089
Minimum 0.0000010
5th percentile 0.0000010
50th percentile 0.00055
95th percentile 0.0030
Maximum 0.0063

The final distribution for the median is stretched over a wider range of values than
the final distribution without the range values. However, because the range values are
biased toward the lower values, this final distribution is shifted in that direction. This shift
may not be a desirable result. One way to avoid this shift would be to add range values that
are symmetric about the original estimates.

i

In conclusion, both simulation techniques (Monte Carlo and bootstrap) have their
advantages and disadvantages. Care must be taken to decide which advantage is most
desirable and which disadvantage is most harmful. In the case of uncertainty
characterization, the Monte Carlo distribution assumption disadvantage is less harmful than
the bootstrap restricted variance disadvantage because uncertainties tend to be
underestimated and more diversity is generally needed to adequately represent the true
uncertainty. This is a conservative approach to uncertainty. However, unless more
information about the size and effect of uncertainties is known, the conservative approach
is the approach accepted by the risk and reliability community.

Decision Analytic Methods

The decision analysis community has adopted and developed many ways of
characterizing uncertainties including the Bayesian and simulation methods mentioned
above (Booker and Bryson 1985). Many of these techniques rely on strict model
formulations. Some also require that the data be distributed with a multivariate normal
distribution. Uncertainties are also assumed to follow distributions that combine with the
data in a mathematically convenient fashion. It is not in keeping with the basic philosophy
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in this book to impose such restrictions on the data or to require experts to give their
estimates in forms that are merely convenient for the analyst. Whereas some distribution
assumptions may be necessary, in this book we advocate their usage be kept to a minimum
or that they be used in cross-validation with other techniques.

There is one decision analytic technique whose usage is in keeping with the
philosophy expressed in this book. It is known as the maximum entropy technique and can
be easily implemented using the following description and example:

The idea behind maximum entropy is to formulate a distribution for the data such
that the distribution maximizes the uncertainty in the data. To determine this distribution,
several values are required, and a choice for the prior distribution on the variable of interest
(e.g., probability of an event, p) is also required. At least two percentile values are needed,
and the value for the absolute maximum of p and minimum of p is needed. Two commonly
and easily used prior distributions are the uniform and the noninformative prior (Cook and
Unwin 1986).

Using a uniform prior on p from the absolute minimum value a to the absolute
maximum value b and two percentiles x; and x;, the maximum entropy distribution for p is

p(x) = L(x; - a) asx<x
W -L)/(xy-xp X1<x<xy
(1-U)/(b - xu) Xy<x<b ,

where U and L are the percentage values (e.g. 0.95 and 0.05) for the x; and xy percentiles.
Using a noninformative prior on p with two percentiles a and b, the maximum
entropy distribution for p is

p(log(x)) = L/log(x)/a) log(a) < log(x) <log(xp)
(U - D)log(xu/xp) log(x)) < log(x) <log(x,)
(1 - U)/log(b/xy) log(xy) < log(x) <log(®) ,

where log is the base 10 logarithm.

These two distributions will be shaped as three blocks or steps. If other percentiles
are easily estimated, the above formulae can be expanded and the distribution will have
more steps:

p(x) =L1/(x1 - a) a <x<xi
(L2 - L1)/(x2 - x1) X1S$x<x2
(L3 - L2)/(x3 - x2) X2 <x<x3

(1 - Lo)/(b-xn) In<x<b ,

for n percentile estimates (x1, x2, ..., Xp).
Example 17.5 illustrates the use of these formulas for the 10 experts' estimates
from example 17.1. Prior distributions other than the uniform and noninformative can be
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used; however, forming the maximum entropy distribution for those can be mathematically
difficult. For such complex cases, simulation can be used to find a solution.

EXAMPLE 17.5: Forming a Maximum Entropy Distribution

For the 10 experts in the previous examples, the smallest range value is 0.00005,
and the largest is 0.1. These numbers for the 5th and 95th percentile values in the
maximum entropy formulae form the uniform prior distribution. The values for the
absolute minimum and maximum are also needed. These values are listed below with the
percentiles:

Absolute minimum value, ¢ = 0.000001
Absolute maximum value, b = 0.20
Number of specified percentiles = 2

095 and L =0.05
0.10 and x; = 0.00005

Percentile levels, U
Percentile values, x,

The following is the distribution of the failure rate, p(x).

p(x) = 1020.41 0.000001 < x < 0.00005
9.00 0.00005 <x<0.10
0.50 0.10 <x<0.20

This distribution has the following characteristics:

Mean 0.00056
Variance 0.000041
Minimum 0.0000010
Sth percentile 0.000050
50th percentile 0.025

95th percentile 0.10
Maximum 0.20

Comparison of the Methods

The methods for characterizing uncertainty presented in this chapter are chosen for
their ease of implementation and for the minimal amount of assumptions required.
Example 17.6 shows how these methods for characterizing uncertainty compare using the
10 expert estimates and their range values.
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Example 17.6: Comparison of uncertainty characterizations
On this graph the maximum and minimum values for the final distribution are
plotted at the ends of the straight line. The narrow boxes connect the Sth and 95th
percentile values for the median. The 50th percentile is the point inside the box. The final
distributions for the bootstrap and Monte Carlo plots are the distributions for the median.
The final distributions for the experts' estimates, Bayesian single prior, and maximum
entropy plots are the distributions for the failure rate (not the median of the failure rates).

Bayesian Single Prior

i

J

Monte Carlo Betas .

i

Experts' Estimates

F

Monte Carlo Uniforms

Maximum Entropy

i

]

Bootstrap Medians

J

Bootstrap with Ranges

107 106 105 104 103 102 101 10?
Failure Rates

Some interesting results are evident from this graph. First, the bootstrap without
ranges is very narrow, indicating little variation in the values. It is even narrower than the
raw data and is not unexpected. Small variations are indicative of the bootstrap (Efron
1979), and the variation of the median is expected to be smaller than the variation in the raw
data. The bootstrap for the median with ranges has a wider spread than the bootstrap from
just the raw data because there is increased variability of the data set from inclusion of the
range values. Second, most plots indicate a skew of the values with more of the
distributions shifted to the right or to higher failure rates. This is not surprising because the
raw data and range values are shifted to the higher failure rate values. Third, the Monte
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Cz:lo with beta priors, the maximum entropy, and the single beta prior indicate the most
spread and are very similar to each other. The maximum entropy and single prior also have
similar variability in the center (the boxes). The Monte Carlo betas has narrower center
because it represents the median and not the raw estimates. Finally, there is increased
variability over the raw estimates indicated in the plots of the methods using the ranges to
represent the uncertainty.

The differences in the methods result from the different assumptions made about the
distributional forms (beta, uniform, and empirical) and the interpretations of the range
values (where used). Complete consistency should not be expected. However,
inconsistencies should be explained. In this comparison, the plots for all methods are quite
similar with the exception of the raw data and the bootstrap median of the raw data. It is
expected that these plots should show very little variation because the range values were not
used to represent uncertainties in the raw estimates. As in other chapters, it is suggested
that several different uncertainty characterizations be tried and compared. However, if only
one method is chosen, the Monte Carlo with uniform priors would be a reasonable choice
(Martz et al. 1983).
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18

M aking Inferences

The purpose of eliciting and analyzing expert judgment has always been to use the
information gained either as data where none existed or as supplemental data where sparse
data existed. The goal is then to take this information from the experts and draw
conclusions from it. This process is referred to as making inferences.

In this chapter the possible inferences that can be made are examined taking into
account the design features of the problem and the use of analysis methods. Finally, some
comments about inference relating to expert judgment applications are presented.

What Inferences Can Be Made

Besides inference referring to information gained either as data where none existed
or as supplemental data where sparse data existed, inference also refers to drawing
conclusions that apply on a more universal scale. These inferences are based on statistical
principles of sampling. For example, results from a sample that is representative of a larger
population are used to make statements regarding that population. In expert judgment
applications, however, such extended inference is usually not possible. For one reason,
the information from the experts is not a random sample (or representative sample) of the
true state of knowledge. In most cases it is not even possible to form a random sample of
the experts used for the elicitation. Therefore, making inferences from expert information
about the true state of the universe is not a good idea.

In most expert judgment applications, the experts' knowledge represents the state of

"¢ ouisting or available knowledge. In that sense, inference can be made as follows: the
sults from the experts' information can be used to draw conclusions about the existing or
available knowledge base which may or may not represent the true state of nature. In other
words, the inferences that can be made are not necessarily relevant to truth. Also the
inferences that can be made are not statistically based inferences. Example 18.1 illustrates
this distinction.

Example 18.1: Expert Judgment Inference Versus Statistical Inference
Statistical inference allows the analyst to draw conclusions from a statistically valid,

or representative sample taken from a population which has a true value of some quantity of

interest (parameter). The inference is made accompanied by a probability statement
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specifying the chance that the conclusion is incorrect. For example, the parameter of
interest, P, is the probability of an earthquake scaled at 8.0 or greater at a particular
location. There is a true value for this probability in nature based on the entire history and
future of the earth at this location. Ideally, the analyst draws a random sample of times, n,
throughout the planet's history and future. He counts up the number of instances that such
an earthquake occurred, x, and estimates the true probability of such a quake by x/n. This
estimate would be representative of the true value from a statistically valid sample.

Such an example is ridiculous in reality. The information base required is not
available. Some information about earthquakes and potential conditions for one are
available to the expert. His knowledge and expertise are all that is available for estimating
the probability at this location. Suppose that existing historical data is that no evidence or
record of an earthquake exists. That does not mean that one never happened. The expert is
still the primary source of all the information that is available. The expert is carefully
interviewed using the techniques in this book. The information is recorded. His final
estimate, p, is given under sets of conditions that are plausible based upon what is known.

The expert's estimate, p, is not the same as the mythical x/n. Also, p cannot be
interpreted as representing the true value of P, whereas x/n can be interpreted for P.

What, then, is p? The value p is representative of the only existing information
about P. It may be the best information that will ever be available in the history of man. It
is subject to bias, to change, and to misinterpretation. It is not a statistical estimate of the
parameter P. It may be considered a single datum from a sample of possible estimates.
Analysts realize that statistical inferences are virtually impossible from a sample size of 1.
However, p is relevant, useful information.

How is p useful if statistical inference is not possible? It is representative of the
state of knowledge. Itis information that was not previously known. It can be interpreted
in conjunction with any caveats from conditions and assumptions that the expert made.

n

This limited ability to infer is bothersome to many analysts who are accustomed to
drawing statistically based inferences about a population (the truth) from a statistical sample
(the data). This limited ability to infer is also what leads many analysts and many experts
to believe that expert information is not valid data and cannot be used. One of the
misconceptions listed in chapter 2 deals with the issue of how to interpret expert judgment
as valid data. In that section, the foundation for the entire book was laid with the claim that
information from experts (data) was like any other data in that it must be carefully gathered,
analyzed, and interpreted. Example 18.2 illustrates how an expert judgment application is
identical to an experiment regarding the treatment of the data.

Example 18.2: Expert Judgment Data Versus Experimental Data

A chemist is asked to determine the composition of a chemical mixture. He
measures the easily identifiable elements and compounds first to determine composition.
To do this, he uses his calibration standards, instruments, and test procedures. He then
tackles the more difficult remaining items. He eliminates some and suspects some as being
present based on his own experience of how elements and compounds could mix together.
He completes the analysis and presents the results.
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Most scientists, analysts, and laymen would consider the chemist's results as good
experimental data. They would even make inferences (statistical ones) based upon the
results. Is this a good idea? What are the problems with the above experimental data that
affect the inference process? In answering these questions, it turns out that this
experimental data is no better than any expert information. Here's why:

First, the chemist used his judgment and expertise to make decisions about which
tests he would use. He went so far as to decide, based on his own experience, which items
were likely to be there or not. These are the conditions and assumptions that the chemist
made which are parallel to conditions and assumptions any expert makes in solving a
problem.

Second, the instruments used have measurement problems. Calibration, standards
used, and operator errors are commonplace sources of bias and lack of precision. The data
recorded from these are not the ideal samples required to make statistically based inference.
These biases and lack of representativeness of the data are parallel to the same things
discussed in this book in expert data elicitation (see particularly Pitfalls in chapter 2).

Why then is the chemist's experimental data more acceptable than data from an
expert's answer to a question? From this experimental description, the inferences possible
for the chemist's data are no better than those for expert data. From a statistical
perspective, neither data can be used for statistically based inference. However, both can
be used to reflect the best state of knowledge available.

m

The above illustrations indicate a philosophy about data interpretation and inference.
However, such a philosophy is necessary for expert judgment applications. It provides a
logical and defensible (if required) structure for the need and use of expert information.

Improving the Inference Process

It is highly desirable to do everything possible to accurately elicit and analyze the
information from the experts to get the best existing knowledge. Because inference stems
from the interpretation of the results, careful interpretation becomes important. Care and
improvements can be made from the design aspects of the elicitation and from the analyses
done.

Design-Based Improvements

Proper experimental design is always the key to obtaining the most and best
information for making inferences. This statement is true in experimental and expert
judgment applications. The ways of accomplishing design-based improvements are given
in the book and will be referred to by chapter numbers for this discussion. Basically,
proper design includes coordinating elicitation with analysis methods by (1) structuring the
questions and response modes, (2) monitoring granularity, (3) recording all information
from the experts (conditions), and (4) performing quantification.
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Synergism of elicitation and analysis

The interrelationship between parts IT and IIT of this book may not appear obvious
to the reader. However, the elicitation (part IT) is designed with a focus on the experts, and
the analysis (part III) is designed with a focus on the elicitation.

There are many different ways of analyzing expert answer data (usually quantitative
in structure). The methods in part III are chosen specifically to match with the elicitation
methods in part II. The choices made by the authors are mainly based on personal
experiences while working with both parts, the elicitation and the analysis.

Too often these are not connected (if at all) until the elicitation is completed. The
process of inference then becomes pure guesswork. The analyst is unfamiliar with the
ways that the data were gathered or with the forms in which it was gathered. Also, the
analyst probably has his own favorite methods that will more likely than not require
assumptions or model formations that are not appropriate to the data or to the way it was
gathered. This situation results in poor-to-bad inferences. This situation also contributes
to the bad reputation of expert judgment data.

If the analyst is not the data gatherer, he should at least be involved with the person
gathering the data at all stages of the project, from designing the questions (chapters 4 and
5), to selecting the elicitation components and tailoring the elicitation (chapters 6 and 7), to
pilot testing and final elicitation (chapters 9 and 10). Decisions made by the data gatherer
concerning the methods and components of the elicitation can provide important
information on the problem to the analyst. Also, the analyst needs to know what form the
gathered information will be in for the analysis. The analyst can help by avoiding during
the elicitation some of the problems involving granularity, quantification, and
conditionality.

Granularity

In the analysis part of expert judgment applications, monitoring the level of detail
reflected in the information at each analysis step has been emphasized. Granularity can
change within or between the analysis steps without notice. Granularity can also change in
the elicitation. The best defense against changing granularity is proper recording of the
elicitation to monitor such changes.

Inferences are made at the granularity that is the most general for all the steps.
Therefore, it may not be possible to improve inferences made by monitoring granularity;
however, inferences may be erroneous if proper attention is denied.

In the data-gathering and data-base-formation steps, it is likely that the data base
(chapters 12 and 13) contains variables (information) with different granularities. The
qualitative information can be thought of as more general for analysis purposes than the
quantitative. The quantitative variables can be categories or ranks; categories being more
general than ranks and both being more general than variables measured on a continuous
numerical scale. In the model formation step (chapter 15), variables of differing
granularities tend to be modeled together. Example 18.3 illustrates how the granularity
should be monitored and what inferences can be made as a result of different granularities.
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Example 18.3: Inference and Granularity

In an expert judgment application, six experts were asked to provide estimates of
how well experimental results matched results from a simulation code. The data base
included variables on problem-solving features. Three variables indicated assumptions
used, two indicated cues used, and one related to a definition. The data are as follows:

Expert A A2 Ci Co D, ANSWER
1 1 13 2 N B 0.25
2 1 20 2 Y A 0.10
3 2 33 1 Y C 1.00
4 3 27 2 Y A 0.50
5 3 25 1 N B 0.45
6 2 30 2 Y B 0.95

The variables A1 and D are category variables where the numbers 1, 2, and 3 and the
letters A, B, and C refer to qualitative descriptions. Variable Cj is a rank variable where
the values 1 and 2 mean that 2 is twice as important as 1. Variable C3 is also categorical
where Y is yes and N is no indicating whether or not a certain cue was used. Variable Aj
is a numerical variable indicating the values assumed for a parameter important to the
problem. The answers are on a continuous linear scale describing degree of agreement
from 0.0 to 1.0 in value.

Using regression analysis (GLM), the single best predictor variable for ANSWER
is A2. If these 6 experts were a representative sample of all experts, then statistical
inference about A7 would be possible. However, no such claim can be made, and only the
more limited inference is possible: A2 may be an important variable for determining
answers for these 6 experts. It also turns out that the variables D1, Cj and C2 are
significant variables in this regression. Their degree of importance as predictor variables is
according to the order listed, D1 being the most.

This set of 4 predictors from a regression analysis represents a mixture of
granularities. With such a mixture and the lack of a statistically valid sample, only a limited
inference is possible. In this case, the information gained is merely that these 4 variables
are possible conditions for determining the answers. They are not to be used as predictors
for other answers as would be the inference made with significant variables from a
regression analysis. As possible conditional variables, they can be considered for use in
aggregation; they can be used to answer the important question: Are the experts all solving
the same problem?

n

Example 18.3, illustrated granularity problems with modeling. The aggregation
step (chapter 16) has similar problems. However, aggregation involves combining final
answers or answer distributions by some weighting scheme, and usually these answers are
already at the same granularity. The same granularity might not hold if different
aggregation methods were used on the same data set. Therefore, granularity must still be
monitored.
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In characterizing uncertainties (chapter 17), granularity can become a severe
problem because the uncertainties may represent one level and the answers represent
another. Also, the uncertainties from different experts may represent different granularities
as illustrated in example 18.4.

Example 18.4: Granularity and Uncertainty Characterization
Suppose that the six experts in example 18.3 provided the answers given above and
provided uncertainty estimates as follows:

Expert Answer Uncertainties Expert's Definition
1 0.25 (0.10, 0.50) Range
2 0.10 (0.00, 0.20) 5th and 95th percentiles
3 1.00 (0.90, 1.00) Range
4 0.50 (0.25, 0.75) Sth and 95th percentiles
5 0.45 (0.00, 1.00) Absolute min. and max.
6 0.95 (0.90, 1.00) Range

These uncertainty estimates do not have matching definitions (or matching
granularities). The percentile definitions from experts 2 and 4 will not represent a 90%
coverage interval. The definitions might represent more of a 30 to 40% coverage interval.
The ranges from experts 1, 3, and 6 have no obvious interpretation. The values from
expert 5 appear to be useless. However, if expert 5 claims that his range really represents
his assessment of the true uncertainty, then those values are valid uncertainty
characterizations even though they cover the entire possible range of the answers.

A common, but more general, definition for the uncertainty values is needed for all
experts. One such solution would be to assume uniform distributions for each expert using
the ranges provided as the upper and lower limits for the uniform distributions. Monte
Carlo sampling from these uniform distributions provides a useful uncertainty analysis
method in this case. However, the results of such an analysis would reinforce what is
already evident from the ranges of values provided by the experts. The uncertainty is large
enough to cover the entire possible range of values for the answer. In such a case, the
granularity problem is overshadowed by the large uncertainty.

|

Modeling, aggregation, and uncertainty analyses are important for making
inferences in ways other than those regarding granularity. These are discussed in another
section below.

Quantification

Granularity is actually a part of quantification as it is broadly defined in this book.
Quantification is defined as transformations from one type of data to another rather than as
the traditional definition of transforming qualitative information to numbers. Qualitative
information is considered more general than quantitative; ranks (or integers) more general
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than (continuous) numbers; categories more general than ranks; descriptions more general
than categories. The granularity/quantification connection affects the inference process.

In cases where data is sparse or missing for a set of variables, categories, ranks, or
numerical values are summed or collapsed to form new variables or new categories for a
variable. Summing or collapsing variables also changes granularity from specific to more
general. The inferences must be made in terms of the new, more general variables and not
in terms of the original information. An example of changing granularity is given in
example 18.5 using one of the quantification methods, the Saaty method, which finds
numerical weights from qualitative information.

Example 18.5: Granularity and Quantification Using Saaty's Method

An expert is asked to compare and evaluate the likelihoods of seven different
events. By using Saaty's pairwise comparison method, the relative evaluations (a general
granularity) using the Saaty scale follow:

1 versus 2------- 0.50 3 versus 4-------- 2.00
1 versus 3------- 0.33 3 versus 5-------- 3.00
1 versus 4------- 1.00 3 versus 6-------- 3.00
1 versus 5------- 2.00 3 versus 7-------- 3.00
1 versus 6------- 3.00
1 versus 7------- 2.70 4 versus 5-------- 2.00
4 versus 6-------- 3.00
2 versus 3------- 0.50 4 versus 7-------- 2.00
2 versus 4 ------- 3.00
2 versus 5------- 4.00 5 versus 6-------- 2.00
2 versus 6------- 6.00 5 versus 7-------- 1.00

2 versus 7 ------- 5.00
6 versus 7-------- 0.50

The resulting relative weights are
(0.13, 0.27, 0.28, 0.13, 0.07, 0.05, 0.07)

Even though the weights are numerical, the interpretation must be made on a relative basis.
For example, events 5 and 7 are not half as likely as events 1 and 4, nor are they one-
fourth as likely as events 2 and 3. The only interpretation is that possible for the 7 events.
The events judged most likely are 2 and 3, and the events judged least likely are 5, 6, and
7.

u

Conditionality

The concept of conditionality refers to the fact that the answers given by the experts
are conditioned on many aspects of the problem, the elicitation, and the experts themselves.
In chapters 12 and 13, analysis techniques are discussed that emphasize how to search for
these conditions. Here their importance is in interpreting the answers.
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The major focus for investigating conditions is to guarantee that the experts are all
solving the same problem and that the problem being solved is indeed the one being asked.
If conditions relating to problem-solving features such as definitions, assumptions, and
heuristics used by the experts are found to have an effect on the answers given, then these
features must be examined to determine if they somehow change the problem.

It is also recommended that some background information on the experts be
gathered as possible sources for influential conditions. It has long been speculated that
experts' backgrounds are a source of correlation among experts (Baecher 1979); however,
recent studies (Booker and Meyer 1988a , Meyer and Booker 1987b) have indicated that
evidence for influential background features is lacking.

Conditions can be found in the design features of the elicitation and in the
environment. Questions must be carefully formulated (chapter 5) and the elicitation
carefully implemented (chapter 8, 9, and 10) to minimize biases and other conditions that
can affect the answers given by the experts. Other, uncontrollable conditions, such as the
expert's mood, the room being uncomfortable, a disturbing recent event, should be noted
and documented as possible important conditions.

Recording and monitoring conditions is essential in order to determine if they are
important. It is also vital that the analyst and data gatherer not be responsible for inducing
any additional conditions by the way they analyze and elicit the data. This warning
includes the inference process. The analyst can impose his own views to the extent that he
interprets the data in the way that he desires. Conditions that might not really be important
can be used as excuses to disregard data that do not fit preconceived ideas. Even
conditions that might be important can be falsely used for this purpose.

There are other ways in which inferences can be erroneously made by placing too
much importance on conditions. While it is important not to ignore conditions, it is also
important not to use them as excuses, cover-ups, or justifications. Conditions found to be
significant or important may only be masks or indirect effects for some other effect that
cannot be monitored. Conditions found to be important must also be relevant to the
problem. Only then are interpretations made with conditions given as caveats or qualifiers.

The basic philosophy regarding possible effects from conditions is threefold. First,
proper elicitation and analysis is designed to reduce any effects induced by the data gatherer
and analyst. Second, the data gatherer and analyst should control conditions that are
controllable, and they should record information on any conditions that are observable.
Third, significant and relevant conditions are stated as part of the conclusions and as
reflecting the inferences made.

Analysis-Based Improvements

The methods chosen in the analysis section reflect a conservative, cautious
interpretation of the results. This caution is borrowed from the reactor design and
probabilistic risk analysis communities. The use of redundancy and cross validation plays
a major role in the analysis and design. In expert judgment analyses, this philosophy
means that more than one technique is used to determine the results. The consistency of
results is therefore validated. A simple way to cross validate is to use simulation
techniques. Simulation has the added advantage of not relying on assumed distributions or
on methods based on those assumptions.
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Cross validation and redundancy

There are multiple ways of analyzing a data set. Many of the methods presented in
part III of this book are similar and produce similar types of results that can be used
together to validate each other or to provide redundancy of analyses.

A regression (GLM) analysis provides information on how condition variables
affect the answers. Correlation also determines variable relationships. If two variables are
significantly correlated, they will usually be significant terms in a regression model.

The various multivariate techniques are also interrelated. If a conditional (ancillary)
variable is a good discriminator, then it will also be an effective predictor in a regression
model. If cluster analysis reveals definite clusterings, it is possible to find a discriminating
variable that is responsible for the clusterings. Factor analysis reveals, as can cluster
analysis and correlation analysis, how the different variables are related to each other.

Therefore, the analyst can run different techniques and determine if the results are
consistent. If the results are consistent, that lends strength to the conclusions. If the
results are inconsistent, then there is either trouble with using the techniques (e.g.,
violation of the required assumptions) or trouble with the interpretations (e.g., a variable is
not really important in determining the answers). Example 18.6 illustrates the use of
redundant techniques.

Example 18.6: Inference Using Redundant Techniques

Ten experts are asked to answer five questions, A through As. For each question,
a general problem-solving variable, Py through Ps, was found by summing up all the
problem-solving features for that question. Each problem-solving variable was found to be
significant in the regression analyses done for the answers. The individual problem-
solving features and all other ancillary information (variables) were not found to be
significant in the regressions.

Variables A1, A3z and A4 were trimodal in structure. The three modes formed three
clusters. Variables P, P3, and P4 were found to be significant
discriminating variables for their respective answer variables, and they
successfully predicted the three clusters for each answer variable.

Variables A3 and A5 had no identifiable structure. A cluster analysis of all the
variables for questions 2 and 5 indicated that A and P, formed a cluster,
and A5 and P5 formed a cluster.

Variable A1 was unimodal in structure. A correlation coefficient of A} and Py was
found to be a significant value of 0.87.

Therefore, for each A; variable, additional evidence was found to support the claim
that the P; variable might be important for determining A;.

Having supportive evidence for the P; variables as conditions for the answers, it is
now necessary to specify this in the statement of conclusions. The answers given by the
experts are conditioned on their general problem-solving processes (not specific problem-
solving features). For aggregation, it would be desirable to examine the values of the P;
variables for weight determinations. For inference, it would also be desirable to use the P;
variables to determine whether or not all the experts were solving the same (the given)
problem.
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Suppose the additional evidence was not so clear. If the A, P2 and As, Ps
variables did not cluster, then the conditionality would not necessarily apply for these
questions. Other techniques would have to be tried. If none of the other techniques
provided evidence of variable relationships between the A variables and the P variables,
then the conditionality would be suspect. These potential conditional variables would have
little or no importance for aggregation and interpretive purposes.

| ]

Because the inference process itself is weak in expert judgment applications, there
must be strong supportive evidence for conditionality. Redundancy or cross validation
helps to determine the degree of strength.

Simulation

Cross validation and redundancy checks can be provided by using simulation.
There are at least three good reasons for using simulation to improve the inference
capability in expert judgment applications: (1) sample sizes are typically small (less than 5
or 10 C)‘(perts); (2) distributional forms for the answers do not follow convenient forms
(such as the normal) and are usually multimodal or distribution mixtures; (3) estimations
for variances, percentiles, or central measures (such as the median) are desired for
inference but are difficult to obtain without specified distributional forms. At the very least,
simulation allows the analyst the freedom to explore and check things in an empirical (data-
based) manner.

It is difficult to make statistical inferences with small sample sizes. Most statistical
techniques rely on asymptotic or theoretic results that require sample sizes of 30 or more.
Designing for samples of 30 or more would be totally impractical in expert judgment
applications. For one reason, the elicitation would be too time consuming and expensive.
For another reason, there may not be 30 experts in existence.

It is equally difficult to make statistical inferences without specified distributional
forms. Many statistical techniques require distributional forms such as normality. This is
true of many of the multivariate analysis techniques such as discriminant analysis. Other
techniques such as regression have less strict distributional requirements, requiring only
that the residual or model errors be normal rather than the data itself.

It has been emphasized that all estimators (such as the mean or median) should be
accompanied by variance estimates or interval (e.g., percentile values) estimates.
Providing such estimates is part of the inference process and part of establishing the
uncertainty. A single-valued estimator does not provide any information about the
variability or uncertainty surrounding it. A single-valued estimator implies a precision in
the results that is not present. A variance or interval estimator conveys the appropriate state
of uncertainty and variability. It is difficult to estimate variances of estimators such as the
median without distributional forms. In some cases it is difficult even with distributional
forms because the formulas are not tractable.

Simulation can provide solutions to the difficulties from small sample sizes and
required assumptions. It allows the analyst to make the most of a small sample size using
such techniques as the bootstrap. Reliance upon asymptotic or theoretic results is not
necessary, and simulation provides the way of obtaining estimates for variances and other
quantities without theory, distributional assumptions, or difficult calculations.
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Inferences with Modeling, Aggregation and
Uncertainties

The relationship between the inference process and the results obtained from
modeling (chapter 15), aggregation (chapter 16), and uncertainty (chapter 17) was
introduced in the discussion of granularity above. These three steps in part III relate to the
inference process in other ways.

The models in chapter 15 are used to identify relationships between the conditional
(ancillary) variables and the answer variables. The major category of these models are the
GLMs, which are the backbone of statistical modeling techniques. Other conditional
models were also suggested that did not have a strong statistical basis. The purpose of
both types of models is not to identify functional relationships among the variables to be
used for prediction purposes; it is not even to specify model functions (equations); but the
purpose is only to provide clues about variable relationships that could be verified by using
other procedures (or other procedure's results could be verified using these models). The
reason for such a limited purpose is that model assumptions may be lacking.

The purpose of aggregation is to formulate the final results as a combined estimate
with a variance or as a distribution with central values (mean or median) and dispersion
measures (variance or 5th and 95th percentiles). These final estimates or distributions are
interpreted as the cumulative knowledge for the parameter of interest (the answer to the
question). This interpretation is part of the inference process. These results do not have a
statistical interpretation that relates the estimates to the true value. The dispersion estimates
do have a valid interpretation relating to the uncertainty in the state of existing knowledge,
and a conclusion can be made using the uncertainty characterization. However, the ideal
goal of aggregation to form an estimate or distribution that accurately reflects the truth is not
realizable. One could argue that this unrealistic goal negates the reason for aggregation;
however, aggregation does provide a convenient summary or combination of all the
available information.

As mentioned in the simulaiion section above, uncertainties are an integral part of
the inference process. In representing or characterizing uncertainties, their existence is
acknowledged as well as estimated. Drawing conclusions without accounting for
uncertainties makes the information appear more precise than is true (bad inference). As
emphasized in chapter 17, uncertainties are an important part of every experiment or
application and cannot be ignored, especially when it is time to interpret the results.

Final Comments

With only weak inferences possible, a natural question becomes: Why take such
care in gathering and analyzing the data? The answer to this was stated in Part I of the
book: Expert judgment data is like any other data. It must be carefully gathered, analyzed,
and interpreted. Careful interpretation, in this case, unfortunately translates to limited
inferences. Trying to do otherwise violates the true content of the information gathered. A
cliche is applicable here: You can't squeeze blood out of a turnip. This means that one
cannot get better information than that which exists.
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Other cliches and phrases are applicable to the philosophy of this book and to the
inference process:

1.

2.

Rome wasn't built in a day. This means that more research is needed and
that this book represents only a start in the research and efforts needed to
resolve the many problems in expert judgment elicitation and analysis. Better
inference will be possible with better techniques and understanding of the expert
information.

Nothing good comes easily. This means that all the steps and suggestions
offered here may seem tedious and unnecessary, but to obtain good quality data
takes time and effort. Even limited inferences can only be made if a good job is
done.

. Take it with a grain of salt. This means that the results are accompanied

by a list of caveats and conditions, and interpretation must include these.

. Keep it simple. The methods presented are designed to be feasible and

usable by data gatherers and analysts. Many other techniques exist, and some
of them are referenced. No evidence exists that the more complex ones omitted
are better than the simple ones offered. In fact, many of the more complex
methods do not perform as well as the simpler ones do.

In conclusion, the inference process may be disappointing in that the results and
conclusions available do not extend to the truth as is done in statistical inference.
However, information has been gained that was previously unknown, and that is the sole
reason for eliciting and analyzing expert judgment .
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Appendix A--SAATY

program saaty

Uses Saaty's own FORTRAN subroutine for calculating the weights
for a single level (matrix) (Saaty 1982). For more than 1 level
weights can be calculated using this code for each matrix and then
combined either by hand calculation or by modifying this code.

The input to this code can be done on the terminal or
by contructing input file SAATY.IN which has:

line 1: nfctr = number of experts (factors), maximum =10.

line 2: contains (nfactr-1) pairwise comparisons in £5.2 format,
comparing item 1 with items 2-nfct using scales **

line 3: contains (nfctr-2) pariwise comparisons in £5.2 format,
comparing item 2 with items 3-nfactr.

etc.

line (nfctr-1): contains 1 pairwise comparison in £5.2 format,

comparing the last two items [item nfctr to item (nfctr-1)].

**Values for pairwise comparisons can be taken from:
1)the Saaty integer scales: values = 2-9

where the first of the pair is better or more likely
than the second;

value = 1 where the pair is identical;

values = 1/2-1/9 where the first of the pair is worse or
less likely than the second.

2)the pairwise comparisons can be qualitative, using

a triplet of choices (better, same, worse) rather than the
numerical scale, the values for this triplet are:
(2.72, 1.00, 0.37), respectively.

dimension w(60)
open (unit=11, file='saaty.in', status='0ld")
open (unit=22,file='saaty.out',status="new')
write(*,' ("To use input file SAATY.IN, type 1 else type 0: ",\)'")
read(*,*) infile
if (infile.eq.l) then
read (11, *) nfctr
go to 61
endif

write (*,'("Enter the number of factors (up to 10): ",\)')
read (*,*) nfctr

continue

call mtxin(w,nfctr)

write (*,52) nfctr, (w(i),i=1,nfctr)

format ('Normalized weights for the',i3,' factors:',/,10f10.6)
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stop
end
c
c
c

subroutine mtxin(w,nfctr)
dimension c(60,60),w(60),cw(60),w2(60),rct (10)
data rct/.0,.0,.58,.90,1.12,1.24,1.32,1.41,1.45,1.49/

16 continue
if (infile.eq.0) write (*,9)
nfctrl=nfctr-1
do 10 i=1,nfctrl

2 continue

if(infile.eq.0)write (*,3) i
il=i+1
if(infile.eq.0)read (*,4) (c(i,]),j=il,nfctr)
if(infile.eq.1l)read(11,4) (c(i,3),j=i1,nfctr)
if(infile.eq.0)write (*,5) i, (c(i,3),J=il,nfctr)
if(infile.eq.l)write (22,5) i, (c(i,]),j=i1,nfctr)
if(infile.eq.0) write (*,1)

4 format (10£5.2)
5 format ('Row’,i3,' is:',10£5.2)
1 format (' If not correct type 9, if correct hit return.')
3 format (/, '"Enter row',i3,"' (use £5.2 format): ')
9 format (/, 'The upper trianqular part of the matrix:')
18 format (£1.0)

if(infile.eq.1l) yn=4
if(infile.eq.0)read (*,18) yn
if(yn.gt. 6) go to 2
do 10 j=il,nfctr
if(c(i,j).1t.0.) go to 6
if(c(i,Jj).ge.0.) go to 8

6 c(i, j)=-(1.0/c(i,3))

8 c(j,1)=1.0/c(4,3)

10 continue

do 14 i=1,nfctr
14 c(i,i)=2.

ts=0.

do 24 i=1,nfctr

s=0.

do 22 j=1,nfctr
22 s=stc(i,])

w2 (i)=s
24 ts=ts+s

do 26 i=l,nfctr
26 w2(i)=w2(i)/ts

k=0
27 ts=0.

k=k+1

do 30 i=1,nfctr

s=0.

do 28 j=1,nfctr
28 s=s+c (i, J)*w2(3)

w(i)=s
30 ts=ts+s

a=0.

do 38 i=1,nfctr
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w(l)=w(i)/ts
38 d=dt+abs(w(i)-w2(i))
if(k.gt.10000) go to 42
if(d.1t.1l.e-15) go to 42
do 37 i=1,60
37 w2(i)=w(i)
go to 27
42 continue
if(infile.eq.0) write(*,47)
if(infile.eq.1l) write(22,47)
47 format(/,'The final matrix is:!')
do 40 i=1,nfctr
c(i,1)=1
if(infile.eq.1) write (22,41) (c(4,3j),3=1,nfctr)
40 if(infile.eq.0) write (*,41) (c(i,J),3=1,nfctr)
41 format (10£6.3)
do 46 i=1,nfctr
s=0.
do 44 j=1,nfctr
44 s=s+c(i, J) *w(j)
cw(i)=s
46 continue
s=0.
do 48 i=1,nfctr
48 s=st+cw (i) /w(i)
ymax=s/nfctr
ci=0.
cr=0.
if(nfctr.le.1) go to 49
ci=(ymax-nfctr)/ (nfctr-1)
if(nfctr.le.2) go to 49
cr=ci/rct (nfctr)
49 continue
if(infile.eq.0) write (*,50) (w(i),i=1,nfctr)
if(infile.eq.1l) write (22,50) (w(i),i=1,nfctr)
50 format (/, 'Normalized weights=', (10£6.3))
if(infile.eq.0)write (*,52) ymax,ci,cr
if(infile.eq.l)write (22,52) ymax,ci,cr
52 format (' principle eigenvalue, lmax =',£6.3,/,

*'Consistency index (deviation of lmax from n) =',f6.3,
* /,' consistency ratio (should be < .10) =',£6.3)
if(infile.eq.0) write (*,54)
54 format(/,'If you want to redo this matrix,?,
* 'type 9, else hit return:')
if(infile.eq.0)read (*,18) yn
if(yn.ge.S5) go to 16
return
end
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Program MCBeta

Appendix B--MCBETA

program mcbeta

Monte Carlo uncertainty analysis code

for beta distributions.

combining the set of experts, events, or sequence as:
FUNCTION EVAL (PR)

where pr is array of probabilities of primary events,

and the function is aggregation estimator for all the betas.

Input is supplied using file MCBETA.IN, as unit 11,

see format below.

Output is sent to two files:

MCSTATS.OUT which contains the Monte Carlo results
BET.OUT which contains the fitted beta distributions results.
MCSTATS.OUT is unit 22 and BET.QUT is unit 33

Betas are fit with two supplied estimates either as:

1) 2 percentile estimates and levels (e.g. 0.05 & 0.95)
2) 1 percentile estimate and level and a mean value.

parameter (nbmax=500,klmax=100,ndmax=100, nhmax=10000, nhpl=nhmax+1)
dimension ppbig(10000)
common/primary/pr (nbmax) , param(klmax, ndmax, 2)
common/options/nb, nruns
common/utility/dumy (nhpl)

save /utility/, /options/, /primary/

open (unit=22,file='mcstats.out',status="new')
call input

nout=0

do 10 n=1,nruns

call pgen

prob=eval (pr)

if (prob.ge.0..and.prob.1t.1.01) go to 8
nout=nout+1

write (22,1222) n,prob

go to 5

continue

ppbig(n) = prob

continue

call finish (ppbig,nruns)

write(22,1000) nout

1000 format(//' Simulation generated' i5,

' values not in (0,1)')

1222 format (' n=',i6,' prob=',elé6.8)

close (unit=22)
stop
end

subroutine input

Read parameters from file 'MCBETA.IN'.
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line description

1 nb = number of primary events (le nbmax)
nr = number of monte carlo runs, max = 10000
2 iibet = 2 for 2 percentiles, = 1 for 1 percentile & mean
next nb lines free format
two percentiles for the beta case:
upper estimate, lower estimate,
upper level (.95), lower level (.05)
or
mean, percentile value, percentile level.

aoQaoon00QOQ0Q0000

parameter (nbmax=500,klmax=100, ndmax=100)
common/primary/pr (nbmax) , param (klmax, ndmax, 2)
common/options/nb, nruns
save /options/,/primary/
dimension t (2)
open (unit=11,file='mcbeta.in’, status='01d"')
open (unit=33,file='bet.out', status="'new')
read (11,*) nb,nr
read(1ll,*) iibet
nruns=nr
do 10 i=1,nb
c
¢ Subroutines twoper & meanper find the beta parameters, x0 fnd
c
if (iibet.eq.2) call twoper (x0, £n0)
if (iibet.eq.1l) call meanper (x0, fn0)
t (1)=x0
t (2)=£fn0
param(i,1,1)=t(1)
param(i,1,2)=t (2)
10 continue
close (unit=11)
close (unit=33)
return
end

subroutine pgen
parameter (nbmax=500,klmax=100, ndmax=100)
common/primary/pr (nbmax) , param (klmax, ndmax, 2)
common/options/nb, nruns
common/utility/p (klmax,ndmax)
save /primary/, /options/, /utility/
do 100 n=1,nb
prml=param(n,1,1)
prm2=param(n,1,2)-prml

82 if(prml.gt.1l.0) gxl=gt (prml)
if(prml.eq.1.0) gxl=gs(l.)
if(prml.1t.1.0) call gl (prml,gxl)
if(prm2.qgt.1.0) gx2=gt (prm2)
if(prm2.eq.1.0) gx2=gs(l.)
if(prm2.1t.1.0) call gl (prm2,gx2)
p(n,1)=gx1/ (gxl+gx2)
if(p(n,1).gt.1.0) go to 82
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100 continue

OO0 0O00Q0

o000

OO0 0000

do 200 i=1,nb
200 pr(i)=p(i,1)

return

end

hhkhkhkhhkkhkhkhkhkhkhhkhkhkhkhkhkkhkhkhkhkhkkkhhkhkhkkhkhhkhkkhhkhkhkhhkkhkhkkrhkhkhkhkkhkhkkkhhkhhkhkhk

FUNCTION EVAL: must be changed for each new problem

dhkkhkkhkhkkhkhkhkkhkhkkhkhkrhkkhkkhkhkhkhkkhkhkkhkhkhkhkhkhhkkhkhkkhkhkkhkhkhkhkhkrkkhkkhkhkhkkhkhkhkhkhkhhkhkkk

function eval (x)

dimension y(150),x(500)

ymedian = (x(1) + x(2) +x(3))/3.0
eval = ymedian

return

end

function gs(alp)

Routine for generating gamma variates with
shape parameter less than 1. )

Ahrens, J. H. and Dieter, U. (1974)
"Computer Methods for Sampling from Gamma,
Beta, Poisson, and Binomial Distributions,"”
Computing, vol 12, p.223-246.

data ex/2.718281828459045/
bet=1.0

ul=rnd(0.)

b= (ex+alp) /ex

p=b*ul

if (p.gt.l.) go to 3

x=exp (alog(p) /alp)
u2=rnd(0.)

if (u2.gt.exp(-x)) go to 1
go to 10

3 x=-alog ( (b-p) /alp)

u3=rnd(0.)
if (alog(u3).gt. (alp-1.)*alog(x)) go to 1

10 gs=x*bet

Q00

O0OO00000

return
end

subroutine twoper (zpar, znpar)

This program computes the parameters of a beta distribution
given two percentiles of the distribution

The following values are to be read in from MCBETA.IN:
r2=upper percentile estimate
r3=lower percentile estimate
y=percentile level of r2 (e.g. .95)
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c w=percentile level of r3 (e.g. .05)
c
¢ The followign values are calculated as the beta parameters:
c zpar=the value of x0 in single precision
c znpar=the value of n0 in single precision
c
implicit real*8(a-h,o-y)
common/per2sub/n, int,ifin
save /per2sub/
read(11,*)r2,r3,y,w
al = .0001
bl = 1000.
n=20
int=0
ifin =0
30 call perint(an,bn,n)
call betasub(an,bn,al,bl,r2,r3,y,w,ppar,xnpar)
if(ifin.ge.l)go to 20
if(int.gt.2) go to 40
if(int.ge.l) go to 30
40 write(*,41)
41 format (' parameter value is greater than 100000.' )
20 continue
zpar=ppar
znpar=xnpar
return
end
c
c
c
subroutine betasub(an,bn,al,bl,r2,r3,y,w,ppar,xnpar)
implicit real*8(a-h,o-y)
common/per2sub/n,int,ifin
save /per2sub/
c
¢ Prints to output file for beta information, BET.OUT
c

write (33, 31)

31 format (' RESULTS FOR THIS BETA DISTRIBUTION:',/,/)
write(33,33) r2,y,r3,w

33 format (' upper percentile= ',f12.6,' level=',f12.6,/,
*! lower percentile=', £12.6,' level=',f12.6)
x0=betpar (al,bl,r2,an,y)
ax= dbti (r3,an, x0)

x1 = betpar(al,bl,r2,bn,y)
bx = dbti (r3,bn,x1)

15 ¢cn = (an + bn)/2.0
x2 = betpar(al,bl,r2,cn,vy)
cx = dbti(r3, cn,x2)
if (cx-w) 50,60, 60

50 bn = ¢cn
go to 70

60 an = cn
70 dn = bn - an
if(dn .1t. 10e-10) go to 80

go to 15
80 ppar = (an + bn)/2.
gpar = x2
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30
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91

90

98

85

95

96
25

10
30
20

40

50

10

20

Program MCBeta

prob = dbti (r2, ppar, gpar)
diff = abs(prob-y) - .0001
if(diff) 30,20,20

prob = dbti (r3,ppar, gpar)
diff = abs(prob-w) - .0001
if (diff) 35,20,20

int = int+l

go to 25

xnpar = ppar + gpar

bmean = ppar/xnpar

ifin = ifin + 1

format (' ',a4,/,a80)

write (33, 90) ppar, gpar, xnpar

format (5%, 'p = x0 = ',f12.6,5x,'q = ',£f12.6,5x,' n0 = ',£f12.6/)

write(33,98) bmean

format (2%, 'the mean of the prior is ',£12.8)

var= (bmean* (1-bmean) ) / (xnpar+1.)

std=var**.5

write (33, 85)var, std

format (2x, 'variance=',eld.6,' std. dev.=',el4.6/)
prob=dbti (r2, ppar, gpar)

write (33,95) prob

format (2%, 'the upper percentile probability is ',f16.13)
prob = dbti (x3,ppar, gpar)

write(33,96) prob

format (2x, 'the lower percentile probability is ',£16.13,//)
return

end

function betpar(al,bl,r2,an,y)
implicit real*8 (a-h,o-y)
a al

b = bl

c (a + b)/2.0

X dbti (r2,an,c)

if (x-y) 20,30,30

b=c

go to 40

a c

d = b-a

if (d.1t.10e-10) go to 50
go to 10

betpar = (a + b)/2.0
return

end

nnui

subroutine perint (an,bn,n)
n = n+l

go to(10,20,30) n
an=.0001

bn=1000.

go to 40

an=1000.

bn=10000.
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go to 40
30 an=10000.
bn=100000.
40 return
end

(oo e]

subroutine meanper (z0, zn0)

This program computes the parameters of a beta
distribution given the mean and one percentile
of the distribution

The following values are read in from MCBETA.IN:
rmean = mean
perc = percentile
prob = percentile level.

The following values are calculated:
z0 = the value of x0 in single precision
znO= the value of n0 in single precision

QOO0 0000O0

implicit real*8(a-h,o-y)
common/meansub/rmean, perc, prob, n, int
save /meansub/
read(11,*) rmean, perc, prob
n=20
int =0
30 call parint(a,b,n)
if (rmean.lt.perc)go to 10
go to 20
10 rl = rmean
r2 = perc
Y = prob
go to 38
20 r1 1. - rmean
r2 1. - perc
y = 1. - prob
38 call betsub2(rl,r2,a,b,y,x0,£fn0)
if(int.eq.1l) go to 35
if(n.le.3)go to 30
if(n.gt.3) go to 40
go to 35
40 write(*,42)
42 format (' parameter value is greater than 100,000.°' )
35 continue
z0=x0
zn0=£n0
return
end

000

subroutine betsub2(rl,r2,a,b,y,x0,£fn0)
implicit real*8(a-h,o-y)
common/meansub/rmean, perc, prob, n, int
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save /meansub/

¢ Prints beta information to BET.QUT

c

(el MY

92
15

format (* *',ad,/,a80)
write(33,15) rmean,perc,prob
format (2x, ' the given mean is ',£8.5,//

* '  the given percentile is *,£8.5,//
* '  the given percentile level *‘',£8.5/)

30

40

50

60
20

70

80

86
85

10

30

20
40

fn0=btpar(rl,r2,a,b,y)

%0 = fn0*rl

if (rmean.lt.perc)go to 30
go to 40

prb = dbti(r2,p,q)

diff = dabs (prb-prob) - .00001

if(diff.ge.0.) go to 85

int = int + 1

write (33,60) £fn0, x0

format (2x,' n0 = ',£f12.6,' x0 = ', £12.6/)

write (33,20) r2,prb

format (/2x,' the probability at',f12.7,' is ',£19.17/)
pm = dbti (rmean,p,q)

write (33,70) rmean, pm

format (2%, ' the probability at the mean ',£7.5,' is', £f12.8/)
pmean = p/ (p+q)

var = (pmean* (1.-pmean))/(p+q+l)

std = var**.5

write (33,80) pmean

format (2x,' the mean of the beta prior is x0/n0 = ',£8.5)
write(33,86) var,std

format (2x, ' variance=',eld4.6,' std. dev.=',el4.6)

return

end

function btpar(rl,r2,a,b,y)
implicit real*8(a-h,o-y)
common/meansub/rmean, perc, prob, n, int
save /meansub/

c= (a+b)/2.0

x=c*rl

g=c-X

p=dbti (r2,x,q)

if (p-y)20,30,30

b=c

go to 40

a=c

d=b-a

if (d .1t. 1.0e-10)go to 50
go to 10
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50 btpar=(a+b)/2.0
return
end

(¢]

subroutine parint(a,b,n)
implicit real*8(a-h,o-y)
n=nt+l
go to(10,20,30) n
.0001
1000.
to 40
1000.
10000.
to 40
10000.
b = 100000.
40 return
end

10

o

a
b
go

20 a
b
go
a

30

O

subroutine gl (alp, x)

QQ

Finds gamma values for alpha less than 1.0

1 ul=rnd(0.)
b=(2.718281828+alp) /2.718281828
p=b*ul
if(p.gt.1.0) go to 3
2 x=exp(alog(p)/alp)
u2=rnd(0.)
if(u2.gt.exp(-x)) go to 1
return
3 x=-alog((b-p)/alp)
u3=rnd(0.)
if(alog(u3).gt. (alp-1.)*alog(x)) go to 1
return
end
function gt (alp)

Cheng, R. C. H. and Feast, G. M. (1979)
"Some Simple Gamma Variate Generators,”
Applied Statistics, vol 28, p. 290-295.
for alpha .gt. 0.5

O000Q000

data aset/-1./

if (aset .eq. alp) go to 1

aset = alp

a = alp - 0.5

b=alp / a

c=2.0/a

d=c+ 2.0

S sqgrt (alp)

hl (0.865 + 0.064/alp) /s

h2 (0.4343 - 0.105/8) / s
1 ul rnd(0.)

i nn

nmmn
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u = rnd(0.)

if (ul.le.0. .or. ul.ge.l.)go to 1

if (u.le.0. .or. wu.ge.l.)go to 1l

u2 = ul + hl*u - h2

if (u2 .le. 0.) goto 1

if (u2 .ge. 1) goto 1

w=D>b * (ul/u2) * (ul/u2)

if ( (c*u2-d+w+l./w) .le. 0.) go to 4
if ( (c*alog(u2)-alog(w)+w-1.) .ge. 0.) go to 1
gt =a*w

return

end

function rnd(idum)
nerates random uniform numbers, use O0=idum
save p,q,m, j,nn

integer p,q,m(98)

logical inuse

data j/40/,nn/2147483647/,p/98/,q9/27/

data (m(k),k=1,50)/
+1387256442, 539505633, 7126687,2115653676, 480642437,
+1403109719, 898019591,1609472695, 742049136, 964528840,
+1774590149, 531014893,1478060509, 224730595,1413365137,
+1415397063, 370513614,1981855272,1672294721,1559669404,
+1992066581, 440083042,1552169384, 949029171,1848294689,
+1014369863,1226252978, 199445637, 552539314, 101995811,
+1795618857,1468200845, 403608434, 466262418,1783034892,
+2125486341,1437171068, 839437811, 685760609, 311733045,
+1876584692, 223544964, 667792106,1829604735, 887026472,
+ 688815796,1153871680,1135467106,1975710098,1393037901/
data (m(k),k=51,98)/
+ 330755675, 804762632, 393596594,1695657725, 50479950,
+1039358666,1885424316, 400881551, 142829986, 187416368,
+ 821029919,1292641081, 415120294,1104581275,1258423968,
+ 304285054, 400491932,2014625087,1619263031, 750624285,
+1996732699, 97476312,1250544934,2145510054,1510875684,
+ 262891578, 616032534,1316668730,1500747974,2138561534,
+ 809719156,1605036043, 510086967, 317411066, 54278455,
+2052774305, 439191668,1881943474,1397167115,2046084812,
+ 644321591, 328615697,1004646018,1110120728,2007784487,
+ 992677826,1756605308, 796797739/

if (idum) 200,100, 300

j=j+1

if(j.qgt.p)j=1

k=j+q

if (k.gt.p)k=k-p

m(j)=m(k) .xor.m(j)

rnd=float (m(j))/nn

return

iunit=100

iunit=iunit-1

inquire (unit=iunit, opened=inuse)

if (inuse)goto 201
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300
301

Q0

C

a0Oa0

0
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open (unit=iunit, file="rnd.str', status="unknown')
read(iunit,*)m, j

close (unit=iunit)

return

iunit=100

iunit=iunit-1

inquire (unit=iunit, opened=inuse)

if (inuse)goto 301

open (unit=iunit, file="'rnd.str’, status='unknown')
write (iunit, *)m, j

close (unit=iunit)

return

end

double precision function dbti (x%,a,b)

Incomplete beta function value for x with a, b parameters

alls betac and gamln -- double precision function

real*8 betacf,gamln,a,b, x,bt, one, zero, two

data one, zero, two/1.d0,0.d0,2.40/

if(x.lt.zero.or.x.gt.one) print *,'bad argument x in betai'’
if(x.1lt.zero) x=zero

if (x.gt.one) x=one

if (x.eq.zero.or.x.eq.one) then

bt=zero
else

bt=exp (gamln (a+b) -gamln(a)-gamln (b)
* +a*dlog (x) +b*dlog(one-x))
endif

if (x.1t. (a+one) / (atb+two) ) then
dbti=bt*betacf (a,b,x)/a
return
else
dbti=one-bt*betacf (b, a, one-x) /b
return
endif
end

double precision function betacf(a,b, x)
parameter (itmax=100, eps=3.d-7)
implicit real*8 (a-h,o-z)
data fone/1.d0/
am=fone
bm=fone
az=fone
gab=a+b
gap=a+fone
gam=a-fone
bz=fone-qgab*x/qgap
do 11 m=1, itmax
em=m
tem=em+em
d=em* (b-m) *x/ ( (qam+tem) * (a+tem) )
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ap=aztd*am

bp=bz+d*bm

d=- (atem) * (gqab+em) *x/ ( (a+tem) * (qapt+tem))
app=ap+d*az

bpp=bp+d*bz

aold=az

am=ap/bpp

bm=bp/bpp

az=app/bpp

bz=fone

if (abs (az-aold).lt.eps*abs(az)) go to 1
continue
pause 'a or b too big, or itmax too small; Hit CR'
betacf=az

return

end

double precision function gamln (xx)

save cof, stp,half, fone, fpf, %, tmp, ser

real*8 cof (6),stp,half, fone, £pf, x, tmp, ser

data cof, stp/76.18009173d0,-86.50532033d0,24.01409822d0,

-1.231739516d0, .120858003d-2,-.536382d~5,2.50662827465d0/

data half, fone, fp£/0.5d0,1.0d0,5.5d0/
x=xx—-fone
tmp=x+fpf

tmp=(x+half) *log (tmp) -tmp

ser=fone
do 11 3=1,6

x=x+fone

ser=ser+cof (j) /x

continue

gamln=tmp+log (stp*ser)

return

end

subroutine sort (ra,n)

Sorts an array RA of length N into ascending numerial order
using the Heapsort algorithm. N is input; RA is replaced
by its sorted rearrangement.

10

dimension ra(n)
l1=n/2+1
ir =n
continue
if (1 .gt. 1) then
1 1 -1
rra ra(l)
else
rra = ra(ir)
ra(ir) = ra(l)
ir=4ir -1
if (ir .eq. 1) then
ra(l) = rra
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return
endif
endif
i=1
i=1+1

20 continue
if (j .le. ir) then
if (j .1t. ir) then
if (ra(j) .1lt. ra(j+l)) j=i+1
endif
if (rra .1t. ra(j)) then
ra(i) = ra(j)

i=3j
j=3+73
else
j=1ir + 1
endif
go to 20
endif
ra(i) = rra
go to 10

end
c
c sorts and outputs Monte Carlo results
c

subroutine finish (pval,nn)
dimension pval (10000), per (13)
fnn=nn
i0l=£fnn*.010001
i05=fnn*.050001
110=fnn*.100001
120=£fnn*.200001
i30=fnn*.300001
140=£fnn*. 400001
i50=fnn*. 500001
i60=£fnn*.600001
170=£fnn*.700001
i80=fnn*.800001
i90=fnn*. 900001
195=fnn*. 950001
199=fnn*.990001
ss=0.0
sum=0.0
do 412 i=1,nn
sum=sum+pval (i)
ss=ss+pval (i) **2
412 continue
avg=sum/fnn
var=(ss-sum**2/fnn) / (fnn-1.)
stdev=sqrt (var)
call sort (pval,nn)
fmin=pval (1)
fmax=pval (nn)
per (1)=pval (i01)
per (2)=pval (105)
per (3)=pval(il0)
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per (4)=pval (i20)
per (5)=pval (i30)
per (6)=pval (140)
per (7)=pval (i50)
per (8)=pval (160)
per (9)=pval (i70)
per (10)=pval (i80)
per (11)=pval (190)
per (12)=pval (195)
per (13)=pval (199)
i51=150+1
fmedian=(pval (i50) +pval (i51)) /2.
write (22,41) nn
41 format (/, 'Monte Carlo results for ',i6,' samples:',/)
write (22,42) fmin, fmax

42 format (' minimum value = ',el2.6,/,' maximum value = ',el2.6)
write (22, 43) avg,var, stdev

43 format (' mean = ',el2.6,/,' variance = ',el2.6,/,
*' gtandard deviation = ',el2.6)

write(22,44) fmedian, (per(k), k=1,13)
44 format (' median = ',el2.6,/,/,' 1lst percentile = ',el2.6,

*/,' 5th percentile = ',el2.6,/,' 10th percentile = ',el2.6,
*/,"' 20th percentile = ',el2.6,/,' 30th percentile = ',el2.6,
*/,' 40th percentile = ',el2.6,/,' 50th percentile = ',el2.6,
*/,' 60th percentile = ',el2.6,/,' 70th percentile = ',el2.6,
*/,' 80th percentile = ',el2.6,/,' 90th percentile = ',el2.6,
*/,' 95th percentile = ',el12.6,/,' 99th percentile = ',el2.6)
return

end
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Program Empirical

Appendix C--EMPIRICAL

program empirical

forms empirical distribution functions for a given set
of percentiles for multiple experts.

uses simulation to combine weighted aggregations of these
distributions according to a specified weighting function

empirical cumulative distribution functions (for each expert)
are sampled in the simulation using lines connecting the
individual points of the distribution. The more percentiles
provided by the experts, the less influence this linear
approximation has on the results. A step function version
of this code is available from the authors.

inputs can be made directly from the terminal or through a
file called emp.in (on unit 52).
outputs are on a file called emp.out (on unit 59).

emp.in file has the following lines and formats:

line 1 idim = no. of experts (distributions) - free format

line 2 iper = no. of percentiles for each distribution - free format
for each expert & DM do lines 3,4,5,6

line 3 pe array = estimates of the iper percentiles - free format

line 4 pl array = levels (e.g. 0.95) for the percentiles - free
format

line 5 pmin = minimum value for the estimates - free format

line 6 pmax = maximum value for the estimates - free format
last 3 lines are:

line 7 nn = number of simulations (e.g. 1000) - free format

line 8 ifun = 1 for equal weights, = 2 for unequal - free format

line 9 wt array = weights for experts & DM - free format

dimension pe(20,20), pl(20,20), £x(21), fy(21)

dimension val (20), fxa(20,21), fya(20,21),plx(20,21)

dimension pmin(20),pmax (20),pval (10000),per (13),wt (20)

open (unit=59,file='emp.out',status="new')

open (unit=52,file='emp.in', status='old’)

write(*, ' ("To use input file EMP.IN, type 1l:; else type 0: ",\)")
read(*,*) ifile

if(ifile.eq.1l) go to 50

write(*,' ("Enter the sum of the experts and DM: ",\)'")
read(*,*) idim
write( *,' ("Enter the # of percentiles for an expert/DM: ",\)"')
read(*,*) iper
do 10 i=1,idim
write (*,11) iper, i

11 format ('Enter the ',i3,' percentile estimates for expert ',i3)
read(*,*) (pe(i,]j), j=1,iper)
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write (*,12) iper, i
12 format (' Enter the ',i3,' percentile levels ‘',
*' (e.g. .95 for 95th percentile) for expert ',i3)
read(*,*) (pl(i,J), J=1,iper)
write (*, ' ("Enter the absolute minimum value possible: ",\)')
read(*,*) pmin(i)
write (*, ' ("Enter the absolute maximum value possible: ",\)')
read(*,*) pmax(i)
10 continue
write( *, ! ("Enter the number of samples for the simulation ",\)')
read(*,*) nn
write (*,48)

48 format(/,'Specify the aggregation function to be used:')
write (*, ' ("Enter 1 for equal weights, else enter 2: ",\)')
read(*,*)ifun
if (ifun.eq.2) then
write(*,' ("Enter the weights for experts & DM, including Os: ™)')
do 8 i=1,idim
write(*,7) 1

7 format (' weight for person ',i2,' = ',\)
read(*,*) wt(i)

8 continue
endif
sumw=0.0
do 6 i=1,idim

6 sumw=sumw+wt (i)

epsilon=0.0001
if (abs (sumw-1.0) .gt.epsilon) then
write(*,' ("The weights will be normalized to 1.0")'")
do S5 i=1,idim

5 wt (1)=wt (1) /sumw
endif
write(*,' ("Output is on file EMP.OUT")')
go to 40

50 continue
read(52,*) idim
read(52,*) iper
do 19 i=1,idim
read(52,*) (pe(i,j), j=1,iper)
reagggg.:; (51(%53)' J=1, iper)
rea ’ n
read (52, *) gmax(i)

19 continue
read(52,*) nn
read(52,*) ifun
read(52,*) (wt(i), i=1,idim)
sumw=0.0
epsilon = 0.0001
do 4 i=1,idim

4 sumw=sumw+wt (i)
if (abs (sum-1.0) .gt.epsilon) then
write (59, ' ("The welights are normalized to 1.0")')
do 3 i=1,idim

3 wtéi)=wt(i)/sumw
endif

40 continue
write(59,13) idim,iper,nn
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13 format ('Number of experts=',i5,/, 'Number of percentiles=',i5,
*/,'Number of samples=',1i5)
if(ifun.eq.1l) write(59,49)

49 format ('The aggregation function uses equal weights.?')
if (ifun.eq.2) then
write (59, 47)

47 format ('The aggregation function has weights as:')
write(59,*) (wt(i), i=1,idim)
endif
do 14 i=1,idim
write(59,16) i

16 format(/, 'Estimates for expert ',i3,':')
write(59,15) pmin(i),pmax(i), (pl(i, j), 3=1,iper)

15 format (' min & max=',2f6.3,/,' levels ',5f7.4,/," ',6£7.4)
write (59, 9) (pe (i, j), j=1,iper)
9 format(' estimates',5£7.4,/,' ',6£7.4)
14 continue
c
c
do 20 i=1,idim
call distmake (i,pe,pl,iper,pmin(i),pmax (i), fx, fy)
iperl=iper+1l
do 30 j=1,iperl
fxa (i, Jj)=£x(3)
fya (i, j)=£fy (3)
30 continue
20 continue
c
¢ forms the nn samples of the product distribution
c
call monte (fxa,fya,idim,iper,nn,pval,plx,pl,ifun,wt,pmax,pmin)
c
¢ calculates stats for pval
c
call calc(nn,pval, avg, fmedian,var, stdev, fmin, fmax, per)
c
Cc print results
c
write(59,41) nn
41 format (/, 'Monte Carlo results for ',1i5,' samples:')
write (59, 42) fmin, fmax
42 format (' minimum valuve = ',el2.6,/,' maximum value = ',el2.6)
write (59,43) avg,var,stdev
43 format (* mean = ',el2.6,/,' variance = ',el2.6,/,
*' standard deviation = ',el2.6)
write (59, 44) fmedian, (per(k), k=1,13)
44 format (' median = ',el2.6,/,' 1st percentile = ',el2.6,
*/,' 5th percentile = ',el2.6,/,' 10th percentile = ',el2.6,
*/,' 20th percentile = ',el2.6,/,' 30th percentile = ',el2.6,
*/,' 40th percentile = ',el2.6,/,' 50th percentile = ',el2.6,
*/,' 60th percentile = ',el2.6,/,' 70th percentile = ',el2.6,
*/,' 80th percentile = ',el2.6,/,' 90th percentile = ',el2.6,
*/,' 95th percentile = ',el12.6,/,' 99th percentile = ',el2.6)
close (unit=59)
close (unit=52)
end
o)

¢ Forms empirical distribution function for each expert & DM: fx and
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subroutine distmake (ie,pe,pl,n,pmn,pmx,fx, fy)
dimension pe(20,20), pl(20,20), fx(21), £fy(21)
ibin=n+1
fy (1) = pl(ie, 1)/ (pe(ie,1)-pmn)
fy(ibin) =(1.0-pl(ie,n))/ (pmx-pe (ie,n))
do 100 i=2,n
j=i-1
fy(i)=(pl(ie,i)-pl(ie, J))/(pe(ie,i)-pe(ie, j))
continue
do 110 i=1,n
fx (i)=pl (ie, 1)
fx(i)=pe(ie,i)
continue
fx (ibin)=1.
write (59,113) ie
format (/, 'Empirical distribution; fx,fy for person:',i4)
do 114 3=1,ibin
write (59,*) £x(3j),fy(J)
return
end

rforms the monte carlo simulation of the supplied functions

subroutine monte (fxa,fya,idim,iper,nn,pval,plx,pl,ifun,wt,
*pmax, pmin)
dimension fxa (20,21),fya(20,21),val(20),plx(20,21),wt (20)
dimension pval (10000),pl(20,20),pmax (20),pmin(20)
n=iper+l
do 223 i=1,idim
do 222 j=1,iper
plx(i,3)=pl(d, j)
continue
plx(i,n)=1.0
format (' plx=',6el2.6)
continue
do 200 isamp=1,nn
do 201 i=1,idim
n=iper+1
idum = 1
val(i)=0.0
if (isamp.eq.l.and.i.eq.l) idum = -iabs(487320587)
t=ran3 (idum)
if(t.eq.0.0) val(i)=0.0
if(t.le.plx(i,1).and.t.gt.0.0) then
bl = plx(i,1)/(fxa(i,1l)-pmin(i))
b0 = plx(i,1l)-bl*fxa(i,1)
val(i)=(t-b0) /bl
endif
if(t.gt.plx(i,iper)) then
bl = (1.0-plx(i,iper))/ (pmax(i)-fxa(i,iper))
b0 = 1.0-bl*pmax (i)
val(i) = (t-b0)/bl
endif
do 202 k=2,iper
kml=k-1
if(t.le.plx(i,k).and.t.gt.plx (i, kml)) then
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bl = (plx(i,k)-plx(i,kml))/(fxa(i,k)-fxa(i,kml))
b0 = plx(i,k)-bl*fxa(i, k)
val (i) = (t-b0)/bl
endif
continue
format (' isamp’,i4,' expert',i2,' rand#',el2.6,' value',el2.6)
continue
dim=idim

if(ifun.eq.l) go to 275
if(ifun.eq.2) go to 265
continue

sumy = 0.0

do 266 i=1,idim

sumy = sumy + val(i)*wt (i)
continue

pval (isamp)=sumy

go to 270

sumy=0.0

do 276 i=1,idim

fi=idim
sumy=sumy+val (i) /fi
continue

pval (isamp)=sumy

go to 270

continue

format ('isamp’,i4,' pval',el2.6)
continue

return

end

function ran3 (idum)

Returns a uniform random deviate between 0.0 and 1.0.

Set IDUM to any negative value to initialize or

reinitialize the sequence.

parameter (mbig=1000000000,mseed=161803398,mz=0,fac=1./mbig)

According to Knuth, any large MBIG, and any smaller (but still
large) MSEED can be substituted for the above values.

save inext, inextp, ma
dimension ma (55)
data iff /0/

if (idum.1lt.0 .or. iff.eq.0) then
iff =1
mj = mseed - iabs (idum)
mj = mod (mj, mbig)
ma(55) = mj
mk =1
do1l1 i =1, 54
ii = mod(21*i,55)
ma(ii) = mk
mk =mj - mk
if (mk .1t. mz) mk = mk + mbig
mj = ma(ii)
continue
do 13 k=1, 4
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do 12 i=1, 55
ma(i) = ma(i) - ma(l+mod(i+30,55))
if (ma(i) .1t. mz) ma(i) = ma(i) + mbig
12 continue
13 continue
inext = 0
inextp = 31
idum = 1
endif
inext = inext + 1
if (inext .eq. 56) inext =1
inextp = inextp + 1
if (inextp .eq. 56) inextp =1
mj = ma(inext) - ma(inextp)
if (mj .1t. mz) mj = mj + mbig
ma(inext) = mj
ran3 = mj*fac
return
end

000

subroutine calc(nn,pval, avg, fmedian, var, stdev, fmin, fmax, per)
dimension pval (10000),per(13)
fnn=nn
i01=£fnn*.010001
i05=£fnn*.050001
110=£fnn*.100001
i20=£fnn*.200001
130=fnn*.300001
i40=£fnn*.400001
150=£fnn*.500001
i60=fnn*.600001
i70=£fnn*.700001
i80=fnn*.800001
i90=fnn*.900001
195=fnn*. 950001
i99=£fnn*. 990001

401 format(' 1,5,10,50,90,95,99',7i4)
scale=0.0
ss=0.0
sum=0.0
do 400 i=1,nn
scale=scale+pval (i)

400 continue
scale=1.0
do 411 i=1,nn
pval (i)=pval (i) /scale

411 continue

422 format ('scale',el2.6)
do 412 i=1,nn
sum=sum+pval (i)
ss=ss+pval (1) **2

433 format ('pval =' ,el2.6)

412 continue
avg=sum/fnn
var=(ss-sum**2/fnn)/ (fnn-1.)
stdev=sqrt (var)
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call sort (nn,pval)
fmin=pval (1)
fmax=pval (nn)

per (1)=pval (i01)
per (2)=pval (i05)
per (3)=pval (il0)
per (4)=pval (120)
per (5)=pval (i30)
per (6)=pval (i40)
perx (7)=pval (i50)
per (8)=pval (160)
per (9)=pval (170)
per (10)=pval (i80)
per (11)=pval (i90)
per (12)=pval (i95)
per (13)=pval (199)
151=150+1
fmedian=(pval (150) +pval (i51)) /2.
return

end

subroutine sort (n,ra)

Sorts an array RA of length N into ascending numerial order
using the Heapsort algorithm. N is input; RA is replaced
by its sorted rearrangement.

dimension ra(n)
l1=n/2+1
ir=n
continue
if (1 .gt. 1) then
l=1-1
rra = ra(l)
else
rra = ra(ir)
ra(ir) = ra(l)
ir =ir - 1
if (ir .eq. 1) then
ra(l) = rra
return
endif
endif
i=1
j=1+1
continue
if (j .le. ir) then
if (j .1lt. ir) then
if (ra(j) .lt. ra(j+l)) j=3j+1
endif
if (rra .lt. ra(j)) then
ra(i) = ra(j)
i=3
j=3+3
else
j=1ir + 1
endif
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go to 20
endif
ra(i) = rra
go to 10
end
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Program Boot

Appendix D--BOOT

program boot

Constructs bootstrap samples from the original sample of size n.

Each sample is randomly formed on its own.

Input is done on the terminal or file BOOT.IN
BOOT.IN has the following lines in free format:

line 1 iabb = 0 if all simulated values are printed, =1 if not
line 2 irange = 1 if the sample of n experts each supplies two
ranges values (3 values per person), = 0 if not **

line 3 n = number of values supplied = number of persons or
3 times that

line 4 m = number of simulations

line 5 x array = the n values supplied

(a space between each value)

Output is sent to file BOOT.OUT

*x

31

32

33
34

39

if each expert provides a best estimate and an upper & lower range
value, then irange = 1 and there are 3 times as many values as
experts. for this case, the sample size used in the program

is changed to n/3 = number of experts, not the number of values.

character title*75

dimension x(65),xsamp (65),xbig(20000), xnew (65)

dimension xmed (1000)

open (unit=11,file='boot.in’', status='01ld’')

open (unit=22,file='boot.out',status="new')

write (*, ' ("to use input file boot.in, type 1 else type 0: ",\)")
read(*,*) infile

if(infile.eq.1l) go to 61

write (*, 31)

format ('to print all simulated values, type 0; else type 1: ',\)
read(*,*) iabb

write(*, 32)

format (*if range values are included, type 1; else type 0: ',\)
read(*,*) irange

if (irange.eq.1l) write(22,33)

if (irange.eq.0) write(22,34)

format (' irange=1, ranges with sample values are assumed')
format (' no range values included')

write(*,' ("enter the sample size: ",\)')

read(*,*) n

write(*, ' ("enter the number of simulations (e.g.1000): ",\)")
read(*,*) m

fn=n

write(*, 39)

format (*enter the sample values with a space between each:')

read(*,*) (x(i),i=1,n)
go to 65
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61

63
64

65
66
37

Ca

51

52

53

continue

read(l11,*) iabb

read (11, *) irange

if (irange.eq.l) write(22,63)

if (irange.eq.0) write (22, 64)
format (' irange=1, ranges with sample values are assumed')
format (* no range values included’)
read(l1l,*) n

read(1l,*) m

fn=n

read(1l1l,*) (x(i),i=1,n)

continue

write(22,66) m

format (' the number of simulations is ',1i5)
write(22,37) n, (x(i),i=1,n)

format (' the ',12,' sample values are: ',/,10e9.2)

lculate simple statistics for the sample only

slog=0.0

sum=0.0

ss=0.0

do 51 i=1,n

sum=sum+x (i)

if(x(i).eq.0.0) go to 51

slog=slog+aloglO(x(i))

ss=ss+x (i) **2

continue

xbar=sum/fn

xgbar=10.0** (slog/fn)

xvar=(ss-sum**2/£fn)/ (fn-1.)

xstd=sqrt (xvar)

do 52 i=1,n

xnew (1)=x (1)

continue

call sort (xnew,n)

k=n/2

ki=k+1

kind=mod(n, 2)

if(kind.eq.0) xtild=(xnew(k)+xnew(kl))/2.0

if(kind.eq.1l) xtild=xnew (k1)

write (22, 53)xbar, xtild, xgbar, xvar, xstd, xnew (1) , xnew (n)
format (/, 'simple statistics for the original sample:’,/,
*! sample mean = ',e9.2,/,' sample median = ',e9.2,/,
*! sample geometric mean = ',e9.2,/,' sample variance = ‘',
*e9.2,/,' sample standard deviation = ',e9.2,/,
*!' sample minimum = ',e9.2,/,' sample maximum = ',e9.2,/)

Begin bootstrap sampling of x
All bootstrap samples are randomly formed and stored in xbig

12

do 50 i=1,m

do 50 j=1,n

k=(i-1)*n+j

idum=1

if(i.eq.l.and.j.eq.l) idum = -iabs(5739784770)
tl=rand (idum)
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temp=t1*£fn
do 13 kk=1,n
kkl=kk-1
if(temp.eq.0.0) xbig(k)=x(1)
if (temp.le.kk.and.temp.gt.kkl) =xbig(k)=x(kk)
if (temp.gt.n) go to 12
13 continue
50 continue
if (irange.eq.1l) n=£fn/3.0

Loop for the 3 estimators: median, mean, geomean

iwrite=0

do 100 ii=1,3

do 40 i=1,m

do 41 j=1,n

k=(i-1)*n+]j

xsamp (})=xbig (k)
41 continue

call sort (xsamp,n)

Median calculations

if (ii.eq.1l) then
k=n/2
k1l=k+1
kind=mod(n, 2)
if (kind.eq.0) xmed(i)=(xsamp (k)+xsamp (k1))/2.0
if (kind.eq.1l) =xmed(i)=xsamp (k1)
endif

Mean calculations

if (ii.eq.2)then
xmean=0.0
do 101 ij=1,n
101 xmean=xmean+xsamp (ij)/float (n)
xmed (1) =xmean
endif

Geometric mean calculations

if (ii.eq.3)then
xgeo=0.0
do 102 ij=1,n
if (xsamp(ij).eq.0.0) go to 102
xgeo=xgeo+aloglO (xsamp (ij))
102 continue
if (xgeo.eq.0.0) then
iwrite=iwrite+l
xmed(1)=0.0
go to 107
endif
xmed (1)=10.0** (xgeo/float (n))
107 continue
endif
40 continue
if (iwrite.gt.0.0) write(22,104)iwrite

Program Boot
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format(/,/, 'warning: ',i4,' samples had no geometric mean,’',
*! results may be biased low')

d sampling, sort resulting estimators

call sort (xmed,m)

Calculate percentiles, estimators, variances

rint results

if(ii.eq.1l) write(22,27)

if(ii.eq.2) write(22,28)

if(ii.eq.3) write(22,29)

format (' ',//, 'medians’)

format (' ',//, 'means')

format (' ',//, 'geomeans’')

if(iabb.ne.l) write(22,43)

format ('the sample estimator values from the simulation')
if(iabb.ne.l) write(22,21) (xmed(i),i=1,m)

format (' ', 6£10.6)

smed=0.0

ssmed=0.0

slmed=0.0

do 45 i=1,m

smed=smed+xmed (i)

ssmed=ssmed+xmed (i) **2

if (xmed(i) .eq.0.0) go to 45

slmed=slmed+aloglQ (xmed (i) )

continue

amed=smed/float (m)

vmed= (ssmed- (smed**2) /float (m) ) /float (m~1)

sdmed=sqgrt (vmed)

gmed=10.0** (slmed/float (m))

delta=float (m) /100.0

m99=99.0*delta

m95=95.0*delta

m90=90.0*delta

m50=50.0*delta

m20=20.0*delta

m30=30.0*delta

m40=40.0*delta

m60=60.0*delta

m70=70.0*delta

m80=80.0*delta

ml=1.0*delta

m5=5.0*delta

ml10=10.0*delta

write(22,23) xmed(1l),xmed(m)

format (' minimum value = ',£10.6,/,' maximum value = ',£10.6)
write(22,26) xmed(ml),xmed(m5),xmed(ml0), xmed(m20), xmed (m30),
*xmed (m40) , xmed (m50) , xmed (m60) , xmed (m70) , xmed (m80) , xmed (m930) ,
*xmed (m95) , xmed (m99)

format (' percentiles: ',/,11x,' 1:',f10.6,/,11x,' 5:',£f10.6,/,
* 11x,' 10:',£10.6,/,11x,' 20:',£f10.6,/,

* 11x,' 30:',f10.6,/,11%x,"*' 40:',f10.6,/,

* 11x,' 50:',£10.6,/,11%,"' 60:',f10.6,/,
11x,' 70:',f10.6,/,11x,' 80:',£f10.6,/,

11x,' 90:',£f10.6,/,11x,' 95:',£10.6,/, 11x,*' 99:',£f10.6)

* %
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write(22,22) amed, vmed, sdmed, gmed

22 format(' mean = ',f10.6,/,' variance', f10.6,/,
*' standard deviation = ',f£10.6,/,
*! geometric mean = ',£f10.6)
100 continue
stop
end

subroutine sort (ra,n)

Sorts an array ra of length n into ascending numerial order
using the heapsort algorithm. n is input; ra is replaced
by its sorted rearrangement.

dimension ra(n)
l1=n/2+1
ir=n
10 continue
if (1 .gt. 1) then

l1=1-1
rra = ra(l)
else

rra = ra(ir)
ra(ir) = ra(l)
ir =ir - 1
if (ir .eq. 1) then
ra(l) = rra
return
endif
endif
i=1
j=1+1
20 continue
if (j .le. ir) then
if (j .1t. ir) then
if (ra(j) .lt. ra(j+1l)) j=j+1
endif
if (rra .lt. ra(j)) then
ra(i) = ra(j)
i=3
j=3+3
else
j=ir +1
endif
go to 20
endif
ra(i) = rra
go to 10
end

function rand (idum)
Returns a uniform random deviate between 0.0 and 1.0.
set idum to any negative value to initialize or

reinitialize the sequence.

parameter (mbig=1000000000,mseed=161803398,mz=0, fac=1./mbig)
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According to Knuth, any large mbig, and any smaller (but still
large) mseed can be substituted for the above values.

Qo

save inext, inextp, ma
dimension ma (55)
data iff /0/
if (idum.lt.0 .or. iff.eq.0) then
iff =1
mj = mseed - jabs(idum)
mj = mod(mj,mbiqg)
ma(55) = mj
mk =1
do1l1 i =1, 54
ii = mod(21*i, 55)
ma(ii) = mk
mk = mj - mk
if (mk .1lt. mz) mk = mk + mbig
mj = ma(ii)
11 continue
do 13 k=1, 4
do 12 i=1, 55
ma(i) = ma(i) - ma(l+mod(i+30,55))
if (ma(i) .1t. mz) ma(i) = ma(i) + mbig
12 continue
13 continue
inext = 0
inextp = 31
idum = 1
endif
inext = inext + 1
if (inext .eq. 56) inext =1
inextp = inextp + 1
if (inextp .eq. 56) inextp =1
mj = ma(inext) - ma(inextp)
if (mj .1t. mz) mj = mj + mbig

ma (inext) = mj
rand = mj*fac
return

end
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Glossary of Expert
Judgment Terms

ADVISORY EXPERT: The in-house employee or consultant who is
considered expert in the subject matter and who assists the project personnel
in developing the questions that will be later asked of the external experts.

AGGREGATION: See Behavioral or Mathematical Aggregation.

ALPHA LEVEL: See Significance Level.

ANCHORING BIAS: The indvidual's failure to adjust sufficiently from his
first impression in solving a problem. Sometimes this bias is explained in
terms of Bayes Theorem as the failure to adjust a judgment in light of new
information as much as it would be adjusted in terms of Bayes mathematical
formula.

ANCHORING AND ADJUSTMENT HEURISTIC: This effect occurs when an
individual reaches a final answer by starting from an initial value and
adjusting from it. The initial value can be supplied with the question, or it
can be reached by the expert through his impressions or computations.
Usually, the use of this heuristic skews the answer toward the initial value.

ANCILLARY DATA OR INFORMATION: Any information or data gathered
as part of the elicitation that is not the expert's answer. For example,
information on the expert's background and problem-solving processes
(expert data) is ancillary information. This information has the potential for
being related to the the answers. Thus ancillary information can form
conditional variables.

ANALYSIS OF VARIANCE: A statistical technique for testing the
equivalence or lack of equivalence of mean values from several different
groups or classes of data. The test is done by comparing variation between
the groups to the variation within the groups. The within-group variation
represents the background-, error-, or noise-level variation. Groups are
determined prior to the study so that the test can be made from a minimal
number of measurements. Such efficient planning is called experimental
design.

ANALYST: Member of the project personnel who analyzes the expert data and
judgment. The analyst may have other roles, such as interviewer.

ANSWER-ONLY DOCUMENTATION: A written record of only the experts'
answers.

ANSWER PLUS PROBLEM-SOLVING DOCUMENTATION: A written
record of the experts' answers and how they arrived at these answers.

ANSWERS OR EXPERT ANSWERS: The expert's final response to a
technical question. This term includes responses given in quantitative
(estimates) or qualitative form (solution).

AVAILABILITY BIAS: Differing ease with which events can be retrieved
from long-term memory. Data involving catastrophic, familiar, concrete, or
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recent events may be easier to recall. Awvailability bias affects people's
ability to accurately estimate frequencies and to recall other aspects of the
event.

BACKGROUND INFORMATION: Information that the expert needs to
interpret the question or problem. Background information includes the
sequence of events leading up to the event in question, pictorial
representations of the question (e.g., flow charts), and decompositions of
the question.

BAYESIAN METHODS/APPROACH: A technique for combining information
of various types or from various sources. The combining calculations are
based on Bayes Theorem, which defines the probability distribution
function of the data as conditioned on its parameters. These parameters are
also assumed to have a probability distribution called a prior distribution.
Combining the data and prior distributions produces a posterior distribution.
The expected valued of this posterior distribution is the desired final
estimate. The philosophy of this method is to use and combine all available
information to form the final estimate rather than to rely only on the data
from a single study or experiment.

BEHAVIORAL AGGREGATION: A means of obtaining one answer from
multiple experts through the use of behavioral techniques that encourage
consensus. For example, group-think bias can be fostered to create
pressures toward unanimity.

BIAS: Bias can be defined as occurring when (1) expressions of the expert's
thinking do not match his actual thinking at the time of the elicitation, and
(2) the expert's estimates do not follow normative statistical or logical rules.
An example of the first would be if the expert judged a particular event to be
extremely rare but had to select from response options that did not extend as
far as his judgment. An example of the second would be if the expert
claimed that A was better than B in some respect, B better than C, and C
better than A. Sources of bias can be a person's needs (motivational bias)
or thought processes (cognitive bias).

BOOTSTRAP: A data-based simulation technique useful for finding estimates
and distributions of estimates when statistical distribution theory is not
applicable. This technique is based on forming multiple (1000) random
samples with replacement from the original sample data, calculating the
estimator of interest in each sample, and forming the distribution of that
estimator from these calculated 1000 values.

CLIENT: The person who has requested the gathering of expert judgment.
That is, the client is the one whose needs the project will serve. Often the
client is the person funding the study. Whether the client is the funder or
not, the client can usually say what the purpose and goals of the project are ,
what information is needed from the experts, and what resources will be
available for the project.

CLUSTER ANALYSIS: Techniques for identifying how values or a variable is
grouped numerically or how variables themselves are grouped according to
shared information. For example, the data set of values (0.2, 0.25, 0.30,
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0.77, 0.80, 0.95) would cluster into two groups. Various grouping
methods are used to determine group size and membership. Most are based
on some measure of distance between values and groups of values.

COGNITION: The mental activity, the processing of information, that humans
do when they solve problems.

COGNITIVE BIAS: Biases whose source is the limitations of the human mind.
Anchoring bias is one example.

COGNITIVE DISSONANCE: Cognitive dissonance occurs when an
individual finds a discrepancy either between his beliefs or between his
beliefs and his actions (Festinger 1957). For example, an individual may
find he holds an opinion that conflicts with that of the other group members,
and if he has a high opinion of the intelligence of the group, he may resolve
the discrepancy by unconsciously changing his judgment to be in agreement
with that of the group.

CONDITIONAL VARIABLE: An ancillary quantity (variable) found to be
influential or important for determining the answers given by the experts.
This determination is made using more than one analysis technique.

CONDITIONALITY: The description of the phenomenon where one variable
has an influence on or a significant relationship to another variable.
Conditionality also includes the case where several variables are influential
over several other variables.

CORRELATION: See Dependence.

CUMULATIVE DISTRIBUTION FUNCTION (CDF): The function resulting
from the accumulation of area under the probability distribution function
(pdf), in other words, the integral of the pdf. The function value, F(x), is
the probability that the random variable takes on values less than or equal to
the value at x.

DATA GATHERER: See Interviewer or Knowle-ge Engineer.

DECISION ANALYSIS: Structured means for c."iceptualizing and resolving
complex problems. This structure involves breaking the problem into parts
to make it more tractable. Often the decision structure includes the initial
options or acts, the possible consequences of these values, and uncertainty
measures. A variety of structural forms are used, ranging from event trees
to hierarchies of factors. Decision analysis is applied mainly to business
problems such as plant siting, procurement, and portfolio analysis. It has
also been used in crisis management, international negotiations, intelligence
analyses, and labor-management negotiations (Peaslee 1981).

DECOMPOSITION: The breaking of a problem or question into its component
parts to make it easier to solve. This technique has been shown to increase
accuracy.

DELPHI METHOD: An elicitation method developed by the Rand Corporation
to limit the biasing effects of interaction. In a true Delphi, the experts do not
interact with one another and only interact with the moderator in a limited
way. The experts, in isolation from one another, give their judgments and,
perhaps, some of their reasons for making these judgments. The moderator
collects these judgments, makes the judgments anonymous, distributes
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these judgments to the individual experts, and allows each of them to revise
their previous judgments. This process can be repeated for as many times
as desired, such as until consensus is achieved.

DEPENDENCE: Expert's estimates are conditioned on some factor and
affected by this conditioning. In this handbook, dependence is used
interchangeably with correlation. Dependence can refer to the data from
different experts (between-expert dependence) or it can refer to
dependencies of estimates given by the same expert (within-expert
dependence).

DEPENDENT VARIABLE: The quantity of interest that contains the expert
answers. These answers are usually conditioned and therefore dependent
on other ancillary variables or information.

DESIGN OF ELICITATION METHOD: Planning of the method in terms of
(1) the project's constraints--e.g., time, budget and personnel; (2) goals--
e.g., for obtaining particular data; and (3) additional considerations--e.g.,
the logistics and cost of meeting together versus separately, the structuring
of the elicitations, the treatment of bias, the presentation of the problems,
and the documenting of the elicitation). The reason for designing the
elicitation is to create the optimal combination of techniques for a particular
situation. Different techniques possess differing advantages and abilities to
control for particular factors, such as those which would introduce bias.
One of the main techniques used in designing the data gathering is
structuring, or placing controls on the elicitation (see Structuring). An
example of structuring applied to interactive groups is to have the natural
leader present his or her views last, so as to prevent the follow-the-leader
effect (see Group Think Bias).

DETAILED VERBATIM DOCUMENTATION: See Verbatim Documentation.

DETAILED STRUCTURED DOCUMENTATION: See Structured Documen-
tation.

DISAGGREGATION: See Decomposition.

DISCRIMINANT ANALYSIS: A multivariate statistical technique for
determining how well a chosen variable discriminates or classifies each
datum from a data set into specified groups.

DISPERSION MEASURE: An estimate of how much spread or dispersion is
in the sample data. Dispersion measures may be in the form of percentiles,
variances, ranges, or error bars.

DISTRIBUTION: See Probability Distribution Function.

ELICITATION: Process of gathering expert judgment in a specially designed
manner. (See Delphi, Individual Interview, and Interactive Group.)

ESTIMATE: The expert's answer encoded in the response mode. Estimates
specifically refers to answers given in numerical form, such as probabilities
or ratings.

ESTIMATOR: The formula or procedure for calculating or determining the
value of a property of a population such as the median or the parameter of a
distribution such as the mean.
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ETHNOGRAPHIC TECHNIQUE: An interviewing technique from cultural
anthropology that involves restating the subject's words into questions.
This method avoids the danger of having the interviewer bias the subject's
account by using the subject's own words. This technique is used to
pursue in greater depth information that the subject has mentioned.

EXPERT: A person who has background in the subject matter at the desired
level of detail and who is recognized by his peers or those conducting the
study as being qualified to answer questions. The expert is sometimes
referred to as the external expert.

EXPERT DATA: See Problem-Solving Data.

EXPERT JUDGMENT: Judgments of those with expertise or knowledge in the
area. Expert judgment is usually elicited when experimental data is sparse
or lacking. In this book, expert judgment refers to a combination of the
expert's answer, his data on how this answer was reached (e.g.,
definitions, assumptions, and algorithms), and ancillary information on the
expert himself (e.g., educational background and work experience).

FACTOR ANALYSIS: A multivariate statistical technique for determining
how a set of variables share common information. The original variables
are transformed to a set of new variables called factors. Some factors,
called common factors, are formed from shared information of more than
one of the original variables. Other factors, called unique factors, are
formed from information from only one variable.

GENERAL LINEAR MODEL, GLM: See Regression.

GRANULARITY: Level of generality used in gathering, examining, or
analyzing data. For example, data on expert's problem solving could be
viewed at a coarse granularity, such as the of type of heuristic used, or at a
fine granularity, such as the actual calculations performed as a part of each
heuristic.

GROUP THINK BIAS: The tendency to modify a judgment so that it is in
agreement with that of the group or of the group leader. Generally, the
individual is unaware that he has modified his judgment to be in agreement.
This bias is classified as a motivational bias because it stems from the
human need to be accepted and respected by others. Individuals are more
prone to group think if they have a strong desire to remain a member, if they
are satisfied with the group, if the group is cohesive, and if they are not a
natural leader in the group.

HEURISTIC: A short cut used to reduce the mental effort of solving a complex
problem. A common heuristic is that of anchoring and adjusting. Instead
of doing many detailed calculations, the individual adjusts in small
increments from his initial impression of the answer.

HUMAN RELIABILITY ANALYSIS: This analysis "models events that are
primarily due to human actions or inactions, often called errors, analyzes
their effects, and quantifies their impact” (Doughterty et al., 1986: 3-2).
Human reliability analysis is often a component of risk analysis because
human events can contribute to the initiation, prevention, or mitigation of
damage states.
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IMPRESSION MANAGEMENT BIAS: A type of social pressure bias that
occurs when the subject is responding to the reactions of those not
physically present. For example, on a survey the subject tries to answer in
such a way as to bring the most approbation (e.g., from society in the
abstract or from the question writer in particular).

INCONSISTENCY BIAS: Inability to maintain the same problem-solving
heuristic, definitions, or assumptions through time because of the limited
information-processing capacity of the human mind.

INDEPENDENT VARIABLE: A quantity that is fixed, measured, recorded, or
determined before or during the study. This quantity is possibly related to
the answers given. See also Ancillary Information and Conditional
Variables.

INDIVIDUAL INTERVIEW: One of the three basic methods of elicitation.
One individual is interviewed at a time, usually in a face-to-face situation.
The interviewer can structure the elicitation to any degree. An unstructured
interview resembles a conversation; a structured one an interview driven by
prepared questions. Often the separate responses are mathematically
combined in some way, hence its other names staticized or nominal group.

INFERENCE (GENERAL): The process of drawing conclusions from
information for interpretation on a general or universal scale.

INFERENCE (STATISTICAL): The process of drawing conclusions about
the population of interest or study from the results of statistically valid
sampling and analysis.

INTENSIVE PILOT TEST: A type of pilot testing that combines structured
interviews and observations. The intensive pilot test provides two kinds of
feedback: (1) how the expert progresses through the elicitation, his general
impressions, when and why he decides to respond to particular questions;
and (2) how the expert specifically interprets each direction, statement of the
question, or response mode option.

INTERACTIVE GROUP METHOD: One of the three basic methods of
elicitation. In the interactive group method, the participants are in a face-to-
face situation with one another and a session moderator. The participants'
interactions with one another can be structured to any degree. A totally
unstructured group resembles a typical meeting; a highly structured group is
carefully choreographed as to when the participants present their views and
when there is open discussion.

INTERVIEWER: The person who elicits the expert judgment. (See also
Knowledge Engineer.)

KNOWLEDGE ACQUISITION: Part of artificial intelligence connected with
"extracting, structuring, and organizing knowledge from some source,
usually human experts, so it can be used in a program." (Waterman
1986:392).

KNOWLEDGE-BASED COGNITION OR BEHAVIOR: The level of thinking
that most of expert judgment involves. It is interpretive, analytical, high-
level, conscious activity caused by thinking about rare or uncertain
phenomena.
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KNOWLEDGE ENGINEER: The knowleedge engineer is similar to the
interviewer in that both elicit information from the expert. However, the
term knowledge engineer refers to someone who, in addition to
interviewing, represents and enters the expert knowledge into a computer
system with the goal of creating a knowledge-based system.

LIMITED INTERACTIVE GROUP: See Delphi Method.

LIMITED PILOT TEST: A type of pilot testing done with a very small sample
of experts. The limited pilot test is done after the intensive pilot test to
provide a time estimate of the duration of each part of the elicitation.

LINEAR SCALE: A continuous line of numbers on a scale that is linear in
structure; that is, each number on the line is separated from its neighbor by a
value equal to the difference between it and its neighbor. For example, 4.0
would be twice as far from 0.0 as 2.0.

LONG-TERM MEMORY (LTM): Memory of large capacity and relatively
permanent duration. A portion of what is processed in the individual's
short-term memory is stored in this type of memory.

MATHEMATICAL AGGREGATION: The use of mathematical means to
combine multiple expert's answers into one answer, usually when a single
estimate is needed. Multiple expert's answers or distributions can also be
combined into a single distribution. Some mathematical methods weight the
expert's answers equally, such as the mean; others use more complex
weighting schemes.

MEAN: The numeric average of a set of values (sample) calculated by
summing the values and dividing by the value of how many there are in the
set. The mean of a population is the theoretically derived expected value.

MEDIAN: The middle value of a sample or a distribution. The median is the
50th percentile of a distribution. It is the value such that half of the sample
or the distribution is larger, and half of the sample or distribution is smaller.
The median is a measurement of the center of the sample or distribution.

MILLER'S NUMBER: The number of things that the average person can
mentally juggle--7 plus or minus 2.

MISINTERPRETATION: The altering of the expert's thoughts as a result of
the methods of elicitation and documentation. See Training Bias.

MISREPRESENTATION: The altering of the expert's thoughts and answers
as a result of modeling or analyzing them. See Tool Bias.

MODE: The most frequent value in a data set (sample) or distribution. The
mode is the hump of the distribution. A distribution or data set with more
than one hump is bimodal (for 2), trimodal (for 3), or multimodal (more
than 2).

MODES OF COMMUNICATION: Communicating with the expert in person,
by mail (electronic or postal), or by telephone. Each mode has its
advantages and disadvantages. For example, the mail mode is the least
expensive but the most time consuming).

MONITORING ELICITATION: Real-time observations of the elicitation
process, usually for detecting bias.

381



Glossary

382

MONTE CARLO SIMULATION: A computational technique for investigating
properties and behavior of a variable by repeated random sampling from a
known or assumed distribution (e.g., normal) representing the variable.

MOTIVATIONAL BIAS: Biases that have as their source, the emotional needs
and wishes of the subject. Group think bias is one example.

MULTIVARIATE ANALYSIS: A statistical analysis technique that allows two
or more variables of interest to be considered simultaneously.

NOMINAL GROUP METHOD: See Individual Interview.

NONPARAMETRIC TECHNIQUE: Statistical analysis techniques that does
not require assuming that the sample or population follow a particular
distribution, such as the normal distribution. These are sometimes referred
to as distribution-free techniques.

NORMAL DISTRIBUTION: A particular probability distribution function that
is symmetrically shaped about the mean, has identical values for mean,
median, and mode, and has a bell-like shape. It is also known as the
Gaussian distribution or a bell-shaped curve.

NORMATIVE EXPERTISE: Expertise in the statistical or mathematical
principles of the response mode.

OUTLIERS: Extreme-valued observations in a sample or data set. It is
unlikely (not probable) that these observations belong to the same
distribution as the rest of the sample.

PAIRWISE COMPARISONS: Establishing the relative ratings of a set of
objects, events, or criteria by comparing them two at time. If there is a set
of n things, then in order to make all possible pairwise comparisons, n(n-
1)/2 comparisons are required. Comparing object A to object B is the
reciprocal of comparing object B to object A.

PERCENTILE: The value from a distribution of a random variable that divides
the area under the distribution curve into the specified percentages. For
example, the 5th percentile is the value of the distribution such that 5% of
the distribution is smaller and 95% of the distribution is larger.

PILOT TESTING: A type of practice involving taking a sample of the larger
expert population, presenting these experts with an aspect of the elicitation,
obtaining their feedback, and revising the elicitation accordingly. (See also
Intensive and Limited Pilot Testing.)

POPULATION: The entire existing or theoretical set of items under study.
Examples are (1) all the people on the earth--past, present and future; (2) all
earthquakes on the earth; (3) all earthquakes in a particular location on the
earth; and (4) failures and successes of all components of a certain type.

POSTERIOR DISTRIBUTION/DENSITY FUNCTION: The resulting
distribution or density function from a Bayesian analysis. This distribution
is the combination of the prior information and the data.

PRACTICING THE ELICITATION: Rehearsing the elicitation to detect any
problems in its design before its use. One type of practice is pilot testing.
(See Pilot Testing.)

PRIOR DISTRIBUTION/DENSITY FUNCTION: The distribution or density
for the parameters of interest. This represents the information known prior
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to the gathering of the data. It is combined with the data to form the
posterior.

PROBABILITY: Refers to the chance of something occurring. One important
property of probabilities is that they are values from 0.0 to 1.0. A
probability equal to 0.0 means that the event never happens. A probability
equal to 1.0 means that the event always happens. A probability equal to
0.5 means that the event happens half of the time. Another important
property is that the probabilities of all exhaustive (all events in a set),
mutually exclusive events (nonoverlapping events) must sum to the value
1.0.

PROBABILITY DISTRIBUTION FUNCTION (PDF) OR PROBABILITY
DISTRIBUTION: The mapping of a random variable onto a functional
representation of probabilities for the possible values of that random
variable. The nonnegative function, f, is mathematically represented by an
equation in terms of the values of the random variable, x. The area under
the entire curve resulting from this equation is 1.0. Sectional areas under
the curve correspond to the probabilities of the corresponding x values. The
values of the equation, f, are probabilities per unit interval, dx.

PROBLEM-SOLVING DATA: information relating to the expert's solution of
the problem such as his definitions, assumptions, or algorithms.

PROBLEM-SOLVING ELICITATION: Techniques used to elicit how the
subject solved the problem. These elicitation techniques can be used to
deliver data of differing levels of detail. For example, in a risk analysis
study, a few sentences on the expert's reasoning might be all that is needed.
For an artificial intelligence project, more detailed information might be
needed to model each step of the expert's thinking.

PROBLEM-SOLVING METHOD OR PROCESS: The means by which the
expert solves the problem. These means could include the expert's
interpretation of the problem, assumptions, definitions, and algorithms.

PUTATIVE INTERVAL: An interval estimate calculated from a simulated or
computed distribution, usually from a bootstrap or Monte Carlo simulation.
For example, the 5th and 95th percentiles of the simulated distribution of the
median for a sample would form the central 90% putative interval for that
distribution.

QUALITATIVE DATA OR INFORMATION: Any nonnumeric data such as
verbal descriptions, classifications, categories, or preferences.

QUANTIFICATION: The process of transforming qualitative information into
quantitative or numerical forms. In addition, quantification is used here to
refer to the process of transforming raw data, in any original form, to a
desired numerical form. This transformation can change the granularity of
the data from coarse to fine.

QUANTITATIVE DATA OR INFORMATION: Any numerical data such as
integers, ranks, or values on the real number line.

QUESTION: The concrete, detailed points within the question areas to which
the expert is asked to respond. Questions are also referred to as problems.
An example of a question or problem is "what is the leak rate in gallons per
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minute as a function of time to seal failure due to loss of cooling to the
pump shaft?" The test for whether a query qualifies as a question is
whether the expert finds it sufficiently specific to be answered.

QUESTION AREA: The specific issue for investigation or the general area in
which the experts will be questioned. Question areas are developed by
considering such information as the goal of the project and the client's
directives. For example, for an application whose goal was the provision of
likelihoods and consequences of severe accidents in light-water reactors,
separate question areas exist for front- and back-end phenomena, the
different plant manufacturers, and so on.

QUESTION PHRASING: The wording of the question and the response mode
done to maximize the chances that the expert understands it and is not
unduly influenced by the wording. Payne (1951) has shown that different
word choices and orderings can change the answer reached by 4 to 15%.

RANDOM VARIABLE: The quantity of interest that can take on any of a set
of possible values or outcomes of an experiment or observation. The
symbol for a random variable is X; the symbol for a generic value of a
random variable is x.

RANKS: A set of numeric or descriptive values assigned to an original set of
values or descriptions. Ranks are usually cardinal (i.e., composed of
integer values, in ascending or descending order, and equally spaced 1, 2,
3, etc.). Ranks can also be ordinal, or descriptive in nature (worst, better,
best). Ratings are usually assigned numbers from a chosen scale (e.g. from
1 to 10). The numbers are assigned by the user or the analyst according to
some criteria.

RATINGS: See Ranks.

REGRESSION: The analysis that finds the best fit line for a dependent
variable, y, in terms of the independent variables, x; The form of the

model is y = bg + b1x1 + baxp + ... + € where the by is the intercept term,

the other bs represent slopes, and € is the residual or remaining error not
accounted for in the model. The regression line is fit such that the squared
distances between the data points and the line are minimized. Regression is
a subset of the analyses known as general linear models (GLMs) where
linear relationships are determined using various techniques.

RELIABILITY ANALYSES: Studies of process or equipment failure or
operability. An example of a reliability study would be an analysis of "how
frequently a chemical reactor might overheat due to malfunctioning pumps,
heat exchangers, human operators, control systems, and other plant
equipment..." (Henley and Kumamoto, 1981: 8).

RESPONSE MODE: The form in which the subject is asked to give his
judgment. Some numeric response modes that are commonly used are
probabilities, odds, intervals, ratings, logs, and pairwise comparisons.
Nonnumeric, qualitative, response modes include verbal or written
descriptions, classifications, categories, or preferences.
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RISK ANALYSIS: Risk analysis includes the data and techniques used to
quantify risk. These analyses usually include a model of events leading to
risks and their consequences. A risk analysis of a nuclear plant could
describe major factors relating to accident events; frequency and uncertainty
ranges of accident events; major factors and accident phenomena leading to
these damage events; and consequences and risks of these to the public.

SAMPLE: A subset of a population of items that is chosen for examination. A
statistically valid sample is chosen using sampling technique designed for
representativeness of the population and for random selection of the items.

SHORT-TERM MEMORY: A memory of limited capacity and intermediate
duration. Ericsson and Simon (1980) depict short-term memory as being
where information is processed in problem solving.

SIGNIFICANCE OR SIGNIFICANCE LEVEL: The result of a statistical test
or technique is said to be significant if the conclusions indicate a difference
between the data and the assumed normal state of the world. For example,
the test indicates two experts are correlated where it is assumed that experts
are not correlated. Because nothing is 100% certain, there is a chance that
the conclusion drawn from a test is incorrect. The probability of a
significant result being incorrect is the significance level. This level is
chosen by the analyst prior to the test and indicates the chance that he is
willing to take that the conclusion is incorrect. Usually this level is 5% or
less, but the choice is always indicated in the statement of the conclusion.
For example, "the positive correlation between expert 1 and 2 is significant
at the 5% level," means that experts 1 and 2 are positively correlated, and
there is a 5% chance that they are not. This 5% is sometimes called the
alpha level or the type I error.

SIMULATION: See specific simulation techniques: Bootstrap and Monte
Carlo.

SOCIAL PRESSURE: An effect that induces individuals to slant their
responses or to silently acquiesce to the views that they believe will be
acceptable to the interviewer, their group, supervisors, organization, or
society in general. This altering of an individual's thoughts can take place
consciously or unconsciously. The social pressure can come from those
physically present or from the subject's internal evaluation of how others
would interpret their responses. People's need to be loved, respected, and
recognized induces them to behave in a manner that will bring affirmation.

SOLUTION: Expert judgments that are given as descriptive text or diagrams,
as opposed to numerical estimates.

STANDARD DEVIATION: the square root of the variance.

STATICIZED GROUP: See Individual Interview.

STRUCTURED DOCUMENTATION: A detailed type of record of the expert's
answers and problem-solving processes. The person tasked with providing
the documentation is usually provided with a format of what should be
recorded. The format lists those aspects deemed to be the most important
(e.g., answers and uncertainty levels, assumptions, and algorithms) and the
level of detail at which the information is desired.
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STRUCTURING ELICITATION: The amount of controls placed on the
elicitation process. The interaction between the experts is one aspect of an
elicitation method that is typically structured. Varying degrees of structure
can be imposed, ranging from none to a high degree of structuring. No
structuring would allow spontaneous interaction between the experts; a high
degree would produce carefully choreographed communications. (See
Designing on Paper--Planning the Elicitation for a description of the larger
process of which structuring is a part.)

SUBSTANTIVE EXPERTISE: Expertise stemming from the expert's
experience in the field in question, such as in the rupture rate of
Westinghouse pipes.

SUMMARY DOCUMENTATION: A type of record of the expert's answers
and problem-solving processes. Typically, it provides a few sentences or
paragraphs on the experts' thinking, such as the sources of information that
they used, their major assumptions, and their reasons for giving particular
answers.

THINK ALOUD METHOD: See Verbal Protocol.

TOOL BIAS: The misrepresentation of the expert's data as a result of forcing
these to fit the tools selected for analysis. The analyst, and people in
general, tend to use those models or methods with which they are most
comfortable. Then, they are often unable to objectively judge whether they
have used the tool appropriately (e.g., the model required that the data have
a normal distribution, and the data may not have).

TRAINING BIAS: The tendency of the data gatherer to introduce bias into the
expert's data by misinterpreting it. It is an unconscious human tendency to
interpret incoming information in terms of what is already believed, such as
what has been learned through professional training. For example, it is
common for a data gatherer to define a term using those definitions that he
or she has learned rather than to elicit the expert's definitions.

TYPE I ERROR: See Significance Level.

UNDERESTIMATION OF UNCERTAINTY BIAS: The tendency to
underestimate the true amount of uncertainty in giving an answer. For
example, when people are asked to put a range around their answer such
that they are 90% sure that the range encompasses the correct answer, their
ranges only cover 30-60% of the total.

VARIABLE: See Random Variable.

VARIANCE: A measure of dispersion based on the squared differences
between individual values and their mean or expected value. The standard
deviation is the square root of the variance.

VERBAL PROBE: A method from educational psychology used to elicit
information on the subject's problem solving. There are different types of
verbal probes that vary in when and how they are asked. This book uses
verbal probe is used to refer to a question which has a nonleading wording
that is asked while the expert is still attending to the subject of the question.



Glossary of Expert Judgment Terms

VERBAL PROTOCOL METHOD: A method from educational psychology
involving having the subject think aloud as he works through the problem.
The verbal protocol is used in face-to-face interviews.

VERBATIM DOCUMENTATION: A record of the expert's answers and
problem-solving processes. Obtaining a verbatim account is usually done
by mechanically recording the expert's elicitation sessions and then
transcribing them. This type of documentation is more frequent in artificial
intelligence than in traditional expert judgment applications.

VOLUNTEERED DISPERSION MEASURE: A type of dispersion measure
that the experts volunteer without being asked. This dispersion marks a
spread of values around the expert's best estimate.

WISHFUL THINKING BIAS: A tendency that occurs when an individual's
hopes influence his judgment. For example, people typically overestimate
what they can produce in a given amount of time. In general, the greater the
subject's involvement and the more he stands to gain from the answer, the
greater this bias. Also called conflict of interest bias.
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