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Parallelizing the SDI ACCESS Algorithmfor the Connection Machine-2

Thomas F. Ewing
David W. Leibfritz

ABSTRACT

Argonne National Laboratory (ANL) has developed considerable expertise in developing and optimizing algor-
ithms on a collection of multiprocessor computers. One aspect of Argonne research in parallel computing, funded in
part by the Command Center/System Operation and Integration Functions (CC/SOIF) Program of the Strategic
Defense Initiative Organization (SDIO), involves the speed and other properties of parallel SDI algorithms.

Various algorithms under study have exhibited speedups resulting from parallelization on shared-memory
machines. A weapon-target accessibility algorithm called ACCESS exhibited a high degree of inherent parallelism
and has been studied on a wide variety of sequential and parallel multiple instruction multiple data (MIMD)
machines. To study ACCESS on a massively parallel single instruction multiple data (SIMD) machine architecture,
ANL researchers developed a version of ACCESS on a Thinking Machines Corporation 16K processor Connection
Machine-2 (CM-2) located at the ACRE.

ANL researchers wrote the Connection Machine version of ACCESS in C*, a version of C by Thinking
Machines Corporation with extensions to accommodate SIMD parallelism. Because of the large number of avail-
able physical processors and the ability to create virtual processors on the CM-2, the Connection Machine version of
ACCESS was able to process an array of 128 x 1024 tasks in parallel. For the data tested, the CM-2 implementation
of ACCESS was faster than both the parallel version run on the Alliant FX/8, the Encore Multimax, and the Sequent
Balance and the sequential version run on the ANL Cray X-MP/14. For the benchmark ACCESS problem, the
CM-2 at ANL with 16K processors achieved a sustained performance of 400 Mflops. On other larger CM-2
machines, the same problem achieved even higher performance: nearly 1600 Mflops on the Los Alamos National
Laboratory 64K processor CM-2. The investigation has demonstrated that achieving optimal performance requires

structuring the code carefully to keep all available processors busy and to reduce disrupdve communication on the
front-end processor.
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PARALLELIZING THE SDI ACCESS PROGRAM
FOR THE CONNECTION MACHINE-2

The Strategic Defense Initiative Organization (SDIO) currentlyfaces thefor-
midable task of developing powerful yet cost-effective SDI applications for use
with new computer architectures and software, even as this technology continues
to evolve at an accelerating pace. Since such rapid technological development
makes it unwise tofocus on a particular set of computer models or architectures
during the early development of SDI systems, SDIO must develop expertise on a
variety ofexisting leading-edge computers, develop efficient algorithms, methods,
and programming techniquesfor these architectures, and acquire experience nec-
essary to select the most appropriate architecture in a specific contextfor a given
class of applications.

The project defined in this report involved taking a prototype weapon-target
accessibility algorithm (ACCESS) previously studied on a variety of shared-
memory parallel computers and analyzing the implementation of that algorithm
on a Connection Machine-2 (CM-2).1 The choice ofa CM-2 seemed appropriate
because of'the near-optimal speed gains achieved on shared-memory machines of
modest size (up to 24 processors) and the potentially large task ofthe accessibility
problem. The report provides benchmarks for the algorithm on CM-2 configura-
tions with 16K to 64K physical processors, along with comparative timings from

Parallelizing the SDI ACCESS Program

other parallel and sequential implementations.

ACCESS is a program based on a VAX/VMS
Fortran accessibility code, developed by Sparta, Inc., to
determine the accessibility of ballistic missile threats
by interceptors fired from orbiting satellite platforms.
Using data describing the initial track of threats,
ACCESS propagates the threat trajectories forward in
time (by using Kepler's orbital equations) and deter-
mines which satellites, if any, can reach each threat
with their interceptors and at what time (see Figure 1).
ACCESS can then feed this information to a weapon-
target assignment algorithm for targeting. Pseudo code
for a simplified sequential ACCESS algorithm appears
in Table 1.

The initialization and calculation of satellite posi-
tions and velocity vectors accounted for as little as 3%
of the execution time on sequential machines. We sim-

plified the initialization by reading in satellite and
threat data from a disk and by initializing variables
such as the mean anomaly, the orbital velocity, the
orbital period, the rotational matrix for the satellite
constellations, and the tracking fixes on the threats.
These initializations are not characteristic of a typical
SDI system, where the data comes from SDI tracking
and sensor systems. The SDI ACCESS program also
calculates satellite positions and velocity vectors for
each time step and stores the results for use in the
accessibility calculations. Accessibility calculations run
faster when these satellite positions and velocity vec-
tors are precalculated (less time is required to look up
precalculated values than to calculate them), so the sys-
tem has more time for refinements, corrections, and
targeting when the application is actually used in real
time.

~ Thomas F. Ewing, "MIMD and SIMD Investigations of an Accessibility Algorithm," presented at the 4th SDI Parallel

Computing Group Meeting, Argonne National Laboratory, 10-11 April 1989.
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Table |

Pseudo Code for Parallel ACCESS Algorithm

{Initialization
initialize time intervals, accessibility array, etc.

read in satellite orbit parameters and initial threat states

{Satellite states calculations}
do over all time intervals, i

calculate distance, intercept dist[i], interceptors travel
in time interval i

do over all satellites j
calculate satellite states, sat_state[i,]]
enddo
enddo
{Accessibility calculations}
do over all time intervals i
do over all threats k
calculate current state, threat_state, of threat k
do over all satellites j

calculate distance, sat_threat dist, between
satellite j and threat k

if (intercept_dist[i] < sat_threat dist[i]) and
(intercept_dist[i-1] < sat_threat_dist [i-1]) then

accessibility[i,j,k] = true
enddo

enddo
enddo
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The remaining 97% of time was spent executing
accessibility calculations, the focus of our experimenta-
tion. For this reason, timing comparisons among
MIMD, SIMD, and sequential machines are for the
accessibility calculation stage only and do not include
the initialization or satellite state calculations.

Accessibility calculations consisted of more than
103 independent tasks. We labeled a threat accessible if
an interceptor from at least one satellite could reach a
threat during both the previous and current time steps.
The accessibility of a threat was represented by a three
dimensional Boolean cube of time steps, satellites, and
threats. A value of | (TRUE) at a node denoted access,
and a 0 (FALSE) indicated no access. The three
dimensional Boolean cube was, therefore, the output of
the program.

In the sequential (VAX/VMS Fortran) version of
the code, the calculation of accessibility consisted of a
triple-nested loop of time steps, threat-state calcula-
tions, and satellite-state calculations. The benchmark in
this study consisted of 15 time steps, 118 satellites, and
736 threats. For each combination of time steps,
threats, and satellites, 1,302,720 (15 x 118 x 736) itera-
tions of the same set of instructions are thus required to
determine accessibility. The power of data parallel
computing lies in the ability to execute the same set of
instructions on multiple sets of data simultaneously,
thus reducing the time required to execute all instruc-
tions.

The calculation of accessibility is inherently high-
ly parallel because of the independent equations used
to calculate the states of each satellite and threat along
with the ranges of each interceptor for each time incre-
ment The only dependencies among the equations
arise in propagating the satellite and threat state vectors
between consecutive time steps. Hence, time should be
treated sequentially by the program, whereas the calcu-
lation of threat accessibility by satellites is best per-
formed in parallel. Treating time sequentially permits
the algorithm to receive and act upon updated sensor
data and to pass information to weapon-target assign-
ment modules in a timely fashion. For these reasons,
we ran only the inner nested loop of (118 x 736 =
86848) access calculations in parallel for the bench-
mark case.

Several MIMD machines have already run a par-
allel version of ACCESS and demonstrated near linear
speedup of the accessibility calculation with more than
one processor. Among these machines were the Alliant
FX/8, the Encore Multimax, and the Sequent Balance

-4
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21000. Figure 2 shows the execution speedup curve
for the 24 processor Sequent Balance.

Before running the accessibility calculations in
parallel on the CM-2, we needed to modify the
ACCESS program to fit the unique SIMD CM-2 archi-
tecture. Although the version of ACCESS written for
the CM-2 is slightly different from the one run on the
MIMD machines, we can still fairly compare the tim-
ing results. Both the MIMD and SIMD versions of
code were optimized for the type of machine, error-
checking conditional statements were removed from
both parallel versions, and both programs used single-
precision floating-point numbers for all floating-point
numbers.

PROGRAMMING THE PARALLEL ACCESS
PROGRAM ON THE CM-2

The Connection Machine-2 (CM-2) is a massive-
ly data-parallel SIMD machine developed and manu-
factured by Thinking Machines Corporation. In the
United States, there are about 24 such machines with a
number of processors ranging from 4K to 64K. The
CM-2 machine at Argonne National Laboratory has
16K physical processors. At ANL, access to the CM-2
is through a front-end computer, currently a VAX 8250
for Fortran applications and a Sun-4 for C applications.
The front-end system provides both a gateway to the
CM-2 and to the operating system environment, which
performs terminal interaction and file management.

On the CM-2, sequential instructions for the
front-end system and parallel instructions for the data
processors reside in the memory of the front-end sys-
tem. The front-end system executes the sequential code
and broadcasts instructions to the data processors
through a special instruction bus called the front-end
bus interface (FEBI). Data may reside in the front-end
memory or may be distributed to the local memory
attached to each of the data processors. Each data pro-
cessor has 8K of memory available, and the FEBI
allows the front-end system to access the local memo-
ries of the data processors a word at a time, for both
reading and writing.

Application programs reside physically on the
front-end machine of the CM-2 and can be written in
C* (a Connection Machine extension of C), *LISP (a
Connection Machine extension of LISP), the CM
assembly language, PARIS (PARallel Instruction Set,
which is callable from C* or Fortran), and Connection
Machine Fortran (an implementation of Fortran 8X).
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Figure 2: ACCESS Code Speedup on a Sequent Balance



Parallelizing the SDI ACCESS Program

To modify the sequential version of ACCESS to
fit the SIMD architecture of the Connection Machine,
we translated it into version 5.0.21 of C*. We chose
C* because CM-Fortran was still in Beta test form and
because a C translation of ACCESS had already been
developed. Furthermore, only a few extensions to the
C version of ACCESS were necessary to make parallel
programming in C* possible. Three language features
of C* that make parallel programming possible are:

* A domain feature to organize parallel data, similar
in syntax and semantics to the C structure con-
struct.

* A poly type attribute to designate data to be pro-
cessed in parallel.

+ A selection statement to activate parallel execution.

The first step in modifying the code for an SIMD
machine was to decide how to map the data onto the
CM-2 architecture. At ANL, a program written in C*
executes on a Sun-4 for the front-end system, where
the flow of control is maintained along with all control
for interaction with the user. The front-end system
gives a program access to the data processors and to
data stored in individual processors by beating them
logically as memory locations. For the purpose of pro-
gramming, we could consider the processors to be
extensions of the memory addressable from the front-
end system.

When designing an algorithm for the CM-2, we
needed to partition the problem between the front-end
system and the SIMD processors. This partitioning
should exploit the strengths of the front-end system and
the parallel processors. The front-end system supports
the user interface and is superior to the parallel proces-
sors in manipulating files and controlling 1/O, while the
parallel processors are more efficient in processing
loops containing many numeric operations. The differ-
ences between the front-end system and the parallel
processors suggest that portions of the code that are
computationally intensive should be run on the proces-
sors, while other operations should be run on the front-
end system.

If the program size requires more processors than
the number of physical processors available, a pro-
grammer can divide each physical processor into more
than one virtual processor. The system logically
divides the memory of each physical data processor
into equivalent virtual processors and processes each
parallel instruction n times, once for each virtual pro-

November 1989

cessor. The execution time of a single physical proces-
sor is thereby distributed among the n virtual proces-
sors. The overhead involved in using virtual processors
reduces the memory capacity of each virtual processor

to SK bytes of available memory.
n

Because of the large number of processors on the
Connection Machine, it can process a vast amount of
data in parallel. The Connection Machine exploits the
inherent parallelism of data intensive problems, since
each data element of a data structure is associated with
a single processor on the CM-2. A data structure can be
any combination of objects, such as integers, real num-
bers, characters, arrays, records, and structures. A pro-
grammer must select, combine, and place these data
objects into the memory of the data processors. An
example of selecting, combining, and placing these
data objects would be spreading the for loop below
over a set of data processors:

for(i=0:i <= 1000;++1)
C[i] = wvar + BJ[i];

Here a unique element from array B and C would
be placed in each of the 1,000 allocated data proces-
sors, along with a copy of var. Each data processor
would then run in parallel by executing the same
instruction (without the index i), and the for statement
would drop out.

After designating which data should be processed
in parallel, we decided which data should be stored in
each processor. Ideally, one would store all primary
data variables referenced by the parallel portion of the
code into each data processor to avoid referencing the
front-end system. However, limited space in the mem-
ory of each processor sometimes makes the local stor-
age of all primary data variables impossible. Data vari-
ables stored within each processor reside in an area
called the domain.

The domain resembles a standard C structure, in
which each variable is listed along with its data type.
Much of the parallel power of the language comes from
applying existing C operators and statements to the C*
domain data type. The domain for the access code
appears in Table 2. Note that the variables within the
curly brackets reside on each of the data processors.

All variables declared within the domain are by
default of the type poly. A poly-type declaration places
a local copy of the variable into the memory of each
processor. Poly-type variables are also temporarily
created when a member function is called. All local
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variables declared within the member function auto-
matically become type poly during the execution of the
function. After the function has executed, however, the
poly-type variables declared in the member function
cease to exist

To activate a domain so poly-type variables can
be used in parallel, a programmer must use the selec-
tion statement (see Table 3). The selection statement
specifies which domain to activate and lists the instruc-
tions to be performed on variables stored within this
domain.

Using the domain to distribute array elements to
the processors eliminated time-consuming loops that
referenced arrays. Although code within the parallel
domain retained the same syntax as ordinary sequential
C code, the new parallel configuration of data required
a restructured version of the ACCESS algorithm to fit
the massively parallel architecture of the CM-2. Since
the CM-2 is an SIMD machine, we had to coordinate
operations on multiple sets of data mapped onto many

Parallelizing the SDI ACCESS Program

parallel processors with a single set of instructions.
This coordination required an approach different from
one used to program on sequential machines. While
the instruction set dominated the design approach for
the sequential ACCESS algorithm, the data within the
domain needed to dominate the design approach for the
SIMD algorithm.

On an SIMD machine, all processors simultane-
ously run the same set of instructions on data stored in
their local memories. To operate only on data within
selected processors, therefore, a programmer first
needs to analyze how a parallel instruction will affect
data within each processor and then turn each proces-
sor on or off with a conditional. Using this technique,
different instructions can execute selectively on differ-
ent processors.

An example of using the selection statement to
assign values to a Boolean parallel variable for a desig-
nated set of processors appears in Table 3.

Table 2

Access Code Domain

domain sat threat data
{int current access,
float threat sat dist,
object state vect[7],
access [7];}

[NUM_THREATS| [NUMSATS];

previous access,
sat state vect[7],
reentry time,

threat_num, sat num, on;
threat state vect[7],
time object state vector,

Table 3

Selection Statement Example

[domain sat threat datal.{on =

(current time <= reentry time);}
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Here on is set to either 0 (False) or | (True) in
each processor, depending on how the current time
interval and the reentry time compare in the member
function for the domain, sat_threat data. For each par-
ticular threat, the reentry time is constant. Specifically,
the reentry time represents the point in time when a
threat reenters the atmosphere and is no longer capable
of being intercepted from orbiting satellites. If, for a
given processor, the current time interval comes before
the reentry time, there is still opportunity to intercept
the threat, and the processor remains on. However, if
the current time interval comes after the reentry time,
the threat is beyond interception, and the processor is
turned off. Once a processor is off, it remains off.

When modifying ACCESS to run on the CM-2,
we tried to avoid referencing the front-end system,
which breaks the flow of execution on the parallel pro-
cessors, forcing serialization. Since the CM-2 is an
SIMD machine, an instruction that references the front-
end system will cause each processor to successively
access front-end values, while the others must stop and
wait. This break in the flow also occurs when execut-
ing conditional statements, such as an ifstatement.

To reduce the time required to process data, a
programmer should place all the variables used within
the parallel portion of code into the local memory of
each processor to avoid serialization. A processor
accessing a 32-bit floating-point variable from its local
memory requires 26.26 microseconds, whereas a pro-
cessor accessing the same variable from the front-end
system requires 588.76 microseconds because of the
communication overhead.

A technique we used to avoid conditional state-

ments was to remove the conditional statement and
assign a dummy Boolean parallel variable to each pro-
cessor (as was done in the example above with the
Boolean variable on ). When the processor executed
the instruction set following the condition, each value
was multiplied by the dummy variable, which had a
value of zero or one. The logical result was the same
as using the conditional but was faster because the pro-
gram did not need to reference the front-end system,
even though every processor had to execute the instruc-
tion set.
The final algorithm differed from classical
sequential algorithms but was more natural to the prob-
lem. The pseudo code in Table 4 describes the parallel
algorithm implemented on the Connection Machine.

The nested loop over satellites and threats fell out

1]
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naturally because of the data parallelism. We ran the
accessibility procedure, which covered every combina-
tion of satellites and threats in the domain, only once
for each time step.

As previously described, the inner nested loop of
accessibility calculations (118 satellites x 736 threats =
86,848) was the focus of the parallelization effort.
Note that the timings consistently represent the accessi-
bility portion of the calculations exclusive of the ini-
tialization portion. Fortunately, the problem size was
nearly ideal for testing the speed of the SIMD
ACCESS algorithm on the CM-2. The CM-2 software
interface requires processors to be allocated in powers
of two. However, in designing a parallel algorithm for
this code, we allocated each particular combination of
satellite and threat to a single processor. Since there
were only 118 satellites and 736 threats in the test
problem, we mapped the processors using 128 potential
satellites and 1,024 potential threats to attain the power
of two. This total of 128 satellites and 1024 threats
required 128K (131,072) data processors. Since the
CM-2 at Argonne has only 16K physical processors,
each physical processor was divided into eight virtual
processors. This division resulted in IK of memory
per virtual processor. Less than 75% of this memory
was available, however, because of compiler overhead,
so the amount of local memory available was actually
750 bytes per virtual data processor. This was enough
memory for the parallel portion of the accessibility cal-
culation.

We used the following techniques to create a par-
allel accessibility procedure for the CM-2. To avoid
using the conditional, we created the Boolean poly
variable on to designate which threat processors should
be activated. Almost every variable within the accessi-
bility procedure was of the type poly except for two
index variables that were logically required to execute
on the front-end system. We also removed two proce-
dure calls from the accessibility procedure and replaced
them with the procedures themselves to reduce calling
overhead. An I/O statement used for debugging was
commented out. Two error checking conditional state-
ments were removed from the accessibility procedure
(they were never executed for the data tested and had
already been removed in MIMD benchmarks). All
floating-point numbers were in single-precision rather
than double precision to take advantage of the single-
precision floating-point hardware and to conserve the
limited space of each data processor. We calculated
the satellite states during each time step because limit-
ed processor space prevented the precalculation and
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storage of the satellite states for each time step. We
replaced a while statement with a for statement that
looped for the maximum number of iterations. To
achieve the same logic, a poly Boolean variable was
introduced that had the value of the condition within
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the while statement. This poly Boolean variable was
then multiplied by each value in the loop to achieve the
same result as a conditional statement Using the
above techniques, the entire accessibility procedure ran
in parallel on the CM-2.

Table 4

Pseudo Code for CM-2 Implementation of the ACCESS Algorithm

{Initialization)

initialize time intervals, accessibility array, etc.

read in satellite orbit parameters and initial threat states

create array of 1024 threat x 128 satellite (128K total) processors

distribute copies of control data to each data processor

{Satellite state calculations)

do over all time intervals i

calculate distance, intercept dist[i], interceptors travel in

time interval i

do over all satellites j

calculate satellite states, sat_state [i,]]

enddo

call Parallel Access Procedure

enddo

{Accessibility calculations)

Parallel Access Procedure for all processes:

set parallel Boolean variable on for selected threat processors

calculate current state, threat_state, of threat

calculate distance, sat_threat dist,
between each satellite and threat

if (intercept dist[i] < sat_threat_dist[i]]| and
(intercept dist[i-1]) < (sat-threat-dist[i-1]) and

(processor is on) then

accessibility = true

9-
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MEASURING THE PERFORMANCE OF
THE CM-2

Measuring the speed of the CM-2 was complicat-
ed task because a program spends time on both the
front-end system and the CM-2. We could not simply
add the CPU times of both machines together for an
accurate measure of total execution time because there
is an overlap of time when both the front-end system
and the CM-2 execute. For this reason, we used a tim-
ing routine that computed elapsed wall clock time.
Even though this approach may be slightly conserva-
tive, it is the only true measure of real time perform-
ance of the CM-2 and assures an upper-bound time
measurement

Another challenge in measuring the speed of the
CM-2 involved correcting for the effect of user load on
the front-end system. Timings fluctuated greatly with
user load. To minimize the effect of user load on tim-
ings, we timed the execution of the program when user
load was minimal. Then, to filter out the impact of
external loads, we ran the accessibility procedure many
times in succession and used the lowest time. Keeping
the procedure in memory for each successive run also
limited memory paging.

Optimizing the parallel access procedure by using
the above techniques reduced the CM-2 timing from
8.56 seconds to 4.05 seconds, an improvement of
almost 53%. Most of the improvement can be attribut-
ed to eliminating the I/O statement used for debugging.
The CM-2 does not handle I/O efficiently, because
each parallel processor must sequentially access the
front-end system to print a value. Removing the I/O
statement from the accessibility procedure eliminated
3.82 seconds of time, which accounted for 44.6% of
the total loop execution time. For a fair comparison
among the machines, we also removed the 1/O state-
ment from the MIMD code run on the shared-memory
machines and from the sequential code run on the
Cray. Conditional statements were also bottlenecks for
the CM-2 because these instructions needed to execute
at the front-end system and wait for every processor to
return before continuing with the next instruction. For
the ACCESS code, removing the three error-checking
conditional statements resulted in a 2.3% speed gain in
performance, and replacing the while statement result-
ed in a 3.4% gain in speed.
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COMPARING THE CM-2 WITH OTHER
MACHINES

Figure 3 shows how accessibility calculation tim-
ings on the Connection Machine compare with other
sequential and parallel machines for the sequential and
parallel versions of ACCESS. Narrow black bars rep-
resent execution times of the sequential ACCESS ver-
sion run on a single processor; while white bars repre-
sent the parallel ACCESS version.

For every MIMD machine, the sequential result
was slightly faster (2-8%) than the single processor
parallel result, since there was additional interprocessor
communication overhead in the parallel version of
code. Note that the ANL/Caltech 16K processor Con-
nection Machine benchmark was nearly twice as fast as
the best MIMD (Alliant) machine result

To investigate the relationship between the num-
ber of physical processors and execution speed for this
problem, we ran the ACCESS code on a 32K Connec-
tion Machine located at Syracuse University. With
twice the number of physical processors as the 16K
Connection Machine, each physical processor on the
Syracuse 32K Connection Machine was divided into
four instead of eight virtual processors. As we expect-
ed, the Syracuse 32K Connection Machine ran the
benchmark problem nearly twice as fast as the ANL/
Caltech 16K CM-2. Similarly, we also ran the
ACCESS code on a 64K Connection Machine located
at the Los Alamos National Laboratory. With four
times the number of physical processors as the 16K
Connection Machine, each physical processor on the
Los Alamos 64K Connection Machine was divided into
two instead of eight virtual processors. As we expect-
ed, the Los Alamos Connection Machine ran the
benchmark problem nearly four times as fast as the
ANL/Caltech 16K CM-2. The timing results appear in
Table 5.

Table 5

CM-2 Timings (118 Satellites X

736 Threats)
ANL/Caltech 16KCM-2 4.05s
Syracuse 32K CM-2 2.05s
Los Alamos 64K CM-2 1.07s
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These timings demonstrated an almost ideal two-
fold gain in speed on the 32K Syracuse CM-2 and a
four-fold gain in speed on the 64K Los Alamos CM-2.

To compare timings between the Cray X-MP/14
and the CM-2 running an optimal size problem, we
increased the dimension of the problem to occupy all
the virtual processor space available on the Connection
Machine (128 satellites and 1024 threats) by adding
more satellites and threats. With the optimal Connec-
tion Machine problem size, the ANL/Caltech 16K
CM-2 ran the accessibility calculation almost 36% fast-
er than the Cray X-MP/14. The Cray X-MP/14 timings
for this case appear in Table 6.

Table 6

16K CM-2 and Cray X-MP/14
Timings (128 Satellites X 1024

Threats)
ANL/Caltech 16K CM-2 4.10s
ANL/Cray X-MP/14 6.39s

The CM-2 accessibility calculation time changed
only slightly when the problem size changed from the
benchmark case depicted in Figure 3 to an optimal
problem size, since, in both cases, the entire array of
satellite x threat tasks were performed in parallel. Both
the benchmark and the optimal size problem must use a
number of processors that is a power of two and run the
equivalent of the full-size (128 x 1024) problem.

By extracting the PARIS code, we could count
the number of floating-point operations on a single pro-
cessor. To accommodate for the SIMD parallelism, we
multiplied this number by the number of virtual proces-
sors (128K). This procedure included counting
floating-point operations on processors with pseudo
data to implement the 736 by 118 satellite case. The
ANL/Caltech 16K CM-2 ran the parallel access proce-
dure of the benchmark problem using approximately
103.68 million floating operations per time step, result-
ing in a speed 0f 409 Mflops. The Syracuse 32K CM-2
ran the parallel access procedure at a speed of 809
Mflops, almost double the speed of the procedure run
on the 16K CM-2, and the Los Alamos 64K CM-2 ran
the parallel access procedure at 1550 Mflops, almost
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four times the speed of the procedure run on the 16K
CM-2.

After optimizing the problem size, we tested the
maximum potential of the ACCESS code by increasing
the number of instructions executed within a given
time interval and iterating through them as needed to
achieve the desired number of instructions. Increasing
the floating point instruction count within the accessi-
bility procedure had almost no effect on the perform-
ance of the code, a fact which demonstrated that our
code was running close to its maximum potential
speed.

To test how the number of processors affected
execution time on the ANL/Caltech 16K CM-2, we
modified the problem size to match the desired number
of processors by changing the number of satellites and
compensating for lost satellites by performing addition-
al iterations of the accessibility procedure (e.g., for an
8K run, we used 8 satellites and iterated over the acces-
sibility procedure 16 times on each processor, and for a
16K run, we used 16 satellites and iterated over the
accessibility 8 times on each processor). In essence,
each processor performed the work of more than one
satellite sequentially. The results of this test appear in
Figure 4. Note that the "vp" in parentheses in Figure 4
represents the virtual processors as opposed to the
physical processors. As the number of processors
approached the maximum number of available physical
processors, the speed increased in linear fashion. As
noted from the Syracuse CM-2 result and the Los Ala-
mos CM-2 result, the linear behavior of Mflops versus
the number of physical processors continues to hold
reasonably well to a 32K and 64K processor CM-2 (see
Figure 5).

In Figure 4 , the curve representing the number of
processors versus execution speed is linear until the
number of processors used by the program equals the
number of physical processors. Past this point, the rate
of performance gain decreases. Despite the inverse
relationship between performance gain and number of
virtual processors, the execution speed continued to
increase with the use of more virtual processors. In
fact, an additional 20% improvement in Mflops was
possible by using virtual processors when the problem
size exceeded the number of physical processors. This
demonstrated the pipelining effect of using virtual pro-
cessors to increase the efficiency of the physical pro-
cessors. However, specifying a number of virtual pro-
cessors greater than the number required by the
problem size adversely affected performance, because
of wasted processors.
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403 s
1 proc
370 s
198 s
1 proc
193 736 threats
(R I
1 proc
4.05 s
17.8 s 16K proc
10.6 s 24 proc
20 proc
Alliant FX-8 Encore Sequent ANL Syracuse
Multimax Balance CM-2
21000

Figure 3: Comparison of ACCESS Execution Times on Different Machines
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ANL16K Processor CM-2

128K(vp)

64K (vp)
368- 32K(vp) P

318-
268-
218-
168-

118-

Number of Processors (K)

Figure 4: Connection Machine Speed (MFLOPS) Versus Number of Processors
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Speed Vs Physical Processor Size

LANL 64K

1200

Syracuse 32K

400- ANL16K

Maximum Physical Processors (K)

Figure 5: Connection Machine Speed (MFLOPS) Versus Maximum Physical Processor Size
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CONCLUSIONS

By parallelizing the ACCESS program for a mas-
sively parallel SIMD Connection Machine, we have
demonstrated substantial speedups over several parallel
MIMD machines and the sequential ANL Cray
X-MP/14 supercomputer. Even though the versions of
ACCESS used for each machine differed slighdy, we
believe a fair comparison of timings was achieved.
Because of the lack of dependencies in this problem,
and the vast amounts of data, the CM-2 was able to
sustain the best performance. The natural style of pro-
gramming in C* easily allowed the programmer to
store various data types on the parallel processors and
to select when these processors should be activated.
As these bit processors performed operations simulta-
neously on the parallel domain, the speedup increased
linearly as the number of physical processors
increased. The only degradation in performance
occurred when the processors were forced into seriali-
zation in referencing the front-end system. Through
experimentation we have shown that we can replace
these statements with logically equivalent parallel
instructions.

The virtual processor feature of the CM-2 proved
to be particularly useful for a problem of this nature,
where the precise size of the satellite-threat array is not
known in advance and may, in fact, exceed the number
of physical processors. The use of virtual processors is
more efficient for large problems that exceed the physi-
cal processor space than for performing the computa-
tions sequentially N times, where N is the ratio of the
number of satellite-threat pairs to the number of pro-
cessors, times in code. Moreover, no coding changes
are necessary to use virtual processors.

The ANL/Caltech 16K processor CM-2 (with a
virtual processor size of 128K-the processor size that
most nearly fitted the problem size for this machine)
achieved a sustained performance of over 400 Mflops.
For the same problem size, the Syracuse 32K processor
CM-2 and the Los Alamos 64K processor CM-2
achieved sustained performances of over 800 Mflops
and nearly 1,600 Mflops, respectively. The Los Ala-
mos CM-2 executed more than four times as fast as the
ANL Cray X-MP/14.
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We should not expect all software components of
an SDI system to achieve gains in speed (through par-
allelization) comparable to those demonstrated by the
accessibility problem. Indeed, data dependencies
would increase communication overhead among paral-
lel processor nodes and might favor a machine archi-
tecture with fewer, faster processors for other SDI
functions, such as the tracker-correlator. Further com-
parative studies between machine architectures for var-
ious SDI software components will thus be necessary.
It is likely that optimal performance will be achieved
from an SDI system composed of coupled multiple-
machine architectures, each tailored to specific func-
tions.
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