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Parallelizing the SDI ACCESS Algorithm for the Connection Machine-2

Thomas F. Ewing 
David W. Leibfritz

ABSTRACT

Argonne National Laboratory (ANL) has developed considerable expertise in developing and optimizing algor­
ithms on a collection of multiprocessor computers. One aspect of Argonne research in parallel computing, funded in 
part by the Command Center/System Operation and Integration Functions (CC/SOIF) Program of the Strategic 
Defense Initiative Organization (SDIO), involves the speed and other properties of parallel SDI algorithms.

Various algorithms under study have exhibited speedups resulting from parallelization on shared-memory 
machines. A weapon-target accessibility algorithm called ACCESS exhibited a high degree of inherent parallelism 
and has been studied on a wide variety of sequential and parallel multiple instruction multiple data (MIMD) 
machines. To study ACCESS on a massively parallel single instruction multiple data (SIMD) machine architecture, 
ANL researchers developed a version of ACCESS on a Thinking Machines Corporation 16K processor Connection 
Machine-2 (CM-2) located at the ACRE.

ANL researchers wrote the Connection Machine version of ACCESS in C*, a version of C by Thinking 
Machines Corporation with extensions to accommodate SIMD parallelism. Because of the large number of avail­
able physical processors and the ability to create virtual processors on the CM-2, the Connection Machine version of 
ACCESS was able to process an array of 128 x 1024 tasks in parallel. For the data tested, the CM-2 implementation 
of ACCESS was faster than both the parallel version run on the Alliant FX/8, the Encore Multimax, and the Sequent 
Balance and the sequential version run on the ANL Cray X-MP/14. For the benchmark ACCESS problem, the 
CM-2 at ANL with 16K processors achieved a sustained performance of 400 Mflops. On other larger CM-2 
machines, the same problem achieved even higher performance: nearly 1600 Mflops on the Los Alamos National 
Laboratory 64K processor CM-2. The investigation has demonstrated that achieving optimal performance requires 
structuring the code carefully to keep all available processors busy and to reduce disrupdve communication on the 
front-end processor.
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PARALLELIZING THE SDI ACCESS PROGRAM 
FOR THE CONNECTION MACHINE-2

The Strategic Defense Initiative Organization (SDIO) currently faces the for­
midable task of developing powerful yet cost-effective SDI applications for use 
with new computer architectures and software, even as this technology continues 
to evolve at an accelerating pace. Since such rapid technological development 
makes it unwise to focus on a particular set of computer models or architectures 
during the early development of SDI systems, SDIO must develop expertise on a 
variety of existing leading-edge computers, develop efficient algorithms, methods, 
and programming techniques for these architectures, and acquire experience nec­
essary to select the most appropriate architecture in a specific context for a given 
class of applications.

The project defined in this report involved taking a prototype weapon-target 
accessibility algorithm (ACCESS) previously studied on a variety of shared- 
memory parallel computers and analyzing the implementation of that algorithm 
on a Connection Machine-2 (CM-2).1 The choice of a CM-2 seemed appropriate 
because of the near-optimal speed gains achieved on shared-memory machines of 
modest size (up to 24 processors) and the potentially large task of the accessibility 
problem. The report provides benchmarks for the algorithm on CM-2 configura­
tions with 16K to 64K physical processors, along with comparative timings from 
other parallel and sequential implementations.

ACCESS is a program based on a VAX/VMS 
Fortran accessibility code, developed by Sparta, Inc., to 
determine the accessibility of ballistic missile threats 
by interceptors fired from orbiting satellite platforms. 
Using data describing the initial track of threats, 
ACCESS propagates the threat trajectories forward in 
time (by using Kepler's orbital equations) and deter­
mines which satellites, if any, can reach each threat 
with their interceptors and at what time (see Figure 1). 
ACCESS can then feed this information to a weapon- 
target assignment algorithm for targeting. Pseudo code 
for a simplified sequential ACCESS algorithm appears 
in Table 1.

The initialization and calculation of satellite posi­
tions and velocity vectors accounted for as little as 3% 
of the execution time on sequential machines. We sim­

plified the initialization by reading in satellite and 
threat data from a disk and by initializing variables 
such as the mean anomaly, the orbital velocity, the 
orbital period, the rotational matrix for the satellite 
constellations, and the tracking fixes on the threats. 
These initializations are not characteristic of a typical 
SDI system, where the data comes from SDI tracking 
and sensor systems. The SDI ACCESS program also 
calculates satellite positions and velocity vectors for 
each time step and stores the results for use in the 
accessibility calculations. Accessibility calculations run 
faster when these satellite positions and velocity vec­
tors are precalculated (less time is required to look up 
precalculated values than to calculate them), so the sys­
tem has more time for refinements, corrections, and 
targeting when the application is actually used in real 
time.

^ Thomas F. Ewing, "MIMD and SIMD Investigations of an Accessibility Algorithm," presented at the 4th SDI Parallel 

Computing Group Meeting, Argonne National Laboratory, 10-11 April 1989.
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Table 1

Pseudo Code for Parallel ACCESS Algorithm

{Initialization}

initialize time intervals, accessibility array, etc.

read in satellite orbit parameters and initial threat states

{Satellite states calculations}
do over all time intervals, i

calculate distance, intercept_dist[i], interceptors travel 
in time interval i

do over all satellites j

calculate satellite states, sat_state[i,j]
enddo

enddo

{Accessibility calculations}

do over all time intervals i 

do over all threats k

calculate current state, threat_state, of threat k
do over all satellites j

calculate distance, sat_threat_dist, between 
satellite j and threat k

if (intercept_dist[i] < sat_threat_dist[i]) and 
(intercept_dist[i-1] < sat_threat_dist [i-1]) then

accessibility[i,j,k] = true
enddo

enddo
enddo

-3-
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The remaining 97% of time was spent executing 
accessibility calculations, the focus of our experimenta­
tion. For this reason, timing comparisons among 
MIMD, SIMD, and sequential machines are for the 
accessibility calculation stage only and do not include 
the initialization or satellite state calculations.

Accessibility calculations consisted of more than 
103 independent tasks. We labeled a threat accessible if 
an interceptor from at least one satellite could reach a 
threat during both the previous and current time steps. 
The accessibility of a threat was represented by a three 
dimensional Boolean cube of time steps, satellites, and 
threats. A value of 1 (TRUE) at a node denoted access, 
and a 0 (FALSE) indicated no access. The three 
dimensional Boolean cube was, therefore, the output of 
the program.

In the sequential (VAX/VMS Fortran) version of 
the code, the calculation of accessibility consisted of a 
triple-nested loop of time steps, threat-state calcula­
tions, and satellite-state calculations. The benchmark in 
this study consisted of 15 time steps, 118 satellites, and 
736 threats. For each combination of time steps, 
threats, and satellites, 1,302,720 (15 x 118 x 736) itera­
tions of the same set of instructions are thus required to 
determine accessibility. The power of data parallel 
computing lies in the ability to execute the same set of 
instructions on multiple sets of data simultaneously, 
thus reducing the time required to execute all instruc­
tions.

The calculation of accessibility is inherently high­
ly parallel because of the independent equations used 
to calculate the states of each satellite and threat along 
with the ranges of each interceptor for each time incre­
ment The only dependencies among the equations 
arise in propagating the satellite and threat state vectors 
between consecutive time steps. Hence, time should be 
treated sequentially by the program, whereas the calcu­
lation of threat accessibility by satellites is best per­
formed in parallel. Treating time sequentially permits 
the algorithm to receive and act upon updated sensor 
data and to pass information to weapon-target assign­
ment modules in a timely fashion. For these reasons, 
we ran only the inner nested loop of (118 x 736 = 
86848) access calculations in parallel for the bench­
mark case.

Several MIMD machines have already run a par­
allel version of ACCESS and demonstrated near linear 
speedup of the accessibility calculation with more than 
one processor. Among these machines were the Alliant 
FX/8, the Encore Multimax, and the Sequent Balance

21000. Figure 2 shows the execution speedup curve 
for the 24 processor Sequent Balance.

Before running the accessibility calculations in 
parallel on the CM-2, we needed to modify the 
ACCESS program to fit the unique SIMD CM-2 archi­
tecture. Although the version of ACCESS written for 
the CM-2 is slightly different from the one run on the 
MIMD machines, we can still fairly compare the tim­
ing results. Both the MIMD and SIMD versions of 
code were optimized for the type of machine, error- 
checking conditional statements were removed from 
both parallel versions, and both programs used single- 
precision floating-point numbers for all floating-point 
numbers.

PROGRAMMING THE PARALLEL ACCESS 
PROGRAM ON THE CM-2

The Connection Machine-2 (CM-2) is a massive­
ly data-parallel SIMD machine developed and manu­
factured by Thinking Machines Corporation. In the 
United States, there are about 24 such machines with a 
number of processors ranging from 4K to 64K. The 
CM-2 machine at Argonne National Laboratory has 
16K physical processors. At ANL, access to the CM-2 
is through a front-end computer, currently a VAX 8250 
for Fortran applications and a Sun-4 for C applications. 
The front-end system provides both a gateway to the 
CM-2 and to the operating system environment, which 
performs terminal interaction and file management.

On the CM-2, sequential instructions for the 
front-end system and parallel instructions for the data 
processors reside in the memory of the front-end sys­
tem. The front-end system executes the sequential code 
and broadcasts instructions to the data processors 
through a special instruction bus called the front-end 
bus interface (FEBI). Data may reside in the front-end 
memory or may be distributed to the local memory 
attached to each of the data processors. Each data pro­
cessor has 8K of memory available, and the FEBI 
allows the front-end system to access the local memo­
ries of the data processors a word at a time, for both 
reading and writing.

Application programs reside physically on the 
front-end machine of the CM-2 and can be written in 
C* (a Connection Machine extension of C), *LISP (a 
Connection Machine extension of LISP), the CM 
assembly language, PARIS (PARallel Instruction Set, 
which is callable from C* or Fortran), and Connection 
Machine Fortran (an implementation of Fortran 8X).

-4
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Figure 2: ACCESS Code Speedup on a Sequent Balance
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To modify the sequential version of ACCESS to 
fit the SIMD architecture of the Connection Machine, 
we translated it into version 5.0.21 of C*. We chose 
C* because CM-Fortran was still in Beta test form and 
because a C translation of ACCESS had already been 
developed. Furthermore, only a few extensions to the 
C version of ACCESS were necessary to make parallel 
programming in C* possible. Three language features 
of C* that make parallel programming possible are:

• A domain feature to organize parallel data, similar 
in syntax and semantics to the C structure con­
struct.

• A poly type attribute to designate data to be pro­
cessed in parallel.

• A selection statement to activate parallel execution.

The first step in modifying the code for an SIMD 
machine was to decide how to map the data onto the 
CM-2 architecture. At ANL, a program written in C* 
executes on a Sun-4 for the front-end system, where 
the flow of control is maintained along with all control 
for interaction with the user. The front-end system 
gives a program access to the data processors and to 
data stored in individual processors by beating them 
logically as memory locations. For the purpose of pro­
gramming, we could consider the processors to be 
extensions of the memory addressable from the front- 
end system.

When designing an algorithm for the CM-2, we 
needed to partition the problem between the front-end 
system and the SIMD processors. This partitioning 
should exploit the strengths of the front-end system and 
the parallel processors. The front-end system supports 
the user interface and is superior to the parallel proces­
sors in manipulating files and controlling I/O, while the 
parallel processors are more efficient in processing 
loops containing many numeric operations. The differ­
ences between the front-end system and the parallel 
processors suggest that portions of the code that are 
computationally intensive should be run on the proces­
sors, while other operations should be run on the front- 
end system.

If the program size requires more processors than 
the number of physical processors available, a pro­
grammer can divide each physical processor into more 
than one virtual processor. The system logically 
divides the memory of each physical data processor 
into equivalent virtual processors and processes each 
parallel instruction n times, once for each virtual pro­

cessor. The execution time of a single physical proces­
sor is thereby distributed among the n virtual proces­
sors. The overhead involved in using virtual processors 
reduces the memory capacity of each virtual processor 

SKto — bytes of available memory. 
n

Because of the large number of processors on the 
Connection Machine, it can process a vast amount of 
data in parallel. The Connection Machine exploits the 
inherent parallelism of data intensive problems, since 
each data element of a data structure is associated with 
a single processor on the CM-2. A data structure can be 
any combination of objects, such as integers, real num­
bers, characters, arrays, records, and structures. A pro­
grammer must select, combine, and place these data 
objects into the memory of the data processors. An 
example of selecting, combining, and placing these 
data objects would be spreading the for loop below 
over a set of data processors:

for(i=0;i <= 1000;++i)
C [i] = var + B [i] ;

Here a unique element from array B and C would 
be placed in each of the 1,000 allocated data proces­
sors, along with a copy of var. Each data processor 
would then run in parallel by executing the same 
instruction (without the index i), and the for statement 
would drop out.

After designating which data should be processed 
in parallel, we decided which data should be stored in 
each processor. Ideally, one would store all primary 
data variables referenced by the parallel portion of the 
code into each data processor to avoid referencing the 
front-end system. However, limited space in the mem­
ory of each processor sometimes makes the local stor­
age of all primary data variables impossible. Data vari­
ables stored within each processor reside in an area 
called the domain.

The domain resembles a standard C structure, in 
which each variable is listed along with its data type. 
Much of the parallel power of the language comes from 
applying existing C operators and statements to the C* 
domain data type. The domain for the access code 
appears in Table 2. Note that the variables within the 
curly brackets reside on each of the data processors.

All variables declared within the domain are by 
default of the type poly. A poly-type declaration places 
a local copy of the variable into the memory of each 
processor. Poly-type variables are also temporarily 
created when a member function is called. All local

-6
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variables declared within the member function auto­
matically become type poly during the execution of the 
function. After the function has executed, however, the 
poly-type variables declared in the member function 
cease to exist

To activate a domain so poly-type variables can 
be used in parallel, a programmer must use the selec­
tion statement (see Table 3). The selection statement 
specifies which domain to activate and lists the instruc­
tions to be performed on variables stored within this 
domain.

Using the domain to distribute array elements to 
the processors eliminated time-consuming loops that 
referenced arrays. Although code within the parallel 
domain retained the same syntax as ordinary sequential 
C code, the new parallel configuration of data required 
a restructured version of the ACCESS algorithm to fit 
the massively parallel architecture of the CM-2. Since 
the CM-2 is an SIMD machine, we had to coordinate 
operations on multiple sets of data mapped onto many

parallel processors with a single set of instructions. 
This coordination required an approach different from 
one used to program on sequential machines. While 
the instruction set dominated the design approach for 
the sequential ACCESS algorithm, the data within the 
domain needed to dominate the design approach for the 
SIMD algorithm.

On an SIMD machine, all processors simultane­
ously run the same set of instructions on data stored in 
their local memories. To operate only on data within 
selected processors, therefore, a programmer first 
needs to analyze how a parallel instruction will affect 
data within each processor and then turn each proces­
sor on or off with a conditional. Using this technique, 
different instructions can execute selectively on differ­
ent processors.

An example of using the selection statement to 
assign values to a Boolean parallel variable for a desig­
nated set of processors appears in Table 3.

Table 2

Access Code Domain

domain sat_threat_data
{int current_access, previous_access, threat_num, sat_num, on; 
float threat_sat_dist, sat_state_vect[7], threat_state_vect[7], 
object_state_vect[7], reentry_time, time_object_state_vector, 
access [7];}
[NUM_THREATS] [NUMSATS];

Table 3

Selection Statement Example

[domain sat_threat_data].{on = (current_time <= reentry_time);}

-7-
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Here on is set to either 0 (False) or 1 (True) in 
each processor, depending on how the current time 
interval and the reentry time compare in the member 
function for the domain, sat_threat_data. For each par­
ticular threat, the reentry time is constant. Specifically, 
the reentry time represents the point in time when a 
threat reenters the atmosphere and is no longer capable 
of being intercepted from orbiting satellites. If, for a 
given processor, the current time interval comes before 
the reentry time, there is still opportunity to intercept 
the threat, and the processor remains on. However, if 
the current time interval comes after the reentry time, 
the threat is beyond interception, and the processor is 
turned off. Once a processor is off, it remains off.

When modifying ACCESS to run on the CM-2, 
we tried to avoid referencing the front-end system, 
which breaks the flow of execution on the parallel pro­
cessors, forcing serialization. Since the CM-2 is an 
SIMD machine, an instruction that references the front- 
end system will cause each processor to successively 
access front-end values, while the others must stop and 
wait. This break in the flow also occurs when execut­
ing conditional statements, such as an if statement.

To reduce the time required to process data, a 
programmer should place all the variables used within 
the parallel portion of code into the local memory of 
each processor to avoid serialization. A processor 
accessing a 32-bit floating-point variable from its local 
memory requires 26.26 microseconds, whereas a pro­
cessor accessing the same variable from the front-end 
system requires 588.76 microseconds because of the 
communication overhead.

A technique we used to avoid conditional state­
ments was to remove the conditional statement and 
assign a dummy Boolean parallel variable to each pro­
cessor (as was done in the example above with the 
Boolean variable on ). When the processor executed 
the instruction set following the condition, each value 
was multiplied by the dummy variable, which had a 
value of zero or one. The logical result was the same 
as using the conditional but was faster because the pro­
gram did not need to reference the front-end system, 
even though every processor had to execute the instruc­
tion set.

The final algorithm differed from classical 
sequential algorithms but was more natural to the prob­
lem. The pseudo code in Table 4 describes the parallel 
algorithm implemented on the Connection Machine.

The nested loop over satellites and threats fell out

naturally because of the data parallelism. We ran the 
accessibility procedure, which covered every combina­
tion of satellites and threats in the domain, only once 
for each time step.

As previously described, the inner nested loop of 
accessibility calculations (118 satellites x 736 threats = 
86,848) was the focus of the parallelization effort. 
Note that the timings consistently represent the accessi­
bility portion of the calculations exclusive of the ini­
tialization portion. Fortunately, the problem size was 
nearly ideal for testing the speed of the SIMD 
ACCESS algorithm on the CM-2. The CM-2 software 
interface requires processors to be allocated in powers 
of two. However, in designing a parallel algorithm for 
this code, we allocated each particular combination of 
satellite and threat to a single processor. Since there 
were only 118 satellites and 736 threats in the test 
problem, we mapped the processors using 128 potential 
satellites and 1,024 potential threats to attain the power 
of two. This total of 128 satellites and 1024 threats 
required 128K (131,072) data processors. Since the 
CM-2 at Argonne has only 16K physical processors, 
each physical processor was divided into eight virtual 
processors. This division resulted in IK of memory 
per virtual processor. Less than 75% of this memory 
was available, however, because of compiler overhead, 
so the amount of local memory available was actually 
750 bytes per virtual data processor. This was enough 
memory for the parallel portion of the accessibility cal­
culation.

We used the following techniques to create a par­
allel accessibility procedure for the CM-2. To avoid 
using the conditional, we created the Boolean poly 
variable on to designate which threat processors should 
be activated. Almost every variable within the accessi­
bility procedure was of the type poly except for two 
index variables that were logically required to execute 
on the front-end system. We also removed two proce­
dure calls from the accessibility procedure and replaced 
them with the procedures themselves to reduce calling 
overhead. An I/O statement used for debugging was 
commented out. Two error checking conditional state­
ments were removed from the accessibility procedure 
(they were never executed for the data tested and had 
already been removed in MIMD benchmarks). All 
floating-point numbers were in single-precision rather 
than double precision to take advantage of the single­
precision floating-point hardware and to conserve the 
limited space of each data processor. We calculated 
the satellite states during each time step because limit­
ed processor space prevented the precalculation and

■8
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storage of the satellite states for each time step. We 
replaced a while statement with a for statement that 
looped for the maximum number of iterations. To 
achieve the same logic, a poly Boolean variable was 
introduced that had the value of the condition within

the while statement. This poly Boolean variable was 
then multiplied by each value in the loop to achieve the 
same result as a conditional statement Using the 
above techniques, the entire accessibility procedure ran 
in parallel on the CM-2.

Table 4

Pseudo Code for CM-2 Implementation of the ACCESS Algorithm

{Initialization)
initialize time intervals, accessibility array, etc. 
read in satellite orbit parameters and initial threat states 
create array of 1024 threat x 128 satellite (128K total) processors 
distribute copies of control data to each data processor

{Satellite state calculations)
do over all time intervals i

calculate distance, intercept_dist[i], interceptors travel in 
time interval i
do over all satellites j

calculate satellite states, sat_state [i,j]
enddo
call Parallel Access Procedure

enddo

{Accessibility calculations)
Parallel Access Procedure for all processes:

set parallel Boolean variable on for selected threat processors
calculate current state, threat_state, of threat
calculate distance, sat_threat_dist, 
between each satellite and threat
if (intercept_dist[i] < sat_threat_dist[i]) and 
(intercept_dist[i-1]) < (sat-threat-dist[i-1]) and 
(processor is on) then

accessibility = true

-9-
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MEASURING THE PERFORMANCE OF COMPARING THE CM-2 WITH OTHER
THE CM-2 MACHINES

Measuring the speed of the CM-2 was complicat­
ed task because a program spends time on both the 
front-end system and the CM-2. We could not simply 
add the CPU times of both machines together for an 
accurate measure of total execution time because there 
is an overlap of time when both the front-end system 
and the CM-2 execute. For this reason, we used a tim­
ing routine that computed elapsed wall clock time. 
Even though this approach may be slightly conserva­
tive, it is the only true measure of real time perform­
ance of the CM-2 and assures an upper-bound time 
measurement

Another challenge in measuring the speed of the 
CM-2 involved correcting for the effect of user load on 
the front-end system. Timings fluctuated greatly with 
user load. To minimize the effect of user load on tim­
ings, we timed the execution of the program when user 
load was minimal. Then, to filter out the impact of 
external loads, we ran the accessibility procedure many 
times in succession and used the lowest time. Keeping 
the procedure in memory for each successive run also 
limited memory paging.

Optimizing the parallel access procedure by using 
the above techniques reduced the CM-2 timing from 
8.56 seconds to 4.05 seconds, an improvement of 
almost 53%. Most of the improvement can be attribut­
ed to eliminating the I/O statement used for debugging. 
The CM-2 does not handle I/O efficiently, because 
each parallel processor must sequentially access the 
front-end system to print a value. Removing the I/O 
statement from the accessibility procedure eliminated 
3.82 seconds of time, which accounted for 44.6% of 
the total loop execution time. For a fair comparison 
among the machines, we also removed the I/O state­
ment from the MIMD code run on the shared-memory 
machines and from the sequential code run on the 
Cray. Conditional statements were also bottlenecks for 
the CM-2 because these instructions needed to execute 
at the front-end system and wait for every processor to 
return before continuing with the next instruction. For 
the ACCESS code, removing the three error-checking 
conditional statements resulted in a 2.3% speed gain in 
performance, and replacing the while statement result­
ed in a 3.4% gain in speed.

Figure 3 shows how accessibility calculation tim­
ings on the Connection Machine compare with other 
sequential and parallel machines for the sequential and 
parallel versions of ACCESS. Narrow black bars rep­
resent execution times of the sequential ACCESS ver­
sion run on a single processor; while white bars repre­
sent the parallel ACCESS version.

For every MIMD machine, the sequential result 
was slightly faster (2-8%) than the single processor 
parallel result, since there was additional interprocessor 
communication overhead in the parallel version of 
code. Note that the ANL/Caltech 16K processor Con­
nection Machine benchmark was nearly twice as fast as 
the best MIMD (Alliant) machine result

To investigate the relationship between the num­
ber of physical processors and execution speed for this 
problem, we ran the ACCESS code on a 32K Connec­
tion Machine located at Syracuse University. With 
twice the number of physical processors as the 16K 
Connection Machine, each physical processor on the 
Syracuse 32K Connection Machine was divided into 
four instead of eight virtual processors. As we expect­
ed, the Syracuse 32K Connection Machine ran the 
benchmark problem nearly twice as fast as the ANL/ 
Caltech 16K CM-2. Similarly, we also ran the 
ACCESS code on a 64K Connection Machine located 
at the Los Alamos National Laboratory. With four 
times the number of physical processors as the 16K 
Connection Machine, each physical processor on the 
Los Alamos 64K Connection Machine was divided into 
two instead of eight virtual processors. As we expect­
ed, the Los Alamos Connection Machine ran the 
benchmark problem nearly four times as fast as the 
ANL/Caltech 16K CM-2. The timing results appear in 
Table 5.

Table 5

CM-2 Timings (118 Satellites X
736 Threats)

ANL/Caltech 16KCM-2 4.05s
Syracuse 32K CM-2 2.05s
Los Alamos 64K CM-2 1.07s
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These timings demonstrated an almost ideal two­
fold gain in speed on the 32K Syracuse CM-2 and a 
four-fold gain in speed on the 64K Los Alamos CM-2.

To compare timings between the Cray X-MP/14 
and the CM-2 running an optimal size problem, we 
increased the dimension of the problem to occupy all 
the virtual processor space available on the Connection 
Machine (128 satellites and 1024 threats) by adding 
more satellites and threats. With the optimal Connec­
tion Machine problem size, the ANL/Caltech 16K 
CM-2 ran the accessibility calculation almost 36% fast­
er than the Cray X-MP/14. The Cray X-MP/14 timings 
for this case appear in Table 6.

Table 6

16K CM-2 and Cray X-MP/14 
Timings (128 Satellites X 1024 

Threats)

ANL/Caltech 16K CM-2 4.10s
ANL/Cray X-MP/14 6.39s

The CM-2 accessibility calculation time changed 
only slightly when the problem size changed from the 
benchmark case depicted in Figure 3 to an optimal 
problem size, since, in both cases, the entire array of 
satellite x threat tasks were performed in parallel. Both 
the benchmark and the optimal size problem must use a 
number of processors that is a power of two and run the 
equivalent of the full-size (128 x 1024) problem.

By extracting the PARIS code, we could count 
the number of floating-point operations on a single pro­
cessor. To accommodate for the SIMD parallelism, we 
multiplied this number by the number of virtual proces­
sors (128K). This procedure included counting 
floating-point operations on processors with pseudo 
data to implement the 736 by 118 satellite case. The 
ANL/Caltech 16K CM-2 ran the parallel access proce­
dure of the benchmark problem using approximately 
103.68 million floating operations per time step, result­
ing in a speed of 409 Mflops. The Syracuse 32K CM-2 
ran the parallel access procedure at a speed of 809 
Mflops, almost double the speed of the procedure run 
on the 16K CM-2, and the Los Alamos 64K CM-2 ran 
the parallel access procedure at 1550 Mflops, almost

four times the speed of the procedure run on the 16K 
CM-2.

After optimizing the problem size, we tested the 
maximum potential of the ACCESS code by increasing 
the number of instructions executed within a given 
time interval and iterating through them as needed to 
achieve the desired number of instructions. Increasing 
the floating point instruction count within the accessi­
bility procedure had almost no effect on the perform­
ance of the code, a fact which demonstrated that our 
code was running close to its maximum potential 
speed.

To test how the number of processors affected 
execution time on the ANL/Caltech 16K CM-2, we 
modified the problem size to match the desired number 
of processors by changing the number of satellites and 
compensating for lost satellites by performing addition­
al iterations of the accessibility procedure (e.g., for an 
8K run, we used 8 satellites and iterated over the acces­
sibility procedure 16 times on each processor, and for a 
16K run, we used 16 satellites and iterated over the 
accessibility 8 times on each processor). In essence, 
each processor performed the work of more than one 
satellite sequentially. The results of this test appear in 
Figure 4. Note that the "vp" in parentheses in Figure 4 
represents the virtual processors as opposed to the 
physical processors. As the number of processors 
approached the maximum number of available physical 
processors, the speed increased in linear fashion. As 
noted from the Syracuse CM-2 result and the Los Ala­
mos CM-2 result, the linear behavior of Mflops versus 
the number of physical processors continues to hold 
reasonably well to a 32K and 64K processor CM-2 (see 
Figure 5 ).

In Figure 4 , the curve representing the number of 
processors versus execution speed is linear until the 
number of processors used by the program equals the 
number of physical processors. Past this point, the rate 
of performance gain decreases. Despite the inverse 
relationship between performance gain and number of 
virtual processors, the execution speed continued to 
increase with the use of more virtual processors. In 
fact, an additional 20% improvement in Mflops was 
possible by using virtual processors when the problem 
size exceeded the number of physical processors. This 
demonstrated the pipelining effect of using virtual pro­
cessors to increase the efficiency of the physical pro­
cessors. However, specifying a number of virtual pro­
cessors greater than the number required by the 
problem size adversely affected performance, because 
of wasted processors.
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403 s 
1 proc

370 s
198 s
1 proc 15 time steps 

736 threats 
118 satellites

193 s

I.......I Parallel version
Sequential version

1 proc

4.05 s
17.8 s 16K proc

10.6 s 24 proc
20 proc 32K proc

Alliant FX-8 Encore Sequent ANL Syracuse LANL CRAY 
Multimax Balance CM-2 CM-2 CM-2 X-MP 

21000
M28K virtual processors

Figure 3: Comparison of ACCESS Execution Times on Different Machines
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ANL16K Processor CM-2

128K(vp)

64K(vp)
32K(vp)368-

318-

268-

218-

168-
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Number of Processors (K)
Figure 4: Connection Machine Speed (MFLOPS) Versus Number of Processors
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Speed Vs Physical Processor Size

LANL 64K

1200-

Syracuse 32K

ANL16K400-

Maximum Physical Processors (K)

Figure 5: Connection Machine Speed (MFLOPS) Versus Maximum Physical Processor Size
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CONCLUSIONS

By parallelizing the ACCESS program for a mas­
sively parallel SIMD Connection Machine, we have 
demonstrated substantial speedups over several parallel 
MIMD machines and the sequential ANL Cray 
X-MP/14 supercomputer. Even though the versions of 
ACCESS used for each machine differed slighdy, we 
believe a fair comparison of timings was achieved. 
Because of the lack of dependencies in this problem, 
and the vast amounts of data, the CM-2 was able to 
sustain the best performance. The natural style of pro­
gramming in C* easily allowed the programmer to 
store various data types on the parallel processors and 
to select when these processors should be activated. 
As these bit processors performed operations simulta­
neously on the parallel domain, the speedup increased 
linearly as the number of physical processors 
increased. The only degradation in performance 
occurred when the processors were forced into seriali­
zation in referencing the front-end system. Through 
experimentation we have shown that we can replace 
these statements with logically equivalent parallel 
instructions.

The virtual processor feature of the CM-2 proved 
to be particularly useful for a problem of this nature, 
where the precise size of the satellite-threat array is not 
known in advance and may, in fact, exceed the number 
of physical processors. The use of virtual processors is 
more efficient for large problems that exceed the physi­
cal processor space than for performing the computa­
tions sequentially N times, where N is the ratio of the 
number of satellite-threat pairs to the number of pro­
cessors, times in code. Moreover, no coding changes 
are necessary to use virtual processors.

The ANL/Caltech 16K processor CM-2 (with a 
virtual processor size of 128K-the processor size that 
most nearly fitted the problem size for this machine) 
achieved a sustained performance of over 400 Mflops. 
For the same problem size, the Syracuse 32K processor 
CM-2 and the Los Alamos 64K processor CM-2 
achieved sustained performances of over 800 Mflops 
and nearly 1,600 Mflops, respectively. The Los Ala­
mos CM-2 executed more than four times as fast as the 
ANL Cray X-MP/14.

We should not expect all software components of 
an SDI system to achieve gains in speed (through par­
allelization) comparable to those demonstrated by the 
accessibility problem. Indeed, data dependencies 
would increase communication overhead among paral­
lel processor nodes and might favor a machine archi­
tecture with fewer, faster processors for other SDI 
functions, such as the tracker-correlator. Further com­
parative studies between machine architectures for var­
ious SDI software components will thus be necessary. 
It is likely that optimal performance will be achieved 
from an SDI system composed of coupled multiple- 
machine architectures, each tailored to specific func­
tions.
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