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RESISTIVE INSTABILITIES IN TUKAMAKS*
P. H. Rutherford
Princeton University
Plasma Physics Laboratory
P.0. Box 451

Princeton, NJ 08544, USA

ABSTRACT

Low-m tearing modes constitute the dominant instability problem in present-
day tokamaks. In this lecture, the stability criteria for representative
current profiles with q(0)-values slightly less than unity are reviewed;
“sawtooth" reconnection to q(0)-values just at, or slightly exceeding, unity is
generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and
severely limits the range of stable profile shapes. Feedback stabilization of
m > 2 modes by rf heating or current drive, applied Tocally at the magnetic
islands, appears feasible; feedback by istand current drive is much more
efficient, in terms of the radio-frequency power required, than feedback by
island heating. Feedback stabilization of the m = 1 mode -- although yielding
particularly beneficial effects for resistive-tearing and high-beta stability
by allowing q{0)-values substantially below unity -~ is more problematical,
unless the m = 1 ideal-MHD mode can be made positively stable by strong
triangular shaping of the central flux surfaces. Feedback techniques require a
detectable, rotating MHD-1ike signal; the sluwing of mode rotation -- or the
excitation of mon-rotating modes -- by an imperfectly conducting wall is also
discussed,

*Lecture presented at the Coursc and Workshop on "Basic Physical Processes of
Torgcidal Fusion Plasmas" (Varenna, !taly), Aug 26-Sept 3, 1985.
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I. INTRODUCTION

A small but finite amount of plasma resistivity has a remarkably strong
destabilizing effect on the MHD stability of tokamaks. In particular, it can
give rise to various modes -- especially resistive kink modes -- that grow on a
time scale that lengthens only gradually with decreasing plasma resistivity.
In present-day tokamak experiments, these resistive kinks (or "tearing modes")
constitute, by far, the most dominant instability problem, Indeed, a tokamak
with a highly non-optimal q{r)=profile may encounter gross instability and
“disruptive" termination of the discharge.

While major disruptions can be avoided in norimal tnkamak operation, a low
level of resistive-MHD activity generally remains present and often serves to
restore the q(r}-profile periodically to a preferred form by reconnecting
magnetic flux surfaces. For example, the “sawtooth" oscillations shown on the
Jeft in Fig. 1 (taken from PLT) serve to maintain q(0) slightly below unity, on
average, by reconnecting the magnetic flux arising from m = 1 resistive-kink
pertubations, thereby flattening the j{r)-profile (and Te-profﬂe) periodically
within the region where q{r) < 1. Such discharges are generally free of
significant m = 2 activity and exhibit relatively favorable confinement
throughout the region q{r) > 1. On the other hand, discharges without sawteeth
[i.ee, with g(0) > 1], such as that shown on the right in Fig. 1, are generally
characterized by a high level of m = 2 activity, often leading to a major
disruption. [A "sawtoothing discharge" may undargo a transition to an '"m = 2
discharge" Jjust after the sawtooth reconnection phase, when q(0) attains its
highest value (= 1).] These observations can be understood in terms of the
stability of tokamaks with q(0) ~ 1 against m > 2 tearing modes, which is the
topic of Sec. Il of this lecture.

Tearing modes are amenable to feedback stabilization by rf heating and
current-drive techniques provided the rf power can be localized within the
magnetic islands; this is the topic of Sec. III of this lecture. Feedback
stabilization of the m = 1 mode would be especially benefical, since it would
not only allow higher plasma current (thereby improving both confinement and
beta-value) but would also indirectly stabilize the m > 2 modes by permitting
q{0}-values significantly below unity; this is the topic of Sec. IV.

The experimental detection of MHD-like modes in tokamaks -- clearly
necessary for the application of rf feedback -« requires that the mode be
rotating. The possible rcle of an imperfectly conducting wall in stabilizing
roetating tearizg modes -- or provoking non-rotating instabilities -- is
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discussed briefly in Sec. V.

II. TEARING-MODE STARILITY

The stability of a tokamak to m > 2 tearing modes depends on the radial
profile of the "safety~factor" g{r), the m-value >f the mode, and the position
of the singular surface r, with respect to the q{r)-profile. Stability
criteria can be gbtained by varying the perturbed magnetic energy

W= (o) [P @Y% (@ -0 + 5 & (P 2] e

and solving the resulting Euler-Lagrange equation

2 3
% (r3 -2—3,’-] - [(@®-1)r +-;-%F (r %;]]q; =0

on either side of the singular surface rg. Here, #(r) is the radial component
B of the perturbed magnetic field, and

F(r) = 1(r) - n/m,

where (r) is the rotational transform (divided by 217), i.e., 1{r) = q'l(r).
If the Euler-lLagrange equations are satisfied, the perturbed magnetic energy
hecomes

W= - (n/m?) 3 o,

ag = [aw/orlg/vg,

where [ ]  denotes the jump across the singular surface rg. Modes For which ag
> 0 are unstable,

In an early paper on tearing modes in tokamaks /1/, the Euler-Lagrange
equations were solved numerically for three representative tokamak current

profiles, namely,
3,(r) = 35000701 + (r/r )2P1*2/E

corresponding to
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q(r) = q(0) (1 + (r/ry)2PI/P

for p = 1 {"peaked profile"”), p = 2 ("rounded profile"), and p = 4 ("flattened
profile”). These j,(r) and q(r) profiles are shown in Fig. 2, arbitrarily
normalized to unity at r = 0.

In the steady-state phase of the tokamak, the current profile invariably
contracts until the central g-value is in the general neighborhood of unity.
{The only exception to this pattern of behavior seems to be where high~Z
impurity radiation from the central part of the discharge is unusually strong,
depressing the central electron temperature and current density.) This
contraction of the current profile is, no doubt, partly due to the cooling of
the outer part of the discharge, but it may also represent a tendency for the
discharge to evolve toward a configuration with relatively favorable stability
properties against m > 2 tearing modes. Thus, it is of particular interest to
consider the stability of profiles with q(0) ~ 1.,

Noting that the quantity rsAs: provides a measure of the magnetic energy
available to a tearing mode, we plot in Fig. 3 the calculated values of rsAg as
a function of q{0) for them =2, n=1and m= 3, n = 2 modes for the three
representative current profiles already discussed {assuming a conducting wall
at r/ry = 2.0}, It is evident from Fig. 3{a} that all three profiles are
unstable to the m = 2 mode if q(0) > 1; the "flattened" and "rounded” profiles
seem to be relatively unfavorable from an energetic viewpoint, and the effect
of the m = 2 mode is presumably most severe in these cases. On the other hand,
if q(n)-values below about 0.9 can be tolerated, the stability of the m = 2
mode is much improved, especially in the case of the "flattened" and "rounded"
profiles. For q{0)-values above about 0.95, the “flattened" and "rounded"

profiles are also strongly unstable to the m = 3, n = 2 modes; the simultaneous

destabilization cf the m= 2, n =1 and m = 3, n = 2 modes and the resulting
break-up of magnetic surfaces provides a persuasive explanation for the major
disruption /2/.

Tokamak discharges with gq(0) < 1 exhibit “sawtooth" behavior in which a
strongly-growing m = 1 resistive kink reconnects the magnetic surfaces in the
central region of the plasma in such a way that q(0) is periodically restored
to unity. The process of reconnection can be described quantitatively /3/ in
terms of the (m = 1, n = 1) helical flux function

x(r) = [fBgdr = (r28,/2R)
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which undergaes the transformation illustrated in Fig. 4. Initial flux
elements dy at ry and r, combine into the final flux element at r in such a way
that the toroidal flux {area) is conserved:

rdr = r‘ldrl + rzdrz .

The final flux function xf(r) can be obtained from the initial flux function
xi(r) by means of the relation

dr dr2 drl
P=— =y o -7 .
B 2 (0 13y ry(x)

The reconnected 1(r)} and jz(r) profiles are shown ir Fig. 5 ("Kadomtsev
model") for the case of a parabolic current profile with 1{0) = 1.15. A
reversed surface current is induced at the outermost radius of reconnection;
this surface current will survive only transiently, implying that a wmore
physical model for the reconnected profiles might be the "flat-q model,” also
shown in Fig. 5, in which 1(r) is unity inside the initial q = 1 singular
surface and unchanged outside it,

As we have already noted, small changes in the i1{r)-profile in the central
part of the plasma can have a remarkably strong effect on the stability of the
m=2,n=1andm= 3, n= 2 modes. The effect of such changes can be
quantified by varying the F{r)-function, and consequently also the minimizing
p(r)-function, in the perturbed magnetic energy W:

F>F + &,
VR A
W W+ BW.

I we limit ourselves to variations that leave 1 and di/dr (i.e., q-value and
current density) unchanged at the singular surface rg of the mode m=2,n=1
orm =3, n=2) under investigation, we obtain /1/:

2
.2

o= (xfmf) [ {rd B B+ (nPe1) Lf—} 5 (F%) ar .

The expression { } is clearly positive definite: stability is improved to the
extent that

8(72) = Talr) = n/m¥einas = Dalr) = n/mIZiipim
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can be made positive,

The formalism described above can be aoplied to the perturbatiaons in 1(r)
arising from sawtooth reconnection. It is immediately evident from Fig. 5{a)}
that reconnection according to the "flat-q model" is always destabilizing to
them= 2, n=1andm= 3, n= 2 medes: the magnitude of 1{r) - n/m is
everywhere Tlowered (or unchanged) by reconnection, On the other hand,
reconnection according to the "Kadomtsev model" has both stabilizing and
destabilizing features: there are regions where 1(r) - n/m s lowered and
regions where it is raised. Remarkably, a detailed calculation for the case of
a parabolic current profile with an initial g{0)-value just below unity shows
that the stability of the m = 2, n = 1 mode is unchanged by “Kadomtsev-model"
reconnection == +the stabilizing and destabilizing contributions exactly
cancel. The stability of the m = 3, n = 2 mode is actually improved slightiy.

0f more practical relevance is the "fiat-q model” of sawtooth reconnection,
which might approximate the experimental situation after the reversed surface
current has decayed. Using the perturbation farmalisn described ibove, we have
calculated the effect of “flat-q" reconnection on the stability of them = 2, n
= 1 and m = 3, n = 2 modes for the "“rounded" and "fiattened" current
profiles. [These profiles seem most representative of profile shapes inferred

_from measurements at Tow g,-values in large tokamaks such as the Tokamak Fusion

Test Reactor (TFTR) where the long skin time precludes too much peaking of j(r)
during a sawtooth.] The results are given in Figs. 6 and 7, in weich values of
rsag are platted against the initial value of q{0) (i.e., before recanrection)
for two positions of a conducting wall (rw/r0 = 2.0 and r,/r, = =). With a
canducting wall at r,/r, = 2.0, the "rounded" profile can remain stable to both
modes after reconnection; the “flattened" profile can remain stabie to tne m =
2, n = 1 mode, but becomes unstable to the m = 3, n = 2 mode. The sensitivity
of them =2, n =1 mode to the position of the conducting wall is surprising,
and it is further evidence of the "marginal" stability of all profiles with
q(0) = 1.0. The requirement that "sawtoothing” profiles remain stable to the m
= 2, n=1and m= 3, n = 2 tearing modas clearly imposes very severe
constraints on the allowed current-profile shapes.

If the current profile becomes slightly holiow after sawtooth reconnection,

as has been proposed in one theoretical model /4/, them =2, n=1and m = 3,
n = 2 modes are even further destabilized.
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IT1. RADIN-FREQUENCY FEENBACK STABILIZATION OF TEARING MODES (m > 2)

The suppression of the m = 2 mode in a tokamak would have three important
advantages: (i) it could provide disruption-free operation at relatively low
g{a)-values; (ii) it would provide a modest improvement in the limiting beta-
value for balloening instabilities by shortening the connection length [1,e.,
lowering qf{a)J; and {iii) it would provide a modest improvement in confinement,
by allowing increased plasma current.

Feedback stabilization of m > 2 mades by rf heating and/or current drive
has recently been proposed /5/, To produce a stabilizing effect, the feedback
technique must increase the plasma current density at the QG-paint of the
magnetic islands associated with the tearing mode and decrease the current
density at the X-point (separatrix) of the island,

That the feedback-induced changes in plasma current density at the magnetic
island must serve to reinferce the naturally occurring current-density
perturbations (see Fig., 8) is apparent from a consideration of tearing-mode
physics. In a tokamak gecmetry [where the shear (Be/r)' is opposite to the
current density j 1, a lowering of the magnetic energy (corresponding to a' >
0) requires localized increases in current density at the Q-point of the
magnetic island and localized decreases in current density on the separatrix.
Since the helical flux function x = fr[Be(r)- nrB,/mRIdr has a maximum at the
singular surface, these perturbations in current density correspord to a
flattening of the flux function across the magnetic island (i.e., a
reconnection of negatively directed helical field Bg-nrB,/mR on the large-r
side of the island with positively directed field on the small-r side). This
reconnection can proceed only on the resistive time scale, which limits the
growth rate of the mode. If the current-density perturbations required to
produce mwagnetic islands of a certain size can be provided non-rasistively
(e.9., by rf feedback), then resistive reconnection will proceed even more
slowly, and further growth of the islands will be inahibited.

There are two principal options for producing the desired current
perturbations by rf-feedback techniques:

1. Heat the magnetic islands (0-paints) by localized rf heating, thereby
Towering the local resistivity;

2. Nrive additional non-inductive currents within the magnetic istands
{0~points ).




i
|
!
|
'
|

-8~

(The converse of the first option -- island cooling by excess radiation -- has
been propesed as a contributory factor in major disruptions /6/.) In both
cases, the rf power must be phase nodulated to ma*tch a perturbation signal from
some suitable detector (for example, the eiectron temperature measured by
electron cycloiron emission). Feedback techniques based on lower hybrid waves
{for current drive) or electron cyclotron waves (for heating} are theoretically
capable of providing the required localization of the rf power, and they are
discussed in detail in a separate paper /7/.

The theory of feadback stabilization of tearing mades by island heating is
based on the standard treatment of m » 2 modes in their slaw-growing
{nonlinear} phase /8/, except that the resistivity on flux surfaces interior to
magnetic islands is allowed to be perturbed relative to that on exterior flux
surfaces. The rf power density is modulated in phase with the rotating island:

~

Pog = Ppg COS (mo=ng=ut ),

and the radial profile of power deposition is assumed to be gquite narrow, but
not as narrow as the dsland itself, The calculation proceeds most
transparently in “"slab" geometry, in which x replaces r-r. and ky replaces mg-
nd-wt. for slow-growing modes, the perturbed current density §j; and
resistivity &n must be constant on flux surfaces, i.e., surfaces of constant y
= IxBydx. Faraday's and Ohm's laws, expressed in terms of the magnetic flux
function ¢, can be written

+v.99=n BJZ[¢) + jzﬁn(w) s
where
'2
¥ = Byx®/2 - g cosky .
(Signs are chosen such that the O-point is at x = y = 0 for g;, vy > 0.} For

incompressible poloidal flow (strong toroidal field), a velocity stream
function & may be introduced, such that

v.¥ y= - E%?)w B, x -

Integrating over a full period in y (or fully around interior flux surfaces),
we pbtain
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. j_&n

. 1 k 1

8,(0) = - &t < S, AR 770yt
(wriy cosky) (#roqcosvy)

where < >y denotes an average over y. The solutions in the vicinity ¢f the
singular surface may be matched to the outer solutions in the usual manner: by

integrating the relation
V24 = 8j,(¥)

across the island region and including only the dominant Fourier compenent in y
we aobtain

84 = - 2cosky [ dx)y

dp
4 1 fm cosk 2 1
I S I s | dp ¢ —SOky 32,01
(22 T Oy (wrycosky) /2 Y 7 (g cosky) 2 Y
g ap < —SOKE )
n e (wty cosky) /2y

The heat flux across a magnetic surface interior to the isTand must equal the
rf power deposited within the surface:

3§TE .
- [ dv KLEIB}xl 5 /f Pr'f dxdy,

where X . is the cross-field =lzctron thermal conductivity, giving

P
Vo oIt ¥ dy ¥ ; cosk
6Te(¢, 2K, B <(¢+¢ cosky}1/2> 4 -wdw ¢ (¢'+f cosk Jljz >y )
1e"y 1 y "% vyCOSKY

The resfstivity perturbation may be obtained from the temperature perturbation
by assuming &n/n = -36Te/2Te. Changing the variable of integration from y to X
= W/¢i= so as to reduce the varioué integrals to numerical constants, and

|
i
i
|
|
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integrating by parts where indicated, we obtain

1/2 - 32
' 4y Wy BCaPLe do¥)

thT n(za;)”z w7 Klere(eeym ’

where Cq and C; are numerical ¢onstants:

» k 2 1
C,o= [PdX ¢ =SB 5 ) e >
1 -1 (X+c05ky)1/2 y (x+cosky)1/? vy’

C. = fcp d¥ (!Eldx < COSkZ ;: >y)2 .

2 -1y (X+cosky)1/2§y {X +cosky)

Approximate numerical values are C; = 0.7 and Cp = 1.4. Introducing the island
1]
width w, given by w = 4(w1/By)1/2, the result can be written

P oW
dw ' rf
-— =7 (A -
dt h KLeT

) s

e

where
) N . ]
Cp = = 0.75 (/8y} = 0.75 (rj,/84) {a/rq ) .

The latter expression for Ch reprasents the appropriate transformation from
slab to cylindrical geometry. Typically -- for example, the m = 2 instability
of & "rounded" or "peaked" profile with q{0) = 1 -- the value of C, is about
5.5,

Unfortunately, the power requirements for this type of rf feedback turn uut
to be prohibitively large -- especiallv if the cross-field electron thermal
conductivity within the megnetic island is as Targe as the observed global
thermal conductivity. To estimate the rf power, we suppose that the feedback
system can supply a fractjon f of the total heating power and deposit it within
a region of radial width d around &tne magnetic isiand, We also estimate the
cross=field thermal conductivity from the ~verall electron power balance:

K /n= 62/41

e 3nTe/2‘rEe = P

e * tot °

With these assumptions, suppression of islands of width w requirss
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¢ < 2f(w/d).

Since typical values of 4'rg exceed unity (for example, a’rg = 2 for the m = 2
instability of a “rounded" current profile with g(0) = 1), a very large
feedback power (f ~ 1) would be required to suppress islands of width d, If
electron thermal conduction were a less impartant term in the power flow across
the singular surface, or if the cross-field thermal conductivity within the
island were to be much smaller than the global conductivity, then feedback
stabilization by island heating would become a more attractive option.

The theory of feedback stabilization by island current drive proceeds along
simiTar lines, The rf-driven current density is modulated in phase with the
rotating island

Jpg = dpg cos(me-né-ut),
and the radial deposition profile is assumed to be quite narrow, but not as
narrow as the isiand itself. The evolution of the magnetic flux function ) is

described by

_a.lk + = i ! -1
Tt T v nfai,(w) - d.,] .
Proceeding (in slab geometry) as before, we obtain

&

v e ) [ dw < —=5 >

/ .
(wHyy cosky)1/2 Y (¢+w1cosky)1/2 Y

Al
Changing the variahle of integration from ¢ to X = $/¥; and introducing the
island width w, given by w = 4(# /B )1/2, the result can be written

— ‘- — —
A CUR

where (including a transformation from siab to cylindrical geometry)

= - 8 (j,/B)) = B(r;,/B,) (a/ra’) .
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Typically -- for example, the m = 2 instability with q(0) = 1 -~ the valye of
Cq s about 5.

Unlike feedback by island heating, where only isiands above a certain size
can be stabilized, feedback by current drive will suppress all islands smaller
than some critical size. To provide a caoncrete example, Fig. 9 shows the
feedback current density Erf (expressed as a fra-tion of the finitial local
current density jzo) required to stabilize the m = 2 instability of "rounded”
and "peaked™ current profiles with g{a) = 3.0, as a function of the g(0)-value
and the maximum permitted isiand width wg,,. We see that suppression of m = 2
isiands with widths up to w/a ~ 0.1 requires values of Jj_¢/j,, in the range
0.05 ~ 0.15. Thus, feedback by means of rf current drive reprasents a viable
option for stabilizing m 2> 2 magnetic islands,

1V, RADIQ-FREQUENCY FEEDBACK STABILIZATION OF THE m = 1 MODE

The successful suppression of the m = 1 mode and the associated "sawteeth"
would have more substantial benefits than the suppression of the m = 2 mode:
(i) it could provide a significant improvement in the 1limiting beta-value for
ballooning instabilities by reducing both q(0) and q{a); (ii) it would provide
indirect stabilization of the m = 2 made {and other "external" resistive kinks}
by ullowing g(0) to fall significantly below unity [corresponding to centrally
peaked j(r) profiles that are known to be stable tom » 2 modes]; (iii) it
would provide a significant improvement in confinement by allewing increased
plasma current; and (iv) it would enhance the maximum ohmic-heating power hy
increasing the central current density.

In a "cylindical" tokamak with circuTar cross section, the ideal-MHG m = 1
mode {"internal kink") is marginally stable in the limit of small k,a. In this
case, the resistive mode becomes strongly unstable, and it does not enter a
stow-growing nonlinear phase, The rapid growth of the m = 1 mode is reproduced
in  computer simulations and makes rf-feedback stabilization highly
problematical /9/.

However, the ideal-MHD mode can become positively stable in a tokamak with
a strongly shaped (triangular) plasma cross section /f10/. (Toroidicity will
also stabilize the internal kink at Tow Bp-values, but this effect does not
seem, of itself, strong enough for rf-feedback to be feasible.) 1If the ideal-
MHD mode is positively stable, an effactive a'-value can be calculated, and the
rf-feedback theory developed in the previous section can be applied,

For m = }, the perturbed magnetic energy may be written
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3 2 d 3 dF 2
wen [ [P (5 Pl o,

Qr

where corrections from toroidal effects and cross-sectional shaping, as well as
higher order terms in k,r, are all contained in the term &, which can
generally be reduced to the form

&= 7 [ gi’/F2 dr.

Here, F = k.B = (B/R} [(r} - 11. wWriting ¢ = Fg, the Euler-Lagrange equation
becomes

2 (3% 2y g
5 (PP =3) -9e=0,

which has Towest-order solutions

% s
A T [i7 gdr, (r<rgds
rS Fs X

3 r
0 H
[y gdr, (r>rgds

i
s FS %

where rg is the m = 1 singular surface and x = r - - Ideal-MHI stability

reguires
Sp > 0

where

r
Syp = TEB[o° g dr.

Assuming that this is satisfied, the resistive stability of the m = 1 mode is
described by the guantity ag = [aw/ar]s/ws, which can be written

. _ 3 2 rs - 3 2 2

6 = rg Fe /fo gdr =« r Fe EOIGWMHD .

Thus, the growth rate of the resistive mode varies jnversely with 8Wygyps 1T the
ideal-MHD mode can be given strong positive stability, the growth rate of the

resistive mode can be correspondingly reduced.
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The dideal-MHD m = 1 mode is positively stable in toroidal geometry at
sufficiently low Bp-values. The stability of the mode can be enhanced by
triangular shaping of the cross section /9/, and shaping becomes the dominant
effect whenever the Tocal distortion exceeds the Jocal inverse aspect ratio;
elliptical shaping is wea:ly destabilizing. For present purposes, we neglect
toroidal effects and consider a D-shaped plasma boundary of the form

rfa=1- £Zacosze + 53ac0536 .

(The quantities E2a and 3, are related to the more familiar elongation « and
trianqularity & by x = 25;2a and § = 3§3a.] For this case, the parturbed

magnetic energy is

) ZEi 4 2 2)

wp = (87E re REQ%) (sy £ - oy £5

giving an effective a'-value

ARG SN S SF
where numerical quantities &My and shg (both positive) have been calculated
previously for representative current profiles /9/ and are reproduced in Fig.
10(a). (The effect of reduced shaping of flux surfaces near the magnetic axis,
relative to that of the plasma boundary, is included in the numerical values of
&y and &4y, and it is calculated from an equﬂv'ibrimn that is consiscent with
the assumed current profiles.)

To provide a concrete example, we consider a strong'Ty (bean) shaped cross
section with &, = 0.5 and g3, = 0.5 (corresponding to « = 2.0 and & = 1.5).
Figure 10(b) shows the va]Ees of rsAg for this case, and Fig. 10{c) shows the
feedback current density j.r (expressed as a fraction of the initial local
current density jzo) required to stabilize the mode for a parabolic current
profile, as a function of the q(0)-valuye for various maximum permitted island
widths Wpax+ We see that iuppression of m =1 islands with widths up to w/a ~
0.1 requires values of jrf/jzo in the range 0.3 - 0.4 -~ a demanding
requirement, but not entirely impossible. Thus, feedback stabilization of the
m = 1 mode by means of rf currert drive will require a strongly shaped plasma
cross section and substantial feedback power, but it may be a feasible option
for realizing and sustaining the q(0) ¢ 1 regime in a tokamak.
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1f the regime gq(0) < 1 can indeed be realized and sustained, the guestion
paturally arises: What is then the ultimate lower 1imit on q(0)? The ideal-MHD
m =1, n = 2 mode certainly provides a firm lower bound at g{0) = 0.5.
However, before such Tow q(0)-values are reached, the plasma will be vulnerable
to higher order "fractional-m/n" tearing modes with singular surfaces falling
in the region where q{r) < l; the most relevant modes will be those with m,n-
values given by m/n = 4/5, 3/4, and 2/3. The stability of such modes for the
"peaked" current profile of Ref. 1 is given in Fig. 11, which shows a'~-values
plotted against g(0) for the range 0.5 < q(0) < 1. [In Fig. 1i, the a'-values
have been used to obtain a rough measure of the magnetic energy available to a
tearing mode, namely, &W = (r's/ro)2 Agrgs where rg is the radius of the
singular surface; a conducting wall is at r‘w/r'0 = 2.0.]1 For this case, the m/n
= 4/5 mode is not unstable {m = 4 is always stable far a peaked current
profile) and the m/n = 3/4 mode is only mildly unstable. & small "window" of
stability is evident for q(0) = 0,75, Careful tailoring of the current profile
-- in the region where q(r) < 1, as well as in the vicinity of the q = 2
surface -- produces cases that are stable to all tearing modes without any
conducting wall for q(0)-values as low as 0.7 /11/. It does not seem possible
to stabilize the m/n = 2/3 mode. Thus, the optimum operating regime for a
“sawtooth suppressed” tokamak would have g(0)-values of about 0.7, Relatively
flat pressure profiles may be expected within the region q{r) < 1, because of
the action of unstable resistive 1nterchanges.
.

V. EFFECTS OF ROTATION ON TEARING MODES

In the absence of a conducting shell, a tokamak with g(0) approximately
equal to unity is theoretically unstable to the m = 2, n = 1 tearing mode for
virtually all typical current profiles j,(r). As we have seen in Section II,
the addition of a fairly close-fitting canducting shell (for example, at a
radius ry = 2r,, where r, is the effective radius of the <urrent channel --
usually significantly less than the Timiter radius a) has a substantial
stabilizing effect, especially if q{0) can also be made slightly less than
unity. Experimentally, m = 2 instabilities are not as pervasive as the theory
would predict for the case without a conducting shell, suggesting that the
(reiistive) vacuum vessel wall might be acting as a conducting sheil,
particulariy for a rapidly rotating mode. Even if the mode is 1ot completely
stabilized, its growth may be sufficiently impeded sc that a significant
amplitude is not reached, aspecially in the case of a tokamak with a sawtooth
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cycle that extends to q{0)-values low enough to provide periodic intervals of
stability against the m = 2 mode. Three questions naturally arise: (i) How
small must the vessel resistance be for effective stabilization of rotating m =
2 modes? (ii) Do non-rotating instabilities remain, even in the presence of an
effective conducting wall? (iii) On what time scale is the mode rotation slowed
by the interaction of rotating magnetic perturbations with the resistive
wal1?  These questions have been addressed previously for linear kink and

tearing modes /12/, and they are considered here in the context of nonlinear

tearing modes, i.e., slaw=-growing finite-amplitude magnetic islands. (Feedback
techniques would, of course, be ineffective " against non-rotating,
experimentaily "hidden" m = 2 tcaring modes.)

The boundary condition to be applied on the inner side of a thin resistive
wall at r = ry is:

(r ar)-/ B, = ~m+ tutg (r= rw) ,

where 1q = 4nrwd/nwc2 is the resistive time constczt of the wall, d is the
thickness of the wall, and the mode is assumed te vary like exp(imo-ing=-iuwt).
In deriving this boundary condition, we have assumed that d << a, where X is
the resistive skin depth of the wall [A = (an2/4nm)1/2], and we have noted
that the wall exerts a strong stabilizing effect orn long wavelength modes even
if its resistive skin depth greatly exceeds its thickness: a stabilizing affect
requires only that G £ ryd.

The resistive wall modifies the solutions of the EuTer-Lagrange equation
for the perturbed magnetic fields only in the region outside the singular
surface r = rg. If the plasma current density is small in this regior, the
solutions for rB. hava the forms r® and r™, which can be combined to satisfy
the required boundary condition. The effective A'-value becomes

A -
A'=L‘;'1—f(2'ﬁ}‘%rj
S

Here, Al is the value of A' with the wall absent {i.e., at infinity), and ay is
the value of A' for the case of a perfectly conducting wall located at i~ [An
additional factor (1 + rszm/rwzm) should multiply tg in the above expression,
but is approximately unity for most cases of interest.] The real and imaginary
parts of A' can be written:

. 22
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, 2 Mg

Ay = (& =)
¢ “ W mzrg + 4m

5.

The real part Aé corresponds to current-density perturbations 5jz which are
90° out-of-phase with the field perturbation B. (i.e., antinodes of &j, at the
O-points and X-points of the magnetic island); these are the current-density
perturbations associated with tearing-mode growth, and they result in a finite-
AY

amplitude island of width w growing (in a rotating frimo} -~rarding to the

usual relation

Feomo

The implications cf our expression for Aﬁ are unsurprising. If wrg >> .
chen ap = &) and the wall is effectively perfectly conducting. If the modte is
unstable even with a perfectly conducting wall at r, (i.e., ay > 0), the
addition of wall resistivity simply produces a further positive contribution to
& {since 4. > 4y always); the mode remains unstable at all rotation
frequencies w. The more interesting case is where the mode is stabilized by a
perfectly conducting wall (ay < 0) but is otherwise unstable {4, > 0). Again,
if wrg > 1, then ap = ay < 0, and the mode is effectively stabilized.
However, for lower rotation frequencias {or more resistive walls), such that
wtg << 1, we obtain Aé = apL > 0, and the mode remains unstable. In this case,
there is a critical rotation freguency

wepip Tg = 2M (-8, /oy ]1/2
balow which the mode 1is unstable. (in this discussion, we have implicity
assumed a slow-growing finite-amplitude istand with a "growth rate" y that 1is
Tess than the rotation frequency w.)

The _Jmaginary part Af corresponds to current-density perturbations &j,
which are jn phase with the field perturbation B.; these current-density
perturbations do not contribute to tearing-mode growth, but result in a torque
on the plasma that tends to reduce its rotation and, thereby, also the
frequency of the mode. The torque is exerted directly on an annular region of
the plasma with radial width of order the magnetic island width. The rate at
which mode rotation decreases will clearly depend sensitively on the degree of
viscous coupling of this annular region to the rest of the plasme. In the
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present analysis, we neglect viscous effects entirely, and we assume that the
plasma in the vicinity of the magnetic island can slip freely (along flux
surfaces) through the surrounding plasma. In this case, the torque and
resulting slowing of rotation can be celculated by means of a straightforward
extension of nonlinear tearing-mode theory /8/. We obtain

2

Z = -cn? (ar,) (wr)?

ala
&l

where C = 0.5 x 1072 s a numerical constant, and Ty = p1/2/[r(Be/r)'] =
(Rq/vy) (a/rq') is a characteristic hydramagnetic time. The damping of plasma
rotation is given by

dv r dv
g . s du, SR d
at W dt’H't'Lm dt

for poloidal and toroidal rotation, respectively,
The value of Ai, and hence the rate of rotation damping, peaks at wtg ~ 2m;
for wrg < 2m, the characteristic time scale for rotation damping is given by

rz r
_ 1] 2 H 51,3
LI R A al a

for an m = 2 mode with (&, = ay)rg = 1. For a TFTR-size tokamak with a close-
fitting high-resistance vacuum vessel, we have Ty ~ 10'6 sec and Tg ~ 2 x 10‘3
sec {corresponding to a toroidally continuous vessel with toroidal resistance 2
m2). [In general, tg(sec) = 1.3 ry(m) d(cm)/n(u@-cm), with n = 80 ud-cm for
stainless steel.] For an island width w ~ rg/10, the shortest characteristic
time scale for rotation damping is tp ~ 10"4 sec, i1.8., very short. For the
usual case where wtg > 2 {frequencies ~ 10 KkHz, wtg ~ IDZJ, the
characteristic time scale for rotation damping is much Tonger (rn ~ 0.1 sec).
Thus, rotation decelerates rather slowly at first, but then much mare rapidly
as the frequency drops below the kHz range,

In the special case where the plasma is non-rotating, the mode is always
purely growing, and its growth rate is described by the relations

dw/dt = w a'{yxg)

VoAl
a A”

) - -
a'(rrg) = a'plyg) = 8L - T= Ty

where y is a ‘'growth rate" to be interpreted as vy = (2/w)dw/dt. It is



=19~

convenient to define a characteristic time scale of the slow-growing nonlinear
mode T~ w/na'.  For small islands or low wall resistivity, t.e., rp << 1g,
growth on the faster time scale 1p occurs only if Aﬁ > 03 in the more
interesting case &) < 0 < AL, growth is exponential but on the slower time

scale LI
Yt = 2m (-A;/A'w) .

For large islands or high wall resistivity, i.e,, g K1, growth proceeds on
the slower time scale T and is algebraic as in the usual nonlinear case; the
resistive wall plays no role,

Even when the plasma is rotating, a non-rotating mode is theoretically
possible, with the same growth rate as in the non-rotating plasma case
discussed in the previous paragraph. In particular, if 11 €€ 1g, exponential
growth occurs, given by yrg = 2m{-a./4,). Such snlutions, while theoretically
possible in an ideally inviscid plasma, require the plasma to rotate with
finite velocity past the magnetic island, with streamlines Jying on magnetic
surfaces, and with null or vortex flow within the island; a strongly sheared
flow occurs near the magnetic separatrix. Although the damping of rotation by
the interaction of a rotating mode with the resistive wall (discussed above)
might Tead ultimately to such non-rotating modes with highly sheared flows, we
have seen that the mode becomes quite strongly unstable below a small but
finite critical rotation frequency Cepits implying that the non-rotating state
might not actually be reached. In any case, when plasme viscosity is
introduced, the physical significance of the non-rotating mode in a rotating
plasma is questionable.

The introduction of plasma viscosity will clearly reduce the rate at which
rotation is damped by increasing the inertial forces opposing the magnetic
torque. Moreover, in a torojdal plasma of low collisonality, the so-called
"bulk wviscosity" will play = role, since the plasma cannot rotate in the
toroidal direction past helical magnetic islands without introducing a
component of rotation in the poloidal direction -- a component that is strongly
damped by bulk viscosity. Nonetheless, the simplified analysis of the effects
of ratation presented above has some appealing features. [m particular, it
suggests that m = 2 modes may form two classes: (i) effectively stabilized
rotating modes, where a resistive vessel wall plays the role of a conducting
shell; and (ii) truly unstable modes, occurring either when the rotation
freguency drops below a critical value, or when the wall is not close enough to

provide stability even if perfectly conducting.




! N N

n!"'ﬂ, wid ‘ .

1

-20-

ACKNOWLEDGEMENTS

The author is grateful for useful discussions of many aspects of the
subject matter of this lecture with H. P. Furth and R, B, W%hite and for
discussions on sawtooth data from TFTR with E. Fredrickson and K. M. McGuire.
The author is also indebted to J. W. Connor and R. J. Hastie for use of their
unpublished values of &W for the internal kinks in a shaped cross-sectional
tokamak,

This work was supported by the United States Department of Energy Contract

No. DE-ACO02-76-CHO-3073,
REFERENCES

/1/ FURTH, H. P., RUTHERFORD, P. H., and SELBERG, H., Phys. Fluids 16 (1971)
154, .

2/ CARRERAS,.B-,:HICKS, H. R., HOLMES, J. A., and WADDELL, B, V., Phys, Fluids
23 (1980) 1811,

/3/ KADOMTSEV, B. B., Sov. J. Plasma Phys. 1 (1975) 389; also MONTICELLO, D.A.,
unpublished (1975).

/47 PARAIL, V. V. and PEREVERZEV, G. V., Sov. J. Plasma Phys. 6 (1980) 14.

/5/ YOSHIOKA, Y., KINOSHITA, S., and KOBAYASHI, T,, Mucl, Fusion 24 (1984) 565,

[6/ RERUT, P, ard HUGOW, M,, Proc. 10th Internat, Conf., on Pl7'ma Physics and
Controlled Nuclear Fusion Research, London, 1984 (JAEA, 1985) Vvel. 2, 197.

/7/ I1GNAT, D. W., RUTHERFORD, P. H. and HSUAN, H., in Course and Workshap on
Application of RF Waves to Tokamak Devices (Varenna, Italy, Sept 5-14, 1985)
to be published.

/8/ RUTHERFORD, P. H., Phys. Fluids 16 (1973) 1903,

/8/ WHITE, R, B., in Workshop on Magnetic Reconnection and Turbulence (Cargese,
France, July 7-13, 1985) to be published.

/10 /EDERY, N., LAVAL, G., PELLAT, R., and SOULE, J. L., Phys. Fluids 12 (1975)
2603 also CONNOR, J. W. and HASTLE, R. J., unpublishad (1977).

/11/FURTH, H, P., Proc. 12th European Conf., on Controlled Fusion and Plasma
Physics (Budapest, Hungary, September 2-6, 1985) to be published.

/12/JENSEN, T. H. and CHU, M. S., J. Plasma Phys. 30- (1983} 37; also PENG, Y-
K. M., RUTHERFORD, P, H., et al., Oak Ridge National Laboratory Report
ORNL/FEDC-83/1 (1983). .



Fig.

Fig.

Fie.

Fig.

Fig.

Fig.

~21-

FIGURE CAPTIONS

Illustration of “sawtooth" and "m = 2" rtokamak discharges (from PLT);
the "sawtooth" discharge has q{(0) just below unity, leading to m = 1
activity at the plasma center, but it is quiescent near the plasma
edge} if q(0) rises above unity, strong "m = 2" activity near the edge
leads to a major disruption.

Representative tokamak j(r} and q(r) profiles normalized to unity at r
= 0.

Values of r_A! for rep-esentative current profiles plotted against
q(0), for ta} the m = 2 mode ard (b) the m = 3, n = 2 mode; a
conducting wall is at rw/ro =2,

Illustration of sawtooth reconnection according to the Kadomtsev

model. Initial flux elements at r) and r, combine into the final flux
element at r in such a way that the toroiﬁal flux (area) of an element
dy of helical flux is conserved.

Profiles {a) of 1{(r) and (b) of jz(r), before and after sawtooth
reconnection according to the "Kadomtsev" and "flat-q models,” for the
case of a parabolic initial current profile with 1(0) = 1.15.

Values of r56; for (a) the m = 2, n = 1 mode and (b) the m = 3, n = 2

mode before and after sawtooth reconnection according to the ''flat g
model” for a "rounded" current profile. 1In the case of the m = 2 mode,
two positions of the conducting wall r /r_ are considered; the m = 3, n

Lo . oW
= 2 mode is insensitive to the position o? the wall.

Same as Fig. 6 for the "flattened" current profile.

Current-density perturbations for a tearing mode in a tokamak; the
current density is increased at the O-pgint and decreased on the
separatrix. Feedback must reinforce ese naturally occurring
perturbations.

Feedback current dengity j.r required to stabilize the m = 2 mode for

(a) "rounded" and (b) "peaﬁed" current profiles with q{a) = 3.05 j_¢ is
expressed as a fraction of the initial local current density Jgq @M is
plotted as a function of the q(0)-value for varigus maximum island

widths Ynax"
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Fig. 10 (a) Values of &W, and §W, as a function of the position of che s1ngu1ar

Fig. 11

surface [q(rs) l] (from Ref. 9)3 (b) Values of the effective Asr for
the m = 1 mode in the case of a strongly shaped cross section,
triangularity g5, = 0.5 (6 = 1.5) and elongation &, = 0.5 {k = 2.0);
(c) Feedback current density jrf required to stabilize the m = I mode
for a parabolic current ptof'le, ~rE is expressed as a fraction of the
initial local current densxty j 207 and is plotted as a function of the
q{0)-value, for various maximum permltted island widths Ynax®

Stability of higher order "fractional-m/n" tearing modes with singular

surfaces falling in the region whers q(r) < 1 for the "peaked" current
profiles (with a conducting wall at rfr, = 2 to contribute to the
stability of the m = 2 mode). Rather than A; itself, we plot the
quantity W = (r /r ) Asr , which is a measure of the magnetic energy
available to an unstable tearing mode localized to r < r
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