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TORQUE RIPPLE IN A DARRIEUS, VERTICAL AXIS WIND TURBINE

Robert C. Reuter, Jr.
Applied Mechanics Division III, 5523
Sandia National Laboratories
Albuquerque, New Mexico 87185

ABSTRACT

Interaction between a steady wind and a rotating,
Darrieus, vertical axis wind turbine produces time
periodic aerodynamic¢ loads which cause time dependent
torque variations, referred to as torque ripple, to occur
in the mechanical link between the turbine and the
electrical generator. There is concern for the effect of
torque ripple upon fatique life of drive train components
and upon power quality. An analytical solution
characterizing the phenomenon of torque ripple has been
obtained which is based upon a Fourier expansion of the
time dependent features of the problem. Numerical results
for torque ripple, some experimental data, determinatioin
of acceptable levels and methods of controlling it, are

presented and discussed.
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INTRODUCTION

In a utility grid application, power gathered from the wind
by a Darrieus, vertical axis wind turbine (VAWT), Fig. 1,
operating synchronously, is in the form of mechanical torque at
a specified rotational speed. Interaction of the rotating
blades with the incident wind causes a time periodicity in the
net torque acting on the turbine, which is obtained by
integrating torque producing aerodynamic loads over all blades
present. Under the ideal conditions of a steady wind from a
fixed direction, the applied torque may be viewed as a
deterministic oscillation called torque ripple, (which may
contain many harmonics) superimposed on a steady, mean torque,
which is relatable to overall turbine performance. Depending
upon turbine operating conditions (such as wind speed and
turbine RPM) and upon drive train characteristics (such as
component inertia properties and torsional rigidities, gear
ratios and generator slip) the magnitude of the oscillations
may be either amplified or attenuated at various locations
along the drive train. 1In view of extended component fatigue
life and high power quality requirements, attenuation of torque
ripple to acceptable levels is highly desirable.

Recognition of the torque ripple problem and its
consequences, and attempts to characterize it analytically and
demonstrate control over it are not newl'z. Two of the
assumptions upon which early analytical work on torque ripple
in VAWT systems was basedl are as follows: 1. The wind is
steady and from a fixed direction, and 2. The net torque
applied to the turbine is a simple harmonic function of time.
Models based on these assumptions captured torque ripple
behavior trends as parameters were changedl and permitted at

least initial insights toward understanding the problem.



~igure 1. DOE/Sandia l17-meter, 60 KW, Darrieus,
vertical axis wind turbine located in
Albugquerque, New Mexico.

However, recent aerodynamic models3, from which come the
magnitude and time dependence of the net aerodynamic torque
applied to the turbine, demonstrate that the assumption of a
simple harmonic form for the applied torgque is not always



justified. Asymmetries in the upwind and downwind aero-
dynamics3,'and the temporal influence of stall at high wind
speeds, (a previously known result)4,-cause multiple

harmonics to appear in the applied torque, even for a fixed
wind. By using a Fourier expansion of the time dependent
characteristics of the torque ripple problem, a general
solution has been obtained which permits full representation of
the consequences of upwind and downwind aerodynamnic
asymmetries and blade stall. This approach, along with
numerical results, a limited amount of data correlation, and a
discussion of how acceptable torque ripple levels are
determined and achieved, is presented. With appropriate
modifications, this analysis may be used to study torque ripple
in horizontal axis and other vertical axis wind energy

systems.

THE TORQUE RIPPLE MODEL

A typical VAWT drive train consists of the turbine rotor
(blades and rotating tower), a transmission and a generator,
connected in series by various torque transmitting shafts and
couplings. Additional components may be present depending upon
the specific turbine design, purpose and installation. For

example, the DOE/Sandla 17-meter research turb1ne5

located in
Albuquerque, NM, Fig, l has a secondary gear ratlu change
capability in the form of interchangeable pulleys and a timing
belt, located between the transmission (which has a fixed gear
ratio) and the generator. This feature permits incremental
changes in the turbine operating speed and'allows field
evaluation of'aerodynamie, structural and system per formance,
in a synchronous mode, under a variety of operating
conditions. "Operating conditions" refers collectively to
combinations of incident wind velocity and turbine operating

speed.' A popular parameter characterizing operating conditions
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is tip speed ratio, A, which is equal to maximum blade speed,
R Q, divided by incident wind speed, V. When X > 3.5 the

MAX

simple harmonic representation of applied torque and drive

train response is justified

1'3'4, as seen in Fig. 2.
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one turbine revolution when A = 5.0

However, when X < 3.5, blade stall effects and upwind and

downwind aerodynamic
compelling a Fourier
characteristics, see

therefore, peak mean

range of 1.0 to 3.0,5

asymmetries become strong3’4, thus

expansion of torque ripple time ‘

Fig. 3. Since peak turbine power and,
torque occurs at a tip speed ratio in the
, 1t is essential that dynamic behavior

of the turbine be well understood for low values of ).

The torque ripple model consists of three essential

elements. The first

is, a simplified, physical representation

of the important characteristics of the entire drive train for



T T T T T
40} _
A=2
(2]
°
= 30 _ _
7]
m
-
-
L 20} -
o .
=
o
[+
o
10} -
0 1 ] 1 1
0 60 120 . 180 240 300 360
ANGLE

Figure 3. Applied torque versus azimuth position
for one turbine revolution when 2 = 2.0

~

which differential equations of motion can be written. Fig. 4°
shows the physical model chosen. The turbine rotor is
represented by two rotational inertias, the positions of which
are specified by 61 and 62, each with one-half of the total

TORQUE RIPPLE MODEL
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rotor inertia, and which are connected together by a torsional
shaft representing the rotor tower, with a stiffness, KT'
chosen to yield the correct counter-rotating frequency for the
rotor. Continuing downstream, the equivalent low speed shaft
(stiffness = KL) transmits torque to the transmission with its

inertia, J fixed gear ratio, n ., and position, 63. The

’
interchanggable pulleys and timing belt have an incrementally
adjustable, but operationally fixed gear ratio, n,, and are
connected upstream to the transmission with an equivalent
intermediate speed shaft (stiffness = KI) and downstream to
an electric generator with an equivalent high speed shaft
(stiffness = Ky).  The electric generator (inertia = J; and
position = 64) may be either synchronous or induction, with
torque reactions proportional to rotational position or speed,

respectively. The proportionality constant is K., for a

S

synchronous generator, and D, for an induction generator.

I
Although results in this work are limited to those for an

induction generator only, Ko is retained in the solution for
generality. This physical representation of the drive train

captures torsional vibration modes of interest.

The second element of the torque ripple model embodies a
decomposition6 of the functional dependence upon time 6f the
applied aerodynamic torque as predicted by the vortex model3
for low tip speed ratios and the stream tube models4 for high
tip speed ratios. (Changing from the vortex to the stream tube
models is done to conserve computer time and reduce computation
cost). The applied torque can be distributed fractionally
between the two rotor inertias in order to account for vertical
wind shear, if necessary. and has the form -

N N.
- . . — i .
TlA = TlO + L Tli cos wit + - E Tli, sin _w].‘_t‘
- ) - i:l . -
(1).

‘ N _ N -
- 3 T . si t
TZA = Tzo + :E: T2i cos w,t + :E: T21 sin_wi
i=1 - i=

12



TlA and T2A are applied'to the top (upstream) half and
bottom (downstream) half of the rotor, respectively.

The third model element consists of a solution to the
equations of motion, taken in the form

N

N
= A, + - i
ej 30 Zi AJ cos W, t Z 51 §1n mit + th (2)
i= =1

where, repeating,el and 62 are the angular positions of the
top and bottom rotor halves, respectively, 83 is the angular
position of the low speed end of the transmission and 84 is
the angular position of the generator. Ql(= 92) is the

mean operating speed of the turbine, 93 is - the mean speed of
the slow speed end of the transmission, and Q4 is the mean
operating speed of the generator (note that 93 = 94/n1n2).
Since torsional modes of the turbine system which are reacted
by torque in the drive train are even multiples of the
operating speed7, w, = 2in. , -

Equations of motion for the physical representation of the
torque ripple model depicted by Fig. 4 are

% Jg0y + Kp (8, = 05) = Ty,
5 JB62 + KL(62 - 63) + KT(92 - el)_= T2A (3)
) 8, |
Tpbg + K3(63 - nln2) + KL(93 -'92) =0
JG64+K4(64—nln293) +KS(64—wSt) +DI(64<—wS) =0
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After a substitution of (1) and (2) into (3), and a substantial
amount of algebra, the following results are obtained for
determination of the unknown constants.

PO 0 T Wi T W S t U T T T
i ., 2 2 > U1 - 2 2
(g™ +2p5) Qyy™ FAgy)
A, -T,. . E T
A = f1af01 - Ty T - *1381 Ty
21 K > P2y T Ko

1

A1 T K [("’n“’u - KT) A - (KT 2113

A3g = ﬁlxz [("’114’21 - KTZ_) s = (%pTpy * "21?11)]

mn,

Mt T TR {[‘”31(‘7’11"’21 - Kg°) - ¢11KL2] A1y

+ [KLlei = bay (KqTpy + ¢21T11)]}

A KK K, ([¢3i (#1505 - KTZ) - ¢11KL2] Ay

Tyg = %35 (KgTpy + "’21?11)]}

where

¢35 = (R - ‘“‘12 p/2) ¢y = (Rp + % - “12 Ip/2)

2

b30 = (K + K3 - wy” Jp) s 4y = (k, + &g - 0" )

S 2 2
RS TR [¢3i (615025 - X ) = 411 K‘L]

Aoi - '(¢31¢41 - K3K,) (615895 - Krz) - %1% KL2

14



| 2
Ayq = (63505 = KoKy ) (KpTos + 425715 ) = 43¥L T1s
- Ty, + 6y; Tyy)
= wDr B Tys = 035 (KrT2s ¥ %21 Tas

‘g =’(¢31¢41 - KK, ) (KpTpy + 495711 - ¢41KLL?ii

2 - ,
+wyDy [KL Tys = ¢35 (FrTos ¥ ¢2iT11)]

2 2
ny ny KKy
Ry = —=—=——
KI-i-n2 KH
2 2
K.4 = K3/n1 n,

which completes the solution derivation.
NUMERICAL RESULTS AND ALLOWABLE LEVELS

Numerical results presented here are based on drive train

properties of the present DOE/Sandia l7-meter research turbine.

They are:

Jy = 2.92 x 10° lb-sec’-in (3.30 x 10% N-sec®-m)

3 2 2 2
Jp = 2.15 x 10~ 1lb-sec™-in (2.43 x 10 N-sec -m)
JM = 27.1 1b—sec2—in (3.06 N—secz-m)
DI = 824.0 lb-~in-sec¢/rad (93.1 N-m-sec/rad)
Kp = 1.46 x 108 1b-in/rad (1.65 x 10° N-m/rad)
K. = 2.39 x 10% 1b-in/rad (2.69 x 10° N-m/rad)
KI = 1.25 x-lO6 lb¥in/rad (1.41 x 105 N-m/rad)
K, = 1.86 x 10% 1b-in/rad (2.10 x 10° N-m/rad)
n1 = 35.6
L _ _1800

2 Ql(Q) |
_ ?

T = 8.35 x 10° ft-1b (1.13 x 10° N-m)



where 1800 is the rotational speed of the generator and Q is
the rotational speed of the turbine, both in units of RPM, and
TR is the torque rating of the turbine. Before defining
torque ripple explicitly, it is necessary to derive an
expression for torque as a function of time for some specified
drive train location. After preliminary numerical evaluation,
it was observed that, for the above set of properties, torque
ripple in the drive train is essentially independent of
location. Therefore, it is only necessary to know the torque
in the low speed end, TL(t). It is given by

TL(t) = KL(G3 - 62), and with the above solution

N
TL(t) = K2 :;;1 (ABi cos w.t + A31 sin wit)

(4)

N.
- Z (AZi cos w;t + A, sin “’it) - LZO—J
i=1

Torque ripple is defined in two ways. 'The first, labeled %M’
is the ratio of the mean-to-peak value and the mean value of
torque, and is a convenient form when considering fatigue
characteristics of the drive train components. The sécond,
labled %R’ is the ratio of the mean-to-peak value and the
turbine's rated torque, and is relatable to power quality.
Thus, from (4) '

. T - T
o= LMAX LMIN (5)
Mg + T

LMAX LMIN

T - T
>~ _ " LMAX LMIN 6
TR=—27 . (6

LRATED

&}
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In order.to facilitate numerical evaluation of torque ripple a
computer code, named FATE, was written. Applied torque
coefficients, found in (1), are used as input to the code and
results for %M and iR are calculated for discrete values

of A. (The coefficients of (1) vary with A). Fig. 5 shows how
torque ripple, using both definitions, varies with tip speed :

ratio for the DOE/Sandia research turbine operating at 50.6 rpm.

15 — - N | .
10 -
8 -
2 6f -
-
4 - —
o |- .
= 50.6 rpm S
« EXPERIMENTAL DATA ™
| | ] l
0 .
0 2 4 6 8. 10

A

Figure 5. Torque ripple versus tip speed ratio
for the DOE/Sandia research turbine
operating at 50.6 RPM.
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Because of the rapid changes in T at low values of A,
calculated points are conne¢ted by straight lines. Three data
points, based on the %M definition, are shown in the figure and
agree closely with predicted values of %M’ These data are
obtained by a torque sensor located in the low speed end of the
drive train. More data are not pfesented because of the
difficulty in obtaining experimental inforhation not influehced-
by the random.natu;e of the Windf " Notice that %M increases
with A. This occurs because even though the oscillating
portiQnAbf'the torque is diminishing with A, the mean value is
to increase. T, shows

M . R
the change in only the oscillating portion of torque (since it

diminishing faster, thus causing T

is normalized by a constant--the turbine rated torque), where
it is seen to decrease with increasing A\.

To determine what level of tofque ripple might be allowable
from a fétigue-or life expectancy standpoint, assume that drive
train components follow the Goodman law for fatigue .
strengthg. This law imposes a straight line relationship
between fatigue strength for purely alternating stress (the
dependent variable) and mean stress (the independent _
variable). Using this law and the above definition of torque:
ripple expzessed as a % of mean torque, %M' an expression for
allowable TM in terms of expected fatigue strength, ON?
mean stress, GM' and ultimate strength, OU’ of drive train
components was derived. 1t is

N o ) . T '
i< <_N> (Eu-_ 1) G
v/ \M T o

Taking the fatigue limit for oy, a typical value of .the ratio,

-(ON/GU);'foristructurai steels is 0.4. Using this value,

18



(7) can be plotted versus the ratio (dU/dM) as in>Fig.’6.'

Since (OU/GM)‘may be viewed as a safety factor for design
of drive train components; whatever value is used can be
located on the ordinate of Fig. 6, and as long as the T

. M
calculated from (5), falls on or bélow the line in Fig. 6,

infinite life can be expected. By taking the ratio, %R/f ,

| l T |
< 150
=
= 125
o)
L 100
-
V1] 75
‘_ll .
2.
. 50
<
o)
- 25| —
<
o I B L
20 25 3.0 3.5 4.0
‘u
OMm
| | | | |
1.5 3.0 4.0 -
A

Figure 6. Allowable values of torque ripple

’ ‘(expressed as a % of mean torque) based

on infinite life of drive tra1n '
components.
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for specific values of A (for example from Fig. 5), it can be
seen that as X increases, decreases. Thus, increasing A
corresponds to an increase in (o /o ) and, therefore, an
increase in acceptable levels of TM. For the DOE/Sandia
research turbine, a design safety factor of 2.0 was used for
drive train components. Since maximum torque occurs at

A= 1.5, (oU/oM) = 2.0 on the abscissa in Fig. 6

corresponds to A 1.5. Using Fig. 5, it can be seen
that (OU/OM) ~ 3.0 corresponds to X = 3.0, (cU/oM) ~ 4
6.5 corresponds to A = 6.

13

corresponds to X = 4.0, and (o,/0)
This demonstrates that the allowable values of 1M increase
rapidly with A. Examination of the values of TM in Fig. 5
indicates that the DOE/Sandia research turbine does not have a
fatigue problem. |

Power companies have determined that power quality
determination is dominated by the amount of "light flicker"
that people will tolerate for extended periods of timeg.

They have also determined that the "borderline of irritation"
with 60 cycle power corresponds to a voltage variation of 0.5%
of the line voltage. (This percent variation-may be higher if
energy is used only to power electrical equipment.) Since
torque ripple in a generator is equivalent to current ripple in
the line, acceptable torque ripple (expressed as a % of rated
torque) can be related to voltage ripple. 1In the‘case of the
DOE/Sandia research turbine, line impedance is approximately 4%
of the load impedance. A maximum voltage ripple of 0.5%,
therefore, corresponds'to an allowable §R of 12.5%. Results

in Fig., 5 indicate that the research turbine does not have a

power quality problem.

CONTROL OF TORQUE RIPPLE

Among the properties which characterize the torque ripple-
problem, the most readily and easily modified are drive train

20



torsional rigidities and perhaps, generator slip. Fig. 7 shows

numerical results for %M versus A for the research turbine

16
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Figure 7. Torque ripple (expressed as a % of mean
torque) versus tip speed ratio for various
values of low speed drive train stiffness.
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and values which would have resulted‘from a doubling and a
halving of the torsional rigidity of the low speed end of its
drive train. While fatiéue life does not appear to be reduced
even with a doubling of the low speed stiffness, additional

~

rigidity increases could cause problems. Since %R = Ty
when A = 1,5, doubling the stiffness of the low speed end could

cause a noticeable reduction in power quality.

To see how a change in low speed torsional stiffness
effects torque ripple, consider the results in Fig. 8, where %M
is plotted, for three low speed rigidities, as a function of
turbine operating speed, . Notice how the peak (which
corresponds to the f;rst critical drive train frequency) moves
to the left with a reduction in low speed stiffness and to the
right for an increase in drive train stiffness. The effect
that this has on torque ripple at a specified operating speed
is obvious. (This figure does not depict what occurs during
start up. It provides torque ripple values in the drive train
R with Q
is similar to that shown for Ty in Fig. 8. Other methods of

at specified operating speeds.) The behavior of T

controlling torque ripple exist. An increase in generator slip
tends to lower torque ripple values at moderate 2, and increase
them at higher @ (above ~ 40 RPM). An increase in inertia
properties tends to lower torque ripple at a given operating
condition, but this may be costly. A reduction in gear ratio
tends to lower apparent drive train rigidities and, thus, lower
torque ripple. However, the most effective means of reducing
torque ripple is through reduction of low speed rigidity. This
can be shown as follows. '

Let K1 represent either the low speed (between the rotor
and the transmission) drive train stiffness or the high speed
(between the transmission and the generator) Stiffness, and let
K2 represent the other. Assume that the high speed stiffness
has been corrected to the low speed end by multiplying it by

22
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the square of the drive train speed ratio. Let the entire drive

train stiffness by represented by K. Then
E=-—-————' o . (8)

The change in K can be expressed in terms of K

lAand K2 and
a change in either of these, say AKl.
s8R _ 2 “2 ) : | (9)
K Kl - Kl + K2 + {SKl-

Now, let Kl represent the high speed stiffness and recognize

that Kl >> KZ‘ - Prom (9)

which implies that, for a given change in the high speed
stiffness, the net effect is nearly zero. Now let K2
represent the high speed stiffness and recognize that K2 >> Kl'

From (9)

= AK K
.. AK 1 1l
lim " > == as 7 - 0

This implies that a change in the new speed stiffness will_

result in approximately an equivalent change -in the overall

24



drive train stiffness. Therefore, drive train stiffness
changes are most effective when made at the low speed end.
This result depends upon the high speed stiffness being much
greater than the low speed stiffness, a condition which is
nearly always true because of the effect that the speed ratio
has on the high speed stiffness.

CONCLUSIONS AND RECOMMENDATIONS

Currently, the deterministic torque ripple problem is well
understood. The source of torque ripple, its behavior with
operating conditions, its response to property changes, and its
allowable levels have been analytically predicted and
experimentally verified. (Also, see Reference 1l). Torque
ripple in two-bladed VAWT systems can be maintained at
acceptable levels.

As mentioned earlier, collection of data for correlation
with the deterministic solution is difficult. This is due to
the stochastic nature of the wind which tends to increase
measured torque ripple in the turbine drive train above wvalues
predicted by the deterministic model. As turbines increase in
size, their natural frequencies are reduced and their response
times more nearly match the frequency content of the wind, thus
aggravating the problem. Logically, the next step in torque
ripple modeling should deal with the stochastic nature of the
wind, in terms of both its magnitude and its direction. It is
this author's feeling, however, that this additional
characterization will have to begin with a modification of the
aerodynamic codes which predict the torque applied to the

turbine.
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