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The microscopic theory of Sinha_and Harmon for electro-
nically driven lattive instabilities is used to explain the
"Kohn-like" anomalies in the I, phonon branch and the obser-
ved incommensurate superlattice Bragg peak in 2H-NbSe,, cha-
racteristic of the charge density wave at low tempera%uses
in the neutron scattering experiments of Moncton et al.” In
accordance with the APW and LCAO band-structure calculations
of Mattheiss of 2H-NbSe,, we have assumed theeprgsence 15 2
three narrow 4 bands of atomic symmetry xy, x -y and 3z -r"”
at the Fermi level. Thus the conduction~band wave function
is represented by a linear combination of tight-binding Gaus-
sian atomic orbitals with neglect of the variation of the
radial wave function across the bands. The screened elec-
tron—-ion interaction and the Coulomb energy of the charge
fluctuation on the 4 shells of Nb atom is represented by a
pseudopotential screened by the Lindhard dielectric func-

- tion. The phonon eigen vectors needed for estimating the
electron~phonon interaction were caslculated using a simple
force constant model. In agreement with the experimental re-
sults, we have found that the phonon frequencies for the 21
and E_ branches are very strongly renormalized as one app-
roachgs the zone boundary. By introducing the electronic re-
laxation effects & central peak appears at the q vector of
the instability and the actual phonon renormalization is
partially suppressed. This explains the superlattice Bragg
peaks observed at low temperatures and "Kohn-like" anomalies
in the Z, phonon branch of NbSe,,. B
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. . The occurrence of periodic lattice
*_; vd1s£ances'(PLD) in the layered transi-
- tion metal. chalcogenldes has been stu-

.odied. exten51ve1y in the last few years .
fv_Such lattice- dlstortlons, also referred
o .-t0-88: "Charge Density Waves" are belie-

”fved to arise as a résult of the very ani-

'-sotroplc nature of the Fermi surface in

these qua51—two—dlmen51onal materlals,
g }and in. partlcular to the nestlng fea-

-~ tures. of the: Ferm1 surface. Such featu-
.res glve rise to _an ‘enhancement at cer- _
. “tain g-values of the (non-1nteract1ng) ,

: polarlza'b:.llty )’«,(q) defined dy T

x‘,(“,’) 22 (”g" ""Ha)/(';r. Elu-q,) | ()

where k denotes the electronlc state of
_energy E. and occupation number n, (Eq.
1) shou}d strlctly speaklng include ma-
trix elements. However (1) is the form
for which' numerlcal calculatlons have
”actually been performed ‘and further,on-
. 1y bands at the Fermi level 8 e been

. dincluded in the calculstions ). Assu~
" ming only diagonal screening by the
electron system of the electron-phonon
'1nter?ctlon, ‘the theory of Chan and
Heine' has usually been involved to show
;that the phonon softenlng is given by

w"“ ' 3%&({/( L+ vDE@) @

i,where'ﬁz 1s the unrenormalized frequen-
eYs. & ' is the electron-phonon coupllng
icoeffgclent (whose’ q—dependence is ge-
-+ nerally ignored), and v (4) is the ef-
rgf,3fect1ve electron-elect*on interaction
..+ which is the sum of Coulomb and excbange
"’;afand correlation parts. 5
SR ‘Caleulations by Myron and Freema o
’y_for 1T~Tas, ‘and 1T-TaSe, and by Ricco
-+ for 2H-NbSE€, using Eq. (?) for the bands
" only at the“Fermi level have shown that
" there is indeed a peak at approximately
. the wavevector (4=0.332% ) corresponding
to the 'PLD, which would thus yield, ac-
cording 'to Eq.(2), the maximum softening
of - the phonons at thés wavevector.
o However, there are several unsatis-
~_factory aspects to the above theory. In
- the first place, the "peak in ¥ _(4)",
4?q3part1cu1ar1y 1n 2H~NbSe is relatlve-
7;f1y small on a large bac%ground and it is




difficult to understand how the whole

‘Phenomenon arises simply because of
-this somwhat subtle feature; secondly,

there are other nestlng features of the

'Fermi surface whlch give rise to equally
‘large peaks along other dlrectlons, e.g.

along the ®axis, and it is difficult

b_to understand why the lattice prefers to

have its instability along the B* axis

‘ffor ‘all these. compounds on the basis of

Xe (?) alone. Finally, the phonon bran-
ches ‘actually do not show pronounced

) softenlng as jhe ordering temperature
. is approached Instead, a "central

peak" is observed in the neutron scat-
tering which repidly increases to criti-
cal-like scattering as the ordering tem-
perature is approached.

A more detalled theory must take
1nto account the @-dependence of the
electron-phonon ‘interaction and the mo—

. re complicated screening when the wave-

functions involved are d-orbitals rather
then a free-electron gas, and hence ne-
cessarily must allow for the off-diago-~
nal nature of the screening. Suchatbeo-
ries have been developed recently

and are 6ev1ewed in a paper at this Con-
ference . We shall refer to the latter
paper henceforth as I. )

Using the results of I, generali-
zed to the case of crystals with more
than one atom/cell the expre551on for
the normal mode frequencles is glven by

g ° "Eﬁ Zesc, Eram‘-”tﬂ g (51}

d_,t.t:.( )').25:;: Q Kz. J(..) ef(’c’tlu)
. "D-

vhere the index X stands for a particu-
lar basis atom in the unit cell (of mass

M,) ‘'with associated eigenvector e(xqu ),

stands for a pair of indices ,,g‘
denotlng atomic-1ike orbitals between
which & v1rtua1 transition is induced
for a particular charge fluctuation (CF)

"excited by the phonon. (We neglect, for
" simpliecity, overlap between orbitals in

the present calculation). 3'%&.(q)

fls ;the (statlc) density response M frunc-

-




tion connecting CF's of type ¥, on
site i, with those of type P, on site

2 '2 ' “"“’fﬂa (elgj) n‘l:”’]
” Y e, i

[t,«-QN' eme

is the coupling coefficient between the
displacements of the ions for mode {(qj)
and CF's of type %, on site R

" For our present purposes, we are

. interested only in a semi-quantitative
" understanding of the microscopiec origin
of the lattice instability and hence we
focus our attention en CF's involving on-
1y the d-bands at the Fermi level. As
discussed in I, the other types of CF's
may be regarded as screening the d-shell
fluctuations and the d-electron-ion in-
teractions, as well as renormalizing
®°.. Q':;""l may be then be written in
th@rorn 'given in Eq.(17) of I (suitably
generalized with appropriate phase fac-
tor to the case of a lattice with basis).
The matrix X is given by Eqs.{10) and(18)
and (19) of I, suitably gemeralized to ‘
the case of a lattice with basis. For
the calculations on 2H5N§ ey, Ve used
the results of Mattheiss ' Who showed
that the d-bands arouad Ep are associa-
<ted2pr§marily with (x“-y F, {xy) ana
(32°~r©) d-orbitals on the Nb sites.This
gives us 9 possible types of CF to con-
sider on each Nb site, and since there
are two such sites per g?it cell, the
size of the matrix (Xﬁg )} vwas 18x18.
The orbitals were taken as HFS atomic
d-orbitals. Note that the N matrix in-
volves the function X (3) (see Eq. (19)
of I). For the screening function €_(3),
a Lindhard function with k_=0.7 was assu-
med. The ionic radii for the Nb and Se
jonz were taken as2CiRdbrespectivelyfesd
and the effective ionic charges as Q.5 -025
respectively. The Hubbard U for same-
site Nb CF interactions (see Eq.(18) of
I) was taken as 2eV. The phonon eigen-
‘vectors € refqj) were evaluated for g
along M by fitting an empirical force-
constant mrdel to the experimental neu-
tron-scatt.ring results for the frequen-

¢ies of the 2;3J2; and'il branches alcag
r M. ’

Fig. 1 shows the Qq-dependence of

' - S @ B Ry e ciclei) MY
the quf.ntlty [% Qf" (lt)ganl,l)M‘VJ



for the 5; mode for Pg corresponding

to an (xy-xy) CF, and &’ corresponding

...to Nb site 1. This represents the coup-
. ling between monopole type CF's oua this
.site to the ionic displacements in this

mode.)It .may be seen: that this quantity
peaks at around q=0-. 35a ’ showing that
the lattice has a natural "geometrical”
enhancement at such. g-values for coup-
ling CF's of this type to this phonon
mode. Fig. 2 shows the‘ﬁ‘dependence of
the cqrresPQndlng element of X, i.e.
{y+N ), assuming (a) x,(d) “has no ‘-
dependence and is fixed at n_(E_.) and
(v) using the actual x, (@) calcnlated by
kiecco  from the energy bands. Flg. 3
shows the phonon softening Aw*vys.q
along I'M for the =, branch for the same
two assumptions. One notices that even
with a constent Xo(3d) the density re-
sponse function is quite enhanced for
sufficiently large n (E ) and helps the
electron-phonon coupglng to produce the
phonon softening at the right §-value.
This is because of theismallness of cer-
tain elements of {V+N ') leading to en-
hancement of the CF respense or the d-
electrons. Using the actual X,(Q) which
‘has peaks built in due to Fermi surface
nesting greatly enhances this resonant-
like response and in fact the peak in-
,r,('q‘) can " fine~-tune" the actunal posi-
tion of the anomaly. The point is how-
ever, that the "baekground" on which
this peak rides plays an importanit role
in enhancing the response, as dces the
'Z—dependence of -the ‘electron-ion coup-
ling.: Thus it. appears that explanations
based on Eq.(2) are rather too simpli-

stlc. (Note that in the Chan~Heine theo-

ry, V (q) is always p031t1ve, unlike

- the. efements of. the ¥ matrix in the for-
" mulation which 1ncludes local-field ef-

feets,(see the discussion in I), and

~ hence resonant enhancement of the CF re-
9v5ponse is not possible). :

. ‘In order to explaln the occurrence
of. a central peak in the:neutron scatte-

f”rlng, we introduce ‘s relaxation time

for the ‘electrons, as discussed in I,

. which 1nt£oduces a complex phonon self-
O energy Aw" and results in a 3-peak struc-
. ture in the neutron cross-section. Fig.h
*~shows the then51ty of the ceatral peak

S



as calculated using Eq. {(25) of I for
the calculation using Rieco's x,(q).

We thus see that the present model,
although somewhat ecrude in its treatment
of the electron-response and the elec-
tron-phonon interaction, has the essen-
tial qualitative features which are con-
sistent with the experimental observa-
tions. The main purpose has been to show
that near-instabilities with regard ts d-

" shell CF's due to high nd(E ) and the ‘
coupling of these CF's to tﬁe lattice
displacements are as essential features
of the physiecs of the lattice instabili-
ties in these materials as are the Fermi
surface effects.
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FIGURE CAPTIONS

T dependence
W(q) = plong
bital charge

E—dependence
metrix along

of real and imaginary parts of quantity'
I'M for the I) mode for an (xy+xy) or-
fluctuation.

of {xy+xy),{xy+>xy) component of (V+E)—
M for a) constant Xo(@)(full 1ine) and

b)Ricco's xo(T){dashed line).

Phonon softening for I; mode a2long 'M (in absence of
relaxation effects) for a) constant Xo (@) (full 1ine

and b) Riceo!

Central peak

S X (d) (dashed line)

intensity for ] mode along I'M (with

relaxation effects) for a) constant Xy (3) (dashed 1

and b) Ricco!

5 X, (2) (full 1line).
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COULoyB INTERACTION CONTRIBUTION TO PHONON SOFTENING
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