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ABSTRACT .

The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the
analysis of wind turbine components. The numerical formulation of the code uses a
series of cycle count matrices to describe the cyclic stress states imposed upon the
turbine. However, many structural analysis techniques yield frequency-domain stress
spectra and a large body of experimental loads (stress) data is reported in the
frequency domalv,. To permit _be analysis of this class of data, a Fourier analysis
module has been added to the code. The module transforms the frequency spectrum
to an equivalent time series suitable for raint3ow counting by other modules in the
code. This paper describes the algorithms incorporated into the code and uses
experimental data to illustrate their use.

INTRODUCTION

e analysis of the fatigue lifetime of a component for a Wind Energy Conversion
ystem (WECS) requires that the stress state imposed upon that component be

formulated in terms of stress cycles. Ho:aever, many structural analysis techniques
yield frequency-domain stress spectra and a large body of experimental loads (stress)
data is reported in the frequency domain. To permit the analysis of this class of data, a
Fourier analysis module has been added to the UFE2 fatigue/_acture analysis code
[1]. The computational framework for this module follows the work of Akins [2].
Simply stated, the module converts frequency-domain stress data into time-series data
(stress-time history) suitable for rainfiow counting. The addition of this module to the
LIFE2 code permits the code to predict the fatigue life of WECS components based
upon the analysis of experimental and/or analytical frequency-remain stress spectra,

This manuscript describes the algorithms used in this computational module to convert
the frequency-domain data into time-series data. The algorithms are illustrated by the
examination of frequency-domain stress spectra from the Sandia 34-m Test Bed
vertical axis wind turbine.

*This work is supported by the U.S. Department of Energy at Sandia National
Laboratories under contract DE-AC04-76DP00789.
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THE FFT ALGORITHM

To convert a frequency spectrum into a time series requires the use of an inverse
Fourier transform. Several Fast Fourier Transforms (FFTs) and their inverses have
been written, e.g., see Reference 3, that specialize the Fourier transform and its inverse
_. tt _ H • _ • • • •to a fast digital analysis. One such transform [4], vath its accompanying pre- and
post-processors, has been incorporated into a LIFE2 computation module•

The LIFE2 module assumes that the input frequency spectrum is a uniform series of N
components with a frequency intervalof A_0.The spectrum is input as a series of
positive amplitudes Ai and phase angles Oi, i = 1, N. If a Oi is not included in the
input, a random number _enerator [5] is used to generate a random phase angle
between 0 and 2_ radians I,see the discussion entitled Random Phase Angle, below,
for an explanation and analysis of the use of random phase angles to synthesize
"realistic" time series data for wind turbines).

The FFT pre-processor reads the spectrum,generates random phases when required_
and converts each phase into its sine and cosine components, (Ai)s and (Ai)c,
respectively, using the relations:

(Ai)s = (Ai) sin (Oi) , (1)

and,

(Ai)e = (Ai) cos ($i) • (2)

The ith component of the spectrum corresponds to a frequen_ of:

oi = (i-1) Ao , where i = 1,..., N. (3)

To speed processing, the mean stress (the zero frequency component Al) is set equal
to zero and the number of components in the spectrum, N, is set to a power of 2; i.e.,

AI = (A1)s = (A1)c = 0 , (4)

and

N = 2 m , where m is a positive integer. (5)

If the input value of N is not a power of 2, the additional components in the amplitude
spectrum are set equal to zero.

The inverse FFT algorithm converts this frequency spectrum into a time series [3].
The output time series is a uniform series, with the time increment, Itr, given by:
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1
Ar = . (6)

2N At0

The FFT post-processor adds the mean stress to the time series and writes the results
to file in a format suitable for analysis by the rainflow counter in the IJFE2 code [6].
The output time series has a total time length T equal to

1
T = 2NAt = -----. (7)

Ac0

THE 34-m FREQUENCY SPECTRUM

To illustrate the use of this set of algorithms and to validate their implementations in
the LIFE2 code, consider the typical stress-time history shown in Figure 1. These data
were measure on the Sandia]DOE 34-m Test Bed Vertical Axis Wind Turbine
(VAWT) located near Bushland, TX [7]. They are flatwise blade stresses at the upper
blade-to-tower joint for a wind speed interval of 12 to 15 m/s. These data were taken
with the turbine rotating with a constant speed of 0.47 Hz (28 rpm). A detailed
rainflow analysis of these and similar data are presented in Reference 8.

Figure 1 shows the first 100 seconds of a 700-second stress-time history. The 700
second record has a xoot-mean-sc.q.uare(RMS) of 6.2 MPa and an average of- 1.0 MPa
[8]. These statistics compare well to the "bins" data for this same wind speed interval
with a 6.6 MPa RMS and a -1.1 MPa mean [7].

The time history shown in Figure 1 was analyzed using both the FFT used here [4] and
the FFT contained in the Sandia Data Acquisition and,analysis System [7]. The results
of the two analyses are identical, within numerical accuracy.

The frequency-domain amplitude spectrum for the first 51.2 seconds of the record is
shown in Figure 2. The time series data are taken with a Ar of 0.05 seconds. Thus, the
first 1024 ( 210 ) time-series data points are analyzed. Using Equation 6, the amplitude
spectrum is a uniform series with a At0of 0.0195 Hz. The 512 amplitudes span a
frequency range from 0 and 10 Hz (only the range 0 to 6 Hz is shown in Figure 2).

An average spectrum for the entire time-series data set was obtained by computing the
amplitude spectrum for 13 sequential data blocks, each 51.2 seconds long, and
averaging the amplitude at each _i- The resulting "average" amplitude spectrum is
shown in Figure 3. The variation about the mean at each _i was ±88 percent, with no
excursions greater than 1 MPa.

The frequency spectrum shown in Figure 3 was filtered to remove ali components with
amplitudes below 0.2 MPa. The resulting spectrum is shown in Figure 4. This
spectrum will be used below to illustrate the influence of the relatively small amplitude
components on the FFT algorithm and its rainflow counted stress cycles.
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VALIDATION

In addition to preliminary validations of the algorithms using single and multiple sine
and cosine waves, the time series shown in Figure 1 was used for validation. The first
51.2 seconds of this record were transformed using an FFT [4]. The resulting sine and
cosine components were then converted to amplitude and phase components using
Equations 1 and 2 (the amplitude spectrum is shown in Figure 2). The amplitudes and
phases were then synthesized into a time series using the LITr2 code. Comparing the

initial time series to the synthesized time series yields a point-by-point _veragedifferen ,e between the two of 0.0000049 MPa, a variance of 0.000058 MPa and a
standard deviation of 0.0076 MPa. Thus, the initial and synthesized time series are
identical, within numerical roundoff.

SYNTHESIZED RAINFLOW CYCLE COUNTS

As discussed above, the algorithms that have been added to the LIFE2 code permit a
stress-time history to be synthesize from a frequency spectrum of the stress _mposed
upon a turbine component, and then to be rainflow counted to determine the stress
cycles imposed on that component. To illustrate this capability, the spectra for the 34-
m Test Bed, discussed above, will be used.

Time-Series Data: The time-series data cited above and shown in Figure 1 have been
previously rainflow counted [8]. The resulting stress cycle counts for the entire 700-
second record are shown in Figure 5. To permit direct comparisons of the data, the
distribution of cycle counts in this figure has been normalizedto 100 seconds, and the
counts in the low stress region are not shown. Also shown in Figure 5 is the narrow
band Gaussian model that has been proposed by Veers [9]. These data and the
prediction for the model will be cited throughout the remainder of this report to
illustrate the capabilities of the frequency-domain analysis.

As noted previously [8], the essential difference between the time-series and the
narrow band Gaussian model is that the former is based on 700 seconds of data while
the latter is based on a model that uses "oins" data from many thousands of seconds of
turbine operation. The difference is noted in the RMS of the data and by the presence
of cycle counts in the "high-stress" tail of the distribution. The time series has an RMS
of 6.2 MPa and the narrow band Gaussian model has an RMS of 6.6 MPa. The high-
stress tail is sparsely populated by the time-series counts. AS discussed in References 8
and 10, the distribuuon of the cycle counts in the high-stress tail is very significant in
the determination of the service lifetime for turbine components.

Resynthesis: AS discussed above, if the amplitude and phase for each of the 13 blocks
of data are input into the LIFE2 code, the algorithms used here will duplicate the time
series data within numerical accuracy. And, the cycle counts shown m Figure 5 are
duplicated.

Random Phase: Typically, frequency spectra from wind turbines contain two classes of
signals. The first is the "steady" signal that is obtained by averaging the time series data
as a function of rotor position (the azimuthal average). The second signal in the
spectrum is a random variation about the azimuthal average. The random components
in the distribution imply that the synthesis of a time series from a frequency" spectrum
for wind turbines is not a unique process.
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Akins [2] handled the synthesis of both signals using the average amplitude spectrum
with a random phase angle for each amplitude. He suggests that a synthesized time
series would be closer to an actual measured time series if the phase angles for the
azimuthal-averaged components of the spectra are included in the synthesis; i.e.,
because the phase angles for azimuthal-averaged components are essentially constant,
they should be included in the synthesis process. And he further suggests that the
random components are best described using the average amplitude spectrum with
random phases.

The concept of fixed and random phase angles has been incorporated into the LIFE2
algorithms using variable input parameters. When the amplitude spectrum is entered
into the code, an algorithm examines the input to determine if an associated phase
angle is included for each amplitude. If a phase angle is included, the code will use
that phase angle. If a phase angle is not included, the code generates a random phase
for that component of the amplitude spectrum.

The following sections illustrate the use of these algorithms on the spectral data for the
34-m Test Bed that is cited above.

Random Pha_e: The average amplitude spectrum, Figure 3, was input into the
algorithm with no phase angles included. The LIFE2 code generated random phase
angles for ali of the amplitude components. The resulting time series was then counted
using the rainflow counter. The process was repeated many times, with different,
random phase angles. Each time series, 51.2 seconds in length, was "attached" to the
end of the previous time series. The cycle count matrix stabilized at 5120 seconds; i.e.,
the number of cycle counts in each stress bin at 5120 second (100 repeats of the time
series synthesis) was within 0.5 cycle of the cycle counts at 10,240 second (200 repeats).
The cycle counts for 1024, 2560 and 5120 seconds are shown in Figure 6. The cycle
counts for 5120 seconds are compared to the time series data and the narrow band
Gaussian model in Figure 7.

Hi_h-Amolitude Phase: In a similar calculation, the phase angles for the high-
amplitude-components were included in the input. Specifically, the phase angle for the
three peaks near 0.5, 1.0 and 1o4Hz were included in the input data. These peaks
correspond to the first, second and third multiples of the rotational speed of the
turbine (0.47 Hz). Ali other phase angles remained random. The synthesis process
again stabilized at 5120 seconds (100 repeats). Figure 8 compares the cycle counts
from this synthesis to the time series data and the narrow band Gaussian model.

Discussion: As seen in the comparison of Figures 7 and 8, the inclusion of the phase
angles on the high-amplitude components of the spectrum changed the cycle counts
only slightly from those obtained with ali random phases. In both cases, the cycle
counts closely followed the cycle counts from the original time series of 700 seconds in
the main body of the distribution. However, in the high-stress tail of the distribution,
ali random phases yield cycle counts out to the 58-60 MPa bin, while the high-
amplitude phase synthesis yields counts out to the 48-50 MPa bin.

Amplitude Variations: As discussed above, the single-series amplitude spectra (Figure
2) varied significantly about the average spectrum (Figure 3). Two classes of variatxons
are noted: the first _s the variation of the spectral amplitudes about their average and
the second is the variation of the RMS of the spectral amplitudes with wind speed.



Frequency Domain p. 6

Variation in Spectral Amplitudes: The amplitude spectrum for the 13 sequential data
blocks varied about their mean by ± 88 percent with no excursions greater than 1 MPa.
Usin_ the random number l_enerator, the amplitude of the input spectrum was varied
in th_s manner. The resulting cycle count matrix stabilized at 5120 seconds and was
essentially identical to the counts shown in Figure 7 when no phase angles were
included and to that shown in Figure 8 when the high-amplitude phase angles were
included.

V_ariation with Wind Speed Interval: The spectra cited above are based on a wind
speed interval of 12 to 15 m/s; namely, for this data set, the wind speed varied between
12 and 15 m/s, with an average wind speed of 13.5 m/s [8]. Thus, the RMS of 6.2 MPa
for the input time series and the average frequency spectrum (Figure 3) is based on a
relatively, large wind speed bin. Bins data from the 34-m Test Bed [7] indicate the
RMS vanes 36 percent across this wind speed range.

To investigate the influence of this variable, the RMS of the input frequency spectrum
was systematically varied +_18 percent about the mean. The mean root-mean-squared
(RMS)m was changed by multiplying ali amplitudes in the mean frequency spectrum,
(Ai)m, by a factor Ra; namely:

Ai = Ra (Ai)m , where i = 1,..., N. (8)

Thus, the root-mean-square (RMS)a for the adjusted amplitude spectrum becomes:

!

IRa]
(RMS)a = _ , (9)2

i=l

!

2

g"

(RMS)a = Ra _ , (10)
2

i=l

(RMS)a= Ra(RMS)m . (11)

For the synthesis presented here, Ra was varied between 0.82 and 1.18 in 100 equal
increments. This variation used the spectrum shown in Figure 3 with the phase angle
for the high-amplitude components included in the input. The resulting cycle counts
for this synthesis are compared to the time series data and the narrow band Gaussian
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model in Figure 9. The logarithmic plot of these data are presented in Figure 10. As
noted in these figures, many hours of synthesized time series data were required to
achieve a stable cycle count matrix.

Low.Amplitude Comvonen.t_: Even the average spectrum, shown in Figure 3, contains
a relatively high percentage of low amplitude components. To investigate the
importance of these components, the speetnun was filtered to remove ali components
with amplitudes less than 0.2 MPa, see Fi_tre 4. Using this spectrum with the high-
amplitude phase included and incorporating the ± 18 percent variation in the RMS for
the relatively large wind speed interval, the synthesized time series produced the cycle
count matrix summarized in Figure 11. For comparison, the time series data and the
narrow band Gaussian model are also shown in the figure. As illustrated in this figure,
the elimination of the relatively small signals from the average spectrum significantly
reduces the cycle counts in the entire cycle count matrix.

High-Stress Tail

As discussed in References 8 and 10, the population of cycle counts in the high-stress
tail on the cycle count distribution is very important in the determination of the service
lifetime of a turbine component. The original time series of 700 seconds contained
cycle counts out to the 58-60 MPa alternating stress ,cycle bin, but with a sparse
population, see Figure 10. The synthesized time series, cited in Figures 9 and 10 also
contains counts out to the 58-60 MPa bin, and, importantly, the distribution in the high-
stress tail is not sparselypopulated. To achieve a stable, relatively smooth, and
monotonically decreasing distribution of the cycle counts in the high-stress tail, over
100,000 seconds of time-series data had to be synthesized. Thus, the ability of the
algorithm to generate relatively long time series permits this high-stress tail to be
defined.

When the counts in the high-stress tail of the synthesized time series data are
compared to the counts predicted by the narrow-band Gaussian model, see Figure 10,
the time series unde.rpredicts the counts in the tail. The reduced population in the
high-stress tail is a direct results of the variation in the RMS value between the
relatively long-time bins data and the relatively short-time frequency spectrum. As
noted above, the bins data had an RMS value of 6.6 MPa and the frequency spectrum
had an RMS value of 6.2 MPa. The bins RMS is based on many thousands of seconds
of turbine operation while the frequency spectrum is based on 700 seconds of data.

In summary, the ability of the synthesized time-series technique to fill the tail of the
cycle count distribution should not be confused with the actual distribution of stress
cycles imposed upon the turbine. As exemplified by the RMS values and illustrated in
Figure 10, the 700-second record does not describe the high-stress tail of the
distribution of cycle counts. Thus, the frequency spectrum that is based on it does not
contain sufficient information to define the high-stress tail of the cycle-count
distribution, either.

Discussion

Based on the comparisons presented in Figures 6 through 11, the synthesis of time
series data from average frequency-spectra data is an effective technique for the
determination of stress cycles imposed on a wind turbine component. The data
analyzed here indicate that the fixed-phase angle components significantly affect the
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tail of cycle count distribution but not the main body of the distribution. Random
anaplitude variations about their mean have little or no effect on the cycle count
distribution. And, the elimination of the small amplitude components of the spectrum
reduces the cycle counts throughout the distribution. For relatively large wind speed
intervals, the variation of the RMS in the amplitude spectrum with windspeed should
be included in the synthesis process.

The ability of the algorithm to generate long time series permits the high-stress tail of
the cycle count distribution to be defined.

SUMMARY

A set of algorithms permitting the analysis of frequency-domain stress data has been
incorporated into the LIFE2 fatigue/fracture analysis code. The algorithms are based
on the transform of frequency-domain, amplitude and phase spectra into time series
data using a FFT. The algorithm permits the inclusion of fixed and/or random phase
angles for the input spectrum, as deemed appropriate by the operator. Data from the
34-m Test Bed was used to illustrate the use of these algorithms and to investigate the
effects of the various input parameters on the resulting cycle count matrix.
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Figure 1. Typical Time History Data Record for the Sandia 34-m Test
Bed Wind Turbine.
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Figure 2. Single-Time-Series Amplitude Spectrum for the Sandia 34-m
Test Bed.
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Figure 3. Average Amplitude Spectrum for the Sandia 34-m Test Bed.
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Figure 4. Average Amplitude Spectrum for the Sandia 34-m Test Bed
with Small-Amplitude Phases Removed.
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Figure 5. Cycle Counts for the 700-Second Stress-Time History from
the Upper Blade-to-Tower Joint on the Sandia 34-m Test
Bed.
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Figure 6. Cycle Counts for Time Series Synthesized from the Average
Amplitude Spectrum with no Phase Angle.
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Figure 7. Cycle Counts for Time Series Synthesized from the Average
Amplitude Spectrum with no Phase Angle.
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Figure 8. Cycle Counts for Time Series Synthesized from the Average
Amplitude Spectrum with Phase Angles on the High-
Amplitude Components.
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Figure 9. Cycle Counts for Time Series Synthesized with the RMS of
the Input Frequency Spectrum Varying _+18 Percent.
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_igure 10. Cycle Counts for Time Series Synthesized with the RMS
of the Input Frequency Spectrum Varying _+18Percent; Logarithmic
Scale.
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Figure 11. Cycle Counts for Time Series Synthesized with the Relative
Small Amplitude Components Eliminated.
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