

ANL/CHM/CP--92855
CONF-9705135-1 RECEIVED
JUL 14 1997
OSTI

FLASH PHOTOLYSIS-SHOCK TUBE STUDIES

Joe V. Michael

Gas Phase Chemical Dynamics Group
Chemistry Division
Argonne National Laboratory
Argonne, IL 60439

e-mail: michael@anlchm.chm.anl.gov

Abstract for the DOE-BES Combustion Research
Meeting to be held at the Westfield's International Conference Center
Chantilly, VA, May 28-30, 1997

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

MASTER

This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract No. W-31-109-ENG-38.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *mg*

FLASH PHOTOLYSIS-SHOCK TUBE STUDIES

Joe V. Michael

Gas Phase Chemical Dynamics Group
Chemistry Division
Argonne National Laboratory
Argonne, IL 60439

e-mail: michael@anlchm.chm.anl.gov

Following earlier investigations on the dissociation rates of CF_3Cl ,¹ CF_2Cl_2 ,² CFCl_3 ,³ and CCl_4 ,⁴ we systematically applied theory to explain the rate behavior for this homologous series.⁵ Three different unimolecular theoretical methods were compared. The inferred results were in good agreement with one another suggesting that the conclusions are not strongly dependent on the degree of theoretical rigor. In all of these cases and in others,⁶⁻¹² we have determined the best mutual values for both threshold energy, E_0 , and energy transfer parameter, $\langle \Delta E \rangle_{down}$. The best fits generally give values for E_0 that are in good agreement with other thermochemical methods. Also, for halogen containing molecules, the derived $\langle \Delta E \rangle_{down}$ values are large, giving effective collisional efficiency factors, β_c , between ~ 0.02 and 0.10 at 1300 K.

During the past year, thermal decomposition studies in reflected shock waves on two reactions were completed using the I-atom atomic resonance absorption spectroscopic (ARAS) detection method; i. e.,

and,

Rate constants for reaction (1) were measured over the temperature range, 1052 - 1616 K.¹³ With the experimental curve-of-growth for the I-atom ARAS technique that had been previously determined,¹¹ the yield of atoms (i. e., the number of I-atoms formed per dissociating molecule) was found to be unity. The results can be expressed in second-order by

$$k_{\text{CH}_3\text{I}} = 4.36 \times 10^{-9} \exp(-19858 \text{ K/T}) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} (\pm 36\%) \quad (3)$$

Two unimolecular theoretical approaches were used to rationalize the data. These showed that the reaction was effectively in the low pressure second-order limit under the present conditions. The results were fitted with the known threshold energy, $E_0 = 55.5$ kcal mole $^{-1}$, by varying $\langle \Delta E \rangle_{down}$. The best fit required $\langle \Delta E \rangle_{down} = 590$ cm $^{-1}$.

Experiments on reaciton (2) also gave I-atom yields of unity showing that this decomposition is an excellent source for preparing phenyl radicals for subsequent reaction studies of this species.¹⁴ The results can be expressed in first-order by

$$k_{C_6H_5I} = 1.982 \times 10^{11} \exp(-23120 \text{ K/T}) \text{ s}^{-1} (\pm 60\%) \quad (4)$$

over the temperature range, 1082 to 1466 K. Again, two unimolecular rate theoretical approaches were used to rationalize the data; however, in this case, the data were fitted by mutually varying both E_0 and $\langle \Delta E \rangle_{down}$. The calculations show that the reaction is much closer to the high pressure than to the low pressure limit under the present conditions. Averaging both methods, we conclude that $E_0 = (66.7 \pm 0.7)$ kcal mole⁻¹ and $\langle \Delta E \rangle_{down} = (447 \pm 92)$ cm⁻¹. This suggests $\Delta_f H_{C_6H_5,0K}^0 = 83.4$ kcal mole⁻¹, in agreement with other accepted values, within experimental error.

Phenyl-radical dissociation experiments were then studied using the H- and I-atom ARAS techniques.¹⁵ With ppm quantities of iodobenzene in Kr, both atomic species were monitored between 1358 and 1548 K. The results showed that I-atoms almost instantaneously form and do not react further on the time scale of the experiment. The H-atom ARAS experiments showed that phenyl-radicals dissociate to H + C₆H₄ (or C₂H₂ + C₄H₂). H-atom profiles were measured over the pressure range, 398 to 488 Torr, and these showed that H-atoms subsequently react with phenyl to produce benzene. The profiles could be fitted to the two step mechanism giving estimates for the rate constants: C₆H₅ (+Kr) \rightarrow H + C₆H₄ (+Kr); $k = 1.36 \times 10^{15} \exp(-42156 \text{ K/T}) \text{ s}^{-1}$ and H + C₆H₅ (+Kr) \rightarrow C₆H₆ (+Kr); $k = (3.3 \pm 1.2) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, respectively.

Experiments were then performed at lower temperatures (1068 to 1403 K) with O₂ added to the iodobenzene-Kr mixtures.¹⁵ ARAS observations unambiguously showed that I-atoms do not react on the time scale of the experiments with O₂ or with any other radicals produced in the system. The H-atom ARAS experiments indicated an enhanced formation rate over that due solely to phenyl dissociation. Absolute [H] measurements showed that ~33% of the initial phenyl yielded H-atoms in the phenyl + O₂ reaction. Absolute O-atom ARAS measurements showed that ~67% of the phenyl-radicals were depleted to produce phenoxy, C₆H₅O, and O-atoms. Following direct formation from phenyl + O₂, both [H]_t and [O]_t showed slight maxima indicating some secondary atom-radical recombination reactions. These features were included in a ten step mechanism that concurs with that of Frank et al.¹⁶ The final fits yielded values for the rate constants: C₆H₅ + O₂ \rightarrow H + C₆H₄O₂; $k = 4.98 \times 10^{-11} \exp(-4520 \text{ K/T})$ and C₆H₅ + O₂ \rightarrow O + C₆H₅O; $k = 4.32 \times 10^{-11} \exp(-3080 \text{ K/T})$, both in cm³ molecule⁻¹ s⁻¹. These data are theoretically rationalized along with earlier data and theory.^{17,18}

Data have also been obtained for the photodissociation quantum yield at 193 nm in ketene (with G. Glass), the branching ratio for the thermal dissociation of CH₂O, the reaction: H + CH₂CO, and the reaction: CH₃ + O₂ \rightarrow CH₃O + O. CH₃ profiles have also been measured at 214 nm using the recently described multipass optical system.¹⁹ Though complete, these data are still being analyzed. Lastly, experimental results and calculations on the thermal decomposition of CHCl₃ and the subsequent reactions of CCl₂ radicals are nearly complete.

Additional atom and radical with molecule reaction studies (e. g. Cl + hydrocarbons, OH + hydrocarbons, I + H₂, CF₃ + H₂, CF₂ + O₂, etc.) and, also, thermal decomposition investigations (e. g. C₂H₅, C₂H₃, etc.) are either partially completed or in the planning stage at the present time. These reaction studies are of theoretical interest to chemical kinetics and of practical interest in hydrocarbon combustion or waste incineration.

This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract No. W-31-109-ENG-38.

References

1. J. H. Kiefer, R. Sathyanarayana, K. P. Lim, and J. V. Michael, *J. Phys. Chem.* **98**, 12278 (1994).
2. S. S. Kumaran, K. P. Lim, J. V. Michael, and A. F. Wagner, *J. Phys. Chem.* **99**, 8673 (1995).
3. S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, and A. F. Wagner, *J. Phys. Chem.* **100**, 7533 (1996).
4. J. V. Michael, K. P. Lim, S. S. Kumaran, and J. H. Kiefer, *J. Phys. Chem.* **97**, 1914 (1993).
5. S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, A. F. Wagner, L. B. Harding, and D. A. Dixon, *J. Phys. Chem.* **100**, 7541 (1996).
6. K. P. Lim and J. V. Michael, *J. Chem. Phys.* **98**, 3919 (1993).
7. K. P. Lim and J. V. Michael, *J. Phys. Chem.* **98**, 211 (1994).
8. K. P. Lim and J. V. Michael, *The Twenty-Fifth Symposium (International) on Combustion* **25**, 809 (1994).
9. M.-C. Su, S. S. Kumaran, K. P. Lim, J. V. Michael, A. F. Wagner, D. A. Dixon, J. H. Kiefer, and J. DiFelice, *J. Phys. Chem.* **100**, 15827 (1996).
10. S. S. Kumaran, K. P. Lim, J. V. Michael, J. L. Tilson, A. Suslensky, and A. Lifshitz, *Israel J. Chem.* **36**, 223 (1996).
11. S. S. Kumaran, M.-C. Su, K. P. Lim, and J. V. Michael, *Chem. Phys. Lett.* **243**, 59 (1995).
12. S. S. Kumaran, M.-C. Su, K. P. Lim, and J. V. Michael, *The Twenty-Sixth Symposium (International) on Combustion*, in press.
13. S. S. Kumaran, M.-C. Su, and J. V. Michael, *Int. J. Chem. Kinet.*, in press.
14. S. S. Kumaran, M.-C. Su, and J. V. Michael, *Chem. Phys. Lett.*, in press.
15. S. S. Kumaran and J. V. Michael, *Proceedings of the 21st Symposium on Shock Waves*, Great Keppel Island, Australia, July, 1997, submitted.
16. P. Frank, J. Herzler, Th. Just, and C. Wahl, *The Twenty-Fifth Symposium (International) on Combustion* **25**, 833 (1994).
17. T. Yu and M. C. Lin, *J. Am. Chem. Soc.* **116**, 9571 (1994); M. C. Lin and A. M. Mebel, *J. Phys. Org. Chem.* **8**, 407 (1995).
18. R. S. Tranter, H.-H. Grotheer, J. Schaugg, and Th. Just, Paper presented at the 14th International Symposium on Gas Kinetics, Leeds, UK, Sept. 7-12, 1996.
19. M.-C. Su, S. S. Kumaran, K. P. Lim, and J. V. Michael, *Rev. Sci. Inst.* **66**, 4649 (1995)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Publications from DOE Sponsored Work from 1995-97.

The Thermal Decomposition of CF_2Cl_2 , S. S. Kumaran, K. P. Lim, J. V. Michael, and A. F. Wagner, *J. Phys. Chem.* **99**, 8673 (1995).

Multi-pass Optical Detection in Reflected Shock Waves: Application to OH-Radicals, M.-C. Su, S. S. Kumaran, K. P. Lim, and J. V. Michael, *Rev. Sci. Inst.* **66**, 4649 (1995).

Thermal Decomposition of CF_3I using I-atom Absorption, S. S. Kumaran, M.-C. Su, K. P. Lim, and J. V. Michael, *Chem. Phys. Lett.* **243**, 59 (1995).

The Thermal Decomposition of $CFCl_3$, S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, and A. F. Wagner, *J. Phys. Chem.* **100**, 7533 (1996).

Ab Initio Calculations and Three Different Applications of Unimolecular Rate Theory for the Dissociations of CCl_4 , $CFCl_3$, CF_2Cl_2 , and CF_3Cl , S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, A. F. Wagner, L. B. Harding, and D. A. Dixon, *J. Phys. Chem.* **100**, 7541 (1996).

Recent Advances in the Measurement of High Temperature Bimolecular Rate Constants, J. V. Michael, in *Gas Phase Chemical Reaction Systems: Experiments and Models 100 Years after Max Bodenstein*, Springer Series in Chemical Physics No. 61; J. Wolfrum, H.-R. Volpp, R. Rannacher, and J. Warnatz, eds., Springer-Verlag, Heidelberg, 1996; pp. 177-89.

The Thermal Decomposition of CF_2HCl , M.-C. Su, S. S. Kumaran, K. P. Lim, J. V. Michael, A. F. Wagner, D. A. Dixon, J. H. Kiefer, and J. DiFelice, *J. Phys. Chem.* **100**, 15827 (1996)

Comment on "An Improved Potential Energy Surface for the H_2Cl System and Its Use for Calculations of Rate Coefficients and Kinetic Isotope Effects" and "Quantum Mechanical Rate Coefficients for the $Cl + H_2$ Reaction," S. S. Kumaran and J. V. Michael, *J. Phys. Chem.* **100**, 20172 (1996)

Isomerization and Decomposition of Chloromethylacetylene, S. S. Kumaran, K. P. Lim, J. V. Michael, J. L. Tilson, A. Suslensky, and A. Lifshitz, *Israel J. Chem.* **36**, 223 (1996).

The Thermal Decomposition of C_2H_5I , S. S. Kumaran, M.-C. Su, K. P. Lim, and J. V. Michael, Twenty-Sixth Symposium (International) on Combustion, in press.

Thermal Decomposition of CH_3I Using I-Atom Absorption, S. S. Kumaran, M.-C. Su, and J. V. Michael, *Int. J. Chem. Kinet.*, in press.

Thermal Decomposition of Iodobenzene Using I-Atom Absorption, S. S. Kumaran, M.-C. Su, and J. V. Michael, *Chem. Phys. Lett.*, in press.