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ABSTRACT

The successive collision method for calculating resonance absorption

‘solves numerically the neutron slowing down problem in reactor lattices.

A discrete energy mesh is used with cross sections taken from a Monte

Carlo library. The major physical approximations used are isotropic

_scattering in both the laboratory and center-of-mass systems. This

procedure is intended for day-to-day analysis calculations and has been

incorporated into the current version of MUFT. The calculational model

" used for. the analysis of the nuclear performance of LWBR includes this

résonance absorption.procedure. Test comparisons of results with RCPO1

give very good agfeement.



FOREWORD

The Shippingport Atomic Power Station located in Shippingport, Pennsylvanie
was the first large-scale, central-station nuclear power plant in the United
States and the first plant of such size in the world operated solely to pro-
duce electric power, This program was started in 1953 to confirm the practical
application of nuclear power for large-scale electric power generation. It has
provided much of the technology being used for design and operation of the
commercial, central-station nuclear power plants now in use,

Subsequent to development and successful operation of the Pressurized Water
Reactor in the Atomic Energy Commission (now Department of Energy, DOE) owned
reactor plant at the Shippingport Atomic Power Station, the Atomic Energy
Commission in 1965 undertook a research and development program to design and
build a Light Water Breeder Reactor core for operation in the Shippingport
Station, ‘

The objective of the Light Water Breeder Reactor (LNBR) program has been to
develop a technology that would significantly improve the utilization of the
nation's nuclear fuel resources employing the well-established water reactor
technology. To achieve this objective, work has been directed toward analysis,
design, component tests, and fabrication of a water-cooled, thorium oxide-
uranium oxide fuel cycle breeder reactor for installation and operation at

the Shippingport Station. The IWBR core started operation in the Shippingport
Station in the Fall of 1977 and is expected to be operated for about 4 to 5
years. At the end of this period, the core will be removed and the spent fuel
shipped to the Naval Reactors Expended Core Facility for a detailed examination
to verify core performance including an evaluation of breeding characteristics.

In 1976, with fabrication of the Shippingport IWBR core nearing completion,

the Energy Research and Development Administration, now DOE, established the
Advanced Water Breeder Applications (AWBA) program to develop and disseminate
technical information which would assist U. S. industry in evaluating the

IWBR concept for commercial-scale applications. The program is exploring some
of the problems that would be faced by industry in adapting technology confirmed
in the IWBR program, Information being developed includes concepts for
commercial-scale prebreeder cores which would produce uranium-233 for light
water breeder cores while producing electric power, improvements for breeder
cores based on the technology developed to fabricate and operate the Shippingport
IWBR core, and other information and technology to aild in evaluating commercial-
scale application of the IWBR concept,

All three development programs (Pressurized Water Reactor, Light Water Breeder
Reactor, and Advanced Water Breeder Applications) are under the technical
direction of the Division of Naval Reactors of DOE. They have the goal of
developing practical improvements in the utilization of nuclear fuel resources
for generation of electrical energy using water-cooled nuclear reactors.

Technical information developed under the Shippingport, IWBR, and AWBA programs

has been and will continue to be published in technical memoranda, one of which
is this present report. :

Revised 1-17-80
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A'SUCCESSIVE COLLISION CALCULATION OF RESONANCE ABSORPTION

E. Schmidt
L, D. Eisenhart

INTRODUCTION AND MOTIVATION

Deterministic procedures to estimate epiﬁherﬁal neutron resonance
absorétion in day to day nuclear analysis calculations evolved during the
1954-1966 period. The limitétions of computer speed and'architecture of
. ;u ' E that period certainl& influenced what was reasonable to compute.‘ These
procedures were incorporatea‘into MUFT(;'lz),-which is a multigroup sibwing
dﬁwn spectrum program,
Resonance absorption in MUFT is based on a resonance escape model with
the reéonance absorption rate in MUFT multigroup'm being given by qm-l(l-pm)

1

. Where qm- is the slowing down density at the top of group m and pm the

m
: -RI
resonance escape probability for group m. pm is in turn given by e hom

where RIﬁom is the resonance integral in group m with subscript hom referring

m

nom can be constructed from microscopic

to the homogeneoﬁs value. Finally RI
data in the MUFT library which lists resonance integrals for each resonance
in group m. -

This is certainly a simple modelifor computational purposes. However
many simplifying éssumptions are contained in this model. Some of the more
significantc simplifications are: no resonance errlap, no heterogeneous

effects, the library data is not Doppler broadened, and only hydrogen moderation

is permitted. In recognition of the effect of these simplifying assumptions, the



Instead a direct computation is made of a proper resonance escape probability

-2 ) .

MUFT program provides for correction in the form of an L factor which can. be »
applied as a multiplier on -the RIhom for each nuclide.  For most applications

the usefulness of MUFT .depended on the analyst's ability to determine these

L factors such that pm accurately gave the desired relation to qm_l.:“Both

(2) (13)

analytic and later Monte Carlo programs were uséd to determine

effective L factors.
Later, a spatially dependent slab cell capability was incorporated into

(J),~was designed to cal-

MUFT. This model, provided by Candelore and Gast
culate L factors which accounted for resonance  overlap, Doppleberoadening,
and slab lattice heterogeneity. This corrects many of the'assumptions in the

MUFT calculatioﬁ that result from the use of the RI

hom* The pr1n01pal re@aln—

ing difficulties were then: restriction to hydrogenous moderation only and

a

an overly restricted heterogeneous capability which excluded rod lattices. The

e
s

computed L factors were averaged over energy ranges including many MUFT multigroups.
Methods that rely on using this L factor ﬁype of correction can become

quite complex., If correct resonance absorption rates are to be preserved
for each multigroup using the relation,

RL . 2 LRL (1)
then each isotope requires an L factor for each multigroup. In additiaon the
homogeneous resonance integrals must be subdivided among the multigroups to
properly localize the absorption. Current practice isolates the homogeneous
integral to the multigroup containing the resonance peak energy E.

The method described in this report departs from previous procedures since

the use of L-factors is abandoned entirely for repeating lattice arrays.
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per nuclide per MUFT group by using-a space-energy shielded flux shape computed
over the entire resonance energy range (5.531 keV down to 0.625.eV by MUFT
convention) and, as input, a true Doppler broadened line shape profile
generated by whétever formalism is appropriate to the particular resonance
nuclides of interest. An excellent source for such profiles is a Monte Carlo
library, such as generated by RCPLl(ls). The spatial heterogeneities are
treated within the confines of integral transport theory assuming infinite
lattice arrays, This method offers various refinements over similar earlier
(4)

generation methods used in the computer programs ZUT and TUZ as well as

WIMS(S) and RABBLE(6). The major modelling assumptions are:

(a) scattering is isotropic in both the laboratory and center

of mass systems,

(b) all scattering and slowing down sources are spatially.flat

within distinct lattice zones, and

(c) all elements contribute to neutron moderation.

The programs referred to above are primarily analysis tools to be used
for special calculations as the limitations of their computation systems
permit, The method presented here is intended for use in day to day
caiculations on current computers,

Assumption b, commonly referred to as the flat flux approximation is the
most significant assumption remaining for systems in which the spatial flux
undergoes large variation, The flat flux approximation causes a re-

distribution of neutrons in a strongly space-shielded zone away from the

[ S
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surface areas where most of fhe actuél scattefing occurs. This results

in an overestimate of the reaction rates for such absorbers. In'prinéiple
this error can be made as small as desired by_subdividiﬁg such zones.
Initial experience with this model indicates that it-generates quite
accurate results. Typical errors in préctical lattice design problems;v
are less‘than 1% in resonance reaction rate for éaturated absorbers and:
subétantially less for the others...The'meﬁﬁod is currently included in -
the LWBR calculatiénal model. Extensive comparisons of résonénce re-'

action rates calculated for LWBR lattices with Monte Carlo, RCP01(13) and

PAX, a program containing an updated version of MUFT along with this

resonance model, are presented in an LWBR repért (Ref. 14),.

THE DISCRETE METHOD FOR THE SUCCESSIVE COLLiSiON CALCULATION

Briefly, the successive'collision calculatioﬁ solves for the space-
energy fluxes in a reactor lattice thrbughout the energy fange of interest.
The energy dependent iﬁtegral Boltzmann equation is solved for this purpose
undef the simplifying physical assumptions a-c mentioned‘above. A discrete
nuherical flgx>éolutioﬁ is obtained a£ discrete'engrgy and spatial mesh
poinfs. The spatial mesh'cohsisté of zones ‘in the'lattice;' The reéction
rétes for each isotope are determined from these space—enérgy flﬁxes. A
useful feature of this method is that it divides naturally into three
independent subdi§iéions. These are the library and energy mesh, the °
_slowing down model, and the firstJCOliision transfer probability model.
Each of these sﬁbdivisiéns can be improved either'iﬁ physiés modelling
or'numefically without having to-éhange the other two. A mdre detailed

description of these subdivisions will now be giVén.
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THE ENERGY MESH

The energy mesh to be used is derived from the energy mesh in the

‘Monte Carlo library. It is assumed implicitly that the Monte Carlo mesh is

adequate for our purposes in both representing resonance line shapes and

for slowing down integral calculations. The obvious choice of mesh for this
discrete calculation is to use the full Monte Carlo mesh. However, if this
results in excessive computing times, some reductibn of ﬁesh is desirable.

A uniform reduction would not be sétisfactory since essential detail in line
shapes could be lost. An algbrithm has been devised that evaluates the
relative importance of each mesh point and retains or rejgcts that point
.accordingly. Such a reduced mesh is thus tailored to the specific isotopes
present in the library and in this sense would be pért of_the iibrary since

its use might not extend to other isotopes not in the library.

The selection process proceeds by selecting some isotope in the library

and constructing its accumulative resonance integral to each point En in

the Monte Carlo energy mesh

I“Sl = (2)

using in this case trapezoidal rule with the starting point El‘ The
integral due to omitting points starting with E2 is now determined. When the
relative difference between the fine and coarse integral exceeds some

accuracy criterion the last point Ek omitted is selected for the reduced



mesh, This procedure is now repeated by omitting E and measuring the

k+1

integrals from E Such a process can be seen to control the local truncation

K
error in the resonance integral over the reduced mesh for the particular
isotope, The accuracy criterion is further modified to reflect the relative
contribution of the coarse mesh intervél to the total resonance integral. 1In
this way the mesh is more concentrated where significant absorption occurs.
So as not to skip minor resonances completely, all maximum and minimum points
from the original mesh.are retéined, After fhe mesh is determined for a given
isotope the next isotope is examined in a similar manner except that all points
already accepted are now automatically retained. This results in filling in
only the gaps as necessary to adequately represent this isotope. This process
is continued until all isotopes have been processed. The final mesh is
actually a function of the order in which the isotopes are processed and not
the union of the meshes from each isotope defermined independently. Finally,
points are added thét are convenient for editing purposes and for fillingAany
gaps left that would be too large to properly represent scattering integrals
for the heaviest isotope in the library. |

If the Monte Carlo library contains a representation for unresolved
resonances a corresponding method for reducing the mesh must be determined. The
Monte Carlo library contains a cross section value at each point that is randomly
selected from the unresolved distributions, '"T'here are no continuous érofiles
for such a distribution although trapezoidal integrals are still meaningful,
Any subset of this distribution is acceptable if the reduced set is

renormalized so as to retain the resonance integral of the fine mesh values,
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In praétice a'uniform subset is selected and, when more than one ;sotopg
is treated as unresolved, the seme subset ié ﬁsed for all. A more formal
description of this,élgo:ithm»is given in ﬁhe appendix. Ihe RCPLl program
genergtéé this file for PAX which. is used in conjunction with the xap(19)
1ibrary for smooth cross sections. |

‘While the final mesﬁ,is tailored to the ﬁCPLl'library; it is hot
equivalently tailored to the actual problem. This is so because the
effective resonance profile, averaged over a lattice reflects saturation
effects, which fléttenslthé sffong absorption peaks. This has the etfect
of écqehﬁuating the resonance wings where a bréader“mesﬁ WAstelected.
When satufation effects are anticipated it is advisable to calcﬁlate»at

least once with the full Monte Carlo mesh for the purpose of evaluating

any effects due to mesh reduction.

THE .SLOWING DOWN CALCULATION
The mgthod for tregting.neutron moderation is based on the initialv
assumption of isotropic scatﬁering in the center of mass system. The

normalized kernel for this type of scattering is

. Al-ulE E Z E z “E
- ! ’ .
P(E"E) = | o | - (3)
' . ’ I}
Q : EE or E <oE

. M-t i '
with o = ( ﬁ:ﬁ ) where M is the target mass and n the neutron mass. A useful
.propgrty,of this'kernel is that the outscattering probability per'unit energy

is constant over the rénge a;lowed. This permits the source levels due to

neutron scattering to be stored in an accumulative manner for each spatial



zone in the lattice. 1In order to fuftﬁer describe this technique it is

first necessary to describe tne method aaopted for energy integrations.
Reaction rate calculations are cafried'out at the discrete points of the

energy mesn. However, the source levels for these calculations are integrals
“over precisely defined energy ranges whose end points will not correspond
exactly with this discrete mesh. Since the final resulte of thio calculatiocn
are the integrated absorptioh rates for all isotopes, the integration scheme for
scattering integrals is effectively defined by the absorption rate integrations.
The trapezoidal rule was chosen for this.purpoée. This is equivalent

to adopting a group scheme with cut points thatrlie between the entries of

the discrete mesh. The contribution to a scattering integral from a given mesh
point thus becomes proportional to the fraction of the group that lies within
the energy range of integration. The outscatter distribution from the

initial energy point is défined in this manner using the normalized

integral. The source levels are constant for those energy "point groups“A
below the initial energy point that lie entirely within the allowed range

from Ei to mEi. The point group in which aEi falls is reduced fractionally.

Also that fraction of the initial group below Ei is accounted for by treating
it as ine-group scattering. This numerical kernel is neutron conservative

which is a necessary constraint to this method.
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The accumulative source is determined by the ensuing prescription.
Let Si be the scattering collision density due to some given element at Ei'

As part of this calculation the "in-group"” scattering cross section

(o]

o (E;) , E-E.,, .
ss (i-a%Ei ( 2i+l ) (4)

is used for this element. The source at Ei+ is incremented by

1

Si(Es 3 = Byn)

eEsy (5)

895

This contribution is left in the source until group point k is reached where

k is the group containing «E The kth point source is incremented by the

io

negative value

(Bypy + B

-S
1
Aqk=ﬁ-_u'ﬁ§;[“E1' B ] (6)

Finally the k+l source is incremented negatively by Aqk+l where
@q ., +dq +dq.,. =0 (7

and the source at E has no contribution left from initial energy Ei' This

k+1
procedure requires an addition to the library of Oss(Ei), X, and.éqk/si which

can be either precomputed or determined as needed. While this method is used
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in actual calculations it should be noted that the in-group scattering

and the end point corrections have no great physical significance: They

are merely functions of the energy mesh and quadrature scheme used. An
interesting alternative would be to use both degrees of freedom available
here to retain an additional physical property; that of neutron con-
servation. An obvious choice would be to maintain the correet asymptotic flux
solution for the given elemental scattering kernel, Under the initial
isotropic scattering assumption the asymptotic flux is 1/E ES(E). The in-
group scattering and end point fraction are determined simultaneously to
preserve both neutron balance and the correct asymptotic flux for an infinite
medium containing only the specified scatterer. This method was found to be
feasible but was not incorporated into these calculations since the simpler
and faster trapezoidal method proved adequate.

The entire epithermal energy range i1s not in fact a true slowing down
range. At the lower energies éome upscattering due to thermal molecular motimn
and molecular binding is observed. Many resonance absorbers have effective croés
sections that are high enough in energy to ignore upscattering effects. Rowever,
important 1/v cross sections, such as hydrogen and Boron as well as fuel materials
with low energy resonances, 8re more sensitive. in order to 1nclud; this effect,
a modification to the slowing down equations was made for hydrogenous moéerators
only. This modification is approximated as follows. At epithermal energies the
bound hydrogen outscattering approximates a distribution exhibiting a sharp
elastic peak plus a slowing down shape of the form Erf (J%;-> vhere T* is

a known kernel parameter called the effective temperature, For H.0, T# is ahont.

-~
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0.12 eV and the error function is essentially unity for epithermal energies.

The épproximation is to regard the elastic peak as a delta function (or in this

approximation as in-group scattering) and the remainder as regular slowing down.

The infinite medium flux from such & Xernel can be found from the balance

equation with « = O (since M = n).

Jf” Ert (J‘ET: >, o (E’)

aE’ (8)
g = .

5 1 (E)9,(E) = o

Here Csl(E) is the slowing down part of the cross seétion

o4 (E) = ;—f-pj:Erf (@) e ~a, 0-3F) O

where Op is the free particle cross section which is energy independent. The
approximation in equation 9 assumes T* << E, If one uses the approximate
OSL(E) and lets Erf (J %; ) equal unity the balance equation becomes

= ¢ (E')aE’

(1 - 2 ) eu(E) = JE — (10)

‘ . -2
\
This has for a solution wm(E) = % Ql - g% ) . Using typical values for

an H,0 kernel, this solution is accurate to about 1% at 0.625 eV when
compared to the correct solution for the original kernel(7). The actual
computation uses a library value for anydrogen scattering and the above
analysis requires that the library values have been modified to account for

upscattering. A corresponding modification of the total scattering cross

. T, .
section is cfp (1 + EE)
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The same isotropic slowing down kernel also is used to determine the
initial source levels and distributions. The initial source is froﬁ neutrons
scattered last at energies above the top resonance energy considered,
Asymptotic conditions are assumed to hold at these energies and
the absorption free flux is proportional to l/E and flat spatially. The

resulting slowing down neutron sources at resonance energies are computed and used

to initiate the accumulative source calculation process.

THE FIRST COLLISION TRANSFER MATRIX CALCULATION

The metﬁods for determining the first collision transfér probability
matrices over the lattice spatial zones are based én the initial assumptions
that all neutron sources are isotropic in the laboratory system and uniform
spatially in the originating zone. The transfer probability from one of the

type I zones to all of the type J zones can be written symbolically.
. 1
P =-'-J‘ ar’ EJF )K(r"‘ r)dr (11)

where K(r‘~ r) is the isotropic first collision transport kernel. This kernel
could be very complex even in & simple rod lattice. If a périodic.lattice
or infinite array of cells can be defined, then by using cell or periocdic boundary

conditions through the use of periodic boundary conditions, the sum‘in,PIJ

can be eliminated. This will always bg the case for these computations.

If the lattice element contains n zones, then there are 2$§:£l independent P

I

values. This follows from neutron reciprocity and balance conditions.
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(V)1 Pry= (BV); By - (12)
n .
YR =1 (13)
J=1

where L is the total cross section and V the zone volume.

P.. has been evaluated for four distinct types of lattices. Three

1J
ofAthese are rod lattices and the fourth a slab lattice. The first two rod
lattices are made up of 4 zones consistiqg 6f a central rod, a possible void gap,
 a clad zone, and a moderator zone. Although rod, clad, and moderator are. referred
to for convenience, this does not restrict the material content of these zones as
the procedure treats all zones equivélently. The zone boundaries are circulgr cylinders
except for the lattice boundary which is either a symmetfic hexagon or a square.
The third rod lattice is actually a wigner-Se1tz cell'with up to 8 concentric
cylindrical zones. The Wigner-Seitz cell method replaces a geometrically com=-
plicated cell with a much simpler one pfeserving volumes. In this case the
ouﬁer hexagonal or square cell boundary is replaced with a cylindriéal-one with
tﬁe same.volumé. A white boundary condition is assumed which can be visualized

as a one-fore-one neutron exchange with an external isotropic infinite neutron

bath, The slab lattice is straight forward with up to 8 zones,

The hexagonal and square rod lattices are too complex to attempt to

evaluate the P_._ integrals directly. A common approach nere is to use Monte

1J
Carlo for this purpose. The Monte Carlo method is used but with

systematic instead of random sémpling. Tnis is similar -to the method used in
the THERMOS(S) progrqm.' The Monte Carlo approach for such & problem would be

to select starters randomly on the surface of the source zone and a random
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ekiting direction €1 drawn from an isotropic ( distribution. An initial weight

is calculated based on the chord length in the source zone in the =1 direction.
This is called a surface source technique which can be used=whenevér the in-
ternal source spatial and‘angular distributions are known which of course is

the case here. The particle is tracked through the lattice and the weights
deposited in each zone contributed to the desired PIJ values. The tracking

is terminated when the particle weight has fallen below some specified small
value. This can easily be éampled systematically by usiﬁg avuniformly distributed
set of (), and & uniform set of surface points.  The latter distribution is re-
quired sinc¢é these lattices.do not huve cy;ludflual Symﬂetry. This wethod wné
incorporated into the system by uéing modifieé'trécking routines from the

Monte Carlo prOgram'REsqz(l) which treétqd si@iiaf.geoﬁetries. However this
method is too laborious to execute for each point in the energy mesh. Instead,
tables were prepared over a discrete set of input cross ections in each zone
which must span the range of cross section values encountered in the specific
problem. .Thus the calculation is carried out a few hundred times to prepare
tables rather than a few thousand times which would be required for each energy
point. The tracking routines in RESQ2 were limited to three nonvoid zones. This,

plus potentially large computer storage requirements, is the reason for limiting
the number of zones in these lattices.

The Wigner-Seitz cell can be calculated more directly using techniques

similar to those in the PIJ(lO)

(6
and RABBLE( ) programs. Here the transport line
source kernel is used to determine the first collision probabilities for all
neutrons traveling in a given vertical plane. These planar probabilities ééﬁ be
expressed using the K13 function for which accurate rational pelynomial approxi-
‘mations are available(ll). The plane is then integrated numerically. as it

traverses the cell along some radius. This process also sweeps out all possible
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orientations because of the cylindrical symmetry and the PIJ matrices follow

directly. The procedure is carried out as if the cell were isolated and the

probability of exiting through the boundary surface S is also recorded. The

white boundary condition selected admits a surface to volume reciprocity relation

of the form

(20); Prg = 3 Py (1%)

which determines the probability of neutrons entering from the external

In equation 1, S is the surface area of the

. *
external zone B. This permits the determination of a matrix PIJ

bath colliding in zone I.
that in-

cludes the effect of the white boundary and effectively converts the PIJ

matrix for an isolated nest to that of an infinite lattice within, of course,

- the Wigner=-Seitz cell approximation.

x  Pry Prp Fpy
P, = —————— (15)
15 S

BB

The slab lattice calculation can be done directly from the integral

definition. The .resulting PIJ values can be expressed in terms of the two

parameter function

- X
Fy_a=(=x)t--  -xt-
Flyx) = [ S ddee &8 oy (16)
1 1-e7Y t
Let the optical thickness of slab zone I = Tre Then we define 7,

as the optical thickness of the zones between I and J and TB.the optical
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thickness of the zones in the lattice element but external to I and J. The

Tnickness of the entire lattice element & is then

A =T_ +T_+T, +°T (17)
and we have

rig) G, Tt ) - H(e, Ty - Fle, Ty . (28)

‘The function F(y,x) can be expressed in two convenient forms

F(y,x) = 3 = By(x) + ) [2 Bymy) - Eglny+x) - & (ny-x)J o (19)
or =t
_ ory , [2mx GNP o x\
Plyox) = x E§ * ( E] }i L2n(2n+2)' ( ) - T§H:%TT(§HTT qbn(?)] y<am

" n=l

In the latter form Bn are Bernoulli numbers and ¢bn(x) is defined

2n-4

2n 2n-1 2n 2n-2 2n’
) B X ( B,¥ + ... (21)

S (X) = X - DX + 13 ) F )

\_,

0
where ¢bn(x) ends in x or x . The first series is useful for large y and

the latter series for small y. If desired for more rapid computation,
F(y,x) could be tabulated as it is a universal function that is problem

Indegendent.

(20)
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MUFT USABLE RESULTS

The resonance integral method produces space-energy fluxes ®(x,E) for

E, < E < E_, using the approximétions previously discussed. This statement

B T
is totally independent of any MUFT formalism. If it is assumed for simplicity
that the source of neutrons, qT, slowing down past energy ET is precisely
unity, then all-reaction rates are directly interpretable as probabilities

of interaction.

Let (AR)™ and (AS)™ be the resonance and sumooth macroscopic absorption

probabilities for MUFT group m.

Thus,
Em-l
Gt e [ [ 2 () s () amy (22)
X m res
and
Bp-1
m® =[] 2 (83 8 (Bx) avax (23)
X E sm . : .
m

Then with qT = 1,

ya (2"4.)

@ =a_, - (AR - (s) .

The resonance absorption p is defined as

= Exo{ <RI 25
P BX2 R'het,a) : (25)




-18-

RL., o = #n(1-(AR)"/q ;) ’ (26)

The isotopic distribution of the p's or alternatively the RIhet.s’

are obtained from:

: (AR)T L
m, i - i m
RIhet,a (AR)m RIhet,a (27)
where
Em-l
aR)? = [ | w(x)e, (B) ¢ (E,x) apa (28)
X Em res

However, if a parﬁicular lattice is very heterogenous then there exists
a nontrivial amount of spatial shielding of the smooth cross éections also.

lThig resonance integral treatment coﬁputes the isotopes' resonance
absorption and fission for the actual heterogenous lattice celis; Thisuv
implicitly contains the effects of the space energy shielding of the smooth -
cross sections to within the accuracy of the integral}#ran§pp;§.us;d. This
data would then be cast away by MUFT since it only acceépts resonén&e‘eSéapgz
information per nuclide per multigroup. However, if the "resoﬁance-escape"
p were redefined to include all absorption and then the MUFT absorption

E: set to 0,0, MUFT would then preserve the slowing down density distribution

sm R
as computed by the heterogenous resonance integral treatment exactly. Conse-

\ ';:::

quently, the following alternative treatment is possible. "In the MUFT
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calculation set o:fm and oi’m

sm sm
in the MUFT resonance range that is being explicitly computed by the new

equal to 0.0 for all multigroups and isotopes

resonance treatment (usually 5.531 keV down to 0.625 eV). In the editing
portion of the resonance integral calculation, trigger an option so that

P is defined as the total absorption ‘escape probability as follows:

o™= Egp (;Rlzzt,a) . (29)
but
RO = an(l - LAR)® + (a8)"/d0) (30)
as opposed to
nglet,a = bn( l-(AR)m/q:-l). (31)

Thus, the MUFT calculation will preserve the isotropic slowing down denéity

q, in the resonance range as calculgted by the heterogenous resonance integral
treatment. The version of MUFT contained .in PAX will do either method; however,
one slight difference will appear. The basic MUFT method does not include the
concept of a scattering resonance shape; also, the infinite mass scattering

has no effect on the MUFT computed flux Fg. The isotropic MUFT slowing down
equation below the ineléstic scattering energy range for the case of no buckling

is given by

™ —(l-pd’m)
sma - m 0 _ m-1 m m-1
(L ) o = o 9, + E (K (a))y (32)




«20«

but
(™)™ _ 0.0 for this model (33)
and
m 2 _, - m m-1 2 m=-1
(Kn)i "m 2 (Ko)i (qo)i =% - (34)
Q i a
Thué
= M -~mo_ a,m, m-l
(2 )"0 = (1+p®™) - (35)
where
2 - - m
(B =5 (%), (36)
0o am {eIso i o’i
and

ﬁi is the homogenized cell number density and (EO)T is the isotropic

Grueling=-Goertzel slowing down pover.
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A NUMERICAL EXAMPLE

As a test of the applicabilit& of this discrete method, we give the
following numerical example is given using LWBR seed and blanketlrod lattices,
The essential features of these calculations are given below. Tﬂe Monte
Car{p library contained six isotopes with resolved rescnance shape cross section
profiles. There were in all 386 resonances in the calculational range of

5531.0 to 0.625 electron volts. The Monte Carlo mesh contained 29,000 points.

Using an algorithm of the type described in tne appendix, this mesn was reduced to

ﬁbout 5400 points. The LWBR rod lattice is hexagonal and was divided into
rod, clad, and moderator zones. PIJ-tables were constructed for 162 points
over the zone cross section sets. The systematically sampled Monte Carlo was
carried out using 72}surféce points around the zone perimeters and an angular
mesh with 360 Q;- Resongnce reaction rates were determined for the profile
pért of the crossAséc£ién with this discrete method and with Monte Carlo for—-
comparisonAﬁurpdse;. . The discrete methed took 1.7 minutes and the Monte Carlo
60 minutes on the CDC T600 computer. Table 1 gives the ratios of dis-

_crete to Monte Carlo reaction rates for each isotope. The figure in parentheses

is the Monte Carlo 95% confidence interval in units of the last digit.
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TABLE I

Resonance Reaction Rate Ratios in LWBR

Seed and Blanket Lattices

Seed

Isotope

y?33 0.9974
oo 1.0181
U235 0.9936
on>° 1.0110
Zr 0.9982
Pa233 .

Blanket

Discrete ,

Monte Carlo
(46) 0.9977 (43)
(346) 0.9785  (305)
(114) 1.0061 (61)
(65) 1.0085 (A1)
(357) 0.9977  (252)
1.0042 (101)

It 1s to be noted that only the thorium ratios differ from unity by.

more than the 95% confidence intervals. This is due to the flat flux 4

approximation together with the highly saturated nature of the thorium

resonances in LWBR rods. The behavior of the ratios in Table I are typical

of the experience with this method. The computational times for the dis-

crete method are short enough to justify its use in conjunction with MUFT

or MUFT type cross section programs without having to resort .to separate

resonance shielding calculations.

4
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APPENDIX

Formation of a Reduced Energy
Mesh from & Given RCPL1l Library

I. REDUCED MESH FOR ONE ISOTOPE IN THE RESOLVED RESONANCE RANGE .

The resolved profile is given by a set of pairs (Ei’ci) for i = Niseoos

Né where ENl is the highest resolved energy, and EN2 is the lowest. Let

. En
1l
Ry be the infinitely dilute resonance integral J [o(E)/E]AE, then R; 1s
Ey
given recursively by RNl =0
and
o o (E, ,-E;)
i i-1 i-1 "1
Ry =R, ; + [ E, + 5 . 1= N+1,..0,

This is, in fact, the trapezoidal approximation to the actual integrals.
This is assumed adequate since RCPL1 also uses the trapezoidal rule for

its edited integrals. Also define the following two quantities:

and

g = RIG/ 1n(ENl/EN2)

Let a prescribed criterion £ contained in (0,1) and a constant ¢

contained in [0,1] be input. Then the following algorithm will insure
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all local maxima and minima will be retained ac well as points where
either the distribution has much curvature or .is absolutely quite large.
{(a) select ENl as & mesh point
(b) 1let i be the last accepted mesh point and set i = i+2

(e) if E has already been selected for a previously consicdered

d=1
nuclide, then go back to step (b) after setting i to j-1

and return to

(a) ar (uj-l_cj—z)(dj'aj-l) < 0, then select Ej-l

Step (b)

(e) let T = c(RJ-Ri) + (l=c) @ 1n (Ei/Ej)

g, c E.-E
oty (R0 2) (350 - rpmy

if Té a cTi, then Ej-l io oclccted and return to Otep (b);
otherwise, j = j+1 and go to Step (c).

(f) select Ey, 85 & mesh point.

Thus, the "important" points of the resolved distribution have been chosen.
Here "important' means all maxima and minima of the resolved distribution
as well as sufficient strategically placed polnts to ensure ‘that the error

ARI satisfies
\ ARI” ‘ < @RIQ

To see that the above relationship is valid regardless of ¢ requires

some algebra, It can be seen that 'I‘2 is the error in the RI_
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integral due to compacﬁing of the mesh ‘between Ej and Ei' Let the set

oJ= { E‘: El\l2 < Ez < ENI} be the mesh selected by the e.bove' process. Thus,

s (305 ) (B5) - (o)
|eRL| < XA

Nof, sum the &'{'s over the set +f
ZTZ E{ “z’“ )+ ‘(1"")-5 n ( ;"1..1/”: ) }

4 z'rf...‘g Z( Ry-Ry i ) + (1-c)o Zln( é‘.ﬁl/E‘ )

L y : £

Z'I’f - cnna-cRﬁl + (l-c)? l.n( ENI/Ena )

£

However, from the defining relations at the beginning of this section:

Z'rf = ¢RI, + (1-¢) RI, = RI,
L

Combining sll results,
laRT, | < 2'1'35 cZTf- eRI,,
. ’ z . z ) .
large values of ¢ tend to emphasize regions of high curvature in o, vhile emall

values of ¢ emphasize regions whéne_g_is relatively large.
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II. REDUCED MESH FOR THE UNRESOLVED RANGE

A frequency K will be used over the energy ranges vhere the nuclides ﬁave
unresoived resonances. Nominally, for such ranges, the cross sections generated
by RCPL1 at every Kth energy will be chosen. When, however, other nuclides
have resolved datz in such ranges, only sufficient additional energy mesh points
will be selected to assure that no mesh gaps larger than K original ppints
remain. Due lo the arbitrariness of samples from the statistical distribution
computed by RCPL1, it is possible to perfurb significantly the RI_ over the un-
resolved range. In the unresolved range, the RI is slightly differently defined.

Let N3 and Nh be the endpoints of the unresolved regime within a single RCP group,

then
Ny-1 .
e . : Ei.1-Bya1 B T L T e Y
RI,-_[ °(E)§- -.2 °1( R )"’N3( R )WF;,( 2By )
EN:, ‘ 1'1'3"’:l * " *

Consequently, after the selection of thé final mesh, RI (for each isotope's

unresolved range) should be calculated for both the new reduced mesh and also
the original RCPLl mesh. The ratios of the integrals should then be used to

normalize this discrepancy. |

IIT. CONSTRUCTION OF THE FINAL MESH <

By the techniques given in Sections I and II, it is possible to piece together

an unresolved mesh and a resolved mesh for a given isotope i from the original

RCPL1 mesh denoted by £ . Let this mesh be called?m_i. Let I be the set of

aU.S. GOVERNMENT PRINTING OFFICE: 1980/603-113/868

4]
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all isotopes. Now form Y/ by the following set-theoretical union

meUmic €

1¢1

and order the elements of 77 by decreasing criergy value.

The mesh 771 may still lack sufficient points for an accurate repregentation
of éloving down of very heavy isotopes. In order to obviate this possibility,
let another input conaﬁnt d (default value d = 0.01) be given. Then check the
elements Ej and Ej ;) ¢ M for all J. If (EJ-EJ,,_]_) >a Ey, then pick an
" 'sdditional energy point (or points) from the set g until (EJ-E.jﬂ) <dEyis
satisfied.

Given the point Es¢ 7 £ind E, ¢« { such that the following relation 1s valid

Eyyy < (1-Q)E) <E; for E,,E, ¢ & |

Then make Ei the new EJ+1 and increase the index of ‘all ensuing ch 772 .
Also, if the energy EJ ‘1s ‘.11'1 the unresolved range for at least one nuclidg then
ve must also add sufficient points to 7 to insure sampling at least each K"

.energy of the original mesh ((_ . This is then the final get J .





