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Abstract

Hydrogen Local Vibrational Modes in Semiconductors
by
Matthew Douglas McCluskey
Doctor of Philosophy in Physics
University of California. Berkeley
Professor Eugene E. Haller, Cochair

Professor Peter Y. Yu, Cochair

Following a review of experimental techniques, theory. and previous work, the
results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in
several different semiconductors are discussed. Hydrogen is introduced either by
annealing in a hydrogen ambient, exposure to a hydrogen plasma. or during growth. The
hydrogen passivates donors and acceptors in semiconductors. forming neutral
complexes. When deuterium is substituted for hydrogen, the frequency of the LVM
decreases by approximately the square root of two. By varying the temperature and
pressure of the samples. the microscopic structures of hydrogen-related complexes are
determined.

For group II acceptor-hydrogen complexes in GaAs, InP, and GaP. hydrogen

binds to the host anion in a bond-centered orientation. along the [111] direction, adjacent




to the acceptor. The temperature dependent shift of the LVMs are proportional to the
lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM
and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by
metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H

complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn.

In AlSb. the DX centers Se and Te are passivated by hydrogen. The second.

third, and fourth harmonics of the wag modes are observed. Although fhe Se-D complex
has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous
splitting is explained by a new interaction between the stretch LVM and multi-phonon
modes of the lattice. As the temperature or pressure is varied. an anti-crossing is

observed between the LVM and phonon modes.
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1. Introduction

Since the invention of the transistor in 1949, the integrated circuif in 1959, and
the subsequent growth of the semiconductor industry (Braun and MacDonald, 1978), a
great deal of research has focused on the physics of semiconductors. The ability to
manipulate the conductivity of these materials over more than fifteen orders of
magnitude through controlled doping has made them indispensable in electronics
applications (Seeger, 1989). Impurities and structural defects drastically affect the
electrical and optical properties of semiconductors, both beneficially and detrimentally.
In this thesis, I will concentrate on hydrogen-related defects.

A semiconductor crystal such as silicon is composed of atoms arranged in a
periodic lattice, with covalent bonds between neighboring atoms. A specific minimum
amount of energy is required to excite a valence electron out of the valence band and
into the conduction band, where the electron can move freely and carry current. The
“missing electron” in the otherwise filled valence band is called a fiole and has a positive
charge. Analogous to an electron, a hole can move freely in the valence band. The
minimum energy difference between the conduction and valence bands is known as the
band gap, and for silicon itis 1.1 eV. At room temperature, only a small fraction of the
intrinsic electrons (holes) are in the conduction (valence) band. SO an intrinsic

semiconductor is semi-insulating. The band gap of an intrinsic semiconductor may be




determined by measuring the thermal population of electrons (holes) in the conduction
(valence) band as a function of temperature. An Arrhenius plot of the logarithm of the
free carrier concentration yields the band gap energy. The band gap may also be
measured by optical absorption, in which a photon excites an electron into the
conduction band. The band gaps of semiconductors such as germanium (Newman and
Tyler, 19}59) and GaAs (Moss and Hawkins, 1962) have been measured in this way.

The band structure of a solid arises from the periodicity of the atomic potentials
in the lattice. According to Bloch’s theorem, the translational symmetry of a lattice leads
to electronic wavefunctions that have a well-defined wavevector k (Yu and Cardona,
1996). In all diamond and zincblende semiconductors, the valence band maximum
occurs at k = 0 (Kittel and Mitchell, 1954). If the conduction band minimum also occurs

at k=0, then the semiconductor has a direct band gap. Otherwise, the band gap is

indirect. A simple model of a one-dimensional periodic potential was offered by Kronig

and Penney (1930). The Kronig-Penney model consists of an infinite series of square
wells and yields allowed and forbidden energy bands that depend on the height and
spacing of the wells.

Detailed band structure calculations have been performed for semiconductors
using the tight-binding, or linear combination of atomic orbitals (LCAO) approach
(Chadi and Cohen, 1975). Alternatively, the orthogonalized plane wave (OPW) method
uses a plane-wave basis set, with the atomic core electron wavefunctions subtracted from
the plane waves (Herring 1940). The pseudopotential model (Cohen and Heine. 1976)

replaces the rapidly varying part of the wavefunction near the nucleus with a smooth




function. The theory of ab initio pseudopotentials was developed (Louie et al., 1977;
Starkoff and Joannopoulos, 1977; Zunger and Cohen, 1978; Hamann et al., 1979; Kerker
1980) to model, from first principles, the interaction of the valence electron with the core
electrons.

Introducing impurities into a semiconductor can increase the free electron or hole
concentration. A donor such as phosphorus in silicon has one more valence electron
than the silicon atom: that it replaces. The additional electron is bound to the positively
charged phosphorus ion, forming a hydrogenic system. In the case of phosphorus in |
silicon, the electron binding energy is 45 meV, which is sufficiently low such that
practically all the electrons are ionized into the conduction band at room temperature.
An impurity such as boron has one less valence electron than silicon, so it is an acceptor.
The holé is bouhd to the negatively charged B ion and it can be excited into the valence
band.

Hydrogenic impurities are described well by the effective mass theory (Luttinger
and Kohn, 1955; Kohn 1957). In a direct gap semiconductor, the energy of an electron
in the conduction band is approximated by

E = Ecgy + WK 12m’, (1.1
where Egy is the conduction band minimum and m’ is the effective electron mass. In
general, the effective mass of an electron or hole is inversely proportional to the
curvature of the conduction or valence band. If an electron is bound to a donor. it forms
a hydrogenic system, with the electron wavefunction centered around the positively

charged donor. The binding energy is given by




Eg=13.6 eV (m'/img)
and the effective Bohr radius is given by
a,=05A(Em,/m), (1.3)
where € is the spatially averaged dielectric constant, m, is the free-space electron mass,
and m’ is the effective mass defined in Eq. 1.1. Since € » 1 and m < m, in most

diamond and zincblende semiconductors, the effective Bohr radius is typically much

larger than 0.5 A. In GaAs, for example, m" = 0.066 m, and & = 12.5, yielding effective

mass theory values of gy = 95 A and Ep=15.7 meV (Kohn 1957; Lanno and Bourgoin,
1981). The large radius means that the electron wavefunction samples many atoms,
thereby justifying the use of a uniform dielectric constant.

The addition of impurities to a semiconductor introduces energy levels into the
band gap. For donors, this impurity level is below the conduction band by an amount
equal to the binding energy Ep. For acceptors, the level is above the valence band by Ep.
Doping a pure semiconductor with acceptors or donors makes the semiconductor p- or n-
type, respectively. As discussed in Sec. 1.1, hydrogen is a particularly important
impurity because it neutralizes; or passivates, donor and acceptor levels. The impurity
levels are removed from the band gap.

In addition to altering the electronic properties of semiconductors, impurities
such as hydrogen can also affect the vibrational properties. As discussed in Sec. 2.2,
atoms in a crystalline solid can collectively oscillate about their equilibrium positions.

resulting in quantized vibrational modes called phonons. Einstein (1907) first treated the




problem of phonons by assuming that the atoms in a solid vibrate independently of one
another. Debye (1912) improved upon the Einstein model by treating a solid as an
elastic continuum. The Debye approximation is good for long wavelength phonons but it
breaks down as the wavelength approaches the lattice spacing. To remedy this situation,
an arbitrary cut-off frequency is introduced (Sec. 2.2.3). The cut-off frequency is
typically expressed as a temperature and is known as the Debye temperature. The Debye
temperatures for numerous cubic crystals have been measured by Betts, Bhatia, and
Wyman (1956).

As in the case of electrons in a perfect lattice, phonons in a perfect lattice have a

well-defined wavevector g. The ® vs. g dispersion relation can be experimentally

determined via neutron scattering (Brockhouse and Iyengar, 1958). When an impurity is
introduced, the translational symmetry is broken and one or more new vibrational modes
may appear. If a mass defect replaces a heavier host atom, for example, its vibrational
frequency will lie above the phonon frequency range. As discussed in Sec. 2.3, the
vibrational mode of the defect is localized in real space and frequency space, and is
referred to as a local vibrational mode (LVM). Hydrogen, with its low mass, typically
has LVM frequencies 5-10 times the maximum phonon frequency and has narrow
- infrared absorption peaks (Sec. 2.4).

In the following sections, I discuss hydrogen passivation and the microscopic
structure of impurity-hydrogen complexes. In addition, 1 briefly describe the methods of

hydrogenation that I used in this study.




1.1 Hydrogen Passivation

In germanium, hydrogen has been found to activate the isoelectronic impurities C
and Si (Sec. 1.2). Hydrogen is also important because it neutralizes, or passivates,
electrically active impurities by supplying the additional electron needed to complete the
Lewis octet. In hydrogen passivation, the impurity level is removed from the band gap,
resulting in a decrease in the free carrier concentration. In addition, since neutral
complexes are formed, the decrease in ionized impurity scattering increases the mobility.
Passivation is not the same as compensation. The latter results in a decrease in both the
free carrier concentration and the mobility. Hydrogen passivation has both beneficial
and detrimental effects. Hydrogen passivation of deep levels increases the minority
carrier lifetime. However, the omnipresence of hydrogen in growth processes can hinder
reliable p- or n-type doping of semiconductors.

The passivation process is shown schematically Figure 1.1 for the case of Si:B.
The hydrogen acts as a donor, its electron annihilating a free hole (b). The proton feels
the Coulomb attraction of the negatively ionized boron acceptor. As will be explained in
Sec. 1.3.1, the hydrogen assumes a bond-centered orientation, between a silicon and

boron, forming a neutral complex. The electrostatic energy is minimized when the

proton sits in the covalent bond.




(@) (b)

Figure 1.1. Hydrogen passivation of p-type silicon.

In the case of an n-type semiconductor such as Si:P, the hydrogen acts as an
acceptor (Figure 1.2). An electron in the conduction band (a) ionizes the hydrogen,
forming H™ (b). Then, the H' feels the Coulomb attraction of the positively ionized
phosphorus donor. The hydrogen assumes an anti-bonding orientation (c), attached to a
silicon in a direction opposite to the donor (Sec. 1.3.3). The bond-centered orientation is
energetically unfavorable because the electrostatic repulsion of the electrons is too high.

To summarize, hydrogen is an amphoteric defect that can passivate donors as
well as acceptors. The formation of neutral complexes occurs by compensation followed

by passivation.




Figure 1.2. Hydrogen passivation of n-type silicon.




1.2 Hydrogen in Germanium

Hydrogen plays many interesting roles in crystalline semiconductors. Hydrogen-
related centers were first discovered and studied in ultra-pure Ge (Haller and Hansen
1974, Haller 1978) which was grown for use in radiation detectors. During Ge crystal -
growth, ambient hydrogen saturates the Ge melt in the crucible and enters the bulk as
atomic hydrogen. It passivates electrically active defects and impurities, especially deep
level] centers, resulting in improved mobility and minority carrier lifetime.

The first hydrogen-related complexés that were discovered, however, were
electrically active (Haller 1991). Hydrogen was found to activate the neutral
isoelectronic impurities silicon (Hall 1974; Haller ez al., 1980), carbon (Haller ez al.,
1980), and interstitial bond-centered oxygen (Haller 1978; Joés et al., 1980). The
concentration of electrically active hydrogen-related complexes in ultra-pure Ge is as low
as 10" cm™. The only way to study such low concentrations is with photothermal
1onization spectroscopy (PTIS) (Lifshits and Nad, 1965; Haller ez al., 1974, 1975; Kogan
and Lifshits, 1977). In PTIS, an incoming photon promotes a dopant-bound electron or
hole from the ground state to a bound excited state. Bound excited states in pure
semiconductors have lifetimes which are sufficiently long for the carrier to be thermally
ionized into the nearest band at temperatures between 6 - 10 K. When the electron (hole)
has reached the conduction (valence) band. an applied bias produces a current. The
current is plotted as a function of photon wave numbers, yielding a spectrum of the

excited states of the complex. PTIS has the advantages that it is highly selective and




sensitive.

Using PTIS, Kahn et al. (1987) determined from ground state splitting that the
Si-H and C-H acceptor complexes have trigonal Cj;, symmetry, with the hydrogen
oriented along a [111] crystallographic axis. In the O-H donor complex, tunneling of the
hydrogen between equivalent [111] sites results in a complicated manifold of 1s states.
Upon substitution of deuterium for hydrogen, the O-H and Si-H ground states shift

downward by 51 peV and 21 peV, respectively. The isotope shift was the first

conclusive evidence that these complexes are hydrogen-related.

The double acceptors Be and Zn, and the triple acceptor Cu, are partially
passivated by hydrogen. The Be-H and Zn-H complexes are shallow acceptors with
binding energies of 11.29 and 12.53 meV, respectively, with Cs, symmetry (Haller er aZ.,
1977; McMurray et al., 1987; Kahn er al., 1987). The lowering of the symmetry from T,
to Cs, leads to a splitting of the ground state. Cu binds two hydrogen atoms and is also a
shallow acceptor with a binding energy of 17.81 meV (Kahn et al., 1986). Like the O-H
complex, the Cu-H, complex exhibits hydrogen tunneling that splits the 1s state into a
broad manifold of states. In Ge:Cu samples grown in a deuterium ambient, a Cu-D»
complex is found, with a binding energy of 18.20 meV. The heavier mass hinders
tunneling so the 1s state does not broaden as in the Cu-H, complex. When Ge:Cu
samples are grown in an ambient of hydrogen and deuterium, a new set of transition
lines appears, corresponding toa Cu-HD complex with a binding energy of 18.10 meV
(Haller et al., 1977). In general, the appearance of new electronic or vibrational peaks in

a sample exposed to hydrogen and deuterium is a strong indicator of a multi-hydrogen
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complex.

1.3 Hydrogen in Silicon

1.3.1 Acceptor-Hydrogen Complexes

The semiconductor industry became very interested in hydrogen when it was
found by Sah er al. (1983) that hydrogen neutralizes boron acceptors in silicon. They
demonstrated that hydrogen from water-related molecular species in the oxide layer in
metal-oxide-semiconductor (MOS) capacitors diffuses into the silicon and passivates the
acceptors. Spreading resistance i)rofiles of silicon samples exposed to a hydrogen
plasma show that the borqn acceptors are neutralized to a depth of 1-2 um (Pankove ez
al., 1984). When the samples are annealed at temperatures above 200°C, the boron-
hydrogen complexes dissociate and the resistivities decrease to the as-grown values.
Johnson (1985) used secondary ion mass spectrometry (SIMS) to measure the
concentration profile of deuterium and boron in Si:B exposed to a deuterium plasma.
The deuterium and boron concentrations are nearly identical to a depth of 0.6 um,
suggesting the presence of B-D pairs.

Compelling evidence for boron-hydrogen complexes came from the infrared
spectra of hydrogenated Si:B samples. In addition to a reduction in the free carrier
absorption, Pankove er al. (1985) discovered an infrared absorption peak at 1870 cm”’ in
Si:B samples exposved to a hydrogen plasma. Upon substitution of deuterium for

hydrogen. the peak shifts to a frequency of 1360 cm™ (Johnson 1985). The isotopic




frequency ratio is r = vg/vp = 1.375, which is close to the square root of the reduced

mass ratio (Sec. 2.3.3) of 1.395 expected for the bond-stretching mode of a diatomic Si-
H molecule.

Using cluster methods, DeLeo and Fowler (1985) found that the total energy of
the B-H complex is a minimum when the hydrogen is oriented along the [111] axisin a
bond-centered éonﬁguraﬁon (Figure 1.3). To test this model, Stavola ef al. measured the
local vibrational modes (LVMs) of the acceptor-hydrogen complexes B-H, Al-H, and Ga-
H at liquid helium temperatures to be 1907, 2201, and 2171 ecm™, respectively. The
vibrational frequencies are fairly close to the predicted values.

The bond-centered model received further support when Pajot et al. (1988)
discovered that the B-H LVM frequency increases by 0.8 cm™ when '°B is substituted
for !B, in agreement with theoretical calculations (Estreicher ez al., 1989) that predicted
a weak B-H bond. The B-D mode shifts by 3.3 cm™ when '°B is substituted for ''B,
over four times the shift of the B-H mode. The unusual shift of the B-D mode can be

explained by a Fermi resonance, as explained below.

[111] S

(79%) |

(21%)

Figure 1.3. Bond centered model for acceptor-hydrogen complexes in silicon. The distribution of the
bond between B-H and Si-H is shown (Estreicher et al.. 1989).
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1.3.2 Fermi Resonance of B-H in Si

In addition to the B-H bond-stretching mode, the boron atom can oscillate
transversely, with an LVM frequency of 652 or 680 cm™ for ''B or '°B, respectively
(Herrero and Stutzmann, 1988). The second harmonic of the '°B mode is nearly
degenerate with the D stretch mode. The two modes interact anharmonically and repel
each other, so that the D stretch mode is pushed vpward in frequency. The second
harmonic of the ''B mode is further from the D stretch mode, so the interaction is
weaker. The H stretch mode, in contrast, is not degenerate with any modes, so the boron
isotope shift is not enhanced by a Fermi resonance. The Fermi resonance was found by
Watkins ef al. (1990), who observed the '°B and !B second harmonics near the D stretch
modes. The anharmonic interaction between the B and D modes causes mode mixing

which results in an increased intensity of the B modes.

1.3.3 Donoer-Hydrogen Complexes

Passivation of donors in silicon was first demonstrated by Johnson er al. (1986),
who showed that exposing an n-type layer of silicon to a hydrogen plasma at 150°C
réduces the free carrier concentration and increases the mobility. The increase in the
mobility is due to a decrease in ionized impurity scattering. The authors presented
semiempirical calculations which predicted that the hydrogen attaches to a silicon atom
in a [111] antibonding orientation. In contrast to the bond-centered model, the hydrogen

in the antibonding orientation sits opposite to the donor. (Figure 1.4) Subsequent




theoretical calculations agreed with the antibonding model (Chang and Chadi, 1988;
Amore-Bonapasta et al., 1989; Estreicher et al., 1989; DelLeo and Fowler, 1989).

To test this model, silicon samples were implanted with the donors P, As, or Sb
and exposed to a hydrogen or deuterium plasma for 6 hr at a temperature of 120°C
_(Bergman et al., 1988). Hydrogen stretch modes were observed near 1500 cm™ and wag
modes at 809 cm™'. The deuterium stretch and wag modes shift downward in frequency
by a factors of 1.37 and 1.39, respectively. The frequencies are very insensitive to the
donor species - the stretch and wag modes shift less than 10 and 1 cm'l, respectively,
from P to Sb. This insensitivity to the donor species is strong evidence in favor of the

antibonding model, in which the hydrogen is well isolated from the donor.

H

Figure 1.4. Antibonding model for donor-hydrogen complexes in silicon.
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It has recently been pointed out that in these donor-hydrogen complexes, there
exists a Fermi resonance between the second harmonic wag mode and the stretch mode
(Zheng and Stavola, 1996). The second harmonic wag mode anharmonically interacts
with the stretch mode. Since they are nearly degenerate, they split into modes which are
linear combinations of a wag and a stretch. This is similar to the Fermi resonance in the
B-D mode described in Sec. 1.3.2. In Chapter 5, I describe a new kind of resonant

interaction, between a Se-H stretch mode and a multi-phonon mode in AISb.

1.4 Hydrogen in GaAs and InP

Since the discovery of hydrogen passivation of acceptors (Johnson ef al., 1985)
and donors (Chevallier ef al., 1991) in GaAs, a great deal of research has been done on
hydrogen in compound semiconductors. In hydrogenated n-type GaAs:Si, Pajot et al.
(1988) observed infrared absorption peaks at 896.8 and 1717.2 cm™, corresponding to
hydrogen wag and stretch modes, respectively. The *Si-H stretch frequency was found
to be 0.64 cm']vlower than the *Si-H stretch frequency, providing strong evidence that
the hydrogen attaches directly to the silicon donor.

Infrared absorption measurements by Pajot ef al. (1987) and Nandra et al. (1988)
provided direct evidence for acceptor-hydrogen complexes in GaAs:Zn and GaAs:Be,
respectively. An LVM peak was found in GaAs:Zn,H at 2145.0 cm™, a frequency

similar to the As-H bond-stretching mode in AsH; (2116 cm™) (Shimanouchi 1972) but




different from ZnH (1553 cm-!) (Rosen 1970). The hydrogen is therefore believed to

bind to the host arsenic. As in the case of acceptor-hydrogen complexes in silicon, the
frequency shifts by ~100 cm™ when the acceptor is changed, indicating a bond-centered
orientation (Rahbi 1993). Additional evidence for the bond-centered model was
provided by uniaxial stress measurements which demonstrated unambiguously that the
GaAs:Be,H complex has Cs, symmetry.

Epitaxial layers of GaAs:C exposed to a hydrogen or deuterium plasma have
stretch modes at 2635.2 and 1968.6 cm™, respectively, for an isotopic frequency ratio r =
1.3386 (Clerjaud er al., 1990). The small r value is caused in part by the small mass of
the carbon atom (Sec. 2.3.3). Replacing *C with C results in a shift to lower
frequency, indicating that the hydrogen attaches directly to the carbon acceptor. The 2c
complex has four modes, corresponding to combinations of longitudinal and transverse
oscillations of hydrogen and carbon (Woodhouse et al., 1993). For the isotopic
combinations °C-H, '*C-H, ’C-D, and ">C-D, there are sixteen modes, all of which have
been observed experimentally (Davidson et al., 1993).

In p-type InP exposed to a hydrogen or deuterium plasma, group II acceptor-
hydrogen complexes were observed by Darwich et al. (1993). As in the case of GaAs,
the hydrogen attaches to the host anion (P) in va bond-centered orientation. By measuring
the overtones of the stretch modes and fitting the results to a Morse potential (Sec.
2.3.4), they found that as the impurity mass increased from Be to Cd, the anharmonicity
decreased. The reduction in anharmonicity accounts at least in part for the increase in

the isotopic frequency ratio r.




In Sec. 4.1 I extend the studies of acceptor-hydrogen complexes to GaP. The
trends in LVM frequencies and r values are discussed, as well as the temperature

dependent behavior of the vibrational modes.

1.5 Methods of Hydrogenation

Hydrogen can be introduced into a sample by boiling in water, electrolysis,
implantation, exposure to a hydrogen plasma, or contamination during the growth
process (Haller 1994). In general, the omnipresence of hydrogen makes contamination
with the “simplest element” difficult to avoid. In Sec. 4.2, I discuss arsenic-hydrogen
complexes in ZnSe:As grown by metalorganic chemical phase epitaxy (MOCVD), in
which the hydrogen originates from the metalorganic molecules and the carrier gas. To
obtain acceptor-hydrogen complexes in GaP, a hydrogen plasma was used (Sec. 4.1).
Finally, in Sec. 4.3, I discuss annealing in a hydrogen ambient as a method of bulk
passivation in AlSb. In the following two sections, I describe the methods of hydrogen

plasma exposure and hydrogen annealing.

1.5.1 Annealing in Hydrogen
One of the simplest ways to introduce hydrogen into a semiconductor is to heat
the sample in the presence of hydrogen gas. The sample is typically sealed in a quartz

ampoule with H, and annealed in a vertical furnace. After completion of the annealing.
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the ampoule is rapidly quenched to room temperature by dropping it in ethylene glycol.
Hydrogen annealing at a temperature of 1200°C was shown to passivate acceptors in
silicon by Veloarisoa et al. (1991), but hydrogen annealing did not passivate donors. In
AlSb, Se and Te donors were passivated by annealing in H, and D, for temperatures as
low as 700°C (Chapter 4.3).

When an H, molecule hits the surface of a semiconductor, it can dissociate into
two hydrogen atoms:

H; & 2H (1.4)

The law of mass action (Reif 1965) states

Ty k(T,V) (1.5)
2
iy

where ny, and ny are the concentrations of molecular and atomic hydrogen, respectively.
As discussed in Sec. 1.6, H, molecules are extremely immobile in semiconductors so
they cannot diffuse. Atomic hydrogen, however, can diffuse quite rapidly. The
concentration of atomic hydrogen is given by

= | (1.6)
ny = T )

For a given temperature, therefore, the solubility of atomic hydrogen is proportional to
the square root of the H, pressure. The solubility and transport of hydrogen in silicon
was studied in detail by van Wieringen and Warmoltz (1956). The relation (Eq. 1.3) was
recently shown experimentally for the case of hydrogen in p-type silicon (McQuaid et

al., 1993).
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Annealing in hydrogen is an excellent method of introducing hydrogen into bulk
semiconductors such as Si and AlSb. In many semiconductors, however, annealing is
not an effective method of hydrogen passivation, since the solubility of hydrogen is too

low and/or the hydrogen- related complexes are unstable at the annealing temperatures.

1.5.2 Plasma Exposure

Exposure to a hydrogen plasma is common method of introducing atomic
hydrogen into semiconductors to a depth of a few microns. The first hydrogen plasmas
used for semiconductor passivation were produced in glow discharge tubes (Boening
1982), in which a dc bias of several hundred volts is applied between a metal anode and
the sémple, which acts as the cathode. Energetic electrons ionize hydrogen molecules
and the resultant protons travel toward the sample with a steady current of several mA.
A disadvantage of this simple technique is that the protons impinge on the sample
surface with an energies of several hundred eV. resulting in significant bombardment
damage.

If an alternating electric field is used, however, the protons arrive at the surface
with energies of only a few eV. The sample is typically located downstream from the
radio frequency plasma to minimize charged particle bombardment damage. In a remote
hydrogen plasma system (Johnson 1991), shown in Figure 1.5, hydrogen (or deuterium)
and trace amounts of oxygen flow into the microwave cavity. Oxygenv is used to
suppress hydrogen recombination on the chamber walls. thereby increasing the fraction

of atomic hydrogen (Kaufman 1969). The pressure in the chamber is kept at 2 Torr and




the flow rates for the H, and O, are 50 and 0.3 sccm, respectively. The right-angle bends
in the silica tube isolate the sample from UV radiation and charged particles.

Exposure to the low energy ions and neutral atoms introduces a subsurface layer
of hydrogen which diffuses into the semiconductor. The concentration of the hydrogen
near the surface depends on the hydrogen flux, surface absorption, diffusion rate, and the

rate of recombination and desorption into H,.

Microwave Cavity Heated Substrate Holder
Fused Silica Tube

R

Water Lines

Microwave Generator
(2.45 GHz, 100 W)

To Vacuum Pump

Figure 1.5. Schematic diagram of a remote hydrogen plasma system (from Johnson 1991).

1.6 Hydrogen Diffusion

Isolated hydrogen has been found to be an amphoteric impurity in several

semiconductors. It diffuses interstitially as H*, HO, or H-, depending on the position of



the Fermi level. In p-type Si, for example, the isolated hydrogen atoms give up their
electrons to the acceptors and diffuse as protons. They then feel the Coulomb attraction
of the negatively charged acceptors and form neutral complexes. Since the protons repel
each other, they do not recombine to form H,. In n-type Si, the situation is reversed:
diffusing H- atoms form neutral complexes with positively charged donors. The
discovery of donor passivation was delayed because H can more easily recombine to
form H,, which becomes immobile in the lattice.

In Si, hydrogen is believed to be a "negative-U" center (Johnson ef al., 1995): the‘
HO’+ donor level lies above the HY- acceptor level. In their study of the formation of
carbon-hydrogen complexes in GaAs, Clerjaud et al. (1990) determined the HO* level to
be Ey, + 0.5 eV. In p-type GaAs, therefore, hydrogen atoms diffuse as protons, whereas
in n-type GaAs, they diffuse as a mixture of H® and H-.

The positively charged hydrogen species in GaAs:Zn was observed in reverse bias
annealing experiments (Tavendale, 1990). 'After the GaAs:Zn samples were passivated
by a deuterium plasma, an aluminum Shottky barrier was evaporated onto the front face.
Then, a reverse bias was applied while the samples were annealed at temperatures around
150°C. SIMS measurements and net dopant profiles show that the deuterium drifts out
of the depletion region, along the direction of the applied electric field. It was thereby
determined that at least some of the thermally dissociated deuterium atoms are positively
charged.

The negative charge state of hydrogen was similarly measured in GaAs:Te (Yuan,

1991). GaAs:Se (Leitch, 1991), and GaAs:Si (Cho. 1991). The dissociation of donor-
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hydrogen complexes was shown to follow first-order kinetics. To accurately determine
the dissociation energies and attempt frequencies, it is important to apply a reverse bias
which can sweep the free hydrogen atoms out of the depletion region. If this is not done,
the negatively (positively) charged hydrogen ions will readily recombine with the ionized
donors (acceptors), leading to a value for the dissociation energy which is artificially
high.

Many deuterium diffusion studies have been performed on n-type GaAs:Si.
Secondary ion mass spectroscopy (SIMS) is used to measure the concentration of
deuterium in the sample. In bulk GaAs:Si exposed to a capacitively coupled deuterium

plasma, the deuterium concentration profiles at various temperatures closely follow

complementary error functions (erfc). The diffusion coefficient is given by

D = D, exp (-E/kT),
where D, = 115 cm/s? and E, = 1.38 eV (Chevallier ez al., 1991).

In p-type compound semiconductors, diffusion studies have been performed on
highly doped (p > 1018 cm-3 ) GaAs:Zn, GaAs:Si, and InP:Zn. Typically, the deuterium
concentration profiles consist of a plateau region, where the deuterium concentration
closely matches the acceptor concentration, followed by an abrupt decrease. The
diffusion process is dominated by hydrogen trapping on shallow acceptors. An
exception to this rule is the case of GaAs:Zn for hydrogenation temperatures above
250°C. The Zn-H complex in GaAs begins to decompose at 210°C, so hydrogen
trapping at higher temperatures no longer plays a dominant role in the diffusion process.

By way of comparison, the Zn-H complex in InP is stable for temperatures below 275°C.
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2. Theory of Vibrational Modes in Semiconductors

2.1 The Harmonic Oscillator

The simple harmonic oscillator describes, to first order, the vibration of an object
about a stable equilibrium point. A particle that resides in a local minimum of a
potential V(x) can oscillate about its equilibrium position x = 0. For small deviations

from equilibrium, the potential can be expanded in a Taylor series:

2
V(x)=V0+%g—x‘;- x4 2.1

0
where the equilibrium condition means that the first derivative is zero. Since it does not
affect the equation of motion, the arbitrary constant V, may be set to zero. The harmonic

potential is written

V(x)= %kxz (2.2)
where
*V
k= 2.3
> (2.3)

0

For sufficiently small displacements about equilibrium,'any arbitrary potential can be

approximated to first order as a harmonic potential.
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2.1.1 Classical Treatment

Classically, the restoring force is given by
F= -d’V/dx = -kx, 2.4)
which is simply a restatement of Hooke’s law. Eq. 2.4 is solved by the function
x(®)=Acos(wrt+0), (2.5)
where
©=k/m (2.6)
and A and ¢ are parameters determined by the initial conditions. This simple harmonic

oscillator equation describes a wide range of vibrational systems.

2.1.2 Quantum Mechanical Treatment

The quantum mechanical problem is solved via Schrédinger’s equation
Hy =Ey, 2.7)

where E is the energy eigenvalue and the Hamiltonian is given by

2
H=2 1, (2.8)
2m 2

where m is the mass of the particle and p and x are the momentum and position
operators, respectively. Since this is an eigenvalue equation, there exist a number of
solutions in which wavefunctions are associated with specific eigenvalues. Following

the treatment given by Gasiorowicz (1974), one can define the following operators
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mw . p
a= x+1 2.9
2 V2m 29)

. mo . p
a = X1 2.10
V 2 V2mo (210)

such that the Hamiltonian (2.8) can be written

H=%hm+o&a*a, (2.11)
where the fundamental relation
[x,pl=in (2.12)
has been used. The bracketed term is a commutator and is defined by [A,B] = AB - BA.
Two commutation relations can immediately be derived,
[H,a] = -hwa (2.13)
[Ha'] = hoa* (2.14)
When Eq. 2.13 acts on a wavefunction Y, we have
Havy - aHY = -hiway 2.15
and inserting Eq. 2.7,
Hay = (E - h®) ay . (2.16)
Thus, the wavefunction ay has an energy eigenvalue that is 4® less than that of the
wavefunction V. a is therefore called a lowering operator, since it lowers the energy of
a given state. It can similarly be shown that a* is a raising operator, as it raises the
energy of a state by 7. Since the energy E must be positive, the lowering operator a

will reach a limit when it hits the ground state. At the ground state \y,,

25




ay,=0. 2.17)
The energy of the ground state is then given by
Hy, = (3r0+0 a*ay, =+ rov,. (2.18)
Combining this result with the fact that the energy levels are quantized in units of z®,
the energy eigenvalues of a simple harmonic oscillator are given by
E=(n+112) ho. (2.19)
The wavefunctions corresponding to each energy eigenvalue can be derived by solving
Schrodinger’s equation:
V.(x)=N,H, (x)e” ", (2.20)

where x is in units of VA /m®, N, is a normalization factor given by

, 1
LTINS

N (2.21)

and H,(x) is a Hermite polynomial, listed in Table 2.1.

Table 2.2. Hermite polynomials

n H,(x)
0 (1

1 | 2x

2 |4x*-2

3 |8 -12x

4 |16x*-48x%+12
5 32x - 160x° + 120x

6 | 64x° - 480x* + 720x% - 120
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For a three dimensional harmonic oscillator, the Hamiltonian is given by

2
_p- 1o 22 22
H=2mtomlos +0,%y +0,%2). (2.22)

The solution is obtained by separating the wavefunction into the three normal
coordinates,

Y(x,y,2) = YW,0WA2) (2.23)
where W, (x) refers to the one-dimensional harmonic oscillator wavefunction. The energy
eigenvalues of the three dimensional system are then obtained by adding the energies of

the normal modes:

E = i(n,0, + n,m, + n,0, + 3/2) . (2.24)

2.2 Lattice Vibrations

The constituent atoms of a crystalline solid occupy a set of equilibrium positions.
The lattice displacement from a given atom’s equilibrium position can be described by
the vector uy, where s labels an atom in the /th unit cell. Following the treatment given

in Ziman (1972), the total kinetic energy of the solid is given by

S Mig? (2.25)
s.l

l
2
where M, is the mass of the sth atom. We assume that the potential energy of the solid is
a function of the lattice displacements uy. The potential energy can be expanded in a

Taylor series about the equilibrium positions:
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uj + 2 —F s;uzl;,+ ST (2.26)

sl] sle JJ

where j denotes the coordinates x,y,z. The derivatives are evaluated at the equilibrium
positions.

The first term in this series is just a constant which can be neglected. The second
term vanishes, since the system is at equilibrium. The third term is the harmonic term,
which determines most of the vibrational properties of the crystal. Sec. (2.3.4) and
Appendix B.2 deal with the effects of higher-order anharmonic terms.

To first order, the equations of motion are

s sI z G si, s’l’usl 4 (227)
ST
where
2
s’lfs.l = ——E—)—Y— . (2.28)

J
0 u0 uly |,
The coefficients G, are the components of a second rank Cartesian tensor, denoted

G- Eq. 2.27 can be written in matrix form:

M., = ZGS,S, (2.29)

The translational invariance of the crystal demands that G cannot depend on the absolute
positions of the lattice vectors [ and I, but only on their relative positions. Eq. 2.29 can
thus be written

M, = -2 G, (h)eu,,,, (2.30)
sh

where h =1 - P. The tensor G- (h) gives the force on atom s due to the displacement of
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atom s’ in a unit cell whose relative position is given by the vector h.
The lattice displacements uy which solve this system of equations are plane

waves with wavevector ¢ and frequency :

u, =u, e, (2.31)

Inserting Eq. 2.31 into Eq. 2.30 yields

~0’Mau, =-3[G (h) e ou,. (2.32)
sh
If we define
G.(qQ)=) G (h)e"", (2.33)
h

then Eq. 2.32 can be written

Y6 (-Mo 5 deu, =0, (2.34)

where I is the identity matrix and - is the Kronecker delta function. Gy, (q) is simply
the Fourier transform of the force tensor G- (h). This is a set of linear equations, one for
each value of s, which can be solved ny setting the determinant of the mauﬁ in brackets
to zero. The problem has been reduced from a many-body problem to one involving only

3n degrees of freedom, where n is the number of atoms in a unit cell. Additional

assumptions, presented in the following sections, simplify the problem further.

2.2.1 Linear Chain Model

The simplest model is that of a linear chain of identical atoms which interact only-

via nearest-neighbor forces. The lattice constant is equal to the interatomic spacing a.
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Only one spatial dimension is considered, so all the quantities in Eq. 2.34 are scalars. In
addition, since there is one atom per unit cell, the subscripts s and s’ can be dropped. We
are left with the following:

[G(g)- Mw*|u=0. (2.35)
The nth atom in the linear chain experiences forces from its two nearest
neighbors, n-1 and n+1. The sum of the forces is

F= k(u,,+1 -u, )+ k(u,,_1 - un)

R 2.36
= k(u,l+1 +u, , — 2un) ( )

where k is the force constant. From this expression, the components of the force tensor

can be derived:

2k h=0
Gh)=4—-k h=x*a 2.37)
0 otherwise

Inserting this into Eq. 2.33 yields

G(g)=k(2— ™ —¢®)
= 2k[1- cos(ga) ] | (2.38)
= 4k sin*(ga/2)

Finally, inserting Eq. 2.38 into Eq.2.35 yields the dispersion relation

o= 2\/% sin(ga/2) . (2.39)

where the positive root is assumed without loss of generality (Figure 2.1). Because the
atoms occupy discrete positions, a phonon wavelength of a is equivalent to a/2, a/3, etc.

The range of wavevectors necessary to describe all the phonon modes is called the first
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Brillouin zone. It the case of a linear chain, the first Brillouin zone consists of Igl < n/a.

Wavevectors beyond the Brillouin zone edge can be "folded" back into the first Brillouin

zone.

1

M

O
|y —

Figure 2.1. Dispersion relation in the first Brillouin zone for a monatomic linear chain.

2.2.2 Diatomic Linear Chain

A slightly more complicated system is a linear chain of atoms with alternating
masses M; and M,. Since there are two atoms per unit cell, the subscripts s and s’ can
each take on two values. The interatomic distance is a/2, the lattice constant is a. and
atoms experience nearest-neighbor interactions with a force constant k. As in the
previous case, only one spatial dimension is considered, so all the quantities in Eq. 2.34

are scalars:
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2

Z[Gss’(Q)" Ms(‘o 285’5’] Ugg = 0. (2.40)

s=1

This is a set of two linear equations, corresponding to s=1 and s=2:

Gy(@)—- Mo 2 G, (9) :”:ulq]
=0. 2.41
l: Gy (q) Gplq)— Mo 2 Uzg ( )

To evaluate the components of the force tensor G

s’ » W€ write down the forces acting on

atoms 1 and 2 which are in the #nth unit cell,

F = k(uz.n—x tUy, — 2“1.n)

s (2.42)
F2 = k(ul_n + ul.n+1 “2”2'")
from which we obtain
G,,(q) =2k
G, (9) =2k
(2.43)

G,,(q) = —k(e™ +1)
Gy (q) = —k(e™ +1)

To solve the set of linear equations 2.41, we set the determinant of the matrix equal to

zero
2k-M@* —kle™ +1)
. =0 (2.44)
~k(e™ +1) 2k-M,0
and solve the resultant quadratic equation
M M, *=2k(M, + M, Jo *+2k*[1-cos(ga)]=0 (2.45)

=>o)2—k—1—+—L +k ! + L) 4 sinz( a/2) (2.46)
- M] M2 B M] MZ M]M2 q . -




2k(1M+ 1My

A
(2kM )2

3 (22

(MM

]

TR
Q O

B|a

Figure 2.2. Dispersion relation in the first Brillouin zone for a diatomic linear chain. In this diagram, M, =
2M,.

For each value of g, there are two values of ®. The two branches are plotted in
Figure 2.2 for the first Brillouin zone. It is instructive to evaluate this expression for the

center of the Brillouin zone, g = 0. The sin(ga/2) term vanishes and we have

11
=0, 2k —+— | 24
® 0\/ (M1+M2j 2.47)

The normal mode eigenvector (i, #,o) can be obtained by inserting the corresponding

frequency into Eq. 2.41. For the @ = O case.

2k =2k uy, 0 5 48
-2k 2k Juy| (2.43)




The normalized eigenvector which solves this matrix equation is

)= 50)
Uy _\/5 1] 49

This means that the atomic displacements are in the same direction. The lower branch of

the dispersion relation is called the acoustic branch because the atoms oscillate in phase,

like a sound wave in an elastic continuum.

For the ® = \/Zc(l/Ml + I/MZ) case,

—2k M,/ M, ~2k thyg
=0 (2.50)
~2k —2k M,/ M, | 1y

and the normalized eigenvector is

Uy 1 M,
l:“zojlzm[' Ml]. @D
This corresponds to atomic displacements in opposite directions which are inversely
proportional to the atomic mass. The upper branch of the dispersion relation is called the
optical branch because adjacent atoms oscillate out of phase and can be optically
excited.

In a real crystal, of course, there are three dimensions. If the number of atoms per
unit cell is #, then a crystal will have 3 acoustical branches and 37 - 3 optical branches.
A diatomic linear chain therefore has 3 optical branches and 3 acoustical branches. The
branches are labeled according to whether the oscillations are longitudinal or transverse,
so there are two transverse optical (TO) modes, one longitudinal optical (LO) mode, two

transverse acoustical (TA) modes, and one longitudinal acoustical (TA) mode.
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2.2.3 Thermal Properties

Although the dispersion relations for lattice waves are derived classically,
quantum mechanics dictates that the energy of an oscillation must be quantized. If ® is
the vibrational frequency, the energy is

E=(n+12)ho n=012,.. (2.52)
One quantum of lattice vibrational energy is called a phonon. Following the treatment

given in Kittel (1986), the thermal properties of phonons can be derived. The average

number of phonons (r) is given by the Planck distribution

e — (2.53)

—'eﬁw {kgT -1

To find the total phonon energy U, we sum the modes from all the branches p and

wavevectors q:
U=y Y ((n,)+ 12, . (2.54)
P q

The 1/2 term is a constant which, for thermodynamical calculations, may be dropped.

Inserting the Planck distribution function (2.53) into Eq. 2.54 yields
1
U= X9, 2.55)
y g€ -1

The points in g space are extremely dense, so the sum over wavevectors may be

converted to an integral

o™ kT _q

U= ;T__ﬁg__ D, (@)do (2.56)
. 0

where D, (0)d® is the number of modes between ® and w+dw, for a polarization A (e.g.,
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transverse or longitudinal).

To obtain an analytical e;%preésion for the phonon energy, the Debye model
assumes that the dispersion relation for a solid is given by
w=vgq (2.57)
where v is the classical speed of sound. This model is good for the acoustical branch for
small g, where the dispersion relation is approximately linear. The density of states is
given by

dk
4 k> —
)y " do

1
=573 ®2dw

s

D(w)=
(2.58)

With the additional assumption that the three branches are degenerate, Eq. 2.56 becomes

3 7 he’
U=—— je"‘” 4o (2.59)

where ®p , the Debye frequency, is the cut-off point at the Brillouin zone edge. Defining

the dimensionless variable x = 7w/k,T yields

Tp/T

3
| =—ar, (2.60)
y € —1

3
U=y kaT)

where T, = W, [k, is the Debye temperature.
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2.3 Local Vibrational Modes (LVMSs)

2.3.1 Analytical Approach

The translational symmetry of a perfect lattice is broken when a defect is
introduced. As a simple éxample, consider the monatomic linear chain described in Sec.
2.2.1, but where one lattice mass M is replaced by a smaller mass m. Following the
treatment given by Kittel (1966), we can show that one of the normal modes of the lattice
will be localized around the light atom. Letting the light atom occupy the n = O position,

the lattice equations of motion are given by

miig = ko, +u_, —2u;) (2.61)

Mii, = k(u, +uy—2u,) ... (2.62)

The solution to the perfect linear chain is given by Eq. 2.39,

®= 2\/—5 sin(ga/2). (2.63)

Euler’s equation states
sin z = [exp(iz) - exp(-iz))/2i, (2.64)
so that a mode with a frequency higher than the phonon frequencies can be obtained by
letting the wave number g be complex: |
q9=4qr+1q;. (2.65)
From Eq. 2.64, we have the identity

sin(qa/2) = [exp(iggr a/2) exp(-q;a/2) - exp(-iggr a/2) exp(q;a/2)]/2i (2.66)
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= sin(gg a/2) cosh(g;a/2) - i cos(qg a/2) sinh(g;a/2) .
For the frequency (2.63) to be real, the imaginary component must equal zero. This
implies that gg = ®/a. The displacement of atom # is then given by Eq. 2.31:
| U, = Up exp(inn) exp(-g; na) exp(-iwr) (2.67)
= uO.(—l)” exp(-qyan) exp(-ior) .
Substituting this into Eq. 2.61 yields
o = (kim)[2 + 2exp(-g;a)] (2.68)
while substituting into Eq. 2.62 yields
@ = (WM)[2 + exp(-¢;a) + exp(g; )] (2.69)
Solving these simultaneous equations yields
exp(q; a)=(2M - m)im 2.70)
and

2
o® =mfm2ML2—, (2.71)
m-—-—m

where Wy = (4k/M)'” is the maximum frequency of the unperturbed linear chain. If

m << M, then Eq. 2.71 can be approximated

o’ =02, M (2.72)
2m
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2.3.2 Numerical Approach

If a mass defect is introduced into a compound semiconductor, new vibrational
modes will arise depending on whether the defect replaces the heavy or the light lattice
atom (Barker and Sievers, 1975). In the diatomic linear chain model discussed in Sec. .

2.2.2, the equations of motion in the ™ unit cell are given by

M, , = k(u2,n—-1 +uy, - zul.n) (2.73)
Mziiz,n = k(ul,n Uy, = 2u2-" )’ |

where M; and M, are the light and heavy masses, respectively. The normal modes are
given by

Uy, =u'2n €, Q2.74)
where the lack of translational invariance means that the normal modes do not have real

wave numbers. Substituting the normal modes into Eq. 2.73 yields

((02—2k/M1)“1,n+k/M1(u’l,n-1+u2,")=0 (2.75)
(08 24/ MaJi 4/ My 1, ) =0
In matrix form, this set of equations is written
> -2k/ M, ki M, 6 0. 0 K/ M, 1
k/Mz 0)2—2k/M2 k/M2 O O O u2,1 0
K/ M, 0 0 0 - KM, 0 -2k/M,]|uy
(2.76)

where I have assumed periodic boundary conditions. The eigenvalues @ and

eigenvectors u, can be determined numerically. A mass defect can be introduced by



changing the M; or M, values on the first or second line, respectively, of the matrix. The
phonon density of states is then produced by plotting a histogram of the eigenvalues.

As an example, consider the compound semiconductor GaP, with M, = 70 and

M, =131. Using MATLAB to diagonalize the matrix (2.77), I calculated the phonon

density of states for a linear chain with N = 128 unit cells (Figure 2.3), where the spring
constant k is chosen such that wy, = 366 cm™. If a carbon atom (m = 12) replaces a
phosphorus, a new mode appears at ® = 510 cm™. The exponentially decaying

vibrational amplitudes are shown in Figure 2.4. Experimentally, the 2CLVM has a

frequency of 606 cm’™ (Hayes et al., 1970).
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Figure 2.3. Calculated density of states for a GaP linear chain without (a) and with (b) a 12C mass defect.
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Figure 2.4. Plot of the vibrational amplitudes around the '>C mass defect in a GaP linear chain.

If the phosphorus is replaced by an atom heavier than phosphorus but lighter than
gallium, a gap mode will appear, in the gap between the acoustic and optical phonons.
As an example, consider the Asp impurity (m = 75). As shown in Figure 2.5, a mode
appears at ® = 240 cm™. Although the vibrations are localized around the impurity
(Figure 2.6), the decay in the amplitudes is not exponential. Experiméntally, Grosche et
al. (1995) have observed the Asp gap mode at 269 cm™. In addition, they have resolved
the fine structure arising from the different combinations of the neighboring gallium

isotopes.
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Figure 2.5. Calculated density of states for a GaP linear chain with an Asp mass defect.
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Figure 2.6. Vibrational amplitudes around an Asp mass defect in a GaP linear chain.
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Figure 2.7. Diatomic model for LVMs.

2.3.3 Diatomic Model

The diatomic model is a useful empirical model that has been used to
quantitatively describe the frequencies and isotope shifts of numerous LVMs (Haller
1995). In this model, an impurity of mass m is attached by a spring & to the lattice,
whose mass is represented by M,,,.;... The vibrational frequency of this diatomic

molecule is given by

© = k() My, +/m) = Jk T 11, (2.78)

where U is the reduced mass. In the case of hydrogen, m = 1 amu. To verify that a
LVM is in fact hydrogen-related, the hydrogen can be replaced by deuterium (m = 2
amu). The isotopic frequency ratio is given by

M
M

+1
+2°

latrice

r=0,/0,=_2 (2.79)

lartice
where 0y and ®p are the hydrogen and deuterium frequencies, respectively. ris slightly
less than the square root of two, owing to the fact that M, is finite.
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2.3.4 Anharmonicity

Another effect which reduces the isotopic frequency ratio is the anharmonicity of
the potential. The hydrogen does not reside in a perfectly parabolic potential; rather, the
potential becomes weaker for larger displacements. The Morse potential (Morse 1929),
for example, is given by

V(@) = D, [exp(-Bx)-11°, (2.80)

where D, is the binding energy. For small x, the Morse potential approximates a
harmonic potential, with a spring constant k = 2DB* The hydrogen has a larger
vibrational amplitude than the deuterium and its wavefunction samples more of the
anharmonicity. Its frequency is lowered relative to the deuterium frequency, so that the
factor r = ©y /0)p is reduced.

To show this quantitatively, the energy eigenvalues of the Morse potential are

given by
E, =1, (n+ (1 - x. (n + W], (2.81)
where
o= B 2D, /w)'"* (2.82)
and
o, x, = Hp/2u . . (2.83)

The first excited state is given by

AE = E, — E, = h, - 2k x, . (2.84)

The anharmonic term , x, is inversely proportional to the reduced mass. Therefore, the
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anharmonic term is greater for hydrogen than for deuterium and the isotopic frequency

ratio r is reduced.

Figure 2.8. Hydrogen and deuterium ground states in a Morse potential (solid line). For comparison. the
parabolic potential (dashed line) is shown. ‘

2.4 Infrared Absorption

An important technique for probing the vibrational spectrum of a defect is

infrared absorption. A photon can be absorbed by the defect, its energy going into a

vibrational excitation. Most of the results presented in this thesis were obtained via

infrared absorption spectroscopy.




S

2.4.1 Classical Treatment
Classically? an oscillating dipole can be modeled as two masses M and m, with
electric charges e, attached to each other by a spring with a spring constant k. The
equation of motion is given by
i+ +oix = eE(n)/U, (2.85)
where Y is a damping constant, ®, = \/m is the natural angular frequency, u = 1/(1/M
+ 1/m) is the reduced mass, and E(?) is the electric field. At the dipole, the electric field

of a plane wave is given by
E@) = E, exp(iwr). (2.86)

The solution to Eq. 2.85 is also a complex exponential,

x(t) = x, exp(im?), (2.87)
with an amplitude given by
E,/
=B (2.88)
O, -0 +iyo
For n dipoles per unit volume, the polarization is given by
ne’E,/n ,
P=nex = (’302 Y o exp(ior) (2.89)
and the dielectric constant € =1+47P/E is given by
47 ne’ 1
e(w)=1+ 2.90)

U o-0’+iyo’

The oscillator strength of this simple dipole is equal to unity.

Differentiating Eq. 2.87 with respect to time yields the relative velocity of the two
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masses,
V(1) = X, i expiod). (2.91)

The power dissipated by the dipole is given by
P(1) = eRe{ E(1) }Re{v(s)}. (2.92)

Assuming for simplicity that E, is real, Eq. 2.92 becomes

20 2 2 2 :
E 0, -0 )-iyo
P(t)=e JmcosmtRe ( ) i

( ; 2)2+ " 2(ic:oscnt-—sinoat) (2.93)
®,” - Yo

¢E’® ywcoswt—(mo"‘—‘coz)sinmt
= cos® ¢ - o
S (@, -0?) +7%’
Using the fact that
(cos’wr) =1/2 (2.94)
and
(sinorcosax) =0, (2.95)

the time-averaged power dissipation can be written

e’E 0%y /21

(P)= (2.96)

5 .
(mnz —0)2) +720)2
The peak in the power spectrum occurs near ®=@,, where the amplitude of

vibration is greatest. The cross section of absorption is given by the ratio of the power

dissipation to the intensity of the electromagnetic wave,

(P 4ndlo’y 1
= CEOZV,;SE - we (0)02 —(1)2)2 +72m2 .

o (2.97)
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Figure 2.9. Cross section of absorption for oscillators with different damping coefficients.

The cross section is in units of cm? and defines an effective area in which
incident light is totally absorbed. The damping factor vy is approximately the full width
half maximum (FWHM) of the absorption peak.

If an electromagnetic wave of intensity / impinges on a material with » dipoles
per cm’ and a thickness dx, then the transmitted intensity will be given by

I(x+dx)=I(x) (1-on dx). (2.98)
Rearranging terms yields
[{(x+dx)-I(x))/dx = -Onl(x) (2.99)
and as the thickness dx goes to zero,
dI(x)/dx = -onl(x). (2.100)

The solution to this differential equation is a decaying exponential,
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I(x) = Iexp(-onx) = l,exp(-0x), - (2.101)
where o is the absorption coefficient and has units of cm’.

The integrated absorption is defined
A, = [ow)de = nfo(@)dw . (2.102)
0 0

Substituting Eq. 2.97 into Eq. 2.102 yields

4‘!t ney
2.103
'({ 20 ) +v%w? @199

For a “high-Q” oscillator, w<<y. In this limit, the integrand is nonzero only in a narrow
range about ). We can therefore write

W=y + 00, (2.104)
where dw<<®, Making this substitution into the integral (2.103) and keeping the lowest

order 6 terms yields

4nnezy J dd®)

|
Le $48w>+y? (2.105)

where the integrand is a Lorentzian line shape. The integral can be solved by a

trigonometric substitution which yields

7t262

A (cm'rad/s)=n
ue

(2.106)

As noted, the integrated absorption in Eq. 2.106 is given in units of cm™'rad/s. In

spectroscopy it is more convenient to use wave numbers, defined as 1/A, where A is the

wavelength of incoming light, instead of ®. To convert to wave numbers, we use the
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relation
1/A = 0/2xc, (2.107)

yielding

2

A(em?)=n—. (2.108)
2pe

Note that the integrated absorption is independent of the width y and the frequency g of

the peak. If the e is equal to the charge of an electron and L is the mass of a proton, then
A;(em?) ~2.5X 107 n(em™) | | (2.109)
This simple classical result is a reasonable order-of-magnitude estimate. For example,
the Zn-H complex in InP has an experimental integrated absorption given by A; (cm™) =
5xX 10" n(crn'3) (Chevallier ez al., 1991). The theoretical model given here neglects
screening effects in the solid that reduce the dipole moment, and therefore the integrated

absorption, of the complex.

2.4.2 Quantum Mechanical Treatment

A quantum mechanical approach yields a similar result. Following the treatment
given by Sakurai (1985), the absorption cross section for exciting a transition from an
initial state 7 to a final state fis given by

4 %e?

u’oc

(#le™>e - P|i>|25(Ef ~E, -1w). (2.110)

where k and ® are the wave vector and angular frequency, respectively. of the
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electromagnetic wave, p is the momentum operator, and 9 is the Dirac delta function. In

the absence of damping, the transition is infinitely sharp, so that the cross section is
nonzero only when the energy of the incoming light equals the transition energy. In the
electric dipole approximation, the wavelength of the light is assumed to be much longer
than the dipole, so that the exponential in Eq. 2.110 can be approximated

e** =1. (2.111)

If p 1s directed along the x axis, then Eq. 2.110 can be written

i>2

2
- 4r’e |<fpx

woc

8(E, - E,~ho). (2.112)

Given the commutation relation

Lx Hyl= 2P 2.113)
u
the matrix element in Eq. 2.112 can be written
(Flpaly= (Pl Holi) = ineo o £ 1), 2.114)

where ;= O - ;. Substituting Eq. 2.114 into Eq. 2.112 yields

4n’e?
fic

G =

@ Fli) (0 -w,). (2.115)

To compare this with the classical result, we integrate over all frequencies to obtain the

integrated absorption:

bod - 2.2
A, =nfo(@)dw =2~ Y ool 2.116)
0 ' f

The oscillator strength is defined




fo= —277”@ A 2.117)

and is a dimensionless quantity that is proportional to the probability of a transition from

ito f. According to the Thomas-Reiche-Kuhn sum rule (Sakuri 1985),

Y fa=L (2.118)
f

Applying this rule to Eq. 2.117 yields

2.2
A (cm'rad/s)=n2"Y (2.119)
: He

which differs from the classical result (2.106) by a factor of two.
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3. Experimental Techniques

3.1 Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) is a characterization technique
widely used in physics, chemistry, and biology. It has the advantages of high spectral
resolution, good signal-to-noise ratios, and the ability to measure a broad regioh of the
spectrum in a short amount of time. At the heart of a FTIR spectrometer is a Michelson
interferometer (Figure 3.1). A parallel beam of collimated light from a broadband source
is directed at a semitransparent beamsplitter. One of the two beams reflects off a
movable mirror while the other beam reflects off a fixed mirror. The two beams
recombine at the beamsplitter, travel through the sample, and finally impinge upon a
detector. The detector signal is proportional to the intensity of the interfered beam and
the plot of intensity versus optical path difference in real space is the interferogram. As
shown in the following section, when the interferogram is Fourier transformed, the
resulting function is a plot of the spectrum in frequency space. In practice, to maximize
the signal-to-noise ratio, several hundred to several thousand interferograms are taken
and averaged before the Fourier transform is performed.

As shown in Figure 3.1, the sample may be placed in a liquid helium cryostat. A
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photoconductor such as Ge:Cu is mounted directly behind the sample and kept at a
temperature of 10 K. A DC bias of a few volts is applied across the photoconductor, and
when light of sufficient energy excites a hole (electron) into the valence (conduction)
band, current is produced. For variable temperature measurements, a detector such as a
mercury- cadmium-telluride (MCT) diode cooled to 77 K may be placed external to the

cryostat. A detailed description of our spectrometer is given in Sec. 3.1.5.

3.1.1 Advantages of Fourier Transform Spectroscopy

There are two major advantages of a Fourier transform spectrometer over a
grating spectrometer. First, a Fourier transform spectrometer can obtain a broad
spectrum in a time that is short compared to a grating spectrometer. This is known as

Felgett advantage (Felgett, 1958). In a broad spectrum ranging in frequency from v; to
V,, the number of spectral elements is given by

M= (v, -v))/Ov = AV/dv, 3.1
where 0V is the resolution. If the time to observe the entire spectrum is 7, then the time

to observe a single spectral element it 7/M. Assuming the detector noise is independent

of the signal intensity, the signal-to-noise ratio for a grating spectrometer is given by

(S/N), =< T/M. (3.2)

In an interferometer, however, all the spectral elements are measured simultaneously.
Therefore, the signal-to-noise ratio for a Fourier transform spectrometer is independent

of M:




(S/N), =~T. (3.3)
For a given time 7, the advantage of a Fourier transform spectrometer over a grating

spectrometer is VM . Since Mis often on the order of 10,000, this represents a
significant advantage. In the visible spectral range, where detectors typically operate in
the photon-counting regime, the signal-to-noise ratio is proportional to the square root of
the signal and the Felgett advantage is no longer important.

As second advantage that interferometers have over grating spectrometers is the
throﬁghput, or Jacquinot (1960) advantage. In a grating spectrometer, the resolution is
limited by the width of the entrance and exit slits. In a Fourier transform spectrometer,
however, the resolution is determined by the length of the mirror path (Sec. 3.1.3).
Therefore, for high resolution measurements the Fourier transform spectrometer is

preferred.

3.1.2 Derivation of Fourier Result

Following the treatment given by Bell (1972), I derive the equation used in
Fourier transform spectroscopy. The two beams in the Michelson interferometer are
separated by an optical path difference 8. The superposition of the two beams is given

by

oo

E@ = [[E,(k)e* +E, (k)e* > ik , (3.4)

—o00

where k=27/A, E is electric field, and z is distance along the beam. From Eq. 3.4 is can
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be seen that the resultant electric field is given by
E (k)= E,(k)(1+e™). (3.5)

The intensity of the electromagnetic wave is given by the magnitude of its Poynting’s

vector (Jackson 1975):

< 2
I(k)= 8ﬂlER(k)l

= ——|E, (k)" (1+ cos k3).
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Figure 3.1. Schematic of the Fourier Transform infrared (FTIR) spectrometer.
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Since the phases of different frequencies of light are random with respect to each other,

the intensities add linearly:

,IR(8)=§{J
0

where the integrals are semi-infinite because the integrands are even functions. This is

E, (k)| dk +T E, (k)| coskd dk}, 3.7
/ |

the interferogram. Only the second integral varies with & ; the first is an offset term. The

second integral is given by
1(8) =4 I,(kycos kb dk., (3.8)
0

where
C 2
I,(k) =-§;'Eo(k)‘ : (3.9)

Eq. 3.8 is simply the Fourier transform of the intensity Io(k). To obtain the spectrum

Io(k), we perform an inverse Fourier transform:
I,(k) = (const.) [ I(8)cos kS dB . (3.10)
0

In practice, a computer uses a fast Fourier transform (FFT) algorithm (e.g., Cooley and

Tukey, 1965) to evaluate the integral (3.10).

3.1.3 Resolution
In the preceding derivation. the path length 6 was assumed to vary from O to eo.

In an experiment, however, the scanning mirror can only travel a finite distance.
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Sﬁppose that the light source is monochromatic, with an intensity given by

Io(k) =153 (k - ko), (3.11)
where k; is the wave number in cm™ and & is the Dirac delta function. The delta
function can also describe a perfectly sharp absorption peak. Substituting this function
into Eq. 3.8 yields

1(8 ) = 41, cos(kgyd ). (3.12)
As described in Sec. 3.1.5, the cosine interferogram from a laser is used to accurately
measure the optical length difference 4.

If an absorption peak is described by a delta function, the peak measured by the

FTIR spectrometer will be broadened by the finite scanning length L. The Fourier

transform of the interferogram is given by
L
I,(k) = (const.) [ 1(8) coskd db (3.13)
0

where the interferogram is abruptly truncated at a distance L. Substituting the delta

function interferogram (3.12) into Eq. 3.13 yields
L
I(k) = (const. )j cos ko0 coskd dd .
0
Using the a trigonometric identity, this can be written

L
I(k) = (const.) [ (cos(k + k¢ )8 +cos(k — k,)3) dd
0

= (const.) L

sin((k—ky)L)  sin{(k +ky)L)
(k—k)L | (k+k)L |




For a typical mid-infrared spectrum, L ~ 1 cm™ and k, ~ 1000 cm™. Therefore, koL >> 1

and the second term can be neglected. The computed spectrum is then given by
I(k) = (const.) L sinc((k — k,) L), | (3.16)

where

sincz=sinz/z. (317
The sinc function has a central maximum with sidelobes (Figure 3.2). The sinc function
is zero at z =*7/2, or k = ko = w/(2L). The width of the central peak is therefore given by
Ak~ /L. (3.18)

Thus, the resolution of the spectrometer is inversely proportional to the scanning length.

3.1.4 Apodization

As shown in Figure 3.2, abruptly truncating the spectrum at 6 = L produces
si(ielobes that can be quite large. Apodization is a method which numerically “corrects”
the interferogram in a way that reduces the size of the sidelobes. The most common
apodization function is a linear function that goes to zero at 6 = L. For a delta function

peak, the apodized spectrum is given by
5 ,
1(k)=(const.)_[(l—6/L)cos(k——kO)S do , (3.19)
0

where the cos(k + ko) term is neglected as before. Integrating by parts yields

1-cos((k - kO)L)] (320)

I(k)= (const.)li k- k0)2 3

61




and using a trigonometric identity, we have
I(k) = (const.) sinc?[(k - ko)L]. (3.21)

The sinc’z function is shown in Figure 3.2 and has smaller sidelobes than the sinc z

function.
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Figure 3.2. Plots of sinc(z) and sinc’z.

3.1.5 Experimental Apparatus

Two spectrometers were used to obtain the infrared spectra presented in this
thesis: the Digilab 80-E and Bomem DAS8 vacuum Fourier Transform infrared (FTIR)
spectrometers. The Digilab 80-E (see Wolk 1992) is capable of an instrumental

resolution of 0.1 cm”. The Bomem DAS is a newer instrument and is capable of a.
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resolution of 0.02 cm™. In addition, the Bomem is a more versatile spectrometer, with
several beamsplitters and optical ports, and detector modules.

Unlike the Digilab spectrometer, which uses a horizontally scanning mirror on air
bearings, the Bomem instrument has a scanning mirror that moves vertically, allowing
for a large optical path difference with a small footprint. The upper section (Figure 3.3)
houses the scanning motor, mirror, and tube. The mirror is moved by a torque motor and
a tensioned belt drive. The speed is servo-controlled by a tachometer on the motor shaft,

which keeps the scanning velocity constant to within +6%.

The middle section contains a beam switching compartment, which consists of a
45° mirror that can rotate to direct the beam to one of several ports. Two sets of transfer
and focusing mirrors direct the beam onto the left or right sample compartments. The
beam travels through the sample and onto an off-axis ellipsoidal mirror in the detector
module which focuses the beam onto the detector. In addition, the beam switching
compartment can direct the beam to the rear compartment, where a Janis continuous-
ﬂow liquid helium cryostat is housed.

The beamsplitters and water-cooled light sources are also in the middle section.
Mylar beamsplitters are used for far-infrared studies (below 700 cm™). For mid-infrared
studies, a KBr (450 to 4600 cm™) or a CaF, (1200 to 8000 cm™) beamsplitter is used.
The beamsplitter can easily be changed by removing the beamsplitter cover plate. For a
light source, we use a globar, which is a SiC bar heated to 1200°C. The blackbody
radiation emitted by the globar extends from ~300 to 4000 cm™. In addition. there is a

quartz-halogen source that emits light from ~2000 to 20,000 cm™. The light sources are
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mounted on a rotating wheel, so that one can choose a source without breaking vacuum.

The lower section of the spectrometer contains vacuum valves and electronics.
The spectrometer is kept under vacuum (100 mTorr) by a roughing pump, in order to
minimize infrared absorption peaks arising from CO; and H,0O in the air. A High
Performance Vector Processor (HPVP) system executes the fast Fourier transforms
(FFTs) and communicates with a 486 PC computer via a high-speed Ethernet
connection.

The position of the scanning mirror is accurately measured by counting fringes of
a single-mode He-Ne laser. All modes except the 632 nm line are suppressed, so itis a
monochromatic source. The narrow laser beam, centered in the 2” diameter infrared
light beam, is sent into the interferometer, where it produces a cosine interferogram (Eq.
3.12). The centers of the beamsplitters are all quartz, to split the laser beam. The
wavelength is such that the laser interferogram passes through 31600 cycles per cm
displacement of the scanning mirror. Before the laser beam can reach the sample, it is

diverted by a 90° prism that directs the beam to detectors located on the laser reference

detector card. By monitoring the laser interferogram, electronics on the card calculate

the optical path difference 0.

Since the cosine interferogram produced by the He-Ne laser is periodic, it cannot
be used to determine where the zero path difference (ZPD) occurs. To determine the
ZPD, white light emitted by an incandescent bulb is also sent into the interferometer.
Since the white light is a broadband source of light, its interferogram has a large

maximum at zero path difference, where all wavelengths of light constructively interfere.
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The white light travels through the same optics as the light from the globar. As with the
laser, the white light is split by the quartz at the center of the beamsplitter and is sent to
the detector card. When the fringes of the white light interferogram exceed a certain
threshold (typically 0.7 to 1.5 volts), a pulse is produced. By locating the center pulse,
the computer determines where ZPD occurs. |

If the fixed and scanning mirrors are not properly aligned, different parts of the
two beams will have different optical path lengths and the resolution will be limited. To
align the mirrors, the Bomem spectrometer uses a dynamic aligvnment process, in which
electromagnetic mirror tilt transducers adjust the mirrors continuously during each scan.
The feedback is provided by the interfered He-Ne laser beam. Different parts of the
beam impinge upon several detectors on the detector card, and the slight phase difference
between the detectors provides information about the misalignment. With dynamic

alignment, the angular deviation from optimal alignment is less than 10 radians.
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Figure 3.3. Schematic of the Bomem DAS8 FTIR spectrometer (side view).




3.2 Raman Scattering

Raman scattering involves inelastic scattering of laser light from a complex such
as a molecule or crystal. In Stokes Raman scattering, the incoming photon loses some of
its energy by exciting rotational, vibrational or electronic modes. In anti-Stokes Raman
scattering, the phofon gains energy from a thermally populated mode. The photon
polarization vector can also be changed. Sincé selection rules for Raman scattering and -
infrared absorption are generally different, the two complementary techniques can be
used to accurately determine the symmetry of a complex.

The fundamental properties of Raman scattering can be described by classical
theory (Cardona 1982). The starting point is the time-averaged power emitted per solid

angle by an oscillating dipole

4
P2 o (3.22)

Qs
where ® is the os“cillation frequency, c is the speed of light in the medium, €, is the
polarization of emitted light, and p is the electric dipole moment. The dipole p is
induced by the incoming laser light, which has polarization &, , electric field amplitude
E,, and frequency oy :

p=0-¢.F, cos(mLt), (3.23)

where o is the polanzability tensor.

We now consider the specific case of vibrational Raman scattering. A defectin a
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crystal (or molecule in a vacuum) has one or more local vibrational modes, as explained

in Sec. 2.3. A particular mode has a frequency ®, and normal mode coordinate
u(ry = u, cos(®,1). (3.24)
The vibration is assumed to be adiabatic, so that at any point in time, the polarizability o

is given by an equilibrium value which depends on the normal mode coordinate. o can

be expanded in a Taylor series in small u:

da
oa=a, +8——u° cos(mvt) + - (3.25)
u

Inserting this expression into Eq. 3.22 yields

p=90,-¢.E; cds((:)Lt)+%% ey u,E, cos(mLt)cos(O)vt). (3.26)

The first term on the right-hand-side is simply the Rayleigh scattering term. By a
trigonometric identity, the second term can be written

%%.éLuo %L— cosf(w, — o, )]+ cosf(, +o, )t]} (3.27)

The cosine terms describe scattered light with frequencies ®w; —®, (Stokes) and ®; +®,
(anti-Stokes). The Stokes line is produced by the emission of a phonon and the anti-
Stokes line is produced by the absorption of a phonon.

By inserting the.expression for the dipole (3.26) into Eq. 3.22, the time-averaged

scattering efficiency can be obtained:

2

A (3.28)
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The Raman tensor R is proportional to d a./d u; for the purposes of determining the
symmetry of a complex, the constant of proportionality is unimportant.
The quantity (3.28) must be invariant under all the operations of the crystal point

group (Appendix A). The vectors ¢, and &, belong to irreducible representations of the

point group, designated I'; and I, respectively. To make (3.28) invariant, R must

possess the symmetry of I'g.:
I ®I, =T ©T, & (3.29)

The different I"Ri representations correspond to Raman-active vibrational modes.

3.3 Diamond Anvil Cell (DAC)

The study of solids under large hydrostatic pressures is an active area of research
in geology, physics, and materials science (Jayaraman 1983). One method of producing
pressure is via a piston cylinder cell in which a pressure transmitting medium such as oil
is compressed. Although these cells are useful for electrical measurements, the
" maximum pressure attainable by them is approximately 15 kbar. For higher pressures, a
diamond anvil cell (DAC) is used.

In a DAC, the flat parallel faces of two diamonds press on a metal gasket. The
sample is placed in a pressure transmitting medium in the gasket hole. Although a 4:1
methanol-ethanol mix is a commonly used medium, it has the disadvantage that it

absorbs infrared light. Therefore. in variable pressure infrared transmission experiments,
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liquid nitrogen is commonly employed. At room temperature, N, solidifies at ~25 kbar
(Figure 3.5). Although the N, is a solid at low temperatures and/or high pressures, it is a
weakly bound Van der Walls solid which produces very hydrostatic pressures up to 130

kbar (Jayaraman 1983).
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Figure 3.4. Exploded view of the modified Merrill-Basset diamond anvil cell: 1) Allen screws 1o generate
pressure. 2) platens. 3) fixed backing plate. 4) gasket. 5) diamond anvils. 6) adjustable backing plate. 7)
positioning and gasket holder pins. 8) set screws. 9) cell holder (Sterer. 1990).
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The DAC which I use in this study is a modified Merrill-Bassett cell (Merrill and
Bassett, 1974) (Sterer et al., 1990), in which two platens are pulled together by six
screws, pressing the diamonds against each other. The diamonds are mounted on
backing plates with epoxy, and the backing plates are gold-plated with light-
concentrating cones to focus the light on the sample. To ensure that the diamonds are

| aligned parallel to each other, before the gasket is inserted, the six screws ére adjusted
until the Newton interference fringes formed between the two diamond surfaces
disappear. In addition, set screws (Figure 3.4) allow for translational adjustment of one |
of the diamonds. When the diamonds are properly aligned, the distances between the
platens a;re measured in three locations with a micrometer and recorded for future

reference.

3.3.1 Loading the Sample
I used 0.25 carat type I diamonds with flat octagonal culets 750 pm in diameter.

Type I diamonds contain a nitrogen absorption band from 1100 to 1400 cm™ (Seal
1984). Type II diamonds, which do not contain nitrogen, are transparent in that region of
the spectrum but cost twice as much as type 1 diamonds. The gasket is made from

stainless steel and is pre-indented to a thickness ranging from 50 to 100 pm. For 200 pm
thick samples, I used heat-treated Cu-Be gaskets, pre-indented to a thickness of ~300um.

After the pre-indentation, a hole is drilled in the center of the pre-indented area with a

#78 carbide drill. The sample and liquid nitrogen are then placed in the hole. along with
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a ruby chip for pressure calibration (Sec. 3.3.2). The screws are loosely adjusted so that
the diamonds are properly aligned. Finally, the DAC is immersed in liquid nitrogen
(Schiferl ez al., 1978) so that the nitrogen can seep into the sample space. Helium gas is
continuously blown into the liquid nitrogen to suppress the formation of N, bubbles.
The screws are then tightened so that the diamonds press down on the gasket and form a

seal, trapping the nitrogen in the sample space.

3.3.2 Ruby Fluorescence Pressure Calibration

In high pressure x-ray studies, the lattice constants of NaCl and Ag are used as
pressure markers. In Raman, photoluminescence, and infrared studies, however, the ruby
fluorescence pressure calibration is commonly used. The R lines of Cr’ in Al,O; shift
linearly with pressure (Forman ef al., 1972) up to 190 kbar (Piermarini ef al., 1975).
Beyond 190 kbar, the shift in the R lines deviates from the linear approximation. The

following empirical formula is used (Mao et al., 1978) to determine the pressure:

P =3808{[n, (1) /1 2,(D)T -1}, (3.30)

where P is the pressure in GPa, Ap is the wavelength of the ruby R; line at pressure P and
temperature 7, and Ao is the corresponding wavelength at the same temperature and

atmospheric pressure.
For infrared transmission studies performed at liquid helium temperatures, it is
difficult to obtain the in siru pressure using ruby fluorescence, since the laser beam must

enter the spectrometer and cryostat and the fluorescence must be detected by a
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monochromator. Although Chen and Weinstein (1996) have developed such a system,
for mid-infrared measurements it is much easier to explQit the fact that infrared
absorption peaks in the N, ambient shift linearly with pressure. In the following section I
discuss the physics of N, under pressure at liquid helium pressures and give the
quantitative pressure dependence of the infrared peaks (McCluskey et al., 1996¢). In all
subsequent measurements in this thesis, these peaks are used as a precise in situ pressure

calibration.

3.4 Infrared Absorption of Solid Nitrogen Under Pressure

3.4.1 Introduction

The development of high-pressure diamond-anvil cells has led to extensive
experimental research on the properties of high density molecular solids (Polian e? al.,
1989). N, is in many respects a model molecular system because its triple bond is very
stable and its low atomic number simplifies theoretical calculations (Nosé and Klein,
1983). Atlow temperatures and pressures (Figure 3.5), N, crystallizes into the cubic o
phase (space group Pa3) (Schiferl et al., 1989). At pressures between 0.4 and 1.9 GPa,
N, is in the tetragonal y ( P4, / mnm) phasé (Medina and Daniels 1976, Thiéry et al.,
1973). For pressures higher than 1.9 GPa, x-ray diffraction (Mills et al., 1986) and

Raman (Schiferl er al., 1985) studies have provided evidence that €-N, has a structure
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which belongs to the thombohedral space group R3C. Theoretical studies predict that &-

N, has a tetragonal structure with 32 molecules per unit cell, but that the structure is very
similar to R3C (Belak et al., 1990). In the following sections I present the results of
infrared absorption studies that lend further support to the R3C model.

The infrared absorption spectrum of solid nitrogen at normal vapor pressure has
been measured in 0-N; (Jodl ez al., 1987) and B-N; (Tryka ef al., 1995). The o and B
phases have infrared absorption features near the fundamental N-N stretch frequency
which are attributed to nonlinear coupling between the N-N vibrons and lower frequency

phonons (Lowen et al., 1990). Recently the profile of the N-N stretch overtone has been

used to determine the temperature of solid nitrogen on the surface of Pluto (Tryka ez al.,

1994). In this section, I discuss the observation of an infrared active peak in nitrogen in
the high-pressure € phase. In addition, for all measured pressures, I observe the v;

vibrational mode of CO, impurities. The pressure dependence of these peaks serve as a

useful in situ pressure calibration in Sec. 5.1.2.

100

&N,

Figure 3.5. Phase diagram of nitrogen (Belak 1990).
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3.4.2 Experimental Techniques

As discussed in Sec. 3.3, we used a modified Merrill-Basset diamond-anvil cell to
generate pressures up to 7 GPa. The liquid-immersion technique was used to load the
cell with liquid nitrogen. To determine the pressure at liquid-helium temperatures, a few
grains of ruby were placed in the cell and on the outside face of one of the diamonds.
The cell was then placed in a liquid-helium cryostat and the rubies were excited by an
Argon ion laser. The ruby fluorescence was dispersed by a double monochromator and
detected by a photomultiplier tube. The atmospheric and high pressure fluorescence
lines were recorded by computer, and pressures were determined with the relation (4.30).

Following the fluorescence measurements, each sample was warmed to room
temperature and then placed in the infrared spectrometer liquid-helium cryostat. Mid-
infrared absorption spectra were obtained with a Digilab 80-E vacuum Fouﬁer transform
spectrometer with a KBr beamsplitter, with a spectral range of 450 to 3400 cm™. Spectra
were taken at a temperature of 7 K with an instrumental resolution of 0.5 cm™. A light
concentrating cone focused the light through the diamonds and sample into a Ge:Cu
photoconductor mounted directly behind the sample.

To obtain a more precise measurement of the pressure, we loaded some diamond-

anvil cells with AISb:Se,C samples which were cut into discs 300 um in diameter and
polished to a thickness of 50 um. The “Cg, acceptor has a local vibrational mode

(LVM) peak at 591.0 cm™ at a temperature of 10 K and atmospheric pressure (Figure

3.6). Our samples are co-doped with Se so that they are n-type. Since Se is a deep donor
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(Becla et al., 1995), the free carriers freeze out at low temperatures, and the samples are
infrared transparent even for high (~10"" ¢cm™) concentrations of Cs,. We assume that
the position of the Cg, LVM varies linearly with pressure, as is observed in the case of
GaAs:Sig, (Wolk er al., 1991). The observation that the pressure-induced shift of the Cg,
LVM varies linearly with the shifts of the CO, and N, vibrational modes (Figure 3.8)
supports this assumption. We therefore use the position of the Cg, LVM peak as a

precise pressure calibration.

12
AISb: “Cg,

P=1.1GPa

Absorbance (arbitrary units)

P=0.4GPa
P=0GPa
I ] LN l 1 r I
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Figure 3.6. Pressure dependence of the AlSb:*Cg, local vibrational mode (LVM) at a temperature of 10
K. The position of the LVM is used as an ir situ pressure calibration.
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3.4.3 Results

For all pressures, we observe an infrared absorption peak which we attribute to
the Vg vibrational mode of CO, impurities in the N, matrix (Figure 3.7). In Figure 3.8,
the open and filled circles refer to CQO, vibrational frequencies measured by the Cg,
LVMs and ruby fluorescence lines, respectively. By matching the two sets of points, we
obtain the relation
P=0.073 [v (Cg) - 591.0], ' (3.31)
where P is the pressure in GPa and v (Cg,,) is the position of the Cg, LVM peak in cm’ at
liquid-helium temperatures. This pressure calibration is used in the subsequent analysis.
The pressure-induced phase transitions of solid N, can be inferred from
discontinuities in the positions of the CO, and N, peaks (Figure 3.8). For low pressures,

N, is in the o phase, and the CO; peak shifts linearly:
v3(CO,) =23493 + 123 P 0<P<045 (3.32)

where v; (COy) is the frequency in cm’ and Pis the pressure in GPa. At 0.45 GPa, two
CO, peaks are observed, indicating a coexistence of the o and y phases. This transition
pressure differs from the value obtained by Thiéry et al. (1973), who found a transition
pressure of 0.35 GPa at a temperature of 4.2 K. Thiéry et al. determined the pressure by
estimating the force per area of a piston-cylinder cell. Although they did not state the
error in their pressure calibration, it is probably large enough to account for the
discrepancy.

In the ¥ phase, the position of the CO, peak is best described by two piece-wise
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linear fits,

23476+84P 0455 P<13

23495+69P 13<P<L19 (333)

v,(CO,) = {

The reason for the two linear regimes is currently not known. In the € phase, the CO,
peak shifts linearly:

v3(CO,) =23451+66 P 1.9<P<7 (3.34)
In addition, a new infrared absorption peak appears (Figure 3.7). We attribute this new
peak to a N-N stretch mode, since its frequency is similar to that of the Raman-active N-
N stretch mode of solid nitrogen under pressure (Figure 3.8). In keeping with the
notation of Schiferl, e al. (1985), we label this mode v;. The pressure dependence of the
peak position can be described by a least-squares linear fit:

Vi (N2) =23265+27P 19<P<7 (3.35)

The N-N stretch mode of a N, molecule in free space is not infrared active, since no
electric dipole is induced by the symmetric vibration. In the y phase, however, the
symmetry is lowered so that a small dipole moment is induced by the N-N vibration.
This is the first observation of an infrared active N-N stretch mode in solid nitrogen.

The infrared activity of this mode is consistent with the rhombohedral space
group R3C (Dg,), which has one infrared-active and three Raman-active stretch modes
(Table 3.1). N, molecules on the 2b site have one Raman-active stretch mode while those
on the 6e site have two Raman-active modes and one infrared-active mode. Previous

Raman studies have only revealed two of the thre¢ Raman-active peaks (Schiferl ez al..




1985), perhaps because the frequency difference between the A;, and E, modes is too
small to be resolved. The v; infrared-active mode has a frequency very similar to the v,
Raman-active mode (Figure 3.8), an observation which suggests that they both arise
from N, molecules on the 6¢ site. If that is the case, then the factor group splitting is
much smaller than the site splitting for the R3C structure. The absence of a N-N
infrared-active absorption peak for pressures below 1.9 GPa is consistent with the

symmetries of the cubic o phase Pa3 (Schiferl et al. 1989) and tetragonal y phase

P4, / mnm (Medina and Daniels 1976).

Table 3.1. Correlation diagram for the N-N stretch mode of solid nitrogen in the £ (R§C ) phase. at the
center of the Brillouin zone.

Site Molecular Site Factor Group Activity
Symmetry Symmetry Symmetry
2b D, S = Cy D34
Z," (N-N stretch) A, \i A (D Raman
Ag (1) -
6e D.x G, D34
Z," (N-N stretch) > A > A (1) Raman
E, (1) Raman
A (1) -
E, (D Infrared
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Figure 3.7. Infrared absorption spectra of solid nitrogen under pressure. For all measured pressures. the
v; vibrational mode of CO, impurities is observed. For pressures above 1.9 GPa. the N-N stretch mode
becomes infrared-active.




3.4.4 Conclusions

In conclusion, we have observed infrared absorption peaks in solid nitrogen under
large hydrostatic pressures and liquid-helium temperatures. The v; mode of CO, was
observed for all measured pressures. For pressures greater than 1.9 GPa, we observe the
N-N stretch mode of solid nitrogen in the € ( R3C) phase. Using the shift of the

AlSb:**Cg, LVM as an in situ pressure calibration, we measured the pressure-dependent
shifts of the CO, and N, vibrational modes. These shifts are used as a precise pressure

calibration for infrared absorption experiments.
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Figure 3.8. Positions of the CO, and N, infrared absorption peaks in nitrogen under pressure at liquid-
helium temperatures. For the solid circles and squares. ruby fluorescence was used as a pressure
calibration (Eq. 4.30). For the open circles and squares. the position of the AlSb:'?Cg, local vibrational
mode (LVM) was used to calibrate the pressure (Eq. 4.31). The open diamonds are Raman-active modes
measured by Schiferl. e al. (1985) at a temperature of 15 K. The solid lines are linear fits given in Eq.
4.32-4.35 and the dashed lines are guides to the eye. The discontinuities near 0.45 and 1.9 GPa are due to
structural phase transitions.
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4. Hydrogen Related Complexes in Compound Semiconductors

4.1 Acceptor-Hydrogen Complexes in GaP

4.1.1 Introduction

Although most studies of LVMs in compound semiconductors have focused on
GaAs and InP (Sec. 1.4), significant work has also been done on hydrogen LVMs in
GaP. Clerjaud et al. (1991) observed the C-H and C-D bond-stretching LVMs and the
N-H mode (1992) in GaP grown by the liquid-encapsulation Czochralski (LEC)
technique. LVMs corresponding to hydrogen-defect complexes in LEC-grown GaP have
also been observed (Dischler et al., 1991). McCluskey et al. reported LVMs
corresponding to zinc-hydrogen (1994a) and beryllium-hydrogen (1994b) complexes in
GaP. In the following sections, I discuss the modes arising from beryllium-, zinc-, and
cadmium-hydrogen complexes and compare them to similar complexes in GaAs and InP.
In addition, I describe a simple model which accounts for the temperature dependence of
the hydrogen LVMs (McCluskey et al.. 1995).

The GaP samples used for this study had a (100) orientation and were n-type,

with a sulfur concentration of approximately 1017 cm-3. GaP:Be samples were obtained
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by implanting the undoped samples with 40 keV beryllium ions at a dose of 5 X 1014 cm-
2, and 100 and 200 keV ions at doses of 1 X 1015 cm2 each, for a total dose of 2.5 X
1015 cm-2. To activate the beryllium acceptors, the implantation was followed by rapid
thermal annealing at 1000°C for 10 s. To obtain GaP:Zn, the undoped samples were
placed in a 100 ml evacuated quartz ampoule with 6.5 ¢ metallic zinc and diffused in a
vertical furnace for 10 min at a temperature of 860°C. After completion of the diffusion,
the samples were quenched to room temperature by dropping the ampoule into ethylene
glycol. To obtain GaP:Cd, the undoped samples were placed with 200 mg cadmium and
1/3 atm H, ambient in an ampoule and diffused for 22 hr at a temperature of 950°C,
followed by quenching to room temperature. Room temperature Hall effect
measurements with the Van der Pauw geometry indicated sheet hole concentrations of
p(Be)=1X 1015 cm2, p(Zn) =5 X 1015 cm2, and p(Cd) =2 X 1014 cm™2.

Some of the samples were then exposed to monatomic hydrogen or deuterium in a
remote plasma system as described in Sec. 1.5.2. The hydrogenation temperature was
300°C and the duration of the exposure was llhr. GaP samples which were doped p-type
but not H- or D-plasma exposed were used as reference samples.

Infrared absorption spectra were obtained at liquid helium temperature with a
Digilab 80-E vacuum Fourier transform spectrometer with a KBr beamsplitter and an
instrumental resolution of 0.25 cm!. A Ge:Cu photoconductor was used as a detector.
For temperatures above 10 K. spectra were obtained with a Bomem DAR8 spectrometer
with a KBr beamsplitter and external mercury cadmium telluride (MCT) detector. The

instrumental resolution for the variable temperature measurements ranged from 0.5 to
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Figure 4.1. Infrared absorption spectra of deuterated and hydrogenated (a.) GaP:Be. (b.) GaP:Zn. and (c.)
GaP:Cd. The vibrational modes are associated with P-H (P-D) complexes adjacent to the group II
acceptors.

4.1.2 Results
Hydrogenated and deuterated GaP:Zn samples have infrared absorption peaks at
2379.0 and 1729.4 cm!, respectively (Figure 4.1b). The isotopic ratio of these

frequencies, r = vy/vp, is 1.3756. By way of comparison, hydrogenated InP:Zn has a
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bond-stretching mode at 2287.7 cm-! and an isotopic ratio r = 1.3744 (Darwich et al.,

1993). The bond-stretching mode has been attributed to 2 P-H complex oriented along a
[111] bond-centered direction, adjacent to the zinc acceptor, with the zinc relaxed into
the plane of phosphorus atoms (Figure 4.2). Since the LVMs and the r-factor for GaP:Zn
are similar to the corresponding values for InP:Zn, we assume that the structures are the
same. The P-H model receives further support from the observation that the Zn-H bond-
stretching frequency is 1600 cm-!, far lower than the P-H bond-stretching mode of
phosphine, which is 2328 cm-1.

The hydrogenated and deuterated GaP:Be samples have infrared absorption peaks
at 2292.2 and 1669.8 cm-1, respectively, at a temperature of 10 K (Figure 4.1a). The
isotopic ratio of these frequencies is r = 1.3727. Neither peak was seen in GaP:Be which
was not H- or D-plasma exposed. ‘These values are similar to the corresponding values in
InP:Be, which has a P-H bond-stretching mode at 2236.5 cm-! and isotopic ratio r =
1.3714. .We therefore assume that the absorption peaks arise from a P-H complgx,
oriented in a bond-centered direction, adjacent to the beryllium acceptor.

The hydrogenated and deuterated GaP:Cd samples have infrared absorption peaks
at 2434.0 and 1768.3 cm!, respectively, at a temperature of 7 K (Figure 4.1c). The
isotopic ratio of these frequencies is r = 1.3765. Although the samples were diffused in a
H, ambient, GaP:Cd which was not exposed to a hydrogen plasma did not have the
hydrogen related absorption peak. Once again, these values are similar to the
corresponding values for InP:Cd. which has a P-H bond-stretching mode at 2332.4 cm-!

and isotopic ratio r = 1.3757. It therefore appears that for all group II acceptor-hydrogen
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complexes in GaAs (Rahbi er al., 1993), InP, and GaP, the hydrogen binds to the host
anion in a [111] bond-centered orientation.

The positions and FWHM of the observed peaks are listed in Table 4.2. The
FWHMs of the P-D peaks are smaller than those of the P-H peaks. This narrowing effect
has been observed in all group II acceptor-hydrogen complexes in III-V semiconductors
and is correlated with the smaller vibrational amplitude of the deuterium as compared to
the hydrogen. It has been suggested (Chevallier, 1991) that the smaller vibrational
amplitude of deuterium leads to a weaker coupling with the lattice and thus an increase
in the lifetime. Other hydrogen/deuterium-related complexes do not follow this trend,
however, so ‘the question is still open.

In addition to the change in linewidth, several trends are immediately apparent.
First, the P-H modes in GaP are higher than the corresponding P-H modes in InP (Figure
4.3a). This is due to the fact that GaP has a smaller lattice constant than InP. Second, as
the size of the group Il acceptor increases, the frequency of the P-H mode increases. The
significant upward shift in frequency is evidence for hydrogen residing in a bond-
centered, rather than an antibonding, position. As explained below, as the acceptor
atomic number increases from Be to Cd, the acceptor-hydrogen bond is compressed,

increasing the LVM frequency. Finally, the isotopic ratio r = vy/Vp increases with

increasing acceptor'mass (Figure 4.3b). Darwich et al. (1993) noted that the

anharmonicity decreases from Be to Cd. increasing r (Sec. 2.3.4).




Figure 4.2. Model for H passivation of the Zn acceptor with the H atom attached to a P atom in a bond-
centered orientation. This model applies for all observed group II acceptor-hydrogen complexes in GaP
and InP.
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Figure 4.3. (a.) Hydrogen bond-stretching modes for group II acceptor-hydrogen complexes in GaAs. InP.
and GaP. Note that the LVM frequency shifts upward with increasing acceptor size. evidence that the
hydrogen is in a bond-centered orientation. (b.) Isotopic ratio r = vyg/vpy . As the size of the acceptor
increases. so does the r-factor.




4.1.3 Bond Compression
The increase in the hydrogen LVM frequency can be described empirically by
considering the equilibrium bond lengths of the diatomic molecules BeH, ZnH, and
CdH. 1 define the compression factor
A=dX-H) + d(Y-H) - d,,, 4.1
where X is Be, Zn, or Cd, Yis P or As, and d(X-H) and d(Y-H) are equal to the molecular
bond lengths (Table 4.1). d,,, is the nearest neighbor lattice distance, given by
d,=~3al4, (4.2)
where a is the lattice constant. This simple model does not account for the distribution

of between the X-H and Y-H bonds or the influence of other atoms in the lattice.

Table 4.1. Equilibrium bond lengths of free molecules (Rosen 1970) and semiconductors (Landolt-
Bomstein, 1987).

Bond Length (A)
Free Molecules
P-H 1.42
As-H 1.52
Be-H 1.30
Zn-H 1.59
Cd-H 1.76
Semiconductors
GaP 2.36
InP 2.54
GaAs 245




A is a crude measure of how much the bonds are compressed. As A increases, the
LVM frequency and r value increase. Figure 4.4 shows the LVM frequencies and r
values as a function of A for acceptor-hydrogen complexes in GaAs, GaP, and InP. For
GaAs and GaP, the LVMs vary linearly with A. The r values for GaP and InP lie on the

same curve, since the complexes are so similar. In the future, it would be interesting to
use hydrostatic pressure to determine whether varying d,,, has the same effect as varying

the acceptor species.
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Figure 4.4. LVM frequencies and r values for group II acceptor - hydrogen complexes in GaAs. GaP. and
InP as a function of bond compression A.
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Figure 4.5. Variable temperature spectra of GaP:Be.H and GaP:Zn.H LVMs. The LVM shift and
linewidth broadening of the GaP:Zn.H mode is much greater than the GaP:Be.H mode.




4.1.4 Temperature Dependence of LVMs

The temperature dependence of the hydrogen related LVMs in GaP:Be and
GaP:Zn was observed between 7 and 150 K (Figure 4.5). Unfortunately, the small
signal-to-noise ratio of the GaP:Cd,H LVM precluded variable temperature
measurements. We obtained the frequencies and linewidths of the peaks by fitting the
data to Lorentzian functions. The linewidth broadening and shift to lower energy with
incfeasing temperature have been observed in numerous systems and are believed to be
caused by anharmonic coupling between the localized mode and the extended lattice
phonons. The temperature dependence of hydrogen LVMs in GaAs (Tuncel and Sigg,
1993) and InP (Darwich et al., 1993) has been explained with a model which assumes
that the LVM interacts with a single phonon mode. In our case, however, we assume
that the LVM interacts with all the phonons and does not couple preferentially to any one
mode.

Elliot ez al. (1965) quantitatively described the temperature dependence of LVMs
in alkali halides. In our case, we assume that the hydrogen’s potential is perturbed by the
neighboring acceptor. The phosphorus-acceptor distance is given by

x(1t) = x,+ 0x(2), 4.3)
where x,, is the equilibrium distance, 8x(r) is a perturbation due to thermal fluctuation,

and 7 is time. The resultant shift in the LVM energy can be expanded in a Taylor series

about small ox:

8 (oo (1)) = a(8 x)+b(6 x)2+...




When averaged over time, the linear term does not contribute to the LVM shift. To

lowest order, the shift is given by
2
8 (hw) =b<(5 x) > :

<(8 x)2> is calculated by summing the contributions from all the lattice modes gq:
2 2 ,
(6)=2(6x))=Za2/2. @6)
q q
where Ag is the amplitude of vibration. In this simple model, the lattice modes are
assumed to be unperturbed by the defect. Classically, the mean vibrational energy of the

crystal is given by

U(T)=%vZA‘,2 4.7
q

where N is the number of atoms and 7 is the nearest-neighbor force constant. From Egs.
4.5-4.7, it can be seen that the LVM shift is proportional to the thermal lattice energy

U(T). Eq. 4.5 can therefore be written as

) (hm)zNLU(T) (4.3)

A
where U(T) is given in units of energy per mole, N, is Avagadro’s number, and B is a
dimensionless constant. Roughly speaking, 3 is the fraction of thermal energy that is
transferred to the hydrogen’s vibrational motion from its neighboring atoms.
Figure 4.6 shows the LVM shifts plotted against U(T). We obtained the values
of U(T) by numerically integrating the reported experimental values of the specific heat

C(T) (Irwin and LaCombe, 1974), neglecting the zero temperature energy. The data can
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bé approximated by linear least-squares fits, with coefficients given in Table 4.3.
Evidently, the larger zinc acceptor has more influence than the beryllium on the LVM
frequgncy.

The temperature dependent increase of the linewidth is determined by the lifetime
of the mode. It is unlikely that the hydrogen related LVMs decay via the creation of
phonons, since at least six optical phonons would be required to conserve energy.
Instead, elastic phonon scattering reduces the lifetime of the over-all mode (Barker and
Sievers, 1975). This process is given by

0.0y = 1)y +Lmy 1, @)
where |1) is the LVM and the n,'s are the phonon modes. In the Debye approximation,

this process leads to a temperature dependent linewidth

79c/T 6 z
6F=I“(T)—F(O)=A[—T—j ze

dz 4.10
o > dz (4.10)

()
where k6. /% is an effective cutoff frequency and A is an empirical constant. These two
parameters have been adjusted to give reasonable fits to the data (Table 4.3). The value
of 8, =400 K that we used is physically reasonable, since the Debye temperature for
GaP ranges from 300 to 500 K as the sample is warmed from 10 to 150 K. The data and
the fits are plotted in Figure 4.8. Again. it can be seen that the GaP:Zn,H LVM is more
sensitive to temperature variation than the GaP:Be H LVM.

It should be noted that the thermal expansion of the lattice may contribute to the

temperature-dependent shifts of the hydrogen LVMs. From O to 125 K, however. the




lattice constant increases by only Aa/a~1 0~ (Landolt-Bérnstein, 1987). From

hydrostatic pressure measurements done on GaAs:Si (Wolk et al., 1991), it can be shown

that a strain of -Aa/a = 104 yields a LVM shift of less than 0.1 cm-l. It is therefore

unlikely that the small lattice expansion from O to 125 K plays a dominant role in the

LVM shifts.

4.1.5 Conclusions

In conclusion, we have discovered vibrational modes in GaP:Be, GaP:Zn, and
GaP:Cd exposed to H- and D-plasma. It appears that for all observed group Il acceptor-

hydrogen complexes in III-V semiconductors, the hydrogen binds to the host anion in a

bond-centered orientation. The temperature dependent shifts of the LVMs are

proportional to the lattice thermal energy U(T), an observation which probably holds for

hydrogen LVMs in other semiconductors as well.




Table 4.2. Frequencies and FWHM of P-H and P-D LVM peaks in group II acceptor-hydrogen complexes

in GaP and InP.
P-H stretch mode - P-D stre_t-ch mode
Compound Peak FWHM  Peak FWHM I=vy/Vp
(cm1) (cm-1) (cml) (cm1)
GaP:Be 2292.2 2.7 1669.8 0.8 1.3727
GaP:Zn 2379.0 1.1 1729.4 0.5 1.3756
GaP:Cd 2434.0 1.2 1768.3 0.6 1.3765
InP:Bes 2236.5 0.43 1630.9 0.2 13714
InP:Zn? 2287.7 0.23 1664.5 0.08 1.3744
InP:Cda 2332.4 0.12 1695.4 0.10 1.3757

I

aSee Darwich et al. (1993).

Table 4.3. Parameters from Eqs. (4.8) and (4.10) which describe the temperature dependence of the
GaP:Be.H and GaP:Zn.H LVMs.
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Figure 4.6. Shifts of the GaP:Be.H and GaP:Zn.H LVMs as a function of temperature. The solid lines are
fits according to Eq. 4.8. with the B parameters given in Table 4.3.
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Figure 4.7. Shifts of the GaP:Be.H and GaP:Zn.H LVMs as a function of lattice thermal energy U(T). The
solid lines are fits according to Eq. 4.8. with the B parameters given in Table 4.3.
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Figure 4.8. Temperature dependent shifts of the linewidth OI" for the GaP:Be.H and GaP:Zn.H modes.
The solid lines are fits according to Eq. 4.10. with the 6, and A parameters given in Table 4.3.
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4.2 Arsenic-Hydrogen Complexes in ZnSe

4.2.1 Introduction

The interest in developing blue light-emitting diodes and diode lasers has focused
a great deal of research on the growth and doping of wide-band-gap semiconductors.
Continuous wave ZnSe-based laser diodes have been fabricated from epilayers grown by
molecular beam epitaxy (MBE), with high p-type doping achieved using a radio
frequency plasma nitrogen source (Park et al., 1990; Ohkawa et al., 1992). Epilayers
grown by metalorganic chemical vapor deposition (MOCVD), however, have proved
resistant to p-type doping (Morimoto and Fujino, 1993; Nishimura ef al., 1993).
Hydrogen plays a role in neutralizing the nitrogen acceptors, as shown by the observation
of the local vibrational mode (LVM) of the N-H complex in MOCVD-grown ZnSe layers
{(Wolk et al., 1993; Kamata ef al., 1993). Although arsenic-doped bulk ZnSe has only
deep-level photoluminescence peaks (Watts et al., 1971), there is evidence that arsenic
has a shallow acceptor level in ZnSe epilayers grown by MBE (Li et al., 1994). The
incorporation of hydrogen in arsenic and nitrogen doped MOCVD-grown ZnSe has been
studied by secondary ion mass spectrometry (SIMS) (Bourret 1996). In this chapter, I

discuss the observation of LVMs of As-H complexes in ZnSe (McCluskey et al., 1996a).
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Figure 4.9. Infrared absorption peaks corresponding to the LVMs of As-H and As-D complexes in
MOCVD-grown ZnSe. The shift and linewidth broadening of the As-H L VM at higher temperatures is due
to interactions with the lattice phonons (see text).

The epitaxial ZnSe films were deposited on (100) GaAs substrates by MOCVD.
The precursors to ZnSe were diisopropylselenide (DIPSe) and diethylzinc (DEZn) and
the source of arsenic was tertiarybutylarsine (TBA). Pd-purified hydrogen, deuterium. or
high-purity nitrogen was used as the carrier gas. The growth temperature was 464°C, the

molar flow ratio DIPSe/DEZn was 4, and the layers were ~3 pum thick.

102




4.2.2 Results

The sample that was grown with hydrogen as a carrier gas has an infrared
absorption peak at 2165.6 cm! at a sample temperature of 7 K. When nitrogen is used
as a carrier gas, we find the same peak, but its area is reduced by a factor of 14, in good
agreement with SIMS measurements (Bourret 1996) which show that the sample grown
with hydrogen has [H] = 1.5 X 10!° cm™3 while the sample grown with nitrogen has [H]
=1 X 1018 ¢m-3. In this case, the hydrogen most likely comes from the metalorganic
molecules. The sample that was grown with deuterium as a carrier gas has an
absorption peak at 1557.1 cm-!, along with the hydrogen-related peak at 2165.6 cm-!
(Figure 4.9). The isotopic ratio is r = Vg /Vvp = 1.3908. The peak positions, widths,
areas, and r values of the LVMs are given in Table 4.1. The area of the hydrogen-related
peak is approximately 3 times that of the deuterium-related peak. Previous SIMS
measurements of the samples show [H] = 6 X 1018 cm=3 and [D] =1 X 1018 cm-3
(Bourret 1996). These results indicate that most of the hydrogen incorporation comes
from by-products of reactions involving the hydrogen carrier gas and the metalorganic
molecules. A sample which was grown at a lower temperature (360°C) contains high
concentrations of hydrogen and arsenic ([H] = 3 X 1020 cm-3 and [As] = 1.8 X 102! cm-
3) but does not show the hydrogen-related peak. At the lower growth temperature,
hydrogen may be incorporated in forms that are infrared inactive, such as interstitial H,
molecules.

- The hydrogen bond-stretching mode frequencies of the free molecules H,Se.

" AsH;, and ZnH are 2345, 2116 (Shimanouchi 1972), and 1553 cm! (Rosen 1970),

103




respectively. Since the frequency of the ZnSe:As,H mode is 2165.6 cm™!, we propose
that the hydrogen binds directly to the arsenic acceptor. In several respects, th¢ As-H
complex in ZnSe is similar to the Zn-H complex in GaAs (Chevallier et al., 1991). In
GaAs, zinc is an acceptor which occupies a substitutional gallium site. Hydrogen
passivates zinc by attaching to a host arsenic atom, in a bond-centered orientation,
adjacent to the zinc acceptor. In ZnSe:As it is likely that the hydrogen attaches to the
arsenic acceptor, in a bond-centered orientation, adjacent to the host zinc atom (Figure
4.10). Thé stretch mode of the GaAs:Zn,H complex is 2146.0 cm™! at a temperature of 6
K and the isotopic ratio is r = 1.3860 (Table 4.4). The fact thét the isotopic ratios and
LVM frequencies of the two complexes are very similar lends further support to the

bond-centered model.

[111]

GaAs:Zn,H ZnSe:As,H

Figure 4.10. Model of ZnSe:As.H complex. as compared with the GaAs:Zn.H complex. In both
complexes. the hydrogen resides in a bond-centered orientation between an arsenic and a zinc.
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4.2.3 Temperature Dependence

The temperature dependent behavior of the ZnSe:As,H LVM is shown in Figure
4.9. As explained in Sec. 4.1.4, to first order the LVM shift is proportional to the lattice

thermal energy U(7),

_B
S (hw) = N U(T) “4.11)

A

where U(T) is given in units of energy per mole, N4 is Avagadro’s number, and B is a
dimensionless constant. We obtained the values of U(T) by numerically integrating the
experimental values of the specific heat C\(7T) reported by Irwin and LaCombe (1974),
neglecting the zero temperature energy. The data can be approximated by a linear least-
squares fit to Eq. 4.11, with B =-0.17. The temperature dependent shift and the fit are
shown in Figure 4.11. At 77 K, the shift of the ZnSe:As,H mode is approximately twice
that of the GaAs:Zn,H mode.

As discussed in Sec. 4.1.4, elastic phonon scattering leads to a temperature

dependent linewidth

T 70T Z6ez
§T=T(I)-T(O)=A [—] | == (4.12)
8 ) o (ez —l)

where kO, /F is the effective cutoff frequency and A is an empirical constant. For high
temperatures, Eq. 4.12 reduces to
dTr=a T’ (4.13)

Elliot et al. point out that Eq. 4.13 is a good approximation even when T is a fraction of




B¢c. Using Eq. 4.13, we obtain a fit to the data with o = 4 X 103 cm-/K2. The

temperature dependent linewidth and the fit are plotted in Figure 4.12.

The ZnSe:As,H mode has a slightly higher frequency, higher r-factor, and
stronger temperature dependence than the GaAs:Zn,H mode. These observations suggest
that the coupling between the zinc and the hydrogen is slightly weaker in GaAs than in
ZnSe. The effect of the zinc can be modeled as a repulsive potential which confines the
hydrogen atom. The potential increases the frequency and the r-factor, the latter because
hydrogen has a larger amplitude than deuterium and overlaps the potential more. The
temperature dependent shift of the frequency and linewidth are caused primarily by
coupling between the hydrogen and the thermal motion of the zinc atom. Greater
coupling leads to an LVM with a more pronounced temperature dependence. Although
the cause of this greater coupling is not currently understood, it may be related to the fact

that ZnSe is more ionic than GaAs.

4.2.4 Conclusions

In conclusion, we have discovered LVM peaks which we attribute to bond-
stretching modes of As-H and.As-D complexes in MOCVD-grown ZnSe. By analogy
with the Zn-H complex in GaAs, we propose that the hydrogen binds directly to the
arsenic acceptor in a bond-centered orientation, adjacent to a host zinc atom. Samples
which were grown with deuterium as a carrier gas have a strong As-H peak and a weak

As-D peak, indicating that the hydrogen originates primarily from by-products of
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reactions involving the metalorganic molecules and the carrier gas. Furthermore, it is
clear that in p-type doping of MOCVD-grown ZnSe, hydrogen passivation plays a

significant role.

Table 4.4. Peak positions, widths. and isotopic frequency ratios of As-H and As-D LVMs in GaAs:Zn and
ZnSe:As. '

As-H stretch mode As-D stretch mode

Compound  Peak (cm'!) FWHM (em'!) Peak (cm!) FWHM (cm!) r=vghp

GaAs:Zn“ 2146.9 1.8 1549.1 0.9 1.3860
ZnSe:As 2165.6 2.8 1557.1 1.9 1.3908

2 See Chevallier et al. (1991)
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Figure 4.11. Shift of the As-H LVM frequency with temperature for ZnSe (this work) and GaAs
(Chevallier ef al.. 1991). The solid line is a fit according to Eq. 4.11. with B = -0.17.
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Figure 4.12. Shift of the As-H LVM linewidth with temperature for ZnSe (this work) and GaAs
(Chevallier ef al.. 1991). The solid line is a fit according to Eq. 4.13. with o= 4 X 103 cm~ /K2,




4.3 Hydrogen Passivation of DX Centers in AISb

In this chapter, I describe LVMs of DX-hydrogen complexes in AlSb (McCluskey
et al., 1996b). A DX center is a donor that has a deep ground state in an off-
substitutional configuration. As shown in Figure 4.13, the coordinates of the defect are
represented by the configuration coordinate Q. A donor can be transferred from the deep
DX state (binding energy Epy) into the substitutional hydrogenic state (binding energy
Ep) by absorbing a photon of energy greater than Egpr. If the temperature is low enough, |
typically 120 K or below, the hydrogenic state is metastable. As discussed in Sec. 4.3.3,
in AlSb:Se, the persistent photoionization of the hydrogenic state is measured to obtain
the relative concentration of DX centers. The first DX centers were observed in Al,Ga;.
<As for x > 0.22 (Nelson 1977; Lang and Logan, 1977) and GaAs under pressure (Mizuta
et al., 1985, Wolk et al., 1991).

In most semiconductors, the DX state is the ground state only when the
semiconductor is an alloy or when hydrostatic pressure is applied. In AlSb, however, the
ground states of Se (Becla er al., 1995) and Te (Jost et al., 1994) donors are DX states,
making them convenient for spectroscopic studies. This is the first infrared

spectroscopic study of DX-hydrogen complexes.
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Figure 4.13. Configuration diagram of a DX center.

4.3.1 Introduction

As mentioned in Sec. 1.5, hydrogen can be introduced into a sample by boiling in
water, electrolysis, irhplantation, exposure to a hydrogen plasma, or contamination
during the growth process (Haller 1994). In this section, I show that annealing bulk
AlSb:Se or AISb:Te in a hydrogen atmosphere at temperatures as low as 700°C followed
by a rapid quench leads to the formation of DX-hydrogen complexes. We have also
found that hydrogen passivation can occur by annealing in methanol (CH;OH) vapor. It
has been demonstrated that annealing in hydrogen passivates shallow acceptors
(Veloarisoa ef al., 1991) and platinum (Williams ez al.. 1993) in silicon. Annealing of

heavily doped epitaxial GaAs:C layers in a hydrogen ambient was shown to passivate the
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carbon acceptor (Kozuch et al., 1993). This is the first study in which n-type
semiconductors have been passivated by annealing in hydrogen.

The AISb crystals were grown by the Czochralski technique from selenium or
tellurium doped melts. The growth was performed in a Sb-enriched melt, with an atomic
fraction [Sb]/([Sb]+[Al])=0.515. Some of the samples were sealed in evacuated quartz
ampoules with a 1/3 atm H, or D, ambient and annealed for 1 hr at temperatures ranging
from 700°C to 950°C. After completion of the diffusion, the samples were quenched to
room temperature by dropping the ampoules into ethylene glycol. Some AlSb samples
were sealed in quartz ampoules with 0.3 ml CH30H or methanol-d, (CD3;0D) and
annealed for 1 hr at 900°C, followed by a rapid quench. Since an unknown fraction of
the methanol evaporated before the ampoules were completely sealed, it was not possible
to determine the methanol vapor pressure. To remove the surface damage from

annealing in hydrogen, approximately 50 pm of the surfaces were lapped with a slurry of
3 um SiC grit and water, followed by polishing with a slurry of 0.3 pm Al,O5; powder

and methanol. After polishing, the samples were approximately 2 mm thick. Since AlSb
is hygroscopic, samples were kept with desiccant in sealed containers.

Infrared absorption spectra above 500 cm! were obtained with a Bomem DAS
spectrometer witﬁ a KBr beamsplitter and an external mercury cadmium telluride (MCT)
detector. For spectra below 500 cm! we used a 3 pum Mylar beamsplitter and a
deuterated tryglycine sulfate (DTGS) detector. The samples were placed in a Janis

continuous-flow liquid helium cryostat with ZnSe windows for spectra above 500 cm-!
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and polypropylene windows for spectra below 500 cm-l. We used instrumental

resolutions ranging from 0.1 to 1 cm-! such that all the LVM peaks were fully resolved.

AlSb:Se,D AISb:Se,H

T=10K

Absorbance (arbitrary units)

//

! ' | ' I / / ! I ' I ' |
1160 1180 1200 1600 1620 1640
Wavenumbers (cm™)

Figure 4.14. Infrared absorption peaks of deuterated and hydrogenated AlSb:Se at a temperature of 10 K.
The peaks are attributed to bond-stretching modes. with the deuterium/hydrogen attached to an aluminum
atom.

4.3.2 LVMs in AlSb:Se,H

AlSb:Se samples that were annealed in H, or CH3;OH at 900°C for 1 hr have

infrared absorption peaks at 1608.6 and 1615.7 at a temperature of 10 K (Figure 4.14).

Some of the as-grown samples also show these peaks with much smaller absorption




strengths, indicating the presence of hydrogen in the growth process. Longer H,-
annealing times do not increase the size of the peaks, so a 1 hr H,-anneal is probably
sufficient to diffuse the hydrogen through the entire bulk. We attribute the peaks at
1608.6 and 1615.7 cm! to hydrogen stretch modes. Since the bond-stretching mode of
the free diatomic molecule AlH is 1624 cm! (Rosen 1970), while the hydrogen stretch
modes of H,Se and SbH; are 2345 and 1891 cm!, respectively (Shimanouchi 1972). we
propose that the hydrogen binds to an aluminum atom.

AlSb:Se samples that were annealed in D, or CD;0D at 900°C for 1 hr have only
one stretch mode at 1173.4 cm! at a temperature of 10 K. AlSb:Se samples that were
annealed in a mixture of H, and D, have the hydrogen- and deuterium-related peaks but

no new peaks which would have indicated a multihydrogen complex. The isotopic

ratios, r = Vy/Vp, are close to \/2— , indicating that the vibrational modes are dominated

by the motion of the hydrogen and not the aluminum (Sec. 2.3.3). For the stretch modes,
since there are two hydrogen peaks, there are two r values, r = 1.3709 and 1.3769. The
peak positions, widths, areas, and r values of the LVMs are given in Table 4.5.

The fundamental transitions of the Se-D and Se-H wag modes are not observed,
since the spectral regions where we expect to find them have significant phonon
absorption features. The second, third, and fourth harmonics of the Se-D and Se-H wag
modes have been observed (Figure 4.15). The splittings of the peaks are a result of the
threefold symmetry of the complex, as explained below. The energy level spacings are
approximately 240 and 330 cm™! for the Se-D and Se-H wag modes. respectively. It

should be noted that the fine structure and broadening of the Se-H third harmonic are
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currently not understood. In addition, there are small peaks at 486 and 673.cm™! which
may correspond to unidentified deuterium- and hydrogen-related complexes.

The splittings of the wag harmonics are consistent with a complex which

possesses Cs, symmetry. In the plane perpendicular to the [111] axis, the C3, potential

is given by (Newman 1969; Sciacca et al., 1995)
V(x,y)= %k(x2 +y2)+ Bl = 3)+ Clx? + 32 ) + -, (4.14)

where x and y are parallel to the [ITO] and [1 15] crystallographic axes, respectively. -

For simplicity, we have omitted the wag-stretch coupling terms. The anharmonic terms

in Eq. 4.14 lift the thréefold degeneracy of the wavefunctions for N = n, + n,>1. The }
predicted splittings are shown in Figure 4.16. The dipole allowed transitions are the I'; ;
— I'y and I'; — T'; transitions. The higher harmonics give rise to weaker peaks, since

they require higher order anharmonic terms in Eq. 4.14.
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Figure 4.15. Infrared absorption peaks of deuterated and hydrogenated AlSb:Se. The peaks are attributed
to the second. third. and fourth harmonics of the hydrogen/deuterium wag modes. The peak assignments
are discussed in Appendix B.
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N=0 — T,

Figure 4.16. The splitting of the hydrogen/deuterium wag modes in C3, symmetry. Splittings are
expanded for clarity. The dipole allowed transitions are the I') — I'j and I'y — I'3 transitions. The I'y
and I states are accidentally degenerate. The theoretical level spacing A is defined in Appendix B.

4.3.3 Electronic spectrum of passivated AlSh:Se

In addition to LVMs, we observed the effect of hydrogenation on the Se
electronic spectrum. At temperatures below 90 K, AlSb:Se exhibits a large photoinduced
persistent optical absorption (Becla et al., 1995). When AlISb:Se samples are exposed to
light of energy 1 eV or more, the Se donors are transformed from a deep DX-like state to

a metastable hydrogenic state. The hydrogenic absorption spectrum extends from 0.1 to




1.5 eV and is due to the excitation of the electron from the ground state to the X; and X;
conduction bands. The hydrogenic spectrum was first measured by Ahlburn and Ramdas
(1968), long before the existence of DX centers was established.

We measured the persistent optical absorption of AlSb:Se samples that were
annealed in a D, atmosphere at several temperatures ranging from 700°C to 950°C. The
absorption spectra at 10 K after 2 min exposures to a white filament light bulb were
measured and referenced to the spectra prior to exposure. Although only a fraction of the
Sepx centers are &ansfened into their hydrogenic states, the strength of the photoinduced
absorption gives a relative measure of the Sepy concentration. As shown in Figure 4.17,
the persistent absorption decreases with increasing annealing temperature, while the
height of the Se-D stretch mode increases. The correlation between the LVM increase
and the persistent absorption decrease indicates that the deuterium passivates a

significant fraction of the Se DX centers.
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Figure 4.17. (a.) Integrated absorption of the Se-D peak in AlSb:Se as a function of Dy-annealing
temperature. Samples were annealed in 1/3 atm D5 for 1 hr. (b.) Persistent photoabsorption in AISb:Se
for annealing temperatures of 700°C. 800°C. and 900°C. The correlation between the increasing Se-D
peak area and decreasing photoabsorption indicates that a significant fraction of Se DX centers are
passivated.




4.3.4 LVMs in AlSb:Te, H

AlSb:Te samples that were annealed in H, or D, atmospheres at 900°C for 1 hr
have stretch modes at 1599.0 and 1164.4 cm-!, and second harmonic wag modes at
665.0 and 478.2 cm-1, respectively (Figure 4.18). Like Se, Te also exhibits a DX-like
bistability in Al1Sb (Jost er al., 1994). In the samples that we studied, the Te-H peaks
were 4 to 8 times weaker than the Se-H peaks, perhaps because hydrogen does not
passivate Te as efficiently as Se. The fact that the hydrogen stretch and wag modes of
AlISb:Se and AISb:Te have similar vibrational frequencies and r-values provides
evidence that the hydrogen attaches to an aluminum atom in an antibonding, rather than
a bonding, orientation (Figure 4.19). As described in Sec. 1.3.3, the antibonding model
also applies to donor-hydrogen complexes in Si. This finding is consistent with the study
of Rahbi et al. (1994) and Vetterhoffer et al. (1994). who measured the hydrogen modes
in GaAs:Se and GaAs:Te to be 1507.5 and 1499.9 cm-1, respectively. Those LVMs were
attributed to hydrogen stretch modes, with the hydrogen attached to a gallium atom in an
antibonding orientation. Since the hydrogen is weakly coupled to the donor, the LVM
frequency does not depend strongly on the donor species.

Theoretical studies (Chang et al., 1992) of the DX-hydrogen complex of GaAs:S
under hydrostatic pressure suggest that two neutral hydrogen atoms can passivate a
positively ionized donor and a negatively ionized DX center, resulting in two neutral
complexes. The structures of the DX-hydrogen and donor-hydrogen complexes are
identical, with the hydrogen in an antibonding [111] orientation. Our results for DX-

hydrogen complexes in AISb lend further support to the antibonding model.
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4.3.5 Conclusions

In conclusion, we have discovered that annealing AISb:Se and AISb:Te in
hydrogen gas or methanol vapor results in the passivation of the Se and Te donors. The
hydrogen stretch and wag mode harmonics are consistent with complexes which possess
Cj3, symmetry, with the hydrogen attached to an aluminum atom in a [111] antibonding
orientation. The antibonding model is similar to that of group VI donor-hydrogen
complexes in GaAs. The anomalous splitting of the Se-H stretch mode is discussed in

the following section.
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Table 4.5. Peak positions, widths. areas. and isotopic ratios of hydrogen and deuterium related LVMs in
AlSb:Se and AlSb:Te at liquid-helium temperature. The areas of the stretch modes are normalized to

unity.
H-mode v FWHM Area | D-mode Y FWHM Area | r=vgivp
(cmr)  (eml) (cml)  (cml)

Se-H Se-D

Stretch #1 16086 1.5 1 | Stetch 11734 14 1| 1.3709
# 16157 2.2 2.4 1.3769

Wag Wag

ond 6657 12 80 | ong 4783 15 37 | 13921

harmonics 69, g5 (g1 |harmomics 4974 o5 044 | 1.3916

3rd 9926 47 083 |34 7175 04 02 | 13834

harmonics 145318 09  0.048 |hamonics 545 10 0.033] 1.3902

ath 13158 15 025 |4 9484 12 0.046 | 1.3874

harmonics 13330 15 .16 |hamonics o574 13 0.014| 13923

Te-H Te-D

Stretch  1599.0 1.3 Stretch 11644 1.0 13732

Wag(2nd 6650 1.0 Wag (2nd 4782 1.3 1.3906

harmonic) harmonic)
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Figure 4.18. Infrared absorption peaks of deuterated and hydrogenated AlSb:Te. (a.) Bond-stretching
modes. (b.) Second harmonic wag modes. The LVM frequencies are similar to the Se-D and Se-H
modes. providing evidence for the antibonding model.




[111]

Figure 4.19. Model for the structure of the DX-hydrogen complexes in AlSb. The hydrogen attaches to an
aluminum atom in a [111] antibonding orientation.
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5. Resonant LVM-Phonon Interactions: the Localon

Resonant interactions between weakly coupled systems play an important role in
a variety of phenomena in solid state physics. The study of such interactions has led to
discoveries of new quasi-particles such as polarons (Frélich et al., 1950) and polaritons
(Kittel, 1986). Thus far most of these studies have been limited to interactions between
electronic and vibronic subsystems of the lattice, since small changes in electronic
properties can be easily detected and the energy levels may be tuned by external
perturbations such as magnetic field or pressure. Recently, Zheng and Stavola (1996)
have discovered a Fermi resonance between wag aﬁd stretch local vibrational modes
(LVMs) in donor-hydrogen complexes in silicon. In this chapter, I discuss the first
evidence of a resonant interaction between LVMs and extended lattice phonons that
gives rise to a new collective excitation called a “localon” (McCluskey et al., 1997). By
varying the temperature and pressure to change the phonon energies, we have studied the

evolution of the localon spectra in AISb and GaAs.

5.1 AlSb:Se,H

As described in Sec. 4.3.2, at liquid-helium temperatures, hydrogenated AlSb:Se
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has stretch mode peaks at 1608.6 and 1615.7 cm™, whereas the Se-D, Te-H, and Te-D
stretch modes have only one stretch vibration peak each. In addition, there is a small Se-
H peak at 1606.3 cm™. The ratio of the three Se-H peak areas is constant from sample to
sample, which suggests that they are not due to additional impurity complexes. In the
following discussion, we provide evidence that the Se-H stretch modé interacts with two
multi-phonon modes, giving rise to several absorption peaks. The Se-D stretch mode,
which is far away from these modes, does not split. The LVM-phonon interaction gives

rise to a new quasiparticle that we refer to as the localon.

5.1.1 Temperature Dependence

The temperature dependence of the Se-H and Se-D stretch modes is shown in
Figure 5.1. The linewidth broadening and shift to lower frequency with increasing
temperature is seen in numerous semiconductor systems and is caused by an anharmonic
interaction between the localized mode and acoustic phonons (Sec. 4.1.4). Although the
broadening obscures peak 0, peaks 1 and 2 are clearly resolved up to a temperature of
100 K. As the temperature increases, the area of peak 1 increases while the area of peak
2 decreases. The peak areas were determined by a two-Lorentzian peak fit. The sum of

the areas remains constant to within the experimental error.
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Figure 5.1. Temperature dependence of Se-D and Se-H stretch modes in AlSb.

To explain these observations, we propose a model in which the Se-H stretch
mode and a multi-phonon mode are nearly degenerate and interact with an energy A.
The Hamiltonian is given by:

Opym A
H={A © } (5.1

phoron

The eigenvalues of this Hamiltonian are

2
=1 2
W, = 2{0)“,,” + O ponon i\/(oaLVM —o)phm,,) +4A }




In our model, A = 3.45 cm™. The minimum frequency difference between the two peaks
is 2A = 6.9 cm™. The eigenfunctions of the Hamiltonian (5.1) are linear combinations of
an LVM and a multi-phonon,
|W) = a|LVM )+ b| phonon) (5.3)
We refer to this linear combination of a local mode and a phonon as a localon. Since the
multi-phonon mode is practically infrared inactive, the coefficient a can be determined
experimentally from the normalized area of each peak. For peak 1, the lower frequency
peak,
lal® = A/(A1+Ay), (5.4)
where A; and A, are the intggrated kareas of peaks 1 and 2, respectively. The theoretical

expression is given by:

AZ
lal* = a— (5.5)
(@ —0_) +A
The temperature dependence of the unperturbed stretch mode is given by

where U(T) is the mean vibrational energy of the lattice (Sec. 4.1.4) in cal/mole and @y,
is given in cm™". The multi-phonon mode can be described by the empirical relation
Ophonon= 1611.4 - 30/(exp(380/T)+1), 6.7
The parameters are adjusted to fit the data.
As the temperature increases, the area of peak 1 increases as it becomes more
“LVM-like” (Figure 5.2). Conversely, the area of peak 2 decreases as it becomes more
“phonon-like.”
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Figure 5.2. (a.) Se-H stretch modes as a function of temperature. The dashed lines are the unperturbed
LVM and multi-phonon modes (Eq. 5.6-5.7) and the solid lines are the perturbed modes (Eq. 5.2). (b.)
Normalized area of Se-H peak 1 (lower-frequency peak). The solid line is a plot of the theoretical model




5.1.2 Pressure Dependence

Variable pressure spectra were obtained with a Digilab 80-E spectrometer with a
KBr beamsplitter and an instrumental resolution of 0.5 cm-1. To generate hydrostatic
pressures up to 15 kbar, we used a modified Merrill-Basset diamond-anvil cell (Sec. 3.3).
The liquid immersion-technique was used to load the cell with liquid nitrogen. A light-
concentrating cone focused the light through the diamonds and sample and into a Ge:Cu
photoconductor méunted directly behind the sample. We use the pressure dependence of
/the AlSb:Cg, LVM as a precise in situ calibration of the sample pressure (Sec. 3.4).

Anti-crossing is observed between the three peaks when the hydrostatic pressure
- is increased. Varying the pressure has the advantage of not broadening the lines, so that
both multi-phonon modes are resolved. As shown in Figure 5.3, at pressures around 2

kbar, there are three absorption peaks. In our three-level system, the Hamiltonian is

given by
Opvy A B
H=| A 0 O (5.8)
B O mphonon.Z

where A = 3.45 cm™ and B = 1 cm™’. For simplicity we have neglected the interaction

between the multi-phonon modes. The pressure dependence of the modes are given by

® vy = 1612.7 + 0.075 P (5.9)
@ phonon,y = 1610.5 +2.1 P (5.10)
® phononz = 1605.8 +2.1 P (5.11)

. . . . . -1 .
where P is the pressure in kbar and the frequencies are in units of cm™. The eigenvalues
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of the Hamiltonian (5.8) are calculated using MATLAB. We obtain very good
agreement between the model and experiment (Figure 5.4).

The pressure dependence can be understood qualitatively as follows: the LVM
interacts primarily with phonon 1, producing a localon. The localon then interacts with
phonon 2, with a smaller coupling energy. The anti-crossing between the three modes
yields three infrared active peaks at pressures of ~2 kbar. For higher pressures, only the

lowest branch, peak 0, is “LVM-like.”

Absorbance (arbitrary units)

1608 1612 1616 1620
Wave numbers (cm™)

Figure 5.3. Se-H stretch mode peaks as a function of pressure.
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Figure 5.4. Se-H stretch mode peaks as a function of pressure. The dashed lines are the unperturbed LVM
and multi-phonon modes and the solid lines are plots of the three-level theory (Eq. 5.8-5.11).

5.1.3 Summary of Results

Using variable temperature and pressure infrared spectroscopy, we have observed

an anti-crossing resonance between the AlSb:Se,H stretch mode and two unknown

modes. We propose that the modes are different combinations of five optical phonons,

since 5 X oo T) ~ 1610 cm’ is very close to the observed frequencies. The pressure

dependence of the TO phonon at room temperature is 0.58+0.5 cm™'/kbar (Ves et al.,
1986). This value is somewhat larger than the value predicted by Eq. 5.10 and 5.11, 1/5
X 2.1 =0.4 cm™'/kbar. Another possibility is that the modes are overtones of other Se-H

LVMs. Only I'; modes can interact with the I'; stretch mode (Appendix A). The N=5,




I'; wag mode has a predicted frequency of 1665 cm™, which is too far away from the
stretch mode (1610 cm'l) to interact. In addition, there is only one N=5, I'; wag mode,

and we observe two “unknown” modes. Although there may be other modes that have

not been detected, the five-phonon modes remain the best candidates.

5.2 GaAs:C

In GaAs, the Cy, substitutional impurity gives rise to a LVM peak at 580 cm’
and an unexplained sideband at 576.6 cm™ at room temperature (Alt and Dischler,
1995). We extended the measurements of Alt and Dischler to temperatures as high as
500 K. As the temperature increases, the main peak merges with the sideband and -
broadens (Figure 5.5). We propose that the sideband is produced by an interaction
between the LVM and a two-optical-phonon mode. Unlike in the case of AlSb:Se,H, the
energy of interaction is less than the width of the phonon mode, so we must use a
Green'’s function approach to correctly describe the line shape.

The Green’s function of the local mode is given by

t C
Glo)=0-0, + ®w)———dw’, 5.12
@) g EZ s (5.12)

where @ is the local mode center frequency, fp (®) is the phonon density of states, C =

(LVM|H, phonon), and N — 0" (Nakayama 1969). The local mode interacts with a

nt.

distribution of phonon modes. Eq. 13 can be written

133




Gl(w)=w-0, +A()+iT(w). (5.13)

The spectral weight function describes the local mode line shape and is given by

1 r
Alw) == (@) . . (5.14)
T {0 -0, - A®)) + (o)
In our model, the two-phonon density of states is given by the empirical form
3 — Y ook
fp(w,m,,)={a [0, o) e @ <O (5.15)
, 0 W >0,

where a = 0.8 cm and wp is the threshold frequency in cm™. This form describes an
asymmetric phonon distribution with a sharp rise at ® = ®wp. The unperturbed LVM is
assumed to have a Lorentzian line shape with a center frequency ®; and a width of
0.5cm’. The LVM-phonon interaction energy is C = 1.5 cm™. The temperature
dependence of the LVM and phonon frequencies are given by

@y =581.6 - 0.014(T - 200) (5.16)

wp=578.8 - 0.008(T - 200) (5.17)
The theoretical and experimental spectra are plotted in Figure 5.5 for several
temperatures. Note than unlike the case of AlSb:Se,H, the interaction is not strong
enough to produce an anti-crossing. Instead, at high temperatures the LVM merges with

the phonon band, resulting in an increased linewidth.
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5.3 Conclusions

In conclusion, we have observed the first resonant interactions between LVMs
and phonons in AISb and GaAs. In AlSb, the Se-H stretch mode may interact with two
different combinations of five optical phonons, resulting in three distinct peaks. How a
5-phonon mode could be so sharp, however, is an open question. In GaAs, the 12CAs
LVM interacts with a two-phonon mode, resulting in a sideband on the low energy side.
Although it is unclear which phonons in the Brillouin zone interact most strongly with
LVMs, the fact that resonant interactions are observed in two very different defects and

hosts suggests that this is a general phenomenon.

Absorbance (a.u.)

565 570 575 580 585
Wave numbers (cm™)

Figure 5.5. GaAs:"?Cas LVM as a function of temperature. The dashed lines are plots of the theoretical
model (Eq. 5.12-5.17).
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6. Conclusions

I have discussed a number of hydrogen-related complexes in compound
semiconductors. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP,
results from LVM spectroscopy show conclusively that hydrogen binds to the host anion
in a bond-centered orientation, along a [111] direction, adjacent to the acceptor. As the
atomic number of group II acceptors is increased from Be to Cd, the stretch mode

frequency and isotopic frequency ratio r = vy/vp increase. The increase in LVM

frequency is due to the compression of the bonds. In addition, the temperature
dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a
consequence of the anharmonic coupling between the LVM and acoustical phonons.

In the wide band gap semiconductor ZnSe, epilayers grown by MOCVD and
doped with As form As-H complexes. As is the case with the above mentioned systems,
the hydrogen assumes a bond-centered orientation. A comparison was made between the
GaAs:Zn,H and ZnSe:As,H complexes. It is clear that obtaining strongly p-type ZnSe
grown by MOCVD is hindered at least in part by the formation of neutral acceptor-
hydrogen complexes.

In AlSb, the Se and Te DX centers are passivated by hydrogen, which is
introduced into the bulk by annealing in H; at a temperature of 900°C. The second,

third, and fourth harmonics of Se-H and Se-D wag modes are observed and show
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splittings that are consistent with C;, symmetry. Perturbation theory yields theoretical
values of the wag modes that are in close agreement with experiment. In these
complexes, the hydrogen attaches to a host aluminum atom in an antibonding
orientation.

Although the Se-D complex has one stretch mode, the Se-H stretch mode splits
into three peaks. The anomalous splitting is explained by a new interaction between the
stretch LVM and multi-phonon modes of the lattice. The anharmonic interaction mixes

‘the LVM and phonon states, producing a quasiparticle that we refer to as a localon. As
the temperature is varied, we observe an anti-crossing between the LVM and phonon
modes. By developing a new in situ pressure calibration, we also performed variable
pressure spectroscopic measurements that showed a distinct anti-crossing between the

LVM and the two multi-phonon modes.
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7. Future Work

Since GaN and its alloys with InN and AIN are becoming important blue light-
emitting materials, it is important to understand the role of hydrogen-related defects in
these wide band gap semiconductors. LVM spectroscopy has been used to identify the
Mg-H complex in GaN (G6tz et al., 1996). It is well established that in acceptor-
hydrogen complexes in Si, GaAs, InP, and GaP, the hydrogen resides in a bond-centered
position. In GaN:Mg, however, theoretical calculations (Neugebauer and Van de Walle,
1995) have indicated that hydrogen resides in an anti-bonding position. Donor-hydrogen
complexes have not been detected in GaN, despite high concentrations (10” ¢cm™®) of
donors in MOCVD-grown epilayers. The investigation of donor- and acceptor-hydrogen
complexes in GaN is a promising avenue of research.

LVM-phonon interactions will undoubtedly manifest themselves in other
semiconductors. One unanswered question is: which phonons in the Brillouin zone
interact most strongly with LVMs? The interaction between the defect and the lattice
may arise from the deformation of the defect’s environment by a lattice wave. In
addition, optical phonons produce macroscopic electric fields that may interact with the
dipole moment of a hydrogen-related complex. The combination of these factors and the
multi-phonon density of states may yield sharp resonances that produce the distinct

localons observed in A1Sb:Se H.
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8. Appendices

Appendix A: Group Theory

A.l1 Introduction

In examining the normal modes of a system, group theory is often employed as a
method to determine the symmetries of the modes as well as their optical activity. The
first step is to establish the symmetry of the complex. This is done by listing all the
symmetry operations - rotations, reflections, and inversions - which leave the complex
invariant. For systems such as perfect crystals which have translational invariance, space
groups must be considered (Falicov 1966). In this thesis, however, I am concentrating
on point defects, which necessarily break translational symmetry. All the operations are
performed about a point, and a group of such operations is known as a point group.

The elements of a group can be represented by a basis of matrices. The identity
element, for example, is a member of every group and in a two dimensional

representation it is written
E Lo A8.1
=10 1l (A.8.1)

A rotation by 120° is written
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cos2n /3 —sin2n /3
3 = (A82)

sin2n /3 cos2m /3

and a reflection about the x axis is written

1o ;
o.=|y _il (A8.3)

For a list of operations, groups and their labels, see Colton (1990).

The elements of a group can be represented by irreducible matrices of any
dimension, so long as they obey the properties of the group. The properties of a group
are:

1.) Closure. The product of any two elements in a group is another element in
the group. Two successive rotations by 120°, for example, produce a rotation
of 240°.

2.) Identity. The identity element, commonly labeled E, must be in any group.

3.) Associativity. a(bc) ={(ab)c.

4.) Reciprocity. Every element a must have a reciprocal 4 in the group, such

that aa'=E.

A.2  Irreducible Representations

One can imagine creating any number of huge matrices which obey the four rules
above. The requirement that the matrices be irreducible, however, limits the number of
possible basis sets. A group of reducible matrices is defined as matrices which, upon a

unitary transformation, can be written in block-diagonal form, such as:
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A 0

A= {[ 1 } (A4)
0 [4]

The matrices which occupy the diagonal positions are themselves elements of the group

and obey all the properties. If we find a set of matrices that cannot be reduced into this

block-diagonal form, then they are said to be irreducible.

A3 Character Table

Every group has a character table, in which the traces of the irreducible
representations are listed. Each row corresponds to a different irreducible representation.
The first row is simply filled with 1’s, since the set of 1’s obey all the properties of a
group. chcessive rows contain more interesting representations. Each column in the
character table corresponds to a class of operations (e.g., rotations), and the number
before the label refers to the number of elements in that class. The first column is E, the
identity element, which has a trace equal to its dimension.

When a molecule begins to vibrate, its symmetry is lowered in a specific way
which is given by the irreducible representation. As an impbrtant example, the character
table of the C;, (trigonal) group is shown in Table A.1. The chemists’ notation is shown
in parentheses. In addition to the identity element, the C;, group has two threefold

rotations (120° and 240°) labeled C; and three reflections about vertical planes labeled

G,.
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Table A.1. Character table of the C;, group.

Cs, E 2C; 30,
(4D 1 1 1
T2 (Az) 1 1 -1
I (E) 2 -1 0

o

X

Figure A.1. Example of a hydrogen complex with C;, symmetry.

144



A4 Hydrogen Motion in C;, Symmetry

Now we want to find the normal modes of a hydrogen atom in an environment
which possesses C;, symmetry. We choose the basis to be the Cartesian coordinates
centered at the hydrogen atom (Fig. A.1), with the z axis pointing toward the nearest

neighbor. To determine the normal modes, we use a projection operator, defined as
Pl = QZX(R)J' R (A5)
h R

where j is the representation, /; is the dimension of the representation, 4 is the order
(number of elements) in the group, ¥ is the character, and R is the element. When the
projection operator is applied to a function, only the part of the function which

transforms as the representation j survives. When we apply P"to the function z, we get
. 1
Pl(z)=g(z+z+z+z+z+z)=z (A.6)

Since z is invariant under all operations of the C;, group, it belongs to the T}
representation. If we operate on z with either P™or P, the result will be zero. The I'y
mode is called the hydrogen stretch mode and it corresponds to a vibration along the z
axis.
Applying the PFoperator to x yields
Ph(x)= -é—(x+(—-§-x+iz—iy)+ (—%x——%y)+x+(—%x—§y)+(—%x+-‘-2@y)) =0
(A7)

Similarly, applying the P"operator to x yields zero. Applying the P™ operator to x
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ﬁfs(x)=%(2x—(—%x+%y)—(—%x—-?y))=x (A3)

The x function is therefore 2 member of the I'; representation. Applying the P" operator

to y verifies that it also belongs to the E representation. Since x and y transform into
each other under rotations and reflections, they are degenerate. Vibrations in the x-y

plane are called wag modes.

A.5  Selection Rules
Group theory can determine which matrix elements are zero. Consider the matrix

element
(r,Ir|T,) = a3 T, @nor, 0, (A9

where the I';’s are functions with symmetries given by the I'; representations. Products of

functions with certain symmetries will integrate to zero. For example, in an environment
where parity is a good quantum number, the integral of two even functions times an odd
function is always zero. The selection rules can be generalized by expressing the direct

productT; ® T, ® T, as a direct sum of irreducible representations (Falicov 1966):
ryer;®r,=1,e1;o ... (A.10)
To obtain the irreducible representations I';, I';. etc., we first multiply the characters of

Iy, T, and I, column by column. Then, we find a set of representations which add up
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to the products. Those representations are I';, I';, etc. If one of the representations is I';,

the fully symmetric representation, then the integral may be nonzero. O‘therwise, it is
definitely zero.

As an example, consider the selection rules for an optical transition from the
ground state to an excited vibrational mode. The ground state has the fully symmetric

representation I';. As described in the previous section, the stretch mode has a
representation I'y. Light polarized along the z direction also has I'; symmetry. The direct

product is determined by multiplying the characters:

Table A.2.
C3v , E 2C3 30v
®r,er, ' 1 1 1
By inspection,
r1®r1®r1=rl, (A.ll)

so the transition is allowed. In a zincblende or diamond crystal, there are four equivalent
[111] directions, so for randomly oriented complexes, light of any polarization will excite
a stretch mode.

Next, consider a wag mode, which has I'; symmetry. Light polarized in the x-y

plane also has I'; symmetry. Multiplying the characters yields




Table A.3.

C3v I E 2C3 3Gv

erLen | 4 1 0

By inspection, we find that
Nenehz=Mener;,
which contains I';, so the transition is allowed. We can also show that
[ ®LheI,=I;
[ ®LEeh=I%

so that the I'; =1, transition is dipole-forbidden.

A.6  Perturbation Theory

(A.12)

(A.13)

(A.14)

In second order perturbation theory, states can interact via a matrix element

(T,|5 H|T,), where 8 H is a perturbation due to the surrounding atoms and has symmetry

I';. The direct product is given by

Fk® F1®T,=Fk®rl

(A.15)

The product will only contain I'; if T, = I',. In other words, states only interact if they

have the same symmetry.
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Table B.1. Wag modes in C3, symmetry.

N Symmemy Wavefunction(s)

0 T, 0.0)

1 Iy |1.0)]0.1)

> I, %(2.0)+]02))

2 I3 (2.0 -102))[1)

3 I 3(3.0)-+31.2)

3 I, 1(03)-+32.1))

3 ry 3(03)+ V3211 3(03)+V31.2))

4 T Va(4.0)+[04) +3]22)

PR F(31)+/13)): 55 (4.0)-[04))

4 I, V3(4.0)+[0.4)) -V 2.2); % (13.1) - [1.3)

5 T, 1(V515,0)-2(32) - 31.4))

5 I, 1(+/5]0.5) - +2|2,3) - 34.1))

5 T VE(3515.0)+v23.2) + [14)} V3 (¥5]05) +42]2,3)+[4.1)
5 O +(5.0) - V10]32) +V5]1.4)): 1 (05) - 10]2.3) +¥5]4.1))
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Appendix B: Calculation of Wag Modes in C3, symmetry.
B.1 Two Dimensional Wavefunctions

I now apply the results from Appendix A to wag modes in a C3, potential. Wag
modes are oscillations primarily in the x-y plane, and the wavefunctions are given by

(Sec. 2.1.2)
non) =W, (O, (),

with an energy

E=(n.+n,+ 1)h(p5(N+ DA, (B.2)
where N = n, + n, is the principal quantum number. For a perfectly parabolic potential,
all states with the same N are degenerate. When a C;, perturbation is introduced,
however, the states split according to their symmetries. Using the methods outlined in
Appendix A, I derived the states up to N = 5 (Table B.1). Different states with the same

symmetry and N value are differentiated by a subscript in parentheses.

B.2  Anharmonic Terms
To quantitatively estimate the splittings, the C3, potential is approximated by

(Newman 1969; Sciacca et al., 1995)

V(x,y):—;-k(x2 + y2)+ B(xy2 - x3/3)+ C(Jc2 + y2)2 4+, (B.3)

where x and y are parallel to the [1 TO} and {1 1—2-] crystallographic axes, respectively.

The cubic term shifts the energy of a state | N,T) via second order perturbation theory:




Table B.2. Matrix Elements of cubic and quartic terms in Eq. B.3.

Cubic Terms-

Quartic Terms

(N=0T,|V,|N=0T;)=2

<N =LI5 |VslN = 2,1}) = 1/‘/5

(N=LT,[V,|N=1T;)=6

(N=2T,[Vj)N=3T})=—3 (N=2T[V,|N=2T,)=14
(N=2,T,|Vj|N=3T,)=-1 (N=2T,V,|N=2T,)=12
(N=3}|V;|N=4T,) =3 (N =3T|V,|N=3T})=20
(N=3T, |V3]N = 4,1~3<1>> =3 (N=3T,|V,|N=3T,)=20
(N=3LV|N=4T7)=13 (N=3T,|V,|N=3T;) =24
(N=4T[V,|N=5T,)=-23 (N=4T,|[V,|N =4.T;)=38

(N=4Lv,|N=51,")=-3/2

(N=4T WV|N=51,2)=45

(N=4T2W|N=51")==2

(N=4T2W|N=51")=0

(N=4LOV,|N=4T,")=36

=3
(N=4L,2,|N=41,2)=30

(N=5T|v|N=6T,")=243

(N=5Lv|N=6T,2) =152
(N =5,T,|V;|N =6,T,) = /15/2

(N=51,"
(N=51"

<N =5, I~3(2) le

V[N =6T,")=3

V,|N=6T,2)=3

(N=5L2V,|N=6L,")=/52

N=6I")=-572

(N=5T|V,|N=5T,)=50
(N =5T,[V,|N =5T,)=50
(N=5T"V,|N=5T,)=54

(N=502W,|N=51,%)=42




The integrals of polynomials times Gaussians are given by the recursion relations:

oo

ferax=+n (B.7)
onz”e"‘z dx = 2n2-— ! Iexz"‘ze"‘z dx

Using these formulae and Mathematica, I calculated the matrix elements listed in

Table B.2.

B4  Results and Comparison with Experiment

Combining these results, the energy eigenvalues are given by

B*i? Ch*
E=hJk/u(N+1)+ e N, + N,, (B.8)

where N, and N, are different for each state and are listed in Table B.3. It is immediately

apparent that for N = 2, the I'; mode is lower in energy than the I'; mode, contradicting

the assumption given by McCluskey e al. (1996b), and in agreement with experimental
results by Zheng and Stavola (1995). The N =2 modes are split by an amount given by

5B%h? 2ChH*

2k kp

(B.9)

For the N = 3 modes, the I'; mode is higher in energy than the I'; mode, and the splitting
is 2A. This is in qualitative agreement with the experimental results, in which the N =3

splitting is greater than the N = 2 splitting. However, the experimental ratio of the -

splittings is ~1.5, so clearly the approximation is somewhat crude. For the N = 4 modes,
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the 'y and T3 modes split by A, again in qualitative agreement with experiment. A

schematic of the level splittings is shown in Figure 4.16. In the future, the inclusion of
wag-stretch coupling terms in Eq. B.3 should help agreement between theory and
experiment.

Eq. B.8 can be written in a simpler form:

4

E(cm")=1/k/u(N+1)+%N, +%N2, (B.10)

where k, B’, and C’ are adjustable parameters and the reduced mass [ is given in units of
amu. The hydrogen is assumed to be attached to an aluminum atom (M = 27). The
parameters that yielded the best least squares fit are k = 1.156 X 10° cm™ amu, B’ =

8.915 cm™ amu, and C’ = 0.0674 cm™ amu. With only three adjustable parameters, the

agreement between experiment and theory is fairly good (Table B.3).




Table B.3. Theoretical values of Se-H and Se-D wag modes in AlSb.

N  Symmetry M, N, \ 0 —N transition (cm™)

0 T; 0 2 H (theory) H(expt) D(theory) D(expt)

1 T, -1/2 6 342 247

2 I 3 14 666 666 484 478

2 T, -1/2 12 689 692 496 497

3 I 0 20 1040 1032 748 742

3 T, 0 20 “ “

3 I -5 24 994 993 724 718
4 I, 9 38 1304 1316 955 948

4 AR -13/2 36 1327 1333 967 957

4 ;@ 1 30 1396 1002

5 I, -15/2 50 1665 1212

5 T, -1572 50 “ “

5 | A -23/2 54 1629 1193

5 r® 0 42 1735 1247
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