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Abstract

Applications that use high-speed networks to connect
geographically distributed supercomputers, databases, and
scientific instruments may operate over open networks and
access valuable resources. Hence, they can require mecha-
nisms for ensuring integrity and confidentiality of commu-
nications and for authenticating both users and resources.
Security solutions developed for traditional client-server ap-
plications do not provide direct support for the program
structures, programming tools, and performance require-
ments encountered in these applications. We address these
requirements via a security-enhanced version of the Nexus
communication library, which we use to provide secure ver-
sions of parallel libraries and languages, including the Mes-
sage Passing Interface. These tools permit a fine degree of
control over what, where, and when security mechanisms are
applied. In particular, a single application can mix secure
and nonsecure communication, allowing the programmer
to make fine-grained security/performance tradeoffs. We
present performance results that quantify the performance
of our infrastructure.

1. Introduction

Recent developments in networking are enabling the con-
struction of high-performance distributed computing appli-
cations that span supercomputers, large-scale database sys-
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tems, specialized scientific instruments, and other resources
located at many sites [2]. These resources may be connected
by dedicated or shared high-speed networks, and programs
often must achieve a substantial fraction of peak computer
and network performance. The more than 60 groups partic-
ipating in the I-WAY wide-area computing experiment [3]
demonstrated the wide range of applications that can fit this
general framework, including scientific simulation, collabo-
rative engineering, and computer-enhanced instrumentation.

Inspired by the promising results obtained in early ex-
periments, various groups are developing more substantial
high-performance distributed computing testbeds and ap-
plications. However, their ability to use these systems for
production purposes depends crucially on the availability
of appropriate security mechanisms. Owners of resources
require authentication mechanisms to protect themselves
against malicious users. Users of resources may also de-
mand authentication of resources, in order to protect them-
selves against spoofing by malicious resource providers.
Users will often need to ensure that the integrity and con-
fidentiality of data communicated between resources are
not compromised, particularly when communication occurs
over public networks. Other forms of attack can also be of
concern, such as denial of service attacks against applica-
tions that use supercomputers to control remote devices.

~The task of meeting these security requirements is com-
plicated by the distinctive program structures, computing en-
vironments, and performance requirements encountered in
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often have a client-server structure, with limited mutual trust
between client and server. In contrast, paralle]l programs
may comprise hundreds or thousands of tightly coupled,
fully trusting processes. Distributed systems employ remote
procedure call (RPC) or TCP/IP as their primary communi-
cation mechanism. In contrast, the applications that we con-
sider here may communicate by using two-sided message
passing, streaming protocols, multicast, and/or single-sided
get/put operations, as well as RPC; furthermore, they are
typically programmed by using message-passing libraries
such as the standard Message Passing Interface (MPI [11])
or with specialized parallel languages (e.g., HPF [15] or
HPC++). Programs must run on parallel computers, which
typically provide specialized mechanisms for process cre-
ation, communication, and so forth, and which may even
run specialized operating systems.

Historically, we find that security technologies are used
only if they are incorporated into common tools in aseamless
and painless fashion. In the case of high-performance com-
puting, this suggests a need for secure versions of parallel
programming tools such as MPI. These security enhanced
tools must support the diverse process creation and authen-
tication mechanisms encountered in high-performance sys-
tems, and must address scalability issues that arise when
dealing with hundreds or thousands of processes. In ad-
dition, the demanding performance requirements of high-
performance applications introduces a need for mechanisms
that provide programmers with fine-grain control over what,
when, and where security mechanisms are used in programs.

We are developing a secure communications infrastruc-
ture that addresses these various concerns. This infrastruc-
ture builds on existing components and standards whenever
possible (e.g., SSL [12], Kerberos [25], GSS-API [17}),
while also extending the state of the art to provide four new
capabilities:

e A secure process creation interface that supports the
wide range of process creation mechanisms encoun-
tered in high-performance computing systems, and that
addresses scalability issues that arise in programs that
may need to create hundreds or thousands of processes.

o Techniques for managing the use of multiple secu-
rity mechanisms within a single application, in a way
that provides a uniform high-level programming model
while allowing the choice of low-level security mecha-
nism to vary according to what is communicated, where
it is communicated, and when it is communicated.

o Techniques for managing the transfer of secure logical
communication links among processes in large-scale
distributed computations.

e Security-enhanced implementations of multiple paral-
lel libraries (MPI, CAVEcomm, etc.) and languages

(HPF, HPC++, etc.), that enable programmers to use
our secure process creation and communication mech-
anisms while using familiar tools.

These new capabilities have been implemented and eval-
uated in the context of Nexus [10], a low-level multi-
threaded communication library designed to support high-
performance communication in heterogeneous environ-
ments. (The security-enhanced libraries and languages re-
ferred to above are all layered on top of Nexus.) While
these capabilities are not in themselves a complete solution
to the problem of providing security in high-performance
distributed applications, we do believe that they represent
useful steps towards that goal.

The rest of this paper is as follows. In Section 2, we in-
troduce the problems that we seek to address in our work. In
Section 3, we provide an overview of our approach and re-
view the Nexus communication infrastructure. In Sections 5
and 6, we describe our secure communications infrastruc-
ture, and in Section 7, we present some experiments that
allow us to evaluate its effectiveness. Finally, in Sections 8
and 9 we discuss related work and present our conclusions,
respectively.

2. Requirements

We are interested in applications that integrate geograph-
ically distributed computing, network, information, and
other systems to form “virtual” networked computational
resources. For example, global climate scientists often
employ large coupled simulation models, constructed by
linking models of atmospheric and ocean behaviors. Such
coupled models may use multiple supercomputers to exploit
large aggregate memory or to run different components more
quickly on different architectures [19, 23]. High-end collab-
orative engineering environments connect supercomputers,
databases, and advanced display devices to provide remote
access to shared state, which may include simulated enti-
ties as well as people [4, 5]. “Smart instruments” connect
scientific instruments or other data sources to remote com-
puting capabilities {16]. In each case, computations span
heterogeneous collections of resources, often located in mul-
tiple administrative domains. They may involve hundreds
or even thousands of processes. Communication costs are
frequently critical to achieved performance, and programs
often use complex computation/communication structures
to reduce these costs.

The development of a comprehensive solution to the
problem of ensuring “security” in such applications is clearly
a complex and multi-faceted problem. In this article, we fo-
cus our attention on two significant subproblems, namely the
authentication of users and resources when creating compu-
tational entities (“processes”) on local and/or remote com-



puter systems (the process creation problem), and the assur-
ance of integrity and confidentiality when exchanging data
between these processes (the communication problem).

2.1. Process Creation

We use the term process creation to refer to the mecha-
nism by which computational resources are integrated into
computations. These resources may all be acquired before
the computation starts (i.e., static allocation) or may be ac-
quired and released during the course of the computation
(dynamic allocation). Computational resources of interest
include both single-processor and multiprocessor systems,
and the low-level mechanisms used to initiate computation
may be quite different in each case. For example, on a
workstation we might use secure or unsecure “remote shell”
(rsh) mechanisms or hand-crafted process creation servers;
in contrast, parallel computers typically provide specialized
mechanisms that start a user-supplied executable on multiple
processors and may require interfacing with local resource
management systems such as a partition manager or sched-
uler [13].

A secure process creation facility for high-performance
programs must support a heterogeneous mix of process cre-
ation mechanisms. It should support authentication of the
user of remote resources and/or of the resources themselves.
It also needs to provide for the establishment of the secu-
rity contexts required for subsequent secure communication
within the program. Because a computation may comprise
hundreds or thousands of processes, which typically are mu-
tually trusting once created, it is both impractical and unnec-
essary to perform a formal authentication process between
every pair of processes. Instead, we need scalable mecha-
nisms for process creation that allow a process to transfer to
its offspring the right to communicate with other processes
in a computation.

2.2. Communication

Once processes have been created, they need to be able
to exchange data and synchronize their execution. As noted
above, the applications in which we are interested commu-
nicate by using a variety of interaction mechanisms. Com-
munication performance is often critical, but as messages
are often small, latency can be as important as bandwidth.
Collective communication operations across multiple pro-
cesses can exacerbate the impact of latency on performance.
Furthermore, performance and functionality requirements
frequently motivate the use of multiple low-level commu-
nication methods within a single application. For example,
coupled models often need to use machine-specific com-
munication methods within computers and optimized wide
area protocols between computers [19, 23]. Collaborative

environments require a2 mixture of protocols providing dif-
ferent combinations of high throughput, multicast, and high
reliability {4, 5]. Smart instrument applications may need
to be able to switch among alternative communication sub-
strates in the event of error or high load [16]. In general,
the method used for a communication can vary according
to where communication is being performed, what is being
communicated, or when communication is performed {8].

These considerations place demanding requirements on
a secure communications infrastructure. It is clearly criti-
cal to be able to specify the security mechanism used for
a particular communication independently of the low-level
method used to achieve that communication. More chal-
lenging perhaps is that programmers must be able to write
programs that mix secure and unsecure communication. For
example, let us consider a coupled climate model as a proto-
typical scientific simulation for which security mechanisms
may be required. (While this example may appear con-
trived, the controversy that surrounds global change studies
suggests that security could well be a concern, if computing
in an open environment.) Assume that the model runs the
ocean and atmosphere model components on two separate
IBM SP2 parallel computers, connected by an open high-
speed network. The programmer writes the coupled model
so that all communication is expressed using MPI; the MPI
implementation selects communication methods for each
message, according to message destination [9]. Communi-
cation between two nodes in the same SP2 takes place over
a dedicated, high-speed switch using IBM-specific proto-
cols, and as this environment is tightly controlled, we might
reasonably decide that security measures such as encryp-
tion are not required. In contrast, communication between
two nodes in different SP2s occurs over a general purpose
computer network using TCP/IP, and may well require secu-
rity measures. In Section 7, we present performance results
that demonstrate the advantages of applying security mech-
anisms only between models.

In this example, it is sufficient to select security mecha-
nisms according to where communication is directed: thatis,
according to the underlying physical communication struc-
ture. In other situations, we believe that it is important that
programmers be able to vary security mechanisms according
to the logical communication structure of a program. For
example, we may want to use different security mechanisms
for communications representing “control” and “data.”

3. Our Approach

We seek to address the requirements outlined in the pre-
ceding section by constructing a secure communications
infrastructure based on a portable communications library
called Nexus [10]. We chose to work with Nexus for two rea-
sons. First, it supports many of the tools that are commonly




used for application development in parallel and distributed
systems, such as the Message Passing Interface (MPI) [11],
High Performance Fortran (HPF) [15], and CAVEcomm [5]
(a specialized library for collaborative environment applica-
tions). Second, its architecture has been designed to support
the coexistence and concurrent use of different process cre-
ation and communication methods [8]. The latter feature
simplifies the integration and management of different se-
curity methods.

Figure 1 shows some of the parallel tools that have been
constructed with Nexus mechanisms. Each of these libraries
or languages use Nexus facilities to create processes and to
exchange data between processes; Nexus handles automat-
ically the various low-level issues relating to the process
creation and communication methods to be used in different
situations.

3.1. Nexus Structure

The Nexus communication library is structured in terms
of five basic abstractions: nodes, contexts, threads, com-
munication links, and remote service requests. A compu-
tation executes on a set of nodes and consists of a set of
threads, each executing in an address space called a context.
(For the purposes of this paper, it suffices to assume that
a context is equivalent to a process.) An individual thread
executes a sequential program, which may read and write
data shared with other threads executing in the same context.
Inter-context references called communication links provide
a global name space for objects, while the remote service
request (RSR) is used to initiate communication and invoke
remote computation. Nexus support for threads is relevant
to this paper to the extent that threads can be an important
latency hiding device, and multithreading can have implica-
tions for how we maintain and use security information.

In the following, we expand upon two aspects of the
Nexus system: communication links and management of
multiple communication methods.

3.2. Communication Links

As illustrated in Figure 2, communication links connect
data structures called startpoints and endpoints. (Prior pa-
pers on Nexus [10] referred to communication links as global
pointers; we adopt the alternative terminology to emphasize
that we are not assuming a global address space.) A commu-
nication link is formed by binding a startpoint to an endpoint.
Many startpointscan be bound to a single endpoint and there
can be many startpoints and endpoints within a process.

Nexus supports a single communication operation: the
remote service request, or RSR. An RSR is directed from a
startpoint to an endpoint, causing the transfer of data from
the startpoint process to the endpoint process and the remote
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Figure 2. The Nexus secure communications
infrastructure. The figure shows three start-
points (in the two processes on the left) ref-
erencing two endpoints (on the right). The
boxes labeled “a,” “b,” and “c” are security
contexts; these are discussed below.

execution of a function specified to be an endpoint handler.
An advantage of the startpoint construct in a distributed
computing environment is that the startpoint can be used
to encapsulate not only information about where a remote
object is located, but also how to communicate with that
remote object. This feature has been exploited to manage
the use of multiple communication methods [8].

The endpoint construct allows us to associate local state
with the remote location referenced by a startpoint. This
state can be used to maintain security information, and hence
is valuable when implementing stream-oriented communi-
cation routines, such as encryption based on stream ciphers.
As illustrated in Figure 2, multiple versions of this local state
can be maintained, one for each startpoint in the case where
multiple startpoints are associated with a single endpoint.

A startpoint/endpoint pair represents a simplex commu-
nication channel: that is, it specifies a remote destination
to which a communication operation can be directed by
an RSR. These channels can be created dynamically; once
created, a startpoint (but not an endpoint) can be commu-
nicated between nodes by including it in an RSR message
buffer. Hence, a startpoint can be thought of as a capability
granting rights to operate on the associated endpoint. The
RSR mechanism allows point-to-point communication, re-
mote memory access, streaming protocols, and multicast to
be supported within a single framework.
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Figure 1. The Nexus communication infrastructure

3.3. Communication Method Selection

As noted earlier, high-performance applications can re-
quire the use of different communication mechanisms in
different situations. Nexus incorporates automatic config-
uration mechanisms that allow it to use configuration in-
formation provided by a Metacomputing Directory Service
(MDS) [7] to determine which startup mechanisms, network
interfaces, and communication methods to use in different
situations [8]. These mechanisms allow Nexus programs
to execute unchanged in different environments, with com-
munication methods selected according to default rules, de-
pending on the source and destination of the message being
sent. For example, automatic selection allows Nexus RSRs
to use IBM’s Message Passing Library (MPL) within an
IBM SP2 and TCP/IP between computers. Manual selec-
tion is also supported. for example allowing selection of
specialized ATM protocols when appropriate. In each case,
selection mechanisms are employed whenever a startpoint
is received from another process, and hence apply both dur-
ing initial process creation and subsequently as additional
communication links are established.

4. Security Contexts

As we describe in the next two sections, we extend Nexus
in two main ways to develop our secure communications
infrastructure. First, we define a secure process creation
interface, and integrate this with Nexus process creation
mechanisms. Second. we extend Nexus communication
mechanisms to use and manage security information. Both
extensions make extensive use of a security context similar
to that used in GSS-API [17].

The Nexus security context is a data structure used to
encapsulate security information. Security contexts are as-

sociated with communication links and always exist in pairs:
one context is stored in a startpoint and the other in the as-
sociated endpoint. Each security context is composed of
two parts: the security configuration and the security state.
The security configuration describes what type of security
should be used for the communication link as well as the
manner in which those security measures should be applied.
For example, we might configure one security context so that
each message is encrypted using DES/ECB, while another
security context is configured to encrypt with RC4 and also
to perform authentication. This design not only allows us
to configure security characteristics on a per-link basis, but
also provides a framework in which we may exploit differ-
ent implementations of security algorithms within a single
application, e.g., exploiting high-performance encryption
hardware [26] that only exists on some machines.

The security state houses the values needed to enforce the
security specified by the configuration, such as keys and ini-
tialization vectors. Some encryption algorithms change the
values of these keys and/or initialize vectors as a function of
the plaintext they encrypt and ciphertext they decrypt. For
those security states that change over time, endpoints are re-
quired to maintain a distinct security state for each startpoint
bound to them. This necessitates additional communication
when startpoints are copied (a round trip message) or de-
stroyed remotely.

5. Process Creation

Parallel programs use process creation mechanisms to
initiate computation on other computers. In Nexus, process
creation involves a call to a “create process” function, which
invokes machine-specific mechanism to create the new pro-
cess and instantiates a startpoint referencing an endpoint in
the newly created context. Subsequent communication with




int start_process(char *hostnanme,
char *directory,
char *executable,
char **argv,
char **environment,
int authenticate_flag,
security_context_t *sec_context)

int init_process(int *argc,
char ***argv,
security_context_t *sec_context)

Figure 3. Functions used to add a new pro-
cess to a Nexus computation.

that context occurs over the new communication link. The
same interface is used to create multiple contexts (for ex-
ample, when initiating computation on a parallel computer),
except that the call returns a vector of startpoints, one per
new process.

Typically, process creation involves interaction with
some remote service, whether this be an rsh daemon, a
scheduler on a supercomputer, or some other specialized
server. Authentication of the requester and/or the remote
server may be required, and an initial security context must
be established for subsequent communication between re-
quester and newly created process. As noted previously,
we need to deal with a wide variety of process creation and
authentication mechanisms, and must address scalability is-
sues that arise when creating large number of processes.

5.1. Interface

We address the need to deal with a wide variety of pro-
cess creation and authentication mechanisms by defining a
standard interface. Two of the functions in this interface are
start.process and init process (Figure 3). Process
creation is initiated by a call to start_process. Using
the Metacomputing Directory Service, start _processcan
determine the authentication protocols that are acceptable
to the specified host. Based on this information, the initi-
ating process selects the appropriate authentication service
and contacts this service to initiate process creation. De-
pending on the value of the supplied authentication flag and
the requirements of the host being contacted, authentication
may be required just for the client, or for both the client
and the server. An initial security context can be provided
to the start_process call; this is encoded as a byte ar-
ray, passed over a secure channel, and made available to
the newly created process by placing it in an environment
variable.

Successful authentication results in the creation of a
new process on the specified host, with directory, exe-
cutable, arguments, and environment as specified in the
start_process call. The newly created process must call
the init_process function before performing other com-
putation. The call returns the process arguments (argc,
argv) and populates a user-supplied security context with
the one provided by the process that called start_process.

The two functions just described allow us to create a set of
processes and an initial set of shared security contexts. The
Nexus implementation then completes the negotiation pro-
cess by using these shared security contexts to establish an
initial communication link (and associated security context)
from the requesting process to the created process. Note that
subsequent communication with the newly created process
can occur with any communication mechanism supported by
Nexus (TCP, vendor-specific libraries, etc.). The interface
also includes a split-phase version of the start_process
function, so that multiple process creation requests can pro-
ceed concurrently.

5.2. Implementation Examples

Implementations of the process creation interface require
mechanisms for authenticating the user and/or the process
creation servers, and for establishing a secure channel for
the exchange of the initial security context. We have de-
veloped a variety of such implementations. As an example,
we consider a Secure Socket Library (SSL)-based process
creation server. This acts as an SSL server, while the pro-
cess calling start_process (the creating process) acts as
an SSL client. The client connects to the server using nor-
mal SSL mechanisms, thus performing authentication and
establishing a secure channel between the client and server.
The client then uses this channel to pass the various pro-
cess creation arguments to the server, which creates the new
process. When the new process calls init_process, it
configures itself using the passed command line arguments,
and initializes its security context argument using the infor-
mation passed to it by the server in environment variables.
This negotiation process completes with a communication
link (and associated security context) being created from the
requesting process to the created process.

As a second example, we consider what happens when
we need to create many processes at a remote location.
One approach would be to make multiple start_process
requests to the appropriate remote server. However, this
approach has significant scalability problems. Hence, we
instead use a single request to ask that multiple processes be
created. The process creation server then creates the pro-
cesses independently, accumulating the startpoints as they
become available; when it is done, it returns the vector of
startpoints to the requesting process. Note that no additional




authentication is required when transferring the startpoints
(and associated security contexts) from the “proxy” node to
the requesting process, because we assume that processes
in a parallel program are mutually trusting. These mecha-
nisms allow a program to create large numbers of processes
quickly, by using a hierarchical process structure.

We are currently engaged in recasting these and other
implementations in terms of the functions provided by GSS-
API [17], with the goal of simplifying code and promoting
reuse.

6. Communication

As described above, Nexus allows security contexts to be
associated with communication links. This structure gives
the tool developer (or application programmer) a fine degree
of control over how security mechanisms are applied during
communication. Different contexts can be associated with
different links; in particular, some links may not have any
security context at all. Critical to the success of this strategy
is that links that do not require security do not have to pay a
performance penalty.

Figure 2 shows how startpoints and endpoints are ex-
tended with security contexts. In this figure, the boxes
labeled “a,” “b,” and “c” represent security contexts. Notice
that the lower endpoint (on the right) has two security con-
texts associated with it, one for each associated startpoint.
This ability to associate multiple security contexts with an
endpoint is important for several reasons. First, different
startpoints might communicate by using different security
mechanisms; second, even if they use the same security
mechanism, multiple security contexts are required when
using encryption mechanisms (e.g., DES stream ciphers)
that update the security state as a function of the previously
encrypted plaintext.

Nexus mechanisms that manipulate startpoints and end-
points are extended to deal with security contexts. Whenever
a startpoint is copied or sent to another process as part of an
RSR (hence establishing a new communication link), a new
pair of security contexts is created. Depending on the type
of security context being created, the copy operation may
require communication with the endpoint, requiring a round
trip communication.

The application of security mechanisms when initiating
or receiving an RSR is triggered by an “escape” tag asso-
ciated with a Nexus startpoint and endpoint. If this escape
tag is set, a specified security transformation is applied to
communicated data. At the endpoint, we must identify the
correct security context for the incoming communication.
To facilitate this, we must place a context identifier in the
message header. Exchanging the context identifier is one
reason why copying a security context may require commu-
nication with the endpoint.

The mechanisms just described have the desirable prop-
erty of introducing little unnecessary overhead, particularly
in the case when they are not used. When they are used, costs
associated with this mechanism (relative to a communica-
tion method that always performs encryption, for example)
are a test on the “escape” flag followed by a lookup of a
small table to see what transformation should be applied.
If a startpoint is replicated, a small security context index
must be included in each RSR. Space overhead comprises
the encoding of the security context. When not in use, the
only time overhead is the test on the escape flag; there is no
space overhead. See Section 7 for additional discussion of
performance.

Nexus constructs a remote service request by a series
of “put” calls (used to designate the data to be transferred)
followed by a “send” (which completes the transfer). Our
current security-enhanced Nexus copies data into a contigu-
ous buffer, to which a single encryption call is applied. An
alternative approach is to incorporate encryption operations
in the “put” calls, hence reducing the number of times that
data is copied. We have experimented with both approaches,
and find that for DES/ECB the latter approach is typically
5-7 percent faster. The difference would be larger for lower-
cost encryption techniques.

6.1. Logical Connections

Because security mechanisms are integrated into Nexus
at a low level, they need not be visible to the programmer.
That is, it is straightforward to configure a Nexus applica-
tion (and hence an application code using any of the various
libraries or languages layered on Nexus) so that a/l commu-
nications are secured using the same standard mechanism.
Furthermore, this security need not interfere with the various
communication optimizations incorporated in Nexus. For
example, in a heterogeneous environment, Nexus can, as
usual, use TCP/IP between parallel computers and vendor-
supplied communication libraries or shared memory within
parallel computers.

Nevertheless, the full power of our architecture becomes
apparent when the programmer (or tool developer) wants
to implement more sophisticated communication structures.
Because security contexts are associated with startpoints
and endpoints, rather than processes, we can maintain mul-
tiple logical connections between a pair of processes, and
associate different security mechanisms with different con-
nections. This capability allows the programmer to apply
security mechanisms selectively, depending on what is being
communicated, where itis being communicated, and even on
when communication is performed. For example, we may
protect the integrity of control messages at all times, but en-
crypt data messages only when these are passed over open
networks; or we can use specialized encryption techniques




for particular types of data [18, 1]. Note that because secu-
rity context information is associated with communication
links, not communication calls, the code that actually per-
forms communication does not need to be aware of whether
security mechanisms are being applied.

The ability to associate security contexts with logical
connections is particularly useful in multithreaded environ-
ments, where communications over different logical con-
nections can be interleaved at the physical level. The Nexus
architecture avoids the need for an additional layer of multi-
plexing/demultiplexing, as would be required, for example,
if all communications between two processes had to occur
within a single stream cipher-based security context.

A number of approaches can be taken to specifying the
security contexts that are to be used for specific communica-
tions. As noted above, Nexus mechanisms provide a degree
of automatic management. Once a startpoint/endpoint pair
has been created, the startpoint can be communicated to
other processes, and any process receiving the startpoint can
then communicate securely with the original process, by
using the startpoint and its associated security mechanism.
For more fine-grain control, Nexus provides functions for
setting the security attributes of a startpoint and endpoint.
Libraries layered on top of Nexus can use other, higher-level
mechanisms. For example, an MPI implementation can as-
sociate security attributes with a communication structuring
mechanism called communicators [11].

7. Experimental Results

We report on a number of experiments that we have con-
ducted to study the performance of our techniques. These
comprise a simple microbenchmark, designed to yield in-
sights into the costs associated with basic communication
operations, and a large-scale application study. We empha-
size that these experiments have all been performed in the
context of a large-scale working system.

All experiments are performed on the Argonne IBM
SP2, which connects 64 Power 1 processors with an SP2
high-speed switch. The SP2 supports both a fast, machine-
specific communication library (MPL) and TCP/IP. MPL has
performance characteristics typical of high-speed parallel
computer communication libraries (35 MB/sec bandwidth,
small-message latencies of around 100 usec). TCP over the
SP2 switch runs at about 8 MB/sec and incurs small-message
latencies of around 2 msec; hence, it has performance char-
acteristics similar to a tuned OC3 or faster ATM network in
a metropolitan area network. TCP communication on the
SP2 that does not used the high-speed switch uses Ethernet.

7.1. Microbenchmark Results

We use a microbenchmark to compare the performance
of secure and unsecure versions of our basic communication
mechanisms. This Nexus program bounces a vector of fixed
size back and forth between two processors a large number of
times. Each communication is achieved by an RSR to the re-
mote node, with the RSR handler that executes on the remote
node invoking an RSR back on the originating node. The
experiment is repeated for different vector sizes. Figures 4
and 5 show results obtained in five different configurations:
Nexus when using IBM’s low-level MPL communication
library, with and without DES encryption and MD5 authen-
tication (MPL Secure, MPL Unsecure); Nexus when using
TCP/IP communication, with and without DES encryption
and MDS35 authentication (TCP Secure, TCP Unsecure); and
Nexus when using SSL over TCP, with DES encryption and
MDS5 authentication (TCP/SSL Secure). In those experi-
ments that used TCP/IP communication (TCP Secure, TCP
Unsecure, and TCP/SSL Secure) we did not utilize the SP2
high-speed switch. Note that identical source code, DES
encryption libraries, and MD5 authentication libraries were
used for all experiments.

In all the microbenchmark experiments encryption was
performed using a DES library in cipher block chaining
(CBC)mode. The libarary used is Libdes version 3.00 writ-
ten by Eric Young. Authentication in all the microbench-
mark experiments used the MDS message digest algorithm.
The library used is RSAREEF version 2.0 from RSA Labo-
ratories. The SSL tests were conducted using SSLRef 2.0
from Netscape Communications Corporation. This soft-
ware uses RSAREF version 2.0 from RSA Laboratories to
perform the public/private key operations for handshaking
and key exchange, and, as already mentioned, uses Libdes
version 3.00 from Eric Young to perform encryption and
RSAREEF version 2.0 from RSA Laboratories to perform
authentication.

The results reveal a number of interesting attributes of our
Nexus secure communication infrastructure. Looking first
at Figure 4, we note that for small messages, the underly-
ing communication protocol (TCP vs. MPL) makes a bigger
difference to performance than whether or not security is
enabled. For a 10-byte message, unsecure MPL communi-
cation takes 108 usec, while secure MPL takes 210 psec:
94 percent slower than unsecure MPL, but still a lot faster
than both secure and unsercure TCP, which take 770 and 929
psec, respectively. These results emphasize the importance
of using optimized low-level communication mechanisms
when these are available.

For larger messages, encryption costs dominate commu-
nication time. Beyond 300 bytes, secure MPL is slower
than unsecure TCP (but still considerably faster than secure
TCP). Looking at Figure 5, we see that for messages larger
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Figure 6. The Argonne/Wisconsin coupled
ocean/atmosphere model in the configuration
used for our multimethod communication ex-
periments, showing the two IBM SP parti-
tions.

than a few thousand bytes, secure MPL and TCP have es-
sentially the same cost. This is because the communication
costs for large messages are dominated by the limited perfor-
mance of the DES encryption library; the Power 1 processor
can encrypt and then decrypt data at only 0.33 Mbytes/sec,
far slower than the SP2 network.

Our results also reveal insights into the efficiency of
SSLref. We see that for a 10-byte message, Nexus when
using SSLref takes 1213 usec for a communication vs. 929
psec when the same security mechanisms are integrated into
Nexus. This 284 psec (31 percent) overhead is due to ad-
ditional network I/O operations in the SSLref version, and
extra copy operations.

7.2. Application Results

Our application study uses the FOAM fast ocean-
atmosphere model, designed to run at relatively low res-
olutions for multicentury simulations. This model uses MPI
for communication and combines a large atmosphere model
(the Parallel Community Climate Model {6]) with an ocean
model (from U. Wisconsin). The two models execute con-
currently and perform considerable internal communication.
Every two atmosphere steps, the models exchange informa-
tion such as sea surface temperature and various fluxes.

To provide a controlled environment for our experiments,
we run the two model components not on two different com-
puters but instead on distinct partitions of the Argonne SP2
(Figure 6). Communication between partitions is always
performed by using TCP, this time utilizing the high-speed
switch hence approximating a situation in which we have
two computers connected by an ATM metropolitan area net-
work. Communication within a partition may be performed
by using either MPL or TCP; we present resuits for both
cases. In all cases, user-level communication is achieved by
using the MPI implementation that we have constructed by
layering on top of Nexus [9]. (This layering adds an execu-
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Table 1. Time per simulated day for the cou-
pled ocean/atmosphere model, with different
security modes and communication proto-
cols on an IBM SP2

Mode TCP time | MPL time

(secs/day) | (secs/day)
No secure 854 574
Coupler secure 897 590
All secure 1459 1187

tion time overhead of about 6 percent when compared with a
“native” MP1.) No changes to the application program were
required to run the different scenarios considered below.

Table 1 gives our results. We present results for three
different scenarios: no encryption (“No secure”), encryp-
tion (ECB mode) only on communications between mod-
els (“Coupler secure”), and encryption (ECB mode) on all
communications (“All secure”). In each case, we consider
configurations in which either TCP or MPL are used within
a partition.

Our results demonstrate the importance of a communica-
tions infrastructure that can both support the use of multiple
low-level communication methods (MPL as well as TCP)
and permit selective application of encryption. When using
encrypted TCP for all communication, total time is 1459
seconds per simulated day. Allowing the use of MPL within
apartition reduces execution time by 19 percent,to 1187 sec-
onds/day. Turning off encryption within partitions reduces
execution time by a further 50 percent, to 590 seconds/day.
The latter time is only 3 percent slower than when using no
encryption at all.

8. Related Work

While there has been considerable earlier work on
portable security mechanisms for distributed computing, is-
sues relating to high-performance computing have received
less attention,

The Secure Socket Library [12] (SSL) allows the pro-
grammer to associate different security mechanisms with
different physical connections (sockets), but does not permit
the use of specialized communication methods. In contrast,
Nexus allows different security mechanisms to be associ-
ated with different logical connections, which furthermore
can communicate with different low-level protocols.

Jaspan [14] describes the use of GSS-API to implement
secure remote procedure calls. He reports an overhead of
over 11 milliseconds for a secured RPC with no arguments;
clearly, this work does not emphasize performance.




Venugopal [28] describes a secure implementation of Par-
allel Virtual Machine, a popular message passing library.
He uses a secure rsh for remote process creation and Diffie-
Hellman key exchange to communicate a secret session key
from the initial user process to all other processes. Encryp-
tion is enabled on a per-session basis, at the command line,
although the programmer also has the option of specifying
that a specific message should be secured using a particular
technique. There is no support for associating a security
mechanism with a particular logical connection.

The Prospero Resource Manager (PRM) [22] uses Ker-
beros mechanisms to provide secure process creation mecha-
nisms for PVM. Depending on the level of security required,
PRM can be configured to execute (a) only those programs
whose executables reside in the PRM binaries directory (b)
executables residing on the filesystem local to the site (c)
local executables as well as those downloaded from remote
sites from which jobs are submitted.

The x-kernel [24] and Horus [27] use protocol composi-
tion techniques to construct security enhanced versions of
communication methods without the specialized “escape”
used in Nexus. This approach introduces certain overheads
but has high flexibility. We hope to explore its use in future
work.

9. Conclusions

We have described the design and implementation of a
secure communications infrastructure for high-performance
distributed computing applications. This infrastructure
integrates authentication, encryption, and data integrity
mechanisms into the tools typically used to develop high-
performance applications. These security-enhanced tools

make it possible to run large-scale distributed applications

in a secure manner, without any changes to the applications
themselves. In addition, the tools provide hooks that pro-
grammers can use to manage explicitly the security mech-
anisms used for different communications. Experimental
studies demonstrate that in a TCP/IP environment our perfor-
mance is superior to that of SSLref, while in heterogeneous
environments we can obtain significant performance advan-
tages by employing multiple transport mechanisms and by
enabling security mechanisms only when communicating
selectively.

In future work, we propose to deploy these security-
enhanced communication tools in a wide-area computing
testbed that we are constructing, called GUSTO. This de-
ployment will allow large-scale application experiments and
hence provide feedback on how our security mechanisms
work in practical situations. It seems certain that encryp-
tion performance will be a bottleneck in many situations.
Hence, we will experiment with various performance en-
hancement techniques, including specialized protocols {1],

parallel encryption algorithms [20, 21], and use of dedicated
encryption processors. Another interesting direction for fur-
ther work will be to investigate the feasibility of using the
Metacomputing Directory Service to determine when secure
communication mechanisms must be employed, for exam-
ple because communication occurs over insecure network
connections. Clearly one issue that will be important to ad-
dress in this context is the authenticity of resource database
entries.
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