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Abstract

Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabi-
lization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge
coupling unification, QCD axion, as well as cosmological problems involving dila-
ton/moduli and axion. We study these problems by adopting the point of view that
they arise mostly due to our limited calculational power, little knowledge of the
full vacuum structure, and an inappropriate treatment of gaugino condensation. It
turns out that these problems can be solved or are much less severe after a more
consistent and complete treatment.

There are two kinds of nori-perturbative effects in our construction of string
effective field theory: the field-theoretical non-perturbative effects of gaugino con-
densation (with an important constraint ignored in the past) and the stringy non-
perturbative effects conjectured by S. Shenker, which are best described using the-
linear multiplet formalism. Stringy non-perturbative correctibns to the Kahler po-
tential are invoked to stabilize the dilaton at a value compatible with a weak cou-
pling regime. Modular invariance is ensured through the Green-Schwarz countert-
erm and string threshold corrections which, together with hidden matter condensa-
tion, lead to moduli stabilization at the self-dual point where the vev’s of moduli’s
F components vanish. In the vacuum, supersymmetry is broken at a realistic scale
with vanishing cosmological constant. As for soft supersymmetry breaking, our
model always leads to a dilaton-dominated scenario. For the strong CP problem,
. the model-independent axion has the right properties to be the QCD axion. Fur-
thermore, there is a natural hierarchy between the dilaton/moduli mass and the
gravitino mass, which could -solve both the cosmological moduli problem and the

cosmological problem of the model-independent axion.
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Chapter 1

Preamble




How the electroweak symmetry is broken is one of the fundamental questions
of particle physics. In the standard model, the scalar Higgs doublet acquires a non-
vanishing vacuum expecta,tién value (vev), and therefore breaks the electroweak
symmetry. However, the field-theoretical loop corrections to the masses of scalar
particles are quadratically divergent. Therefore, the scale of electroweak symmetry
breaking is in-fact unstable against radiative corrections, and how the very large hi-
erarchy between the Planck scale and the scale- of electroweak symmetry breaking is
generated rema;ins a mystery. Currently, weak scale supersymmetry [1] is the most
promising solution this hierarchy problem. Supersymmetric theories are free from
quadratic divergences due to delicate cancellations between boson and and fermion
loop corrections, and therefore can stabilize the hierarchy between the Planck scale
and the electroweak scale. However, .supe'rsymn.].,etry itself ‘does not explain the
origin of the electroweak scale. Furthermore, supersymmetry introduces new par-
ticles (i.e., supersymmmetric partners of the stand%n.rd model particles.) Therefore,
as a requirement of particle phenomenology, suberéymmétry must be broken and
the resulting theory is a supersymmetric extension of the standard model with su-
persymmetry softly broken at the electroweak scale. The experimental search for
supers_ymmetric partners is very important to our undersﬁanding of electroweak
symmetry breaking. It will also shed light on the mechanism éf supersymmetry
breaking as well as the physics at (and possibly above) the scale where supersym-
metry is brpken. On the other hand, constructing a realistic scheme of supersymme-

try breaking remains one of the big challenges to supersymmetry phenomenology.




Although it is possible, without knowing the details of the suéersymmetry breaking -
mechanism, to parametrize the effects of softly broken supersymmetryin an effective
description, yet it involves a huge numbers of unknown parameters and thus makes
phenomenological analyses highly intractable. It is therefore desirable to have a re-

“alistic supersymmetry breaking scheme which predicts all the soft supersymmetry

breaking parameters in terms of only a few parameters.

It is well known that superstring theory offers, according to the above consider-
ation, the most powerful scheme of supersymmetry phenomenology. More precisely,
all the parameters appearing in the effective description of the superstring are in
principle determined by the dynamics of superstring alone, ¢.e., by the vev’s of cer-
tain fields (e.g., the string dilaton and moduli.) Besides, the most compelling reason
to study superstring theory is the fact that it is the only known candidate theory
of quantum gravity. However, at the perturbative level the super.string has many
vacua parametrized by flat directions (e.g., the string dilaton and moduli) which
will be lifted only after non-perturbative effects are included!. Even with the recent
progress of string duality, there is still little knowledge of these non-perturbative
effects and hence how the above powerful feature of superstring theory is realized.
Earlier attempts to study the phenomenology of superstrings [2] have either ignored
fhe non-perturbative effects responsible for stabilizing the string dilaton/moduli or

relied on the racetrack model® [3], and therefore their results may not be reliable. It

1t is very possible that the same non-perturbative effects are also responsible for supersym-

metry breaking.
2As will be discussed later, the racetrack model suffers from a negative cosmological constant



is believed and will be shown in the following chapters that it is possible to draw re-
liable predictions from superstrings only after the relevant non-perturbative effects

are fully taken into account.

Our study of superstring phenomenology contains two kindé of ﬁon—perturbative
effects: the stringy hon-perturbative effects generated above the string scale, and
the field-theoretical non-perturbative effects of gaugino condensation generated by
strongly-interacting gauge groups below the string scale. As for stringy non-perturbative
effects, they have always been ignored in the past. The existence of significant
stringy non-perturbative effects was first conjectured by S.H. Shenker [4]. The re-
cent development of string duality has provided further evidence [5, 6] fqr Shenker’s
conjecture. It was first noticed by T. Banks and M. Dine that significant stringy
non-perturbative effects could have interesting implications [7]. Here we will study
in detail the phenomenological implications of stringy non-perturbative effects using
the linear multiplet formalism of superstring effective theory. It was first pointed
out in [8] that the field-theoretical limit of weakly-coupled heterotic string theory
should be described using the linear multiplet formalism rather than the chiral mul-
tiplet formalism. A similar point of view has also been emphasized by other authors
[9, 10, 11]; Furthermore, our study represents a concrete and elegant realization of
this viewpoint. As we shall see in Chapter 2, in the linear multiplet formalism the
string coupling is fhe linear multiplet L which is the natural parametrization of

stringy physics. On the other hand, the coupling of string effective field theory

problem as well as an un-naturalness problem.




is L/ (1+ f(L)) which is the natural parametrization of field-theoretical effects; it
is modified in the presence of stringy effects f(L). Therefore, the linear multiplet
formalism naturally distinguishes stringy effects from field-theoretical effects, and it
is this feature that makes the incorporation of stringy effects with the effective field
theory simple and transparent. This advantage of the linear multiplet formalism is
very crucial to our study where both stringy and field-theoretical non-perturbative
effects are considered. As we will see, stringy non-perturbative effects do play
an important role in stabilizing the string dilaton/moduli and in breaking super-
symmetry via the field-theoretical non-perturbative effects of gaugino condensation
[12, 13, 14].

As for the field-theoretical non-pérturbative effects, gaugino condensation has
always played a unique role: at low energy, the strong dilaton-Yang-Mills interaction
leads to gaugino condensation which not only breaks supersymmetry spontaneously
but also generates a non-perturbative potehtial which may eventually stabilize the
dilaton®. In the scheme c;f gaugino condensation the stabilization of string dila-
ton/moduli and the breaking of supersymmetry are therefore unified in the sense
that they Aa.re two aspects of a single non-perturbative phenomenon. Furthermore,
gaugino condensation has its own important bhenomenblogica.l motivations: gaﬁg—
ino condensation occurs in the hidden sector of a generic string model [15, 16}; it

can break supersymmetry at a sufficiently small scale and may induce viable soft

3In general there is also matter condensation which generates a hon-perturbative potential for

string moduli.




supersymmetry breaking effects in the observable sector through gravity and/or
an anomalous U(1) gauge interaction [17]. However, although gaugino condensa-
tion has been studied since 1982, it still has several long-standing problems in the
context of superstrings. Firstly, superstring phenomenology based on the scheme of
gaugino condensation has boen long plagued by the infamous dilaton runaway prob-
lem [7, 16]. That is, (assumning that the tree-level Kahler potential of the dilaton is
a good approximation) one generally finds that the supersymmetric vacuum with
vanishing coupling constant and no gaugino condensation is the only stable mini-
mum in the weak-coupling regime. Secondly, modular invariance is a very important
property of superstring. However, most of the studies of gaugino condensation had
neither complete nor correct treatments of modular invariance. As we shall see,
a fully modular invariant treatment of gaugino condensation has non-trivial phe-
nomenological implications. Thirdly, in the past the gaugino condensate has always
been describe_d by an unconstrained chiral superfield U which corresponds to the
bound state of W*W, in the underlying theory. It was pointed out recently that
U should be a constrained chiral superfield {18, 19, 20, 21] due to the constrained

superspace geometry of the underlying Yang-Mills theory:

U = —(D;D* -8R,

U = —(D*D, -8RV, : (1.1)

where V is an unconstrained vector superfield. Fourthly, superstring phenomenol-

ogy based on gaugino condensation suffers from several cosmological problems such




as the cosmological moduli problem [22] and the cosmological bound on the invisible
axion [23]. These cosmological problems either destroy the successful nucleosynthe-

sis or overclose the universe.

These formidable problems might make one think that the weakly-coupled het-
erotic string theory is in grave danger. On the other hand, these problems are
not unrelated to one another because the superstring has a highly constrained and
predictive framework. As we shall see, in fact these problems é.rise from our poor
understanding of non-perturbative string dynamics as well as incorrect/incomplete
treatments of superstring phenomenology in the past. Once we know how to proceed
in the right direction, these problems turn out to be solved or much less serious.
For the first problem, we emphasize the advantage of using the linear multiplet
formalism and show that stringy non-perturbative effects may stabilize the dilaton
at a value compatible with a weak coupling regime [12, 13]. For the second and
the third problems, full modular invariance is ensured through the Greeﬁ-Schwarz
term and string threshold correétioné, and the constraint on the gaugino conden-
sate U is explicitly solved using the linear multiplet formalism [12, 13, 14]. They do
lead to uniéue’ predictions of supéfstring théory about su'persymmetry breaking, the
compactification scale, and axion physics?. For example, string moduli are stabi-
Iized_ at the self-dual point, and therefore they do not participate in supersymmetry

breaking because the vev’s of moduli’s F' terms vanish [14]. This is certainly a de-

4These unique predictions were unknown in the past due to the aforementioned first three

problems.




sirable feature in consideration of flavor changing neutral current (FCNC) because
non-vanishing vev’s of moduli’s F' terms generically lead to non-universal contribu-
tions to the soft supersymmetry breaking parameters. For the fourth problem, let’s
recall the standard lore of superstring phenomenology which tells us that, based
on a very naive order-of-magnitude estimate, string dilaton and moduli gain from
supersymmetry breaking masses of order of the gravitino mass. Since the gravitino
mass is of order of the electroweak scale, these small masses of the dilaton and
moduli lead to the cosmological moduli problem. On the other hand, our model is
realistic enough for us to discuss these issues based on actual computations rather
than educated guesses: it turns out that the string dilaton and moduli are in fact
much heavier than the gravitino, which may be sufficient to solve the cosmological
moduli problem [24]. Furthermore, the large entropy préduced by the decays of
the heavy moduli in our model will dilute the axion density and therefore raise the
cosmological bound on the axion decay constant. As we sha.ﬂ see, this could solve

the cosmological problem of the invisible axion.

Finally, let’s make a brief comment’on how the recent development of string
duality might affect the status of weakly-coupled heterotic string theory. There
have been claims in the literature in favor of the strongly—couplgd heterotic string
theory by arguing that it is unlikely that the weakly-coupled heterotic string theory
can solve the dilaton runaway problem. However, the recent observation of string
dualities actually implies that the strong coupling limit of heterotic string theory,

which can be described by another weakly-coupled theory (i.e., M-theory compact-




ified on R10xS? /Z2 [25]), is plagued by a similar runaway problem [26]. Therefore,

there seem to be only two logical options for solving the rﬁna.way problem: either

a truly non-perturbative heterotic string theory which does not allow a weakly-
coupled description, or a weakly-coupled theory (¢.e., the weakly-coupled heterotic
string theory or the strong coupling limit of heterotic string theory). So far the first
option remains a remote possibility.> On the other hand, as for the second option
both the weakly-coupled heterotic string theory and the strong coupling Limit of
heterotic string theory certainly deserve further study®. As mentioned before, it
is our purpose here to show that the Weakly;coupled heterotic string theory could
solve the dilaton runaway problem as well as lead to a satisfactory phenomenology
[24].

In Chapter 2, a simple string orbifold model with a hidden Es gauge group
and no hidden matter is used to illustrate the studies of the linear multiplet formal-
ism, the incorporation of stringy non-perturbative effects, static gaugino condensa-
tion, and the dilaton runaway problem. Inr Chapter 3, we give the motivations for

- studying dynamical gaugino condensation, and then show that static gaugino con-

densation is indeed the appropriate low-energy effective description of dynamical

5Some recent attempts at a non-perturbative formulation of heterotic string theory can be

found in {27].
6Although recently there is an argument of coupling unification preferring the strong cou-

pling limit of heterotic string theory to the wea.kly—cogpled heterotic string theory [28], it involves
assumptions that are not true generically. For example, it is assumed in [28] that the compact-
ification volume V om, is of order MG'S-T, where Mgy is the grand unification scale. However, in
our model the moduli associated with compactification are stabilized at the self-dual point, and

therefore the argument of [28] is not valid.




gaugino condensation. In Chapter 4, we extend our previous studies to a generic

string orbifold model. The resulting model is generic and realistic enough, and we
are therefore in a position to address several important phenomenological issues.
In Chapter 5, we discuss phenomenological issues such as the dilaton and moduli
masses, axion physics, soft supersymmetry breaking parameters, gauge coupling

unification, as well as cosmological issues.




Chapter 2

The Stringy Story of Gaugino

Condensation

11




2.1 Introduction

Constructing a realistic scheme of supersymmetry breaking is one of the big
challenges to supersymmetry phenomenology. However, in the context of super-
string phenomenology, there are actually more challenges. As is well known, a very
powerful feature of superstring phenomenology is that all the paremeters of the
model are in principle dynamically determined by the vev’s of certain fields. One

of these important fields is the string dilaton whose vev determines the gauge cou-

pling constants. On the other hand, how the dilaton is stabilized is outside the

reach of perturbation theory since the dilaton’s potential remains flat to all order in
perturbation theory according to the non-renormalization theorem. Therefore, un-
derstanding how the dilaton is stabilized (i.e., how the gauge coupling constants are
determined) is of no less significance than understanding how supersymmetry is bro-
ken. Gaugino condensation has been playing a unique role in these issues: Gaugino
condensation not only breaks supersymmetry but also generates a non-perturbative
dilaton potential which may eventually stabilizé the dilaton. Furthermore, gaugino
condensation has its own important phenomenological motivations [15, 16, 17]. Un-
fortunately, this beautiful scheme of gaugino condensation has been long plagued
by the infamous dilaton runaway problem [7, 16]. (The recent observation of string
dualities further implies that the strong-coupling regime is plagued by a similar run-
away pr-oblem [26].) Only a few solutions to the dilaton runaway problem have been

proposed. Assuming the scenario of two or more gaugino condensates, the racetrack




model stabilizes the dilaton and breaks supersymmetry with a more complicated
dilaton superpotential generated by multiple gaugino condensation [3]. However;
stabilization of the dilaton in the racetrack model requires a delicate cancellation
between the contributions from different gaugino condensates, which is not very
na,tural.‘ Furthermore, it has a large and negative cosmological constant when su-
persymmetry is broken. The ’other solutions generically require the presence of an
additional source of supersymmetry breaking (e.g., a constant term in the superpo-
tential) {16, 29]. It is therefore fair to say that there is no satisfactory solution so

far.

Recently, there have been several new developments and insights in superstring
phenomenology. It is our purpose to show that these new ingredients play impor-
tant roles in the above issues and can evem‘,ually lead to a promising solution. One
of these new ingredienfs is the linear multiplet formalism of superstring effective
theories [8, 9, 10]: Among the massless string modes, a real scalar (dilaton), an
antisymmetric tensor field (the Kalb-Ramond field) and their supersymmetric part-
ners can be described either by a chiral superfield S or by a linear multiplet L,
which is k'nown as the chiral-linear duality [30]. By definition, the linear multiplet

L is a vector superfield that satisfies the following constraints [30]:
—(DsD* —8R)L = 0,
—(D*D, —8RY)L = 0. (2.1)

The lowest component of L is the dilaton field ¢, and its vev is related to the gauge

13




coupling constant as follows!: g2(M,) = 2({), where M, is the string scale [31, 32].
Although the chiral-linear duality is obvious at tree level, it becomes obscure when
quantum effects are included. Although scalar-2-form field strength duality, which
is contained in chiral-linear duality, has been showxi to be preserved in perturbation
theory [33], the situation is less clear in the presence of non-perturbative effects,
which are important in the study of gaugino condensation. It has recently been
shown [18, 20] that gaugino condensation can be formulated directly using a linear
multiplet for the dilaton. - Although a formal equivalence between the chiral and
linear multiplet formalisms has been shown [20], the content of the resulting chiral-
linear duality transformation is in general very complicated. If there is an elegant
description of gaugino condensates in the context of superstring effective theories,
it may be simple in only one of these fofmalisms.) but not in both. Therefore, a
pertinent issue is: which formalism is better? Here we will construct the effective
theory of gaugino condensation directly in the linear multiplet formalism without
referring to the chiral multiplet formalism. There is reason fo believe that the linear
multiplet formalism is in fact more appropriate. The stringy reason for choosing
the linear multiplet formalism is that the precise field content of the linear multi-

plet appears in the massless string spectrum, and (L) plays the role of string loop

expansion parameter. Therefore, string information is more naturally encoded in

the linear multiplet formalism of string effective theory. Furthermore, as we will see

1However, as we shall see in Section 2.2.2, this identification of gauge coupling constant in

terms of (£) will be modified in the presence of stringy non-perturbative effects [4].




in Chapter 2, stringy effects are believed to be important in the stabilization of the
dilaton and supersymmetry breaking by gaugino condensation; therefore, it is more

appropriate to study these issues in the linear multiplet formalism.

The other new ingredient concerns the effective description of gaugino conden-
sation. In the known models of gaugino condensation using the chiral superfield
representa,tionrfor the dilaton, the gaugino condensate has always been described
by an unconstrained chiral superfield U which corresponds to the bound state of
WeW, in the underlying theory. It was pointed out recently that U should be
a constrained chiral superfield [18, 19, 20, 21] due to the constrained superspace

geometry of the underlying Yang-Mills theory:

U = —(DsD*-S8R)Y,

U = —(p*D,-8RYY, (2.2)

where V is an unconstrained vector superfield. Furthermore, in the linear multiplet
formalism the linear multiplet L and the constrained U, U nicely merge into an
unconstrained vector superfield V' [18], and therefore the effective Lagrangian can

elegantly be described by V alone.

The third new ingredient is the stringy non-perturbative effect conjectured by
SH Shenker {4]. It is further argued in [7] that the K3hler potential can in principle
receive significant stringy non-perturbative corrections although the superpotential
cannot generically. Significant stringy non-perturbative corrections to the Kahler

potential imply that the usual dilaton runaway picture is valid only in the weak-

15




coupling regime; as pointed out in [7], these corrections may naturally stabilize the
dilaton.?

In the next section we describe the linear multiplet formalism of string ef-
fective Yang-Mills theor3.r, whose effective theory below the condensation scale is
constructed and analyzed in Section 2.3. It is then shown in Section 2.4 that su-
persymmetry is broken and the ciila.ton is stabiliz;;i i;l a large class of models of

static gaugino condensation. Here we use the Kahler superspace formulation [34] of

supergravity, suitably extended to incorporate the linear multiplet [35].

2.2 The Linear Multiplet Formalism

2.2.1 Effective Yang-Mills Theory from Superstring

In the realm of superstring effective Yang-Mills theory, there are two important
ingredients, namely, the symmetry group of modular transformations and the linear
multiplet. In order to make the discussion as explicit as possible in this chapter, we
consider here orbifolds with gauge group® Eg ® E¢ ® U(1)?, which have been studied
most extensively in the context of modular symmetries [31, 32, 36]. They contain

three untwisted (1,1) moduli T, I = 1, 2, 3, which transform under SL(2,Z) as

2Choosing a specific form for possible non-perturbative corrections to the Kihler potential, [48]
has discussed the possibility of stabilizing the dilaton in a model of gaugino condensation using
chiral superfield representation for the dilaton. However, neither the issue of modular anomaly

cancellation nor the constraint (2.2) was taken into account.
3As for phenomenological consideration, it is more desirable to discuss a generic orbifold. Such

a non-trivial generalization will be made in Chapter 4.

16




follows:
T I aTI - Zb

— m, ad —bc= 1, a,bed GZ (2.3)

The corresponding Kahler potential is

G = 2129’ + ?exp(; 7,9") |24 + O([2]%), (2.4)

where g! = —In(T? + T7), and the modular weights ¢’ depend on the particular
matter field 4 as well as on the modulus T!. However, it is well known that the
effectivétheory obtained from the massless truncation of superstring is not invariant
under the modular transformations (2.3) at one loop [37, 38]. Counterterms, that
correspond to the result of integrating out massive modes, have to be added to the
effective theory in order to restore modular invariance since string theory is known
to be modular invariant to all orders of the loop expansion [39]. Two types of such
counterterms have been discussed in the Hteratﬁre [31, 36, 38], the so-called f-type
counterterms (i.e., string threshold corrections) and the Green-Schwarz countert-
ermm. The Green-Schwarz cbunterterm, which is analogous to the Green-Schwarz
anomaly cancellation mechanism in D=10, is naturally implemented with the lin-
ear multil.;let formalism [30]. In Chapters 2 and 3 we consider only those orbifolds
in which the full modular anomaly is cancelled by the Green-Schwarz countert-
erm alone (i.e., orbifolds with universal modular anomaly cancellation), and more
generic orbifolds with both types of counterterms present will be considered in
Chapter 4. Indeed, an orbifold has universal modular anomaly cancellation unless

its modulus T corresponds to an internal plane which is left invariant under some
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orbifold group transformations, which may happen only if an N=2 supérsymmetric
twisted sector is present [40]. Therefore, a large class of orbifolds, including the Z3
and Z~ orbifolds, is under consideration in this chapter.

The antisymmetric tensor field of superstring theories undergoes Yang-Mills
gauge transformations. In the effective theory, it can be incorporated into a gauge
invariant vector superfield L, the so-called modified linear multiplet, coupled to the

Yang-Mills degrees of freedom as follows:
—(DsD*—8R)L = (DsD*—-8R)Q = I Tre(WW,)",
—(D*D, —8RNL = (D*D,—8RNQ = 3 Tr(W.W4)e, (2.5)

where § is the Yang-Mills Chern-Simons superform. The summation extends over
the indices a numbering simple subgroups of the full gauge group. The modified lin-
ear multiplet L contains the linear mulﬁplet as well as the Chern-Simons superform,
and its gauge invariance is ensured by imposing appropriate transformation proper-
ties for the linear multiplet. The generic lagrangian describing the linear multiplet
coupled to supergravity and matter in the presence of Yang-Mills Chern-Simons

superform is [31]):

K = InL+g(l)+G,

L = /d49E{—2+f(L)} +/d49E{bLng}, (2.6)
c 2
b = W = _?;'b(h (2'7)

where L is the modified linear multiplet and C = 30 1s the Casimir operator in
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the adjoint representation of Es. by is the Eg one-loop B-function coefficient. The
first term of £ is the superspace integral which yields‘ the kinetic actions for the
linear multiplet, supergravity, matter and Yang-Mills fields. The second term in
(2.6) is the Green-Schwarz counterterm, which is “minimal” in the sense of [31].
Furthermore, arbitrariness in the two functions g(L) and f(L) is reduced by the re-
quirement that the Einstein term in £ be canonical. Under this constraint, g(L) and

f(L) are related to each other by the following first-order differential equation [35}:

N ) (2.8)

The complete component lagrangian of (2.6) with the tree-level Kahler potential
(i.e., g(L) = 0 and f(L) = 0) has been presented in [9] based on the Kahler super-
space formulation. Similar studies have also been performed in the superconformal
formulation of supergravity [8, 10]. In the following, we are interested in the effective

lagrangian of (2.6) below the condensation scale.

2.2.2 Stringy Effects versus Field-Theoretical Effects

In this section we would like to illustrate how stringy effects are naturally
incorporated with the superstring effective field theory using the linear multiplet
formalism. Consider again the effective field theory defined at the string scale M,.
‘i‘he quantum corrections, g(L) and f(L), to the tree-level Kdhler potential of (2.6)
are naturally interpreted as stringy effects. Indeed, in the context of superstring
L plays the role of string loop expansion parameter (i.e., the string coupling), and
therefore stringy effects are naturally éarametrized by L. Although perturbative
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contributions to g(L) and f(L) are generically small, yet, as first pointed out by
Shenker [4], there can be significant stringy non-perturbative contributions. It is
then interesting to ask how the usual relation between the dilaton £ and the gauge
coupling constant of the effective field theory, g2(M,) = 2(£), might get modified in
the presence of stringy effects? It is straightforward to compute the gauge coupling
constant at the string scale, g(M,), defined by the effective field theory (2.6) as

follows:

(M) = <T+—2§—(’E> (2.9)

Indeed, the presence of stringy effects do affect the usual interpretation of the gauge
coupling constant of the effective field theory in terms of the string dilaton. More
precisely, the linear multiplet formalism naturally distinguishes stringy effects from
field-theoretical effects; that is, £ is the natural parametrization of stringy effects and
(2¢/ (1 + f(£))) is on the other hand the natural parametrization of field-theoretical
effects. Therefore, the linear multiplet formalism of superstring effective field theory
has the advantage of incorporating stringy effects with the effective field theory in a
simple and transparent manner. As mentioned before, this unique feature of linear
multiplet férmalism is crucial to our study here, since stringy non-perturbative
effects do play an important role in the stringy story of gaugino condensation.

On the other hand, in the chiral multiplet formalism where the string dilaton
is described by a chiral superfield S chiral superfield (s = S|s=5-¢), S has to be
re-defined order by order in perturbation, Whiﬁh is clear from the perturbative
chiral-linear duality. Furthermore, in the chiral multiplet formalism there is no
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clear distinction between stringy effects and field-theoretical effects; more precisely,
we always have from the chiral multiplet formalism of the superstring effective field
theory g?(M,) = (2/(s+3)) even when stringy effects are included. One may also
derive this result by a duality transformation from the linear multiplet formalism
(2.6) to the corresponding chiral multiplet formalism of (2.6). It has been shown

[31] that 1/(S+S) corresponds to L/(1+ f) through this duality transformation,
and therefore the interpretations of g*(M;) in both formalisms are consistent with
each other. In conclusion, we emphasize the advantage of using the linear multiplet
formalism over the chiral multiplet formalism in telling the stringy story of gaugino
condensation. More evidence of this advantage will be discovered in the following

sections.

2.2.3 Low-Energy Effective Degrees of Freedom

Below the condensation scale at which the gauge interaction becomes strong,
the effective lagrangian of the Yang-Mills sector can be described by a composite
chiral superfield U, which corresponds to the chiral superfield Tr(W*W, ) of the un-
derlying theory. (We consider here gaugino condensation of a simple gauge group.)
The scalar component of U is naturally interpreted as the gaugino condensate. It
was pointed out only recently that the composite field U is actually a constrained
chiral superfield [19, 20, 21]. The constraint on U can be seen most clearly through
the constrained superspace geometry of the underlying Yang-Mills theory. As a

consequence of this constrained geometry, the chiral superfield Tr(W*W, ) and its
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hermitian conjugate Tr(W;W?) satisfy the following constraint:
(D*Dy — 24RNTr(WW,,) — (DsD* — 24R) Tr(WsW*#) = total derivative. (2.10)

(2.10) has a natural interpretation in the confext of a 3-form supermultiplet, and
indeed Tr(W>W,,) can be interpreted as the degrees of freedom of the 3-form field
strength [41]. The explicit solution to the constraint (2.10) has been presented in
[21], and it allows us to identify the constrained chiral superfield Tr(W*W,) with

the chiral projection of an unconstrained vector superfield L:

THW°W,) = —(DsD*~S8R)L,

Tr(WsW*) —(D*D, - 8RML. (2.11)

Below the condensation scale, the constraint (2.10) is replaced by the following

constraint on U and U:
(D*Dy — 24RNU — (DsD* — 24R)U = total derivative. (2.12)

Similarly, the solution to (2.12) allows us to identify the constrained chiral superfield

U with the chiral projection of an unconstrained vector superfield V:

U = —(DsD*—8R)YV,

U = —(p*D,-S8RHYV. (2.13)

(2.13) is the explicit constraint on U and U.

In fact, the constraint on U and I enters the linear multiplet formalism of gaug-
ino condensation very naturally. As described in Section 2.2.1, the linear multiplet
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formalism of supersymmetric Yang-Mills theory is described by a gauge-invariant

vector superfield L which satisfies
—(DsD* —8R)L = (DuD*—8R)Q = Tr(W*W,),

—(D°D, —8RNL = (DD, —8R)Q = Tr(WW9). (2.14)

For the linear multiplet formalism of the superstring effective lagrangian below the

condensation scale, (2.14) is replaced by
—(DsD* -8R)V = U,

—(D*D,—8RY = U, (2.15)

where U is the gaugino condensate chiral superfield, and V' contains the linear
multiplet as well as the “fossil” Chern-Simons superform. In view of (2.15)_, it is clear
that the constraint on U and U arises naturally in the linear multiplet formalism
of gaugino condensation. Furthermore, the low-energy degrees of freedom (i.e., the
linear multiplet and the gaugino condensate) are nicely merged into a single vector
superfield V', and therefore the linear multiplet formalism of gaugino condensation
can elega,r.xtly be described by V alone in the context of superstring. The detailed
construction of the effective lagrangian for the vector superfield V will be presented

in the next section.

23




2.3 Gaugino Condensation in Superstring

Effective Theory

2.3.1 A Simple Model

Constructing the linear multiplet formalism of gaugino condensation requires
the specification of two functions of the vector superfield V, namely, the super-
potential and the Kahler potential. In the linear multiplet formalism, there is no
classical superpotential [19], and the quantum superpotential originates from the
non-perturbative effects of gaugino condensation. This non-perturbative superpo-
tential, whose form was dictated by the anomaly structure of the underlying theory,
was first obtained by Véneziano and Yankielowicz {42, 43, 44, 45]. The details of
its generalization to the case of matter coupled to N=1 supergravity in the Kahler
superspace formulation has been presented in [46], and the superpotential term in

the Lagrangian reads:

/ a6 % %bU In(e*72U /),

/ d‘*e z —bU ln(eX/27 [ 43), (2.16)

where U = —(DsD*—8R)V is the constrained gaugino condensate chiral superfield
with Kahler weight 2, andb p is a constant with dimension of mass that is left
undetermined by the method of anomaly matching.

As for the Kihler potential for V, there is little knowledge beyqnd tree level.

The best we can do at present is to treat all physically reasonable Kahler potentials
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on the same footing and to look for possible general features and/or interesting
special cases. In particular, we are interested in a specific class of Kahler potentials
where there are significant stringy non-perturbative corrections as pointed out in
[4, 7]. Before discussing this general analysis, it is instructive to examine a simple

yet un-realistic linear multiplet model for gaugino condensation defined as follows

[19):
K = IV +G,
ﬁeff = fd40E{“'2 -+ bVG} + /d49£6K/2WVY + /d49£6K/2WVy
R Rt ’
G = =Y In(T'+Th. | (2.17)
I

This simple model describes the effective theory for (2.6) below the condensation
scale, where the Kahler potential of V assumes its tree-level form. It is a “static”
model of gaugino condensation in the sense thé,t no kinetic term for U is included.
From the viewpoint of the anomaly structure, static as well as dynamical models
of gaugino condensation are interesting in their own ﬁght. However, as will be
discussed in Chapter 3, dynamical models rather than static models generically
occur in the context of superstrings. Dynamical models of gaugino condensation
in the linear multiplet formalism [18, 20] have been studied less extensively. On
'tixe other hand, as will also be shown in Chapter 3, after integrating out the heavy
modeé the static model of gaugino condensation is proven to be the appropriate

effective description for the dynamical model®. Therefore, in Chapter 2 we will

#Unlike studies using the chiral multiplet formalism in the past, proving such a connection
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concentrate on static models of gaugino condensation, and there will be no loss of
generality.

With U = —(D3D% —8R)V and U = —(D*D, —8R)V, we can rewrite the
superpotential terms of L.ss as a single D term by superspace partial integration.

For example, for any chiral superfield X of zero Kahler weight:

8/d GRUalnX—i—h.c.__/d 8 EV, In(XX)

—b,, ( / 446 E;’;‘ZX DV, ES™ + h.c.) ) (2.18)

where E4™ is an element of the supervielbein, and the total derivative on the right
hand side contains the chiral anomaly (x 8,,B™ ~ F2_F™) of the F term on the
left hand side. Therefore, up to a total derivative, the simple model (2.17) can be

rewritten as follows:

K LV + G,

il

Ly = / dOE{—2 + BVG + bVIn(eXTU/u%) }. (2.19)

In (2.19), the modular anomaly cancellation by the Green-Schwarz counterterm is
transparent [19]. The Green-Schwarz counterterm bV G and the superpotential D
term bV In(e XU U /1) are not modular invariant separately, but their sum is mod-
ular invariant, which ensures the modular invariance of the full theory. In fact, the
Green-Schwarz counterterm cancels the T/ moduli-dependence of the superpoten-

tial completely. This is a unique feature of the linear multiplet formalism, and, as

between static and dynamical gaugino condensation is much more non-trivial in the linear multiplet

formalism with the constraint on U incorporated consistently.
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we will seé later, has interesting implications for the moduli-dependence of physical
quantities.

Throughout this paper only the bosonic and gravitino parts of the compo-
nent lagrangian are presented, since we are interested in the vacuum configuration
and the gravitino mass. In the following, we enumerate the definitions of bosonic

component fields of the vector superfield V.
L = Vl6=6_=03
m 1 2 a
Tna -Bm = _2_[D&, Dd ]V'9=§=0 + g‘ea-aé:bm

(o124

u = Ule=§=6 = _(@2 —SR)Vl9=§=O7

1
il

Ulgpzo = —(D* — 8RNV |s_g—o»
D = %Dﬁ(@z—-SR)DﬁVb:é:o
= 3DH(D" ~8RNDVos, (2.20)
where |
1 1 1
~ &M = Rlosgoos —5M = R'locgeo, —3be = Gulooso (2:21)

are the auxiliary components of supergravity multiplet. It is convenient to write

the lowest components of D?U and D?U as follows:
- 4FU = DzU;5=§=O$ _4Fl:f = @ZU[9=§=O' (2'22)
(Fy — Fp) can be explicitly expressed as follows:

(Fy — Fp) = 4iV™B,, + uM — oM. (2.23)
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The expression for (Fy+Fy) contains the auxiliary field D. The bosonic components

of T and T are
tI = TI‘8=§=0’ _4FI = DzTIlG:@:Ov
t_I = TII9=§=07 —4FI = ﬁ:zTI[e:ﬁ_:O' (2'24)

We leave the details of constructing the component lagrangian for this simple model
(in the Kahler superspace formulation) to Section 2.3.2, and present here only the
scalar potential obtained from eliminating the auxiliary fields in the boson La-
grangian given in (2.46) below:

1

Toog(1 + 260 — 26747 Yube 1/¥, (2.25)

V;mt =

Eq. (2.25)' agrees with the result obtained in [18], where the model defined by (2.17)
was studied for the case of a single modulus using the superconformal formulation
of supergravity.

However, this simple modél is not viable. As expected, the weak-coupling limit
£ = 0 is always a minimum. As shown in Fig. 2.1, the scalar potential starts with
Voot = 0 at £ = 0, first rises and then falls without limit as £ increases. Theref§re,
Vpor is unbounded from below, and this simple model has no well-defined vacuum.
This may be somewhat surprising because the model defined by (2.17) superficially
ai)pea.rs to be of the no-scale type: the Green-Schwarz counterterm, that destroys
the no-scale property of chiral models and destabilizes the potential, is cancelled
here by quantum effects that induce a potential for the condensate. However the
resulting quantum contribution to the Lagrangian (2.19), 8V In(UU/V), has an
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Figure 2.1: The scalar potential V,,; (in reduced Planck units) is plotted versus the

dilaton £. p=1.

implicit TZ/-dependence through the superfield U due to its nonvanishing Kahler
weight: w(U) = 2. This implicit moduli-dependencé is a consequence of the anom-
aly matching condition, and parallels the construction of the effective theory in the
chiral multiplet formalism [41, 42, 43, 44] which is also not of the no-scale form once

the Green-Schwarz counterterm is included.

If we take a closer look at (2.25), it is clear that the unboundedness of V,,, in the
strong-coupling limit £ — oo is caused by a term of two-loop order: —2b%£. This
" observation strongly suggests that the underlying reason for unboundedness is our
poor control over the model in the strong-coupling regime. The form of the superpo-
btentia.l Wvy is completely fixed by the underlying anomaly structure. However the

Kahler potential is much less constrained, and the choice (2.17) cannot be expected
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to be valid in the strong-coupling regime where the non-perturbative contributions
should not be ignored. We conclude that the unboundedness shown in Fig. 2.1
simply reflects the importance of non-perturbative contributions to the Kahler po-
tential. In particular, it is natural to expect that the stringy non-perturbative effects
conjectured by Shenker [4, 7] are the non-perturbative contributions to the Kahler
potential ignored in this simple model. In the absence of a better knowlédge of the
exact Kahler potential, we will consider models with generic Kahler potentials in

the following sections.

2.3.2 General Static Model

In this section, we show how to construct the component lagrangian for generic
linear multiplet models of static gaugino coﬁdensation in the Kahler superspace
formulation. Further computational details can be found in [9, 34]. Although our
results can probably be rephrased in the chiral multiplet formalism, the equivalent
chiral multiplet formalism are expectedAto be rather complicated because of the °
constraint on the gaugino condensate chiral superfield U. Quite generally we do

not expect a simple ansatz in one formalism to appear simple in the other.

As suggested in Section 2.3.1, we extend the simple model in (2.17) to lin-

“ear multiplet models of static gaugino condensation with generic Kahler potentials

defined as follows:

K = IV + g(V) + G,
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Lg = [dOE{(=2+ f(V)) + VG + Wh(e*OU/p)}.  (226)

For convenience, we also write InV + ¢g(V) = k(V). ¢(V) and f(V) represent
quantum corrections to the tree-level Kahler potential. Here we have chosen to keep
the Kahler potential unde; discussion as generic as possible. However, as suggested
by [7], stringy non-perturbative corrections to the Kahler potential are probably the
most important non-perturbative corrections. And, as we have discussed in detail in
-Section 2.2.2, such stringy non-pertullba.tive corrections can be nicely parametrized
by g(V) and f(V) using the linear multiplet formalism. According to (2.8), (V) and

F(V) are unambiguously related to each other by the following first-order differential

equation:
dg(vV) 4 (V)
| % VA | % % + f | (2.27)

g(V=0)=0 and f(V=0)=0 (2.28)
The boundary condition of g(V) and f(V) at V = 0 (the weak-coupling limit) is
fixed by the tree-level K3hler potential. Before trying to specify g(V) and f(V),
it is reasonable to assume for the present that g(V') and f(V)) are arbitrary but
bounded. -
In the construction of the component field lagrangian, we use the chiral density
multiplet method [34], which provides us with the locally supersymmetric general-
ization of the F' term construction in global supersymmetry. The chiral density

multiplet r and its hermitian conjugate T for the generic model in (2.26) are:

r o= (D SB){(~2 + f(V)) + VG + bV In(e K OU/u) },
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Fo= _é(pz —8RN{(=2 + f(V)) + VG + W (e KTU/)}.  (229)

In order to obtain the component lagrangian L.sy, we need to work out the following

expression

1 1 iz —m\o
‘;Leff = _szrb:@:o + 5(16,,,,0’ ) Dar‘a:i:o

~ ($m8™"Pn + M)rlpogo + hoc. (230)

An important point in the computation of (2.30) is the evaluation of the component
field content of the Kahler supercovariant derivatives, a rather tricky process. The
details of this computation have by now become general wisdom and we can to a
large extent rely on the existing literature [47]. In particular, the Lorentz transfor-
mation and the Kahler transformation are incorporated in a very similar way in the
Kahler superspace formulation, and the Lorentz connection as well as the so-called
Kahler connection Aps are incorporated into the Kihler supercovariant derivatives
1n a concise and constructive way. The Kahler connection Ays is not an independent

field but rather expressed in terms of the Kahler potential K as follows:

Acx = %EQMBMI{, A& = —i-E&MaMI{7 (2'31)

- %iaf;dGa - -;-z'[pa,,vé]x. (2.32)

In order to extract the explicit form of the various couplings, we choose to write
out explicitly the vectorial part of the Kahler connection and keep only the Lorentz

connection in the definition of covariant derivatives when we present the component

32




expressions. In the following, we give the lowest component of the vectorial part of

the Kahler connection A, |s=g=¢ for our generic static model.

1 1- .
Am = emaAa + -2-¢maAa + ‘2‘1/)”;&/10. (2.33)
Am‘0=9_=0 - - a—é(ggl + l)B‘m + _é(egz - 2)em bﬂ-
1 By I
+ }; o) (V' — Vint'). (2.34) |
_ dg(V), _ dg(V),
g( - dv l€=6=0’ G = dV2 l9=8=07
df (v EFV
fz = d(‘/ ) '8:5:07 fa = d‘gz ) l6=§=0' (235)

Another hallmark of the Kahler superspace formulation are the chiral superfield
X, and the antichiral superfield X%. They arise in complete analogy with usual
supersymmetric abelian gauge theory except that now the corresponding vector

superfield is replaced by the Kahler potential:
X, = - %(D&Dé‘ ~ 8R)D.K,
X5 = - -;-(Dau, — 8R)DK. (2.36)

In the computation of (2.30), we need to decompose the lowest components of the
following six superfields: X., X%, DoR, D*R!, (D°X, + DsX%) and (DR + D?RY)

into component fields. This is done by solving the following six simple algebraic
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equations:

dg

— + 1)D, X = Z, .
(V37 + VDR + (2.37)
DR+ Xo = —~20P€)apTs’- (2.38)
v DRt X6 = E8 (2.39)

dv - )
3DR! + X& = —2(5%€)%Ty,. (2.40)
(Vj—‘g/ + 1)(D’R+ D°RY) + (DX, + DaX®) = A, (2.41)

3(D’R+DRY) + (DX, + DsX®) = =2R + 12G°G.,

+96RR!. (2.42)

The identities (2.38), (2.40) and (2.42) arise solely from the structure of Kahler
superspace. (2.38) and (2.40) involve the torsion superfields T, ¥ and T4z, which
in their lowest components contain the curl of the Rarita-Schwinger field. The
identities (2.37), (2.39) and (2.41) arise directly from the definitions of X,, X¢,
(DX + DsX%), and therefore they depend on the Kahler potential explicitly.
Computing X,, X% and (D*X, + D3X%) according to (2.36) defines the contents
of Z,, =% and A respectively. In the following, we present the component field

expressions of the lowest components of =, =* and A.

i, —myo= Z,_-:_ = &
'2'(1/)17&0' ) :‘ale=§=0 - 5‘:‘&(0 ¢m) ]9:5:0
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_ él_i(egl._g. 1)(a@ + %KM Y™ )

1

= 230+ 1w + SO )Fnd™ )

3
: n mgq, n I =
+ 589, + D)™ = A" ) (BFuihy) Vel
d 7 = a
+ g(fg, + 1)€mnpq(¢man¢p)eq be
7 -
— 25(bg, + D (Gt B,
1 a 1 a TY&
—Z(D D*kYbanlo=g=0 — Z%&(@ Dk)|p=p=o- (2.43)
The way Zalp—s_o and =%|s_5_o are presented in {2.43) will be useful for the com-
putation of (2.30).
Ale:@:o
1 2 m 1 2 )
= - ﬁ(gga — VL + e‘;’(z 9, — 1)B"Bp
4 1 V™ V! 422 A -2MM
+;m mt’ = 5(£9., — g, ~2)
4 . 1 -
+ ’9-(32911 -+ 2&]‘ + 1)b ba —_ 4%: WFIFI
4 2 m, a 1 I
- gé(g et ‘egz)B €m bo — i(fgz + 1)(FU + Fl’?)
1 2 - - 1 2 " —
— &(QZ e —Lg, —3)(uM + aM) — 4?(3 e — 1)du
+2V™Vnk — (D*Dk)eclomico — Pas(D*Dk)|omimo-  (2.44)
It is unnecessary to decompose the last two terms in (2.43) and in (2.44) because

they eventually cancel with one another.

Eqs.(2.31-44) desc1:ibe the key steps involved in the computation of (2.30).
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The rest of it is standard and will not be detailed here. In the following, we present
the component field expression of L.;; as the sum of the bosonic part £p and the

gravitino part Lz as follows.®

Less = Lp + La. (2.45)
1
~Ls = —-—’R ~ -—(1 +£gl)vmzv,,,e
1 m mil o 41
+4e2(£g‘+l)B B, — (14 b) ; t1+t1)2v T Vit

1 _
+ §(£gz - 2)M - %(ege - 2)bab¢

1 nl pl
+(1 +b£)21: (t1+t_1)2F F

1 _

+ g{l + f + dln(e*au/p®) + 2bL}(Fy + Fy)

- é{l + f + bln(e~*au/u®) + gbé(fg, + 1) Huld + GM)
16@2 —(1 4+ 2b6)(1 + 4g,)uu

(vrH — vm)B,..  (2.46)

? Ty m 3 1

—

1 - -
L a = §€mnpq( ¢m0nvp¢q - 'Q[)ma'nvpd)q )

o

{1+ o+ (e 0u/p%) } & (o™ )

- _Sim + f + beln(e ™ au/p®) } u ($ns™" Pa)

5Only the bosonic and gravitino parts of the component field expressions are presented here.
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3+ 5 G ) (Vi = Vi)
+ ;&(1 +BO)(1 + £g ) (0™ 0P — 17N ) (PrmBathy) Vol
— L8y — ) (Baihy) Vi In()
+ i—bﬁ €™ (1), 5 nthy) V, In( Z) (2.47)
For completeness, we also give the definitions of covariant derivatives:
Vid = Oul, Vit = 0nt!, V,il = 8,7,

Vm'l/lna = am¢na + ¢nﬂwmﬁa7 szﬁnd = miZn& + ¢—nﬁ wmﬁd. (2.48)

To proceed further, we need to eliminate the auxiliary fields from £L.s; through
their equations of motion. The equation of motion of the auxiliary field (Fy + Fy)
1s

f 41+ bIn(eFau/u®) + 260 = 0. - (2.49)
Eq. (2.49) implies that in static models of gaugino condensation the auxiliary field
@y is expressed in terms of dilaton £. The equations of motion of F?, F/ and the

auxiliary fields 4%, M, M of the supergravity multiplet are (if g, — 2 # 0)
FI =0, Fl=y,
o= 0,
3 - 3., _ A
M o= b, M=l (2.50)

Now we are left with only one auxiliary field to eliminate, where this auxiliary field

can be either ¢In(%/u) or B,,. This corresponds to the fact that there are two ways
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to perform duality transformation. If we take In(@/u) to be auxiliary, its equation
of motion is

V,{ B — éﬁem”pq(d;m&nzﬁp)} —0, (2.51)

which ensures that {B? — ££e™P9(¢,,5,3,)} is dual to the field strength of an
antisymmetric tensor [18]. The term B™B,, in the lagrangian L.s; thus generates a
kinetic term of this antisymmetric tensor field and its coﬁpling to the gravitino. The
other way to perform the duality transformation is to treat B, as an auxiliary field
by rewriting the term — £bIn(#/u)V™B,, in Less as $bB™V,In(#/u), and then to

eliminate B,, from L.;s through its equation of motion as follows:

_; be?
(49, + 1)
b2 1

@, 71 % T+

Bn = vmln(-z-)

+1

(V! — Vnth). (2.52)

The terms B™B,, and bB™V,In(@/u) in L.s; will generate a kinetic term for
i1n(@/u). It is clear that ¢ln(@/u) plays the role of the pseudoscalar dual to B,
in the lagrangian obtained from the above after a duality transformation. With
(2.49-52), it is then trivial to eliminate the auxiliary fields from L.ss. The physics

of Lezy will be investigated in the following sections.

2.3.3 Gaugino Condensate and the Gravitino Mass

Hidden-sector gaugino condensation has been a very attractive scheme [15, 16]
for supersymmetry breaking in the context of superstring. However, before we can

make any progress in superstring phenomenology, two important questions must
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be answered: is the dilaton stabilized, and is supersymmetry broken? Past analy-
ses have generally found that, in the absence of a second source of supersymmetry
breaking, the dilaton is destabilized in the direction of vanishing gauge coupling
constant (the so-called runaway dilaton problem) and supersymmetry is unbroken.
To address the above questions in generic linear multiplet models of gaugino con-
densation, we first show how the {hree issues of supersymmetry breaking, gaugino
condensation and dilaton stabilization are reformulated, and how they are interre-
lated, by examining the explicit expressions for the gravitino mass and the gaugino

condensate. A detailed investigation of the vacuum will be presented in Section 2.4.

The explicit expression for the gaugino condensate in terms of the dilaton £ is
determined by (2.49):
_ : Gy = E127 eﬂe o9 — (F+1)/3t. (2.53)
With g(£)=0 and f(£)=0, we recover the result of the simple model (2.17) [18]. For
generic‘ models, the dilaton dependence of thé gaugino condensate involves g({) and
f(£) which represent stringy non-perturbative corrections to the tree-level Kahler
potential. Recall that in the linear multiplet formalism the gauge coupling of the
sgperstriné effective field theory is g?(M,) = (2¢/(1+ f(£))). 'i['herefore, it is easy
to see that the dependence on the gauge coupling constant g(M,) of the gaugino
;:Qndensate is indeed consistent with the usual results obtained by the renormal-
ization group equation arguments. According to our assumption of boundedness
for g(¢) and f (Z) (especially at ¢ =0 where following (2.28) we have the boundary
conditions g(£ = 0)=0 and f(£ = 0)=0), £=0 is the only pole of g — (f +1)/bL.
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Therefore, we can draw a simble and clear relation between (Gu}) and (£): gauginos
| condense (i.e., (Zu) # 0) if and only if the dilaton is stabilized (i.e., (£} # 0.) Note
that this conclusion does not depend on the details of the quantum corrections g
and f.

Another physical quantity of interest is the gravitino mass mg which is the
natural order parameter measuring supersymmetry breaking. The expression for

mg follows directly from L.

mg = %b\/(ﬁu), (2.54)

where we have used (2.49). This expression for the gravitino mass is simple and
elegant even for generic linear multiplet models of static gaugino condensation.
From the viewpoint of superstring effective theories, an interesting feature of (2.54)
is that the gravitino mass mg contains no explicit dependence on the modulus
T!, which provides a direct relation between ms and (@u). This feature can be
traced to the fact that the Green-Schwarz counterterm cancels the T7 dependence
of the superpotential completely, a unique feature of the linear multiplet formal-
ism. As _we'WiH see in Section 4.5, this unique feature is still true even in a generic
string orbifold modei. We recall that in the chiral multiplet formalism of gaugino
condensation — without the condition (2.12) — that have been studied previously
(with or without the Green-Schwarz cancellation mechanism), ms always involves
a moduli-dependence, and therefore the relation between supersymmetry breaking

(i.e., mg # 0) and gaugino condensation (i.e., (Gu) # 0) remains undetermined un-
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til the true vacuum can be found. By contrast, in generic linear multiplet models of
| gaugino condensation, there is a simple and direct relation, Eq.(2.54): supersymme-
try is broken (i.e., mgs # 0) if and only if gaugino condensation occurs ({&u) # 0).
We wish to emphasize that the above features of the linear multiplet model are
unique in the sense fhat they are simple only in .the linear multiplet model. This is
related to the fact pointed out in Sections 2.1 and 2.2.3 that, once the constraint
(2.12) on the condensate field U is imposed, the chiral counterpart of the linear
multiplet model is in general very complicated, and it is more natural to work in
the linear multiplet formalism. Our conclusion of this section is best illustrated by

the following diagram:

Supersymmetry Gaugino Stabilized
Breaking <= |Condensation| < | Dilaton

The equivalence among the above three issues is obvious. Therefore, in the
following section, we only need to focus on one of the three issues in the investigation

of the vacuum, for example, the issue of dilaton stabilization.

2.4 Supersymmetry Breaking and Stabilization of the
Dilaton |

As argued in Section 2.3.1, non-perturbative contributions to the Kahler po-
~ tential should be introduced to cure the unboundedness problem of the simple model
(2.17). In the context of the generic model of static gaugino condensation (2.26), it

is therefore interesting to address the question as to how the simple model (2.17)
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should be modified _in order to obtain a viable theory (i.e., with V,,; bounded from
below). We start with the scalar potential V, arising from (2.46) after solving for
the auxiliary fields (using (2.49), (2.50) and (2.52)). Recalling that (2.27) yields the
identity 1+ €9, =1+ f — £f, , we obtain |

1

= Toagl (1 —£f)(1+ 80" — 35 }pbes= (DI, (2.55)

V;)ot

which depends only on the dilaton £. The necessary and sufficient condition for V.

to be bounded from below is
f—2f, > -0 for £ — 0, (2.56)
=4, > 2 for £ — oo. (2.57)

It is clear that condition (2.56) is not at all restrictive, and therefore has no nontriv-
1al implication. On the contrary, condition (2.57) is quite restrictive; in particular
the simple model (2.17) violates this condition. Condition (2.57) n;)t only restricts
the possible forms of the function f in the strong-coupling regime but also has im-
portant implications for dilaton stabilization and for supersymmetry breaking. To
make the above statement more precise, let us revisit the unbounded potential of
Fig. 2.1, ﬁth the trée—level Kahler potential defined by ¢(V) = f(V) = 0. Adding
physically reasonable corrections g(V') and f(V') (constrained by (2.56-57)) to this
siﬁple model should not qualitatively alter its behavior in the weak-coupling regime.
Therefore, as in Fig. 2.1, the potential of the modified model in the weak-coupling
regime starts with V,,; = 0 at £ = 0, first rises and then falls as £ increases. On the
other hand, adding ¢(V) and f(V) completely alters the strong-coupling behavior
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of the original simple model. As guaranteed by condition (2.57), the potential of
the modified model in the strong-coupling regime is always bopnded from below,
and in most cases rises as £ increases. Joining the weak-coupling behavior of the
modified model to its strong-coupling behavior therefore strongly suggests that its
potential has 3 non-trivial minimum (at ¢ # 0). Furthermore, if this non-trivial
minimum is global, then the dilaton is stabilized. We conclude that not only does
(2.56-57) tell us how to modify the theory, but a large class of theories so mod-
- ified have naturally a stabilized dilaton (and therefore broken supersymmetry by
the argument of Section 2.3.3). In view of the fact that there is currently little
knowledge of the exact Kahler potential, the above. conclusion, which applies to
generic Kahler potentials subject to (2.56-57), is especially important to the search
for supersymmetry breaking and dilaton stabilization®. As discussed in Sections
2.1 and 2.2.2, the most »interesting physical implication of this conclusion is that
it is actually stringy non-perturbative effects that stabilize the dilaton and allow
dynamical supersymmetry breaking via the field-theoretical non-perturbative effect
of gaugino condensation. Furthermore, (2.57) can be.interpreted as the necessary
condition for stringy non-perturbative effects to stabilize the dilaton.”

Here we use a simple example only to illustrate the above important argument.

A more detailed discussion of possible stringy non-perturbative corrections will be

8Similar points of view was advocated in {48] using the chiral multiplet formalism. However,

neither modular invariance nor the important constraint (2.12) was considered in [48].
In the presence of significant stringy non-perturbative effects, (2.57) could have implications

for gauge coupling unification. This is considered in the study of multi-gaugino and matter con-

densation [14].
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Figure 2.2: The scalar potential V,,: {in reduced Planck units) is plotted versus the

dilaton £. A =6.92, B=1 and u=1.

given in Chapters 4 and 5 where a generic and phenomenologically viable model
is presented. Consider f(V) = Ae B/V where A and B are constants to be
determined by the non-perturbative dynamics. The regulation conditions (2.56-57)
require-A > 2. In Fig. 2.2, Vjs 1s plotted versus the dilaton ¢, where A = 6.92,
B =1 and p=1. Fig. 2.2 has two important features. Firstly, V,, of this modified
theory is indeed bounded from below, and the dilaton is stabilized. Therefore,
we obtain supersymmetry breaking, gaugino condensation and dilaton stabilization
in this example. The gravitino mass is mg = 7.6 x 10~° in reduced Planck units.
Secondly, the vev of dilaton is stabilized at the phenomenologically interesting range
((£) = 0.45 in Fig. 2.2). The above features involve no unnaturalness since they

are insensitive to A. Furthermore, the dilaton is naturally stabilized in a weak
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coupling regime if B is of order one. Fig. 2.2 is a nice realization of the argument
in the preceding paragraph. It shoqld be contrasted with the racetrack model
where at least three gaugino condensates and large numerical coeflicients are needed
in order to achieve similar results. Besides, the racetrack model has a serious
phenomenological problem of having a large negative cosmological constant. We can
also consider possible stringy non-perturbative contributions to the Kahler potential
suggestedﬁ in [4]. It turns out that we obtain the same general features as those of
Flg 2.2. This is not surprising since, as argued in the préceding paragraph, the
important features that we find in Fig. 2.2 are common fo a larée class of models.
More such discussions will be presented in Chapters 4 and 5 in conjunction with

other issues.

Note that the value of the cosmological constant is irrelevant to the arguments
presented here and in Section 2.3.3. In other words, the generic model (2.26) suffers
from the usual cosmological constant problem, although we can find a fine-tuned
subset of models whose cosmological constants vanish. For example, the cosmolog-
ical constant of Fig. 2.2 vanishes by fine tuning A. It remains an open question
as to Whefher or not the cosmological constant problem could be resolved within
the context of the linear multiplet formalism of gaugino condensation if the exact

Kahler potential were known.




2.5 Concluding Remarks

We have presented a concrete example of a solution to the infamous runaway
dilaton problem, within the context of local supersymmetry and the linear multiplet
formalism for the string dilaton. We considered models for a static condenéate that
reflect the modular anomaly of the effective field theory while respecting the exact
modular invariance of the underlying string theory. The simplest such model [18, 19]
has a nontrivial potential that is, however, unbounded in the direction of strong cou-
pling. Including stringy non-perturbative correctioﬁs [4, 7] to the Kahler potential
for the dilaton, the potential is stabilized, allowing a vacuum configuration in which
condensation occurs and supersymmetry is broken. This is in contrast to previous
analyses, based on the chiral multiplet formalism for the dilaton, in which supersym-
metry breaking with a bounded vacuum energy was achieved only by introducing
an additional source of supersymmetry breaking, such as a constant term in the
superpotential [16, 29, 46].

In further contrast to most of the models studied using tile chil;a.l multiplet
formalism, supersymmetry breaking arises from a nonvanishing vé,cuum expecta-
tion value of the auxiliary field associated with the dilaton rather than the moduli:
roughly speaking, in the dual chiral multiplet formalism, (Fs) # 0 rather than
(FTy # 0. That is, only the dilaton participates in supersymmetry breaking (the
so-called dilaton-dominated scenario.) As we shall see in Chapter 4, ﬁhis unique

feature is in fact true in generic string orbifold models, which therefore has non-
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trivial implications for FCNC. As a consequence, gaugino masses and A terms are
generated at tree level. Although scalar masses are still protected at tree level by
a Heisenberg symmetry [49], they will be generated at one loop by renormalizable
interactions®. For the model considered here, the hierarchy (about five orders of
magnitude) between the Planck scale and the gravitino mass is insufficient to ac-
count for the observed scale of electroweak symmetry breaking. Of course, this
is completely due to the large gauge content of the hidden Eg gauge group un-
der consideration in this chapter, and will .certa.inly be improved when a generic
string model with a product of smaller hidden gauge groups ¢ = II,G,. In that
caée, we will bave to generalize the studies of this chapter by considering multiple
gaugino condensation as well as hidden matter condensation. Another unsatisfac-
tory feature of the model presented in Chapter 2 is that, according to (2.55), the
moduli 77 remain flat directions of the scalar potential, and therefore the vev of
t! is undetermined. Fortunately, this is a feature belonging only to string models
with hidden Eg gauge group and no hidden matter. As we shall see in Chapter 4,
in a generic string model where multiple gaugino condensation as well as hidden
matter condensation occurs naturally, hidden matter condensation together with
string threshold corrections® generates a non-perturbative potential for thc;, moduli
T!. Furthermore, the moduli are therefore stabilized at the self-dual point. The

generalization of our formalism to generic string orbifold models, including models

8The situation is more complicated in a generic orbifold model, and will be discussed in
Chapter 5.

9Both are required by modular invariance.




without universal anomaly cancellation, will be presented in Chapter 4.

As mentioned before, we have only dealt with generic models of static gaugino
condensation in this chapter, but in the context of supergravity or superstrings it
can be shown that modéls of dyna,m‘ical gaugino condensation rather than models
of static gaugino condensation occur. Therefore, in the next chapter we will answer
two questions: first, we show how to construct generic models of dynamical gaugino
condensation using the linear multiplet formalism. Secondly, we study how the
models of dynamical gaugino condensation are connected to the models of static
gaugino condensation, and show that static gaugino condensation is indeed the
appropriate effective description of dynamical gaugino condensation and therefore
justify the use of static gaugino condensation in Chapter 2. Notice that the Kalb-
Ramond field (or the model-independent axion, in the dual description) remains
massless in the static models considered here. It has recently been shown in the
context of global supersymmetry [20, 18] that an axion mass term is naturally
generated in models of dynamical gaugino condensation. Again, as we shall see
in Chapter 3, one of the axions does get a very large mass through dynamical
gaugino condensation in the context of local supersymmetry. On the other hand,
after this very heavy axion is integrated out, the resulting axion content is in fact
the same as that of static gaugino condensation, and we are still left with a massless
model-independent axion. Furthermore, we will show in Chapters 4 and 5 that this
model-independent axion axion will pick up a very small .mass through multiple

gaugino condensation. It can escape the cosmological bound on the axion decay
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constant and it has the desirable properties to be the candidate for the QCD axion.
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Chapter 3

Dynamical Gaugino |

Condensation




3.1 Introduction

In Chapter 2, we have studied modgls of static gaugino condensation using
the linear multiplet formalism. As mentioned before, one of the major motivations
for studying models of dynamical gaugino condensation is the observation that
kinetic terms of the gaugino condensate naturally arise from field-theoretical loop
corrections [19] as well as from classical string corrections [50]. For example; the
relevant field-theoretical one-loop correction has been computed using the chiral

multiplet formalism [19, 51]:
Lone—toop 128 > /d“OE(S + 82 (WoW,) W W®) In A, (3.1)

where A is the effective cut-off and Ng is the number of gauge degrees of freedom.
Therefore, the confined theory using the linear multiplet formalism should contain

a term which corresponds to (3.1):

au
Lo 3 / &E -, (3.2)

as well as higher-order corrections ([7 U/ Vz)g, (17 U/ V2)3 ,-++. These D terms
are correctjons to the Kahler potential, a.nd will generate the kinetic terms for the
gaugino condensate UU. An interesting interpretation of these corrections is that
they are S-duality invariant in the sense defined by Gaillard and Zumino [52]. This
S-duality, which is an SL(2,R) symmetry among elementary fields, is a symmetry
of the equations of motion only of the diléton-gauge—gravity sector in the limit of
vanishing gauge coupling constants. The implication of this S—dﬁality for gaugino
condensation has recently been studied in [19] using the chiral rﬁultiplet formalism.
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For studies of gaugino condensation in the past v?heré the important constraint
(2.12) was not included, the connection between static and dynamical gaugino con-
densation is very easy to see and trivial: static gaugino condensation is just the
low-energy limit of dynamical gaugino condensation after the gaugino condensate is
integrated out. However, it certainly becomes a non-trivial issue once the constraint
(2.12) is included, and it ié necessary to settle this issue in order to justify the use of
static gaugino condensation in the context of superstrings or supergravity. There-
fore, in this chapter we would like to study generic models of dynamical gaugino
condensation. In Section 3.2, the field component Lagrangian for the generic model
of dynamical gaugino condensation is constructed, and its vacuum structure is an-
alyzed. In Section 3.3, the S-dual models of dynamical gaugino condensation are
studied. In particular, we show that the model of static gaugino condensation is the
appropriate effective description for the model of dynamical gaugino condensation

and its implications.

3.2 Generic Model of Dynamical Gaugino Condensation

It wiil be shown in this section how to construct the component field La-
grangian for the generic model of dynamical gaugino condensation using the Kahler
éuperspace formulation of supergravity [34, 35] Similar to Chapter 2, we consider
here string orbifold models with gauge groups Es®Es®U(1)?, three untwisted (1,1)

moduli 77 (I = 1, 2, 3) [31, 32, 36], and universal modular anomaly cancellation

[40] (e.g., the Z3 and Z; orbifolds). The confined Eg hidden sector is described by
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the following generic model of a single dynamical gaugino condensate U with Kahler

potential K:
K = InV + g(V,UU) + G,
— 4 ry E K
Ly = [A0E{(-2+s0,00)) + G} + { [ a2 Wiy +he.},
G = - In(T?+T7), (33
I

where U = —(DgD* —8R)V, U = —(D*D, — 8R)V. We also write InV +
g(V,UU) = k(V,UU). The term (—2 + f(V, D'U)) of L.z is the superspace in-
tegral which yields the kinetic actions for the linear multiplet, supergravity, matter,
and gaugino condensate. The term dVG is the Green-Schwarz counterterm [31]
which cancels the full modular anomaly here. b = C/8%x% = 2b3/3, and C = 30
is the Casimir operator in the adjoint representation of Eg. bp is the Eg one-loop
ﬁ-functi§n coefficient. g(V,UU) and f(V,UU) represent the quantum corrections to
the tree-level Kahler potential. g(V,UU) and f(V,UU) are taken to be arbitrary
but bounded here. The dynamical model (3.3) is the straightforward generalization
of the stati‘c model (2.26) by including the UU dependence in thé Kahler potential.
Using superspace partial integration (2.18), up to a total derivative we can also

rewrite (3.3) as a single D term:
K = WV + g(V,UU) + G,

Leis = / #*0E { (-2 + f(V,0U)) + VG + 5V In(eXTU/u®) }.  (3.4)

Only the bosonic and gravitino parts of the component field Lagrangian will be
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presented here. In the following, for convenience and completeness we enumerate
the definitions of the Bosonic component fields:

Vlg=p=0s

[Day Dal Vlomiao + 3805600

U la=§=o = “(752 - 8R)VI9=5.__0,’

Ulo=g=o = —(D* — 8RNV 4o,

D?Ulpatrs —4Fp = D*Ulocgmo,

$D(D" ~ SB) DV lo=so

SD;(D" ~ 8RN DHV s,

Tpmtooy —4F I = D*Tgos

t _T1f9=§=o, —4F" = D*T Mo g0, (3.5)

where b, = —3G,|pmfmo, M = —6R|sejgop, M = —6R%|s_so are the auxiliary

components of the supergravity multiplet. (Fiy — Fy) can be expressed as follows:

(Fy ~ Fp) = 4V™B,, + ulM — @M, (3.6)

and (Fy + Fb) contains the aux.iliary field D. We also write Z = UU, and its

bosonic component z = Zls_gg = UU.

The construction of component field Lagrangian using chiral density multiplet
method [34] has been detailed in Chapter 2, and therefore only the key steps are
presented here. The chiral density multiplet r and its hermitian conjugate F for the
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generic model (3.3) are:

(D* -8R){ (-2 + f(V,0U)) + BVG + bV In(e X TU/p®) },

r = -—

=l

QO+ OO

(D -8BNY{ (-2 + F(V,0U)) + bVG + VIn(e XTU/p%) },  (3.7)

and the component field Lagrangian L.;s is the same as (2.30). The A,|¢=g—o for

the generic model (3.3) is:

_ i) ifa+a) L.
Anleto = =g (T2g) o * 5 [ T2g) ~ 2]
1 1 R
i) e T )
29, a
4(1 - zg,)vm 1n(u> ) (3.8)

The following are the simplified notations for partial derivatives of g:

_ 99(4,z) _ 944, 2)
4, = —_aé"") g, = Oz ’ (39)

and similarly for other functions.

We need to decompose the lowest components of the following six superfields:

Xo, X4, DoR, DR, (DX, + D3 X%) and (DR + D’R!) into component fields,

where
X, = — %(’D&D"" - SR)D;,,K,
X& = - %(D'*:D,, - 8RND°K,

(D*Xo + Dy X%) = - %D?@zl{ - -;—WK — D*D K

— G**[D,, D5 ) K + 2R'D*K + 2RD’K
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—(D°Gqos ~ 2DsRY)D?K
+(D%Gas + 2D.R)DK.

This is done by solving the following six algebraic equations:

0g dg =
(1 +V 6V) DR + (1 - -52) X, = (3.11)

3DuR + Xo = —2(0%€)aeT’- (3.12)
dg y ot 6‘g & _ =&
(1+V6V) D°R' + ( 57 X* = Zz9 (3.13)

3DORt + X& = —2(6%€)%To. (3.14)

(1 +vs ) (DR + D*R) + ( 99 ) (DX, +DaXé) = A, (3.15)

3(DR + D°RY) + (D°X, + DsX*) = —2R,* + 12G°G,
+96RRt.  (3.16)
The computation of (3.10) defines the contents of Z,, =% and A. ‘Egs. (3.8-16)

describe the key steps in the computations of (2.30). In the following sections,

several important issues of this construction will be discussed.

3.2.1 Canonical Einstein Term

In order to have the correctly normalized Einstein termin L.ss, an appropriate
constraint should be imposed on the generic model (3.3). Therefore, it is shown

below how to compute the Einstein term for (3.3). According to (3.3), the following
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are those terms in L£.;; that will contribute to the Einstein term:

[2— f+2f, — bl(1+£g,)) (D’R + DRNlp=s0

1 1
JLas 3 3

1 1 _=,- 1=
+ 35 Lo, + M(1 - 2,)] (Ep?@zu + ;D’DZU) limo-  (3.17)

Note that the terms D?D% and D?DX are related to DX, and D3 X% through

the following identities:

DDA 16D°D, U + 64iG°*D, U — 48U GG, + 48 UDG,

1

~8UDX, + 16R'DT + 8(D°Gus)(DD).
DDV = 160D, U — 64iG°D, U — 48UGG, — 48:UDG,
—8UDs X% + 16RDU — 8(D°Gos)(DV). (3.18)

The contributions of (D?R+D?R)|geseo and (DX, +DsX%)|g=so to the Einstein

term are obtained by solving (3.15-16):

_ 2(1 —=2g,)
2 20t - _ z ba _
(D°R+DR')|p=g=0 2 2—tg, = 3zgz)R6° lo=g=o-

2(1+4g .
(2 _(eg _ 3£Zg )Rbab l@=§=0° (3.19)

 (D*Xa + DsX¥)gmgeo D +

By combining (3.17-19), it is straightforward to show that the Einstein term

in L.sz is correctly normalized if and only if the following constraint is imposed:

(1+zf,)(1+lg‘)=(l-zg,)(l—lf,-{-f), (3.20)

which is a first-order partial differential equation. From now ori, the study of the
generic model (3.3) always assumes the constraint (3.20). (3.20) will be useful in

57




simplifying the expression of L.y, and it turns out to be convenient to define % as

follows:

(1+ 2f,)
(1 —2g9,)

(1 — efz + f)
EY A (3.21)

Furthermore, the partial derivatives of A satisfy the following consistency condition:
(h — 2h, )29, — 1) + 2h (1 + 4g,) +1=0. (3.22)

Eqgs. (3.21-22) will also be very useful in simplifying the expression of L.fs. Notice
that A = 1 for generic models of static gaugino condensation, and (3.20) is reduced
to (2.27). We will show in Section 3.3.2 how to construct physically interesting

solutions for this partial differential equation (3.20).

3.2.2 Component Field Lagrangian with Auxiliary Fields

Once the issue of canonical Einstein term is settled, it is straightforward to
compute L.ss according to (3.6-13). The rest of it is standard and will not be
detailed here. Because the component construction of supergravity is well known
for its complexity, here we try our best to minimize irrelevant details. However,
two important aspects of this construction using the linear multiplet formalism

are worth emphasizing: how to solve the constraint (2.12) and how to perform a

duality transformation for the vector component B, of V. As we shall see, they have

non-trivial implications for the axions. Therefore, first we present the component

Lagrangian with auxiliary fields, and in the next section we show how to perform
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a duality transformation for B,,. In the following, we present the component field

expression of L.;s as the sum of the bosonic Lagrangian Lp and the gravitino

Lagrangian Lgs.
Legs = Lp + L. (3.23)
1 1 -
;—ﬁB = —-§R - ——-(h ¢h,)(1 +Zg,)V AV

+ gzzh,u +£g,) V™ln(@u) Vol

+—”-h (2 C=29)gm, Vg

91 =2g.)

(2 - z9,) _
Sl A I Sl LT A AL AV
2hz [(1 29.) zg, U Viu

u (2 - g:) m
+ 4u h.-zg. (1- zg,)v U Vit
zh

T o1 -;g )Z (t! +ZI)(vaI B vmtI)v’“ln(Z)

v v,
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1 ’ th th_I thJ
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+ gk + B+ Lo, ) (™17 — 4™ Y(Fnihy) Vil
— L[ 2,)(k + ) = 1 (17 = 170 (FFtsy) Vi In()

1 _ -
+ 4—(h -1+ bl) emnpq(¢m5-n¢p) Vqln (%) . (3.25)

The bosonic Lagrangian £p contains usual auxiliary fields and the vector field
B,, which is dual to an axion. The details of this duality and the structure of
Lp will be discussed in the following sections. The gravitino Lagrangian Lg is
in its simplest form. An important physical quantity in L5 is the gravitino mass
mg which is the natural order parameter measuring supersymmetry breaking. The

expression of mg follows directly from Ls:
mg = (‘él? 1+ £ + bein(eau/p®)] uD (3.26)

3.2.3 Duality Transformation of B,

As pointed out in [18, 21], the constraint (2.12) allows us to interpret the
degrees of freedom of U as those of a 3-form supermultiplet, and the vector field B,,
is dual to a 3-form I'"??. Since a 3-form is dual to a O-form in four dimensions, B,,
is also dual to a pseudoscalar a. In this section, we show explicitly how to rewrite
the B,, part of Lp in terms of the dual description using a. According to (3.24), .

the B,, termsin Lp are:

1 (1+49,) pom
e'CB > +4£2(1—zg,)B B
¢ 1 . a
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i (Vi — vmil)
‘ﬂ["“’e‘( zg,]z @ m on

—2ih, [1 _ 2g, — %(1 +zg,)] (ull — GM)V™B,,

+ 4hz(1 - zg:)(vam)z' (3'27)
They are described by the following generic Lagrangian of B,:
%,CB,,, = a@B™Bp + BV™Bn + ("Bm + T(V"Bn). (3.28)

To find the dual description of Lp,_,, consider the following Lagrangian Lpya:.

%ﬁpw = aB™Bm + BV™Bp + ("Bm + aV™By — 21;‘“2' (3.29)

In Lpyel, the auxiliary field a acts like a Lagrangian multiplier, and its equation of
motion is:

a = 2rV™B,,. (3.30)

Therefore, Lg,, follows directly from Lp,,; using (3.30). On the other hand, we can
treat the B,, in Lpu as auxiliary, and write down the equation of motion for B,
as follows:

1
Bp = 5= (Vi + VB = (m ). (3.31)

Eliminating B, from Lpy. through (3.31) and then performing a field re-definition
a => a— [, we obtain the Lagrangian £, of a:

o= = (Ve = (") (Ve = () =~ (e AP (3.32)

Therefore, L, is the dual description of Lp,, in terms of a which is interpreted as an

axion. Notice that dynamical gaugino condensation naturally generates a mass term
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for the axion a which corresponds to the appearance of non-vanishing (V™B,,)? in
the dual description. The fact that a is massive in dynamical gaugino condensation
has already been observed in [18, 20]. On the other hand, the (V™B,)? term
vanishes in static gaugino condensation (i.e., h, = 0 in (3.27)), and it is found
that the model-independent axion dual to B, is either massless or very light [12,
14, 18, 20]. This issue of axion mass seems to be a contradiction because we expect
static gaugino condensation to be the appropriate effective description of dynamical
gaugino condensation; the resolution is the following: In comparison with static
gaugino condensation (e.g., [12, 14]), dynamical gaugino condensation contains one
more axionic degree of freedom a, and indeed @ is very massive (e.g., compared
to the dil.aton mass). As will be shown in Section 3.3.1, after integrating out this
massive axion a, the resulting axionic contents of dynamical gaugino condensation

are identical to those of static gaugino condensation. Therefore, at low energy we

are always left with a massless or very light model-independent axion.

According to (3.27-28) and (3.32), the L.5s defined by (3.23-25) is rewritten

in the dual description as follows:
Lefs = Liin + Lpot + Lg, (3.33)

where Liin and L, refer to the kinetic part and the non-kinetic part of the bosonic

Lagrangian respectively. L5 is defined by (3.25).

1 1 1 .
Lin = —5R — (b= th)(1+1Lg,)VVet
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The 5%b, term has been eliminated by its equation of motion, 4* = 0, and Ly, is
in its'simplest form. Note that the kinetic terms of those axionic degrees of freedom
a, i1n(@/ u) and (£ —t!) are more complicated, which eséentially reflects the non-
trivial constraint (2.12) satisfied by U and U. An imporfa.nt issue is the structure

of Lyot, and it will be discussed in the next section.
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3.2.4 The Scalar Potential

It is straightforward to solve the equations of motion for the auxiliary fields

b2, FI, FI, M, M and (Fy + Fp) respectively as follows:
¥ = 0,

FI = 0, FIl =y,

- -3 g/ )| — S

M = 8e[1+f+blln(e dufp )]u %

M = _3 [1 + f+ bZln(e"k'Eu/pe)]ﬁ + -?’—z?-a

T | i
_ . (th,—R) o) v T
(Fy+ Fp) = —4‘25:——-[1+f+b£1n(e uu/u)]-—z—

Lh, + b2) Gu
-ERT (3.56)

Note that (|M|) = 3mg because (a) =0 always. To obtain the scalar potential,
the auxiliary fields are eliminated from L.s; defined by (3.33), and L.ss is then
rewritten as follows:
1 1 1
| “Lers = JLkin = Voot + —Lg, (3:37)
where Vo is the scalar potential. Ly, and Lz are defined by (3.34) and (3.25)

respectively.

1 un
Voot = '13(%‘ +h+260)(1 + eg,)—e—z-

1 1+ f + blln(e *uu/us) i

- 2
642k, (1 — zg,) +2(€h, + b0)(1 — zg,)

-+

66




(249, —32g,) —k5 1,6y ]2 BY
6401 —29.) [1 + f + dIn(e "au/p )] 7
h—2h,—3zh, )uu
( T Yo o (3.38)

Several interesting aspects of V,,; can be uncovered. Firstly, there is always
a trivial vacuum with {Vpe:) = 0 in the specific weak-coupling limit defined as

follows:
£ -0, z—> :—22;16&"1/“ — 0, and g{(¢,2), f(£,z) — 0. (3.39)

Note that quantum corrections to the Kahler potential, g and f, should vanish in
this limit. As expected, this is consistent with the well-known runaway behavior of

the dilaton near the weak-coupling limit.

To proceed further, in the following of this section we only study Vj.: in the
z € 1 regime. Since a physically interesting model of dynamical gaugino conden-
sation should predict a small scale of condensation (i.e., {z) < 1), there is no loss
of generality in this choice. Note that in the z < 1 regime we have A = 1, £k, = 0,
zh, = 0 and zg, =~ 0 up to small corrections that depend on 2. The stru.cture
of Vot can be analyzed as follows: The only axion-dependent term in V,o: is the
effective axion mass term, the last term in V. In order to avoid a tachyonic axion,
the sign of the effective axion mass term must be positive. Therefore, the absence
of a tachyonic axion requires zh,6 > 0, which is the first piece of information about
the UU-dependence of the dynamical model. Furthermore, (a) = 0 always, and
therefore the last term in V,,: is of no significance in discussing the vacuum struc-
ture. Because of zh_ > 0, the second tefm in Vot is always positive. The signs of
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the first term and the third term in Vj,: remain undetermined in general; however,
near the weak-coupling limit the first term is positive and the third term is negative
(which is expected because the third term is the contribution of auxiliary fields M
and M). Notice that the second term in Vj,: contains a factor 1/zh, (1/zh, > 1),
and therefore it is the dominant contribution to V,,: except near the path v de-
fined by {1+ f + b¢In(e~*au/p®) + 2(th, + b)(L — 2g,)} = 0. Hence, the vacuum
always sits close to the path 4. This observation will be essential to the following

discussion of vacuum structure.

The second piece of information about the UU-dependence of the dynamical
model can be obtained as follows. For 0 < £ < oo, the first term and the third term
in Vpot vanish in the limit z — 0 generically. If A, has a pole at z = 0, then the
second term in Vpo aléo vanishes for z — 0 and 0 < £ < oo. Therefore, for those
dynamical models whose h, has a pole at z = 0, there exists a continuous family of
degenerate vacua (parametrized by (£)) with {z) = 0 (no gaugino condensation),
mg = 0 (unbroken supersymmetry) and (Vo:) = 0. In other words, in the vicinity
of z = 0 those models always exhibit runawa,y’ of z toward the degenerate vacua at
z = 0 which do not have the desired physical feafures; whether those models may

possess other non-trivial vacuum or not is outside the scope of this simple analysis.

On the other hand, the dynamical models whose A, has no pole at z = 0 are
much more interesting. If A, has no pole at z = 0, then V,,; — oo for z — 0 and
0 < £ < oo. Therefore, these dynamical models exhibit no runaway of z toward

z = 0 except for the weak-coupling limit (3.39). Furthermore, the equation of
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motion for z is
14 f +blln(e~*au/u®) + 2(¢h, + bO)(1 — 2zg,) = 0 + O(zh,). (3.40)

Impose (3.40), and from (3.26) we have the gravitino mass mg = id(Jul) +
o (23/ 2h,). To the lowest order, it is identical to the g of static gaugino conden-
sation, (2.54); therefore, similar to Section 2.3 we can argue that supersymmetry is
broken if and only if the dilaton is stabilized for dynamical gaugino condensation. In
fact, for dynamical models whose h, has no pole at z = 0, it can be shown that they
are effectively described by static gaugino condensation of Chapter 2. As pointed
out in Section 3.1, kinetic terms of the gaugino condensate U naturally arise in
generic string models, where these terms are S-duality invariant and correspond to
corrections UU/V?, ([7 U/ V2)2 ,-++ to the Kahler potential. This interesting class
of S-dual dynamical gaugino condensation obviously belongs to dynamical models
whose h, has no pole at z = 0 discussed here. In Section 3.3, S-dual dynamical

gaugino condensation will be studied in detail.

3.3 S-Dual Model of Dynamical Gaugino Condensation

As discussed in Section 3.1, we consider in this section models of dynamical
gaugino condensation where the kinetic terms for gaugino condensate arise from the
S-dual loop corrections defined by (3.2). More precisely, we consider the following

dynamical model:

K = v+ g(V,X) + G,
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Los = / PE {(-2 + f(V, X)) + VG + VIn(eKTU/p%) },  (3.41)

(2 + X%;—) (1 - Vg—é) = (2 ~ X%) (1 —f+ V%{,-) . (3.42)
For convenience, we have written the S-dual combination (UU)2/V as a vector
superfield X, and therefore its lowest component ¢ = X|sjo is z = (z’m)% /L =
Vz/E. Eq. (8.42) guarantees the correct normalization of the Einstein term.
g(V,X) and f(V,X) satisfy the boundary condition in the weak-coupling limit
defined by (3.39). We also assume that g(V,X) and f(V,X) have the following

power-series representations® in terms of X2:

gV, X) = V) + ¢O(V)-X? + §DWV)-X* + ---.
fv,xy = fOW) + fOWV)-X* + fOV).X* + ... (3.43)

Furthermore, ¢(™(V) and f™(V) (n > 0) are assumed to be arbitrary but
bounded here. The interpretation of each term in (3.43) is obvious: As has been
discussed in Section 2.2.2, in the linear multiplet formalism ¢g(®(V) and FOX(V)
are to be identified as stringy (non—perf;urbative) corrections to the Kahler poten-
tial. g™ (V)-X?* and f)(V)-X?" (n > 1) are therefore S-dual loop corrections
to the Kahler potential in the presence of stringy (non-perturbative) effects.

It is also more convenient to use the coordinates (£, z) instead of (¥, z)
for the field configuration space. The component field expressions constructed in

Section 3.2 can easily be rewritten in the new coordinates (¢, z) according to the

It should be noted that one can actually start with a more generic dynamical model by

considering more generic g(V, X) and f(V,X), and the discussions of Section 3.3 remain valid.
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following rules:

Zgz - Eg, — g,

zgz — %xgz’ (3’44)
where
_ 9g(¢,z) _ 9g(¢,z)
g, = ae y 4. = 33: (3.45)

on the right-hand side of (3.44) are to be understood as partial derivatives in the
coordinates (£, z). The scalar potential of this generic model follows directly from

(3.38):
Vier = I%(l + 4g, — 29, )(h + £h, — zh, + 26)2?

N 1 1 + f + blln{e *au/pus) .
162k (2 —
<h.(2 - =g.) +(2 — zg,)(£h, — ch, + be)

(424, — zg,)

[1+ 7 + beln(e*au/p)] 22

64(2 — zg_)
2h — 2¢h, — zh, au
( 16;h ) a’. (3.46)

The kinetic terms also follow directly from (3.34). The absence of a tachyonic axion

requires zh, > 0.

3.3.1 Effective Description of Dynamical Gaugino Con-

densation

As discussed in Section 3.1, one of the major motivations for studying dy-

namical gaugino condensation is to understand how static gaugino condensation
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could emerge as the effective description of dynamical gaugino condensation after
all the heavy modes belonging to dynamical gaugino condensation are integrated
out. Unlike studies in the past where the important constraint (2.12) on the gaugino
condensate chiral superfield U is ignored, proving the above connection is certainly
non-trivial. From this point of view, our construction in Section 3.2 can be regarded
as efforts to solve (2.12) in the context of dynamical gaugino condensation using
the linear multiplet formalism, and the above connection is actually obvious after
(2.12) is explicitly solved. In order to make the following discussion as explicit as
possible, in this section we choose to study S-dual dynamical gaugino condensation.
However, we Would like to emphasize that our discussion is actually valid for any

dynamical model whose h, has no pole at z = 0.

Firstly, the axionic contents of dynamical gaugino condensation are a, i In(%/u)
and (Y —t!). Since a physically interesting model of dynamical gaugino conden-
sation should predict a small scale of condensation (i.e., (z)} < 1), it is clear from
(3.46) that generally the condensate = and the axion a are much heavier than the
other fields, and therefore should be integrated out. It is straightforward to inte-
grate out a and z through their equations of motion: The equation of motion for a

is @ = 0. The equation of motion for z is:
'1 + f + bein(e Fau/u®) + (2 — zg, )(€h, — zh, + bL) = 0 + O(z?). (3.47)
(3.47) can be re-written in a more instructive form:
z? = -I-L-e—eg(o)'(lﬂ(a))/bl + O(z*), (3.48)

el
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where we have used the fact that g = ¢, f = O, h = 1, £g, » £, £f, ~ £,
¢h,~0, zg. ~0, zf, ~ 0 and zh, ~0 up to corrections of order O(z?). The
(bosonic) effective Lagrangian, L.;; = Liin — €Vpot, of the dynamical model

(3.34,46) after integrating out ¢ and z is as follows:

1 1 1
L = e iR e — ©®) vm
~Liin sR — 15 (1+4) vrevat
1 milo 1 4 1 ©) Bmd
(1+be);(tl+t_1)2v HVnt! + (1+£4®) BB,
+ O(mz), (3.49)
where
B, = _i_;_.é_p__vmln(ﬁ)
(1 + fg‘(°)) u
. bp 1 v 1 0
n (V- Vtl). 3.50
Z(1+€g£°));(t1+tl)( ) ( )
— 1 0 0 2 2 (©) — (1+£(0) ) fbe
Vot = oz (1+ FO — £59) (1 + b)? ~ 366 } e ~ (147
+O(z%). (3.51)

Furthermore, (3.42) leads to £g{%) = f(@ — £f© to the lowest order in 2.

In comparison with static gaugino condensation studied in Chapter 2, it is clear
that the effective Lagrangian of dynamical gaugino condensation after integrating

out the heavy fields are indeed identical to the Lagrangian of the static model,
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(2.46), to the lowest order in z?. Note that, in (3.51), the O(z*) terms do not
depend on the remaining axionic degrees of freedom (i.e., ¢In(@/u) and (¥ —tf)),
and therefore these remaining axions are massless as they should be in static gaugino
condensation? [12]. In conclusion, after integrating out the heavy modes the axions
left in the effective theory of dynamical gaugino condensation are identical to those
of static gaugino condensation. Consistently there is always a massless (or very
light in- multiple gaugino condensation [14]) model-independent axion. According
to the equation of motion for z, (3.48), z2 < 1 actually holds for any value of £.
It implies that only the lowest-order terms of (3.49) and (3.51) are important, and,
as we have expected and now prove here, the static model of gaugino condensation
is indeed the appropriate effective description of the dynamical model. This proof

therefore justifies the use of static gaugino condensation in Chapter 2.

This proof also implies that the necessary and sufficient condition for Voot of
dynamical gaugino condensation to be bounded from below is exactly the same as

that of static gaugino condensation (2.57),

FO—2f©@ >2  for £ — oo, (3.52)

which depends only on stringy non-perturbative effects g(® and f(%. (3.52) does
not depend on the details of S-dual loop corrections, and therefore it holds for
generic S-dual dynamical models. Furthermore, (3.52) implies that only stringy non-

perturbative effects are important in stabilizing the dilaton, and therefore allowing

2 As pointed out in [14] as well as in Chapter 4 here, these axionic degrees of freedom naturally

acquire different masses in scenarios of multiple gaugino condensation.
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supersymmetry breaking via gaugino condensation. S-dual loop corrections play no
role in this issue, and S-dual loop corrections alone cannot stabilize the dilaton. As
discussed in Section 2.4, (3.52) can also be interpreted as the necessary condition

for the dilaton to be stabilized.

3.3.2 Solving for Dynamical Gaugino Condensation

In the previous section, the dynamical model of gaugino condensation is ana-
lyzed through its effective Lagrangian after intégra.ting out the heavy modes. One
can also analyze the dynamical model directly, and obtain the same conclusion.
Here, we would like to present a typical example of dynamical gaugino condensa-
tion as a concrete supplement to the analysis of Section 3.3.1. Solving for dynamical
gaugino condensation is generically difficult due to the partial differential equation,
(3.20) or (3.42), which guarantees the correct normalization of the Einstein term.
On the other hand, only those solutions of (3.20) which are of physical interest
deserve study. Therefore, in the following we show explicitly how to consfruct the
solution for the interesting S-dual model of dynamical gaugino condensation de-
fined by (3.41-43). In order to simplify the presentation but leave the generality
of our conclusion unaffected, we choose a specific form for f(V, X) in the following
discussion: f(V,X) = fO(V) + X2, where ¢ is a constant and |e] is in princi-
ple a small number because X-dependent terms arise from loop ccgrrections.’ In
this restricted solution space, (3.42) together with the boundary condition (3.39)

can be re-expressed as an infinite number of ordinary differential equations with
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appropriate boundary conditions (evaluated at 6 = 8 = 0) as follows:
de(o) = fO_y¢ f‘(O).
29" — (1 - fO 4 foo)) gV = —a-ngo) + 2¢.
Lg™ —n (1 — fO + th(o)) d™ = —e sV —g(n —1)gt~ T,
for n>2.
The associated boundary conditions in the weak-coupling limit are:
d=0) =0, fOU=0) =0,

9(1)(£ = 0) = —25)

¢ =0) = ——%e” for n>2.

(3.54)

Therefore, g(V, X) is unambiguously® related to f(V, X) in this interesting solution

space.

Firstly, notice that the boundedness of g(™ and f(™ can be guaranteed if (3.52)

is satisfied. Therefore, the solution defined by (3.53-54)* exists at least for viable

dynamical models in the sense of (3.52). Secondly, ¢ is suppressed by a small

factor |¢|*, which is obvious from (3.53-54). Therefore, the solution defined by

(3.53-54) converges for z? < O (1/¢). Since a physically interesting model of gaug-

ino condensation should predict a small scale of condensation (i.e., (z?) < 1), this

3In fact, there is one free parameter 8 involved due to the fact that g{"®)(¢ = 0} is not well-

defined in (4.15); this ambiguity can be parametrized by gf")(e =0) = ne"~18. We take =0

here.

4The generalization to generic f(V, X) is straightforward.
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Figure 3.1: The scalar potential V,,; (in reduced Planck units) 1s plotted versus £
and z. A=6.8, B=1, ¢ =—0.1 and p=1. (The rippled surface of V,; is simply

due to discretization of the £-axis.)

solution does cover the regime of physical interest.’

(3.52) is the necessary condition for stringy non-perturbative effects to stabi-
lize the dilaton. By looking into the details of the scalar potential, it can also be
argued [12] that stringy non-perturbative corrections to the Kahler potential may
naturally stabilize the dilaton if (3.52) is satisfied. In the following, the solution
defined by (3.53-54) is used' to construct a typical realization of this argument.
Furthermore, it is the typical feature of this example rather than the specific form

of g(V,X) and f(V, X) assumed in this example that we want to emphasize. In

This solution can in principle be extended into the z> > O (1/e) regime using the method of

characteristics.
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Figure 3.2: z,,:,(¢) is plotted versus £ for Figure 3.1.

Fig. 3.1, the scalar potential V. is plotted versus £ and z for an example with
fV,X) = fO(V)+eX? and fO(V) = A-e7B/Y. There is a non-trivial vacuum
with the dilaton stvabilized at {£) = 0.52, z stabilized at {z) = (au/l) = 0.0024,
and (fine-tuned) vanishing vacuum energy ( Vpo:) = 0. Supersymmetry is broken
at the vacuum and the gravitino mass mg =4 x 107* in reduced Planck units. To

uncover more details of dilaton stabilization in Fig. 3.1, a cross section of V,, is

presented in Fig. 3.3. More precisely, with the value of £ fixed, Vot 18 minimized

only with respect to z; the location of this minimum is denoted as (£, Zpin(£)).
The path defined by (¢, zmin(£)) is shown in Fig. 3.2. The cross section of V.
is obtained by making a cut along (¢, min(£)); that is, the cross section of V.
is defined as Vpﬁ;;(@ = Vpot (€, Tmin(£)). Fig. 3.3 shows that the dilaton is indeed

stabilized at {¢) = 0.52. Therefore, we have presented a concrete example with °
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Figure 3.3: The cross section of the scalar poﬁential, Vi) = Voot (£, 2min(£)) (in
reduced Planck units), is plotted versus ¢ for Figure 3.1.

stabilized dilaton, broken supersymmetry, and (fine-tuned) vanishing cosmological
constant. As pointed out in Sections 2.1 and 2.5, this is in contrast with condensate
models studied previously [3, 16, 28] which either need the assistance of an addi- .
~ tional source of supersymmetry breaking or have a large and negative cosmological

constant problem.

3.4 Concluding Remarks

The field component Lagrangian for the linear multiplet formalism of generic
dynamical gaugino condensation is constructed and studied. A major conclusion of
this chapter is that static gaugino condensation is indeed the appropriate effective

description of dynamical gaugino condensation after the heavy modes are integrated
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out. Some issues about the axions are also clarified. This justifies our studies in

Chapter 2, and allows us to use static gaugino condensation in constructing more

realistic models in Chapter 4.




Chapter 4

Gaugino and Matter
Condensation in Generic String

Models
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4.1 Introduction

It was recently shown how to formulate gaugino condensation using the linear
multiplet [8, 30] formalism for the dilaton superfield, both in global supersymme-
try [18, 20] and in the superconformal formulation of supergravity [18]. Using the
Kahler superspace formulation of supergravity [34, 35], which we use throughout
this study, it was subsequently shown [19] how to include the Green-Schwarz term
for a string model with a pure Yang-Mills Es hidden sector. In this case there are
no moduli-dependent threshold corrections and there is a single constant ~ the Es
Casimif C - that governs both the Green-Schwarz counterterm and the coupling
renormalization. This model of gaugino condensation has been studied in detail
in Chapters 2 and 3, where it was found that the dilaton can be stabilized at a
phenomenologically acceptable value with broken supersymmetry if stringy non-
perturbative corrections [4, 7] to the Kahler potential are included. However, the

model studied in Chapters 2 and 3 has several drawbacks from the viewpoint of

phenomenology. As discussed in Section 2.5, due to the large gauge content of Es a

sufﬁciently large gauge hierarchy is not generated. Furthermore, the string moduli
T! remain flat directions. As we have pointed out, these unsatisfactory features
belong only to the specific string model with with a pure Yang-Mills Eg hidden
sector, and therefore are not generic at all. As we will see, in a generic string model
the hidden sector contains a product of smaller gauge groups. Therefore, a large

enough gauge hierarchy could be generated naturally. Furthermore, a generic string




model contains hidden matter, and together with string threshold corrections the

'hidden matter condensation lifts the flat directions associated with the moduli.

Consider a generic string model whose hidden sector gauge group is a product
of simple groups: G = [I,G.. One immediate difficulty is the following: since we
need to describe several gaugino condensates U, ~ Tr(W*W, ), and each gaugino
condensate U, is constrained by (2.12) separately, therefore according to (2.13) we
need to introduce several vector superfields V,. However, since the theory has a
single dilaton ¢, it must be identified with the lowest component of V = ¥, V.
What should we do with the other components £, = Vi|,_7_o7 We will see that,
in our description, these are non-propagating degrees of freedom which actually do
not appear in the Lagré.ngia.n. Similarly only one a.htisymmetric tensor field (also
associated with V =}, V;) is dynamical. This allows us to generalize our approach

to the case of multiple gaugino condensation.

Let us stress that the goal is very different from the so-called “racetrack”
ideas [3] where resorting to multiple gaugino condensation is necessary in order
to get supersymmetry breaking. Here supersymmetry is broken already for a single
gaugino condensate. Indeed, we will see that the picture which emerges from multi-
ple gaugino condensation (complete with threshpld corrections and Green-Schwarz
meché.nism) is very different from the standard “racetrack” description: indeed, the
scalar potential is largely dominant by the condensate with the largest one-loop

beta-function coeflicient.

To be more precise, we generalize in this chapter the Lagrangian (2.26) studied
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in Chapter 2 to string models with arbitrary hidden sector gauge groups and with
three untwisted (1,1) moduli 77. We take the Kihler potential for the effective

theory at the condensation scale to be:

K = kV)+ 2911 gI = "'ln(TI + TI)a V= Z Ve, (4.1)
I .

a=1

where the V, are vector superfields and n is the number of (asymptotically free)

nonabelian gauge groups G, in the hidden sector:

Gridgen = [[ G @ U(1)™. . (4.2)

ax=l

We will take Ghiggen to be a subgroup of Es. In general, there will be hidden matter

associated with the hidden sector gauge groups.

We introduce both gaugino condensate superfields U, and hidden matter con-

densate superfields II* that are non-propagating:
ng
Us = Tr(WoW,),, I =TT (84)™, (4.3)
A

where W, and ®4 are the gauge and matter chiral superfields, respectively. The
matter condensate II* is a chiral superfield of Kahler weight w = 0, while the
gaugino condensate U, associated with gauge subgroup G, is a chiral superfield of

K3hler weight w = 2, and is identified with the chiral projection of V;:
U, = —(DsD* -8RV, U, = —(D*Ds —8RNV,. (4.4)

We are thus introducing n scalar fields £, = V,|y—5-0- However only one of these
is physical, namely £ = 5", £.; the others do not appear in the effective component
Lagrangian constructed below.
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The effective Lagra.ngi#n for multiple gaugino condensation is constructed .a.nd
analyzed in Sections 4.2-4.5. In an appendix we discuss a parallel construction using
the chiral supermultiplet representation for the dilaton and unconstrained chiral
supermultiplets for the gaugino condensates in order to illustrate the differences

between the two approaches and the significance of including the constraints (4.4).

4.2 Construction of the Effective Lagrangian

We adopt the following superfield Lagrangian:
Less = Lxg+ Los + Lin + Lvy + Lpot,s (4.5)
where
Lxz= [d9E[-24f(V)], kV)=InV+g(V), (4.6)

is the kinetic energy term for the dilaton, chiral and gravity superfields. The func-
tions f(V), g(V) parameterize stringy nonperturbative effects. According to (2.8),

they are related by the following first-order differential equation:

dg(V) _ . df(V)
Vg ="V~ 1+5 (4.7)

which ensures that the Einstein term has canonical form {12]. In the classical limit

g = f = 0; we therefore impose the boundary condition at the weak-coupling limit:

g(V=0)=0 and f(V=0)=0. (4.8)
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Two counterterms are introduced to cancel the modula,i' anomaly [31], namely the

Gl’ een-Schwarz counterterm [3 1 N 38]:
) T ’ 87 ?

and the term induced by string loop corrections [36]:

Ly = —Z—b—i-/d‘*oﬁU lnnz(T")—i—hc» (4.10)
* e J 6472 R : o ) ]
The parameters
=C-Cu+) (1-2¢f)C4 C=Cg, (4.11)
A .

vanish for orbifold compactifications with no N = 2 supersymmetry sector [40].
Here C, and C# are quadratic Casimir operators in the adjoint and matter repre-
sentations, respectively. ¢f are the modular weights of the matter superfields 4

of the underlying hidden sector. The term
1 4 E 7 -K[2 3 o o
Ly =% 3 / 4% ZUs |8, In(e™ /20U, /1) + T b5 I 0I°| + huc., (4.12)

where g 1s a mass parameter ﬁaturally of order one in reduced Planck units (which
we will set to unity hereafter), is the generalization to supergravity [43, 44] of
the Veneziano-Yankielowicz superpotential term generated by condensation, includ-
ing [54] the gauge invariant composite matter fields ITI* introduced in eq. (4.3) (one
can also take linear combinations of sﬁch gauge invariant monomials that have the

same modular weight). Finally

— 1 4 E K/2 a ml
Lo = 3 / 4% 2K PW(I*,T7) + hc. (4.13)
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is a superpotential for the hidden matter condensates [1* that respects the symme-
tries of the superpotential W(®4,T7) of the underlying theory.
The coefficients ¥, and b3 in (4.12) are dictated by the chiral and conformal

anomalies of the underlying field theory. Under modular transformations, we have:

aTt —ib

I ————————
" = g g

ad—bc=1, a,bc,d €7,
g = d+H + B, H =T +d),

A o e ZJHI#QA,

A, — e mHT) x4 — et L (B2 HD A g, et Ly I=Hg,

a)

v, — e~ =H H“—)&‘ZIHI"?Ha,

¢ = D nigf. (4.14)
A

The field-theoretical loop corrections to the effective Yang-Mills Lagrangian from
orbifold compactification have been determined [31, 32] using supersymmetric regu-
larization procedures that ensure a supersymmetric form for the modular anomaly.
Matching the variation under (4.14) of that conmtribution to the Yang-Mills La-

grangian with the variation of the effective Lagrangian (4.12) we require

—_ 1 E A T
SLyy =~ }; / A=A [ca - ; C2A(1-24f )} H' +he., (4.15)
which implies
W+ 3 benAgh = —1-5[0 —YCA(1- qu)} VI o (416)
oA 8n 2
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In the flat space limit where the reduced Planck mass! M'p — oo, under a canon_ical

scale transformation
A= e2’), U — U, &% —e®d4, II% - ela™°I%, §— e 27,
we have the standard trace anomaly as determined by the S-functions:
A
8Less = = zaZ/d‘*H =U., <3C EC )+hc +O(M'F),

which requires

3, + Y bind = 5 (3ca - Zoﬁ) +OM'F).
oA A

Eqgs. (4.16) and (4.18) are solved by [54] (up to O(M'3') corrections)
b= —(C T
¢ w2\ ° ¢ ]
cA ‘
Y Bnhgf = E 291, Zb"‘ 4 Z = (4.19)
o, 4

Note that the above arguments do not completely fix L.s; since we can a prior: add

chiral and modular invariant terms of the form:
AL=S0, / d6EV, In (eXr 7o M%) . (4.20)

For specific choices of ri:he b, the matter condensates II* can be eliminated from
the effective Lagrangian. However the resulting corponent Lagrangian has a linear
dependence on the unphysical scalar fields £, — £, and their equations of motion
impose physically unacceptable constraints on the moduli supermultiplets. To en-

sure that AL contains the fields £, only through the physical combination 3, 4.,

LThe reduced Planck mass M’p = Mp /+/8%, where Mp is the Planck mass.
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we have to impose b, = b/, independent of a. If these terms were added, the last

condition in (4.19) would become

ZbanA+Zbl A=ZC:;4
ata ~ a'ta 4

=
oA 4 =7

(4.21)

We shall not include such terms here.

Combining (4.11) with (4.19) gives 4! = 87%(b— b, — ¥, b%¢). Combining
the terms (4.6)-(4.13) by superspace partial integration (2.18), the “Yang-Mills”
part of the Lagrangian (4.5) can be expressed — up to a total derivatives that we

drop in the subsequent analysis — as a modular invariant D term:

Lur = [@0B( =2+ (V) + {800 /eV) + Tt n (031)

b£ I a4 2rmiIyi2
- L g [T+ T IP@ | ) + Lo (4.22)
where
I; = [I(®f)% = eZef9'/2I%, @f = o2 979 /204, (4.23)
A

is a modular invariant field composed of elementary fields that are canonically nor-
malized in the vacuum. The interpretation of this result in terms of renormalization
group running will be discussed below. We have implicitly assumed affine level-one

compactification. The generalization to higher affine levels is trivial.

The construction of the component field Lagrangian obtained from (4.22) paral-
lels that given in Section 2.3.2 for the case G = Fg. Since the superfield Lagrangian
is a sum of F' terms that contain only spinorial derivatives of the superfield V,, and
the Green-Schwarz and kinetic terms that contain V, only through the sum V, the
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unphysical scalars £, appear in the component Lagrangian only through the physical

dilaton £. The result for the bosonic Lagrangian is:

1 _ 1 1 mil o ¢ plpl
~Lp = —ER—(1+b£)Z(mlr)—2(6tant—FF)

-~ p —— (1+4g,) [4(amea,,e B"By) + Gu — 4¢"/% (Wa + uW)]

+ ; (69, — 2) [MM — 5™bp — = { (}: byup — 4W6K/2) + h.c.}}

%i + 8 In(e* K, u,) + z b In(x*7*)

oolv-a

#3524
; ln(t")lz} } (Fo— ol +h.c.)

1 , , FT
T [ (1 +€g,)uu,, — 4lu, (Zb + (b, — )2Retf) +h.c.]

O™ Imt!

2
['ln(ua)-{-z:b"‘ln )] VTBE — —Z ~gr B
b;

l\')lw

; T 2 [¢() (2B mt! — uoFT) +hec]
+ ISP (W 4+ KW) 4+ FeW, + h.c.] , (4.24)
I -3 .

where

1 on(t e=t/12 o= 2mt
() = =B = T (1= e,

m=1
'e = Vl9=§=0)
o™ B° 1 » 2 m m
aaBm = §[Don Dd ]%|9=§=0 + '3'[0-0'&&6’7" B™ = E B

U = UG10=§=D = —(1_)2 - 8R)Vd!€=§=01 U= Zuth
Uy = l-]a]0=5=0 = —'(D2 - 8R1‘)I/GI9=§=O’ U= Eaaa
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DzUctl&:é:O: —4F° = ﬁzUtz|:$?=§=ﬂ7 Fy =ZFQ’
™ = Hal9=§=0 T = ﬁa!9=§=o

—4F% = Dzna‘o=§=0a —4F® = @21’1"]9:9-:0,

tI = TI]0=9_=-40’ —'4FI = DZTI]0=§=0?
t—l = TII&:;:O) _4FI = ﬁZT[Io:E:m (4‘25)
bn and M = (M )f = —6R|s=g-o are auxiliary components of the supergravity

multiplet [34]. Notice that {(t) defined in (4.25) is related to the Einstein function
G,(t) [53) as follows: Ga(t) = —x (1 +4((t)Ret) /Ret. Forn = 1, u, = u, etc.,
(4.24) reduces to (2.46) of Section 2.3.2.

The equations of motion for the auxiliary fields b,, M, FI F* + F° and F*

give, respectively:

bm = 0, M= % (za: b;ua —4W6K/2) s

Ret! ol _ i
I = 'y 4 2 (H I _ 4.K/2 I,
F - 2(1 + bf) {Z Ug [(b b;,) 27r2C(t JRet ] 4e (2Ret Wr W)} s

. _ E - rp 1,1 21! I ! —ewr b B o
Uotia = —€ (+D)/8b=} bag fon%8 T |y (27 Pa/2m% T (a278) "880%,  #8 = T2 lompos
I . ]
0 = 3 8%uq + 4x°eFPW, Vo (4.26)

Using these, the Lagrangian (4.24) reduces to

ol g,

s = —iR - 1+be)z(tl+tl)2

1 m, m
- ~> 7z (1 +.) (97284 = B"By)

8""ImtI

_Z(b'wa+Zb°‘¢°‘) vmBe ——Z g7 B
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bl
+iY 2% (¢ BrVat! — hc] = Voo,

Ta 8r
Voot = (—1-—-’—-—{&)— au+ |G Zb;ua—éleK/ZW +h.c.
1622 -
1 bl 2
- . — ¥ —a_r(H I _ 4K/2 [9Ret! —-W
+16(1+M)2; Xa;u (b a+27r2¢( )Ret) de (Re Wi )
12
+ % (¢g, — 2) > byus — aWeR?| | (4.27)
3
where we have introduced the notation
Uy = pgee, 7% =%, (4.28)
and
o N Ea bguGWd :
2¢* = —iln (Ea bf{ﬁaWa) if W,#0. (4.29)

To go further we have to be more specific. Assume? that for fixed a, 5% # 0 for
only one value of a. For example, we allow no representations (n,m) with both n
and m # 1 under G, ® Gp. Then u, = 0 unless W, # 0 for every a with 5 # 0. We

therefore assume that 5% # 0 only if W, # 0.

Since the II® are gauge invariant operators, we may take W linear in II:
CW(ILT) = S WD, WalT) = ca [In(THPFD,  (430)
o I

where (T') is the Dedekind function. If there are gauge singlets M* with modular

weights g%, then the constants ¢, are replaced by modular invariant functions:

e = wo(M,T) = o [T TLIn(THP.

2For, e.g., G = E¢ ® SU(3), we take I =~ (27)° of Eg or (3)3 of SU(3).
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In addition if some M * have gauge invariant couplings to vector-like representations

of the gauge group
W(®,T, M) 3 c;apM*@AG? T [n(T7))2ef +o7 +0),
1

one has to introduce condensates IT48 ~ $4®2 of dimension two, and corresponding

terms in the effective superpotential:
W(IL,T, M) 3 ciapg M'TIAB T [n(Th)|Hef+er+ai),
I

Since the M’ are unconfined, they cannot be absorbed into the compbsite fields
II. The case with only vector-like representations has been considered in [54]. To
simplify the present discussion, we ignore this type of coupling and assume that
the composite operators that are invariant under the gauge symmetry (as well as
possible discrete giobal symmetries) are at least trilinear in the nonsinglets under
the confined gauge group. We further assume that there are no continuous glob;a\l
symmetries-such as a flavor SU(N) ® SU(N)r whose anomaly structure has to be
considered [54]. With these assumptions the equations of motion (4.26) give, using

o bief +bl/8x% = b1,

a

pz — e—ZbQ/baeKe—(l-!-_f)/bol—b Zzgl/bc H l’?(tl) r;(l.s-—b.,)/b‘z H Ib§/4cal'2"g/b“,
I .

.

& = _e"%[k+21(l-q?)g!]4i’§ Uy, by =10 +Zbg. (4.31)

[

Note that promoting the second equation above to a superfield relation, and sub-

stituting the expression on the right hand side for II in (4.22) gives
Lesr = f d*g E( -2+ f(V)+>, Va{ba In(0.U,/e*V)
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_ E b In (X180 |4, /b )
S [+ 1) ] ) o 432

It is instructive to compare this result with the effective Yang-Mills Lagrangian
found [31, 32] by matching field-theoretical and string loop calculations. Making
the identifications V — L, U, — Tr(WW,),, the effective Lagrangian at scale p

obtained from those results can be written as follows:

LM = /d4eE( 2+f(V)+§jv{ (Ga— EC") [%}
~ 7 SO n o 240/ (024 (0)
§I_j b > [(T! + T7) 1n%(T) ) }) (4.33)

with M? = g2 ~ 2(£) (95 = g(M,)) in the string perturbative limit, f(V) = g(V) =
0. The first term in the brackets in (4.32) can be identified with the corresponding

term (4.33) provided

o« L 1 1
za:ba=127rzch’ ba='8';'2‘(cm"‘§§cf). (434)

A

In fact, this constraint follows from (4.19) if the II* are all of dimension three,-
which is consistent with the fact that only dimension-three operators survive in the
superpotential in the limit M'p — oo. Then b, is proportional to the S-function
for G, and (pa) = (|ASAss]) has the correct exponential suppression factor for
a small gauge coupling constant as expected by a RGE analysis. In the absence of

(stringy) nonperturbative corrections to the Kahler potential (f(V) = g(V) = 0),
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2(V |p=g=0) = 2(£) = g2 = M? is the string scale in reduced Planck units and also
the gauge coupling at that scale [31, 32]. Therefore, the argument of the logarithm

in (4.33),

= 1/3 'a 2/3 g 2/3
<UaUa> n P82} (X2Aal)T (4.35)

v o Mg
gives the exact two-loop result for the coefficient of C, in the renormalization group
running from the string scale to the appropriate condensation scale [31, 32, 46].
The relation between (7*) and (u,), and hence the appearancé of the gaugino
condensate as the effective infra-red cut-off for massless matter loops, is related to
the Konishi anomaly [55] The matter loop contributions have additional two-loop

corrections involving matter wave-function renormalization [51, 56, 57, 58]:

aanA(/J,) 1 I()ghagB o) e - -
S =~ |l L PRz 025 W25 W Wasel?
-4zgz(u)c;(RA)] FO+O@), (4.36)

where C$(R4) = (dimG,/dimR,4)C2, R, is the repreéenta.tion of G, on B4. Th¢
boundary condition on Z, {31} is Z4{us) = (1 — paf)~?, where py is the coefficient
of e21979"|®42 in the Green-Schwarz counterterm of the underlying theory: V =
gl + paesrdt 51 |@4]2 + O(|@4]4). The second line of (4.32) can be interpreted |
as a rough parameterization of the second line of (4.33).

In the following analysis, we retain only dimension .three operators in the su-

perpotential, and do not include any unconfined matter superfields in the effective.




condensate Lagrangian. The potential V,,: takes the form:

1
Voot = == pups c0swas Rap(t?), wap = w, — wy,
167 2

_ _ a2 £ g (5T
R = (1+4g,)(1+b,8) (1 +be) — 3¢ babb+-————(1+b£);da(t Yo (ETY,

do(t!) b—-b + 2—I;r£—2C(tI)RetI -3 b [1 — 4(¢% — 1)¢(t)Ret! ]

= (b—ba) (1 +4¢(t")Ret!)

I "
Ret” &4, (4.37)

]

~(5—b.)

T

Note that d.(¢') « FI o« G,(t")Ret! vanishes at the self-dual point ¢/ = 1, where
¢t = —1/4, Go(#7) = 0, 9(t7) =~ 0.77. For Ret! R 1 we have, to a very good
approximation, {(t/) & —x /12, (¢!) ~ e~™/!2, Note that also p, — and hence the

potential V,o; — vanishes in the limits of large and small radii; from (4.31) we have

Jim g7~ (2Ret!)=ba)/bag=(b=bo)Ret!/3ba

lim p? ~ (2Ret!)em8begmm(b=be)/3heRetl (4.38)

tI—0

where the second line follows from the first by the duality invariance of p2. So
there is potentially a “runaway moduli problem”. However, as will be shown in
Section 4.4, the moduli are stabilized at a physically acceptable vacuum, namely

the self-dual point.
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4.3 Axion Content of the Effective Theory

Next we consider the axion states of the effective field theory. If all W, # 0, the

equations of motion for w, obtained from (4.27) read:

oL = '™ B¢ o bgu“ m b 6Vpot_ .
5o = bV B - Zb (Zcbguc+h'°')v B, -2 =0 (439

These give, in particular,

oL mpa
; . = —Xajbav B;, =0. (4.40)
The one-forms B2, are a priori dual to 3-forms:

B, = Semnpe (T2 +3°87) (4.4

where I'"?? and b%7 are 3-form and 2-form potentials, respectively; (4.41) assures the

constraints (2.10) for Tr(W*W,) — U,; explicitly

(D*Do—24RNU, — (DsD*—24R)U, = —2i"®, = g, remnpe0" TG = —16iV™ By,

(4.42)

We obtain

- b;*@a be (Eb l:i'a <+ h.C.) *@b = 8%‘2222, Zba*@a = 0. (4.43)

If T7P? £ 0, B can be removed by a gauge transformation ["?? — P2 4 JlrAPdl,

Thus

a 1 1 1 7, 2
By, = gopemmed B + grgemnpe 17, LRI =0, 1= b, (449)




and we have the additional equations of motion:

1 6 1 6 § dLs J0Lp

A, ' Lp = = -V =
8byq B= (b T2, b 51‘3,,) 5="0, LB 84 (6(vm¢))’
(4.45)

which are equivalent, respectively, to

1
em"mZZ—V“ 6 5 =0, (1 L — i_i_) Ly =0, (4.46)

6BT b, 6B by 6B
with
i 6 (1+egt) ™ ! am o bbub m
653%,65 TR e B™ + b 0w, + = Zb > b c-i—hc O™ wy
(+] m a¢a mqusa
+Zb [a —— Z(a t5F The )]
b 0™ Imt!
I mI _
+z§;8 s [c&ho™ —huc 52 Rl (4.47)

Combining these with (4.39) and ther equations of motion for £ and t!, one can
eliminate BZ, to obtain the equations of motion for an equivalent sgalar—é.)don La-
grangian.

Again, these equations simplify considerably if we assume that for fixed a, 85 #

0 for only one value of a. In this case, (4.39) reduces to

13V

V"B = T aa (4.48)
and we have
a¢a a ¢a
57 =0 =i (F-1), (4.49)

if we restrict the potential to terms of dimension three with no gauge singlets M°*.
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Using ¥, b2 (qf —1) + b} /872 =b— b, gives:

16 ‘___ (1+Zg¢) m m m ] I b

STEECE = o BT b e+ 0 () (b= b + g | e
~(1+£g£) m m m I z_ b 1 .
N SRR b+ E ! (6= ) ——2Ret,j, (4.50)

where the last line corresponds to the approximation {(¢{) = —x/12. In the follow-

ing we illustrate these equations using specific cases.

4.3.1 Single Gaugino Condensate

As we have seen in Section 2.3.2, for the case of a single gaugino condensate there
is an axion w = w, + (7/6)(b/bs — 1) Ty Imt’ that has no potential, and, setting

- s 20 m O™ Imt!
B™ = —¢ annbpq = —-m——) (baa "z RetI ), (4.51)

a

B | kst

the equatlons of motion derived from (4.27) are equivalent to those of the effective

bosonic Lagrangian:

o™t g, !

_53 - _ir_ (1+b€)Z(tI Y~

L 80— Vit H
> 7 (1+49,) 97000 — V (£, E)

£ ™ Imt! OmImt! )

T (L+4g,) (baa Y73 Z Ret! )(b Ot = —Z Ret!

4.3.2 Two Gaugino Condensates: b; # by

(4.52)

Making the approximation 7(¢) ~ e~™*/12, the Lagrangian (4.27) can be written as

follows:
1 O g, t! 1 - m
“Ls = -—573 (1+bf)2m—@:(1+fg,)(5 28t — B™Br)
~ I
—wV™B,, —'V™B,, — = ; agl?}t B — Vyot, (4.53)
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w =

M_%Zlmtr, w=_¢_vl_2+ 5 It
I

by — b

_ b—b
ﬁ - bl b2 b)
We have
w =
Wy =
av;)ot
3w1

=Y b,B (4.54)
Iy 1 ;b I
w4 ZImt W' ——=>"Imt’),
- 6 7
Iy 1 ,  bm I |
w+ = Zlmt W' ——=> Imt'|,
b, 6 75
aV;aot _ a‘/pot
Bor = Do (4.55)

Then taking w,w’ and ¢/ as independent variables, the equations of motion for w

and W' are:

V"B,

V™ Bm

~ 1 -
= 0, Bm = '§€mnpqanbpq’
1, v 1 .
= CP ﬂawm Bm = gigemnqu‘ pq. (4.56)

Substituting the first of these into the Lagrangian (4.53), we see that the axion w and

the three-form B,, drop out because they appear only linearly in the Lagrangian;

hence they play the role of Lagrange multipliers. The equation of motion for by,

implies the constraint on the phase w as follows:

V0w = 0. (4.57)

The equations of motion for Imt! and [runp read:

0 = Y, [(1+b£)

™ Imt! b .1 {3V br,
2 (Ret!)? ' 2Retl B } o (5?1 B h’°’> B
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_ (1+49) o, om s D 8™ Imt!-
0 = “—55*B + 0 “’—EZI:——“RetI , (4.58)

and the equivalent bosonic Lagrangian is:

1 1 ot gt 1 |
;ﬁB = -—2-R—(1+bf);m—zﬁ(l+fg[)8mf&ﬂ€

2 b — O™ Imt! b O, Imt!
P m, halietsnmd am r__ = m
(1+4g,) (a N 2213 Ret! )( N 2; Ret! )

= Voot (6,27, w012). . , (4.59)

As in Section 4.3.1, there is a single dynamical axion w' - or, via a duality trans-
formation, *® — but there is now a potential for the axion in the multi-condensate

case.

4.3.3 General Case

We introduce n linearly independent vectors Bm,Bm,'B,"n, t=1...n—2, and

decompose the B* as follows:

B® = aB™4¢B™+> d.B", Br=> eBr. (4.60)

a

Then

a

> [bawa +(b- ba)% 3 Imtf] VnB™ = wVnB™ + 'V B™ + 3wV, B,
_ I i

b : "

wemw+ 53 ot 4 - (w’ _ _’izxmt') +Y S e
6 I ba 6 I i ba

and the Lagrangian can be written as in (4.53) with an additional term:

%ﬁB —-> —16-1:3 - Zw"VmB}", (4.62)
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The equations of motion for the phases w, ' and w* are:

Vb = Lt -5 =,
VB = aV;’“ = ‘ZZ %V = é—*@,, (4.63)
and the equations for I}, , = = Bemnpe BY give 8™w' = 0. Hence
Wap = —Pas (w' - _I%r_ > Imt! ) + 05, O = constanf;. (4.64)
i

Therefore, as in the two-condensate case of Section 4.3.2, there is one dynamical
axion with a potential. The dual bosonic Lagrangian is the same as (4.59), with

%Ot = ‘/pot(£> tI7 fI, wa.b)'
4.4 The Effective Potential

The potential (4.37) can be written in the form

1
Voot = R‘[Z'('Ul — v + v3),
2 2
v = (14+29) D (1 +bDus , vo=3C boua| ,
e n P FIJ?
= —— AT ugl = 22 —_— .
vs ) 21: Yu 4¢% (1 + be) ; Rett {(4.65)
In the strong coupling limit
' 2
lim Vzor = (£, =2) D baua| (4.66)

giving the exactly same condition on the functions f, g as (2.57) to assure bound-
edness of the scalar potential. Therefore (2.57), the necessary condition for stringy

102




non-perturbative effects to stabilize the dilaton, is indeed true in general. Note
however that if v; = vz = 0 has a solution with v, 71- 0, the vacuum energy is always
negative. vz = 0 is solved by t! = 1, i.e. the self-dual point. As explained below,
this is the only nontrivial minimum if the cosmological constant is fine-tuned to van-
ish. In the case of two condensates, there is no solution to vy = 0, v, # 0, for f > 0,
and the cosmological constant can be fine-tuned to vanish, as will be illustrated be-
low in a toy example. More generally, the scalar potential V,; is dbniinated by the
gaugino condensate with the largest one-loop B-function coefficient, so the general
case is qualitatively very similar to the single condegsa.te case, and it api)ears that
positivity of the scalar potenﬁia;l can always be imposed. Otherwise, one would have
to appeal to another source of supersymmetry breaking to cancel the cosmological
constant, such as a fundamental 3-form potential [21, 41] whose field strength is
dual to a constant that has been previously introduced in the superpotential [1(;],
and/or an anomalous U(1) gauge sym;netry [17}.

In the following we study Zs-inspired toy models with F¢ and/or SU(3) gauge
groups in the hidden sector, and 3Ny matter superfields [59] in the fundamental
representation f. Asymptotic freedom requires N2z < 3 and N3 < 5. For a true
Z3 orbifold there are no moduli-dependent threshold corrections: 4! = 0. In this
case, universal anomaly cancellation determines the average value of the matter
modular weights in these toy models as: { 2¢% — 1) = 2/Nyy, (2¢3 —1) =18/Ns.
In some models Wilson line breaking of the hidden sector Es generates vector-

like representations that could acquire masses above the condensation scale, so
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that the universal anomaly cancellation sum rule is not saturated by light states
alone. In this case the ¢f no longer‘drop out of the equations, so some of the
above formulae would be slightly modified. In addition, one would have to include
threshold effects [32], unless the masses of the heavy states are pushed to the string
scale. ﬁere we assume for simplicity that the sum rule is saturated by the light
states. Denoting the fundamental matter fields by ®{*, o =1,..., Ny, the hidden

matter condensates can be constructed as
—_ fl @Iu o 3 b2 — 1
- e v YEBg T 471.2’ SU@B) ™ gp2?

where gauge indices have been suppressed.

In the analysis of the models described below, we assume — for obvious phe-
nomenological reasons — that the vacuum energy vanishes at the minimum { Vpot } =

0. Thus we solve the following equations:

a V;)ot
oz

I/POt = = 0: z= Za tI’wa- (4.67)

For z = £,t!, we have

8 1( 1 ) (1 +4g,) b e f
5 = 5 A$+-b—B,, par Be= 5", Br= ey [1+4§(t )Ret],

a%ot _ (
oz

B, 0
Az — ?6”‘) Voot + == T gz Zpapb COS Wgp (b,, Ry + azRab)

1. 3
= .jﬁ_pzpapbcoswab ( E :ﬁca Rab)
ab

+ (A 2y ) (4.68)

where S, is defined in (4.63). By assumption, the last term in (4.68) vanishes in
the vacuum. Note that the self-dual point, d,(¢!) = B; = 0, tf = 1, is always
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a solution to the minimization equations for ¢{. It is the only solution for the
single condensate case. For the multi-condensate case, if we restrict our analysis to
the (relatively) weak coupling region, £ < 1/b_, where b_ is the smallest S-function
coefficient, the scalar potential V,,; is dominated by the gaugino condensate with the
largest S-function coefficient b, Voot & p% Ryt /16€%. Moreover, since 7b/3b, > 1,
the scalar potential V,,; is always dominated by this term for Ret! > 1 {c.f. Eq.
(4;38)), so the only minimum for Ret! > 1 is Ret! — oo, p, — 0. By duality
the only minimum for Ret! < 1 is Ret! — 0, p, — 0, so the self-dual point is
the only nontrivial solution. Since our scalar ppteritial is always dominated by
one gaugino condeﬁsa.te, the picture is very different from the “race-track” models

studied previously [3].
At the self-dual point with V,,; = 0, we have

PVour Z coswa | (b — b, )(b— b)—--—Z,B )
a(t1)2 ~ 3%2 Pa b ab 9 (1+b€) 3 cadlab

w2 (b—b,)? b
( 9 ((bl + ;e)) 6nl? Zﬁ”R‘“’) (4.69)

Positivity of the potential requires Ry, > 0, and 8.+ < 0 by definition, so the
extremum at the self-dual point with V,,: = 0, p+ # 0 is a true minimum. In

practice, the last term is negligible, and the normalized moduli squared mass is:

2 . lr(b—'b+)2 2
mk < Ta ) (4.70)




4.4.1 Single Gaugino Condensate with Hidden Matter

In this case f,, = 0, and the minimization equations for t require
0 I 712

which is solved by 1 + 4((t/)Ret! = 0, ¢/ = 1. Then vs = FI = 0, and the
scalar potential V,.: is qualitatively the same as in the Es case studied in Chapter
2 — except for the fact that here the string moduli are stabilized at the self-dual
point. (Note however th;t if B, = 0 one can choose the &, in (4.20) such that the
matter condensates drop out of the effective Lagrangian; then R,, is independent
of the moduli which remain undetermined.) The quantitative difference from the
Es case is the value of the f-function coefficient: bg, = (12 — 3N27) (8%, bsy(z) =
(6 — N3) /1672, As in Chapter 2, two possible choices for the function f are f =
Ae~B/V [7] and f = A,(v/V)Pe~B/YV [4], where we fine tune the parameter A (61'
A,) to get a vanishing cosmological constant.

Attention has been drawn to the leading correction for small coupling that is
of the form f = Ae~B/YV [4]. If we restrict f to this form, we have to require a
rather large value for the parameter A: A ~ 40 in order to cancel the cosmological
constant. On the other hand, the important feature of f here is its behaviour in the

~B/V% the strong coupling

strong coupling regime; if f contains terms of the form Ae
| limit will be dominated by the term with the largest value of n. In the numerical
analysis we take f = Ae~B/V; adding to this a term of the form f = A'e~B'/VV will
not significantly affect the analysis. We find that the vev of £ is insensitive to the
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content of the hidden sector; it is completely determined by stringy non-perturbative
effects, provided a potential for { is generated by the stronély coupled hidden Yang-
Mills sector. More specifically, taking f = Ae~2/V we find that { V,.; } = 0 requires
A e? zA7.4, and the dilaton is stabilized at a value (¢) ~ B/2. Taking B =1
gives (£) = 0.5, (f(£)) =~ 1, and the squared gauge coupling at the string scale
is g2 = (20/(1 + f)) ~ 0.5. If instead we use f = Ae~B/YV the corresponding
numbers are A & 2¢® =~ 40, (£) ~ B?/9, ¢* ~ 2B?/27. Therefore, the vev of the
dilaton £ completely determined by stringy non-perturbative effects, and the dilaton
is naturally stabilized at a weak coupling regime if, for example, the parameter B
in the function f considered here is of order one.

One may look more closely at the second choice which is a genuine stringy
nonperturbative effect®. Taking for illustrative purposes f = (Ao + A/ \/Z) e B/ ‘/Z,
where the condition (4.66) or (2.57) requires Ao to be larger than 2, one finds
a realistic minimum for O(1) values of the parameters: B(E)‘l/ 2~ 1.1 to 1.3,
Ao = 2.7t0 5.3 and A; =~ —3.1 to —4.6. Therefore, the previous problem of a
rather large value of A (A =~ 40) for f = Ae~B/ VV does not exist in general. From
now on we take f = Ae~'/V in the numerical analysis, but notice that the major

conclusions of the analysis apply to more generic choices for f.

The scalar potential V., for G, = Fs, Ny = 1, is plotted in Figures 4.1-

3We do not consider here the case where the coefficient B in the exponent is moduli-dependent
[6]. Such stringy nonperturbative contributions would perturb the moduli ground state away from
the self-dual point. However, one has to worry about the problem of modular invariance for this

type of stringy nonperturbative contributions {60]
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Figure 4.1: The scalar potential V,, (in reduced Planck units) is plotted versus ¢

and Int.

4.3. Fig. 4.1 shows the scalar potential in the £,int¢ plane, where we have set

t! = ¢, Imt = 0; with this choice of variables the T-duality invariance of the scalalr

potential is manifest. Fig. 4.2 shows the scalar potential V,,; for ¢ at the self-dual

point ¢/ = 1, and Fig. 4.3 shows the scalar potential for Int with £ fixed at its vew.
The qualitative features of the scalar potential are independent of the content of

the hidden sector. Fixing A in each case by the condition (V,»: ) = 0, we find for

ga = EG
7.324 0.502 1
A=¢7359, (£)=<0501=gl, for Nyp=12. (4.71)
7.381 0.500 3

For G, = SU(3), N3 = 1, we find A = 7.383, (£) = 0.500 =~ g2. As will be

discussed in Section 4.5, the scale of supersymmetry breaking in this case is far too

108




Figure 4.2: The scalar potential V), (in. reduced Planck units) is plotted versus £

with ¢/ = 1 (the self-dual point).
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Figure 4.3: The scalar potential V,,: (in reduced Planck units) is plotted versus Int

with £ = (£).
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small, and further decreases with increasing N;.

4.4.2 Two Gaugino Condensates

We have

a V;)ot . _81/;>ot
(")wl - 5w2

= —p1p2 P2 sinws,

Z:Bca.paprab COSWgep = ,621 (P?Ru - P;Rzz) .

abe

Minimization with respect to wy requires either (sinwiz) = 0 or ( B2 ) = 0. Identi-
fying b; = by, by = b_, positivity of the scalar potential requires R;; > 0, which in
turn implies R;2 > 0, so the extrema in w are at sinw;, = 0, with coswis = —1 (+1)
corresponding to minima (maxima):

32V0 362 2 R
8w§ t —p1p2 B2 cos wya, mim = <2(—1'*'_+—ﬂ-—1§—;—€1)i2p1p2 > . (4.7?)

12
There is also a small Im¢/-w;; mixing. Note that while in contrast to the single |
condensate case, the dynamical axion is no longer massless, its mass is exponentially
suppressed relative to the gravitino mass by a factor ~ (p2/p; )2/2. Therefore, in
generic string models there is only one very Iight axion* (i.e., the model-independent
axion). As will be discussed in Chapter 5, this very light axion has the right

properties to be the QCD axion [61].

For G = Es® SU(3), the potential is dominated by the Fg gaugino condensate,

and the results are the same as in (4.71). The only other gauge groups in the

4As discussed in Section 3.3.1, this statement is true in the context of both static and dynamical

gaugino condensation, where the former is the effective description of the latter.
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restricted set considered here that are subgroups of Eg are G = [SU(3)]*, n < 4;

these cannot generate sufficient supersymmetry breaking.

4.5 Supersymmetry Breaking

The pattern and scale of supersymmetry breaking are determined by the vev’s of
the F' components of the chiral superfields. From the equations of motion for %

and p, we obtain, at the self-dual point { F/) = 0:

o (1+€gl) L3 . o
(F) = S (a+eSom) ~ B £ 0,

(Fe+F*) = Ty (1+eg,)(1+eb)[ua(u+e§:bbub)+hc]

302 1+4b,
= 4b, 1+ £y

(vally + Bauy ), (4.74)

where the approximations on the right hand sides are exact for a single gaugino
condensate. The dominant contribution is from the gaugino condensate with the

largest B-function coefficient:

(Ft4Fty= 3"51’*“ (4.75)

Iﬁ has been known for some time that, if the dominant supersymmetry breaking
effects come from the dilaton rather than the moduli, the soft supersymmetry
breaking pa,ré.meters are naturally flavor blind, and non-universal squark and slep-
ton masses that could induce unacceptably large flavor-changing ﬁeutfa.l currents
(FCNC) could be-thereby avoided [62]. Therefore, the fact that the F’ vanish in
the vacuum is a desirable feature for phenomenology. And it should be empha-
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sized that this unique feature is just the natural consequence of modular invariance
and a correct treatment of gaugino condensation in string theory. In other words,
a modular invariant treatment of gaugino condensation in string theory naturally
leads to the phenomenologically desirable dilaton-dominated supersymmetry break-
ing scenario, which is very impressive! However, as we will see in Cha,pter:5, the
dilaton-dominated supersymmetry breaking scenario is not always free from the
FCNC problem, which means the the analysis of dilaton-dominated scenario in the
past [2, 62] is oversimplified. In fact, possible non-uriversal couplings of the matter
superfields to the Green-Schwarz counterterm could induce non-universal squark

and slepton masses. More discussion of this problem will be given in Chapter 5.

Another important parameter for soft supersymmetry breaking in the observ-
able sector is the gravitino mass mg. The derivation of the gravitino part of the
Lagrangian again parallels the construction in Section 2.3.2. The gravitino mass

mg is determined by the term:

Lomess(P) = —-é—gbmamngb"vz 4 { ! : ! + &, ln(ez‘K Tou,) + E b In(x*%<)

+ Z {bg In (&) ] } — W o mat™ +hc.,  (4.76)

giving, when the equations of motion (4.26) are imposed,
ma = F(IM1) = (1 bue = 462W1) = L (IS bol) ~ ghalp). (47D

The scale of supersymmetry breaking is governed by the vev (4.31) of the

gaugino condensate with the largest S-function coefficient. This includes the usual

112




suppression factor {p; ) o e~1/%5% where g% = (2£/(1+f)) is the effective squared
coupling constant at the string sca,le; However, there are also other important
parameters that determine the scale of the hierarchy between the supersymmetry
breaking scale and the Planck scale. The dependence on the string moduli provides

a second exponential suppression factor:
(pa) o< (T]In@)PCPte ) = |(1)|e0—tebe m m7C=bed/Ze, — (4.78)
I .

On the other hand, the numerical factor [], |[b%/4c,| %/% generates an exponential
enhancement if ¢, ~ 1. This is the largest numerical uncertainty in our analysis. A4
prioTi, ¢, is related to the Yukawa couplings of matter fields in the hidden sector.
However, there is an arbitrary normalization factor in the definition of II*. If the
hidd_en—lsector Yukawa couplings were knowﬁ, it might be possible to estimate ¢, by
"2 matching condition for the vev’s of the second lines of (4.32) and (4.33). In our
numerical analysis, we have set ¢, = 1. Then, if the hidden gauge group with the
largest B-function coefficient is G4 = Fg with 3Nz; matter chiral superfields in the

fundamental representation, we obtain:

1.1 x10-° 1
ma =14 3.3 x 1011 for Nyz=(2, (4.79)
1.65 x 1015 3

in reduced Planck units. For g.,. = SU(3) with three matter chira,l superfields in
the fuﬁdamental representation, we obtain an unacceptably large gauge hierarchy:
mg = 2.2 X 1073%; m decreases rapidly as Nj increases, i.e. as the S-function
coeflicient decreases.
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4.6 Concluding Remarks

In the class of models studied here, the introduction of a parameterization for
stringy nonperturbative contributions to i:he Kahler potential for the dilaton gener-
ically allows a stable vacuum at a nontrivial, phenomenologically acceptable point
in the dilaton/moduli space. In particular, when we impose the constraint that
the cosmological constant vanishes, we find that in the linear multiplet formalism,
the string moduli ¢/ are stabilized at the self-dual point, and théir associated F
components vanish in the vacuum, which results in a phenomenologically desir-
able dilaton-dominated supersymmetry breaking scenario. This striking feature of
string phenomenology is in fact just the consequence of modular invariance and
a correct treatment of gaugino condensation®. Therefore, in this sense the exper-
imental search for a dilaton-dominated supersymmetry breaking scenario can be

regarded as an indirect test of the modular invariance of superstring theory.

A salient feature of our formalism is that there is little qualitative difference
between a single condensate and a multi-condensate scenario. For several gaugino
condensates with equal (or very similar) S-function coeflicients, the scalar potential
reduces to that of the single gaugino condensate case, excepf. that there may be flat
directions. If b; = by = --- b, then ‘at"the self-dual point p,/p1 = {, = constant

and the potential vanishes identically in the direction 3%_; (,e™* = 0, pesr = 0.

5As discussed in the appendix, an incomplete/incorrect treatment of gaugino condensation
and/or modular invariance is the reason why this unique feature of string phenomenology has

been ignored in the past.

114




This always h{—).s a solution if {; = 1, in which case the flat direction preserves
supersyminetry and there is no barrier between this solution and the interesting,
supersymmetry breaking solution. For several gaugino condensates with different -
function coefficients, the scalar potential is dominated by thé gaugino condensate(s)
with the largest S-function coeflicient, and the result is essentially the same as in
the single gaugino condensate case, except that a very small ﬂlass is generated
for the dynamical (model-independent) axion. In all cases, stringy nonperturbative
corrections to the dilaton Kahler potential are required to stabilize the dilaton. This
picture is very different from previqusly studiedi “racetrack” models [3] where dilaton
stabilization is achieved through cancellations among different gaugino condensates
with similar S-function coefficients. The qualitative difference between an Fg hidden
sector and one with a product gauge group is the presence of hidden matter; in the
Eg case there is no hidden matter and the scalar potential is independent of the
moduli, which therefore remain undefermined in the classical vacuum of the effective
condensate theory. More phenomenological discussions of the model constructed in

this chapter will be presented in Chapter 5.

4.7 Appendix: Chiral Multiplet Formalism

There has been interest in the question as to whether the linear and chiral multiplet
formalisms are equivalent at the quantum level. They are presumably equivalent in
the sense that technically we may always perform a duality transformation at the

superfield level on the Lagrangian (4.5) so as to recast it entirely in terms of chiral
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supermultiplets. The resulting effective Lagrangian should be the chiral multiplet
formalism with the gaugino condensates constrained by (2.12), and it is apt to be

rather complicated.

The string phenomenology that we have constructed and studied so far is quite
different from the “conventional” string phenomenology in several aspects. Besides
the aforementioned linear—chiral duality question, the “conventional” string phe-
nomenology is different from ours in the sense that the constraint (2.12) on gaugino
condensates has always been ignored, and usuvally the treatment of modular invari-
ance is incomplete or incorrect in the “conventional” study of string phenomenology.
Therefore, a more practical question that we address in this appendix is the extent
to which our studies in Sections 4.1-4.6 can be reproduced if one takes as a starting
point the usual chiral multiplet formalism for the dilaton with the gaugino con-
densates represented by unconstrained chiral superfields (i.e., the “conventional”

-approach), and modular invariance is ensured through the Green-Schwarz mecha-
pism and string threshold corrections. In particular, we would like to know how
an incorrect treétment of gaugino condensation (i.e., a treatment without the con-
straint (2.12) on gaugino condensates) might have affected our understanding of

string phenomenology in the past.

In the chiral multiplet formalism, the Green-Schwarz counterterm appears as

a correction to the Kahler potential, which we take to be

K(S,T)=In(L)+§(L)+3 ¢, L1=5+5-83¢,  (4.80)
I I
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where § is the correction from stringy nonperturbative effects in the chiral multiplet
formalism®. Modular invariance of the Yang-Mills Lagrangian at the quantum level

is assured by the transformation property of S under (4.14):
S—S+by H, (4.81)
7 _

and modular covariance of the Kahler potential (K — K + Y ;(H! + H')) requires
that it depend on S only through the vector superfield L defined in (4.81). We
introduce static gaugino and matter condensate superfields U, and II* as before,

but now the gaugino condensate chiral superfield
U, = XI?H3 (4.82)

is not constrained by the constraint (2.12) or (4.42) because H, is taken to be an
unconstrained chiral superfield in the treatment here. (This is what has always
been done in the conventional study of string phenomenology.) We construct the

superpotential in analogy to (4.5), using the standard approach of Veneziano and
Yankielowicz:

Wiot = Woona + W(II), (4.83)

where W(II) is the same as in (4.30), and
1
Weona = We+Wyy + Wy, We= ZSZH27
) a

Wyy = %ZH;Z’ (3bf,lnHa +Zbg1nn°') ,

®Notice that the vector superfield L here is simply a convenient notation for (S+S—63",¢7)"*.
It should not be confused with the I used in the linear multiplet formalism.
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= -Z H31n 7*(TH), (4.84)

where W represents the classical contribution of gaugino condensation. H? trans-
forms in the same way as U, under rigid chiral and conformal transformations, and
the anomaly matching conditions give the same constraints on the coefficients &’s as
in Section 4.2. Then it is straightforward to check that, un(ier the modular tr;z.nsfor—
mation (4.14) with H, — e"' 2 H I/3, we have Weona — e~ HY 3Wond, as Tequired
by modular invariance of the Lagrangian. Summing the various cc'>ntributions, the

superpotential for H, can be written in the following form:
1 o /pt _ ,
Wons = ; DHH { P T @] s

The bosonic Lagrangian takes the standard form:

1 1 m
Lz = —§’R——§MM+K,m (F'F™ — 8,2'6"2™)
+eXI [FY(W; + K;W) — MW +h.c], (4.86)

where Z' = S,T!,H,,1I*, 2* = Z!|y_5-0. In our static model Kz, K; = 0 for
Z',Z™ = H,,TI*, and the equations of motion for F* give W; = 0 for these fields.
This determines the chiral superfields H,,II® as holomorphic functions of S,T7.

Making the same restrictions on W(II) and the 2 as in Section 4.2, we obtain:

H3 = (@n+1)in(bi—bo)/ba—b./ba~S/ba H[U(Tr)]z(b-ba)/ba H 162 /4 coll--bg'/ba ,

a
I o

(» 4 bg —— < J. (s 4
n® = *Z;—Hf TIn(THy-2er-1, g 0. (4.87)
a I

As in(4.31), the correct dependence of the gaugino condensates on the squared
gauge coupling constant { 2/Res ), s = S|p=g—o, is recovered. Note however that,
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in contrast to (4.31), the phases of gaugino condensate here are quantized once Ims

is fixed at its vev. Using these results gives
W-tot':WSTI =——Zb H:. (4.88)

The scalar potential V,, is determined in the standard way after eliminat__ing the

remaining auxiliary fields through their equations of motion:
M = 35w, F™ =KK™ (W;+ K;W), Z'=S8,T,
Voor(s,t1,7) = X [K™ (W; + KW) (W + K W) — 3|W?] . (4.89)

The inverse Kahler metric for the Kahler potential (4.81) is:

17 4Ret!)? oo gl 2bRet!
K = —————(l_bK)é K> = ———(1_st),
1- st + 362Ks’s‘

K™ = =g a=k)

(4.90)

and the scalar potential V,,,; reduces to

X -1 2 2 | n? 2
Vet = T {ng (1 - BK, + 352K.s) W, + KW + 4213 (Ret!)” (W + K:W|
—2b [(W + K,W) 3" Ret! (Wr + K;W) + h.c.] } - 3eX WA (4.91)
I
We have
. 1] b— b, s
—2Ret (W[+K1W) = _ZZb_ 1- 5 H
W+ KW = 3 1%? (1 — K.b,) HY, (4.92)

and the scalar potential can be written in the following form:

Vot =

& S|k w5 R, 4.93
16(1—st)E' ol cos s (4.93)
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where here w, is the phase of h2 = H3|,_s_0, Wap is defined as before, and

Ray = babofas(£) + (b—ba)(b— b)Y |1 + 4Ret!¢ ()%, €= L|s—p—o,
I

fal) = (1-bK.) [(1 — BB L) 3. (4.99)

In the absence of stringy nonperturbative effects, K, = —£, K5 = £2, fo — —2blas
£ — oo, and the scalar potential V,.: is unstable in the strong coupling direction, as
expected. A positive definite scalar potential requires that f;+(¢) be positive semi-
definite where, as before, b is the largest b,. Note that the perturbative expression
for fuo(€) is negative for b, > 1.4, while in the linear multiplet formalism the
corresponding expression is negative only for b,¢ > 2.4, so stringy nonperturbative
effects are required to be more important in the unconstrained chiral multiplet
formalism? here. If there is only one gaugino condensate, the self-dual point for the
moduli is again a minimum, but ( F!) # 0. In the general case, the minimization

equations for the moduli read:

aV;)ot _ ek’ . 3 2b I a
T = Te -0k o el eosws () I Pl 4

+ (A+ 3‘34(7:’)251“-) Vi (4.95)

n
where (3, is defined as in (4.63). Again imposing { V;.: ) = 0, the minimum is shifted
slightly away from the self-dual point if some G, # 0.

The effective Lagrangian constructed using the linear multiplet formalism — like

the string and field-theoretical loop-corrected Yang-Mills Lagrangian [31, 32] — de-

7 Unconstrained chiral multiplet formalism means the chiral multiplet formalism without the

constraint (2.12) or (4.42).




pends only on the variables ¢! and the modular invariant field £, so the Lagrangian is
invariant under modular transformations on the t! alone. In contrast, the effective
Lagrangian constructed using this unconstrained chiral multiplet formalism has an
explicit s—dependence which accounts _for the fact that the self-dual point is not the’
minimum. The unconstmined chiral multiplet construction forces a holomorphic
coefficient for the interpolating superfield for the Yang-Mills composite superfield
U ~ Tr(W*W,), and hence cannot faithfully reflect the non-holomorphic contri--
bution from the Green—Schwa.rz counterterm. This is #ga.in related to the fact that
the unconstrained chiral multiplet construction does not account for the constraint
(2.12) or ()4.42) which has to be satisfied by the gaugino condensate superfields. Our
analysis in this appendix explicitly explains why in the past the study of string phe-
nomenology using the unconstrained chiral multiplet formalism has not been able to

predict moduli stabilization at the self-dual point and therefore a dilaton-dominated

supersymmetry breaking scenario.




Chapter 5

Phenomenology of

Weakly-Coupled Superstring




5.1 Introduction

In Chapter 4, we have constructed string models which include supersymme-
. try broken at a realistic scale, a stabilized dilaton, moduli fields with couplings
respecting modular invariance and a vanishing cosmological constant. We believe
that it is sufficiently realistic to allow for a discussion of many phenomenological
issues associated with supersymmetry breaking, moduli physics and axion physics |
based on actual computations rather than educated guesses!. Needless to say, we
have no miraculous solution for either dilaton stabilization or the vanishing of the
cosmological constant. Although »these are incorporated in the model by fixing some
parameters {only the second constraint requires fine tuning), the model is still pre-
dictive enough in many respects. In Sections 5.2 and 5.3, we comment on several
problems associated with string moduli and axion. In pé.rticula.r, these analyses are
quite insensitive to the details of the string models, and therefore the conclusions
are fairly model-independent. In Section 5.4, we study the pattern of soft super-
symmetry breaking parameters. As expected, the conclusions of this section are
sensitive to.the details of the specific string model under consideration. In Sec-
tion 5.5, we comment on gauge coupling unification in the presence ¢;>f significant
stringy non-perturbative effects. In order to make the presentation transparent, in

most sections we start with the known results and problems of string phenomenol-

1 As we shall see, several such educated guesses about string phenomenology which bave been

regarded as standard turn out to be inappropriate according to our actual computations.




ogy studied in the past?. We then present the results obtained from the realistic
model constructed in Chapter 4. In particular, we emphasize how the standard lore

of string phenomenology is modified within our model, and how the problems of

string phenomenology could naturally be solved by these important modifications®.

5.2 Moduli Physics

At the perturbative level, the dilaton and moduli are are flat directions of
the potential, and they are lifted only through non-perturbative effects. It is often
argued that the non-perturbative effects which break supersymmetry also lift these
flat directions. As we have learned from the standard lore of string phenomenology,
a naive oder-of—magnitude estimate concludes that string dilaton and moduli have
masses of order (or no larger than) the gravitino mass [22, 63], where the natural
scale of gravitino mass is about 1 TeV. Obviously, these light dilaton and mod':ﬂi
fields with couplings suppressed by the Planck scale could lead to serious cosmolog-
ical problems. A rough estim;te for the decay rate I' of string dilaton or moduli is

at most

m3

U~ sz

(5.1)

2As discussed in the appendix of Chapter 4 and elsewhere, these studies in the past are based

on the unconstrained chiral multiplet formalism.
3As we have seen and shall see, many so-called problems of weakly-coupled string phenomenol-

ogy known in the past are not really problems of weakly-coupled string phenomenology itself. In
fact, they are mostly due to our limited calculational power in string theory, little knowledge of

its true vacuum structure, and an incorrect/inappropriate treatment. of gaugino condensation.




where m is the mass of string dilaton or moduli, M) = Mp/+/8x is the reduced
Planck scale and Mp is the Planck scale. This slow decay rate is the source of
cosmological problems. That is, relic dilaton and moduli produced in the very early
universe survive to a dangerously late epoch. With the slow decay rate (5.1), they

result in a low reheat temperature Tg [22, 64}:

T, m \2 v 2
w5 () KV | (5-2)

Such a low reheat temperature is inconsistent with successful nucleosynthesis unless
m > O(3) x10* GeV (if Tp > O(1) MeV is required.) According to the standard
lore of string phenoménology, m > O(3) x 10* GeV would imply an un-naturally
large gravitino mass, which is not. acceptable. This is the so-called cosmological
moduli problem [22, 64, 65], where thé Polonyi problem is an earlier version of this
problem in the context of spontaneously broken supergravity [66]. In order to solve
the cosmological moduli problem, there have been attempts at a hierarchy between
moduli and squark masses [65, 67]; however, none of them is realistic. There are
also possible cosmological solutions to the cosmological moduli problem, such as a
weak scale inflation [64].

Now, let’s leave the standard lore of string phenomenology and tﬁrn to the
realistic model constructed in Chapter- 4. One can easily extract from the scalar
potential the masses of the dilaton and of the moduli, which are particularly relevant

for cosmology. According to (4.70), one finds the mass of the moduli m;,: as follows:

_/1(6-by)
myr & <§ (1.“;2) p+>. (5.3)
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where p, is the hidden-sector gaugino condensate with the largest one-loop F-

function coefficient ;. As for the mass of the dilaton mgy, one finds:

1
Mg ~ 3y MG (5.4)
+

According to (4.77), the gravitino mass is: mg = 3b.{p+). In generic string
models b/b; and 1/b% are naturally large numbers, and therefore in contrast to the
standard lore of string phenomenology our model has a natural hierarchy between
the dilaton/moduli and squark/slepton masses. More precisely, in order to generate
a realistic hierarchy of order mg = 107* Mp =~ 10° GeV, it is required that b/b, =~
10 for the strin.g models under consideration. (Such an example has been presented
in Section 4.5.) In this case, my = 20mg =~ 20 TeV and mg ~ 10%3mg = 10°
TeV (where mg = 1 TeV.) This natural hierarchy between the dilaton/moduli and

squark/slepton masses could be sufficient to solve the cosmological moduli problem.

One may wonder why the mass of dilaton is particularly large in our model.
In fact, this specific feature has to do with the cancellation of the cosmological
constant. In our model, it is implicitly assumed that the mechanism which breaks
supersymmetry is also responsible for the cancellation of the cosmological constant,
which is the minimal and most economical assumption?. With this assumption,
(Vioot) =0 leadsto (1+4g,) = 36_{{ £2). According to (4.27), the Kinetic termn of
dilaton contains the small factor {1+ £g, ), which therefore leads to an enhancement

of the mass of dilaton. On the other hand, there is so far very little insight about

“In our model, positivity of the scalar potential can always be imposed. One thus does not

need to appeal to another source of supersymmetry breaking to cancel the cosmological constant.
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how the cosmological constant problem should be solved. It is possible that there are
other sources which éould contribute to the cancellation of cosmological constant.
However, a detailed analysis of these more complicated scenarios is beyond the scope
of our study here. We wish to emphasize that, even if (1+4£g,) might turn out to
be, for example, an (9(1) number in some other more complicated solutions to the
cosmological constant problem, the natural hierarchy between the dilaton/moduli
and squark/slepton masses still exists as long as gaugino condensation is the major
source of supersymmetry Breaking; in this case we have m; = 20mg =~ 20 TeV and

mg ~ (1/b ) mg ~ 30mg =~ 30 TeV.

5.3 Axion Physics

The invisible axion is an elegant solution to the strong CP problem. Iq string
theory, there seem to be many such axion candidates. Howe;\rer, as for the weakly-
coupled superstring, it has been argued that QCD cannot be the dominant contribu-
tion to the potential of any string axion [68], and therefore none of the string axions
is qualified for the QCD axion. For the string model-independent axion, it is usually
argued (éga.in using the unconstrained chiral multiplet formalism) that the model-
independent axion cannot be the QCD axion due to both stringy non-perturbative
effects (of order e~/ for the superpotgntia.l of dilaton) and non-perturbative dy-
namics of the hidden sector which breaks the Peccei-Quinn symmetry [7, 68]. For
string axions associated with the 77 moduli, Peccei-Quinn symmetries are signif- -

icantly broken by world-sheet instanton effects [68]. On the other hand, we have
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emphasized that the constraint (2.12) on gaugino condensates, which has been ig-
nored in the above arguments, has non-trivial effects on axion physics. Furthermore,
stringy non-perturbative effects are most naturally described by the linear multiplet
formalism. As we shall see, in the realistic model constructed in Chapter 4 where
both stringy non-perturbative effects and hidden-sector gaugino condensation are
fully included using the linear multiplet formalism, the model-independent axion
~ does have the right features to be the QCD axion. The resolution for the stringy
non-perturbative contribution, e~%/9¢, to the superpotential of the dilaton is simple
and impressive: as argued in [7, 68] using the chiral multiplet formalism, it seems

plausible that there should be significant e~oVS

contributions to the superpotential
of dilaton, leading to the QCD axion problem raised by Banks and Dine [68]. On
the other hand, in the linear multiplet formalism of string effective theory where
the'dilaton is represented by a vector superfield L, it is simply impossible to write
down any L-dependent contribution (e.g., e“';/ ‘/E) to the superpotential - a con-
straint coming from holomorphy. Therefore, in the linear multiplet formalism the
QCD axion problem of Banks and Dine [68] is resolved in an elegant way, and one
should re-examine the .attractive possibility of i;,he string model-independent axion
being the QCD axion in this framework.

For any of the striné axions to solve the strong CP problem, there is also a
cosmological constraint. Cosmological considerations require the decay constant F,
of the invisible axion to lie between 10'® GeV and 10'? GeV (the so-called axion

window [23, 69]). The upper bound on the axion decay constant, F, < 10'? GeV,.

128




is due to thé requirement that the energy density of the coherent oscillations of the
axion be less than the critical density of the universe [23]. However, in superstring
tﬁwry the axion decay cqnsta.nt .Fa is naturally of order thé Planck scale, and
therefore the cosmological upper bound on Fj, is seriously violated. Although it was
shown by Choi and Kim [70] that the decay constant F, of the model-independent
axion in the weakly-coupled heterotic string theory actually is M5/167% =~ 10%
GeV, this is still much larger than the cosmological upper bound. On the other
hand, cosmological constraints could be quite scheme-dependent; for example, it
has been pointed out that the entropy production due to the decays of massive
particles dilutes the axion density and therefore raise the upper bound on F, [71].
Based on the above idea Kawasaki, Moroi and Yanagida [72] have proposed a refined
scenario where the Polonyi fields of supergravity models are natural candidates for

entropy production. The new cosmological upper bound on F, in this scheme is:

—3/4
< 15 (——T—“L—) .
Fo < 5x10° (ot GeV, (5.5)

where my is the mass of the Polonyi field. In order to keep successful primordial
nucleosynthesis in this scheme, m4 should be larger than about 10 TeV. With my =~
10 TeV, F, < 5 x 10*® GeV and therefore the siring model-independent axion is
almost consistent with this new upper bound. However, my > 10 TeV seems un-
natural according to the standard lore of string phenomenology where one expects
mg = mg =~ 1 TeV. On the contrary, the cosmologica;l scenario of Kawasaki et al

naturally occurs in our model constructed in Chapter 4. As discussed in Section 5.2,
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in our model there is a natural hierarchy between the moduli and gravitino masses

(myr =~ 20ms ~ 20 TeV), and therefore the decays of moduli serve the purpose of

raising the cosmological upper bound on F, to a value consistent with the F, of

string model-independent axion. This natural hierarchy is indeed a desirable feature
of our model since it not only could solve the cosmological moduli problem but also
keeps the energy density of the oscillations of string model-independent axion froﬁn
overclosing the universe.

One particularly interesting aspect of our model constructed using the lin-
ear multiplet formalism of gaugino condensation in Chapter 4 is axion physics.
Pseudoscalar fields are the phases w, of the condensates and the so-called model-
independent axion which is dual to the fundamental antisymmetric tensor field. The
latter couples in a universal way to the F "“"F:,, term of each gauge subgroup. If
again we look at the dynamical model with one Eg gaugino condensate in Chapter 3,
we find that out of the two possible pseudoscalar the condensate phase is very heavy
whereas the string model-independent axion remains massless. This is obviously the
supersymmetric counterpart of what happens with the scalars. If we allow for more
than one gaugino condensate, the model-independent axion acquires a very small
mass® (typically exponentially suppressed relative to the gravitino mass by a factor
of order { p2/p1)"/? in the two-condensate case according to (4.73)). Furthermore,

as we have seen in Section 5.2, the axions associated with the 77 moduli get masses

SHigher-dimension operators might give extra contributions to the mass of this axion. However,

these contributions can be argued to be negligible using discrete R symmetry [7]-




of order 20m 5. Therefore, we are always left with only one very light axion, the
model-independent axion, and it has the right properties to be the QCD axion. Re-
member that there are two kinds of non-perturbative effects in our model (i.e., the
field-theoretical non-perturbative effects of hidden-sector gaugino condensation con-
strained by (2.12) and stringy non-perturbative effects), and they are best described
using the linear multiplet formalism. In contrast to the argument against the string
model-independent axion as the QCD axion [68] in the presence of both stringy
non-perturbative effects and non-perturbative dynamics of the hidden sector using
the unconstrained chiral multiplét formalism, in our model the model-independent
axion can indeed be the QCD axion. As explained before, the reason why the
model-independent axion has the desirable features in the linear multiplet formal-
ism are a correct treatment of gaugino condensation and the fact that such stringy
non-perturbative effects of dilaton are actually forbidden in the superpotential due
to holomorphy. As for the decay constant Fa of the model-independent axion in our
model, there is an additional reduction factor of (2£2(1 + £g,) )1/ ? compared to the
result obtained by Choi and Kim [70]. As discussed in Section 5.2, this reduction
factor comes from the fact that the kinetic term of dilaton in (4.27) contains the
small factor (1+4g,) ~ 3b3(£*) when (Vpe: ) = 0 is imposed. More precisely, this
reduction factor is about (2£%(1 + 4g,) )1/ ’ x <\/§b+€2> ~ 1/50 if the gravitino
mass is about 1 TeV. Besides the fact that the cosmological scenario of Kawasaki et
al naturally occurs in our model, this reduction in the model-independent axion’s

decay constant is certainly desirable from the viewpoint of the cosmologica.l upper
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bound on F,. Indeed, with this reduction factor the axion decay constant in our
model is F, =~ 2 x 10" GeV, which is truly consistent with the upper bound on

F, (= 5 x 10*® GeV) imposed by the scenario of Kawasaki et al

5.4 Soft Supersymmetry Breaking Parameters

In contrast to the studies of moduli and axion, the analysis of soft supersymme-
try breaking parameters is much more sensitive to the very details of a string model.
Unfortunately, our current knowledge of string models is still limited. Although in
the following we will try to discuss soft supersymmetry breaking parameters in a
model-independent way whenever it is possible, yet it should be kept in mind that
our analysis cannot cover all the interesting possibilities and therefore should not

be regarded as final.

It is straightforward to compute the soft supersymmetry breaking terms, that
are generated at the condensation scale peong = { py }/3, for our model constructed

in Chapter 2. The gaugino masses m,, are:

M, = — < Bltend) £) 2 (1 +at) u> ~ gg{’g‘_‘b“&by i), (55)
Notice that the expression of gaugino masses contains the small factor (1+4g,)
discussed at the end of Section 5.2, and therefore gaugino masses are suppressed by
b after (Vpor ) = 0 is imposed. Therefore, it is possible that this suppression of

gaugino masses could be relieved in models with a more complicated mechanism of

cosmological constant cancellation.
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The soft terms in the scalar potential are sensitive to the — as yet unknown —
details of matter-dependent contributions to the Green-Schwarz counterterm and
string threshold corrections. We neglect the former®, and write the Green-Schwarz

counterterm as follows:
s = b3 g+ packt T |BAP + O8], (5.7)
T A :

where the ®4 are gauge nonsinglet chiral superfields, the ¢/ are their modular

weights, and the full Kahler potential reads
K =KV) +Zg +zezrm |94 + O(|84]). (5.8)

Under these assumptions, the scalar masses and cubic “A terms” are given, respec-

tively, by the following:

Ll a8\ 1) am b
™y = E<Zu“(1+p,;€) >~16<(1+pA£)2p‘2“>’
Va(d) = i Klzzua¢AWA(¢) [ jg b — (1 4+ 4g,) 1—%;1{} +h.c.

Q

b 3b
2ora [ LB b w4 2w +he, 69)

where ¢ = ®|y_5—0 and W(®) is the cubic superpotential for chiral matter super-
fields. Note that the squared scalar masses are always positive. As concluded in
Section 4.6, we find in our model that moduli ¢ are stabilized at the self-dual
point and their associated ( F!) vanish in the vacuum, which results in a dilaton-

dominated supersymmetry breaking scenario. According to (5.9), both the scalar

SIf string threshold corrections are determined by a holomorphic function, they cannot con-

tribute to the scalar masses.
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masses and A terms are indeed independent of their modular weights by virtue of the
fact that ( F¥) = 0. For the FCNC cdnstra,ints, this feature of dilaton-dominate&
scenario is a potential advantage over a moduli-dominant scenario. In the past, it
was generally believed that a dilaton-dominated scenario results in universal soft su-
persymmetry breaking parameters due to the universality of dilaton couplings [62].
However, here we wish to stress that the above statement did not take into account
the matter-dependent contributions to the Green-Schwarz counterterm, and there-
fore a dilaton-dominated scenario does not guarantee universal soft supersymmetry
breaking parameters. It is clear from the computations of our dilaton-dominated
scenario in (5.9) that soft supersymmetry breaking parameters are universal — and
unwanted flavor-changing neutral currents are thereby suppressed — if the matter
couplings (p4) to the Green-Schwarz counterterm are also universal. Unfortunately,
so far there is little knowledge of pa’s; therefore, the best we can do right now is to
study the consequences of several seemingly reasonable choices of ps’s. One possi-
bility is that p4’s are universal; thus we have universal soft supersymmetry breaking

parameters and in this case A terms in (5.9) reduce to

pa(l +2b,0) — B34
WA b+ 50

3
Va(g) ~ ZeK/zﬂ

W(¢) + h.c. = AeX?W(¢) + h.c.. (5.10)

For example, if the Green-Schwarz counterterm is simply independent of the matter
fields &4 (i.é., pa = 0), we have my = mg, A ~ 2m,. As for choices of non-
universal pa’s, a possibility is that the Green-Schwarz counterterm depends only on

the radii Ry of the three compact tori that determine the untwisted-sector part of
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the Kahler potential (5.8):
K = k(V) = 3> In(2R]) + O(|®sereal’)s
T

where 2R? = T + TT — ¥, |®4)? in string units. In this case, pa = b for the
untwisted chiral superfields &4, and p4 = 0 for the twisted chiral superfields ®2,;., .4-
The untwisted scalars have masses comparable to the moduli masses: Muntwistea =
m/2 =~ A/3. Finally, we note that if b, = /10 =~ 1/30, gaugino masses are
suppressed relative éo‘the gravitino mass at the condensation scale peong ~ 107 Mp:
my ~ Mywisted/40. If there is a sector with p4 = b and a Yukawa coupling of order
one involving SU(3) (anti-) triplets (e.é., DDN, where N is a standard model
singlet), its two-loop contribution to gaugino masses [73] can be more important
than the standard one-loop contribution, generating a physical mass for gluinos
that is well within experimental bounds for msz ~ 1 TeV. Such a coupling could
also generate a vev for IV, thus breaking possible additional U(1)’s at a scale ~ 10
TeV. The phenomeﬁologically required g term of the MSSM may also be generated
by the vev of a Standard Model gauge singlet or by one of the other mechanisms

that have been proposed in the literature [74].

In contrast to the case of universal py’s, for the case of non-universal pa’s one
has to worry about the FCNC problem. Scenarios in which the sparticles of the
first two generations have masses as high as 20 TeV have in fact been proposed
[75] to solve the FCNC problem. However, it has recently been pointed out that

such scenarios may suffer from a negative scalar top mass squared driven by two-
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loop renormalization group evolution [76]”. Clearly, a better understanding of the
matter dependence of the Green-Schwarz counterterm is required to make precise
predictions for soft supersymmetry breaking. Nevertheless our model suggests soft
supersymmetry breaking patterns that may differ significantly from those generally
assumed in the context of the MSSM. Phenomenological constraints such as cur-
rent limits on sparticle masses, gauge coupling unification and a charge and color
invariant vacuum can be used to restrict the allowed values of bA’s as well as the
low-energy rspectrum of the string effective field theory. To conclude, we would
like to stress that the model presented above is certainly not final and some of
the results obtained, especially on the low-energy sector of the theory, may receive
modifications. Possible sources of modification are the presence of an anomalous
U(1) symmetry [17] or a constant term in the superpotential that breaks modular

invariance [77, 78].

5.5 Gauge Coupling Unification

String non-perturbative corrections necessary to stabilize the dilaton could
make significant corrections to the unification of gauge couplings. The functions
f(£) and g(£) introduced above and the threshold corrections whose form is dictated

by T duality invariance contribute as follows to the value of couplings at unification:

1

- -2, Ca
gaz(Ms) = g ? + ln(Ae) - 167"2

8m?

XI:bﬁ In(t! + &) >, (5.11)

“We thank Hitoshi Murayama for pointing out this problem to us.

136




M? =g M3, (5.12)

A= -;-eg'l(l +£) (5.13)

" Let us note however that this parameter is worth 1/(2e) =~ 0.18 in the perturbative

case and e71%° &2 (.19 in the one gaugino condensate model.

‘Let us take this opportunity to clarify two confusing statementsin the literature
about gauge coupling unification in weakly-coupled superstring. Firstly, we stress
that the dependence on the radii moduli 77 does not allow an interpretation of the
unification scale as the inverse radius of compactification. While the result (5.11)
has been derived only for orbifold compactifications, its large T' T limit is consistent
with the behavior found in the large T' limit of Calabi-Yau compactification. (Note
that in our model moduli are stabilized at the self-dual point, therefore far fro;n
this limit.) Secondly, it is often stated that one can determine from the low-energy
values of gauge couplings the precise value of the gauge coupling unification scale
to be 3 x 101® GeV. We think that this is a misleading statement since most string
models constructed so far that hold a claim for being realistic include new.forms

of matter which perturb the evolution of the gauge couplings at some intermediate

threshold [79].




5.6 Concluding Remarks

As discussed in Chapter 1, the weakly-coupled heterotic string theory is known
to have problems with dilaton/moduli stabilization, supersymmetry breaking, gauge
coupling unification, QCD axion, as well as cosmological problems involving dila-
ton/moduli and axion. In the literature some of these problems are often trez;ted as
evidence against the weakly-coupled heterotic stﬁng theory. However, it is actually
hard to say whether these problems are inherent to the wea,kly-cc.mpled heterotic
string theory or they simply reflect our ignorance of important string dynamics.
Furthermore, some of these problems will probably re-appear even in the study of
the strong-coupling limit of the heterotic string theory. In this work we study these
problems by adopting the point of view that they arise mostly due to our limited
calculational power, little knowledge of of the full vacuum étructure, and an inappro-
priate treatment of gaugino condensation. Indeed, after a careful review one finds
that the phenomenological studies of the weakly-coupled heterotic string theory in
the literature contain several essential flaws. It is therefore of utmost importance to
correct these flaws and then re-examine the problems of weakly-coupled heterotic
string theory. In conclusion, three essential changes to the standard lore of string
phenomenology have to be made. The first essential change is about the effective
field theory of the weakly-coupled heterotic string. It is emphasized that the linear
multiplet formalism rather than the chiral multiplet formalism is the appropriate

framework for the effective field theory of the weakly-coupled heterotic string. The
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second essential change is the inclusion of possible stringy non-perturbative effects
in addition to the usual field-theoretical non-perturbative effects produced by gaug-
ino condensation. The third essential change is an improved treatment of gaugino
condensation by including the constraint (2.12). As discussed in Chapter 2, the last
two changes are most naturally implemented using the linear multiplet formalism.
Finally, notice that full modulaf invariance is always maintained in our comstruc-
tion. This is important because modular invariance is supposed to be an exact

quantum symmetry of closed string theory [80].

In Chapters 24, the linear multiplet formalismm with the aforementioned fea-
tures is constructed for an Eg model as well as a generic orbifold model. It is par-
ticularly transparent in this framework to realize how the dilaton can be stabilized
by stringy non-perturbative contributions to the Kahler potential.® Furthermore,
supersymmetry can be broken at a realistic scale once the dilaton is stabilized. Azs
for the moduli, they are always stabilized at their self-dual points where the moduli
actually do not contribute to supersymmetry breaking — a beautiful consequence of
modular invariance and a correct treatment of gaugino condensation. Phenomeno-
logically, we always have a dilaton-dominated scenario of supersymmetry bréa,king.
The fact that the compactiﬁcation moduli are stabilized at the self-dual points also
invalidates the Newton’s constant (or gauge coupling unification) argument of Wit-

ten against the weakly-coupled heterotic string theory. As for the masses of moduli,

80f course, still we don’t know how to calculate these stringy non-perturbative effects. However,

the point is that these effects are at least under good control here.




in contrast to the standard lore of string phenomenology a careful analysis revealé
that there is a natural hierarchy between moduli and gravitino masses. It is not
difficult to see how this hierarchy arises: in a generic orbifold model with realistic
supersyminetry breaking scale, there is already a natural hierarchy between the Eg
B-function coeflicient b (associated with the Green-Schwarz counterterm) and the b,
of the largest hidden gauge subgroup (b/b; = 10). Such a hierarchy between mod-
uli and gravitino masses has important cosmological consequences. As discussed
in Chapter 5, it not only could solve the cosmological moduli problem but also
keeps the energy density of the oscillations of the string model-independent axion
from overclosing the universe. As for the strong CP problem, there is always only
one very light axion (the model-independent axion) in our model, and it does have
the right features to be the QCD axion in contrast to the conclusion of Banks and
Dine [68]. The difference between our result and that of Banks and Dine has to do
with our improved treatment of gaugino condensation and a non-renormalization

- theorem associated with the linear multiplet which is unique to the linear multiplet
formalism. In conclusion, it is fair to say that these problems of the weakly-coupled
heterotic string theory can be solved or are much less severe.

As expected, the origin of the cosmological constant remains a mystery here
although it is indeed under better control and the cosmological constant can be fine
tuned to zero in our treatment. Again, a final resolution of this problem might have
to wait for a complete understanding of superstring dynamics. The other unsettled

issue in this work is the soft supersymmetry breaking pattern. Although our model
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always predicts a dilaton-dominated scenario of supersymmetry breaking, yet in
contrast to the standard lore of string phenomenology we point out that whether
a dilaton-dominated scenario predicts universal soft supersymmetry breaking pa-
rameters actually depends on whether the matter couplings to the Green-SchWérz
counterterm are universal. To settle this issue, a better understanding of the matter
dependence of the Green-Schwarz counterterm for generic string models is certainly
required; it» deserves further studies and could lead to a rich phenomenology. An-
other potential problem of this work is that the gaugino masses might be too small.
Whether this is a serious problem or not can be very model—dépendent, especially
in the context of superstrings where one generically encounters scenarios beyond
the MSSM. In conclusion, we emphasize that this work is certainly not final, and
it is very important to understand more about the non-perturbative aspects of
superstrings, realistic string model building and the phenomenology. After a cafe—
ful re-examination of the aforementioned problems of the ﬁreakly—coupled heterotic
string theory, it is also hoped that those misunderstandings of the current status of

weakly-coupled heterotic string theory in the literature are clarified by this work.
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