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Abstract

The formation and interaction of fluctuating neoclassical pressure gradient driven

magnetic islands is examined. The interaction of magnetic islands produces a stochastic

region around the separatrices of the islands. This interaction causes the island pressure

profile to be broadened, reducing the island bootstrap current and drive for the magnetic

island. A model is presented that describes the magnetic topology as a bath of interacting

magnetic islands with low to medium poloidal mode number (m = 3-30). The islands

grow by the bootstrap current effect and damp due to the flattening of the pressure profile

near the island separatrix caused by the interaction of the magnetic islands. The effect of

this sporadic growth and decay of the islands ("magnetic bubbling") is not normally

addressed in theories of plasma transport due to magnetic fluctuations. The nature of the

transport differs from statistical approaches to magnetic turbulence since the radial step size

" of the plasma transport is now given by the characteristic island width. This model

suggests that tokamak experiments have relatively short-lived, coherent, long wavelength

magneticoscillationspresentin the steeppressure-gradientregionsof theplasma.
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I. Introduction

The transport of plasma particles and heat across equilibrium magnetic flux surfaces

remains one of the most elusive, unsolved problems in fusion plasma physics. It is widely

believed that fluctuating magnetic and electric fields are responsible for the observed

anomaly in the plasma transport. However, the precise mechanism which causes the

fluctuations "_snot known.

Many theories of anomalous transport consider one of two extremes concerning the

magnetic topology of the toroidal confinement system: (1) the magnetic field-lines reside on

two-dimensional, toroidal magnetic surfaces; or (2) the existence of ergodic magnetic field-

lines that stochastically wander in a three-dimensional volume. For instance, theories that

consider electrostatic fluctuations alone (without fluctuating magnetic fields) presume that

the magnetic surfaces remain robust in the presence of the electrostatic oscillations, while

the transport is caused by E x B drifts across the magnetic surfaces. However, magnetic

fluctuations can change the magnetic field topology by causing the formation of magnetic

islands on resonant rational surfaces. 1 If the magnetic perturbations are sufficiently large,

the islands overlap and the topology is described by stochastic magnetic fields. Radial

plasma transport caused by stochastic field-lines occurs because plasma particles will

follow field-lines that move off the equilibrium magnetic surfaces. 2'3 Because of rapid

transport along the field-lines, stochastic magnetic fields cannot sustain density and

pressure gradients perpendicular to the equilibrium surfaces. Although the presumption of

strongly overlapping magnetic islands may seem reasonable for the core of reversed field

pinch experiments where almost flat pressure profiles are observed, tokamak experiments

do not generally exhibit large regions of flat pressure profiles. Therefore, it is natural to

assume that if magnetic fluctuations are present in tokamaks, they are not so prominent as

to cause global, steady-state, stochastic magnetic fields. We are thus motivated to study an

intermediate state of the magnetic topology, where chains of magnetic islands of low to

medium mode number (m = 3-30) are present.
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Rebut and co-workers have pointed out the possible importance of magnetic

topology on the transport properties of tokamaks. 4-7 They present a model that describes

. the magnetic configuration as having a collection of magnetic island chains that are

imbedded in a steady-state stochastic sea. Anomalous confinement is then explained by

" having transport along field lines through the island chains that connect different regions of

the plasma. A critical feature of the model is the necessity for a steady-state self-

sustainment mechanism for the magnetic islands. Most theoretical attempts to account for

this self-sustainment rely on destabilizing mechanisms for microtearing modes in the

nonlinear magnetic island regime, lt has been suggested that a thermal instability is

responsible for the islands. 79 The thermal instability results from the insulating effect the

magnetic field topology has on the plasma within the magnetic island. The differing power

delivered to the ele_.trons inside and outside the island causes a temperature profile to arise

across the island structure. The difference in electron temperature causes a f'flamentation of

the parallel current density profile through the classical Ohm's Law. Ampere's Law then

relates the current perturbation to the island producing magnetic field. Other self-

sustainment mechanisms presented by Hugon and Rebut include a different reaction of ions

and electrons to the magnetic island due to their differing Larmor radii and the effect of

pseudo-gravity as a model for pressure gradient/field-line curvature driven modes, l0 lt has

also been suggested that the radial electric field which arises to insure ambipolarity, can

provide a destabilizing mechanism for microteazing modes due to the electric drift of the

electrons. 11,12

In this work, we will consider magnetic islands produced by the fluctuating

bootstrap current. The bootstrap current occurs through a neoclassical mechanism. By
,J

including viscous forces in a tokamak, the equilibrium Ohm's Law for the parallel current

. JII is written 13'14

1 ,-,
<E-B> = rill <JII B> - nee <B.V.rtlle> , (1)
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(.-)

where _11 (--- merci/n2e) is the Spitzer resistivity, _ ileiSthe parallel electron viscous stress

tensor and the brackets indicate an average over the equilibrium flux surface. The last term
<-..>

in Eq. (1) can be written <B.V. _: lie> - nemelteU0e<B2>, where lte is the electron viscous

damping frequency and U0e is the poloidal electron flow velocity. The poloidal electron

flow is the sum of the poloidal projections of the parallel current and the diamagnetic

current caused by the perpendicular pressure gradient. Equation (1) can then be rewritten

in a cylindrical approximation

qT-
JII = l+'N/e_ Ell - +r-R0"_/e-dr ' (2)1

where e is the inverse aspec,t ratio, and the long-mean-free-path version of the frequency

for viscous damping has been used, lte = "_'_'Vei" 13 The first term shows the neoclassical

reduction of the electrical conductivity due to the fact that trapped particles cannot carry a

parallel current. The second term describing viscous damping of the diamagnetic flow is

referred to as the bootstrap current, a current parallel to the equilibrium magnetic field

driven by a perpendicular pressure gradient. Experimental observations on toroidal

octupoles, 15tokamaks 16'17and stellarators 18 suggest that an equilibrium bootstrap current

is present.

In addition to driving an equilibrium parallel current, the bootstrap effect also

provides access to the pressure-gradient free-energy source for resistive instabilities [for

(dp/dr)(dq/dr) < 0]. Linear stability theory indicates that the effect of the perturbed

bootstrap current produces in collisional plasmas an instability analogous to a resistive

interchange mode except that it is more robust since the parallel viscous damping rate

14,19
allows easier access to the free energy source than magnetic field-line curvature.

Fitzpatrick has extended the linear instability studies by taking semi-collisional effects into

account and found that for devices with shear of order unity the perturbed bootstrap current

destabilizes the semi-collisional drift-tearing mode. 20
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Of course, linear theory is only valid if the island produced by the magnetic

perturbation is smaller than the linear tearing layer width. When this condition is violated it

. is more appropriate to implement the nonlinear tearing mode theory of Rutherford. 21 The

modification caused by the island bootstrap current on the nonlinear tearing mode has been

• examined assuming the presence of a single-helicity, coherent magnetic island. The

dynamical equation for the island half-width, w0 is given by13'22

4/I: dw 0 _e 1B_oeL_o/Lp_'2 dt = k0A' + ' (3)
finec w 0

where _nc is the neoclassical resistivity, k0 and k 1 are numerical constants of order unity,

I]pe= 8_Pe/B _, Lq = (d In q/dr) -1, and A' is the tearing mode matching parameter computed

as the discontinuity in the logarithmic derivative of the vector potential in the ideal exterior

region. 23 The electron pressure length scale, Lp = -(d In Pe/dr) -1, is evaluated outside the

island separatrix where toroidal surfaces exists, and the pressure is assumed to be constant

within the island separatrix. For low m tearing modes with A' > 0, the island initially goes

through a regime where neoclassical effects dominate and the island grows as t 1/2.

However, when the island exceeds some threshold width w0 > Wt h =

k]_ e'_pLq/k0Lpc21A'l,the island grows at the Rutherford rate and saturates due to the large

island modifications of A'.24 For discharges with current profiles such that A' < 0, the

island saturates at w0 = Wth. Numerical studies of neoclassical tearing instabilities compare

well with the analytic theory described above. 25

In this paper, our basic model topology consists of a bath of magnetic islands with

poloidal mode number m _=3-30. It will be assumed that the islands formed by the

magnetic perturbations are larger than the linear tearing layer, so that the nonlinear tearing
,i,

mode theory used in refs. (13) and (22) to describe the bootstrap current effect can be used.

For magnetic perturbations with larger mode number, the relevant radial structure is smaller

and the island nature of the mode is less likely to play a role in the dynamics. Since the
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density of modes increases dramatically with mode number, perturbations with large mode

number can quite easily overlap and a statistical description 26 of the large m-modes would

be more appropriate; however, the low m-modes can create relatively robust, coherent

magnetic island structures.

For mode numbers with m > 3, A' is approximately given by -2rn/r s where r s is the

radius of the mode-rational surface q(rs) = m/n; A' < 0 describes the stabilizing effect of

magnetic, ¢ield-line bending. The magnetic island dynamics described by Eq. (3), then

involves the stabilizing effect of A' and the destabilizing effect of the perturbed bootstrap

current. Island saturation is achieved by balancing these two terms. The saturated island

width is given by

"_E/-_1_peLqrs rs (4)
W0sat = _" 2mk0L p ~ m "

If we were to allow for a magnetic island to form at every rational surface and saturate at

the value given by Eq. (4), one would conclude that island overlap is inevitable. The

density of islands with mode number m < M goes as M2, and the island width goes as l/ro.

If the product of the density of islands and the island width exceeds some critical value that

approximately one, the islands overlap. Therefore from the theory described above one

cou:' conclude that if island widths with large enough M were examined (M > Merit =

k0Lp/_ekll3pers), the islands would always overlap. However, if stochasticity occurs, the

perpendicular pressure gradient would disappear and the island destabilizafion mechanism

is lost. On the other hand, recall that Eq. (3) was derived assuming the existence of a

single, coherent magnetic island. In order to describe our model topology, we need to take

island interactions into account when describing the evolution of a given magnetic island.

The calculation to follow describes the evolution of a given magnetic island in the

presence of a bath of other magnetic islands. Since the growth of the magnetic island is

caused by the local density and temperature gradients, self-consistent density and

temperature profiles in the vicinity of the magnetic island are taken into account. The effect
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of a magnetic perturbation of incommensurate helicity on a primary magnetic island is to

form a stochastic layer around the separatrix, and particularly the X-point, of the primary

island. This causes the local density and temperature profiles near the island to be

broadened, thus reducing the driving force for the island growth. If neighboring islands

• become so wide so that they overlap, the density and temperture profiles become flat; then,

the destabilization mechanism is lost. The island goes through a cycle of growth due to the

bootstrap current effect and decay due to island interaction causing "radial" transport of

plasma density and temperature. The plasma topology is thus envisioned as a collection of

these islands that ali sporadically grow and decay ("magnetic bubbling").

We note that in order to obtain a completely self-consistent picture of the plasma, an

evolution of the global density and temperature profile needs to be determined in addition to

the local behavior. However; in this work we will concentrate on the topological aspects of

this model since it differs in a number of significant ways from the other magnetic island

models descibed above, 4-12'26 and leave transport issues for later work.

In the following section, the magnetic field topology is introduced, as well as a

review of the nonlinear Rutherford theory to be used to describe the magnetic island

evolution. In section III, a kinetic theory will be used to describe the electron dynamics

and compute the current profile in the vicinity of the primary magnetic island. In section

IV, an island evolution profile is computed by performing an asymptotic analysis of the

perturbed Ampere's Law. A sample example of two interacting magnetic islands is

discussed in Section V. We conclude this work with a discussion of this model in Section

VI. Finally, a quantitative estimate of fluctuation levels that would be expected in a plasma

for a given magnetic island is given in the Appendix.

o

II. Magnetics

The magnetic fields are described by the flux coordinates _, 0, and _, where • is

the poloidal flux function and serves as a radial variable, 0 is the poloidal angle, and _ is



the toroidal angle. The equilibrium magnetic field is written B0 = qVO × V6 + V 0 x VO,

where q = q(_) is the inverse rotational transform. Consider magnetic perturbations of the

form B 1 = V_ × Vg/1, where

g/1 = _ Amn(_)m cos (mO - nO + Jmn)" (5) .
m,rl

For each magnetic surface with q = m/n, a magnetic island forms if the amplitude Amn is

non-zero at the resonant surface. In this calculation we will consider the dynamics of a

particular island that is resonant with the q = q0 = m0/n0 surface. Since every island chain

is equivalent up to a radial translation and a rotation due to shear, the full topology can be

constructed from the properties of a single magnetic island. 4 lt is convenient to work in a

helical coordinate system where _ = _, and tx = 0 - _/q0 is the helical angle that is resonant

with the surface O.= _0 where q = q0" The magnetic field is now written

B = qVOxVa - V_xVg/ , (6)

where

fd 2 Amn(_) (m
X

g/= ¢ (q - 1) - g/1-= _ -- _ COS[mtx + - n)_ + Jmn] , (7)
q0 2_q m,n m q0

with _q = (d In q/dO) -1 evaluated at the resonant surface, and x = • -_0" That part of

g/1 that is resonant with the q - q0 surface forms a magnetic island. If we use a single

harmonic approximation for the resonance at q = %, g/1 = [A0(0/m0] c°s(m0tx), the island

half-width w0 is related to the amplitude of the perturbation by the equation

_/
w0 = 2 N (8)mo ,

where the island width is in units of the poloidal flux function.

We now ir_'oduce some notation to facilitate the algebraic manipulations to follow.

Using the representation for the magnetic field given by Eq. (6), the operator B.V is

written



B.V K = 1 ( _gK _ [v,K] ), (9)jng
where _ is the Jacobian for the magnetic coordinates

r R

= (V_.VOt×V;) -1 = v_ = qB00 ' (10)

and a bracket notation is implemented

_X _Y _Y _X

[X,Y] - _9¢I>_a - _9_ _3a " (1 I)

This bracket has all the properties of Poisson brackets. Throughout this paper an overbar

is used to indicate an average over the angle _ (K = _ d_ K/2n ) and K,= K - K.

An asymptotic analysis of the perturbed Ampere's Law results in a dynamical

equation for the island. The toroidal component of Ampere's Law can be written in terms

of the magnetic flux function as

V.(R -2VV1) - 4rOVe. J1 (12)C

As in the Rutherford analysis, 21 the matching condition between the island region and the

exterior solution is obtained by integrating the appropriate harmonic across the tearing

layer. The matching condition is given by

g°°c

OO

A'w = ]dV --_ m0dot c°s(m0°t) J (13)
16_f2_qR -1 2_: [_ + cos(m0ot)]l/2 Ii ,

where • - V/_sx, Vsx is the value of _ on the separatrix of the island and g_ - IV_l 2.

The parameter K is the discontinuity in the logarithmic derivative of the exterior vector

potential in poloidal flux coordinates and is assumed to be given by A'=-2m0/_ 0. The

island current is computed from the electron distribution function which is derived in the
J,

next section. The ion motion is neoclassically damped at the ion-ion collision frequency 13

• and will not add significantly to the island current, so we will neglect its effect.
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III. Kinetic Theory

The kinetic theory used here is very similar to that used by Carrera, et al.22 in their

derivation of the bootstrap current modification to the single helicity nonlinear tearing

mode. The primary difference in this calculation is in the fluctuating magnetic field where

many magnetic harmonics are included. Alternatively, we could use the new Chapman-

Enskog-like formalism 27 that has been developed for directly calculating the parallel

viscous force in Eq. (1), which leads to the bootstrap current. However, since the kinetic

formalism is more conventional, and so that we may deal directly with the density and

temperature gradients (rather than indirectly via flows determined through momentum

balances), we use the kinetic formar :m here.

The electron drift kinetic equation is written

af af
a-i + vllVIif + vd'Vf - evllEII_-W = C(f). (14)

The drift velocity vd is written

ExB v, Vx_ (15)
Va= c B2 -'_" fi e '

where the first term is the E × B drift and the second term is the magnetic drift valid for

low beta plasmas (the sum of the VB and curvature drift), and f2e is the electron

gyrofrequency. The curl is computed at fixed energy (W - meV2/2) and magnetic moment

(lt = meV]/2B). Assuming that the toroidal projection of the covariant representation of the

magnetic field dominates, the term vd.Vf is written using the notation introduced by Eqs.

(9)-(11)

C vii

Vd.Vf = _ [rp,f] + _ [ollB;,f] , (16)

where B_ = B.ax/a_, Pll = vlt/fie, the approximation qB_ = B2_ has been used and the

inductive portion of the E × B drift has been neglected. The parallel electric field is written

b aA 1 1 awl
Etl = -VIIq) - c'()t - -q---_(qa;qo- [v,tp]) + _--__ , (17)
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where b = B/lBl. The collision operator is taken to be a Lorenz pitch-angle scattering

operator (in the ion rest frame)

" _ _ (_._) (18)Co(f)= v OX

" where

2
V.l"

X - (19a)
Bv 2 '

--- _(1-XB) 1/2 , (19b)

o - sign vii , (19c)

v -- 2ve (vr/v) 3 , (19d)

vt is the electron thermal velocity and v e is the electron collision frequency.

The electron drift-kinetic equation is now written

_f vii c vii _)f
_- + _ (q_;f- [v,f]) + _ [_0,f] + _ [PllB;,f] - eVllEii

_ _f= v -- (X_) (20)
_, _--X'

where Eli is given by Eq. (18).

A. Orderings

In order to solve the kinetic equation, a perturbation theory is invoked involving

two small parameters. As in ref. (22), we use y- Ve/cotand _5- poe/w 0, where POeis the

poloidal electron gyroradius, w0 is the primary island half-width, and cot = vt/qR is the
a,

electron transit frequency around the torus. We order the island half-width w0/L q ~ y,

where Lq = (d In q/dr) -1. So that the inductive island current and the island bootstrap

current enter at the same order in the calculation, we take cot1 _/Ot ~ 52. This implies that
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the electron makes many toroidal orbits before the tc?ology changes. The electrostatic

potential is ordered so that the electrostatic and electromagnetic portions of the parallel

electric field are comparable. This is accomplished by having e_0/Te - 2(_i.The E x B term

in the kinetic equation is comparable to the explicit time-dependent term in the kinetic

equation. Therefore, in this calculation, the electrostatic drift does not affect the island

dynamics. The somewhat artificial ordering 1/m ~ y is used for the poloidal mode number

m. This is not a very restrictive assumption; ordering m as unity does not markedly affect

the results but complicates the algebra somewhat. The small 1/m ordering has the primary

effect of making the motion along the perturbed field-lines larger than the collisionality, so

that the electron motion around the island is collisionless. The amplitudes of the non-

resonant magnetic harmonics are assumed to be the same order as the resonant harmonic; _,

however, we restrict ourselves to harmonics that are resonant at a magnetic surface not too

far from the primary resonance. Formally, we order _hnrr/Lq~ _/,where _hnn = Lq[(m/nqo)

- 1] is the distance between the rational surface at q = m/n and q = q0" The effect of the

nonresonant harmonics is to produce a stochastic layer around the separatrix of the primary

island. If the ratio WO/Ama<< 1, the width of the stochastic layer is negligble. Therefore,

the n°nres°nant harmonics that most dramatically affect the primary island are those whose

island is close by, wo/Amn >> _5,y.

The calculation proceeds by expanding the distribution function in a double series, f

= ]_m,n fmn_SmYn. The kinetic equation is then solved analytically assuming y > _i. To

O(_iO), the spatial distribution and the background Maxwellian nature of the electrons is

derived. The O(_i) corrections introduce collisional terms that will result in the island

bootstrap and Ohmic currents.

At this point, we make a parenthetical comment concerning the role of

microinstabilities and drift wave effects. If the equilibrium value of the density gradient is

used (the density scale length outside and away from the island region), the ratio of the

diamagnetic drift frequency to electron transit frequency is 0_,e/_ t - _5.The assumption _,>
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_5would then correspond to the condition ve > 0_,e. We note that linear stability theory of
28

micro-tearing modes in toroidal geometry make the opposite assumption, O,e > re"

. However, in the nonlinear magnetic island regime, the electron distribution function

equilibrates on the magnetic surfaces, the density profile flattens, and hence 0J, e --_ 0 near

" the island separatrix. 29'30 In the presence of a significant magnetic island, since the

diamagnetic flows and consequent rotation frequency disappear, microinstabilities and drift

wave effects play little role in the vicinity of the rational surface. The "macroscopic" island

dynamics is then controlled by the neoclassical fluid-like mechanism presented here.

B. Spatial Distribution

To 0(_50), the drift kinetic equation is

VllVIIf0 = C(f0) • (21)

To O(_i0_), Eq. (21) simplifies to

qO;f00 - [v,f00] = 0. (22)

This equation says that to leading order, the electron distribution function equilibrates along

the magnetic field-lines. If _1/is made up of the single resonant harmonic, W = _ (recall k

= _d_/2x K), Eq. (22) has the solution f00 = f00(_)" Then, the electron density and

temperature profiles become functions of the helical flux surfaces describing the primary

magnetic island topology. However when other magnetic harmonics are added the primary

magnetic island topology is disturbed. Equation (22) can be separated into a _-averaged

part and a _-dependent part.

(A;)-l'f00 = [_,f00], (24)

where the operator (A_)-] is defined by
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(A;)-IK-- q/)¢K - [_,K] - [_,K] 4-_i2__ [_,K] , (25)

for any funcfior_ K. Equation (23) describes the deviation from the single-helicity magnetic

island topology caused by nonresonant magnetic harmonics.

To understand the effect of the deviation let's consider a number of different

magnetic field-line trajectories. Those field-lines that are near the O-point of the primary

island are topologically stable, in that trajectories that would normally have elliptic orbits

about the O-point continue to execute essentially the same orbit when the other magnetic

harmonics are present. Although the precise details of the field-line trajectories may vary,

the gross behavior of the orbit is still described by the topological behavior of the single-

helicity primary island. Therefore, near the elliptic point of the island foo= f00(Cg). By a

similar argument, those orbits very far from the island separatrix are essentially described

the function _g.

Where the effect of the nonresonant harmonics is most dramatically felt is near the

separatrix of the magnetic island. Small deviations caused by _ could cause orbits that

were trapped inside the island separatrix to be untrapped and vice-versa. Consequently,

what we expect near the separatrix of the island is that the primary magnetic island flux

surfaces are destroyed; the magnetic field is stochastic. Since stochastic magnetic fields

cannot sustain plasma density and temperature gradients, in a region of space around the

separatrix, foo is constant.

Summarf_zing the results of the discussion in the previous paragraphs, the leading

order distribution function is described by

TOO= foo(_) for _ < _sx- I_iVltl, (26a)

700 = constant for _sx- 1_5C1/I< Vg < Vgsx+ 1_SVgl, (26b)

-f00 = f00(Cg) for Cgsx+ 1_5_ < Vg , (26c)

where _sx is the value of Cgon the separatrix. Recalling Eq. (7), Vgsx- Am0n0/m0.
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The value 1_5_represents the extent in _ that the magnetic field is stochastic. To

estimate its value, we follow the derivation of Rechester and Stix. 31 In their work, the

. effect of an incommensurate perturbation on a primary magnetic island was examined, lt

was found that sec,_)ndary islands formed wherever the Fourier components of the

" perturbation resonate with the local rotational transform of the primary island. Since the

transform goes to zero on the primary island separatrix (indicative of the fact that the

separatrix is a singular surface), the secondary islands pile up on either side of the

separatrix. By deriving the width of secondary islands and the spacing between secondary

islands, an estimate of the extent of the stochastic region can be calculated. In order to keep

this work self-contained their derivation is briefly reproduced here.

In order to compute 1_5_1it is convenient to transform from the magnetic coordinates

(I), 0_to the coordinates _, v by

2

C¢ = C_sx [22 - cos(moOt)] , (27)
w 0

dv _ rn0w0 (28)
dOt x

Surfat:es of constant C_represent the magnetic surfaces of the primary magnetic island. The

va_ue _ = _sx refers to the separatrix of the primary island ; the value _ = - _sx is the O-

point. The angle-like coordinate v labels the location on a magnetic surface. The magnetic

field given by Eqs. (6) and (7) can be separated into a ,,oherent part, representing the

effect of the primary island, and a remainder, representing the perturbations with

incommensurate helicities. Using the transformation given by Eqs. (27) and (28), the

"coherent" part of the magnetic field is given by

B c = .q0(I)q V_ × Vv - V; × V_, (29)m0w0
o
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where w0 is the primary island half-width given by Eq. (8) and Oq = (d In q/dO) -1 at q =

q0" Note that the condition Bc.V _ = 0 is satisfied. The remaining part of the magnetic

field is written

B l = Vv x V_ x _ Amn sin [mct + (m_ n)_ +Jmn] , (30)
m0w0 m,n q0

where x and ot are functions of Cgand v as defined by (27) and (28).

The thickness of the stochastic region outside the primary separatrix can now be

computed. As pointed out in ref. (31), a similar calculation can be performed for the

thickness of the stochastic layer inside the separatrix. To within a factor of approximately

2, the thicknesses inside and outside the separatrix are the same.

Outside the separatrix, it is convenient to use a new flux surface label, k (_ 1),

given by

k2 = _2_sx_ = [2 + sin2(m0a/2)]_l , (31)
+ _sx w0

where k = 1 now labels the separatrix and a new angle variable is introduced, u = y/2k. By

integrating Eq. (28), we get the expressions rn0ot/2 = am(u,k), sin(m0_2 ) = sn(u,k), and

x = (w0/k) dn(u,k), where sn, cn, and dn are the Jacobian elliptic functions and am is the

inverse of the elliptic integral of the first kind. The complete elliptic integral of the flu'st

kind is K(k). The angle variable u increases by 2K(k) as moot goes from -n to _.

Therefore, outside the separatrix, the functions are periodic in the variable ma/K(k).

Now suppose that an asymmetry is introduced by a single "extra" magnetic

perturbation. The perturbing magnetic field from Eq. (30) is written

2 m

B 1 = Vu x V_ _ dn(u,k) Amn sin [mot + (_- n)_ + Jmn]' (32)
9

This magnetic perturbation produces a magnetic island at the q = m/n surface with an island

half-width given by Wren = 2_ AmnOq/m. We now seek an approximate form for the

magnetic surfaces near the primary magnetic island. This is analogous to finding the
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solution to the distribution function from Eqs. (23)--(25) near the separatrix. The magnetic

surfaces are labeled by X = x(k) + _(k,u,_). The function _ is expanded in a Fouries

series

-., r. /IU m
X = _ X_tv(k)exp llktK---(_+ iv _(q0 - n)]. (33),, _t,v

The magnetic differential equation is written Bc.V_ = -B1.V _. The nonlinear term B1.V _

has been neglected. This assumption is analogous to dropping the last two terms in Eq.

(25) and allows us to ignore nonlinear coupling that would produce nonzero amplitudes for

XgV with v d: 1. The perturbing magnedc field is expanded in a Fourier series

(_00) Amn sin [m0_ + (m-n)_ +Jmn]' q0

_u _00= )". C_tv(k) exp [iktK--_ + iv _( - n)] . (34)li,V

From the magnetic differential equation, we obtain

wO 1 dx

i[v - l.tf_(k)] X_tv- Amn nq0 d_ C_tv ' (35)

where the local rotational transform for the primary island region is defined by

n: n0w0 ,
f_(k) - 2kK(k) nAmn (36)

and Amn = Oq[(m/nq0 ) - 1]. There is a resonance wherever k = kllv, where f_(k_tv) ---v/It.

By picking d_(,/dk - (k - kliv) in the vicinity of k ---k_tv, Eq. (35) can be integrated to find

the approximate magnetic surfaces near k = k_tv

1 . _u m
X = _ (k - k_tv)2 + C(k) ,7_,C_tv(k) exp [lltK----(_+ iv ¢(q0 - n)] , (37)"t- y-

where the sum is over kt_,v and -kt, -v,

ik3 w0 1
C(k) - , (38)

4_sx Amnq0n ktf_'
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and _' = dt"ddk at k = k_tv. Equation (37) is the characteristic magnetic potential to model

magnetic island formation. At each value of the local rotational transform where f_ = v/kt

secondary islands form. Since _ ---)0 as the separatfix is approached, an infinite number

of islands appear for v = 1.
!

In order to find the amplitude of the secondary island, the coefficients C_tv need to

be determined. They are given by

Amn
_u dn(u,k) e-i_tun/K [_iv,1ei(ma + Jmn) 5 e-i(ma +jrnn)]Cgv - 4ikK(k) O - v,-1 , (39)

where 0t = ot(k,u). The integral is now evaluated assuming the ratio A -In0w0/Amnnl is

small and the ratio M - m/m 0 is integer. Following the asymptotic treatment outlined in

detail in ref. (31), the coefficient C_tv can be computed by deforming the contour and

expanding the integral around the uppermost singular points. Equations (36)-(38) can be

computed to give a secondary island amplitude in k-space, _iwk, given by

2 -K'/A

_w 2 = _Wmn(_)2.2(M-1) M 1 e (40)
w0 (2M)! (dK/dk) A(2M-1) '

where K' = K(_ 1-k 2) and Wren is the amplitude of the magnetic island at the q = m/n

surface assuming Oq at q = q0 equals Oq at q = rn/n.

The secondary island widths are nonanalytic functions of A, where A is essentially

the ratio of the primary island half-width to the distance between rational surfaces. When A

is small, the secondary islands are not important, and therefore the assumption of only

keeping magnetic harmonics with w0/Amn >> _5,_,is justified. The secondary islands

overlap when the spacing between the islands determined by Ak = v/t.t2f_ ' equals 6w k.

Using the asymptotic approximation K' = n/2 as k -_ 1, 1_5_is given by
q,

2 -_/2A
18_] =- Wren 1 e

4_q (2M-1)t (N2)(2M+l) " (41)
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In this calculation it has been assumed that there are only two incommensurate

helicities, while the model topology we would like to examine has a bath of interacting

. magnetic islands. For each magnetic harmonic a I_g[ can be computed. Because Eq. (41)

shows a dramatic dependence on the parameter A, the actual width of the stochastic layer

" around the primary island separatrix is likely dominated by the magnetic harmonic with the

largest A, and the overlap of secondary islands produced by two different magnetic

perturbations is negligible as long as the two A's are different in magnitude.

Now that the spatial distribution of f00 has been clarified, the kinetic equation to

O(50) ,1)can be examined.

VIIVll f01 = C(f00) • (42)

The left-hand-side of the equation can be annihilated by averaging over the magnetic

surfaces of the primary magnetic island. Recall that in the region of Cg-space described by

Eqs. (26a) and (26c), the Vgsurfaces are assumed to be robust. In that region of space, an

average over a flux surface can be defined by

<K> = _ da K//)_(Vg, oc) , (43)
docI / _(_,oc)

foranyfunctionK. FluxsurfaceaveragedquantitieshavethepropertythatB-V <K> = 0.

Intheregionaroundtheseparatrixthatisstochastic,itisdemanded thatthedistribution

functionf01beconstant,sointhatregionVIIf01= 0 identically.UsingEq.(43)and the

restrictiondemanded by thestochasticregion,Eq.(42)canbesatisfiedby lettingf00bea

Maxwellianwherethedensityandtemperatureprofileshavethespatialstructuregivenin

Eq. (26).

C. Island Current

In this section, the electron current in the vicinity of the primary magnetic island is

computed. Writing the kinetic equation to order O(_ily0), we obtain
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VllVllfl0+ _ [PlIB(,f00]= 0. (44)

The quantity PllB_ to leading order is a function of the poloidal angle e = o_+ _/qo'
Q

Therefore [PllB_,f00] = --0ct(pllB_)ac)f00 = -qoa_(pllB_ac)f00). Since a t ~ o(1), Eq. (43)

has the solution

fl0 = PllB;ac)f00 + gl0 , (45)

where gl0 has the same spatial structure as given by Eq. (26), gl0 = gl0(C_) for _ < C_sx -

18C_I,and C_> _rsx+ 18_ and constant otherwi:;e.

In order to find an equation for gl0, we go to O()t181) in the kinetic equation. After

averaging over _, which amounts to a bounce average, we find the equation

eq - (e_P/"['e)f00] _ 2_ [_, 'fll (e_lTe)f00]- IV't"11 - -

qRB; _-I -
- f2e acf00 C(_) + vii C(gl0). (46)

After inverting the collision operator and demanding the spatial constraint on gl0 described

after Eq. (45), we find

_e v 3 ef00gl0 = --o'v{ <acfoo> + (_) RoCTe<atC_i>}l(X), (47)

where

kcB°dk (48)
I(X) = O(Xc-X) _ 21_1 '

e is the Heaviside step function, Bo and Ro are the magnetic field and major radius on the

magnetic axis, Xc = 1/Bo(1 + e), and e is the inverse aspect ratio. The flux surface

averaging operator is clear as it pertains to the first term in Eq. (47) since a,t_f00, given by

2

af00 1 a__n_n+ (2___e _ 3)] aTeaO - {nao Te aO } f00, (49)
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is zero in the stochastic region, where the average over a flux surface is not defined.

However, the flux surface average of/)tCgl is not defined in the stochastic region. The

, resolution of this problem is postponed until the quasineutrality condition is discussed.

By multiplying fl0 by evil and integrating over velocity space, the lowest order
ii,

parallel island current is computed,

jlle - 1 </)t_l > 1.46 -/--cnTeB_ <_9_n> </)e,,,Te>
rlnRc - -NI_ B - { n + Te } , (50)

where rln = (0.51mevei/ne2)(1 - 1.95_/'_ -1 is the neoclassical resistivity, with the

indicating the trapped particle effect. The second term in Eq. (50) is the island bootstrap

current. Physically, the origin of the bootstrap term comes from the banana orbits of the

trapped electrons interacting with the island pressure gradient. This produces a diamagnetic

current. Viscosity between the current-carrying untrapped electrons and the immobile

trapped electrons cause the diamagnetic current to be enhanced; the passing electrons drift

in the same direction as the trapped electrons as a result of collisions. The neoclassical

mechanism enhances the diamagnetic response to the magnetic island pressure gradient. If

we had used the new Chapman-Enskog-like formalism 27 for directly calculating the parallel

viscous force, the _f'e'in Eq. (50) would be replaced by l.te/Ve ~ "_(1 +V,e), the ratio of the

viscous damping rate and the collisional friction. Also, the electron density and

temperature gradients would be replaced by an overall plasma pressure gradient plus

temperature gradient terms with collisionality-regime-dependent coefficients. 32

We conclude this section by considering constraints on the parallel current resulting

from quasineutrality. Self-consistency demands the condition V.J = 0 from Ampere's law.

We neglect here the effects of inertia 21 and interchange modes. Resistive interchange

" modes can drive magnetic islands in the Rutherford regime; 33 however, for the "banana"

collisionality regime considered here, the island bootstrap current is larger. Under these

assumptions, the island current must satisfy the condition VII Jll - 0. This is precisely the
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condition that describes the leading order spatial distribution of the electron distribution

function. By arguments similar to those used to describe f00 by Eq. (26), Jll is given by

Jll = Jll(_) for _ < _sx - I_i_[ , (5 la)

Jll = constant for_tsx-I_i_ < _ < _sx + 1_5_i, (51b)

Jll = Jll(_) f°r_sx+l_i_l < _ , (51c)

Physically, what is occuring is that the electrostatic potential near the primary island

responds so that the current resides on the constant-C# contours of the magnetic island,

where the contours are robust, just as the plasma density and temperature profiles are

similarly constrained. However, in the stochastic region, the electron current flattens due

to rapid transport along the stochastic field-lines. Note that this is not quite the Rutherford

requirement on the electron current in the nonlinear regime of the tearing mode. This

difference will result in a correction to the Rutherford integral of order (l_/_sx)2, but will

not have a dramatic effect on the overall result.

D. Island Density and Temperature Profiles

To construct the density and electron temperature profiles, assume that there are

particle and heat sources in the plasma interior and that diffusion processes are

present. 22'33"35 The density and temperature profiles in the vicinity of the magnetic island

are constructed by demanding that the flux of particles and heat are continuous. Inside the

island separatrix the profiles are assumed flat and, as previously discussed, in the

stochastic layer around the separatrix the profiles are also fiat. Very far from the island the

profiles are required to satisfy the asymptotic statements dn/d_ _ dn/d_leq(q/q0 - 1)-1 and

dTe/d_ _ dTe/dOleq(q/q0 - 1)-1, where dn/d_leq and dTe/d_leq are the equilibrium values
o

of the density and electron temperature gradients, respectively, in the exterior region. We

note that the exterior values of the profiles are assumed to be given. Although the interior
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profiles of the density and temperature are accounted for self-consistently, the exterior

values are not. From these conditions, the profiles are required to be

. dn dn _eq_ O{_ -(Cgsx + 15_)}
d_- dO w0 I0 ' (52a1

_ 0__ rqN - ( sx +
d_- dO w0 I0 ' (52b1

where

% ff moda m0da ._V + cos(m0ot )= w0 . 2_ O.Cg(_,ot) = _-2--_ 2 ' (53)
Io

and W = _/_sx' The island bootstrap current is now written

nTB 1 dn 1 dTeleq) O{_- (_gsx +15_)}
Jllb = -1"46"_ c B_ _- (n d-'t_leq+T-"eedO i012

(54)

where

i2 _- mod_ ._ 2= 2g ti_ + c°s(m0tx) • (55)

lt is assumed that the stochastic zone around the separatrix is symmetric about x = 0. This

symmetry is lost if the primary island overlaps with a neighboring magnetic island. We can

model island overlap by eliminating the density and electron temperature gradient on the

side of the separatrix that the overlap occurs. The matching of the profiles is then enforced

on either side of the two island structure, while the profiles are assumed flat ali the way

across both island regions. Island overlap essentially cuts the island bootstrap current for

each island in half since the density and temperature gradient is only present outside the

combination of the two magnetic islands, but not between them.
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IV. Magnetic Island Dynamics

As in ali tearing mode problems, the matching condition between the island region

and the exterior solution is obtained by integrating the appropriate harmonic of the

perturbed Ampere's law across the tearing layer. The matching condition is given by Eq.

(13) where the usual constant-_ and single harmonic approximations are made for the

evolution of the single magnetic island. Inserting the parallel current from Eqs. (50) and

(54), we obtain the equation

cga'a' w0 A' _ 1 1 dA F008  sx )
16_ROq rlnCR mo dt

1 dn 1 dTe {eq)+. 1.46 _ cnTeR0 (n _ [eq+ We dO F1(18_'_rsx) (56)

where F0 and F 1 are dimensionless functions of the quantity (18V/h/CCsx)_-.8W. As 8W _ 0,

Eq. (56) can be rewritten in the form given by Eq. (3), where F0 and F 1 become the

constants F0 = 1/2k0 ___-0.8 and F 1 = kl/2.92k 0 ___-0.8. The deviation caused by 8W (due to

the presence of a nearby island of incommensurate helicity) on F0 has the approximate form

l+8q'

F0= 1/2_+ dj_ _ m0a cos(moot)4 21 Err _°s(m0ot) {G(1 +SW) - G(W) } , (57)

where

! 2
dot cos(m0ot ) "_] K+cos(m0a)

G(K) = -- . (58)

_dot 4 ...... 2k+cos(m0Qt)

Asymptotically, one can show that the remaining integral goes as (8W)2 as 8W -_ O. Since

this is small when 8W is small, we will ignore its effect in what follows. A finite value of

8_Phas a more profound effect on the second integral F1,

.

OO

m0det4 2F 1 = fdW 1 _i _ q,+cos(m0ct) , (59)I+SW lo(W) I2(W)
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where I0(W) and I2(_F) are given by (53) and (55). Treating _Fas large under the integral,

F 1 is given by the asymptotic function

1 1
= . (60)

" F1 - q'2 _ I+_g

" The actual value for F 1 as 8_F _ 0, is approximately 0.8; the asymptotic function is

reasonably accurate with respect to its numerical value. After collecting the information

from Eqs. (56) - (60), the magnetic island evolution is given by

-1

4n: 1 dw 0 A' ",]71"4131_Lq(L-nl+ LTe)-= 0.6 + ,_ (61)

rlnC2g OO dt _w 2 + nOql$Cgl '

where Lq = (d In q/dO)-llvol, Ln = -(d In n/dO)-llVOl, and LTe = --(d In TJd_)-IlV_I.

The extra metric factor gOO in the first term results from using the extent in the poloidal

flux function as the unit for measuring the island width. In the absence of the island

bootstrap current, given by the last term in Eq. (61), the Rutherford nonlinear island

growth 21 is reproduced.

The primary effect of island interactions comes in through the island bootstrap

current term. Physically, the effect of an incommensurate magnetic perturbation on the

primary magnetic island is to flatten the local density and tempertaure profile in the vicinity

of the separatrix through the creation of the stochastic layer. So instead of the profiles

being flattened over the island width, the presence of the stochastic layer causes the density

and temperature profiles to be flattened over a slightly larger region. Recall from Eq. (41)

that 1_SVglis a function of the nonresonant magnetic harmonics, so that the evolution of a

given magnetic island w0 depends on the island separation parameter A for ali the other

magnetic islands. In this way ali the magnetic islands are coupled together. In order to

describe a topology with a bath of magnetic islands, one could describe the evolution of

• any particular island with Eq. (61) while taking ali the island interactions into account
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through I_i_l, which however will be dominated by the island that most nearly overlaps

with the fundamental island w0.

V. Example- Two Coupled Magnetic Islands

Since the interactions are usually dominated by pairs of nearly overlapping islands,

as a simple example of this theory, let's consider the evolution of two interacting magnetic

islands. Each island is governed by Eq. (61). The matching parameter A' is assumed to be

negative, representing the stabilizing effect of field-line bending. Islands form at the q =

m0/n 0 and q = ml/n I surfaces. Therefore A6 = -2m0/r01V_l and A_ = -2ml/rllV_l, where

q(r0) = m0/n 0 and q(rl) = ml/n 1. The island dynamical equations are

dw0 Qo
dt --mo + ' (62).  ?ho

(rl_2 dWl _ Q1d--F--ml + ' (63)ro" w h:
where

QO,1 = "_l'l_peLq( L-1 + I._,_), (64)

is evaluated at the appropriate rational surfaces, and the coupling functions are given by

2 1 e-n/2A°

hO = (ro) F(2M) (AO/2)(2M+l) ' (65)

rO 2 1 e -_/2A1

h_ = (rl) l"(2/M)(A1/2) (2/M+l) ' (66)

where AO = In0w0/nlAmnl, A1 = h:_wl/n0Amnl , and M = ml/m 0. Time has been

normalized to the timescale 4r_r2/1.2rln c2 and the island half-widths w0 and w 1 are

normalized to r01V_l and rllV_l, respectively. In the absence of island coupling (h0 and hl

--_0), the islands grow and independently saturate at w0 = Qo/mo and w 1 = Q1/ml.
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Let's consider two limits. In the first limit, suppose the inequality Q0r0/m 0 +

Qlrl/ml < Amn is satisfied. Here, the saturated island half-widths in the uncoupled limit

. are small enough that they would not overlap. When island coupling is restored, the

islands saturate at a slightly smaller half-width. The saturated half-widths can be computed

" by solving the equations

2w0 + w2 h0(w 0) - (Q0/m0)2 (67)

w2 + W2hl(Wl ) = (Q1/ml)2 • (68)

Treating h0 and h 1 as small, w0 _= (Qo/mo) - (mo/Qo) (Q1/ml)2 ho(Qo/mo) , and w 1 =

(Q1/ml) - (ml/Q 1) (Qo/mo)2 hl(Q1/ml). So in this limit the magnetic island dynamics do
0

not change significantly from when the single-helicity theory is used.

The other limit is given by Qoro/mo + Qlrl/ml > Amn. Here, the saturated island

half-widths in the uncoupled limit would overlap. Recall, that we model the onset of the

overlap by eliminating the pressure gradient on the side of the island where the overlap

occurs. This is accomplished by letting Qo,1 -') Q0,1/2" Note the implicit assumption

throughout this entire analysis is that the electrons react faster than the magnetic islands

when the topology changes. Island overlap results when the separatrices of the two islands

touch. The electrons can then quickly equilibrate over the region with the two island chains

in it. As far as the magnetic islands are concerned, this happens faster than the islands can

react. If the inequality Qoro/mo + Qlrl/ml > 2Amn is satisfied, the islands saturate with

overlapping separatrices. The pressure gradient on just one side of the separatrix is

sufficient to sustain the island. If the islands satisfy the inequality Amn < Qoro/m 0 +

Qlrl/ml < 2Amn, no saturation is possible. Before the separatrices touch, the pressure

gradient is sufficiently strong to overcome the stabilizing effects of A'. Once the

separatrices touch, the pressure term is greatly reduced very rapidly (via parallel motion

along the stochastic field lines), and A"causes island suppression. Once the islands shrink

to the point where the pressure gradient between the islands can recover, the islands start to
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g_'awslowly (on the island magnetic reconnection time scale) and this cycle of slow growth

and abrupt decay continues with the island sizes staying not too far away from overlap

conditions.

Of course, the example of this section is not meant to be representative of what is

occuring in a tokamak. It is merely used as a tool to illustrate the phenomenology of the

island interaction. A more accurate description of the magnetic topology would entail

tracking many different islands as they grow and decay. The density of islands is such that

the magnetic islands will, on the average, interact because of barely touching separatrices,

so no set of saturated islands as described by Eqs. (67) and (68) would exist. Island

separatrices touching requires a minimum electron poloidal beta, approximately given by

13pe> Amnm0Lp/2r0Lq_, for a given distance between rational surfaces Amn. However,

since the minimum Amn scales as Amn ~ 1/n2q" - q2/m2q', this implies the minimum 13pe

scales as !/m. In addition, we would not expect the islands to have the simple cyclic

motion described above since any particular island will interact with more than one island

over any extended period of time. A steady state of many overlapping magnetic islands

will not be reached since the overlap of islands does not allow density or electron

temperature gradients, so the island growth mechanism would be lost. Thus "magnetic

bubbling" topology is described as a bath of magnetic islands that all sporadically grow

slowly due to the neoclassical pressure gradient effect and decay abruptly due to island

interaction.

VI. Discussion

The interaction of cross-field density and temperature gradients with the drift

motion of particles in toroidal geometry causes a parallel current in long mean-free-path

plasmas. This current is called the bootstrap current. Fluctuating bootstrap currents can

cause the formation of magnetic islands at rational surfaces in resistive plasmas. The

modification caused by island bootstrap currents on the nonlinear evolution of the single-
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helicity tearing mode has been computed previously. 13'22 In this work, we have extended

this theory to include the interaction of neighboring bootstrap-current-driven magnetic

. islands. The island coupling is taken into account by self-consistently constructing the

plasma density and temperature profiles in the vicinity of the magnetic island. The

introduction of a magnetic perturbation of incommensurate helicity causes the formation of

a stochastic region around the separatrix of the magnetic island. The stochastic region

flattens the island density and temperature profiles around the separatrix, reducing the

island bootstrap current and the magnetic island drive. If neighboring magnetic islands

overlap, the plasma profiles are flattened across the overlapping island region and the free

energy source for the islands is halved.

The model that has been presented describes the magnetic configuration as a bath of

interacting magnetic islands with poloidal number m ___-3-30. The magnetic island

dynamics are assumed to obey a nonlinear tearing mode evolution that includes the effect of

the neoclassical pressure gradient and island interactions. In toroidal geometry, island

dynamics are also coupled in the exterior region of the tearing mode through the

construction of the matching parameter A';36 however for the islands with mode number m

> 3, A' is usually stabilizing and given by -2m/r. The island dynamics is described by

sporadic slow growth and rapid decay of the island width due to the destabilizing effect of

the island bootstrap current and the stabilizing effect of the island interactions.

The model presented here is similar to the model topology introduced by Rebut and

co-workers. 4--7 However, our model differs in a number of ways. Whereas both pictures

of the topology contain chains of magnetic islands, the stochastic region in our model is

mostly restricted to the regions about the island separatrices. In between the islands,

during the time between island interactions, robust toroidal magnetic surfaces exist, while

the topology of refs. (4)-(7) has the magnetic islands embedded in a self-sustained, steady-

state, stochastic sea. The existence of good toroidal magnetic surfaces allows the plasma to

have "radial" density and temperature gradients. These gradients, through the neoclassical
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mechanism described above, cause the formation of the magnetic islands. In contrast, the

Pebut et al. model relies on a thermal instability (or other a combination of other

mechanisms) driving microtearing modes which requires a minimum threshold va_!ueof

VT e for self-sustainment. Most importantly, the topology given in our model is dynamic.
e,

Each island obeys an evolution equation which describes its island growth and decay,

unlike the static topology of refs. (4)-(7), where a steady island self-sustainment

mechanism is required. Recently, Kadomtsev has introduced a plasma transport picture

that involves magnetic islands in the toroidal equilibrium. 37 This model has magnetic

islands whose island widths are much smaller than the ion gyroradius, whereas our model

examines magnetic islands whose widths are typically many ion gyroradii.

The model presented here suggests that low to medium mode number, coherent

magnetic structures could be present in tokamak plasmas. The magnetic structures are

stationary in the plasma frame (the equilibrium radial electric field causes an E x B toroidal

rotation in the lab frame), have radial extents typically a few centimeters, and have large

correlation lengths along field-lines. The "bubbling" nature of the model topology suggests

that these islands are short-lived, with lifetimes (At -- 4nw2/6rlc 2) typically < 3 ms for say

3 cm islands. The magnitude of the magnetic perturbations we are considering are typically

_r/B0___-10-4-10 -5. The density and temperature fluctuations associated with these

magnetic perturbation satisfy a mixing length relation n/n 0 ___-0.26 Ar/L n (see Appendix),

where Ar = 2w is the full island width, and n is defined as the peak-to-peak density

fluctuation amplitude. Thus for islands with full island width 3 cm and Ln = 100 cm, the

density and temperature fluctuations arising due to magnetic island formation are quite

small, _/n 0 = 'l/T 0 = 8 x 10-3.
"1

In order to completely describe the plasma dynamics, transport coefficients from

this model should be computed. The nature of the transport is different from statistical

approaches to magnetic turbulence, 26 where the growth and decay of imbedded, coherent

magnetic islands is usually not addressed. The radial step size of the plasma transport is
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given here by the characteristic island width. In the guise of drift-wave fluctuations, a form

for the electron heat diffusivity, )_e"")'w2' has been suggested, 38 where w is the island

. width and ), is the fluctuation "birth-death" rate. In this transport process electrons (and

ions) are fixed to the field-lines, and the plasma transport occurs because the field-lines

diffuse. This prediction probably underestimates the amount of plasma transport for the

present model since electrons can travel very quickly along the combined island and

stochastic regions of the field-line structure, and an island overlap causes "lumps" of

particles and electron and ion heat to be transferred from one island chain to the next. The

combined effects of collisions and magnetic fluctuations near the island structure probably

enhance this transport; however we are not yet prepared to suggest a form for the transport ,

coefficients for this "magnetic bubbling" situation.

Finally, we note that an extension of the present theory could be used to understand

the interaction of plasma pressure induced magnetic islands in stellarator equilibria. 34'35 It

has been suggested that resistive interchange modes may be responsible for magnetic island

formation and magnetic stochasticity in Heliotron-E. 39 In a fashion similiar to the one

described here, the effect of the island interaction would reduce the effect of bad curvature

and Pfirsch-Schltiter currents in the island vicinity by flattening the island pressure profile

in the stochastic field region near the separatfix.
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Appendix: Density and Temperature Fluctuation Amplitudes

In the model topology presented here, the islands are fixed in the frame of the

plasma. What would be observed in the laboratory then is the magnetic structure as the

toroidally rotating plasma carries it by. Associated with these helical magnetic

perturbations of the axisymmetric equilibrium are density and temperature fluctuations.

Some direct measurements of magnetic fluctuations can be made with magnetic probes 40

(in the plasma edge) and heavy ion beam probes. 41 Measurements of density and

temperature fluctuations with long perpendicular wavelengths (k.t.pi < 1) are relevant to the

present model. (For instance, beam emission spectroscopy measurements of density

fluctuations can probe the small k±p i regime. 42) A mixing length argument is often

invoked to relate the amplitude of the fluctuations to the radial correlation length. In this

Appendix we compute the relationship between the radial correlation distance, (in this

model, the full width of the magnetic island), and the density and temperature fluctuation

amplitude.

Outside the island separatrix, the density distribution is given by the relation

n(v)= _--_leq w0 _, (Al)

where we have used Eq. (52) to describe the density gradient near the island, and I0 is

given by Eq. (53). We note that a similar relation holds for the island temperature

distribution, and the discussion to follow describing the density fluctuation also describes

the temperature fluctuations. Making the asymptotic approximation I0 =_W'_, Eq. (Al)

is integrated to yield

n(C_) = n(C_sx) + d---_-nI w0 {_/(_/Vsx) - 1} (A2) "- dem4

where n(C_sx)is the density on the separatrix and the sign is determined by the side of the

magnetic island on which the observation is made. Now suppose that the density profile is
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observed at a particular radial position (a fixed x in our notation) in a given toroidal angle

plane. The density would appear to oscillate since the plasma is constrained to be constant

. on the (helically distorted) magnetic island flux surfaces. The peak-to-peak amplitude of

the fluctuation at a given x = _ would then be given by
Q

n"_"= nmax-nmin = w0 l _2x2_/2_2n0 no _n x/2 __ __- _ { _02 + 1 - -_202-1 } , (A3)

where nmax and nmin are the maximum and minimum values of the density, respectively at

x = _. Recall that w0 is the island half-width in units of the poloidal flux function, so the

radial correlation length is given by Al" - 2w0/1V_l. The largest value of J/n 0 occurs when

x = w0, in which case (A3) is given by

Ar x/-3 - 1 Ar

_00 = _ 2",_ ___-0.26 L---_ ' (A4)

where Ln = _n/IV_l. We repeat for emphasis that this discussion holds for either density

or electron temperature fluctuations. Futhermore, this relation is not restricted to describing

only the model presented in this paper, but should describe density or temperature

fluctuations caused by any magnetic island larger than the resistive 23 or stochastic layer

[cf., Eq.(41)] thicknesses.
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