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I . INTRODUCTION 

lb has been suggested that in the reversed f i e l d pinch the 

sustainment of the reversed magnetic f i e l d configuration against 

transport processes may be due to the strong nonlinear interact ion of 

res is t ive tearing modes.1 On the other hand, the nonlinear interact ion 

of res is t ive tearing modes in tokamaks has been shown to provide a 

mechcnism capable of explaining and predicting major d is rupt ions. 2 ' 8 In 

order to gain some understanding into how the nonlinear interact ion of 

res is t ive tearing modes might give r ise to such d i f fe ren t behavior as 

dynamo action in the reversed f i e l d pinch and major disruptions in 

tokamaks, we compare the interaction of the dominant modes for the two 

configurations. We denote these modes by (m;n) and the correspond!ng 

he l i c i t i es by m/n, where m is the poloidal mode number and n the 

toroidal mode number. A simple tokamak disruption model has been found 

for which the dominant i ns tab i l i t i es are the (2;1) and (3;2) tear ing 

modes, while the dominant l inearly unstable modes in reversed Field 

pinch configurations are of type ( l ;n ) with n » l . 1 In the tokamak 

disruption the main driven modes are the (5;3) and (1;1). The (5;3) 

mode, with i t s singular surface lying between those of the (3;2) and 

(2;1) modes, plays the dominant role in the coupling.4 In the reversed 

f i e l d pinch the ( l ;n ) and ( l ;n+ l ) modes are coupled by the (2;2n+l) and 

(0;1). The singular surface of the (2;2n+l) mode l ies between those of 

the ( l ;n ) and ( l ;n+ l ) modes, while the singular surface for the (0;1) 

i s the f i e l d reversal surface. One could suspect that the (2;2n+l) 

modes in the reversed f i e l d pinch w i l l play a s imi lar role to the (5;3) 

mode in the tokamak disruption. 

v 
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I t Is possible to describe several phases occurring In a tokamak 

d is rup t ion ca lcu la t ion. S ta r t ing with small perturbat ions of the (2;1) 

and (3;2) modes, these i n s t a b i l i t i e s grow exponential ly as independent 

l inear eigenfunctions. As the perturbations become larger, the growth 

becomes algebraic due t o quasi- l inear e f fec ts , 0 but the evolut ion s t i l l 

proceeds as fo r independent s ing le h e l i c i t i e s . The d is rupt ion is 

t r iggered when the nonlinear in teract ion between the (2;1) and (3;2) 

modes becomes strong, leading t o the explosive growth of the (3;2) and 

other modes. This i s followed by a turbulent stage involv ing the 

exc i ta t ion and interact ion of many modes.6 Because tokamak disrupt ions 

ar ise from a small number of spa t ia l l y separated i n s t a b i l i t i e s evolving 

in a low r e s i s t i v i t y plasma, i t is possible to observe the preturbulent 

phases c lear ly in numerical ca lculat ions truncated to include 

r e l a t i v e l y few modes. 

I n the reversed f i e l d pinch conf igurat ion there are l i ke l y to be 

several unstable modes of type ( l ; n ) wi th n » 1, a l l having singular 

surfaces in a region inside the f i e l d reversal surface. Because of the 

larger number of i n s t a b i I i t i e s , the close spat ia l proximity of the 

unstable modes, and the large r e s i s t i v i t y ( i n comparison wi th 

tokamaks), strong nonlinear in teract ion should dominate the evolut ion 

of reversed f i e l d pinch i n s t a b i l i t i e s . In comparison wi th the phases 

of the tokamak disrupt ion described above, nonlinear in terac t ion 

becomes important early in the ca lcu la t ion, whi le the magnetic islands 

are s t i l l small. The numerical study of magnetohydrodynamic (MHD) 

turbulence and possible dynamo e f fec ts in reversed f i e l d pinches w i l l 
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ult imately involve steady-state calculations with many interact ing 

modes. 

As an i n i t i a l step, a comparison between the nonlinear interact ion 

of tear ing modes in tokamaks and in reversed f i e l d pinches is carried 

out here In three parts: 

1. A br ief review of the single he l ic i ty behavior of the dominant 

i n s tab i l i t i e s is given in Sec. I I I . For reversed f i e l d 

pinches, attent ion is given to the influence of the plasma 

be',a and the location of singular surfaces. 

2. This work concentrates on the ef fect of coupling two 

i n s t a b i l i t i e s of d i f fe ren t he l i c i t y . For the simple coupling 

scheme described above, a comparison is made between the 

tokamak and reversed f i e l d pinch configurations in Sec. IV. 

3. F ina l ly , we present in Sec. IV some i n i t i a l considerations 

concerning the coupling of many modes. Although the 

exci tat ion of many modes occurs only in the f ina l stages of a 

tokamak disrupt ion, any model fo r the dynamo in reversed f i e l d 

pinches that invokes res is t ive tearing modes must consider the 

presence of many such modes in a steady-state turbulent 

plasma. 

In the fol lowing section (Sec. I I ) the assumptions and equations 

used in t h i s work are discussed along with the equ i l ib r ia used in these 

studies. 
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I I . ASSUMPTIONS, EQUATIONS, AND EQUILIBRIUM 

The behavior of res is t ive i n s t a b i l i t i e s in reversed f i e l d pinches 

and In tokamaks is studied here using the res is t ive MHD equations in 

three spat ia l dimensions and time. For reversed f i e l d pinch 

calculat ions these equations are solved in the fol lowing form: 

a ) 

and an equation of state for the pressure which assumes either the form 
T 

|fi.= - : - ? p - r p ^ ( r - i ) ^ L j 2 (3a) 

fo r a compressible plasma model or 

. p x $ x v) - j . ? v2 + J Vj2 (3b) 

which const i tutes an incompressible model (5 • v = 0) s imi lar to that 

used by Ayoemir and Barnes.7 

4 4 4 

The plasma current sa t i s f i e s the equation J = V x B, and the 

magnetic f i e l d i s divergence-free, ^ • 3 = 0. Equation (1) combines 

Faraday's law with the classical form of Ohm's law, whereas Eq. '2) i s 
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the momentum equation. The spec i f i c form of the v iscosi ty term 

appearing in Eq. (2) is s t r i c t l y correct only when ^ • v = 0. Although 

the equation of cont inui ty fo r the mass density is frequently included 

in the MHD equations, the mass density i s assumed to be a constant 

(p = PQ) in t h i s work. The e f fec ts of density perturbations upon the 

growth and evolution of res i s t i ve tear ing modes are expected to be 

minor, so that the neglect of the equation of cont inui ty i s j u s t i f i e d 

here. Equations ( l ) - ( 3 ) have been wr i t ten in a dimensionless system of 

uni ts with a l l lengths normalized to a (the plasma minor radius) , the 

magnetic f i e l d I t o BQ (the equi l ibr ium toro idal vacuum f i e l d at the 

plasma major radius RQ), the ve loc i ty v to the Alfven veloc i ty 
VA = 0$/MP<))1/5 ' fc'me the Alfven time T^ = a /v^ , the pressure p 

to PQ (the equi l ibr ium value at the magnetic ax i s ) , and the r e s i s t i v i t y 

t| t o tjQ (the value at the magnetic ax is ) . I n terms of these 

quant i t ies , S^ = Tp/T^ is the r a t i o of the res is t i ve sk in time 

r r = a2p./to Alfven time; 0q = 2|x Pq/Bq is the equi l ibr ium beta 

at the magnetic ax is ; and R = av^/t/, where u i s the v iscos i ty , in un i ts 

of (a 2 /T a ) . The 

un i t vector <£ denotes the toro ida l (or ax ia l in 

cy l indr i ca l geometry) d i rec t ion , and the subscript 1 denotes the 

poloidal (perpendicular to £) plane. Both the r e s i s t i v i t y i] and the 

v iscosi ty coe f f i c ien t R are taken to be constant in space and time. 

The r a t i o of spec i f i c heats i s taken t o be T = 5/3 in t h i s work. 

Because the evolution of r es i s t i ve tear ing modes i s not extremely 

sens i t ive t o toro idal curvature e f fec ts , cy l ind r i ca l geometry is used 

here. Equations ( l ) - ( 3 ) are solved using an (r,9,<;) coordinate system. 

A l l physical quant i t ies are required t o be regular a t the o r i g i n , 
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r = 0, Boundary condit ions at the wall (r = 1) are taken to be 
M IV A . M 

Bp = Jq s J^ = vp = ^jj- = B^^q.q) = 0, where the superscr ipt ~ denotes 

the value of the perturbat ion. 

This system of equations i s solved using the three-dimensional, 

nonlinear, i n i t i a l value computer code CYL.8 The time-stepping scheme 

i s p a r t i a l l y i m p l i c i t , using f i n i t e d i f ferences in the time and the 

radia l coordinate r , and a spectral representation wi th periodic 

boundary condit ions in 9 and A l l time-dependent physical quant i t ies 

are expressed in the form f ( r , 0 , t , t ) = £ [ f c ( r , t )cos(m9 + n£) + f s v ' m,n L mn mn 

( r , t )s in (m9 + n$) ] . Because of the up-down symmetry of the assumed 

equi l ibr ium, i t is possible to delete e i ther the sine or cosine terms 

from each quanti ty and to refer unambiguously to the (m;n) mode or 

component. I n the numerical calculat ions a spec i f i c ( f i n i t e ) set of 

modes is included. This f a c i l i t a t e s an understanding, through i t s 

inclusion or omission, of the ro le of each mode. 

Whereas Eqs. ( l ) - ( 3 ) are equally va l id fo r tokamaks and for 

reversed f i e l d pinches, the dominance of a nearly constant toroidal 

f i e l d in tokamaks may be used together wi th t he i r large aspect r a t i o to 

derive a reduced set of equations.9 At low beta in cy l indr ica l 

geometry, two scalar f i e l d equations in three spat ia l dimensions and 

t ime, one fo r the poloidal f lux funct ion i|> and the other f o r the 

ve loc i ty stream funct ion are obtained. These equations have been 

shown to provide resu l t s in excel lent agreement wi th those of 

Eqs. ( l ) - ( 3 ) in the tokamak l i m i t . 8 These equations have been discussed 

extensively e lsewhere, 2 ' 9 ' 1 0 and, because they are s i g n i f i c a n t l y faster 

computationally than the f u l l set of equations, they are used here. 
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rather than Eqs. ( l ) - ( 3 ) , for tokamak cases using the RSF code 

described in Ref. 10. 

We have studied Eqs. ( l ) - (3 ) using the following variations: 

1. solving Eqs. (1)—(3a) as written (compressible f l u i d ) , 

including ohmic heating; 

2. solving Eqs. ( l ) - (3a) (compressible f lu id ) , without the ohmic 
N 

heating term; 

3. solving Eqs. (1)-(3b) as written (incompressible); and 
••eq 

4. deleting the res i s t ive diffusion of the equilibrium, TJ J , 

from Eq. (1) for any of the above choices. 

The compressible equations with ohmic heating lead to substantia! 

increases in equilibrium pressure since no losses are included in the 

energy (pressure) equation. Although the rate of ohmic heating is 

inversely proportional to S^, i t i s s igni f icant for experimental values 

(S^ & 104). The deletion of the ohmic heating term in the compressible 

equations allows the init ial plasma beta to be maintained throughout 

the calculation. For the incompressible equations, the equation of 

s ta te can lead to a s ignif icant increase in pressure due to the fa s t 

res i s t ive diffusion of the equiIibrium. Sizeable pressure gradients 

are induced to maintain force balance with the J x B force resulting 

from th i s res i s t ive diffusion. Turning off the res i s t ive diffusion of 

the equilibrium eliminates th is type of generation of J x 3 force and 

allows the study of the evolution of the res i s t ive in s tab i l i t i e s for a 

given equilibrium rather than for a sequence of equiIibria rotated 

through res i s t ive diffusion. Although resul t s in th i s study are 
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presented using all four variations, i t is arguable that without 

se l f -cons i s tent res i s t iv i ty profi les and energy loss mechanisms the 

neglect of equilibrium res is t ive diffusion and ohmic heating are the 

preferable options. In this case i t i s possible to focus on the 

s tab i l i ty and evolution for a particular equilibrum. However, the most 

important resul ts presented here (namely, the e f f e c t s of coupling 

in s tab i l i t i e s of different hel ic i ty) are found to occur for all the 

above choices. From a practical standpoint i t i s eas iest to make 

numerical computations using incompressibiIity because compressionaI 

Alfven waves are then eliminated, allowing greater time step s i z e s and 

reduced computer time. 

For the reversed f i e ld pinch calculations, the ini t ia l s ta te has 

been taken to be a cylindrical, axisymmetric, ideal, zero flow 

equilibrium of Eqs. ( l ) - (3 ) plus a small perturbation. This 

equilibrium is a solution of the equation 

In order to solve Eq. 4 i t i s necessary to provide two additional 
eq eq 

relationships between the three unknowns p™, B^ , and Bq . For the 

calculations here, this i s done by specifying the pitch parameter 

(4) 

(16) 



9 

where = 2ira/L with L being the length of the cylinder and a the 

minor radius, and the Suydam parameter11 

The equilibrium i s stable to localized pressure driven modes when 

C(r) < 1/8. For the calculations of th is paper a zero beta equilibrium 

(due to Caramana et a l . 1 ) , which is stable to ideal modes but unstable 

to res is t ive tearing modes, has been chosen. This equilibrium was 

obtained by allowing the res i s t ive evolution (according bo a 

one-dimensional transport code12) of a tearing mode stable equilibrium 

due to Robinson.13 The parameters are y,(r) = 0.6125(1 - 1.8748r2 + 

0.8323r4), C(r) = 0, 

and = 0.2, which results in a safety factor 

profi le q(0) = 0.1225 > q(r) > q(l) = -0.005145 with the f i e l d reversal 

surface at r = 0.93. The dominant m = l ins tab i l i t i e s for th i s 

equilibrium have toroidal mode numbers in the range 10 < n < 15 with 

n = 11 and 12 having the largest linear growth rates. Figure 1 shows 

the safety factor and current prof i les for th i s equilibrium. Note the 

close spacing of the singular surfaces associated with the dominant 

instabiI i t ies . 

For the reduced equations, as solved in RSF,10 the pressure does 

not appear in the dynamic equations and the toroidal magnetic f i e l d i s 

assumed constant. Hence, an equilibrium solution i s completely 

specif ied by giving the safety factor profi le . For the calculations 

presented here we assume the functional form q(r) = qg 
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[ l + (r/rg)2XJ1/X with q0 = 1.344, r 0 = 0.66, and A = 3.24 (so that 

q(0) = 1.344 £ q(r) < q(l) = 4.32). This equilibrium has been chosen 

because i t i s linearly unstable to both the (2;1) and (3;2) modes and 

because the evolution of these modes leads to strong nonlinear 

Interaction and disruptive behavior for th is equilibrium. The safety 

factor and toroidal current profi les for this equilibrium are shown in 

Fig. 1. Note the relatively large separation of the singular surfaces 

of the dominant ins tab i l i t i e s when compared with those for the reversed 

f i e l d pinch. 
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I I I . SINGLE HELICITY CALCULATIONS 

Before considering the coupling of ins tab i l i t i e s having different 

he l l c i t i e s i t i s important to understand, as a reference point, the 

nonlinear evolution of a s ingle he l ic i ty . For the ins tab i l i t i e s 

involved In the tokamak disruption, the s ingle hel ic i ty evolution has 

been studied and modeled in great d e t a i l , 8 ' 1 4 " 1 7 both numerically and 

analytically. For such InstabiI i t ies the init ia l energy growth, which 

is exponential in time, slows to algebraic, due to quasi-linear 

e f fects , when the magnetic island width exceeds the tearing layer 

width. Eventually the instabil ity saturates. For a given mode and 

equilibrium the linear growth rate, the algebraic growth of the 

magnetic island, and the saturation amplitude of the instabil ity can 

all be estimated quasi-analytically. 

The s ingle helicity evolution of tearing modes in a reversed f i e ld 

pinch configuration has not been as thoroughly examined. Numerical 

calculations carried out by Caramana et a l . 1 for the 1/10 helicity at 

SA = 103 and the equilibrium described above show a double reconnection 

process in which a f i r s t reconnect ion of the magnetic island expels the 

original magnetic axis from the plasma, much the same as occurs for the 

m = 1 mode in sawtooth osc i l la t ions in tokamaks. However, this i s 

followed by a second, slow reconnection in which the magnetic axis 

re-forms and moves back into the plasma at a rate proportional to 1/S^. 

These calculations were carried out using a fu l ly compressible se t of 

equations including the evolution of the mass density and ohmic 

heating. 
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In the present work, single hel ic i ty calculations are carried out 

at S^ = 104 for modes having poloidal mode number m = 1 and toroidal 

mode numbers n » 10, 11, and 12. The singular surfaces for these 

h e t i c i t i e s in the init ia l equilibrium are r ^ o = 0.32, r \ / \ \ = 0.38, 

and rj /12 = 0.43, respectively (Fig. 1). 

For the m/n = 1/10 he l ic i ty , complete reconnection of the magnetic 

island and expulsion of the magnetic axis followed by a slow, second 

reconnection and the re-emergence of the original magnetic axis (as 

described by Caramana et a l . 1 ) i s obtained using the compressible 

equations with ohmic heating and with the incompressible equations, 

including res is t ive diffusion of the equilibrium (see Figs. 2 and 3). 

When the ohmic heating term i s turned off in the compressible equations 

and when the equilibrium res is t ive diffusion is turned off in the 

incompressible equations, the nonlinear growth of the instabil ity 

saturates before expulsion of the magnetic axis (Figs. 2 and 4) . For 

both double reconnection cases, beta increases substantially (Fig. 5) 

due to ohmic heating in the compressible case and to res i s t ive 

diffusion and force balance in the incompressible case. Both of the 

saturating cases remain at low beta. As can be seen in Fig. 5, the 

Suydam criterion for s tabi l i ty to localized pressure-driven modes 

[C(r) < 1/8] i s violated at the 1/10 singular surface quite early in 

both of the double reconnection cases. The evolution of the 

equilibrium bo high beta is destabilizing in these cases. The dynamic 

growth rates for the magnetic and kinetic energies, defined by 
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™ ZC|y| a t 

* 1 dEK 
E T 3 T ' 

(7 ) 

•K 

where 

E K 4 J | v | 2 dT , 

(8) 

are seen to follow closely the linear growth rates for the evolving 

equilibrium (Fig. 6), thus verifying the equilibrium evolution as the 

destabiIizing factor. 

For the m/n = 1/11 and m/n = 1/12 helicit ies , in which the 

singular magnetic surfaces l ie farther from the magnetic axis, the 

magnetic islands saturate without expulsion of the magnetic axis 

(Fig. 7), regardless of the specific choice of dynamic equations. The 

maximum sizes of the islands obtained are, however, strongly dependent 

upon the choice of dynamics, with the larger islands resulting with 

increasing equilibrium beta. In Fig. 7 the magnetic axis is seen to 

move back toward the center late in the evolution, as in the second 

reconnection. This phenomenon is not observed when the resistive 

diffusion is turned off , so that the second reconnection is probably 

caused by the resistive diffusion of the equilibrium after the initial 

instability i s saturated. For the m/n = 1/12 magnetic island, the 

results are similar to those for the m/n = 1/11, except that the 

maximum island s izes are smaller and the islands are farther from the 

center of the plasma. 
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IV. NONLINEAR COUPLING OF TWO UNSTABLE MODES 

If the dynamo e f f ec t observed in reversed f ie ld pinch devices is 

caused by res i s t ive tearing modes, i t i s almost certainly due to the 

nonlinear interaction of many such ins tabi l i t i e s . Unlike tokamak 

prof i les , for which at most a few tearing modes are unstable, there can 

be many unstable modes in reversed f i e l d pinches. Of these the 

dominant modes inside the f i e l d reversal surface are resonant with 

poloidal mode number m = 1 and high toroidal mode number n ~ 10. 

Because of the prof i les in the reversed f i e ld pinch, the singular 

surfaces for these dominant modes are spaced fair ly close together 

(Fig. 1) inside the f i e ld reversal surface. As a f i r s t step in 

understanding the interaction of these dominant ins tab i l i t i e s , we focus 

here on the nonlinear interaction of two of these modes. I t is 

instructive to compare and contrast th is situation with the analogous 

one in tokamaks, which provides a welI-understood theoretical model of 

the major d isrupt ion. 2 ' 4 ' 8 

Using t h i s model, we consider tokamak prof i les in which both the 

(m;n) = (2;1) and (3;2) modes are linearly unstable. When these 

i n s t a b i l i t i e s are small they grow independently, much as single 

hel ic i ty solutions. Consequently, the current profi le i s flattened 

around both the m/n = 2/1 H ' singular surfaces and steepened 

between these surfaces. r jring vhis time the (5;3) mode i s driven 

nonlinearly by the beating of the (2;1) and (3;2) modes. However, for 

certain prof i l es the steepening of the current gradient at the 5/3 mode 

rational surface i s su f f i c i en t to quasi-linearly destabi l ize the 

(m;n) = (5;3) mode, which couples the (2;1) and (3;2) modes. After 
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th i s destabiIization, the resonant coupling of the (2;1) mode with the 

(5;3) pumps energy into the (3;2) mode. The rapid growth which follows 

leads to the destabiIization of other modes in a disruptive process.6 

The destabiIization of the (5;3) mode and the consequent explosive 

growth of the (3;2) have been studied analyt ica l ly . 4 ' 6 In particular, 

i t has been found that the nonlinear J x 3 force resulting from the 

coupling of the (5;3) and (2;1) modes after the destabiIization of the 

(5;3) drives a rapid increase in the kinetic energy of the (3;2) mode. 

The analysis considers the growth of a tes t mode [the (3;2) mode] 

coupled by driven modes [dominated by the (5;3)] to a s t a t i c background 

of modes [dominated by the (2;1)] . The influence of the background 

modes upon the growth of the tes t mode i s found to depend upon the 

value of A' of the driven mode. For A' < 0 the e f fec t is stabil izing, 

and the nonlinear coupling damps the growth of the t e s t mode. For 

A' > 0, the nonlinear coupling drives the growth of the t e s t mode, and 

the growth rate i s estimated to be4 

B p | A' a 2 / ( B0W t h 2 ) , (g) 

where Bp is the radial magnetic f i e l d of the s ta t i c background, W is 

i t s radial extent, and A' is the value for the driven mode. Because 
•+ 4 

t h i s nonlinear e f f ec t i s due to the J x B force, either when damped or 

driven, the e f f ec t of the nonlinear coupling upon the t e s t mode appears 

f i r s t in the evolution of the kinetic energy. If A' of the driven mode 

i s posit ive, the t e s t mode will obtain a rapid growth on the MHD time 

scale . The t e s t mode will have the structure of a localized vortex at 
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i t s singular surface, and one expects th i s nonIinear mechanism to 

trigger a rapid conversion of magnetic to kinetic energy. 

Although Eq. (9) was derived under the assumptions of tokamak 

ordering, i t i s also valid at low beta in the interior of the reversed 

f i e l d pinch, away from the f i e ld reversal surface, where the toroidal 

f i e l d i s s ignif icant . A discussion of nonIinear dynamics in reversed 

f i e ld pinches has been given in Ref. 18 with further detai ls to follow 

in Ref. 19. Let us compare and contrast the coupling of the dominant 

modes in a tokamak disruption with that of the dominant modes for a 

reversed f i e l d pinch prof i le . In the tokamak disruption the t e s t mode 

i s taken to be the (m;n) = (3;2) mode; the s ta t i c background is 

dominated by the (2;1) mode; and the (5;3), with a singular surface 

between those of the (3;2) and the (2;1) modes, i s the dominant driven 

mode. Numerical calculations at Su = 106 show a destabiIization of 
P 

the (3;2) mode with the kinetic en.ergy growing most rapidly 

[Fig. 8(a)] , Prior to the destabiIization of the (3;2) mode, A'(s ;3) 

becomes positive [Fig. 8(b)] , and th is quasi-linear destabiIization 

changes the character of the mode [Fig. 8 ( c ) ] . No longer driven, the 

(5;3) instabil ity then pumps energy from the equilibrium into the 

vorticity of the (3;2) mode, causing the destabiIization observed in 

Fig. 8(a) . 

For the reversed f i e l d pinch equilibrium studied here, the largest 

linear growth rates are obtained for the (m;n) = (1;11) and (1;12) 

modes, respectively. The (1;12) will be considered as the tes t mode, 

so the background i s dominated by the (1;11), and the dominant coupling 

mode i s the (m;n) = (2;23) with i t s singular surface between those of 
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the C1;11) and (1;12) modes. A nonlinear calculation at = 104 shows 

that the (1;12) mode is stabil ized noticeably more rapidly, in 

comparison to i t s s ingle hel ic i ty behavior, by i t s coup Iing to the 

(1;11) mode [Fig. 9(a)] . The kinetic energy stabi l izat ion precedes 

that observed for the magnetic energy. The value of remains 

less than zero throughout the calculation [Fig. 9(b)] , and the 

character of this mode remains unaltered until the kinetic energy 

growth rate of the (1;12) mode becomes negative [Figs. 9(a) and (c)] . 

Hence, the (2;23) mode remains driven, extracting kinetic energy from 

the (1;12) mode and pumping i t into the equilibrium. The nonlinear 

coupling of the (1;11) and (1;12) ins tab i l i t i e s for th i s reversed f i e ld 

pinch profi le is stabiIizing. Although the results presented in Fig, 9 

were produced using incompressible dynamics without res i s t ive diffusion 

of the equilibrium (hence at low beta so that the model of Ref. 4 is 

applicable away from the f i e ld reversal surface), the same conclusions 

are obtained numerically when the other dynamic options are employed. 

The coupling is stabi l iz ing and the (2;23) mode i s not quasi-linearly 

destabiIized. 

I t i s appropriate to discuss the physics considerations which 

underlie the difference in nonlinear evolution of tearing modes in the 

tokamak and the reversed f i e l d pinch. In the tokamak, where q > 1, 

q' > 0, the resonant surfaces of the primary h e l i c i t i e s , 3/2 and 2/1, 

are well separated. Hence, s igni f icant steepening of the current 

profi lo occurs as the 3/2 and 2/1 magnetic islands grow toward overlap. 

By way of contrast, in the reversed f i e l d pinch, where q < 1, q' < 0, 

the resonant surfaces of the primary he l i c i t i e s -are quite closely 
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spaced. At Initial overlap, the 1/n island has width Wn » n | q ' | • 

Hence, l i t t l e or no profi le modification occurs before island overlap 

and the ensuing nonlinear coupling. 

The difference between the results in the tokamak and reversed 

f i e l d pinch cases i s consistent with the difference i n q ( r ) prof i les 

and, ultimately, with the standing of each relative to the Taylor 

minimum energy state. In the tokamak configuration, which i s 

relat ively far from the minimum energy configuration, the widely 

separated unstable (A' > 0) islands grow large enough prior to 

overlapping to distort the equilibrium current gradient, thus causing 

further instabil i ty . In the reversed f i e ld pinch configuration, which 

deviates (by res is t ive decay) only s l ight ly from the minimum energy 

s tate , the closely spaced unstable islands do not grow large enough 

prior to overlapping to distort <J>'. Hence, the driven (2;2n+l) mode 

remains stable (A' < 0) and acts to s tab i l i ze the primary modes. Thus, 

tearing mode interaction does not lead to reversed f i e l d pinch 

disruption. 

We now consider calcglations involving a larger number of 

interacting modes. The nonIinear MHD calculations for the reversed 

f i e l d pinch configuration may be thought of as proceeding in three 

phases. The f i r s t phase involves the independent s ingle hel ic i ty 

evolution of the dominant ins tabi l i t i e s . Because of the large number 

of unstable modes and the close proximity of their respective singular 

surfaces, the duration of th i s phase i s short. The second phase 

involves the nonlinear interaction of the dominant i n s t a b i l i t i e s and i s 

i l lustrated by a sequence of f i e ld line plots in Fig. 10. Several 
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magnetic islands, including the m/n = 1/10 1/14, are vis ible in these 

plots. The Interactions in this phase lead to spectrum broadening as 

the energy of the instability i s spread among more and more modes. As 

discussed above, these interactions are stabil izing for the dominant 

modes. This i s Illustrated for the (1;11) mode in Fig. 11. The 

numerics of th i s run allow a large number (£60) of modes to 

participate. 

The final phase i s turbulent, involving a broad spectrum of many 

modes. Using the incompressible equations, i*. i s seen in Fig. 12 that 

the global energies do not change s ignif icantly as the number of modes 

included in the calculation i s increased but that they are 

s ignif icantly different when a compressible model with no ohmic heating 

is employed. This i l lustrates the need for a proper energy evolution 

equation that incorporates in a se l f -consistent way the transport 

induced by tearing mode turbulence and edge e f fects . This subject will 

be considered in a separate publication.19 
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V. CONCLUSIONS 

The nonlinear evolution of res is t ive tearing modes for a reversed 

f i e l d pinch configuration has been examined numerically in cylindrical 

geometry using several variations of the full MHD equations. The 

de ta i l s of the s ingle hel icity evolution depend upon the evolution of 

the equilibrium and upon the location of the singular surface. The 

double reconnection process described by Caranana et a l . 1 i s observed 

when the dynamics leads to su f f i c i en t beta and when the singular 

surface is close to the center of the plasma. Otherwise, the 

instabil i ty saturates prior to the f i r s t reconnection. 

The nonlinear coupling of two unstable modes was considered in 

detai l , and the behavior was contrasted with that observed in tokamak 

disruptions. Although the quantitative results depend upon the 

spec i f i c choice of dynamic equations, the coup Iing was seen to be 

stabi l iz ing iri all cases, unlike that in a tokamak disruption. This 

nonlinear stabi l izat ion can be understood in terms of an analytical 

model.4 , a 

Finally, i t was seen that this stabil ization carries over to cases 

in which many modes are included. However, serious studies of 

turbulence in reversed f i e ld pinches will require a se l f -cons is tent 

transport model incorporating tearing mode turbulent transport and edge 

e f f e c t s . 
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ABSTRACT 

The multiple helicity nonlinear interaction of res is t ive tearing 

modes i s compared for the tokamak and reversed f i e l d pinch 

configurations using the magnetohydrodynamic equations. Unlike the 

case of the tokamak disruption, for which th i s interaction is 

destabiIizing when islands overlap, the nonlinear coupling of the 

dominant he l i c i t i e s i s shown to be a s tabi l iz ing influence in the 

reversed f i e l d pinch. The behavior of the coupled i n s t a b i l i t i e s in the 

two configurations can be understood as a consequence of the s tabi l i ty 

properties of the nonlinearly driven modes. In the case of the tokamak 

disruption, quasi-linear e f f ec t s linearly destabil ize the dominant 

driven mode, which then feeds energy to the driving mode. For the 

reversed f ie ld pinch the driven modes remain stable, acting as a brake 

on the growth of the dominant ins tabi l i t i e s . Furthermore, for the 

reversed f i e ld pinch configuration numerical resul ts indicate that 

nonlinear coupling of different h e l i c i t i e s results in noticeably more 

rapid saturation of the dominant ins tab i l i t i e s than was observed in 

s ingle helicity studies. 

v 
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FIGURE CAPTIONS 

FIG. 1. Equilibrium safety factor and current prof i les for the 

reversed f i e ld pinch and tokamak cases considered in th i s paper. The 

singular surfaces of the dominant modes are indicated by arrows: 

tokamak equilibrium — r g ^ = 0.49, rgyg = 0.66, r^j^ = 0.65 
i 

"eversed f ie ld pinch equilbrium — ryjQ = 0.32, r ^ j = 0.38, 

r l / 1 2 = p l /13 = °* 4 7 ' r l / 1 4 = °* 5 0 ' r l / 1 5 = °* 5 2 ' 

r 0 / 0 = ° - 9 3 

FIG. 2. Magnetic island widths vs time for the single helicity cases 

discussed in the text. Expulsion and re-emergence of the magnetic axis 

are observed for the 1/10 mode in the incompressible and ohmically 

heated compressible calculations. 

FIG. 3. Magnetic surfaces at several times for the 1/10 

incompressible single helicity calculation. The expulsion and 

re-emergence of the magnetic axis can be seen. 

FIG. 4. Magnetic surfaces at several times for the 1/10 compressible 

non-ohmically heated single hel ic i ty calculation. The island growth 

saturates without expulsion of the magnetic axis. 

FIG. 5. <0> vs time for the 1/10 single hel ic i ty calculations 

considered here. For the cases characterized by expulsion and 

re-emergence of the magnetic axis, the beta increase i s s ignif icant and 

the Suydam criterion i s violated at the 1/10 singular surface during 

most of the calculation. 
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FIG. 6. (1;11) kinetic and magnetic energy growth rates vs time for 

the 1/11 s ingle hel ic i ty incompressible calculation. The (1;11) linear 

growth rates for the evolved equilibrium show good agreement with 

dynamic growth rates. 

FIG. 7. Magnetic surfaces at several times for the 1/11 

incompressible single hel ic i ty calculation. The magnetic axis remains 

in the plasma throughout the calculation. 

FIG. 8. Mode coupling in a tokamak disruption, (a) (3;2) kinetic 

and magnetic energy growth rates vs time for a tokamak disruption 

calculation and the s ingle helicity magnetic energy growth rate. In 

the disruption, the (3;2) kinetic energy is destabilized f i r s t . 

(b) (5;3) magnetic energy growth rate compared with the average of the 

(2;1) and (3;2) kinetic and magnetic energy growth rates vs time. If 

the (5;3) mode were purely driven the curves would compare closely. 

Quasi-Iinear destabiIization of the (5;3) mode occurs when A'^g.gj 
a vg 

changes sign. (c) ^(5;3) vs time. The quasi-linear destabiIization 

changes the character of the mode causing the turnover of the i|iayg 

curve. 

FIG. 9. Mode coupling for reversed f i e l d pinch profi le , (a) (1;12) 

kinetic and magnetic energy growth rates vs time with coupled 

h e l i c i t i e s , compared with the single hel ic i ty magnetic energy growth 

rate. With mode coupIing, the (1;12) kinetic energy i s stabi l ized 

f i r s t . (b) (2;23) magnetic energy growth rate compared with the 

average of the (1;11) and (1;12) kinetic and magnetic energy growth 

rates vs time. The close agreement between the curves as welI as 
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i 

i 

^'(2;23) < 0 indicates that the (2;23) mode remains driven, 

(c) 8^2-23) v s t ' m e ' The turnover occurs after the stabi l izat ion of 

the (1;12) mode. 

FIG. 10. Magnetic f i e ld line plots showing the interaction of the 

dominant ins tab i l i t i e s along the axial length of the reversed f i e l d 

pinch. 

FIG. 11. (1;11) magnetic energy growth rate vs time in single hel ic i ty 

and coupled helicity reversed f i e l d pinch calculations. The nonlinear 

couplings are seen to be s tabi l iz ing. 

FIG. 12. Total kinetic energies vs time for reversed f i e l d pinch 

calculations. The behavior i s cr i t ica l ly affected by the dynamic 

assumptions. 

i 
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