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I. INTRODUCTION

It has been suggested thet in the reversed field pinch the
sustainment of the reversed magnetic field configuration against
transport processes may be due to the strong nonlinear interaction of
resistive tearing modes.! On the other hand, the nonlinear interaction
of resistive tearing modes in tokamaks has been shown to provide a
mechcnism capable of explaining and predicting major disruptions.?3 I
order to gain some understanding into how the nonlinear interaction of
resistive tearing modes might give rise to such different behavior as
dynamo action in the reversed field pinch and major disruptions in
tokamaks, we compare the interaction of the dominant modes for the two
configurations. We denote these modes by (m;n) and the corresponding
helicities by m/n, where m is the poloidel mocde number and n the
torcidal mode number. A simple tokamak disruption mode! has been founrd
for which the dominant instabilities are the (2;1) and (3:2) tearing
modes, while the dominant |inearly unstable modes in reversed field
pinch configurations are of type (1:n) with a > 1.1 In the tokamak
disruption the main driven modes are the (5;3) and (1;1). The (5;3)
mode, with its singular surface lying between those of the (3;2) and
(2;1) modes, plays the dominant role in the coupling.* In the reversed
field pinch the (1;n) and (1;n+1) modes are coupled by the (2;2n+1) and
(0;1). The singular surface of the (2;2n+1) mode lies between those of
the (1;n) and (1;n+l) modes, while the singular surface for the (0;1)
is the field reversal surface. One could suspect that the (2;2n+1)
modes in the reversed field pinch will play a similar role to the (5;3)

mode in the tokamak disrupticn.



It is possible to describe several phases occurring in a tokamak
disruption calculation. Starting with small| perturbations of the (2;1)
and (3;2) modes, these instabilities grow exponentially as independent
Itnear eigenfunctions. As the perturbations become larger, the growth
becomes algebraic due to quasi-linear offects,® but the evolution still
proceeds as for Iindependent single helicities. The disruption is
triggered when the nonlinear interaction between the (2;1) and (3;2)
modes becomes strong, leading to the explosive growth of the (3;2) and
other modes. This is followed by a turbulent stage involving the
excitation and interaction of many modes.® Because tokamak disruptions
arise from a small number of spatially separated instabilities evolving
in o low resistivity plasma, it is possible to observe the preturbulent
phases clearly in numerical calculstions truncated to include
relatively few modes.

In the reversed field pinch configuration there are |ikely to be
several unstable modes of type (1;n) with n 3> 1, all having singular
surfaces in a region inside the field reversal surface. Because of the
larger number of instabilities, the close spatial proximity of the
unstable modes, and the large resistivity (in comparison with
tokamaks), strong nonlinear interaction should dominate the evolution
of reversed field pinch instabilities. In comparison with the phases
of the tokamak disrupticn described above, ronlinear interaction
becomes important esrly in the calculation, while the magnetic islands
are still small. The numerical study of magnetohydrodynamic (MHD)

turbulence and possible dynamo effects in reversed field pinches will
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ultimately involve steady-state calculations with many interacting

As an initisl step, a comparison between the nonlinear interaction

of tearing modes in tokamaks and in reversed field pinches is carried

out here in three parts:

A brief review of the single helicity behavior of the dominant
instabilities is given in Sec. III. For reversed field
pinches, attention is given to the influence of the plasms
be'.a and the location of singular surfaces.

This work concentrates on the effect of coupling two
instabilities of different helicity. For the simpie coupling
scheme described above, a comparison is made between the
tokamak and reversed field pinch configurations in Sec. IV.
Finally, we presenl in Sec. IV some initial considerations
concerning the coupling of many modes. Although the
excitation of many modes occurs only in the final stages of a2
tokamak disruption, any model for the dynamo in reversed field
pinches that invokes resistive tearing modes must consider the
presence of many such modes in a steady-state turbulent

plasma.

In the following section (Sec. II) the assumptions and equations

used in this work are discussed along with the equilibria used in these
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II. ASSUMPTIONS, EQUATIONS, AND EQUILIBRIUM

The behavior of resistive instabilities in reversed field pinches
and in tokamaks is studied here using the resistive MHD equations in
three spatial dimensions and time. For reversed field pinch

calculations these equations are solved in the fol lowing form:

g%ﬁx(zxa-g;n*). . (1)
a:;;x(v’x;,’)-.é.'v?(v2+pop)+3x§+%.vi*, 2

and an equation of state for the pressure which assumes either the form
8 _ Y. %, _ oy, 2 - 2
-5%- v ap I“pa v+-B-o- r 1)%—.’ (32)

for a compressible plasma model or
- - -
Wp:-gav'ﬁX@xv)-%avz-kaﬁ-v% 712:]. (3b)

which constitutes an incompressible model (V' e V= 0) similar to that
used by Aydemir and Barnes.”

The plasma current satisfies the equation j = 3 X §, and the
magnetic field is divergence-free, Ved=o. Equation (1) combines

Faraday®’s law with the classical form of Ohm’s law, wheress Eq. [2) is



the momentum equation. The specific form of the viscosity term
sppearing in Eq. (2) is strictly correct only when Vev=o. Although
the equation of continuity for the mass density is frequently included
in the MHD eqdétions, the mass density is assumed to be a constant
Gp = po) in this work. The effects of density perturbations upon the
growth and evolution of resistive tearing modes are expected to be
minor, so that the neglect of the equation of continuity is justified
here. Equations (1)-(3) have been written in a dimensionless system of
units with all lengths normelized to a (the plasma minor radius), the
magnetic field B to By (the equilibrium toroidal vacuum field at the
plasma major radius Ry), the velocity v to the Alfven velocity
VA = (Bﬁ/upo)z’a. the time to the Alfven time TA = 8/vjy, the pressure p
to pg (the equilibrium value at the magnetic axis), and the resistivity
mto my (the value at the magnetic axis). In terms of these
quantities, Sy = T./Ty is the ratio of the resistive skin time
T, = azu/no to the Alfyen time; By = 2 po/B% is the equilibrium beta
at the magnetic axis; and R = avp/u, where v is the viscosity, in units
of (alea). The unit vector 3 denotes the toroidal (or axial in
cylindrical geometry) direction, and the subscript L1 denotes the
poloida! (perpendicular to §) plane. Both the resistivity % and the
viscosity coeflicient R are taken to be constant in space ard time.
The ratio of specific heats is taken to be ['= §/3 in this werk.
Because the evolution of resistive tearing modes is not extremeiy
sensitive to toroidal curvature effects, cylindrical geometry is used
here. Equations (1)-(3) are solved using an (r,0,&) coordinate system.

All physical quantities are required to be regular at the origin,



r=0. Boundsry conditions at the wall (r=1) are taken to be
B, = je = jg = Vo =-g£-= Eg(O;o) = 0, whers the superscript ~ denotes
the value of the perturbation.

This system of equations is solved using the three-dimensional,
nonlinear, Initial value computer code CYL.® The time-stepping scheme
is pertially implicit, using finite differences in the time and the
radiel coordinate r, end a spectral representation with periodic
boundary conditions in © and §. All time-dependent physical quantities
are espressed in the form 1(r,6,¢,t) =m§% [f;n(r,t)cos(me + ng) + f;n
(r,t)sin(me «+ ng)]. Because of the up-down symmetry of the assumed
equilibrium, it is possibie to delete either the sine or cosine terms
from each quantity and to refer unembiguously to the (m;n) mode or
component, In the numerical calculations a specific (finite) set of
modes is included. This facilitates an understanding, through its
inclusion or omission, of the role of each mode.

Whereas Egqs. (1)-(3) are equally valid for tokamaks and for
reversed field pinches, the dominance of a nearly constant toroidal
field in tokamaks may be used together with their large saspect ratio to
derive a reduced set of equations.” At low beta in cylindrical
geometry, two scalar field equations in thrze spatial dimensions and
time, one for the poloidal fiux function ¢ and the other for the
velociiy siresm function ¢, are obtained. These equations have been
shown to provide results in excellent agreement with those of
Eqs. (1)-(3) in the tokamak limit.® These equations have been discussed

2,9,10

extensively elsewhere, and, because they are significantly faster

computationally than the full set of equations, they are used here,



rether then Egs. (1)-(3), for tokamek cases wusing the RSF code
described in Ref. 10.

We have studied Eqs. (1)-(3) using the following variations:

1. solving Egs. (1)-(3a) s written (compressible fluid),
including ohmic heating;

2. solving Eqs. (1)-(3a) (compressibie fluid), without the ohmic
heating te;m;

3. solving Eqs. (1)-(3b) as written (incompressible); and
deleting the resistive diffusion of the equilibrium, 7 jeq,

from Eq. (1) for any of the above choices.

The compressible equations with ohmic heating lead to substantia!
increases in equilibrium pressure since no losses are included in the
energy (pressure) equation. Although the rate of ohmic heating is
inversely proportional to Sy, it is significant for experimental values
(Sp 2 10*). The deletion of the ohmic heating term in the compressible
equations allows the initial plasma beta to be maintained throughout
the calculation. For the incompressitle equations, the equation of
state can lead to 8 significant increase in pressure due to the fast
resistive diffusion of the equilibrium. Sizeable pressure gradients
are induced to maintain force balance witk the J X B force resulting
from this resistive diffusion. Turning off the resistive diffusion of
the equilibrium eliminates this type of generation of 3 % B force and
allows the study of the evolution of the resistive instabilities for a
given equilibrium rather than for a sequence of equilibria rolated

through resistive diffusion. Although results in this study are
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presented using ell four veriations, it is arguable that without
self-consistent resistivity profiles and energy loss mechanisms the
neglect of equilibrium resistive diffusion and ohmic heating are the
preferable options. In this case it is possible to focus on the
stability and evolution for a particular equilibrum, However, the most
important results presented here (namely, the effects of coupling
instabilities of different helicity) are found to occur for all the
above choices. From a practical standpoint it is easiest to make
numerical computations using incompressibility because compressional
Alfven waves are then eliminated, allowing greater time step sizes and
reduced computer time.

For the reversed field pinch calculations, the initial state has
been taken to be a cylindrical, axisymmetric, ideal, zero flow
equilibrium of Eqs. (1)-(3) plus o small perturbation. This

equilibrium is 8 solution of the equation

eq &q
dB B
5?%5—“—= B -3 (" 8) - )

In order to solve Eq. 4 it is necessary to provide two additional
relationships between the three unknowns p®q, B;q, and ng. For the

calculations here, this is done by specifying the pitch parameter

S W) ®)
w(r) = B;q = e



where € = 2na/L with L being the length of the cylinder and a the

minor radius, and the Suydam parameter!!

- Podp®d 1
c(r) =% '_(B;q)z n o

(6)

The equilibrium is stable to localized pressure driven modes when
C(r) < 1/8. For the calculations of this paper a zero beta equilibrium
(due to Caramana et al.l), which is stable to ideal modes but unstable
to resistive tearing modes, has been chosen. This equilibrium was
obtained by allowing the resistive evolution (according to 2
one-dimensional transport code'?) cf a tearing mode stable equilibrium
due to Robinson.!3 The parameters are u(r) = 0.8125(1 - 1.8748r2 +
0.8323r*), C(r) = 0, and €. = 0.2, which results in a safety factor
profile q(0) = 0.1225 2 q(r) 2 q(1) = -0.006145 with the field reversal
surface at r =0.93. The dominant m=1 instabilities for this
equilibrium have toroidal mode numbers in the range 10 < n € 15 with
n =11 and 12 having the largest linear growth rates. Figure 1 shows
the safety factor and current profiles for this equilibrium. Note the
close spacing of the singular surfaces associated with the dominant
instabilities.

For the reduced equations, as solved in RSF,1° the pressure does
not appear in the dynamic equations and the toroidal magnetic field is
assumed constant. Hence, an equilibrium solution is compietely
specified by giving the safety factor profile. For the calculations

presented  here we assume the functional form gq{r) = qq
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[1+ (r/rg)2A ]}/ with qp = 1.344, £y = 0.56, and A =3.24 (so that
q(0) = 1.844 < q(r) $ q(1) = 4.82). This equilibriun has besn chosen
because it is linearly unstable to both the (2;1) and (3;2) modes and
because the evolution of these modes leads to strong nonlinear
interaction and disruptive behavior for this equilibrium., The safety
factor and toroidal current profiles for this equilibrium are shown in
Fig. 1. Note the relatively large separation of the singulor surfaces
of the dominant instabilities when compared with those for the reversed

field pinch.
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III. SINGLE HELICITY CALCULATIONS

Before considering the coupling of instabilities having different
helicities it is important to understend, as a reference point, the
nonlinear evolution of a single helicity. For the instabilities
involved in the tokamak dieruption, the single helicity evolution has
been studied and modeled in great detail,:14=17 poth numerically and
analytically. For such instabilities the initial energy growth, which
Is exponential in time, slows to algebraic, due to quasi-linear
effects, when the magnetic island width exceeds the tearing layer
width. Eventually the instability saturates. For @ given mode and
equilibrium the linear growth rate, the algebraic growth of the
magnetic island, and the saturation amplitude of the instability can
al| be estimated quasi-analytically.

The single helicity evolution of tearing modes in 3 reversed field
pinch configuration has not been as thoroughly examined. Numerical
calculations carried out by Caramana et al.l for the 1/10 helicity at
Sp = 10 and the equilibrium described above show a double reconnection
process in which a first reconnection of the magnetic island expels the
original magnetic axis from the plasma, much the same as occurs for the
m=1 mode in sawtooth oscillations in tokamaks. However, this is
followed by a second, slow reconnection in which the magnetic axis
re-forms and moves back into the plasma at a rate proportional to 1/S,.
These calculations were carried out using a fully compressible set of
equations including the evolution of the mass density and ohmic

heating.
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In the present work, single helicity calculations are carried out
ot §y = 10* for modes having poloidal mode number m = 1 and toroidal
mode numbers n = 10, 11, and 12. The singular surfaces for these
helicities in the Initial equilibriun are ry /1 = 0.32, ryy; = 0.38,
and ri/12 = 0.43, respectively (Fig. 1).

For the m/n = 1/10 helicity, complete reconnection of the magnetic
island and expuision of the magnetic axis followed by a slow, second
reconnection and the re-emergence of the original magnetic axis (s
described by Caramana et al.!) is obtained using the compressible
equations with ohmic heating and with the incompressible equations,
including resistive diffusion of the equilibrium (see Figs. 2 and 3).
When the ohmic heating term is turned off in the compressible equations
and when the equilibrium resistive diffusion is turned off in the
incompressible equations, the nonlinear growth of the instability
saturates before expulsion of the magnetic axis (Figs. 2 and 4). For
both double reconnection cases: beta increases substantially (Fig. 5)
due to ohmic heating in the compressible case and to resistive
diffusion and force balance in the incompressible case. Both of the
saturating cases remain at low beta. As can be seen in Fig. 5, the
Suydam criterion for stability to localized pressure-driven modes
[C(r) < 1/8] is violated at the 1/10 singular surface quite early in
both of the double reconnection cases. The evolution of the
equilibrium to high beta is destabilizing in these cases. The dynamic

growth rates for the magnetic and kinetic energies, defined by
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; @

'm:

A H-
s ofp

'k:
where

By =+ [ 1812 or .

(8)

B =5 [ [V ¢,
sre seen to follow closely the linear growth rates for the evolving
equilibrium (Fig. 6), thus verifying the equilibrium evolution as the
destabilizing factor.

For the m/n = 1/11 and m/n = 1/12 helicities, in which the
singular magnetic surfaces lie farther from the magnetic axis, the
magnetic islands saturate without expulsion of the magnetic axis
(Fig. 7), regardless of the specific choice of dynamic equations. The
maximum sizes of the islands obtained are, however, strongly dependent
upon the choice of dynamics, with the larger islands resulting with
increasing equilibrium beta. In Fig. 7 the magnetic axis is seen to
move back toward the center late in the evolution, as in the seccnd
reconnection. This phenomenon is not observed when the resistive
diffusion is turned off, so that the second reconnection is probably
caused by the resistive diffusion of the equilibrium after the initial
instability is saturated. For the m/n = 1/12 magnetic island, the
results are similar to those for the m/n = 1/11, except that the
maximum island sizes are smaller and the islands are farther from the

center of the plasma.
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IV. NONLINEAR COUPLING OF TWO UNSTABLE MODES

If the dynamo effect observed in reversed field pinch devices is
ceused by resistive tearing modes, it is almost certainly due to the
nonlinear interaction of many such instabilities. Unlike tokamak
profiles, for which at most a few tearing modes are unstable, there can
be many unstable modes in reversed field pinches. O0Of these the
dominant modes inside the field reversal surface are resonant with
poloidal mode number m =1 and high toroidal mode number n ~ 10.
Because of the profiles in the reversed field pinch, the singular
surfaces for these dominant modes are spaced fairly close together
(Fig. 1) inside the field reversal surface. As a first step in
understanding the interaction of these dominant instabilities, we focus
here on the nonlinear interaction of two of these modes. It is
instructive to compare and contrast this situation with the analogous
one in tokamaks, which provides a weli-understood theoretical model of
the major disruption.2:48

Using this model, we consider tokamak profiles in which both the
(m;n) = (2;1) and (3;2) modes are linearly unstable. When these
instabilities are small they grow independently, much as single
helicity solutions. Consequently, the current profile is flattened
around both the m/n =2/1 1 “  singular surfaces and steepened
between these surfaces. ".iring vhis time the (5;3) mode is driven
nonlinearly by the beating of the k2;1) and (3;2) modes. However, for
certain profiles the steepening of the current gradient at the 5/3 mode
rational surface is sufficient to quasi-linearly destabilize the

(m:n) = (5;3) mode, which couples the (2;1) and (3;2) modes. After
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this destabilization, the resonant coupling of the (2;1) mode with the
(6;8) pumps energy into the (3;2) mcde. The rapid growth which follows
leads to the destabilization of other modes in a disruptive process.®
The destabilization of the (5;3) mode and the consequent explosive
growth of the (3;2) have been studied analytically.*s® In particular,
it has been found that the noniinear J X B force resulting from the
coupling of the (6;3) and (2;1) modes after the destabilization of the
(6;8) drives a rapid increase in the kinetic energy of the (3;2) mode.
The analysis considers the growth of a test mode [the (3;2) mode]
coupled by driven modes [dominated by the (5;3)] to a static background
of modes [dominated by the (2;1)]. The influence of the background
modes upon the growth of the test mode is found to depend upon the
value of A" of the driven mode. For A” < 0 the effect is stabilizing,
and the nonlinear coupling damps the growth of the test mode. For
A” > 0, the nonlinear coupling drives the growth of the test mode, and

the growth rate is estimated to be*
2 B3t | A a2/( B M2 ) (9)
Jr P

where gﬁt is the radial magnetic field of the static background, W s
its radial extent, and A" is the value for the driven mode.- Because
this nonlinear effect is due to the J X B force, either when demped or
driven, the effect of the nonlinear coupling upon the test mode appears
first in the evoluticn of the kinetic energy. If A’ of the driven mode
is positive, the test mode will obtain a rapid growth on the MHD time

scale. The test mode will have the structure of a localized vortex at
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Its singular surface, and one eupects this nonlinear mechanism to
trigger a rapid conversion of magnetic to kinetic energy.

Although Eq. (9) was derived under the assumptions of tokamak
ordering, it is also valid at low beta In the interior of the reversed
field pinch, away from the field reversal surface, where the toroldal
field is significant. A discussion of nonlinear dynamics in reversed
field pinches has been given in Ref. 18 with further details to follow
in Ref. 19. Let us compare and contrast the coupling of the dominant
modes in a tokamak disruption with that of the dominant modes for a
reversed field pinch profile. In the tokamak disruption the test mode
is taken to be the (m;n) = (3;2) mode; the static background is
dominated by the (2;1) mode; and the (5:3), with a singular surface
between those of the (3;2) and the (2;1) modes, is the dominant driven
mode. Numerical calculations sat SHP = 10® show a destabilization of
the (3;2) mode with the kinetic energy growing most rapidly
[Fig. 8(a)]. Prior to the destabilization of the (3;2) mode, A”(5;3)
becomes positive [Fig. 8(b)], and this quasi-linear destabilization
changes the character of the mode [Fig. 8(c)]. No longer driven, the
(5;8) instability then pumps energy from the equilibrium into the
vorticity of the (3;2) mode, causing the destabilization observed in
Fig. 8(a).

For the reversed field pinch equilibrium studied here, the largest
linear growth rates are obtained for the (m;n) = (1;11) and (1;12)
modes, respectively. The (1;12) will be considered as the test mode,
so the background is dominated by the (1;11), and the dominant coupling
mode is the (m;n) = (2;23) with its singular surface between those of
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the (1;11) and (1;12) modes. A nonlinear calculation at Sy = 10* shows
that the (1;12) mode is stabilized noticeably more rapidly, in
comparison to Its single helicity behavior, by its coupling to the
(1;11) mode [Fig. 9(2)]. The kinetic energy stabilization precedes
that observed for the magnetic energy. The vaiue of Az2;23) remains
less than zero throughout the calculation [Fig. 9(b)], and the
character of this mode remains unaltered until the kinetic energy
growth rate of the (1;12) mode becomes negative [Figs. 8(a) and (c)].
Hence, the (2;23) mode remains driven, extracting kinetic energy from
the (1;12) mode and pumping it into the equilibrium. The nonlinear
coupling of the (1;11) and (1;12) instabilities for this reversed field
pinch profile is stabilizing. Although the results presented in Fig. 9
were produced using incompressible dynamics without resistive diffusion
of the equilibrium (hence at low beta so that the model of Ref. 4 is
epplicable away from the field reversal surface), the same conclusions
are obtained numerically when the other dynamic options are employed.
The coupling is stabilizing and the (2;23) mode is not quasi-linearly
destabilized.

It is appropriate to discuss the physics considerations which
underlie the difference in nonlinear evolution of tearing modes in the
tokamak and the reversed field pinch. In the tokamak, where q 2 1,
q” > 0, the resonant surfaces of the primary helicities, 3/2 and 2/,
are well separated. Hence, significant steepening of the current
profile occurs as the 3/2 and 2/1 magnetic islands grow toward overlap.
By way of contrast, in the reversed field pinch, where q< 1, " <0,

the resonant surfaces of the primary helicities-are quite closely
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speced. At initial overiap, the 1/n isiend hes width W, N-ﬁTg,Tw
Hence, little or no profile modification occurs before island overlap
and the ensuing nonlinear coupling.

The difference between the results in the tokamak and reversed
field pinch cases is consistent with the difference in q(r) profiles
and, ultimately, with the standing of each relative to the Taylor
minimum energy state. In the tokamak configuration, which is
relatively far from the minimum energy configuration, the widely
sepsrated unstable (A” > 0) islands grow large enough prior to
overlapping to distort the equifibrium current gradient, thus causing
further instability. In the reversed field pinch configuration, which
deviates (by resistive decay) only slightly from the minimum energy
state, the closely spaced unstable islands do nct grow large enough
prior to overlapping to distort <J>’. Hence, the driven (2;2n+1) mode
remains stable (A’ < 0) and acts to stabilize the primary modes. Thus,
tearing mode interaction does not lead to reversed field pinch
disruption.

We now consider calculations involving a larger number of
interacting modes. The nonlinear MHD calculations for the reversed
field pinch configuration may be thought of as proceeding in three
phases. The first phase involves the independent single helicity
evolution of the dominant instabilities. Because of the large number
of unstable modes and the close proximity of their respective singular
surfaces, the duration of this phase is short. The second phase
involves the nonlinear interaction of the dominant instabilities and is

illustrated by a sequence of field line plots in Fig. 10. Several
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magnetic islands, including the m/n = 1/10 + 1/14, are visible in these
plots. The Interactions in this phase lead to spectrum broadening as
the energy of the instability is spread among more and more modes. As
discussed above, these interactions sre stabilizing for the dominant
modes. This Is Illustrated for the (1;11) mode in Fig. 11. The
numerics of this run allow o large number (R 60) of modes to
participate.

The final phase is turbulent, involving a broad spectrum of many
modes. Using the incompressible equations, i* is seen in Fig. 12 that
the global energies do not change significantly as the number of modes
included in the calculation is increased but that they are
significantly di?ferent when a compressible model with no ohmic heating
is employed. This illustrates the reed for a proper energy evolution
equation that incorporates in a self-consistent way the transport
induced by tearing mode turbulence and edge effects. This subject will

be considered in a separate publication.l?
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V. CONCLUSIONS

The nonlinear evolution of resistive tearing modes for 2 reversed
field pinch configuration has been examined numerically in cylindrical
geometry using severa! variations of the full MHD equations. The
details of the single helicity evolution depend upon the evolution of
the equilibrium and upon the location of the singular surface. The
double reconnection process described by Caramana et al.! is observed
when the dynamics leads to sufficient beta and when the singular
surface is close to the center of the plasma. Otherwise, the
instability saturates prior to the first reconnection.

The nonlinear coupling of two unstable modes was considered in
detai!, and the behavior was contrasted with that observed in tokamak
disruptions. Although the quantitative results depend upon the
specific choice of dynamic equations, the coupling was seen to be
stabilizing in all cases, unlike that in e tokamak disruption. This
noniinear stabilization can be understood in terms of an analytical
model .48
Finally, it was seen that this stabilization carries over to cases
in which many modes are included. However, serious studies of
turbulence in reversed field pinches will require a self-consistent
transport model incorporating tearing mode turbulent transport and edge

effects.
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ABSTRACT

The multiple helicity nonlinear interaction of resistive tearing
modes Is compared for the tokamak and reversed field pinch
configurations using the magnetohydrodynamic equations. Unlike the
case of the tokamak disruption, for which this interaction is
destabilizing when islands overlap, the nonlinear coupling of the
dominant helicities is shown to be a stabilizing influence in the
reversed field pinch., The behavior of the coupled instabilities in the
two configurations can be understood as a consequence of the stability
properties of the nonlinearly driven modes. In the case of the tokamak
disruption, quasi-linear e7fects |inearly destabilize the dominant
driven mode, which then feeds energy to the driving mode. For the
reversed field pinch the driven modes remain stable, acting as a brake
on the growth of the dominant instabilities. Furthermore, for the
reversed field pinch configuration numerical results indicate that
nonlinear coupling of different helicities results in noticeably more
rapid saturation of the dominant instabilities than was observed in

single helicity studies.
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FIGURE CAPTIONS

FIG. 1. Equilibrium safety factor and current profiles for the
reversed field pinch and tokamak cases considered in this paper. The
singular surfaces of the dominant modes are indicated by arrows:

tokamak equilibrium —- ra/ = 0.49, rg/3 = 0.56, ro/1 = 0.685

~eversed ffeld pinch equilbrium —- r1/10 = 0.32, rF1/11 = 0.38,
r/12 = 0.43, r1/13 = 0.47, r1/14 = 0.560, r1/16 = 0.82,
Po/o = 0.93

FIG. 2. Magnetic island widths vs time for the single helicity cases
discussed in the text. Expulsion and re-emergence of the magnetic axis
are observed for the 1/10 mode in the incompressible and ohmically

heated compressible calculations.

FIG. 3. Magnetic surfaces at seversl times for the 1/10
incompressible single  thelicity calculation. The expulsion and

re-emergence of the magnetic axis can be seen.

FIG. 4. Magnetic surfaces at severs! times for the 1/10 compressible
non-ohmically heated single helicity calculation. The island growth

saturates without expulsion of the magnetic axis.

FIG. 6. <B> vs time for the 1/10 single helicity calculations
considered here. For the cases characterized by expulsion and
re-emergence of the magnetic axis, the beta incresse is significant and
the Suydam criterion is violated at the 1/10 singular surface during

most of the calculation.
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FIG. 6. (1;11) kinetic and magnetic energy grewth rates vs time for
the 1/11 single helicity incompressible calculation. The (1;11) linesr
growth rates for the evolved equilibrium show good agreement with

dynamic growth rates.

FIG. 7. Magnetic surfaces at several times for the 1/11
incompressible single helicity calculation. The magnetic axis remains

in the plasma throughout the calculation.

FIG. 8. Mode coupling in a tokemak disruption. (a) (8;2) kinetic
and magnetic energy growth rates vs time for a tokamek disruption
calculation and the single helicity magnetic energy growth rate. In
the disruption, the (3;2) kinetic energy is destabilized first.
(b) (5;3) magnetic energy growth rate compared with the average of the
(2;1) end (3;2) kinetic and magnetic energy growth rates vs time. If
the (5;3) mode were purely driven the curves wouid compare closely.
Quasi-linear destabilization of the (5;3) mode occurs when A'(s;s)
changes sign. (c) w(gzg) vs time. The quasi-linear destabilization
changes the character of the mode causing the turnover of the wavg

curve.

FIG. 9. Mode coupling for reversed field pinch profile. (a) (1;12)
kinetic and magnetic energy growth rates vs time with coupled
helicities, compared with the single helicity magnetic energy growth
rate. With mode coupling, the (1;12) kinetic energy is stabilized
first. (b) (2:;28) magnetic energy growth rate compared with the
average of the (1;11) and (1;12) kinetic and magnetic energy growth

rates vs time. The close agreement between the curves as well as
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A'(2;23j <0 indicates that the (2;23) mode remains driven.
() Bz2;23) vs time. The turnover occurs after the stabilization of

the (1;12) mode.

FIG. 10. Magnetic field |ine plots showing the intersction of the
dominant instabilities along the axial length of the reversed field

pinch.

FIG. 11. (1;11) magnetic energy growth rate vs time in single helicity
and coupled helicity reversed field pinch calculations. The nonlinear

couplings are seen to be stabilizing.

FIG. 12, Total kinetic energies vs time for reversed field pinch
celculations., The behavior is critically affected by the dynamic

assumptions.
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