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CONTACT STRESSES ON A THIN PLATE AFTER LARGE 
DISPLACEMENTS TO A FULL PARABOLIC SURFACE* 

Robert C. Reuter, Jr. 
Rodney K. Wilson 

Sandia National Laboratories 
Albuquerque, NM 87185 

ABSTRACT 

A solution is obtained for the determination of all loads 
necessary to hold an initially flat, thin, elastic plate in the 
shape of a prescribed parabolic surface, following large 
displacement. These loads include spatially varying normal 
tractions distributed over the back surface of the plate, and a 
uniform shear force and bending moment applied along the 
opposing edges which become the rims of the parabola after 
deformation. The plate represents a reflective surface which 
is mechanically deformed to the shape of, and bonded to a 
rigid, parabolic substructure to create a solar collector. 
After assembly, the normal stresses are those developed in the 
adhesive which bonds the reflective surface to the 
substructure. The absence of edge loads along the rims of an 
actual, formed reflective surface gives rise to local 
displacement and stress variations (edge effects) which are 
obtained through a separate solution. Numerical results for 
the normal stress distribution, local variations and loss of 
optical quality in the edge effect zone are included. 

*This work-performed at Sandia National Laboratories supported 
by the U.S. Department of Energy under contract number 
DE-AC04-76DP00789. 
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NOMENCLATURE 

flexural rigidity of reflective surface 

Young's modulus 

focal length of parabola 

thickness of reflective panel 

stiffness of adhesive plus substructure 

bending moment at x 

incremental bending moment at ~ 

bending moment applied at rim to maintain true 
parabolic shape 

moment reaction at vertex 

membrane reaction at vertex 

contact pressure applied over back surface of 
reflective panel to maintain true parabolic shape 

Shear force applied at rim to maintain true parabolic 
shape 

curvalinear coordinate (arc length) measured along. 
parabola from vertex 

displacement of reflective surface at x 

rectangular coordinates 

panel-adhesive-substructure stiffness parameter 

second cross-over distance 

coordinate distance measured from rim 

dimensionless coordinate measured from vertex 

Poisson's ratio 

dummy variable 

contact stress at x due to forming 

contact stress at x due to edge effect 

slope of parabola at x 

dimensionless contact pressure 
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INTRODUCTION 
Line focusing solar collectors in the form of parabolic 

troughs are often assembled by elastically deforming an 
initially flat reflective surface to the shape of a 
premanufactured, parabolic support structure. The reflective 
surfaces may be thin, mirrored glass panels, mirror laminates, 
polished metallic panels or panels with various reflective 
coatings, and are bonded to the parabolic support structure by 
various choices of adhesives. Figure 1 shows an example of a 
thin, flat, mirrored panel of strengthened glass elastically 
deformed and bonded to a prefabricated, sheet metal rib and 
panel support structure. To offset the tendency of the 
reflective surface to return to its initially flat state, 
contact stresses develop in the adhesive beneath it. 

A thin, flat panel can be deformed to a parabolic surface 
by a spatially nonuniform pressure distributed over its surface 
and a constant bending moment and shear force along each rim of 
the resulting parabolic surface, as determined herein. The rim 
loads are necessary from an analytical standpoint to maintain 
equilibrium and the true parabolic shape locally. When only 
contact adhesives are used to hold the reflective surface in 
place, as is frequently done, there is no rim moment or shear 
applied. These loads are replaced by relatively large, local 
contact stress variations which develop near the edge to offset 
the tendency of the reflective surface to achieve zero 
curvature (a consequence of having no rim moment). Because the 
true parabolic shape is lost in this region, optical quality of 
the collector is compromised. This is·referred to as the edge 
effect. 

The principal objective of this study is to predict the 
magnitude, direction and distribution of contact stresses 

required to hold the reflective surface to the parabolic 
substructure, taking into account the edge effect. The problem 

is solved in two phases. First, the pressure distribution 
required to elastically deform the flat reflective surface 
panel through large displacements to the true parabolic shape 



FIGURE 1. Assembled, parabolic, line focusing solar collector 
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is obtained. The rim moment and shear force are necessarily 
retained in this phase of the analysis. By changing the sense 
of these forming pressures, and assuming that spring-back 
effects are negligible, the corresponding contact stresses are 
obtained. In the second phase, a rim bending moment and shear 
force, equal in magnitude and opposite in sense to the rim 
bending moment and shear force required to achieve the true 
parabolic shape (in phase 1), are applied to the edge of a 
semi-infinite, thin, flat plate (the reflective surface) on an 
elastic foundation (the adhesive layer and substructure). This 
approach permits calculation of contact stresses between the 
plate and its foundation, thereby modeling the edge effect. 
Presumably the true shape of the reflective surface is achieved 
during mechanical forming, prior to releasing the forming 
loads. Superposition of the solutions from the two phases 
gives the desired result, with the free edge condition 
satisfied. Several conclusions are drawn regarding the 
dependence of contact stresses and optical quality upon general 
adhesive and substructure properties. 

DEFORMATION TO THE TRUE PARABOLA - THE FORMING PROBLEM 

An end view of one half of the reflective surface, after 
deformation to the parabolic cylinder, is ·shown in Fig. 2. It 
is symmetric with respect to the y - z (focal) plane. External 
loads necessary to achieve the true parabolic shape described 
by 

are PC(x), the contact pressure, MR, the rim bending 
moment, and QR' the rim shear force, hereafter referred to as 
the residual moment and residual shear. The membrane force, 

NV' and the bending moment, MV' are internal reactions 
which occur at the vertex of the parabola. 

( 1 ) 
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FIGURE 2. Diagram of half of the deformed, reflective 
surface explicating coordinates, rim loads, 
vertex reactions and the pressure distribution 
required to achieve the true parabolic shape. 
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In his theory for the elastic bending of thin rods by large 
deformation, see [1] for example, Euler established that the 
curvature is proportional to the bending moment at any point in 
the rod. To extend this useful result to the inextensional 
theory of thin plates it is necessary to require that 
anticlastic effects be confined to a very small region along 
edges perpendicular to generators of the deformed plate. Then, 
the remainder of the plate behaves as though it were 
experiencing cylindrical bending. This occurs whenever the 
square of the plate width is large in comparison to the product 
of the plate thickness and radius of curvature, a condition 
easily satisfied by geometries in the present investigation. 
These concepts are covered in [2,3]. Euler's relation can be 
expressed as 

o d~(x) = M(x) 
ds 

where 0 i~ the flexural rigidity of a plate of thickness, h, 
material modulus, E, and Poisson's ratio, \I, and is given by 

E h3 
o = - 2 

12(1-\1 ) 

Refering to Fig. 3, s is the curvilinear coordinate along the 
parabola, and ~ is the angle formed between a tangent to the 
parabola and the ~-axis. Therefore, (d~/ds) is the curvature 
at any point s. Curvature is expressed in rectangular 
coordinates [5] 

d~ 
d"S= 

( 2 ) 

( 3 ) 

Since the parabolic trough collectors of interest have an 
aperture equal to 4f, the displacements of a flat panel to the 
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FIGURE 3. Definition of the dummy variable, ~, local 
mement, M{x) and slope, ¢. 
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desired shape are large. Therefore, the square of (dy/dx) in 
(3) cannot be ignored in comparison to unity, and it is 
retained in the calculations. The vertex moment reaction, MV 

and the residual moment, MR, can be found directly from (2) 

since the curvature of the ideal parabola is known everywhere. 
In dimensionless form they are 

The residual shear, QR' can be found from the relation 

QR 
__ dM(2f) - -as-

Using (1),(2) and (3) in (6) gives 

Q f2 
R 

-0-- = 
3 

32 

The total moment at any transverse location, x, is found from 
the equation for moment equilibrium 

where the incremental moment is given by 

The form of PC(x) is determined to within a single 

( 4 ) 

( 5 ) 

( 6 ) 

(7) 

( 8) 

integration constant, C, by solving (2). This constant, and 
the unknown reaction, NV' are obtained by satisfying 
equilibrium of forces in the y and x directions, respectively. 

Sandia's interests lie with 90
0 

rim angle parabolas [4J, or, 



for those with a full aperture equal to 4f, thus establishing 
integration limits in the equations for equilibrium in the y 
and x directions, given by 

( 9 ) 

( 1 0 ) 

A complete solution to the problem is obtained as follows. 
Using (1) and substituting (8) into (2) gives 

( 1 1 ) 

An inspection of (11) reveals that, by differentiating the 
right hand side three times with respect to x, NV and MV 
can be eliminated, leaving an equation in PC(x) only. Upon 
using Leibnitz's rule [5J for differentiating an integral with 
variable limits~ three times successively, (11) becomes 

= ( 1 2 ) 

The left hand side of (12) can be found from knowledge of the 
desired parabolic shape, given by (1). Substituting (1) into 
(3) and differentiating three times with respect to x gives for 
the left hand side of (12), 

15xD 
32f 5 [ 2] -7 I 2\ 2 [ 2 -II 

1 + ( ~ f) 3 - 7 (~ f ) 1 + (~ f)] . (1 3 ) 
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It is convenient to introduce the dimensionless variables 

P f3 
x '1' C ( 14 ) n =2f and = -D-

The rim of the parabola rim is then located at n= 1 • Using 
( 14) , ( 1 3 ) is substituted into ( 1 2 ) to give 

d'l' 3n 15n [3 7 2 ] ( 15 ) Tn 
+ 

( 1 +n 2 ) 
'1' = -

8(1+n 2)9/2 
-

( 1 :n 2 ) 

Equation (15) is a linear, first order differential equation 
with a well known general solution [6], which, in the present 
notation, is 

[ 2 7 ] + c l 
- 3(1+n2) • 

The integration constant, C, is found by satisfying vertical 
equilibrium, (9), the result being 

Therefore, (16) becomes 

( 16) 

The solution is completed by using (7), (14) and (17) in (10) 
to obtain the membrane reaction at the vertex, which is, again 
in dimensionless form, 

N f2 
V 7 

-D- = 64 ( 18) 



Use of the inextensional theory, defined by (2), in the 
presence of a membrane force, NV' is justified by recognizing 
that NV is sufficiently small so that resulting extensions do 
not effect either equilibrium or the moment - curvature 
relationships. It must be remembered that the stre5ses of 
interest are the contact stresses, cr C' in the adhesive 

L 

applied to the backside of the deformed, reflective surface. 
These stresses are the negative of the contact pressures 
applied to the front side to deform the initially flat panel. 

Therefore, crC(x) = -PC(x). Figure 4 illustrates, in 
dimensionless form, how these stresses vary with the projected 
distance from vertex to edge. It is seen that the tensile 
stress has a maximum value at the vertex, decreases to zero at 
a location approximately 1/3 the distance to the edge and 
remains compressive from there to the edge. The maximum 

\ 

compressive stress occurs approximately 2/3 of the way from 
vertex to edge. Sandia's interests are with parabolic 
collectors with f = 0.5 meters, and with mirrored glass 
reflective panels where h ~ 1.27 mm. Using the results in Fig. 
4, these parameters yield a maximum tensile stress at the 
vertex of approximately 27.6 Pa, a trivial value even for the 
weakest adhesives. Of course this value will increase with 
(h/f)3 for other geometries, but, for those of interest here, 
the more significant contact stress problem will be found in 
the edge effect zone. 

LOSS OF THE TRUE SHAPE - THE EDGE EFFECT PROBLEM 

Recall that the above derivation of the adhesive stresses, 

crC(x), requires the application of a residual bending moment, 
MR, and a residual shear force, QR' along the rim of the 
parabola in order to maintain the nonzero curvature and true 
shape at the rim. However, these loads are not present in the 
actual collector. As a result, a loss in the parabolic shape 
(and thus a loss in optical quality) occurs in a r~gion near 

15 
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FIGURE 4. Dimensionless contact stresses in adhesive 
applied to backside of reflective surface 
after forming. 



the rim of the parabola where the curvature tends to zero. 
Here, a method is proposed to characterize this behavior by 
treating the region near the rim of the parabola as a flat, 
semi-infinite plate on an elastic foundation, Fig. 5. Loads 
equal in magnitude and opposite in direction to MR and QR 
are applied along the edge of this plate. The normal stresses, 

cr R, applied to the plate by the the deformed foundation are 
calculated and the solution is superimposed on the previous 
solution, cr C' to obtain results for the actual zero bending 
moment and zero shear force edge conditions. 

Justification for characterizing the edge region as a flat 
plate is found in the criterion which stipulates that the 
radius of curvature be five times the cross section depth [7J. 

In the present case, the radius of curvature in the region of 
interest is more than a thousand times the plate thickness so 
that this criterion is easily met. The semi-infinite 
characteristic of this model is based on the general theory for 
the analysis of plates and beams on elastic foundations in 
which all beams are treated as semi-infinite whose actual 
lengths, L, satisfy the relationship: 

( 19) 

where 

( 20) 

In (19), k is the conventional elastic foundation stiffness [7J 

and 0 is the flexural rigidity of the plate. As will be shown 
later, the values of a corresponding to the parabolic troughs 

o fin t ere s t fa 1 1 bet wee n 3. 8 7 and 30. 9 1 mm - 1 • T h us, i f the 

length of the region being modeled as a flat plate is greater 

than 122.0 mm then the semi-infinite approximation is valid. 
Since the region being modeled as a flat plate is greater than 

127.0 mm, (19) is satisfied. 

17 



FIGURE 5. 
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Diagram of the flat-plate model of the 
edge effect region explicating the coordinate 
system and semi-infinite extension. 



Corresponding to the above model are the well known 
equation and general solution [7] 

an d 

The solution is subject to the boundary conditions 

( 21 ) 

(22) 

(23) 

(24) 

Using (23) and (24), and transforming to the coordinate defined 
by 

x = 2f - 1:; (25) 

the solution takes the form 

-a(2f-x) ~ 
e 3 ~Rcosa(2f-x) 

20a 
(26) 

+ aMR (COSa(2f-x)-sina(2f-x))] . 

1 9 
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The normal stresses in the adhesive, defined by 

can be written, using (5), (7) and (26), as 

- 4J2{af)Sina(2f-x)] 

Another quantity of interest is the surface normal rotation 
(slope error) defined by 

Substituting (26) into (29) gives 

( 27) 

(28) 

(29) 

-a(2f-x) e [(3 + 8j2( a f)) cos a ( 2 f -x) + 3 sin a ( 2 f -x)} (30 ) 

The expression for the normal stress, (28), has the form of 
a damped, linear oscillator, with maximum compressive stress 
occuring at the edge where x = 2f. Proceeding toward the 
vertex, the normal stress in the elastic foundation becomes 
alternately tensile and compressive, rapidly decreasing in peak 
value. After some preliminary numerical work it was found that 
the magnitude and location of the maximum stresses were strong 
functions of a (for fixed f), and unless the stiffness of the 
elastic foundation, and thus a, was known accurately, large 
errors in the results could occur. In the case of the 
parabolic collector, the elastic foundation consists of both 
the adhesive layer and the substructure itself. Since it is 
difficult to characterize the local foundation stiffness of the 
substructure near its rim, a different approach to the 



numerical evaluation of (28) is taken. Using a laser ray trace 
procedure [8], and a cursory visual observation, it has been 
determined that the optical inaccuracies attributed to the edge 
effect occur within a five to ten centimeter region near the 
rim of the parabola. According to (26) and (28), the curves 
for displacement and stress pass through zero whenever 

3/2 a - atana(2f-x) + -aT = 0 ( 3 1 ) 

For parabolas of interest here, the quantity 3j2/8f can be 
neglected in comparison to a, as a first approximation, so that 
(31) is satisfied whenever 

a(2f-x.) 
1 

n1T 
~ 4 ' n=l, 5,9, ... (32 ) 

where xi is the location of the ith zero displacement or 
stress, counting in from the free edge. It can be shown that 

after the second cross-over from the free edge, stress 
amplitudes are very small in comparison to those nearer the 
edge. With this observation, it is assumed that the noticeable 
edge effects occur between the free edge of the parabola and 

the second cross-over. By letting 02 be the distance from 
the free edge to the second cross-over, and recognizing that 

X2=2f-0 2, (32) can be used to express the foundation 
stiffness parameter a in terms of the observed edge effect, or 

second cross-over distance, 02. The result is 

a = ( 33) 

Consequently, instead of needing accurate information about the 
foundation stiffness near the parabolic edge, only the size of 

the edge effect region need be known. Typical values of a and 

21 



02 are shown in Table 1 along with the corresponding 
stiffness, k, of the foundation representing the adhesive and 
steel substructure, computed from (20). A glass plate of 
thickness h = 1.27 mm, Young's modulus E = 70 GPa and Poisson's 
ration v = 0.24 (yielding a stiffness D = 12.5 N-m) was used in 
the calculation of k. 

Table 1 
Edge Effect Parameters 

°2(m) 0.01270 0.0254 0.0508 0.0762 0.1016 

a(m- l ) 308.4 154.6 77.3 51.5 38.6 

k(N-m) 1.900xl05 1.188xl05 7.426xl0 2 1.467xl0 2 4.639xlO l 

DISCUSSION OF RESULTS 

It was pointed out above that for materials used in current 
constructions, the magnitudes of crc are very small suggesting 
that very little pressure is needed to form the glass panel 
into the parabolic shape to mate with the substructure. 
However, in the edge effect regions near the rim additional 
considerations must be made. In Fig. 6 and 7 the distribution 
of stress and slope error near the rim resulting from the edge 

effect have been plotted. Unlike Fig. 4 the actual stresses, 
cr R, have been plotted as a function of the actual distance 
along the parabola because it is impossible to place (28) in a 
form such as (17) where the left hand side is dimensionless 
and, moreover, contains quantities which do not depend on the 

22 
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FIGURE 6. Contact stresses in adhesive applied to backside 
of deformed reflective surface arising from 
edge effect. 
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FIGURE 7. Rotation of surface normals (slope error) 
arising from edge effect. 



parameters appearing on the right hand side. In particular, 
the quantity D in crR(x)f3/D is not independent of the 
parameter S as indicated by equation (20). As a result, the 
curves have been generated for a variety of sizes of the edge 

effect region, 02. 
In examining these figures three observations are of 

interest: (1) The magnitudes of the stress, cr R, are an order 
of magnitude larger than the stresses, cr C• Thus, while only 
small pressures are needed to mate the glass panel to the 
substructure, much higher pressures are needed in order to 
increase the optical quality near the rim. Theoretically, it 

would require the residual moment, MR, to give the correct 
curvature near the rim. Since this is not possible, some other 
means (such as the use of clamps) should be considered to make 
sure the region near the rim is well bonded to the substructure 
in order to support the higher stresses and minimize the slope 
errors that result from the edge effect; (2) There is a trade 
off between the slope error and the adhesive stress. For small 

values of the second cross-over distance, 02' the slope 
errors are small, but, the stresses in the edge effect region 
are high. Conversely, for larger values of the second 
cross-over distance the stresses decrease but the slope errors 
increase. Since, in either case, the maximum tensile stresses 
in the adhesive are within acceptable limits, it seems that 
reducing the size of the affected region and thus reducing the 
magnitudes of the slope errors is desirable. This is achieved 

by increasing substructure stiffness, k; (3) The magnitudes of 
the slope errors predicted in Fig. 6 and 7 correspond well to 
observed data, Fig. 8. Thus, the model presented in this study 
should provide a means for optimizing material parameters to 
increase the optical accuracy and/or decrease the cost of the 

parabolic design. 
The results of this study correspond to the single panel 

parabolic solar trough design (continuous rim-to-rim reflective 
surface). Also receiving considerable attention is a double 
panel design where the full parabola is separated into equal 
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SLOPE ERROR PLOTS TAKEN 
FROM RIM TO RIM LASER RAY 
TRACINGS OF BUDD-400A PANEL 

SCAN DATE: JANUARY 5. 1981 
NOMINAL FOCAL LENGTH: 0.48 m/18.89 In 
APERTURE: 2.0 m178.81n 
FOCAL PLANE LENGTH: 1.0m/39.41n 
NUMBER OF SCANS: 20 
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8GURE 8. Typical results from laser ray tracing showing 
slope errors at rim. 
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halves at the vertex. In a continuation of this study the 
above analysis is repeated for the half parabola and extended 
to include the behavior of the edge effects which now also 
appear at the free edges at the vertex. These studies neglect 
specific substructure design features and involvement. A part 
of this involvement concerns the effects of gaps in the 
adhesive (resulting from stamping operations designed to 
provide stiffness of the substructure through ribbing) on the 
stress distribution and slope errors near the free edge of the 
parabola and half-parabola. This problem also is being 
considered. 

SUMMARY 

A thin plate (the reflective surface of a parabolic trough 
collector) can be elastically formed through large 
displacements to a true parabolic surface by application of a 
spacially varying surface pressure and uniform bending moments 
and shear forces applied to a pair of opposing edges. Once 
formed, the parabolic surface can be bonded to a 
(comparatively) rigid substructure and expected to retain its 
shape by virtue of contact stresses developed in the adhesive 
behind the deformed plate (these stresses are equal in 
magnitude and opposite in sense to the forming pressures). In 
most collector designs, provisions are not made for applying 
the edge loads (moment and shear) necessary to achieve the true 
parabolic shape. Consequently, optical quality near the 
collector's rims is reduced and high contact stresses develop 
in these regions. 

The present work includes the derivation of equations 
necessary to calculate the magnitude of all loads (and 

stresses) required to mechanically form and hold a trJe 
parabolic shape for thin, reflective surfaces, and to calculate 

local stress variations resulting from necessary boundary (rim) 
conditions not being satisfied in practice. Considerable 
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knowledge has been gained with regard to understanding the 
significance of the edge effect problem, the identity of 
important parameters involved and how to reduce undesirable 
consequences in the edge effect zone. Basically, results show 
that contact stresses over the back surface of the reflective 
surface due to mechanical forming are relatively small for the 
materials and geometries of interest here. Additionally, the 
size of the edge effect zone at the rim(s) of the parabola can 
be reduced by increasing local foundation stiffness, which also 
reduces the magnitude of the slope errors there and increases 
normal stress levels to possibly significant levels. 
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