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CONTACT STRESSES ON A THIN PLATE AFTER LARGE
DISPLACEMENTS TO A FULL PARABOLIC SURFACE™*

Robert C. Reuter, Jr.
Rodney K. Wilson
Sandia National Laboratories
Albugquerque, NM 87185

ABSTRACT

A solution 1is obtained for the determination of all loads
necessary to hold an initially flat, thin, elastic plate in the
shape of a prescribed parabolic surface, following large
displacement. These loads include spatially varying normal
tractions distributed over the back surface of the plate, and a
uniform shear force and bending moment applied along the
opposing edges which become the rims of the parabola after
deformation. The plate represents a reflective surface which
is mechanically deformed to the shape of, and bonded to a
rigid, parabolic substructure to create a solar collector.
After assembly, the normal stresses are those developed in the
adhesive which bonds the reflective surface to the
substructure. The absence of edge loads along the rims of an
actual, formed reflective surface gives rise to local
displacement and stress variations (edge effects) which are
obtained through a separate solution. Numerical results for
the normal stress distribution, local variations and loss of
optical quality in the edge effect zone are included.

*This work performed at Sandia National Laboratories supported
by the U.S. Department of Energy under contract number
DE-AC04-76DP00789.
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NOMENCLATURE
flexural rigidity of reflective surface
Young's modulus
focal length of pgrabo]a
thickness of reflective panel
stiffness of adhesive plus substructure
bending moment at x
incremental bending moment at §

bending moment applied at rim to maintain true
parabolic shape

moment reaction at vertex
membrane reaction at vertex

contact pressure applied over back surface of
reflective panel to maintain true parabolic shape

Shear force applied at rim to maintain true parabolic
shape

curvalinear coordinate (arc length) measured along
parabola from vertex

displacement of reflective surface at x
rectangular coordinates
panel-adhesive~-substructure stiffness parameter
second cross-over distance

coordinate distance measured from rim
dimensionless coordinate measured from vertex
Poisson's ratio

dummy variable

contact stress at x due to forming

contact stress at x due to edge effect

slope of parabola at x

dimensionless contact pressure



INTRODUCTION

Line focusing solar collectors in the form of parabolic
troughs aré often assembled by elastically deforming an
initially flat reflective surface to the shape of a
premanufactured, parabolic support structure. The reflective
surfaces may be thin, mirrored glass panels, mirror laminates,
polished metallic panels or panels with various reflective
coatings, and are bonded to the parabolic support structure by
various choices of adhesives. Figure 1 shows an example of a
thin, flat, mirrored panel of strengthened glass elastically
deformed and bonded to a prefabricated, sheet metal rib and
panel support structure. To offset the tendency of the
reflective surface to return to its initially flat state,
contact stresses develop in the adhesive beneath it.

A thin, flat panel can be deformed to a parabo]ic surface
by a spatially nonuniform pressure distributed over its surface
and a constant bending moment and shear force along each rim of
the resulting parabolic surface, as determined herein. The rim
loads are necessary from an analytical standpoint to maintain
equilibrium and the true parabolic shape locally. When only
contact adhesives are used to hold the reflective surface in
place, as is frequently done, there is no rim moment or shear
applied. These loads are replaced by relatively large, local
contact stress variations which develop near the edge to offset
the tendency of the reflective surface to achieve zero
curvature (a consequence of having no rim moment). Because the
true parabolic shape is Tost in this region, optical quality of
the collector is compromised. This is . referred to as the edge
effect.

The principal objective of this study is to predict the
magnitude, direction and distribution of contact stresses
required to hold the reflective surface to the parabolic
substructure, taking into account the edge effect. The problem
is solved in two phases. First, the pressure distribution
required to elastically deform the flat reflective surface
panel through large displacements to the true parabolic shape



FIGURE 1.

Assembled, parabolic, 1ine focusing solar collector



is obtained. The rim moment and shear force are necessarily
retained in this phase of the analysis. By changing the sense
of these forming pressures, and assuming that spring-back
effects are negligible, the corresponding contact stresses are
obtained. In the second phase, a rim bending moment and shear
force, equal in magnitude and opposite in sense to the rim
bending moment and shear force required to achieve the true
parabolic shape (in phase 1), are applied to the edge of a
semi-infinite, thin, flat plate (the reflective surface) on an
elastic foundation (the adhesive layer and substructure). This
approach permits calculation of contact stresses between the
plate and its foundation, thereby modeling the edge effect.
Presumably the true shape of the reflective surface is achieved
during mechanical forming, prior to releasing the forming
loads. Superposition of the solutions from the two phases
gives the desired result, with the free edge condition
satisfied. Several conclusions are drawn regarding the
dependence of contact stresses and optical quality upon general
adhesive and substructure properties.

DEFORMATION TO THE TRUE PARABOLA - THE FORMING PROBLEM

An end view of one half of the reflective surface, after
deformation to the parabolic cylinder, is -shown in Fig. 2. It
is symmetric with respect to the y - z (focal) plane. External
loads necessary to achieve the true parabolic shape described
by

2
y = 17 (1)

are PC(X)’ the contact pressure, My, the rim bending

moment, and QR, the rim shear force, hereafter referred to as
the residual moment and residual shear. The membrane force,
NV’ and the bending moment, MV’ are internal reactions

which occur at the vertex of the parabola.



.——FOCAL PLANE

FIGURE 2.

Diagram of half of the deformed, reflective
surface explicating coordinates, rim loads,
vertex reactions and the pressure distribution
required to achieve the true parabolic shape.
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In his theory for the elastic bending of thin rods by large
deformation, see [1] for example, Euler established that the
curvature is proportional to the bending moment at any point in
the rod. To extend this useful result to the inextensional
theory of thin plates it is necessary to require that
anticlastic effects be confined to a very small region along
edges perpendicular to generators of the deformed plate. Then,
the remainder of the plate behaves as though it were
experiencing cylindrical bending. This occurs whenever the
square of the plate width is large in comparison to the product
of the plate thickness and radius of curvature, a condition
easily satisfied by geometries in the present investigation.
These concepts are covered in [2,3]. Euler's relation can be
expressed as

where D is the flexural rigidity of a plate of thickness, h,
material modulus, E, and Poisson's ratio, v, and is given by

Refering to Fig. 3, s is the curvilinear coordinate along the
parabola, and ¢ is the angle formed between a tangent to the
parabola and the g-axis. Therefore, (dé¢/ds) is the curvature
at any point s. Curvature is expressed in rectangular
coordinates [5]

d2

ds ~ [] +( )2]3/2

Since the parabolic trough collectors of interest have an
aperture equal to 4f, the displacements of a flat panel to the

<

x
N
—~
w
~——

5



) /

FOCAL /
~ PLANE /

z
p

X3 M(x) /

c ¢(x)
1 {

FIGURE 3. Definition of the dummy variable, &, local
mement, M(x) and slope, ¢.

2f

11



12

desired shape are large. Therefore, the square of (dy/dx) in
(3) cannot be ignored in comparison to unity, and it is
retained in the calculations. The vertex moment reaction, MV
and the residual moment, MR, can be found directly from (2)

since the curvature of the ideal parabola is known everywhere.

In dimensionless form they are

Wfoo1
D -2 ?

2
D 8

fan)
=)

—h
w

The total moment at any transverse location, x, is found from
the equation for moment equilibrium

X
M(x) =_/; dMp(E) - Nyy(x) + My
where the jncrementa] moment is given by

dMp(g) = - Pc(g)(x-g)dg-Pc(zg)[y(x)-y(g)]dy

The form of PC(x) is determined to within a single
integration constant, C, by solving (2). This constant, and
the unknown reaction, NV’ are obtained by satisfying

equilibrium of forces in the y and x directions, respectively.

Sandia's interests lie with 90° rim angle parabolas [4], or,



for those with a full aperture equal to 4f, thus establishing

integration 1imits in the equations for equilibrium in the y
and x directions, given by

2f
Qpcos[o(2f)] =/(; Pe(x)dx (9)

2f .
Ny = :/; Pe(x)dy + Qpsin[o(2f)] . (10)

A complete solution to the problem is obtained as follows.
Using (1) and substituting (8) into (2) gives

2
p 98 . -fOXPC(a)[(x—a) e SRR DLV SR MG

o)
-4

An inspection of (11) reveals that, by differentiating the
right hand side three times with respect to x, NV and MV

can be eliminated, leaving an equation in PC(x) only. Upon
using Leibnitz's rule [5] for differentiating an integral with
variable limits, three times successively, (11) becomes

4 2 dPC(x) 3x

d’¢ [ X\ ]
q 3ds (Zf / dx 4f2 C ‘

The left hand side of (12) can be found from knowledge of the
desired parabolic shape, given by (1). Substituting (1) into
(3) and differentiating three times with respect to x gives for
the left hand side of (12),

4 2+4-712 2 24 -1
o8t 150 [ T e 597 o
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It is convenient to introduce the dimensionliess variables

n = 2? and Y = D—' . (]4)

The rim of the parabola rim is then located at n=1. Using
(14), (13) is substituted into (12) to give

d¥

2
30y D [3 - In ] : (15)
dn (1+n°) 8(1*'712)9/2 (1+n2)

Equation (15) is a linear, first order differential equation
with a well known general solution [6], which, in the present
notation, is

-1 15 7
= 2 = ——| + C ;. 16
RPN {]5(1+n2)2 [ 3(1+n'2)] } (re)

The integration constant, C, is found by satisfying vertical
equilibrium, (9), the result being

C=-17s
Therefore, (16) becomes
e (e [0 tk) -
Vo= - 6 - ——| - —=! . (17)
16(1+n%) 372 [(140%)° (1+n2) 4

The solution is completed by using (7), (14) and (17) in (10)
to obtain the membrane reaction at the vertéx, which is, again
in dimensionless form, '



Use of the inextensional theory, defined by (2), in the
presence of a membrane force, NV’ is justified by recognizing
that NV is sufficiently small so that resulting extensions do
not effect either equilibrium or the moment - curvature
relationships. It must be remembered that the stresses of
interest are the contact stresses, ocs in the adhesive

applied to the backside of the deformed, reflective surface.
These stresses are the negative of the contact pressures
applied to the front side to deform the initially flat panel.
Therefore, cC(x) = -PC(x). Figure 4 illustrates, in
dimensionless form, how these stresses vary with the projected
distance from vertex to edge. It is seen that the tensile
stress has a maximum value at the vertex, decreases to zero at
a location approximately 1/3 the distance to the edge and
remains compressive from there to the edge. Tpe maximum
compressive stress occurs approximately 2/3 of the way from
vertex to edge. Sandia's interests are with parabolic
collectors with f = 0.5 meters, and with mirrored glass

reflective panels where h = 1.27 mm. Using the results in Fig.

4, these parameters yield a maximum tensile stress at the

vertex of approximately 27.6 Pa, a trivial value even for the

weakest adhesives. Of course this value will increase with
(h/f)3 for other geometries, but, for those of interest here,
the more significant contact stress problem will be found in
the edge effect zone.

LOSS OF THE TRUE SHAPE - THE EDGE EFFECT PROBLEM

Recall that the above derivation of the adhesive stresses,
°C(X)’ requires the application of a residual bending moment,
MR’ and a residual shear force, QR, along the rim of the
parabola in order to maintain the nonzero curvature and true
shape at the rim. However, these loads are not present in the
actual collector. As a result, a loss in the parabolic shape
(and thus a loss in optical quality) occurs in a region near

15
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FIGURE 4, Dimensionless contact stresses in adhesive
applied to backside of reflective surface
after forming. :



the rim of the parabola where the curvature tends to zero.
Here, a method is proposed to characterize this behqvior by
treating the region near the rim of the parabola as a flat,
semi-infinite plate on an elastic foundation, Fig. 5. Loads
equal 1in magnitude and opposite in direction to MR and QR

are applied along the edge of this plate. The normal stresses,
IR applied to the plate by the the deformed foundation are
calculated and the solution is superimposed on the previous
solution, ocs to obtain results for the actual zero bending
moment and zero shear force edge conditions.

Justification for characterizing the edge region as a flat
plate is found in the criterion which stipulates that the
radius of curvature be five times the cross section depth [7].
In the present case, the radius of curvature in the region of
interest is more than a thousand times the plate thickness so
that this criterion is easily met. The semi-infinite
characteristic of this model is based on the general theory for
the analysis of plates and beams on elastic foundations in
which all beams are treated as semi-infinite whose actual
lengths, L, satisfy the relationship:

—
v

N W
™iA
-

—
-
O
~

where

ALk (20)

w
|
[w

In (19), k is the conventional elastic foundation stiffness [7]
and D is the flexural rigidity of the plate. As will be shown
later, the values of B corresponding to the parabolic troughs
of interest fall between 3.87 and 30.91 mm‘], Thus, if the
length of the region being modeled as a flat plate is greater
than 122.0 mm then the semi-infinite approximation is valid.
Since the region being modeled as a flat plate is greater than
127.0 mm, (19) is satisfied.

17
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FIGURE 5. Diagram of the flat-plate model of the
edge effect region explicating the coordinate
system and semi-infinite extension.
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Corresponding to the above model are the well known
equation and general solution [7]

d4

Wp - - kwg (21)

dz?

and

wr(z) = e=BE[AcosBZz + Bsingt] . (22)

The solution is subject to the boundary conditions

d Wo MR
— = -5 (23)
dg £=0
3
d wR QR
-7 =-5 > (24)

Using (23) and (24), and transforming to the coordinate defined
by

X = 2f - ¢ . (25)
the solution takes the form

e—B(Zf—x)
wR(x) = - 2083 [pRcoss(Zf-x)

(26)

+ BMR(coss(Zf-x)—sins(Zf—x»] .

19
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The normal stresses in the adhesive, defined by
cR(X) = —ka(X) . (27)

can be written, using (5), (7) and (26), as

3

op(X) = - _B_D? o—8(2f-x) [(3+4ﬁ(3f)) cosg(2f-x)
16(8f)
(28)
- 4¢E¥ef)sine(2f-x)]
Another quantity of interest is the surface normal rotation
(slope error) defined by
dwR(x)
l et i —
WR(X) = - dx (29)
Substituting (26) into (29) gives
-g(2f-x)
wg(x) = E——" 6 + 8v2(s)) coss(2f-x) + 3 sins(2f-x)] (30)
R 64(pf)°

The expression for the normal stress, (28), has the form of
a damped, linear oscillator, with maximum compressive stress
occuring at the edge where x = 2f. Proceeding toward the
vertex, the normal stress in the elastic foundation becomes
alternately tensile and compressive, rapidly decreasing in peak
value. After some preliminary numerical work it was found that
the magnitude and location of the maximum stresses were strong
functions of g (for fixed f), and unless the stiffness of the
elastic foundation, and thus B8, was known accurately, large
errors in the results could occur. In the case of the
parabolic collector, the elastic foundation consists of both
the adhesive layer and the substructure itself. Since it is
difficult to characterize the local foundation stiffness of the
substructure near its rim, a different approach to the



numerical evaluation of (28) is taken. Using a laser ray trace
procedure [8], and a cursory visual observation, it has been
determined that the optical inaccuracies attributed to the edge
effect occur within a five to ten centimeter region near the
rim of the parabola. According to (26) and (28), the curves
for displacement and stress pass through zero whenever

B - Btang(2f-x) + g%g= o . (31)

For parabolas of interest here, the quantity 3J§]8f can be
neglected in comparison to g, as a first approximation, so that
(31) is satisfied whenever

B(2f-x,) = 7% , n=1, 5, 9, ... (32)
where X5 is the location of the ith zero displacement or
stress, counting in from the free edge. It can be shown that
after the second cross-over from the free edge, stress
amplitudes are very small in comparison to those nearer the
edge. With this observation, it is assumed that the noticeable
edge effects occur between the free edge of the parabola and
the second cross-over. By letting 8, be the distance from
the free edge to the second cross-over, and recognizing that
x2=2f—52, (32) can be used to express the foundation
stiffness parameter g8 in terms of the observed edge effect, or
second cross-over distance, 5. The result is

5u
B = ﬂ?; . (33)

Consequently, instead of needing accurate information about the
foundation stiffness near the parabolic edge, only the size of
the edge effect region need be known. Typical values of g and

21



§, are shown in Table 1 along with the corresponding

stiffness, k, of the foundation representing the adhesive and
steel substructure, computed from (20). A glass plate of
thickness h = 1.27 mm, Young's modulus E = 70 GPa and Poisson's
ration v = 0.24 (yielding a stiffness D = 12.5 N-m) was used in

the calculation of k.

Table 1
Edge Effect Parameters

Gz(m) 0.01270 0.0254 0.0508 0.0762 0.1016

s(m™1) | 308.4 154.6 77.3 51.5 38.6

k(N=m) 1.900x10°] 1.188x10° | 7.426x10% | 1.467x102 | 4.639x10!

22

DISCUSSION OF RESULTS

It was pointed out above that for materials used in current
constructions, the magnitudes of oc are very small suggesting
that very Tittle pressure is needed to form the glass panel
into the parabolic shape to mate with the substructure.
However, in the edge effect regions near the rim additional
considerations must be made. 1In Fig. 6 and 7 the distribution
of stress and slope error near the rim resulting from the edge
effect have been plotted. Unlike Fig. 4 the actual stresses,
IR have been plotted as a function of the actual distance
along the parabola because it is impossible to place (28) in a
form such as (17) where the left hand side is dimensionless
and, moreover, contains quantities which do not depend on the
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of deformed reflective surface arising from
edge effect.



24

0.010 T 1

0.008 |-
- a
0.006 |-
- | b
L)
o
£ 0.004
sgm c
0.002' - g
0 —

-0.002 1 i 1 2 1 1 1 1 L
090 092 094 096 0.98 1.00

x(m)

FIGURE 7. Rotation of surface normals (slope error)
arising from edge effect.



parameters appearing on the right hand side. In particular,
the quantity D in oR(x)f3/D is not independent of the
parameter g as indicated by equation (20). As a result, the
curves have been generated for a variety of sizes of the edge
effect region, 8.

In examining these figures three observations are of
interest: (1) The magnitudes of the stress, op, are an order
of magnitude larger than the stresses, oc- Thus, while only
small pressures are needed to mate the glass panel to the
substructure, much higher pressures are needed in order to
increase the optical quality near the rim. Theoretically, it
would require the residual moment, MR’ to give the correct
curvature near the rim. Since this is not possible, some other
means {such as the use of clamps) should be considered to make
sure the region near the rim is well bonded to the substructure
in order to support the higher stresses and minimize the slope
errors that result from the edge effect; (2) There is a trade
off between the slope error and the adhesive stress. For small
values of the second cross-over distance, §o5 the slope
errors are small, but, the stresses in the edge effect region
are high. Conversely, for larger values of the second
cross-over distance the stresses decrease but the slope errors
increase. Since, in either case, the maximum tensile stresses
in the adhesive are within acceptable limits, it seems that
reducing the size of the affected region and thus reducing the
magnitudes of the slope errors is desirable. This is achieved
by increasing substructure stiffness, k; (3) The magnitudes of
the slope errors predicted in Fig. 6 and 7 correspond well to

observed data, Fig. 8. Thus, the model presénted in this study

should provide a means for optimizing material parameters to
increase the optical accuracy and/or decrease the cost of the
parabolic design.

The results of this study correspond to the single panel
parabolic solar trough design (continuous rim-to-rim reflective
surface). Also receiving considerable attention is a double
panel design where the full parabola is separated into equal

25
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halves at the vertex. In a continuation of this study the
above analysis is repeated for the half parabola and extended
to include the behavior of the edge effects which now also
appear at the free edges at the vertex. These studies neglect
specific substructure design features and involvement. A part
of this involvement concerns the effects of gaps in the
adhesive (resulting from stamping operations designed to
provide stiffness of the substructure through ribbing) on the
stress distribution and slope errors near the free edge of the
parabola and half-parabola. This problem also is being
considered.

SUMMARY

A thin plate (the reflective surface of a parabolic trough
collector) can be elastically formed through large
displacements to a true parabolic surface by application of a
spacially varying surface pressure and uniform bending moments
and shear forces applied to a pair of opposing edges. Once
formed, the parabolic surface can be bonded to a
(comparatively) rigid substructure and expected to retain its
shape by virtue of contact stresses developed in the adhesive
behind the deformed plate (these stresses are equal in
magnitude and opposite in sense to the forming pressures). In
most collector designs, provisions are not made for applying
the edge loads (moment and shear) necessary to achieve the true
parabolic shape. Consequently, optical quality near the
collector's rims is reduced and high contact stresses develop
in these regions.

The present work includes the derivation of equations
necessary to calculate the magnitude of all loads (and
stresses) required to mechanically form and hold a true
parabolic shape for thin, reflective surfaces, and to calculate
local stress variations resulting from necessary boundary (rim)
conditions not being satisfied in practice. Considerable
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knowledge has been gained with regard to understanding the
significance of the edge effect problem, the identity of
important parameters involved and how to reduce undesirable
consequences in the edge effect zone. Basically, results show
that contact stresses over the back surface of the reflective
surface due to mechanical forming are relatively small for the
materials and geometries of interest here. Additionally, the
size of the edge effect zone at the rim(s) of the parabola can
be reduced by increasing local foundation stiffness, which also
reduces the magnitude of the slope errors there and increases
normal stress levels to possibly significant levels.
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