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. 
SUMMARY 

During 1979 P a c i f i c  Northwest Laboratory (PNL) conducted a series of t e s t s  
i n  cooperation w i th  Radian Corporation(a) and the Oregon I n s t i t u t e  o f  Tech- 
nology (OIT) i n  Klamath Fal ls ,  Oregon. 
were t o  

conduct a f i e l d  evaluation o f  the 
by PNL 

The objectives of these experiments 

instrument probes under development 

a i d  OIT i n  understanding geothermal f l u i d  character is t ics  that  a f f e c t  
the performance of the OIT geothermal space heating system 

ass is t  Radian and OIT i n  conducting a concurrent mater ia ls study. 

The f i e l d  tes ts  were conducted under reducing and ox id iz ing conditions. 
Corrosion rates with zero oxygen were about 1.1 m i l s  per year (mpy) f o r  both 
copper and steel  coupons, which i s  q u i t e  low f o r  carbon steel.  There was a 
problem control  1 i ng the oxygen 1 eve1 i n the oxygenated experiments; however, 
i t  was found t h a t  corrosion rates increased w i th  the presence o f  oxygen. Cor- 
rosion rates f o r  the steel  and copper coupons were 4 and 2 mpy, respectively; 
copper coupled t o  cast i r o n  corroded a t  8 mpy. Commercial corrosion r a t e  mea- 
suring equipment determined the general corrosion r a t e  o f  carbon steel  f a i r l y  
w e l l  but overestimated copper corrosion rates. The redox electrode was a very 
sensi t i v e  ind icator  o f  the ent ry  o f  oxygen. 

Y 

(a) RadSan Corporation, Austin, Texas. 
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INTRODUCTION 

The bui ld ings a t  the Oregon I n s t i t u t e  o f  Technology (OIT) are heated by 

. geothermal hot water through heat exchanger systems i n  each bui lding. The 
main d i s t r i b u t i o n  1 i nes are carbon steel  ; the heat exchangers are constructed 
o f  copper and cast iron; and brass valves are used i n  many locations. Occa- 
sional component f a i l u r e s  have occurred; however, the causes have not been 
firmly established. A question has been raised about the s u i t a b i l i t y  of  
copper and brass f o r  t h i s  appl icat ion since ammonia and H2S are present i n  
the water. Addit ional information was needed about those chemical components 
i n  the water tha t  may adversely a f fec t  system l i f e .  

- 

The OIT system i s  one o f  the most important 'nonelectr ic geothermal heating 
i n s t a l l a t i o n s  i n  use today. I t i s  important t o  the national geothermal e f for t  
t h a t  the causes o f  technical problems be established and solut ions be found sd 
t h a t  sa t i s fac to ry  recommendations can be made t o  others who may be considering 
geothermal heating. 

I n  response t o  t h i s  concern P a c i f i c  Northwest Labortory (PNL), (a )  Radian 
Corporation,(b) and OIT conducted a series of  tests  t o  

evaluate the i n - f i e l d  performance o f  instrument probes being devel- 

oped by PNL 

a i d  O I T  i n  understanding geothermal f l u i d  character is t ics  as they 
a f f e c t  the geothermal heating system 

ass is t  Radian and OIT i n  a concurrent mater ia ls study. 

This cooperative series o f  t e s t s  required the development o f  a portable 
i n - l i n e  package t o  characterize geothermal f l u i d s  and measure t h e i r  effects on 
mater ia ls using advanced e l e c t r i c a l  probe methods and standard coupon tests. 
Provisions were included i n  the package so t h a t  O I T  and Radian could conduct a 

0 

,. simultaneous mater ia ls  study. .. 

(a) Operated f o r  the U.S. Department of  Energy (DOE) by B a t t e l l e  Memorial 

(b)  Radian Corporation, Austin, Texas, (hereafter re fer red t o  as Radian) i s  
.I I n s t i t u t e .  

under contract t o  DOE, Geothermal Energy Division, t o  evaluate materi a1 s 
i n  the geothermal environment. 

1 
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. 
CONCLUSIONS AND RECOMMENDATIONS 

From the t e s t  i t  was found t h a t  ent ry  o f  oxygen i n t o  the geothermal 

I 
system increases corrosion rates. I n  par t icu lar ,  the crevice corrosion r a t e  

o f  steel  increased from 13 t o  50 m i l s  per year (mpy), and the general corrosion 
r a t e  o f  copper coupled t o  cast i r o n  (graphite-exposed) increased from 2.5 t o  
7.8 mpy w i th  low leve ls  o f  oxygen. This condition--copper coupled t o  cast 
iron--was investigated because copper heat exchanger tubing penetrates a cast 
i r o n  tube p l a t e  and carbon/graphi t e  contamination may occur a t  copper-sweated 
jo in t s .  
l i f e .  This i s  p a r t i c u l a r l y  important i n  thin-walled copper tubing. 

I n  general, oxygen intrusions must be prevented f o r  maximum system 

C m e r c i  a1 corrosi  on r a t e  measuri ng i nstruments (Petrol  i t e )  ( a) determi ned 
the corrosion r a t e  o f  carbon steel  w i t h i n  a f a c t o r  o f  two (compared t o  weight 
1 oss determi nations) but consi derabl y overestimated the corrosion r a t e  o f  cop- 
per. Fortunately, the instruments do respond t o  the entry o f  oxygen by i n d i -  
c a t i  ng i ncreased corros i  on rates. 

could be used as an oxygen monitor t o  help maintain low oxygen levels. 
The redox electrode was a very sensi t ive ind icator  o f  oxygen ent ry  and 
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FIELD TEST CONDITIONS 

Three tes ts  were planned for the evaluation. 
and an OIT student carried out the daily measurements. Test 1 included a redox 
probe (oxi dati on-reducti on potenti a1 ) , a pH probe, a PNL-devel oped corrosi on 
probe, and a c m e r c i a l  corrosion probe (Petroli te).  I t  was conducted w i t h  
deoxygenated geothermal water flowing directly from the well a t  the highest 
flow rate ( in i t i a l ly  5 f t /sec i n  the specimen holder tes t  section). 

PNL set up the experiments, 

t 

- 

Test 2 was also conducted i n  deoxygenated water bu t  a t  a lower flow rate 
(0.5 f t / sec)  t o  determine the effects of velocity. Test 3 was performed i n  
oxygenated brine a t  the h igh  flow rate o f  5 ft /sec;  this tes t  was considered 
the worst case for corrosive effects. 

The responsibilities of the participants-PNL, 'Radian, and OIT-during 
the evaluation were t o  

0 design the portable in-line package and develop the tes t  p lan  (PNL) 

0 fabricate and tes t  the loop, evaluate in-line probes, and monitor 
water chemistry (PNL) 

0 determine corrosion rates on weight loss, stress, and crevice 
specimens (Radian) 

0 analyze the specimens after the tes ts  t o  determine the extent of the 
corrosi on (Radian) 

provide the geothermal f l u i d  access (OfT) 

provide an operator t o  monitor the tes ts  on a da i ly  basis (OIT). 

Figure 1 i s  a schematic o f  the test loop, Figure 2 details  the spechen 
The original experi- holder, and Figure 3 i s  a photograph of the t e s t  loop. 

mental approach i s  summarized i n  Table 1. 
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TABLE 1. Summary of  Experimental Approach 

PNL Radian 
0 Set up three tests: 0 

1) Deoxygenated b r ine  a t  5 f t /sec 
2) Deoxygenated b r ine  a t  0.5 ft /sec 
3)  Oxygenated b r ine  a t  5 f t /sec 

Each t e s t  scheduled f o r  3-6 weeks depending 
on corrosion rates 

. 

Volumetric f low r a t e  f o r  t e s t  sections a t  
5 f t /sec i s  4.7 gal/min 0 

03 0 Chemistry t o  be monitored w i th  pH and Eh 
(redox) probes and by sampling and lab 
analysis 

Instantaneous corrosion rates t o  be fol lowed 0 

using po la r i za t i on  resistance technique on 
separate specimens (not involved i n  weight 
loss tests)  o f  deoxidized (DHP) copper and 
A538 carbon steel.  Wei ght 1 oss specimens 
t o  be included i n  each t e s t  f o r  comparison; 
three specimens of each mater ia l  w i l l  be 

, required. Commercial electrode un i t s  (Fe 
and Cu) t o  be i ns ta l l ed .  

Weight loss corrosion specimens t o  be pipe 
sections 1 in. long with ins ide diameter 
(ID) = 5/8 in. Mater ia ls w i l l  be DHP copper, 
A53B carbon steel, 316 stainless steel  (SS),  
t i tan ium (grade 2), DHP copper i n  contact 
wi th  graphi t ized cast iron, and Admiralty 
brass (type 443 used i n  valves). Three Sam- 
ples of each w i l l  be included. 

Specimens o f  316 SS, DHP copper, and 
Admiralty brass w i l l  be stressed a t  100% o f  
y i e l d  strength i n  a C-ring arrangement fo r  
stress cracking studies. 
specimens o f  each materi a1 . 
Specimens o f  DHP copper, 316 SS, and A538 
carbon steel  w i l l  be used i n  a crevice corro- 
sion experiment. Three specimens o f  each 
material w i l l  be provided. 

There w i l l  be three 



PNL PROBE STUDIES 

In-1 i ne probes o f f e r  unique advantages s i  nce continuous output i s  avai 1- 
able and, i n  general, less time i s  required t o  make measurements. Continuous 

output a1 so o f f e r s  the advantage o f  detect ing rans i  ent condl ti oris t h a t  waul d 
go unobserved by conventional methods. 

The instrument probes tha t  were f i e ld - tes ted  included an i n - l i n e  redox 
probe (ox i  d a t i  on-reducti on potent i  a1 ) , pH probe, and corrosi  on probes (which 
measure the instantaneous corrosion r a t e  by the polar izat ion resistance method). 
A comerc i  a1 l y  avai 1 able corrosi  on i nstrument (Petrol  i t e )  was combi ned with PNL 
electrodes as well as with P e t r o l i t e  corrosion electrodes f o r  comparison. 

* 

The 

corrosion probe systems are compared i n  Figure 4. 

REFERENCE TEST AUXILIARY 

(A) COMMERCIAL PETROLITE PROBE SYSTEM 

COPPER CYLINDER 
- - 

(B) PNt  CORROSION PROBE SYSTEM 

* FIGURE 4. Comparison of  P e t r o l i t e  and PNL Corrosion Probes 
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, 

To measure corrosion rates, the po ten t ia l  o f  the t e s t  electrode i s  per- 
turbed by +10 and -10 mV from the f r e e l y  corroding potent ia l ,  and the current 
i s  measured a t  each potent ia l .  This current i s  d i r e c t l y  proport ional t o  the 
corrosion rates (Fontana and Staehle 1976). For greater accuracy, the cor- 
rosion ra te  a t  +10 mV was averaged w i th  the corrosion r a t e  a t  -10 mV. The PNL 
corrosi  on probe system uses cy1 i ndr ica l  specimens i n the specimen holder (see 
Figure 2), which subjects the specimens t o  the same f low condit ions as the 
weight loss coupons. The corrosion probe specimens are not used f o r  weight 
loss determinations. P e t r o l i t e  probe sets of  copper (99.9%) and LO18 steel  
were also tested. 

. 

Tubing sections o f  t itanium, 316 SS, Admiralty brass, A536 carbon steel, 
and copper (see Table 2 f o r  spec i f icat ions)  were mounted i n  the specimen holder 

TABLE 2. Alloy Compositions 

Materi a1 
316 SS 

A53B 
Carbon Steel 

DHP Copper 

CgqngPSosCi:aipn, % 

0.75 S i (a )  
0.04 P(a) 

11-14 N i  

16-18 C r  
Remainder Fe 

0.23 C 
0.71 Mn 
0.15 S i  

0.01 P 
0.26 N i  

Remainder Fe 

0.015-0.040 P 
99.9 cu 

Materi a1 
Admiralty Brass 

(LA 443) 

Titanium 
(Grade 2) 

1018 Steel 
(Petro l  i t e  
Electrodes) 

Composition, % 
1 Sn 

28 Zn 
71 Cu 

0.1 d a )  
0.20 Fe(a) 
0.25 O ( a )  
Remai nder T i  

0.15-0.20 C 

0.60-0.90 Mn 
0.040 
0.050 S(a) 
Remainder Fe 

(a )  maximum 

10 



(Figure 2) wi th  nylon spacers providing e l e c t r i c a l  i nsu la t i on  and the pressure 
seal . With t h i s  arrangement l i q u i d  veloci ty,  which i s  an important corrosion 
parameter, can be control led. Three specimens o f  each metal were used f o r  
weight loss measurements, and three specimens o f  both copper and A538 carbon 
steel were used as corrosion probes f o r  measurements w i th  the PNL probe system. 
Weight loss was measured f o r  one copper specimen t h a t  was e l e c t r i c a l l y  con- 
nected (external ly )  t o  a cast- iron specimen t o  simulate a special corrosion 
condi t ion found i n  the OIT system. 

The crevice- and C-ring-stressed specimens were placed i n  a PVC tube as 
seen i n  Figure 3 (Item E). A r t i f i c i a l  crevices (~0.005 in. deep) were made 
using insulated t i t an ium bo l t s  t o  hold i den t i ca l  pieces o f  tubing together., 
The C-rings were stressed t o  100% y i e l d  strength w i th  insulated t i tan ium b o l t s  
using the recommended ASTM method (ASTM Standard 1978). (a)  

Figure 3 also shows two P e t r o l i t e  corrosion probes mounted so t h a t  gas 
bubbles w i l l  not be trapped. The e n t i r e  loop was mounted so tha t  the o u t l e t  
from each por t ion was higher than the i n l e t  o f  the next por t ion t o  prevent gas 
accumul a t  i on. 

The pH system, mounted a t  the end o f  the loop, was a Leeds and Northrup 
u n i t  (Morth Wales, Pennsylvania) consist ing o f  a transmitter, receiver, r y ton  
c e l l  (model 7777), combination pH-reference electrode (#117486), and tempera- 
tu re  compensator. For standardization, the p l a s t i c  boot on the bottom o f  the 
electrode was removed, buf fer  was poured in, the boot was replaced, and br ine 
was passed through the loop. 
perature, the pH meter was standardized. A t  t h a t  po int  i n  the experiment the 
b r ine  was shut o f f ,  the boot was removed, the pH electrode was inserted i n t o  
the brine, and the br ine f low was restarted. The pH electrode was operating 
a t  close t o  the maximum l i m i t s  recommended by the manufacturer. Standardita- 
t l o n  was checked several times during each experiment and very l i t t l e  d r i f t  

When the pH electrode had reached operating tem- 

was found. 
c 

The redox electrode consisted o f  a p la t i n i zed  platinum electrode and a 
PNL-developed reference electrode (Danielson 1979). 'The reference electrode 

(a) 1978 Annual Book o f  ASTM Standards Designation 638-73. 
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permits the potential t o  be placed on the hydrogen scale. 
was measured usi ng a h i  gh-i n p u t  impedance voltmeter. 

Potential difference 

A local OIT operator monitored and recorded daily measurements from corro- 
sion probes; redox, pH, and temperature meters; and flow and pressure gauges. 
Table 3 is a log of the daily measurements taken dur ing  Test 1, and Table 4 
provides similar data f o r  Test 3. 

a 

. 

, 
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TABLE 3. D a i l y  Measurements Taken During Test 1 a t  OIT 
- 
1-20-19 xi: I 5  - 
89 
6.4 
2.4 
3.3 
3.6 
2.7 
1.4 
0.7 
4.0 
1.6 
4.75 
9 . 5 4 5  
7.81 
88 - 

- 
-t8-?9 
Y:oo - 

89 
5.1 
3.2 
S.9 
5.2 
2.6 
I 5  
11 
2.5 
t .6 
4.70 
-0.602 
8.00 
98 - 

7 

-19-79 
10:15 - 
89 
6.5 
2.0 
3.0 
4.9 
2.5 
4.5 
4.1 
8.1 
1.9 
4.8 
-0.5m 
7.90 
88 - 

- 
4-19-19 
17:OO - 
89 
6.0 
1.2 
1.5 
2.5 
2.3 
1.1 
0.9 
6.4 
2.7 
4.6 
-0.511 
7.90 
88 - 

- 
4-26-79 
l7:45 - 
89 
6.0 
2.1 
2.b 
3.3 
2.7 
0.7 
0.7 
3.2 
1.7 
4.7 
-0.560 
7.80 
ea - 

- 
-30-79 
20:M - 
89 
5.8 
2.6 
2.4 
4.4 
2.6 
0.5 
1.6 
3.2 
1.8 
4.65 
-0.555 
7.76 
98 - 

izix 
16:15 - 
89 
6.5 
2.0 
2.7 
2.3 
3.3 
L O  
0.6 
3.8 
1.6 
4.80 
-0.558 
7 . 1  

1-28-79 18:45 4-29-79 l6:15 

89 89 
6.3 6.2 
1.4  2.4 
2.8 2.4 
3.5 4.2 
2.8 2.8 
1.0 0.6 
0.8 0.8 
3.1 3.0 
1.6 1.7 
4.1 4.8 
-0.564 -0.566 
7.79 7.78 
88 88 

-21-79 4-22-79 
8:M 13:30 

89 89 
6.0 6.0 
1.2 2.) 
2.1 2.7 
2.9 3.0 
2.4 2.9 
0.8 0.9 
0.7 0.9 
4.2 4.4 
1.5 1.4 
4.7 4.55 
-0.560 -0.564 

ea 88 
7.86 7 . 1  

-17-79 4-11-19 
!8:W 22:m 

0 9 8 9  
5.8 5.3 
M 6.0 
20 6.5 
12 4.5 
14 3.3 
20 M 
15.5 14.4 
13.5 5.0 
3 2.0 

-0.586 -0.629 
8.06 8.03 
8a ea 

4.75 4.55 

4-18-19 
15:m 

Data 
oats 

Inlet  Tmrature (1-1) *C 
Jnlet Pressure (P-1) psig 
Petrolits Fe-2 anodic WPI 

UthodtC llpl 

Petmlite Cu-2 rnodlc SPY 
U t h D d t C  IWY 

Rob. fe-1 w i c  llpl 

UthodiC SPY 
Rdre cu-1 w i c  llpr 

c r w l c  llpI 
flw Rate 6fn 
R Volts 
Pn 
Outlet Tsl lperr tue (1-2) 'y: 

---_. 

89 
6.0 
3.5 
3.3 
4.5 
3.0 
11.0 
9.0 
3.1 
1.5 
4.75 
9.605 
7.91 
88 - 

89 
6.2 
2.1 
2.4 
3.6 
2.6 
0.4 
0.8 
2.9 
1.7 
4.7 
-0.565 
i . ? ?  
88 - 

89 
6.0 
1.8 
3.1 
5.0 
2.5 
8.6 
6.4 
3.5 
i . 4  
4.70 
-.a 
7.89 
88 

0.8 0.9 
0.6 

1 .6 
4.55 4,7 
-0.553 -0 561 
7.80 7.79 

c. 
w 

22:w 22:W T 
- 
5-7-7 
21:l - 
88 
6.0 
1.2 
2.7 
4.0 
2.0 
0.5 
0.4 
3.2 
2.0 
4.7 
-0.5 
7.69 
87 - 

5-8-79 
l5:W - 
88 
5.8 
1.4 
2.1 
4.4 
2.1 
0.6 
0.5 
4.2 
2.2 
4.7 
-0.56; 
7.70 
81 - 

5-11-79 
i 5 : m  - 
88 
6.0 
0.7 
1.3 
5.1 
2.5 
1.8 
2.4 
4.4 
2.4 
4.65 
-0.584 
7.68 
67 - 

m 
22:15 
c_ 

87 
5.2 
0.8 
1.4 
4.6 
2.5 
0.9 
0.8 
4 .3  
2.6 
4.7 
-0.598 
7.12 
85 - 

B-19-79 6-20-19 5-21-79 
18:M 18:M 9:45 

81 87 87 
6.0 4,s 3.0 
0.3 1.5 
1.8 2.6 
6.5 7.2 
2.8 4.5 
1.2 1.3 
2.0 2.2 
6.9 7.4 
2.1 1.7 
4.7 4.75 3.6 
-0.600 -0.414 -0.559 
7.63 7.76 7.65 
86 86 

5-1-79 5-2-79 5-3-79 , 5-4-19 5-5-79 5-6-7! 
22:m 23:m 22:M 

87 87 88 
6.0 5.8 5.0 
0.1 0.4 2.0 
1.9 5.6 2.4 
6.9 5.8 4.8 
4.2 3.2 3.1 
0.8 0.5 0.7 
0.9 1.0 0.6 
9.9 6.4 4.r 
5.6 5.6 2.7 
4.7 4.7 4.7 
-0.458 -0.47 -0.5: 
7.78 7.77 1.72 
m 86 87 

t-12-79 5-13-79 5-14-79 5-15-79 
14:M 20:15 22:15 20:15 

ea 88 88 87 
6.2 6.0 6.0 6.2 
0.5 2.0 1.9 0.8 
2.0, 2.5 2.7 1.2 
5.9 6.3 6.0 4.7 
2.4 2.2 2.4 2.8 
2.2 t.7 1.8 0.8 
2.4 2.4 2.3 0.8 
4.2 4,s 4.4 4,s 
2.6 2.4 2.6 2.3 
4.7 4.65 4.7 4.7 
-0.608 -0.623 -0.633 -0.591 
7.67 1.64 1.65 7.66 
87 81 87 86 

5-9-19 5-10-79 
14:06 14:)o 

8 8 8 8  
6.0 6.2 
1.2 1.1 
1.7 1.2 
4.3 6.4 
2.4 3.1 
0.6 1.6 
0.6 2.6 
4.5 3.8 
2.2 2.4 
4.7 4.7 
-0.540 -0.584 
7.69 7.66 
87 81 

6.9 

-0.590 -0.563 
7.67 7.66 



TABLE 4. D a i l y  Measurements Taken During 

Data 
Date 

9-6-79 9-10-79 9-11-79 %Is-19 9-14-19 9-15-19 
M:35 15:25 I4:M 16:20 15:55 1l:M 

Inlet Iemperaturs (1-1) 
Inlet Pressure (P-1) 
Petrollte Fe-2 anodlc 

Petrolite Cu-2 rmdlc 

Probe Fe-I amdlc 

Probe Cu-1 anodic 

cathodic 

cathodic 

cathodic 

cathodic 
flcw Rate 
El l  

PH 

5.4  

12.0 
3.5 

81 
1.3 
2.2 
5.6 
5.0 
6 .4  
12.0 
3.0 
1 . 2  
6 0  
2.14 
t.464 
1.74 

87 
0.5 
3 .2  
4 . 8  
5.4 
2.45 
10.4 
4 . 4  
6 . 4  
3 .2  
2.45 
t ,469 
1.74 

8.0  

6.4 

- 
9-16-19 
11:2) 

86 
0 
2.0 
4.4 
5.5 
7.4 
10.4 
3.6 
6 .4  
5.3 
4.55 
+.490 
7 . 1 5  

-- 
9-17-79 
J&r&- 

81 
1.2 
2 .0  
6.0 
6 . 3  
7.8 
10.2 
4.8 
5 .3  
b.4 --_ 
t .52  
7 . 7 3  

6.4 

8.5 
9.2 IO. 3 

3.8 
5.8 3.0 

Test 3 a t  O I T  

9-20-79 
19:45 

88 
1.3  
3.8 
5 .4  
6.4 
7 .2  
12.4 
4.a 
5.2 
6.8 
_-- 
+ . S I  
1.12 

5.5 
8.2 

5.8 6.4 6 .4  --- 

9-24-79 9-25-19 9-26-79 TqxqJz- 
2.5 3.0 3.0 
5.8 5.2 
5.2 6 .2  6 .4  
8.8 8 .5  8.2 
11.6 12.4 12.2 
6.8 5.8 6.0 
6.0 4 .5  4.0 

6.5 5.8 __-  _ _ _  _ _ _  
t .550 t.551 t .551 
7.11 1.70 7.10 

- 
9-21-1! 
I1;uL 

88 
1 .5  
2.6 
5.4 
6.1 
8.2 
10.4 
6 . 0  
10.0 
6 . 2  --_ 
* . 5 %  
7.70 - 

J 

4 
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GEOTHERMAL WATER CHEMISTRY RESULTS 

The geothermal water chemistry was determined (Watson 1978) a t  OIT wel l -  
* heads 2, 5, and 6, which were used i n  various combinations t o  feed the t e s t  

loop (see Table 5). 
s imi lar ;  and as f a r  as corrosion and probe tests  are concerned, a constant 
water chemistry was supplied. One side ef fect ,  a short-term in t roduct ion of 
oxygen i n t o  the system due t o  exchanging the feeder wel l (s) ,  provided an i n t e r -  
est ing t e s t  f o r  the probes. The responses o f  the probes t o  t h i s  perturbat ion 
w i l l  be discussed l a t e r  i n  t h i s  report.  

The water chemistries o f  these three wel ls  were remarkably 

8 

The water chemistry and temperature s i m i l a r i t i e s  o f  these three wel ls  
implies t h a t  they are feeding from the same reservoir.  Using an average Si02 

concentration o f  100 mg/l the.quartz geothermometer o f  Fourni er  and Truesdell 
(1974) predicts a down-hole temperature of  137°C. The observed temperature 

o f  89OC suggests t h a t  the geothermal water i s  d i l u ted  by a cooler reservo i r  
o r  cooled on i t s  t r i p  up the well. Another i n te res t i ng  character is t ic  o f  OIT 
geothermal water i s  t ha t  it i s  a sulfate-buffered system as compared t o  the 
more common carbonate-buff ered geothermal water systems 

I n  comparing chemical data between the i n l e t  and o u t l e t  o f  the t e s t  loop 
(Table 5), it i s  c lear  t h a t  during Test 1 the water chemistry remained con- 
stant. Thus, any chemical changes i n  water propert ies due t o  corrosion are 
not large enough t o  be noticed i n  t h i s  short  t e s t  loop. It i s  important t o  
note that the dissolved oxygen value was not greater at the outlet, which 
v e r i f i e s  t h a t  there were no leaks during Test 1. Temperature, pressure, f l ow  
rate, pH, and Eh o f  the geothermal water were measured d a i l y  (see Table 3 f o r  
Test t and Table 4 f o r  Test 3 ) .  There was a slow minor decl ine i n  the pH value; 
the source o f  which i s  not known. Nevertheless, these tables show t h a t  major 

perturbations i n  pH and water chemistry d i d  not occur during the  tests. 

- * The water chemistry was also analyzed during Test 1 a t  several other 
locat ions (Table 5)  i n  the OIT geothermal heating system. These. t es ts  ve r i -  

f i e d  tha t  the water chemistry used t o  obtain corrosion data i n  the t e s t  loop 
was s im i la r  i n  composition t o  the water i n  the OIT  heating system. 

s 
It i s  

15 



TABLE 5. Water Chemistry Data Plus Method o f  Retermination a t  Various 
Locations a t  OIT. Concentrations are mq/E or as noted. 
A1 through Zr were determined by Argon Plasma Emission 
Spectrometer 
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C 

important t o  note t h a t  oxygen does enter the system downstream from the OIT 
storage tank. During Test 1, the OIT storage tank was not vented t o  the 
atmosphere and oxygen was exc uded; usual ly  the storage tank i s  vented and 
oxygen does enter  the system a t  t h i s  point.  
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CORROSION RESULTS 

TEST 1 
* 

Due t o  mechanical problems not associated wi th  the t e s t  loop, the geother- 
mal water supply was switched several' times during Test 1. Geothermal water 
was i n i t i a l l y  supplied from OIT wel ls 2 and 6, then well  5, and f i n a l l y  wel ls 
2 and 5. I n  s h e  cases, a i r  entered the system during the changeover. Flow 
r a t e  was held t o  about 5 f t /sec i n  the t e s t  sections containing pipe samples, 
and the i n l e t  temperature was 85 t o  89OC. The pH (measured and standardized 
a t  86 t o  88%) varied from 8.0 t o  7.7. The wel ls a l l  contained H2S ranging 
from 0.3 t o  0.5 ppm and NH3 ranging from 0.2 t o  1.3 ppm. Oxygen was measured 
t o  be 0 ppb a t  the i n l e t  and o u t l e t  o f  the t e s t  loop a t  the beginning o f  the 
experiment . 

i 

The redox electrode responds t o  the general "oxi d a t i  veness" o f  the envi - 
ronment, and the po ten t i a l  becomes less negative when oxygen enters the system. 
It i s  uncertain what electrochemical reactions the p la t i n i zed  platinum elec- 
trode i s  responding to, but it does perform the important funct ion o f  i n d i -  
cat ing the presence o f  oxygen. The redox potent ia l  (based on the standard 
hydrogen po ten t i a l )  as a funct ion o f  t i m e  i s  shown i n  Figure 5. The experi- 
mental po ten t i a l s  (based on an Ag/AgCl reference electrode) are placed on the 
standard hydrogen electrode (SHE) scale by adding 0.23 V t o  the measured poten- 
t i a l .  The electrode c l e a r l y  responds t o  ox id iz ing and reducing conditions. 
It 'should be pointed out t h a t  only one data po in t  was taken each day, and t h e  
redox po ten t i a l  may not be responding t o  the peak oxygen concentration a t  the 
time o f  the measurement. A small amount of oxygen was permitted t o  enter a t  
the s t a r t  o f  the experiment, and the redox potent ia l  sh i f t ed  (pos i t i ve  direc- 
t i o n )  by more than 350 mV, which demonstrates t h e  magnitude o f  the response. 

The combination pH-reference electrode (Leeds and Northrup, North Wales, 
Pennsyl vani a) was operati  ng c l  ose t o  the maximum recommended operating tem- 
perature. Per iodical ly,  the electrode was restandardized w i th  a pH-7 buffer 
a t  the process temperature t o  determine how wel l  the c a l i b r a t i o n  was holding. 
Typical ly, the ca l ibrated pH would s h i f t  by less than 0.1-pH uni t ,  which 

b 
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indicates f a i r l y  good rel iabi l i ty .  
different pH buffers a t  the s t a r t  of the experiment. 

Nernstian response was checked by us ing  

Radian's evaluation (El l is  1980) of the corrosjon coupons is reported i n  
Tables 6 and 7. In sumary, 

Carbon steel had a uniform corrosion rate of 1.1 mpy and a crevice 
corrosion rate  of 13 mpy. 

0 Copper had a uniform corrosion rate of 1.1 mpy w i t h  incipient 
crevi ce corrosion bu t  no evidence of stress corrosion cracking 

0 

(SCC) . 
0 Brass corroded at  0.4 mpy w i t h  incipient crevice corrosion b u t  no 

evi dence of  SCC. 

0 316 SS corroded uniformly at  0.1 mpy w i t h  no evidence of crevice 
corrosion or SCC. 

0 Titanium had a negligible uniform corrosion rate  w i t h  no evidence of 
crevice corrosi on or SCC. 

Copper coupled t o  cast +* n corroded at  2.5 mpy, which is higher 
than uncoupled copper. 

The composition of the Petroli te corrosion probes (1018 m i l d  steel and 
99.9% copper) could not be matched precisely t o  that  of the cylindrical speci- 
mens (A538 carbon steel and DHP copper). Since the area of the cylinders is 
nut the same as t h e  Petroli te probes ( for  which the instrument is se t  up t o  
read), the corrosion rate  read from the instrument must be corrected as 
f 01 1 ows: 

true cylindrical = area of cylindrical specimen corrosion rate (1) corrosion rate area o f  Petrolite probe 

. Flow conditions are not the same a t  the Petrolite probes and the cylindrical 
specimens. flow was controlled at  5 f t /sec a t  the specimen (5/8-in. ID) b u t  
was much lower a t  the Petrolite probes (32-in. ID). Examination of the data 0 

i n  Figure 5 shows the general corrosion behavior o f  a system a t  startup: a 
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TABLE 6. Results of Uniform Corrosion Tests(a) 

Materi a1 
Carbon Steel 

Coupon 1 
Coupon 2 
Coupon 3 
Mean 

T316 
Coupon 1 
Coupon 2 
Coupon 3 
Mean 

T304 

DHP Copper 
Coupon 1 
Coupon 2 
Coupon 3 
Mean 

Admiralty 
Brass 

Coupon 1 
Coupon 2 
Coupon 3 
Mean 

Titanium 
Coupon 1 
Coupon 2 
Coupon 3 
Mean 

Copper Coup1 ed 
t o  Cast I ron  

Test l,(b) mpy 

1.09 
1.04 
1.01 
1.05 

0.01 
0.02 
0.12 
0.07 

No Test 

1.12 
1.13 
0.89 
1.05 

0.55 
0.29 
0.44 
0.43 

0.02 
0.04 
0.01 
0.02 

2.52 

Test 3,  ( c )  mpy 

3.95 
3.62 
4.55 
4.04 

0.02 
0.03 
0.01 
0.02 

0.03 

1.84 
1.88 
2.02 
1.91 

0.53 
0.47 
0.37 
0.46 

M.06 mg c r 2  
N.07 mg an-? 

No t e s t  

7.78 

(a)  Oata provided by Radian. 
(b) Conditions: 

(c) Conditions: 

T = 87%; 02 = 0 ppb; 
Reynolds number = 7.16 x lo4; 
Exposure time = 808.5 h 
T = 87OC; 02 = 30 ppb; 
Reynolds number = 4.13 x lo4; 
Exposure time = 543 h 
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TABLE 7. 

Materi a1 
Carbon Steel 

c 

DHP Copper 

Admi r a  
Brass 

T316 

Results o f  Crevice Corrosion and SCC Tests(a) 

Test 1 Test 3 
Crevice corrosion - Crevice corrosion - 
maximum depth 1.2 m i l s  

No t e s t  f o r  SCC. 

I nc ip ien t  crevice Inc ip ien t  crevice 
corrosion. corros i on. 
No SCC detected. 

maximum depth 3.1 m i l s  

No t e s t  f o r  SCC. 
(13 mPY)* (50 mPY)* 

No SCC detected. 

I nc i  p i  ent crev i  ce 
corrosion. 
P i t s  1 gra in  deep i n  
area of  maximum stress. maximum stress. 

No loca l  i t e d  corrosion. 
No SCC. No SCC. 

Titanium No 1 ocal i t e d  corrosi  on. 
No t e s t  f o r  SCC. 

(a) Data provided by Radian Corporation. 

I nci  p i  ent crev i  ce 
corrosion. 
No p i t s  i n  area of 

No local ized corrosion. 

No 1 ocal i red corros i  on. 
No t e s t  f o r  SCC. 

t Y  

rap id corrosion r a t e  t h a t  decreases within 1 t o  2 days. A f t e r  2 days the steel  
corrosion r a t e  i s  r e l a t i v e l y  constant throughout the experiment and qu i te  
insensi t ive t o  the ent ry  o f  oxygen during wel l  changes. The di f ference i n  cor- 
rosion rates during the f i r s t  h a l f  o f  the experiment may r e f l e c t  composition 
differences between the probes (1018 steel  ) and the cy1 i ndr ica l  specimens 
(A536 carbon steel  1. 
o f  the steel  c y l i n d r i c a l  specimens over the duration o f  the experiment r e s u l t s  
i n  an average corrosion r a t e  o f  1.5 mpy, which compares well  w i th  the weight 
loss value o f  1.1 mpy. The steel  specimens had a t h i n  black f i l m  t h a t  was 
probably a mixture o f  FeS, FeS2, and Fe30 based on a Pourbaix diagram 
(Biernat and Robins 1972) calculated a t  100°C f o r  a pH o f  7.8 and a redox 
po ten t i a l  o f  -0.3 V, An x-ray analysis could i d e n t i f y  the actual f i l m  com- 
posit ion. The f i l m  conferred some immunity t o  corrosion when oxygen entered 
f o r  a short period, but t h i s  may not be the case when oxygen i s  constant ly 

In tegrat ing the instantaneously determined corrosion r a t e  

- 

i present. 



The copper system exhibited high corrosion rates a t  the beginning o f  the 
experiment and then rap id l y  decreased. However, copper responded r a p i d l y  w i th  
an increased corrosion r a t e  (see Figure 5) when oxygen entered on the th i rd ,  

i n g  the instantaneously determined corrosion rates of  the c y l i n d r i c a l  specimens 
over the duration o f  the experiment resu l t s  i n  a predicted corrosion r a t e  of 
4.6 mpy versus a weight loss value of 1.1 mpy. The P e t r o l i t e  method overesti-  
mates copper corrosion rates by a fac to r  o f  four  and suggests t h a t  f u tu re  

f i f t een th ,  and t h i r t y - f o u r t h  days due t o  changes i n  wel l  operation. In tegrat -  3 

n 

, 

instrument readings should be reduced by t h i s  factor.  However, the increased 
corrosion rates due t o  oxygen entry are real ,  and it i s  only the magnitude o f  
the r a t e  t h a t  i s  i n  error. The black f i l m  on the specimens i s  most l i k e l y  Cu2S 
and CuS, but a Pourbaix diagram does not e x i s t  f o r  conditions a t  100°C. Sul- 
f ide f i l m s  are not considered t o  be very protect ive since the corrosion r a t e  
increased r a p i d l y  wi th  the ent ry  o f  oxygen. Oxygen has a greater ef fect  on 
the corrosion rates of the c y l i n d r i c a l  specimens where the f low r a t e  i s  much 
higher, which indicates that  the mass transport o f  oxygen may be c o n t r o l l i n g  
the corrosion rate: 

TEST 2 

Test 2 condit ions were t o  be i den t i ca l  t o  Test 1 except tha t  f low rates 
were t o  be a f a c t o r  o f  10 lower (0.5 f t / sec )  . 
1979, but had t o  be terminated due t o  problems requ i r i ng  repa i r  o f  the OIT 
geothermal pump and d i s t r i b u t i o n  system. Flows were on and of f  during the 
summer months so t ha t  oxygen entered the experimental setup and inval idated 
the o r ig ina l  test. 
and the low corrosion rates indicated tha t  Test 2 was no longer necessary, and 
i t  was aborted. 

The experiment began on May 21, 

By July  the corrosion resu l t s  f o r  Test 1 were available; 

TEST 3 

The experimental conditions f o r  Test 3 included a f l o w  r a t e  of  5 f t /sec 
(4.7 gal/min), which was the same f l o w  r a t e  used during Test 1, and an oxygen 
concentration o f  300 ppb. A t  the OIT storage tank (about 15 ft from the 
experiment), a pipe tee was i n s t a l l e d  and a 7-micron 316 SS f i l t e r  was inserted 
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and used as the a i r  sparging system. The f i l t e r  body was welded to  a stainless 
tube so a pressure connection could be made. Oil-free instrument a i r  was used 
as the source of oxygen. A flowmeter and pressure regulating valve controlled 
the flow rate. An in i t ia l  flow rate of 35 cm /min gave an oxygen concentra- 
tion at  the test loop outlet of 300 ppb (measured by Chemetrics Oxygen K i t @ ) .  

Wi th in  4 days after startup, the airflow had fallen to  zero; b u t  due t o  a 
communication fai lure  between OIT and PNL, PNL was not made aware of this prob- 
lem u n t i l  the end of the experiment. A t  that time, the oxygen was measured a t  
the tes t  loop outlet t o  be 30 ppb. Unfortunately, i t  is impossible t o  say what 
the oxygen level was dur ing  the experiment. Experimental data for Test 3 are 
shown i n  Table 4, p. 14. 

0 3 

* 

Radian's evaluation (Ellis 1980) of the corrosion coupons i n  Test 3 is 
reported i n  Tables 6 and 7, pp. 22 and 23. In summary, 

0 Carbon steel had a uniform corrosion rate of 4.0 mpy and a crevice 
corrosion rate of 50 mpy. 

0 Copper had a uniform corrosion rate of 1.9 mpy w i t h  some crevice 
corrosion b u t  no evidence of SCC. 

0 Brass corroded uniformly at  0.46 mpy w i t h  incipient crevice 
corrosion but  no evidence of SCC. 

0 316 SS corroded uniformly at  0.02 mpy w i t h  no evidence of crevice 
corrosi on or SCC. 

0 Titanium had a negligible uniform corrosion rate w i t h  no evidence of 
crevi ce corrosion or SCC. 

0 Copper coupled t o  cast iron showed a three-fold increase i n  
corrosion rate over the deoxidized condi t i  ons. 

Radian concluded that the low level of dissolved oxygen had a pronounced 
effect on the corrosion rate of carbon steel (four-fold increase) b u t  a less 
dramat i c effect on copper ( two-f ol d i ncrease) . * 

4 

BChemetrics, Inc., Warrenton, Virginia. 
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The performance o f  the corrosion probes and redox electrode i s  shown i n  
Figure 6. Corrosion rates fo r  the cy l i nd r i ca l  specimens are compensated f o r  
area using Equation (1). The integrated corrosion r a t e  of  the steel  cy l i nd r i -  
cal  specimens over the duration of the experiment resul ted i n  an average cor- 
rosion ra te  o f  9.0 mpy, which i s  more than two times greater than the 4.0 mpy 
determined by weight loss. This discrepancy may be due t o  the e f fec ts  of  
crevice corrosion. The integrated corrosion ra te  f o r  the Petrol  i t e  steel 
probes i s  4.0 mpy and compares t o  tha t  determined by weight loss. Since the 
hydrodynamic conditions are qu i te  d i f f e ren t  a t  the locations o f  the P e t r o l i t e  
probes and the weight loss specimens, i t  appears t h a t  ve loc i ty  does not have a 
major e f fec t  on corrosion rates. The redox potent ia l  o f  approximately +0.3 V 
(SHE) would ind icate from a Pourbaix diagram (Biernat and Robins 1972) t ha t  
the porous black surface f i l m  was composed o f  Fe203. Any i r o n  sul f ides present 
i n  the f i l m  would not be i n  equi l ibr ium w i th  the water chemistry. No x-ray 
analysis was carr ied out. 

In tegrat ion o f  the corrosion ra te  of  the cy1 i ndr ica l  copper specimens 
, resul ted i n  an average r a t e  o f  4.0 mpy, which i s  two times larger  than the 
2.0 mpy determined by weight loss. 
resul ted i n  an average corrosion r a t e  o f  5.9 mpy, which i s  an even larger  e s t i -  
mat i on o f  corrosi  on rate. 

In tegrat ion o f  the P e t r o l i t e  copper probes 

Although the potent ia l  o f  the redox electrode slowly became more pos i t i ve  
throughout the experiment, i t  i s  impossible t o  make any generalization since 
the oxygen content was not controlled. Assuming 30-ppb oxygen throughout the 
experiment, the r e l a t i v e  response o f  the redox electrode was about 0.6 V when 
going from 0- t o  30-ppb oxygen. The redox electrode i s  extremely sensi t ive t o  
oxygen 
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