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I. Introduction

Revived interest calls for én introductory survey of tearing instability
theory. Here, we try to make the relevant literature more widely and pain-
lessly accessible, by summarizing the basic notions of the theory from an
elementary point of view. We take advantage of the fact that most tearing
theo;ies ' despite their often qualitativelAy different predicted growth rates
and tearing layer widths, are very sitmilar. Thus one c.an pfoceed surprisingly
fa._r In understanding tearing mode theory, without being committed to a
specific model or ordering.

A complete review is not attempted. In particular, we restrict oux; atten-
tion v tokamak-fusion applications , and recent nonlinear tearing studies
are virtually ignored. |

The reasons why tearing instabilities might bear importantly on tokamak
performancé are considered in Sec. II. Sec. IIl describes the mechanism"
of tearing, and Sec. IV outlines thé method by which this mechanism is

analyzed. We close in Sec. V with a survey of typical growth rate predictions.

Although the notion of magnetic field-line tearing apparently originated
in the astrophysical literature,1 most fus_ion-orie‘nted theories of tearing
can be traced to the famous 1963 paper by Furth, Killeen and Rosenbluth

2. FKR treated a number of resistive instabilities, In the limit of

(FKR).
vanishing gyration radius. But it Was récognized3 that finite gyroradius
effects, and other corrections to Ohm's law, would become significant as
the plasma temperature and electrical conductivity increased, and such

, , 4
corrections were studied in several papers, by Coppi and collaborators,

and others, 5.6 during the following two years.



The subsequent five or six year lapée in tearing-related publications was
perhaps a consequence of the apparently esoteric, "theoretical" nature of
the modes, and their relatively slow growth rates (proportional to a fractional
power of the resistivity). The revival of interest, beginning in 1971 and
continuing fo the present, was stimulated mainly by the tokamak experimental
program: it was noticed7 that certain tokamak phenomena, universally
observed,8 and seemingly associated with grave effects on confinement, had
slgnificant'fe;‘:utlirésiiﬁ common with the predlctéd properties of tearing insta-
bilities. Thus;., .in‘ 'part'icular, the (now "classical") FKR étability criterion
was studied in dei‘:“ail for various tokamak current profiles.9 The relation

hetween tearing modes and the ideal MHD kink was also clarifled10 (the

experimental results having also stimulated new interest in ideal effectsu’lz).

But most theoretical work during the 1970's has been concentrated within three

~ areas: (1) Attempts to extend tearing mode theory to the long mean free path

13,14,15

regimes of modern tokamak experiments. This effort has produced,

14,15

inter alia, substantial unification of previous work. (11) Investiga-

tions of the effects of toroidal curvature, both in the ¢ontext uf iesistive

fluid ’cheory,16 and also, most recently, in the long mean free path 11m1t.17

Such effects turn out to be quite important, as is also the case for ideal

kink modes.'® .(i11) Studtes , both analytical’®’ 2% and numerical, 212223

of the nonlinear properties of resistive instabilities. The objectives here

include theoretical understanding of the so-called disruptive 1nstability,24 $25

the consequences of magnetic island formation,26 and the effects of tearing

instabilities on transport. 27,28



I1. Significance of tearing instabilities .

A. Confinement
Plasma confinement in an axisymmetric, toroidal systeng depends
upon the existence of nested surfaces of constant pressure p, almost each

of which is covered ergodicall}} by a single field line:
B-vp =0. - 1)

Loss of confinement then requires some scattering mechanism to allow
particle diffusion across the surfaces. But this radiél rﬁotioia 1s:/v¢;:-ry slow:
of order (v /Q )2, where v is the -90°-scatter1ng fre;qbuen.cir and Q = eB/mc
the gyrofrequency, cofnpared to particle rhotion along the magnetic field.
Much more rapid loss of"confinemeﬁt can result fr'om destruction of
the "flux surfaces" themselves, due td radial perturbations of the field.
Consider a circular-cross-se;tion tokamak, with toroidal ?:oo'rdinates
r. 8, ): r is the minor radius, and @(p) is the poloidal (toroidal) anglé.

The unperturbed state is characterized by

dp, /¥ =0=B_ . (2)

Then Eq. (1) with Bg # 0 implies that Py depends only on r. For simpli-
city, we considef perturbations (p, B) which maintain Eq. (1), while break-
ing the symmetry of Eq. (2) (as would correspohd to low frequency excita-

tions, or "neighboring eqﬁilib_ria "). Perlbd_icity allows us to expand

wm i(me = nv) ‘
4_iBr—2wmn € ' (3)
- .m,n’
P =z Emn elme =),
m,n

and to express the linear version of Eq. (1) as



B, =-Epy/B, )y, /m-na), @

where

| alr) = rBy,/ RBy, | (5)
is the safety factor Qf the unperturbed system, and finite aspect ratio
corrections are omitted. Evidently, the linear theory breaks down on fiux

surfaces satisfyi_ng
| & Po/Po) Winn/Bog | 2| m-nq(n)] . (6)
For chosen integers m and n, Eq. (6) will describe a three-dimensional

region,

‘1‘-'I‘S|s Amn, _ . (7)
where ry (m,n) labels the appropriate rational flux surface,
q(ry) = m/n : (8)

and the radial width, Bpp an be seen to depend upon the shear, q'/q ,
and upon the magnitude of the field perturbation at rg . Inside this
singular region, the perturbed constant pressure surfaces need not resemble
their unperturbed counterparts. Furthermore, if Eq. (6) is satisfied for one
pair (m,n), it will in general be satisfied for numérous pairs (m',n'), with
m'/n' ~m/n, so that the pressure surfaces inside Bpp €81 become chaoti-
cally scrambled: one has in this case a "flux-volume", in which the concept
of flux surfaces is irrelevant, and confinement is locally absent.

On the other hand, for a fixed, reasonably smooth field perturbation
l B[/Bel«l, the width Amn decreases sharply with increasing m or n.
[This follows from the presumed convergence of the series in Eq. (3).] Thus

the presence of high-order rational values of q, and the fact that every



.number is nearly rational, are not physically important. One expects |
significant destruction of the irrational fluk surface having 'q = (l.l)%,
: b)ut not, usually, of the fational surface having q = 23/16 .

Hence we may restrict our attention to reasonably smali values of m
and n, so that on "most” flux surfaces, Eq. (6) is not satisfied. Such flux
surfaces suffer only mild deformation, without topological change. The
situation for both types of surface is d'epicted_‘in Fig. 1.

These remarks are made precise in a theorem ("KAM") [lList conjectured
by Kolmogofov, and later proved by Arnol'd and Moser, in the context of
ergodic theory. An illuminating discussion has been presented by Walker
and Ford.30 The significance of the KAM theorem to plasma confinement
was pointed out by Grad,31 while detailed studies of flux sﬁrface destruction
have‘be‘en presented by, among others, Rosenbluth et al..,32 and, most
recently, R‘echesfer and Stix.’26

Ideal MHD 'cheory11 predicté that the most dangerous modes in a tokamak
have toroldal mode number n =1, so thaf flux surface destruction, and local
loes of confinement, seems most likely to occur near flux surfaces having
small integral safety factors: q=1,2,3... . Butideal MHD also
predicts that |
=0 ' (9)
in which case Eq. (6) cannot be satisfied and the flux surface topology
is preserved!

This comment brings us, finally, to the subject of tearing', since the
crucial property of a tearing mode is the presence of a radial magnetic
field perturbation on rational flux sﬁrfages. Thus any observed flux surface

.31)

destruction (if it results from an instability rather than lack of equilibrium



can be associated with something akin to a tearing instability,

It follows that tearing instabilities could provide fundamental limitations
on tokamak confinement: they could limit, for example, the maximum achiev-
able pB=8n p/Bz. When the singular regions of Eq. (7) are well separated,
the resulting local confinement loss would appear in the observed pressure or
temperature profiles. [e.g., a central flattening of p(r), if g=~1 on axis].
Much more serious, presumably even "disruptive", consequences would i)e
observed in the case of overlap between singular regions corresponding to
different values of q. Such possibilities have encouraged theoretical and '
experimental interest in the tearing mode.

To évoid misunderstanding, we remark here that the linear analysis of
tearing, to be considered in Sec. IV, differs from Egs. (2)-(6), in that singu-
" lar perturbations do not occur. In fact the crucial feature of every tearing
analysis consists of tinding and including small corrections to the operator
E v , and thereby resolving the singularity in equations analogous to
Eq. (4). Of course our comments conceming Eq. (6) remain applicable, so

long as the corrections are indeed small,

B. Observations 6n tokamaks

Magnetic probe measurements on a number of tokamak plasmas have re-
vealed sinusoidally oscillating magnetic field perturbations, with the spa=
7,8,33

tial structure,

B o exp (img -p) , m=1,2,3,...

By comparing the times of onset of such "Mirnov oscillations" with the:
time-evolution of the safety factor q(r,t), it has been confirmed that a
particular mode number m occurs only when g achieves the value of m

at some radius inside the plasma. ' This behavior coincides with that of



both tearing modes and ideal internal kink modes, although the former seem
mote likely to be unstable. 9

The fr;aquency of the Mirnov oscillations 1is usually identified with the
electron diamagnetic frequency, the growth rate being typically smaller.
This fact is also consistent with modern theories of the tearing mode.

Some cxperiments indicate an association between Mirnov oscillations
and local flattening of the electron temperature profile , near the appropriate

rational surface rq.34

(This effect is most clearly visible far mades with

m = 2 . A similar flattening of, for examplé, the plasma density, is nof ruled
out, but more difficult to detect.) Since profile-flattening is an obvious
consequence of local fl‘ux surface destruction, these observations are ‘
especially suggestive.

Mirnov osclillations are relativ\elyvharmless by themselves. Howe ver,
they frequently appear as precursors, elther to internal _"mln‘i-disruptiqns ",
manifested in saw-tooth oscillations of the x-ray-detected electron temp-
erature, or to méjor disruptions, resulting in abrupt collapse of the dis-
charge ("disruptive instabllity"). Although patently nonlinear, both kinds of
disruption have explained in terms of magnetic field line tea‘rlng. For example,
‘nonlinear growth and decay of magnetic islands could be associated with |

21,22,25 while the major disruption might involve sudden

25,26

mini-disruptions,
overlap of islands growing from initially distinct rational flux surfaces.
It should be emphasized that all explanations of Mirnov oscil.lati-ons and
disruptions ‘remain tentative, and several theories of the phénomena havé
been proposed which make no reference to the tearing mechanism. For
example, the oscillations have been interpreted in terms of neighboring

helical equilibria,13 and in terms of tefnperature—gradient driven drift waves;‘?'5



profile flattening near the magnetic axis (for g = m = 1) has been explained
in terms of a rotational interchange mo‘de;36 and-a modified neoclassical
théory has been shown to predict disﬁruptive effeéts , similar to those

which are observed.37 If tearing theories seem prominent among the varioué
candidates for explaining Mirnov phenomena, it is probably because such
theories hope to relate all the observations to a single, relatively simple
idea: changes in the topology of the magneti\c field,

Finally, we point out that the great wealth of detailed experimental
information on Mimov oscillations and disruptions has be’én'barely touched
- upon here. 1Itis known,. for example, that the sawtooth signal changes
phase across the mode-rational flux surface, that the major disruption is
accompanied by a negative voltage spike, and so on. Thus any proposed
theoretical picture of the oscillations and disruptions is subject to an
unusually rich assortment of experimental tests. Since a successful theory
of the Mirnov phenomena would bear on several questions ciucial to the
perfo‘rmance of a tokamak reactor (such as transport scaliné laws, or the

previously mentioned quesﬂon of B limitations) , the cpportunity offered

to theorists is clear.



III. Tearing Instability Mechanism

A. I\/Iaghetic Shear
'The importance of magnetic shear with regard to f11;1>; surface destrgc-
tion has already been noted. In addition, conventional tearing instabilities
are driven by the magnetic field energy associated with shear. Hence we
begin by considering an unperturbed field Eo (r) whbse direction depends
upon radius, Then an interior radius, r, , and a fixed unit vector n
can: always be chosen such that.the field component En= ?1 (Eo -f) changes

sign at Fes
B () - no=0. 0 o (10)

The lines of the En—field,, in a radial neighborhood of r,, are depicted in,
f‘ig. 2.

The minimum field energy configuration (v'a_cuum field) is roughly
chéracterized by the absence of shear:

E- n=0, for albl r.
The configuration of Fig, 2 can Arelax to this minimum energy sfate by meansg
of field annihilation: field lines above (below) r, migrate.downwards
(upwards) so as to annihilate their oppositely directed counterparts., It
is ‘instructive to distinguish two mechanisms avai'lable for such migration:
convection and ditfusion.

These mechanisms are cleafly visible in a resistive MHD modél,

in which we assume

E+ VxB/c=n], v-V =0, : (11)

where T is the (spatially constant) resistivity, J is the plasma current,

V  the flow velocity and E the electric field, In slab geometry , Max-

N
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well's equations theh yvield the familiar lineaﬂzed relation

ds
dt

a2 2 '
- S~ ¢B + ik, B_V : (12)
TS ~ | O~

where a 1is the plasma radius, k,  is the parallel wave vector and

i
v = 4ma’ /c% 3)
is the resistive skin-time . For a nominal ordering we have

and V ~ Vp = (BQZ/4n p)% , the Alfven speed. Then the first, diffusive term
on the right-hand side of Eq. (12) corresponds to the time scale Ty~ 10’1 sec.,
while the second, convective term corresponds to the scale ™ :-a/\}A~10_8sec.
(These numerical estimates correspond very roughly to typical tokamak para-
meters.) Thus equilibrium magnetic field diffusion, characterized by vB~B/a,
is extremely slow, and significantly rapid field annihilation must involve the
convective term,

However, a crucial property of ideal ( Ts —-o) MHD convection must be
yrecalled: if £ is the plasma displacement, then the radial field perturbation

~r—

B, satisfies
B./ B, = ik, & - - (15)
This can be seen from Eq. (12) or, more perspicuously, from Fig. 3; the

essential point is that the field is "frozen" to the plasma fluid, in the ideal

case,

B. Annihilation and reconnection

With these remarks in mind, we return to Fig. 2, and consider how we
would perturb this field to most quickly relax the shear. To produce rapid,
Alfvénic excifation,Awe would "pluck" the rubber—band—iike En—lines

periodically along 1 ; to produce field annihilation, we must pluck them



1l

anti-symmetrically with respect to the radius r,, so that a field line
below r,_ is drawn up at the sAame positions, along the a-directidn,
that the corresponding field line above r, is drawn down. The resulting
kink-like perturbation is depicted in Fig. 4. Note that annihilation and
reconnection, or "tearing", at r, has altereq the magnetic field topology:
magnetic islands have appeared. It is clear that this topological change
occurs even for an infinitesimal perturbation, i.e., eveﬁ in linear theory, l
so long as the perturbation has the geometry we have described.

A simple characterization of this geometry is also clear from Fig. 4:
the wave vector ,]S lies along the direction ﬁ It follows that the field

component Bn is proportional to k"; whence
k (r,) =0, : - (16)

. . : . A

by the definition of r,. In an axisymmetric torus we must have k=19 m/r -
A -

® n/R, where § and Qp are the opvious unit vectors, R is the major

toroidal radius, and m and n are the poloidal and toroidal mode numbers

respectively, so that Eq. (16) imples

qalr ,) = m/n,
Thus the radius , r,, must be identified with oﬁe of the radii re of Eq. (6),
if the tearing mechanism is to function.
A crucial conclusion follows from this identification and from inspection

of Fig. 4: the tearing mode requires

B_(rg) # 0. | (17)
in coritrédiction to Eq. (15). In other words, significant de'coupling of the
plasrha fluid and the perturbed magnetic field lines must occur at the rational
flux surface. Of course, the decoupling need not in gen'eral result from

resistivity,
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It is clear that the departure from ideal behavior described by Eq. (17)
is only locally significant: at most radii r # ry the second term of Eq. (12)
easily dominates the first. Thus the tearing mode appears as a kink-insta-
bility, slightly modified near rational surfaces. For a complementary
description, empha.sizing diffusion, we may consider the narrow region
near r,

|r—rsls7\<<a - (18)

in which Eq. (14) does not pertain, and the tWo terms on the right-hand side '
of Eq. (12) are comparable. In this "tearing layer", one expects (from, for
example, Fig. 4)that A\ would replace a as a measure of the radial scale

length:

2 2.

a 2 a
Ts ~ A

;’1‘3; > B/7 | (19)
s
Detailed analysis, to be outlined in the following Section, reveals a some=
what more complicated situat_ion; in many cases only one factor of ‘(a/A )
actqally appears, and the skin time TS need not always be resistive. But
the essential point is generally valid: enhanced radial gradients in the tearing
layer vield relatively rapid, localized .diffusion of the pcrturbéd fleld. By
identifying such diffusion with the tearing fnstability, we can correctly
estimate its growth rate, and we omit only its non-local, kink-like, "wake".
In summary, the tearing instability takes advantage of field~-line tension,
through the Alfvén mechaniSm; to allow shear-relaxation to proceed on time
scales much shorter than the skin time. The instability can occur only in
the presence of rational flux surfaces, in the close vicinity of .which the
(small) equilibrium field component Bn =‘Be o(1--nq/m) is annihilated and

reconnected. The tearing of Bn—lines requires non-ideal behavior,

B (

r rs) # 0 , and can be considered analogous to localized magnetic field
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diffusion. But the tearing mode itself is not localized: it is a convection-
diffusion hybrid which appears, far from the rational surféce, similar to the

kink mode.



14

IV. Linear analysis of tearing instabilities

A.‘ Boundary Layer Problem |
The previous two Sections indicate the importance of modes having
the following properties:
(i) a ki_nk—like structure, far from the rational flux-surface (i.e.,

for k"~ a_.l);

(i) B ( );f 0;

(iii) low frequency: wor .Y = Im(w) should be small compared to
k) vp. as in the observed tokamak oscillations; - |

(iv) vy > 0 in parameter ranges of interest to preseht or planned
tokamak experiments.
It seems convenient to identify any mode having properties (i) and (1i) as a
tearing mode; with this definition, most known tearing modes have been
found to satisfy property (iii). Property (lv) Is more delicate, In Lhat the
stability or consistency criteria for a given, theorefically proposed , tearing
mode often dgpend strongly on fine details of the equilibrium . We shall
not use property (iv) restrictively here.

. We begin our outline of the linear analysis by considering the
kinked region, ‘exterior to the tearing layer. Here, the slow plasma motion
indicated by property (iii) allows us to neglect, as a first approximation,
inertial and viscous effects in the equation of motion . Thus we consider _

~a perturbed equilibrium , with approximately scalar pressure:

cvp = JxB_+ JxB . (20)

Equation (20), together with the Maxwell equations

veB =0, vxB=4n] /c,
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provides a closed, horriogeheous system for the seven unknown quantities

~

p,J and B . In cylindrical geometry, the system may algebraically '

be reduced to a second order differential equation which involves only the

radial field perturbation.' This is the so-called Newcomb equation:38
k, (/K% - (¥/B) [r & B /K] -rgy=0, (21)
_ with ' ‘
. = k2r2_1 _ 2n2 (L>2[ k_L ) 4npo ] ' 22)
[ kzrz kzrz R kzrz BOZ ’
Here, A . ‘
y=-iB . | | | (23)

is the conventional measure of the field perturbation (or axial vector
potential), the primes denote radial derivatives, and the wave vector com-

ponents are given by

k (r) = m Eﬂ - n ?.&
i r BO R Bo !
. (24)
B Bg |
k=2 2+ 8 =2
r Bo R .Bo
whence ' A
k2r% = m2 + (r/R)?‘ nz, _ (25)

with (m,n) =1,2, 3, ... - . Axial periodicity is assumed, so that the
cylinder models a torus with major radius R. |

The first noteworthy feature of Eq. (21) concerns its derivation: such
standard assumptions of ideal MHD as

~

E+V x B/c =0, g (26)

p p-Y "= const,,
and so on, have not been used, and need not pertain. The question of

incompressibility is similarly irrelevant.. The fact that Eq. (21), which
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is convéntionally deri\;ed from the MHD energy'principle, does not in fact
_ dépend upon MHD éssumptions, is significant, since the observed oscillations
seem too slow to be correctly described by an MHD ﬁodel.
Of course, the most important feature of the Newcomb equation is that
ki|, which appears in the coefficient of the highest order, {", term, may in

general vanish at some radius ry

k" (rs) =0, 27)

If Eq. (21) is presumed valid in the close vicinity of I then any
acceptable solution § must satisfy

§ () =0 | (28)

in contradiction to property (ii). Examples of modes satisfying Eqs. (21)
and (28) are the local, Suydam modes, and the non-local, ideal-MHD
kink modes (which are referred to as "internal" or "external", depending
upon whether rg lies in the plasma, or in a vacuum region surrounding
the plasr_na, respectively. 9) The relation between the existence of such
solutions and MHD stability was studied in detail by Newcomb.38
More generally, and more realistically, we must acknowledge that
Eq. (21) may be a poor approximation in the region close to ry. The descrip-
tion of this region by a more accurate differential equation, which is not
singular at Tg» leads to the concept of a "tearing layer"”, as described |
in Section III.
To anticipate salient features of the tearing layer equation, note that it

is " ~y/k

"', rather than Y itself, which becomes large as r apprdaches

r.. To "tum-over" ¢" - toround off the tip of its spike at rg - a curvature

-~

term of the form (") " ~ 11;"/&2 , where A\ is the layer width of Eq. (18), is
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required. Such a term will presumably come from including, inter alia,
“’/kr Va corrections to the force balance equation. On the other ha_nd,
terms in this equation which are small in )‘/a,- may be omitted, Thus we
expect the tearing layef to be described in general by an eciuatio‘n of the
form

"+ alw) h_(r) " +...)=0(0/a) | 29)

The final step in the linear analysis of tearing instabilities consists of
treating Eqs. (21) and (29) as a standard boundary layer pioblem: oneé seeks
the regular solutions ;3f Eqg. (29) which smoothly join, as | r - rsl becomes
large, onto the corresponding solutions of Eq. (21). Of course the latter
must also satisfy boundary conditions at r=0 and r = a. Applied to
Eq. (29), the regularity and "matching conditions” in geﬁeral restrict o W)

to a discrete set of values,

calw)= o, , 1=1,2, ... : : (30)

where the o j - typically depend upon asymptotic properties, for r - rg

of the exterior solutions, i.e., the solutions to Eq. (21).
Equation (30) represents the tearing mode dispersion relation. We next

turn our attention to a concrete example.

B. Classical tearing mode

Noting that Eq. (20) imples Eq. (1), and recalling that Eq. (1) leads to
singular perturbations, S = (k ||)-1, we conclude that small corrections to
Eq. (20) will be important when k" is small. The simplest.such correction
comes from inertia:

~

) BX/at= -puf2 £ .
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where .g is the plasma displacement, and p the equilibrium mass-density.

We add the inertial term to Eq. (20), which is then used to compute the

perturbed current perpendicular to Eo . As a result we find

7. = (/B ( pu? £, -k, p)

~

A A . R
where ¢, = (Po % r/BO) -gvand kl = (50 xr/Bo) -k , as in Eq. (24). Next,
we approximate for A/a <<1, by retaining only the highest order radial
derivatives of perturbed quantities. Then, since v E = 0, Ampere's law
has the parallel component

an Jy /e = y" /K,

and the quasineutrality condition,
O=v-T=TJ ' +1iky Jy
takes the form
Ky By 4"+ 4m pu Gk, g, )" T 0. | e

Here we have omitted a contribution from the p-term in 'Ivr , using
D= -¢,.p,' and gr/gl= 0(r/a), as will be seen presently. We note,
however, that the pressure perturbation is llmportant for certain low-frequency,
drift-tearing modes, considered in Sec. V. It can also affect the classical
tearing mode, when toroidicity is includedl.6 Physically, Eq. (31) states
that the crucial accelerating force is field-line tension, (B :9B) ~1ikyB_B .
in qualitative agreement with the discussion of Sec, III. '

Note that the first term of Eq. (31) is simply the highest-order derivati;/e
term of the Newcomb equation. The second term in Eq. (31) will be seen to

resolve the singularity at ry o after we have obtained an equation for ¢

~
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The classical prescriptidn for £ is .provided by Ohm's law and incom-

~

pressibility: Egs. (l1). Thus the radial component of Eq. (12) relates ‘gr to -
y . while

veg =0=ik ¢ +¢'+0()/a)

allbws Eq. (31) also to be written in terms of { and Er . We then obtain

the e,quations2
k, B 4" - dmp u g = 0 | S 62
2 Wy -
(a /’fs)w +iw (‘l"k"Bo gr)—O | o (33)

. which evidently may be combined to yield a fourth order differential\equatipn,
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the tearing la.yer equation of Eq. (29), for y.
Note that the second term of Eq. (33) is proportional to the parallel
electric field, o |
im('\y—kuso £)=ck E . | (34)
if a small term, ¢ nk“ J, . is omitted. For ordinary resistive diffusion,
o /a%, and Eq. (33) states that E, ~y/ck 1, 1is very small, as in
ideal MHD. Thus the tearing layer may be characterized as that region in
which ElI significantly exceeds its resistive diffusion value; recall ﬁq. (19).
Because we have omitted all finite Larmor radius effects, and because
the simple form of Ohm's law we have used épblies only fér large collision
frequency, v ,Eqs. (32) and (33) have a limited range of validity. In
- particular they'require
V> > o, , - . (35)
where w, is a diamagnetic frequency. It i.s.s‘_ignificant that the three
frequencies appéaring in Eq. (35) are in fact roughly comparable in many
present tokamak experiments. Qn the other hand, several more recent..
studies, which allow w ~w, and w ~v, vield tearing layer equations
nearly identical in form to Egs. (32) and (33); only the coefficients are
chénged. We therefore regard the equations as archetypal, and consider

next some properties of their solution.

C. Matching Condition.

To estimate the growth rate, y= - iw. and layer width, ')\ . of the
classical tearing mode, we assume both terms in each of Eqs. (32) and
(33) are compar‘able, and expand |

k ' =k "' (r—rq)

[

Nk')\n
I
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In the most obvious ordering, we would furth,é“r estimate gr" ~gr/)\z and

U~ '&;b/xz. SR ' (36)
Then Eq. (33) ylelds :

Y~ @it
corresponding to localized diffusion, while Eq. (32) yields

Y~k va~k AV,

corresponding to Alfvén convection (VA is the Alfvén speed). After eliminating

39

A we find, "~ with TAE a/v,,

Y ~(1<|| a®)" /(1 T ), _ (37)

a result which confirms several tearing mode features anticipated in Sec.
III: the instability is drivenlby-sheaxj, and has the form of a diffusion-con-
vection hybrid. |

However, Egs. (36) and (37) do not describe the tearing modes most frequently
considered in the literature . The point'is that, unless -\y'(rs') is small, Eq. (36)
corresponds to an apparent (i.e., when viewed with respect to the scale
length a > )\ ) discontinuity in the radial field perturbation. It can be seen
from Fig. 4 that such a discontinuity is not‘ required, nor even helpful, for
the tearing instability meéhanism fo oberéte. In a less extreme case, _w
itself is continuous, and only its slope, ' , changes appreciably across the

tearing - layer. The apparent discontinuity in slope is measured by

M=l egre) =4 o)/ ¥(r,) (38)
where )\ « ¢<< a, and Eq. (36) beéomes in this case

‘bn’v A'W(rs) /)\. - . (39)

The nominal ordering, ' a ~1, implies that y(r) = \y(rs) “throughout the
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: teéring layer;2 this "constant-y appro%i_mation" is frequently used, though~

occasionally disputed, to simplify the solutions of Eq. (32) and (33).
Without making any assumption regérding the magnitude of A, we may

repeat the manipulations leading to Eq. (37), but now using Eq. (39) instead

of Eq. (36). Then Eq. (33) implies

v a2t 4_ S o)

| : . 2 . 2.2 2
while Eq. (32) yields k" B, A V/A~4mp Y £-,r ~(BO/VA) Y E,/l .
Assuming that the two terms on_the left-hand side of Eq. (34) contribute

caomparably to E" , we obtain
Y~k ) % ' 41
~k vp (80) | (41)

We can solve Egs. (40) and (41) fof .Y and A In the two cases of interest:
(1) If a'~a"’, we find '

2,2

ok gt A @2)

A

where instability occurs only if A' >0. The width is given by ‘

2 .
(/2 = (a'a) & a?) " (mp/m)? @3)
A typical solution .\11 (r) for this case is depictéd in Fig, 5. The growth
rate of Eq. (42) is typically smaller than that of Eq. (37); yet it also
displays the shear-driven, hybrid featurés which were noted previously.
(ii) If A' ~ A—l, we obviously recover Eq. (37) for Y. The width in this
case satisfies ‘ '
13 2 -
(Va) ~ &, a®) r /1) T
Two quite different radial mode structures can produce .A' ~)\_1 . and
thus Egs. (37) and (44). First, q,(rs) might be quite small, of order Va

compared to its maximum value outside the layer. This circumstance ls
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depicted in Fig. 6a; we shall see that it commonly applies to modes with
|

’

m=n=1. Second, it could happen that | is large, proportional to A
near -rg. Then 11:. "would appear nearly discontinuous, as shown in Fig. 6b.
This possibility is rarely considered in the literature, although both analytical40
and numerical23 studies have indicated its possible importance.

It should now be clear that analytical solution of the tearing layer equations
is not possible without some a priori knowledge of the behavior of ‘J;. outside
| the tearing layer: Egs. (21), (32) and (33) must in general be solved
simultaneously. In most of the literature, this task is avoided by assuming
y to be continuous across the layer, as in case (i). It is then reasonable

to consider the tearing mode problem solved, once Yy has been evaluated

- in terms of A'.

As noted previously,.case (ii) is of importancei mainly for m = n =1 modes.
The distinguishing feature of such modes is apparent from Eqs. (22) and (25),
which show that |

| g~ (m‘/R)2 «l, for m=1, '

Since toroidal curvature terms, which Eq. (21) omits, ,aré also of order
(rz/RZ), the use of a cylindrical model for m =1 rﬁodes is questionable .11
But even in a torus, a lowest order approximation for the m =1 internal
kink mode presur_nably wouid be obtained by neglecting g, so that. Eq. (21)
is approximated by |

kl‘lBo (ry'/k%) ¢+ ~ [ & B /%41y
or

[r & B)?(y/k B) /k*1 Zo

[ o]

Thus the exterior solution is characterized by12

ll‘/kll B, ~¢ = const., for r <rg



23

and w/k I Bo: 0 for r >rg . to satisfy the boundary condition at r = a
("fixed~boundary" kink mode). It is clear that this form of the exterior
solution corresponds to Fig. 6a: | ~const. k“ A, for o~
The preceding argument has sometimes been taken to imply a strict

correspondence between m =] modes and Eq. (37), on the one hand, and
between m 22 modes and Eq. (42), on the other. In fact the correspondence
is far from clear-cut; in particular, it is contradicted by m =2 modas having
the discontinuous form depicted in Fig. 6b. Furthermore, m =1 modes have
been found whose growth.raLes resemble ‘Eq. (42).39

| Onoe the influe'nce of the form of the exterior solutions is understood,
the analytical solution of Egs. (32) and (33) is rélatively straightforward.

An especially elegant procedure is presented in Ref. 39. We do not review

the detailed solution here,

D. Summary
To recapitulate: tearing instabilities are analyzed by solvtng a boundary
layer problem for the mode-rational flux surface. The kink-like excitation
of the exterior region is sufficiently slow to be treated as a neighboring
equilibridm. With the neglect of stress anisotropy, this 'ciescription
corresponds to the marginal stability condition of ideal MHD (Newcomb
equation), In the. interior region, Br" (r) becomes large, and. the description
hinges upon coupling Br" to the parallel electric field of Eq. (34)'. - Various
nominally small effects, of which only resistivity has been considered
here, can provide the coupAling. The resulting tearing layer equation is
generally (equivalent to) a fourth order radial differential ‘equation for Br‘
The,fgﬁni of the final dispersion relation depends not only upon the Br”-E

I

coupling, but also upon gross features {e.g., continuity across the layer)
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of the exterior solutions. Similarly, the precise value and sign of the
gr‘owth rate can depend upon critical details (e.g., A ) of the exterior
solutions.

The coupling between Br" and. ‘E" bepomes particularly delicate at
low frequency and small resistivity. When ¢ ~w, as for 'the observed
modes, a host of higher order terms, in both the equation of motion and the
. (generalized) Ohm's law, become potentially important. This explains why,
fourteen years after the lengthy FKR Astudy', the linear theory of tearing
instabilities remains of interest. It also explains how the analysis out-
lined above can yield a remarkably disparate collection of dispersion rela-

tions, as shown in the following section.
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V. Tearing Mode Dispersion Relations

Finali_y we display some tearing mode growth rates. What follows is
at besf a representative sampling, and far from complete. Our purpose is
not onlx} to display the wide variety of results which can be obtained, but
also to touch upon some topics of recent interest.

Future research oh tearing modes may well be concentrated on their non-
linear properties. Yet a characteristic feature of the modes - their sensitive

dependence on srhall details .- suggests a lbng—term interest in the linear théory.

A. Classical tearlng modes
The FKR tearing mode growth rate, derived from a slab model with

v>> vy >>w, ., is given by2
2 1/5

) 4 (k a
ﬂ_ ﬁﬂa ;%3/4) ] A | (45)

for Na~1, as in case (1) of Sec, IV. Here, p'1s given by Eq. (38), Ts is the

resistive skin time of Eq. (13) and a/vA is the Alfven time. Of course,

%
| ‘this result is juét the exact version of Eq.l (42). We recall that instability
occurs only when pA' > 0. |

Equation (45) describes a resistive tearing mode: the decoupling of plasma
and magnetic field which allows Br(rs) # 0 is provided by resistivity. As
noted previously, other mechanisms can be similarly effective. In the low
collision frequency limit, the inertial term, 4n u)p—z al/at, takes the place

of 'ﬂl_ , in Ohm's law. The resulting growth rate, 3,4

= (8 vés \)_3)% B | (46)

may be obtained directly from Eq. (45), by the substitution y —2Y (the factor

of 2 comes from the Spitzer-—Ham'i“ resistivity for unit ionic change).
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Equation (46) describes the classical collionless tearing mode. A distinct
type of collisionless tearing mode, in which electron inertia is similarly
responsible for field-fluid decoupling, is considered below,.

The classical tearing mode instability criterion, A >0 , strictly pertains
only in cylindrical or slab geometry. The same resistive fluid model which
yvields Eq. (45) has recently been analyzed in toroidal geometry.16 It is
found that A should be r'eplaced by a much mbre complicated qﬁantity,

D & (our notation), which includes in particular the effects of toroidal curva-

ture. More surprising is the discovery that, under certain circumstances,

the difference between A and 4, can be significantly large.

B. Drift-tearing modes

"Drift-tearing" modes have frequencies comparable to the diamagnetic
frequency, W In this case, the ion diamagnetic drift enters the equation
of mdtion, through perturbation of the ion pressure (magnetoviscous contri-

y, 0042

butions are cancelled by the convective inertial tern One finds that

Eq. (32) should be replaced by
4 pw(w-wi*) £" "k" B, ¥ = 0. ' (47)

~where W)y = (cm/eBor) p;’ /n;, m=1,2,... . Similarly, perturbation of
Pe yields Important Wy = (cm/e Bor) pe'/ne terms -iﬁ the Ohm's law
of Eq. (33). The simplest version of the resulting dispersion relation may

be written as4’13

w (w-ui*) (w —we*)3 =1 YCS . (48)

Equation (47) pertains to an isothermal plasma, and, strictly speaking,
requires v >>w. The point is that the static, or "dc" resistivity in Ohm's
N\

law cannot describe perturbations with w~v. When an "ac” Ohm's law
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is used, and when electron temperature gradient effects are retained; one

obtains the dispersion relationll'1

3 3 _. S
w(w-wi*)(u)-we*-azw,r*) o =1Yc (49)

where the ¢'s "are complex-valued functions of w and v , and Wpy =

- (cm/e BO r)A'I‘e' . A variational solution to the guiding-center Fokker-Planck

equation yields

-1
o = 0.98 (1-0.54 iwT) (1-2.97 1wr-1.04 wz'rz) —

oy = 0.80 (1= 0.54 igr )71

where 7 ~v—1 is the electron collision time of Braginskii,43 for unit ionic

charge:
mz v 3
e Te.

3
1
16712 e422 ne an A

F =

"Equation (49) can be shown to include Egqs. (45)-(48) as limiting cases. It
also predicts a new, "thermo-electric" tearing instability, which is driven,

not by magnetic shear, but by the electron temperature gradient :14' 15

*

Y = 0.43 ((_ne + 0.8 u)T*) wT*’T ,for w, T <1 . . (50)

A similar Te'—:driven mulde occurs at a low collision frequency in toroidal

geometry, where magnetic trapping of electrons is important. 17

C. Current channel modes

ol

In the derivation of Eq. (48) or (49), terms of order k|| Ve [vTez (ZTc/me) ]

are presumed emall compared to ¢ or v. Hence at small collision frequency,
‘w>>y , the relation between drift-tearing modes and electrostatic drift waves

(w <k"v ) is obscured. But the essential effects of finite k“ vTe/w can be

Te
understood from a simple, isothermal electron fluld model. By retaining both

the electron pressure gradient term and the inertial term in Ohm's law, we
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find that Eq. (33) should be replaced by®’13
az - . [ \) -v\ N -
—— "+ — {w=o (V-k B §)=0 (s1)
s o tur ik Bup B T TR

Here some numerical factors are omitted for simplicity, and y= (u)pzaz/cz)'rs‘l.
‘The familiar differential equation for drift waves is now obtained by using Eq. (47)

to eliminate " from Eq. (s1), and then considering the limits w<<k“ Ve

(thus excluding the immediate vicinity ot rs), w>> V. and k"Bog >>”\p (thus
" excluding coupling to an exterior, kinked region). Note that in this case

¢ cannot be interpreted as the plasma displacement; it strictly measures the

electrostatic E x B drift.
More interestingly, Eq. (51) shows that for sufficiently small ¢ and v,

two nested singular regions can appear. Recall that the usual tearing layer

is defined by the presence of an appreciable parallel electric field (} -k “BOE# 0).
The width, A, of this region may be estimated, for a given «, from Eq. (41).
But the square-bracketted tactor In Eq. (51) can make .\];” become small, as

one proceeds away from r before the tearing layer boundary is reached.

s ’
The resulting inner singular region evidently corresponds to a current channel

15

(since ¢ " «J ); " denoting the current channel half-width by A . we have,

|
from Eq. (51),

"2 VTeZ ~ (k"')2 vTe2 kéz ~ o v-dw) | (52)

k

Our discussion in Sec. IV, and also Egqs. (45)-(49), assume A, M, SO
that the current channel is not distinguishable. In the opposite case,
A< . (53)
a somewhat different analysis pertains: in general, one must solve a double
boundary layer problem, matching solutions for the current channel to those

for the ordinary tearing layer, before matching the tearing layer solution to
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17 We do not review solutioh to the double

kink modes in exterior regions.
botindary layer problem here, beyond remarking théf the current channel
énalysis itself is straiéhtforward, beéause the ion motion, as in Eq. (32),
is relatively unimportant. : -

In the simplest situation, the cufrgnt channei solution can be matched
directly to the exteridr kink, without regard to the outer tearing layer.

Notice that in this case, the quantity A of Eq. (38) must be defined with

respect to )\c, rather than A . When v<<w, so that Eq. (52) becomes

-kC~ ((D/k“ VTQ)'

thié procedure yields a collisionless tearing mode, alluded to previously,
which is quite _differént from that of Eq. (46). The growth rate of this

"current-channel collisionless tearing mode" ls‘; ‘glven by5
A'k 2 N

Y=y = — < \ v - (54)
cc Zné ( 0o 7 Te . ‘ '
For tokamak parameters, Eq, (54) indeed ylelds xc <\ Eq. (46) is not -
15 _ .

similarly consistent. ™
More recently, the same matching procedure has been applied to a

collision dominated current channel.ls, This will occur if v >w but

-1 %a
' VTe) ((J) \))

A~ (_k"

<< A,

as can be seen from Eq. (52). The resulting "semi-collisional® tearing mode

has the growth rate

L

Y= [30%/ar v/a) ]y 2% \3 (55)

c
for Yy > v, , and a more complicated expression for the case Y« w, .
A more transparent' version of Eq. (53), the criterion for formation of a
current channel; is difficult to construct, The problem is that A, /A

depends not only upon ¢ , which is usually not known in advance, but also,
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rather delicately, upon the shear, the plasma B, and so on. Thus the

possible appearance of a current channel is best examined in individual

cases.

D.m =1 modes
The classical m =1 tearing mode corresponds to case (ii) of Sec. IV B;
that is, A A ~1, because ¢ (rs) is small. In this case our previous growth

rate estimate, Eq. (37), is fortuvitously exact;

Y=Y = Ky a2’ / (g TAZ) ' 58)
More recently the relation between tearing modes and ideal MHD kink
modes, at m =1, has been examined.39 It is found that Eq. (37) perfains
when the kink is marginally stable, and that when the kink is actually stable,
"YMHD < 0, a new type of tearing instability can appear. Disregarding'dia—

magnetic effects, one obtains for this mode the growth rate

5 6
T(5/4) ro 4 k' az) Vs

= 1 i :
' Y {[nl"(—%)aG J 1'273 } (57)
Here, A S
. .
s
G = f . ralr)dr,
‘o

where g is defined in Eq. (22). A noteworthy feature of Eq. (57) is its close

resemblance to Eq. (45), describing a mode with A'a ~1 . Thus, as noted

-3/5 -2/5

in Sec.IVC, the classical growth rate scaling, Ts ™

. Is not re-
stricted to modes with m > 2.

Another modification of the classical m=l tearing mode is obtained by using
the ac Ohm's law which leads to Eq. (49), but allowing A A ~1 (which can

40,44
also pertain for m >1). - This yields the dispersion relation
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3, . (58)

101 (D((D - U)i*) ((.D _ we* - (yz wT*‘) = YCl

where Yel is defined in Eq. (56). Equation (58) allows extension of the

classical result to regimes in which ¢ ~w, ~ v
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Figure Captions

Figurg 1. Perturbed Afllux surfaces are indicated by solid curVes. The

dashed curves are unperturbed flux surfaces. In (la), the safety factor

is nonresonant and the deformation, exaggerated fdr clarity, is relativély
‘harml_ess. In the resonant case of (Ib), the entire shaded regioﬁ is

filled by a single field line, and the flux surfaces have been locally destroyed.

Figure 2. Magnetic field lines of the field component Bn , near the radius
r,. at which the sheared equilibrium field Eo is perpendicular to the plane
of the figure. The field strength, \ Bn\ , 1s indicated by the thickness of

the lines.

Figure 3. A flux tube, distorted by a radial displacerﬂent, g =exp (1 k -5),
of the plasma "frozen" inside it. Dashed lines show the unperturbed flux
tube, It is evident that the radial field perturbation would vanish if the
displacement were constant along the direction of Eo . In fact the in-

dicated relation between Br and Er can be inferred from the figure.

Figure 4. Perturbed version of Fig. 2. The geometry of the distortion is such
that annihilation and reconnection takes place even for an infinitesimal

perturbation.

Figure 5. Radial structure of the radial field perturbation Br ={ { , associated

-1

with a kink-tearing mode having A' ~a . Dashed lines indicate the approximate

boundaries of the tearing layer.

Figure 6. Possible forms of { (r), near and within the tearing layer, which
yield A ~)\-1. In case (6a), q;(rs) is quite small; in case (6b), § changes

sharply within the tearing layer.
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