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I. Introduction 

Revived interest calls for an introductory survey of tearing instability 

theory. Here I we try to make the relevant literature more widely and pain­

lessly accessible I by summarizing the basic notions of the theory from an 

elementary point of view. We take advantage of the fact that most tearing 

theories I despite their often qualitatively different predicted growth rates 

and tearing layer widths I are very similar. Thus one can proceed surprisingly 

fa; in understanding tearing mode theory I without being committed to a 

specific model or ordering. 

A complete review is not attempted. In particular I we restrict our atten-

tion lu tokamak-fusion applications I and recent nonlinear tearing studies 

are virtually ignored. 

The reasons why tearing instabilities might bear importantly on tokamak 

performance are considered in Sec. II. Sec. III describes the mechanism· 

of tearing I and Sec. IV outlines the method by which this mechanism is 

analyzed. We close in Sec. V with a survey of typical growth rate predictions. 

Although the notion of magnetic field-line tearing apparently originated 

in the astrophysical literature I 

1 most fusion-oriented theories of tearing 

can be traced to the famous 19~3 paper by Furth I Killeen and Rosenbluth 

·(FKR). 2 FKR treated a number of resistive instabilities I in the limit of 

vanishing gyration radius. But it was r~cognized 3 that finite gyroradius 

effects 1 and other corrections to Ohm's law I would become significant as 

the plasma temperature and e lectrioal conductivity increased I and such 

4 
corrections were studied in several papers I by Cop_pi and colla.borators I 

and others I 

5 
I 

6 during the following two years. 



The subsequent five or six year lapse in tearing-related publications was 

perhaps a consequence of the apparently esoteric, .. theoretical .. nature of 

the modes, and their relatively slow growth rates (proportional to a fractional 

power of the resistivity). The revival of interest, beginning in 1971 and 

continuing to the present, was stimulated mainly by the tokamak experimental 
. 7 
program: it was noticed that certain tokamak phenomena, universally 

observed, 8 and seemingly associated with grave effects on confinement, had 
..... 

significant features in common with the predicted properties of tearing ins~a-

biUties. Thus, in particular, the (now .. classical") FKR stability criterion 

was studied in det~il for various tokamak current profiles. 9 The relation 
' . . 10 

hetween tearing modes and the ideal MHD kink was also clarified (the 
. . . 11 12 

experimental results having also stimulat~d new interest in ideal effects ' ) . 

But most theoretical work during the 1970's has been concentrated within three 

areas: (i) Attempts to extend tearing mode theory to the long mean free path 

regimes of modern tokamak experiments. l3., 14 •15 This effort has produced, 

' - 14 15 
~ g}ia, substantial unification of previous work. ' (11) Investiga-

tions of the effects of toroidal curvature, both in the context uf 1esi.!Hve 

fluid theory, 16 and also, most recently, in the long mean free path limit. 17 

Such effects turn out to be quite important, as is also the case for ideal 

kink modes. 
18 

,(iii) Studies I both analytical19 
I 
20 a~d numerical, 21 •22 • 23 

of the nonlinear properties of resistive instabilities. The objectives here 

include theoretical understanding of the so-called disruptive instability, 24 ' 25 

the consequences of magnetic island formation, 26 and the effects of tearing 

instabilities on transport. 2.7' 28 



II. Significance of tearing instabilities . 

A. · Confinement 

Plasma confinement in an axisymmetric, toroidal system2 9 depends 

upon the existe'nce of nested surfaces of constant pressure p, almost each 

of which is covered ergodically by a single field line:· 

(1) 

Loss of confinement then requires some scattering mechanism to allow 

particle diffusion across the surfaqes. But this radial motion is_very slow: 
. . 

2 0 ° •• 

of order ( v /0) , where v is the 90 -scattering frequency and 0 = eB/mc 

the gyrofrequency, compared to particle motion along the magnetic field. 

Much more rapid loss of confinement can result from destruction of 

the "flux surfaces" themselves, due to radial perturbations of the field. 

Consider a circular-cross-section tokamak, with toroidal coordinates 

(r, e , cp ) : r is the minor radius, and e (cp) is the poloidal (toroidal) angle. 

The unperturbed state is characterized by 

o p 
0 

/ocp = 0 = B 
0 

r • (2) 

Then Eq. (1) with Be f. 0 implies that p
0 

depends only on r. For simpli­

city, we consider perturbations ('p, B) which maintain Eq. (1), while break­

ing the symmetry of Eq. (2) (as would correspond to low frequency excita-

tions, or "neighboring equilibria"). Periodicity allows us to expand 

-t'B =\~ 
· r L mn 

. m,n · 

m,n 

1 (me - rn>) 
~ 

and to express the linear version of Eq. (1) as 

(3) 
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(4) 

where 

(5) 

is the safety factor of the unperturbed system, and finite aspect ratio 

corrections are omitted. Evidently, the linear theory breaks down on flux 

surfaces satisfying 

(6) 

For chosen integers m and n, Eq. (6) will describe a three-dimensional 

region, 

I r ~ r s I ~ t:, mn , (7) 

where rs (m, n) labels the appropriate rational flux surface, 

(8) 

and the radial width, t:, , can be seen to depend upon the shear, q' /q , . mn 

and upon the magnitude of the field perturbation at r s • Inside this · 

singular region, the perturbed constant pressure surfaces need not resemble 

their unperturbed counterparts. Furthermore, if Eq. (6) is satisfied for one 

pair (m, n), it will in general be satisfied for numerous pairs (m', n') , with 

m 'In' ::::.. m/n, so that the pressure surfaces inside t:,mn C!:ln become chaoti­

cally scrambled: one has in this case a "flux-volume", in which the concept 

of flux surfaces is irrelevant, and confinement is locally absent. 

On the other hand, for a fixed, reasonably smooth field perturbation 

I 8r/B
9
1 << l, the width t:,mn decreases sharply with increasing m or n. 

[This follows from the presumed convergence of the series in Eq. (3).] Thus 

the presence of high-order rational values of q, and the fact that every 



5 

number is nearly rational, are not physically important. One expects 
. . ~· 

significant destru~tion of the irrational flux surface having q = (1.1) 2 , 

j . 

· but not, usually, of the rational surface having q = 23/16 • 

Hence we may restrict our attention to reasonably small values of m 

and n, so that on "most" flux surfaces, Eq. (6) is not satisfied. Such flux 

surfaces suffer only mild deformation, without topological change. The 

situation for both types of surface is depicted in Fig. 1. 

These remarks are made preciRe in a theorem ("KAM") flt::;t conjectured 

by Kolmogorov, and later proved by Arnol'd and Moser, in the context of 

ergodic theory. An illuminating discussion has been presented by Walker 

and Ford. 3 0 The significance of the KAM theorem to plasma confinement 

was pointed out by Grad I 

31 while detailed studies of flux surface destruction 

have been presented by I among others, Rosenbluth et al. , 3 2 and, most 

1 ' h 26 recent y, Rec ester and Stix. 

Ideal MHD theor}1 predicts that the most dangerous modes in a tokamak 

have toroidal mode number n = 11 so that flux surface destruction, and local 

locs of confinement, seem$ most likely to occur near flux surfaces having 

small integral safety factors: q = ll 2, 3 • • . • But ideal MHD also 

predicts that 

(9) 

in which case F.q. (6) cannot be satisfied and the flux Rurface topology 

is preserved! 

This comment brings us I finally, to the subject of tearing, since the 

crucial property of a tearing mode is the presence uf a radial magnetic 

field perturbation on rational flux surfaces. Thus any observed flux surface 

destruction (if it results from an instability rather than lack of equilibrium 31 ) 
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can be associated with something akin to a tearing instability. 

It follows that tearing instabilities could provide fundamental limitations 

on tokamak confinement: they could limit, for example, the maximum achiev­

able ~ = Srr p/B2 • When the singular regions of Eq. (7) are well separated, 

the resulting local confinement loss would appear in the observed pressure or 

temperature profiles. [e.g. , a central flattening of p (r), if q =-- 1 on axis]. 

Much more serious, presumably even "disruptive", consequences would be 

observed in the case of overlap between singular regions corresponding to 

different values of q. Such possibilities have encouraged theoretical and 

experimental interest in the tearing mode. 

To avoid misunderstanding, we remark here that the linear ai:}alysis of 

tearing, to be considered in Sec. IV, differ~ from Eqs. (2 )- (6), in that singu-

lar perturbations do not occur. In fact the crucial feature of every tearing 

Cinely3ia oonsisots ot tinc:Hng 9ntl including small correGtions to the operator 

B · 'i7 , and thereby resolving the singularity in equations analogous to 

Eq. (4). Of course our comments concerning Eq. (6) remain applicable, so 

long as the corrections are indeed small. 

B. Observations on tokamaks 

Magnetic probe measurements on a number of tokamak plasmas have ·re-

vealed sinusoidally oscillating magnetic field perturbations, wllh the spu~ 

7 8 33 tial structure, ' ' 

B ex: exp (i m 9 -cp) , m = 1, 2 , 3, ••• 

By comparing the tim.es of onset of such "Mirnov oscillations" with the· 

time-evolution of the safety factor q(r, t), it has been confirmed that a 

particular mode number m occurs only when q achieves the value of m 

at some radius inside the plasma. • This behavior coincides with that of 
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both tearing modes and ideal internal kink modes, although the former seem 

mote likely to be unstable. 9 

The frequency of the Mimov oscillations is usually identified with the 

electron diamagnetic frequency, the growth rate being typically smaller. 

This fact is also consistent with modem theories of the tearing mode. 

Some experiments indicate an association between Mirnov oscillations 

and local flattening of the electron temperature· profile , near the appropriate 

rational surface r ~. 34 (This effect is most clearly visible for mnrlP.s with 

m ?- 2 • A similar flattening of, for example, the plasma density, is not ruled 

out, but more difficult to detect.) Since profile-flattening is an obvious 

consequence of local flilx surface destruction, these observations are 

especially suggestive. 

Mirnov oscillations are re lativ_ely harmless by themselves. Hov-e ver, 

they frequently appear as precursors, either to internal"mini-disruptions", 

manifested in saw-tooth oscillations of the x-ray-detected electron temp­

erature, or to major disruptions, resulting in abrupt collapse of the dis-

charge ("disruptive ins tabllity"). Although patently nonlinear, both kinds of 

disruption have explain-ed in terms of magnetic field line tea ring. For example, 

'nonlinear growth and decay of magnetic islands could be associated with 

21 22 25 . mini-disruptions, ' ' while the maJor disruption might involve sudden 

overlap of islands growing from initially distinct rational flux surfaces. 25 ' 26 

It should be emphasized that all explanations of Mirnov oscillations and 

disruptions remain tentative, and several theories of the. phenomena have 

been proposed which inake no reference to the tearing mechanism. For 

example, the .oscillations have been interpreted in terms of neighboring 

13 . 35 
helical equilibria, and in terms of temperature-gradient driven drift waves; 
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profile flattening near the magnetic axis (for q = m = 1) has been explained 

in terms of a rotational interchange mode; 36 and· a modified neoclassical 

theory has been shown to predict disruptive effects I similar to those 

which are observed. 3 7 If tearing theories seem prominent among the variou~ 

candidates for explaining Mirnov phenomena I it is probably because such 

theories hope to relate all the observations to a single I relatively simple 

idea: changes in the topology of the magnetic field. 
I 

Finally I we point out that the great wealth of detailed experimental 

information on Mimov oscillations and disruptions has been barely touched 

upon here. It is known I for example 1 that the sawtooth signal changes 

phase across the mode-rational flux surface 1 that the major disruption is 

accompanied by a negative voltage spike I and so on. Thus any proposed 

theoretical picture of the oscillations and disruptions is subject to an 

unusually rich assortment of experimental tests. Since a successful theory 

of the Mirnov phenomena would bear on seve~al question::; Laude! to the 

performance of a tokamak reactor (such as transport scaling laws I or the 

previously mentioned question of ~ limitation::;) I Lht= opportunity offen~d 

to theorists is clear. 
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III. Tearing Instability Mechanism 

A. Magnetic Shear 

The importance of magnetic shear with regard to flux surface destruc-

tion has already been noted. 41 addition, conventional tearing instabilities 

are driven by the magnetic field energy associated with shear. Hence we 

begin by considering an unperturbed field 8 (r) whose direction depends ...... a 

" upon radius. Then an interior radius, r * , and a fixed unit vector n 
A . 

can always be chosen such that. the field component 8 = n (8 • {\) changes ...... n :...a 

sign at rs, 

(1 0) 

The lines of the ~n-field, in a radial neighborhood of r*, are depicted in. 

Fig. 2. 

The minimum field energy configuration (vacuum field) is roughly 

characterized by the absence of shear: 

" 8 • n = 0 , for a 11 r. 

The configuration of Fig. 2 can relax to this minimum enerQy st<:~te by means 

of field annihilation: field lines above (below) r * migrate. downwards 

(upwards) so as to annihilate their oppositely directed counterparts. It 

is instructive to distinguish two mechanisms available for such migration: 

convection and diffusion. 

These mechanisms a·re clearly visible in a resistive M HD model, 

in which we assume 

E + V x~/c = :r)J , 'V" y = 0, (ll) 

where 'Tl is the (spatially constant) resistivity, J is the plasma current, 

V the flow velocity and E the electric field. In slab geometry , Max-....... 
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well's equations then yield the familiar linearized relation 

dB 

dt + i kll Bo 'f. 

where a is the plasma radius, k
11 

is the parall~l wave vector and 

. 2 I 2 'fs= 4na c 11 

is the resistive skin-time • For a nominal ordering we have 

(12) 

(13) 

-1 
'iJ "'"' a - k li (14 ) 

2 J:. I 
and V,.... vA = (B

0 
l4n p )2 , the Alfven speed. Then the first, diffusive term 

on the right-hand side of Eq. (12) corresponds to the time scale .,. s,.., 10-l sec., 

while the second, convective term corresponds to the scale .,.A :::..alvA"'l0-8sec. 

(These numeric.al estimates correspond very roughly to typical tokamak para­

meters.) Thus equilibrium magnetic field diffusion, characterized by 'iJB- Bla, 

is extremely slow, and significantly rapid field annihilation must involve the 

convective term. 

However, a crucial property of ideal ( .,.s -oo) MHD convection must be 

recalled: if ~ is the plasma displacement, then the radial field perturbation 

B satisfies r 

~. 

B I B = i k tr • (15) r o 11 s 

This can be seen from Eq. (12) or, more perspicuously, from Fig. 3; the 

essential point is that the field is "frozen" to the plasma fluid, in the ideal 

case. 

B. Annihilation and reconnection 

With these remarks in .n'lind, we return to Fig. 2, and consider how we 

would perturb this field to most quickly relax the shear. To produce rapid, 

Alfvenic excitation, we would "pluck" the rubber-band-like ~n-lines 

periodically along A : to produce field annihilation, we ml!_st pluck them 



11 

anti-symmetrically with respect to the radius r *, so that a field line 

" below r * is drawn up at the same positions, along the n-direction, 

that the corresponding field line above r * is drawn down. The resulting 

kink-like perturbation is depicted in Fig. 4. Note that annihilation and 

reconne·ction, or ''tearing", at r* has altered the· magnetic field topology: 

magnetic islands have appeared-. It is clear that this topological change 

occurs even for an infinitesimal perturbation, i.e. , even in linear theory, 

so long as the perturbation has the geometry we have described. 

A simple characterization of this geometry is also clear from Fig. 4: 

" the wave vector ~ lies along the directlon n. It follows that the field 

component ~ n is p.roportional to k 
11 

, whence 

(16) 

" by the definition of r *·' In an axisymmetric torus we must have k = A m/r -

" " " cp n/R I where e and cp are the oovious unit vectors, R is the major 

toroidal radius I and m and n are the peloidal and toroidal mode numbers 

respectively, so that Eq. (16) imples 

q{r *) = m/n • 

Thus the radius I r *, ·must be identified with one of the radii r of Eq. (6), 
s 

if the tearing mechanism is to function. 

A crucial conclus i.oh follows from this identification and from inspection 

of Fig. 4: the tearing mode requires 

in contradiction to Eq. (15 J. In other words I significant de coupling of the 

plasma fluid and the perturbed magnetic field lines ml,lst occur at the rational 

flux surface. Of course, the decoup~ing need not in general result from 

resistivity, 
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It is clear that the departure from ideal behavior described by Eq. (17) 

is only locally significant: at most radii r I r , the second term of Eq. (12) s 

easily dominates the first. Thus the tearing mode appears as a kink-insta-

bility, slightly modified near rational surfaces. For a complementary 

description, emphasizing diffusion, we may consider the narrow region 

near r , . s 

I r - r s I ~ ~ <<a (18) 

in which Eq. (14) does riot pertain, and the two terms on the right-hand side 

of Eq. (12) are comparable. In this "tearing layer", one expects (from, for 

example, Fig. 4) that >.. would repla·ce a as a measure of the radial scale 

length: 

2 a 
'T's 

2 ( a )
2 

'il ~,.... T 
B 

T s 
>> B/T s 

(19) 

Detailed analysis, to be outlined in the following Section, reveals a some­

what more complicated situation; in many cases only one factor of ·(a/~ ) 

actually appears, and the skin time 'I' need not always be resistive. But . s 

the essential point is generally valid: enhanced radial gradients in the tearing 

layer yield relatively rapid, localized diffusion of th<::: perturbed field. By 

identifying such diffusion with the tearing instability, we can correctiy 

estimate its growth rate, and we omit only its non-local, kink-like, "wake". 

In summary, the tearing instability takes advantage of field -line tension, 

through the Alfven mechanism, to a !low shear-relaxation to proceed on time 

scales much shorter than the skin time. The instability can occur only in 

the presence of rational flux surfaces, in the close vicinity of which the 

(small) equilibrium field component B ""'B
8 

(1-nq/m) is annihilated and 
n o 

reconnected. The tearing of Bn -lines requires non-ideal behavior, 

B (r ) ~ 0 , and can be considered analogous to localized magnetic field 
r s 
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diffusion. But the tearing mode itself is not localized: it is a convection­

diffusion hybrid which appears, far from the rational surface, similar to the 

kink mode. 



IV. Linear analysis of tearing instabilities 

A. Boundary Layer Problem 

14 

The previous two Sections indicate the importance of modes having 

the following properties: 

for 

(i) a kink-like structure, far from the rational flux-surface (i.e., · 

-1 
k 

11 
..... a . ); 

(ii) Br ~ s)'f 0 ; 

(iii) low frequency: w or . Y : Im {w) should be small compared to 

k .L v A, as in the obsei-ved tokamak oscillations; . 

(iv) y > 0 in parameter ranges of interest to present or planned 

tokamak experiments. 

It seems convenient to identify any mode having properties (i) and (11) as a 

tearing mooe; With this definition I most known tearing modes have been 

fo1.mrl to saU$fy property {iii). Property (lv) is more delicate, ln l.h&t the 

stability or consiste·ncy criteria for a g~ven, theoretically proposed , tearing 

mode often depend strongly on fine details of the equilibrium • We shall 

not use prope_rty (iv) restrictively here. 

We begin our outline of the linear analysis by considering the 

kinked region., ·exterior to the tearing layer. Here, the slow plasma motion 

indicated by property (iii) allows us to neglect, as a first approximation. 

inertial and viscous effects in the equation of motion . Thus we consider , 

a perturbed equilibrium , with approximately scalar pressure: 

c~p=JxB +JXB. 
,...., ....0 ·....:..o ,_ (2 0) 

Equation (2 0) I together with the Maxwell equations 

~ • B = 0, ~ x B = 4n J I c, -
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provides a closed, homogeneous system for the seven unknown qua~tities 
,... 
p , 'J and B • In cylindrical geometry, the system may algebraically 

"' ,.... . 

be reduced to a second order differential equation which involves only the 
. . 38 

radial field perturbation. This is the so-called Newcomb equation: 

k
11 

(r w/'k2)'- (VB
0

) [ r (k
11
B

0
)'_/k2]' ~ r g ~ = 0, 

with 

k 2r2-l 2n2 2 k 4 p I 

kll (~) [ k{r2-
TT 0 J . g -

k2r2 k2r2 B 2 
0 

Here, 

$ =- i B r 

(21) 

(2 2) 

(23) 

is the conventional measure of the field perturbation (or axial vector 

potential), the primes denote radial derivatives, and the wave vector com-

ponents are given by 

~ B 
k (r) = m n z 

II r Bo R Bo 

B Be 
(24) 

k (r) == m ~ + !!. 
.1. r Bo R Bo 

! 

whence 

(25) 

with (m, n) = 1 ~ 2, 3 I ••• · • Axial periodicity is assumed; so that the 

cylinder models a torus with major radius R. 

The flrst noteworthy feature of Eq. (21) concerns its derivation: such 

standard assumptions of ideal MHD as 

E + V x B/c = 0 I (26) 

p p-y · = const. ,. 

and so on, have not been used, and need not pertain. The question of 

incompressibility is similarly irrelevant. The fact that Eq. (21) I which 
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' 
is conventionally derived from the MHD energy principle, does not in fact 

depend upon MHD assumptions, is significant, since the observed oscillations 

seem too slow to be correctly described by an MHD model. 

Of course, the .most important feature of the Newcomb equation is that 

k lit which appears in the coefficient of the highest order 1 w" t term 1 may in 

general vanish at some radius rs 

k 
11 

(r s) = 0. 

If Eq. (21) is presumed valid in the close vicinity of rs, then any 

acceptable solution 111 must satisfy 

\jl (r ) = 0 s 

(2 7) 

(28) 

in contradiction to property (ii). Examples of modes satisfying Eqs. (21) 

and (28) are the local, Suydam modes, and the non-local, ideal-MHD 

kink modes (which are referred to as "internal" or "external", depending 

upon whether r s lies in the plasma, or in a vacuum region surrounding 

the plas rna, respectively. 9) The relation between the existence of such 

38 solutions and MHD stability was studied in detail by Newcomb. 

More generally, and more realistically, we must acknowledge that 

Eq. (21) may be a poor approximation in the region close to r s. The descrip­

tion of this region by a more accurate differential equation, which is not 

singular at r s, leads to the concept of a "tearing layer" 1 as described 

in Section III. 

To anticipate salient feature$ of the tearin9. layer equation, note that it 

is f' "'-' w/k , 1 rather than w itself 1 which becomes large as r approaches 
II . 

r s. To "tum-over" \jl 11 
- to round off the tip of its spike at r s - a curvature 

term of the form (~r 11 ) II"'-' w"/~2 I where A is the lay~r width of Eq. (18) I is 
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required. Such a term will presumably come from including I inter alia I 

w/k J: v A corrections to the force balance equation. On the other hand I 

terms in this equation which are small in )./a may be omitted. Thus we 

expect the tearing layer to be described in general by an equation of the 

form 

~"" +a(w) h(r) ($" + ••• ) = 0 ()./a) (2 9) 

The final step in the linear analysis of tearing instabilities consists of 

treating Eqs. (21) and (29) as a stnndnrd boundary layer proLlern: one seeks 

the regular solutions of Eq. (2 9) which smoothly join I as \ r - r s I becomes 

large I onto the corresponding solutions of Eq. (21). Of course the latter 

must also satisfy boundary conditions at r = 0 and r = a. Applied to 

Eq. (29), the regularity and "matching conditions" in general restrict a(w) 

to a discrete set of values I 

'odw) = O'j 1 j = 1121 

where the Clj typically depe·nd upon asymptotic properties I for 

of the exterior solutions I i.e. I the solutions to Err. (21). 

{3 0) 

r - r 1 s 

Equation (30) represents the tearing mode dispersion relation. We next 

turn our attention to a concrete example. 

B. Classical tearing mode 

Noting that Eq. (2 0) imples Eq. {1) I and recalling that Eq. (1) leads to 

"' -1 singular perturbations I p ex: (k 
11

) I we conclude that small corrections to 

Eq. (2 0) will be important when k is small. The simplest such correction 
II 

comes from inertia: 

2 
p o;:/ot =- pw ~· I 
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where i is the plasma displacement, and p the equilibrium mass-density. 

We add the inertial term to Eq. (2 0), which is then used to compute the 

perturbed current perpendicular to ~ • As a result we find 

- 2 ,.._, J = (c/8
0

) ( pw t: - ik p ) r . s~ ~ 

where f., = (B x ~ /B ) • t. and k = (B x }/B ) • k , as in Eq. (24)". Next , 
..... ~ 0 ;;..- ~ :.....0 0 """' 

we approximate for A./a << 1, by retaining only the highest order radial 

derivatives of perturbed quantities. Then I since " . B = a·, Ampere Is law ....... ,.._, 

has the parallel component 

4n 711 /c ~ Ill" /k 
~ 

and the quasineutrality condition, 

0 = " • J ~ J I + ik II J II ,..., ,.., r 

takes the form 

k 11 B $" + 4n pw
2 

(ik ~ ) ' ~ 0. (31) 
0 I . ~ 

,.._, 
Here we have omitted a contribution from the p-term in J , using r 

p ~ -~r p
0

' and ~~~~ = 0( A./a), as will be seen presently. We note, 

however, that thP. pressure perturbation is important for certain low-frequency , 

drift-tearing modes, considered in Sec. V. It can also affect the classical 
16 

tearing mode, when toroidicity is included. Physically, Eq. (31) states 

that the crucial accelerating force is field-line teusion, (D •'iJB) ...... ik 11 B B . 
- -r o r 

in qualitative ugreement with the discussion of Sec. III. 

Note that the first term of Eq. (31) is simply the highest-order derivative 

term of the Newcomb ·equation. The second term in Eq. (31) will be seen to 

resolve the singularity at r s , after we have obtained an equation for ~ . 
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The classical prescription for ~ is ·provided by Ohm's law and incom­

pressibility: Eqs. (11). Thus the radial component of Eq. (12) relutes ~r to 

$ I while 

'il • t, = 0 ""'1 k ~ + € ' + 0 (A/a) 
. .l .l .r 

allows Eq. (31) also to be written in terms of $ a.nd ~r . We then obtain 

2 
the equations 

k B tit " . 4 2 ~ II - 0 'I'- nPm -n o r 
(32) 

(a 
2 I 'f 

5
) $ 11 + i oJ ($ - k B r, ) = 0 

11 ·· o . r (3 3) 

which evidently -may be combined· to yield a fourth order differential' equation I 
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the tearing layer equation of Eq. (29), for~~. 

Note that the second term of Eq. (33) is proportional to the parallel 

1 electric field, 

iudw-k B ~)""'ck E, 
II o ·· r J. II 

(34) 

if a srriall term, c 11 k JJ. , is omitted. For ordinary resistive diffusion, 
II 

. . 2 
lit'' ""'W /a , and Eq. (33) states that E ""'w/c kJ. 'T is very small, as in 

II s 

ideal MHD. Thus the tearing layer may be characterized as that region in 

which E significantly exceeds its resistive diffusion value; recall Eq. (19). II . 

Because we have omitted all finite Larmor radius effects, and because 

the simple form of Ohm's law we have used applies only for large collision 

frequency, \J , Eqs. (32) and (33) have a limited range of validity. In 

particular they require 

\J >> w >> w* , (3 5) 

where w * is a diamagnetic frequency. It is significant that the three 

frequencies appearing in Eq. (35) are in fact r:oughly comparable in many 

present tokamak experiments. On the other hand, several more recent 

studies, which allow w ""'~ and w ""'\J , yield tearing l.nyAr equations 

nearly identical in form to Eqs. (32) and (33); only the coefficients are 

changed. We therefore regard the equations as archetypal, and consider 

next some properties of their solution. 

C. Matching Condition. 

To estimate the growth rate, y=- iw, and layer width, ).. , of the 

classical tearing mode, we assume both terms in each of Eqs. (32) and 

(3 3) are comparable, and ex-pand 

k
11 
~k 11 ' (r-r

8
) 

k I ).. o 

II 
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In the most obvious ordering, we wouid furth~r estimate ~r" ,..,C/).2 
and 

- . 2 
$ II ,.,. •¥ /A • 

Then Eq. (33) yields 

2 -1 
Y "' (a/).) Ts , 

corresponding to localized diffusion, while Eq. (32) yields 

Y""'kn vA""ku
1

).. vA, 

(36) 

. corresponding to Alfven convection 

x we find , 3 9 
with ,. A = a/ v A , 

(v ~ is the Alfvlm speed). After eliminating 

Y3 ""(kill a2)2 I (Ts "'A2), (3 7) 

a result which confirms several tearing mode features anticipated in Sec. 

III: the instability is driven by shear, and has the form of a diffusion-con­

vection hybrid. 

However, Eqs. (36) and (37) do not de~cribe the tearing modes most frequently 

considered in the literature. The point 'iS that, unless 1j.r (r ) is small, Eq. (36) 
s 

corresponds to an apparent (1. e. , when viewed with respect to the scale 

length a » ). ) discontinuity in the radial field perturbation. It can be seen 

from Fig. 4 that such a discontinuity is not required, nor even helpful, for 
-

the tearing instability mechanism to operate. In a less extreme case, 1j.r 

itself is continuous, and only its slope, $ • , changes appreciably across the 

tearing ·layer. The apparent discontinuity in slope is measured by 

~I = [ "w I (r + e: ) - "'I (r - e: )] I w(r ) s s s (38) 

where ). « e: << a , and Eq: (3 6) becomes in this case 

111 " "" /:!, $ (r s ) /'A • . (3 9) 

. I . 

The nominal ordering,~~ a "'1, implies that lj.r(r)~ 1jt(r
5

) throughout the 
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tearing layer; 2 this "constant-$ approxi_mation" is frequently used, though 

occasionally disputed, to simplify the solutions of Eq. (3 2) and (3 3). 

Without making any assumption regarding the magnitude of t:.', we may 

repeat the manipulations leading to Eq. (3 7), but now using Eq. (3 9) instead 

of Eq. (36). Then Eq. (33) implies 

ya 
,.... 'I" s).. 

(4 0) 

while Eq. (32) yields k
11 

8
0 

t:.' .$/).. ..... 4npY 2 ~r" ,....(B
0

/vA) 2 y2 ~;x 2 • 

Assuming that the two terms on the left-hand side· of Eq. (34) contribute 

comparably to E 
11 

, we obtain 

~ 

y ...... k VA ( t:. I ).. ) 2 
II 

(41) 

We can solve Eqs. (40) and (41) for y and )., in the two cases of interest: 

(i) If t:.' ,.... a -l , we find 

Y 5 ,.... ( k 
11 

, a 2) 2 ( ~ a )4 ,. s -3 \-2 (42) 

where instability occurs only if t:.' > .0. The width is given by 

(X /a)3 = ( t:. 'a) (k , a2) -2 ( ,.A;'f'· )2 
II s 

(43) 

A typical soluUon 11r (r) for this case is depicted in Fig. 5. The growth 

rate of Eq. (42) is typically smaller than that of Eq. (37}; yet it also 

displays the shear-driven, hybrid features which were noted previously. 

(ii) If t,',.... x-1, we obviously recover Eq. (37) for Y. The width iri this 

case satisfies 

(44) 

Two quite different radial mode structures can produce ·6, ..... )..-l , a-nd 

thus Eqs. (37} and (44). First, $(r
5

) might be quite small, of order )/a 

compared to its maximum value outside. t~e layer. This circumstance is 
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depicted in Fig. 6a; we shall see that it commonly applies to modes with 

m=n=l. Second I it could happen that 111' is large I proportional to ). -l, 

near r • Then 1jr 'would appear nearly discontinuous, as shown in Fig. 6b. s 

This possibility is rarely considered in the literature, although both analytical
4 0 

and numerica123 studies have indicated its possible importance. 

It should now be clear that analytical solution of the tearing layer equations 

is not possible without some ~priori knowledge of the behavior of 1jT outside 

the tearing layer: Eqs. (21), (32) and (33) must in general be solved 

simultaneously. In most of the literature, this task is avoided by assuming 

111 to be continuous across .the layer, as in case (i). It is then reasonable 

to consider the tearing mode problem solved, once y has been evaluated 

in terms of ~~. 

As noted prev'iously ,. case (11) is of importance mainly for m = n = 1 modes. 

The distinguishing feature of such modes is apparent from Eqs. (22) and (25), 

which show that 

2 g......, (nr/R) <.<: 1 , for m = 1. 

Since toroidal curvature terms, which Eq. (2·1) omits, are also of order 

(r2 /R2 ), the use of a cylindrical model for m = 1 ~odes is questionable •
11 

But even in a torus, a lowest order approximation for the m = 1 internal 

kink mode presumably would be obtained by neglecting g, so that. Eq. (21) 

is approximated by 

k II B o ( r 111 I /k 2) I =-- [ r (k II B o) I I k 2 ] 111 . 

or 

[ r (k II 80)2 ( 111/k II .Bo) I /k2 ] I ~ 0 

Thus the exterior solution is characterized by12 

w/k II Bo ~ ~ = const. I for r < r s 
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and \jl/k 8 = 0 for r > r I to satisfy the boundary condition at r = a 
. II 0 s · 

(
11 fixed-boundary" kink mode). It is clear that this form of the exterior 

solution corresponds to Fig. 6a: 1jl ~const. k 11 ). I for r""'rs. 

The preceding argument has sometimes been taken to imply a strict 

correspondence between m = 1 modes and Eq. (3 7) I on the one hand I and 

between m ~ 2 modes and Eq. (42) I on the other. In fact the correspondence 

is far from clear-cut; in particular I it is contradicted by m ~ 2 modes having 

the discontinuous form depicted in Fig. 6b. Furthermore I m = 1 modes have 

been founci whoie growth tdles resemble Eq. (42). 39 

Once the influence of the form of the exterior solutions is understood I 

the analytical solution of Eqs. (32) and (33) is relatively straightforward. 

An especially elegant procedure is presented in Ref. 39. We do not review 

the detailed solution here. 

D. Summary 

To recapitulate: tearing instabilities are analyzed by solving a boundary 

layer problem for the mode-rational flux surface. The kink-like excitation 

of the exterior region is sufficiently slow to be treated as a neighboring 

equilibrium. With the neglect of stress anisotropy I this description 
. . . 

corresponds to the marginal stability condition of ideal MHD (Newcomb 

equation). In the interior region I 8 II (r) becomes large 1 and the description r . . 

hinges upon coup ling B 11 to the parallel electric field of Eq. (.34). V.:::1rious 
r 

nominally small effects I of which only resistivity has been considered 

here I can provide the coupling. The resulting tearing layer equation is 

generally (equivalent to) a fourth order radial differential equation for· Br. 

The form of the final dispersion relotion depends not only upon the 8r~~-E 11 
coupling I but also upon gross features (e.g. I continuity across the layer) 
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of the exterior s9lutions. Similarly, the precise value and sign of the 

growth rate can depend upon critical details (e.g., t:l. ·) of the exterior 
J 

solutions. 

The coupling between B II 

r 
and.· E becomes particularly delicate at 

II . · 

low frequency and small resistivity. · When w ""'w* as for the observed , 

modes, a host of hfgher order terms·,· in both the equation of motion and the 

(generalized) Ohm's law, become potentially important. This explains why, 

fourteen years after the lengthy FKR ·Study, the linear theory of tearing 

instabilities remains of interest. It also explains how the analysis out-

lined above can yield a remarkably disparate collection of dispersion rela­

tions, as shown in the following section. 
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V. Tearing Mode Dispersion Relations 

Finally we display some tearing mode growth rates. What follows is 

at best a representative sampling I and far from complete. Our purpose is 

not only to display the wide variety of results which can be obtained 1 but 

also to touch upon some topics of recent interest. 

· Future research on tearing modes may. well be concentrated on their non­

linear properties. Yet a characteristic fe~ture of the modes - their sensitive 

dependence on small details.- suggests a long-term interest in the linear theory. 

A. Classical tearing modes 

The FKR tearing mode growth rate~ derived from a slab model with 

\J>> v >> w*, is given by
2 

_ {r __ t. I a r ~) 
v =vc I 2n r (3/4) 

(45) 

for tla "'1, as in case (i) of Se.c. IV. Here I /::,
1 is given by Eq. (38), Ts is the 

resistive skin time of Eq. (13) and TA = a/vA is the Alfven time. Of course, 

·this result is just the exact version of Eq. (42). We recall that instability 

occurs only when f\. 1 > 0. 

Equation (45) describes a resistive tearing mode: the decoupling of plasma 

and magnetic field which allows B (r ) I 0 is provided by resistivity. As 
· r s 

noted previously, other mechanisms can be similarly effective. In the low 

collision frequency li~it, the inertial term, 4nulp-2 ol/ot, takes the place 

of 'PJ , in Ohm 1 $ law. The resulting growth rate I 3 ' 4 
.-.· 

·5 -3 ~ 
v= (Bye \) ) (46) 

may be obtained directly from Eq. (45), by the substitution \J- 2y (the factor 

. ; 41 . 
of 2 comes from the Spitzer- Harm resistivitY for unit ionic change). 
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Equation (46) describes the classical collionless tearing mode •. A distinct 

typ~ of collisionless tearing mode, in which electron inertia is similarly 

responsible for field-fluid decoupling, is considered below. 

The classical tearing mode instability criterion, !), > 0 , strictly pertains 

only in cylindrical or slab geometry. The same resistive fluid model which 

yields Eq. (45) has recently been analyzed in. toroidal geometry. 16 It is 

found that tl should be replaced by a much more complicated quantity, 

fi * (our notation), which includes in particular the effects of toroidal curva-

ture. More surprising is the discovery that, under certain circumstances, 

the difference between !), and fi * can be significantly large. 

B. Drift.:..tearing modes 

"Drift-tearing" modes have frequencies comparable to the diamagnetic 

frequency, w*. In this case, the _ion diamagnetic drift enters the equation 

of motion, through perturbation of the ion pressure (magnetovis cous contri­

lmtions are cancelled by the convective inertial tern~. 6 ~ 42 One f)ni!s that 

Eq. (3 2) should be rep laced by 

4n p w (w - w. *) ~ " - k R
0 

~~~ = 0. 
1 - II 

(4 7) 

where w.* = (cm/eB r) p.' /n
1
., m ~ 1,2, .•.. Similarly, perturbation of 

1 0 1 

Pe yields important w * = - (cm/e 8 r) p '/n terms in the Ohm's law - · e o e e 

of Eq. (33). The simplest version of the resulting dispersion relation may 

b . t 4 ,13 e wnt en as 

(48) 

Equation (4 7) pertains to an isothermal plasma I and, strictly speaking 1 

requires v >> m. The point is that the static, or "de" resistivity in Ohm's 
\ 

law cannot describe perturbations with w~v. When an ''ac" Ohm's law 
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is used I and when electron temperature gradient effects are retained; one 

obtains the dispersion relation14 

(49) 

where the 01 ' s are complex-valued functions of w and \! 1 and W:r'* = 

- (cm/e B r) T '. A variational solution to the guiding-center Fokker-Planck 
o e 

equation yields 
. 2 2 -l 

Oil= 0.98 (1-0.54 i_U)T) (1.,...2.97 iwT-1.04 Ul T) ~ 

. -1 a 2 = o.8o (1- o.54 lw'f) 

where ,. ~v-l is the elec.tron colli~ion time. of Brag1nskiil 43 for unit ionic 

charge: 

'f = 
rrf. v 3 

e Te, 
4 2 e Z n .tn A .e 

Equation (49) can be shown to include Eqs. (45)-(48) as limiting cases. It 

also predicts a new I · "thermo:-electric" tearing instability I which is driven I 

not by magnetic shear I but by the electron temperature gradient :14 
I 

15 

(50) 

A similar r '-driven mOlle occurs at a low collision frequency in toroidal e . 
17 geometry I wher-e magnetic trapping of electrons is important. 

C. Current channel modes 
. ~ 

In the derivation of Eq. (48) or (49) 1 terms of order k vT [vT = (2T /m_)2l 
11 e e c ~ 

are presumed e:mull COillpared to w or v. Hence at small collision frequency, 

UJ >> 'V 1 the relation betwee.n drift-tearing modes and electrostatic drift waves 

( w < k {Te) is obscured. But the essential effects of finite k 11 vTe/UJ can be 

understood from a simple, isother111al electron fluid model. By retaining both 

the electron pressure gradient term and the inertial term in Ohm's law I we 
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find that Eq. (33) should be replaced by6 •. 13 

2 
a · -.~. 11 

• [ v l ( ) ( k B ) 0 
-'I' +1 2 2 ; w-w* w- ~ = 
,. s v - i w + i k 

11 
v Te I w .... . e I! 0 · 

(51) 

2 2 2 -1 Here some numerical factors are omitted for simplicity, and v = ( m a /c )'1' • 
p s 

The familiar differentia 1 equation for drift waves is now obtained by using Eq. (4 7) 
.. . . 

to eliminate w" from Eq. (51), and. then considering the limits w«k
11 

vTe 

(thus excluding th_e immediate vicinity ot r s), w » v. and k 1180~ >> \jl (thus 

excluding coupling to an exterior, kinke-d region). Note that in this case 

~ cannot be interpreted as the plasma displacement; it strictly measures the 

electrostatic E x B drift. 

More interestingly, Eq. (51) shows that for sufficiently small w and . v, 

two nested singular regions can appear. Recall that the usual tearing layer 

is defined by the presence of an appreciable parallel electric field (\jl -k 1 f30~ f. 0). 

The width, I. , of this region may be estimated, for a given w, from Eq. (41). 

Rut the square-bracketted tactor ln Eq. (51) can make $" become small, r1S 

one proceeds away from r s , before the tearing layer boundary is ceachnd •· 

The resulting inner singular region evidently corresponds to a current channel 

15 (since ljl II ex: J
11 

); denoting the current channel half-width by ).c' we have, 

from Eq. (51), 

(k ') 2 v 'T' 2 ).. 2 ,.... I m (v - iw ) 
II .1e C 

(52) 

Our discussion in Sec. N, and also Eqs. (45)-(49), assume ), ;;:: )., , so c 

that the current channel is not distinguishable. In the opposite case, 

)., << ). c 
(53) 

a somewhat different analysis pertains: in general,· one must solve a double 

boundary layer problem, matching solutions for the current channel tot hose 

for the· ordinary tearing layer, before matching the tearing layer solu~ion to 
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17 kink modes in exterior regions. We do not review solution to the double 

boundary layer problem here, beyond remarking that the current channel 

analysis itself is straightforward, because the ion motion, a.s in Eq. (32), 

is relatively unimportant. 

In the simplest situation, the current channel solution can be matched 

di.rectly to the exterior kink, without regard to the outer tearing layer. 

Notice that ·in this case, the quantity !). of Eq. (3 8) must be defined with 

respect to A , rather than >.. • When \J<< w , so thC'It Eq. (52). becomes c . 

A ,._, ( lU /k I v T ) I 
c 11 _e 

this procedure yields a collisionless tearing mode I alluded to previously, 

which is quite different from that of Eq. (46). The growth rate of this 
. 5 

"current-channel collisionless tearing mode" is given by 
t.lk I 

Y=Y ::.II 
cc 2 'lli 

2 

( w:e ) vTe (54) 

For tokamak parameters, Eq. (54) indeed yields 'Ac <).; Eq. (46) is not 

similarly consistent. 15 

More recently, the same matching procedure has been applied to a 

collision dominated current channel. 15 Thts will oct.:ur if \J > w but 
-1 1. 

A.c ..... (kn' vTe) (wv)~ <<)..I 

as can be seen from Eq. (52). The resulting "semi-collisional" tearing mode 

has the growth rate 

(55) 

for y » w* , and a more complicated expression for the case Y « w* . 

A more transparent' version of Eq. (53), the criterion for formation of a 

current channel; is difficult to construct~ The problem is that ).. c/>.. 

depends not only upon w , which is usually not known in advance, but also, 
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rather delicately, upon the shear, the plasma ~ , and so on. Thus the 

possible appearance of a current channel is best examined in individual 

cases. 

D. m = 1 modes 

The classical m = 1 tearing mode corresponds to case (11) of Sec. IV B; 

that is, tJ. "- .-1, because $ (rs) is· small. In this case our previous growth 

rate estimate, Eq. (37), is fortuitously exact; 

. . 2 2 2 
Y = Y cl = (k n' a ) I ( Ts TA ) (56) 

More recently the relation between tearing modes and ideal MHD kink 

modes I at m = 1, has been examined. 39 It is found that Eq. (37) pertains 

when the kink is marginally stable, and that when the kink is actually stable, 

YMHD < 0, a new type of tearing instability can appear. Disregarding dia­

magnetic effects I one obtains for this mode the growth rate 

4 ·2 6 1/5 1(5/4) r (k ' a ) 
y = { [ " l II } (57) 

nr(!)aG J ~ 3 
TA T 

Here, s 

rs 
G - l .rg(r)dr, 

'o 

where g is defined in Eq. (2 2). A noteworthy feature of Eq. (57) is its close 

resemblance to Eq. (45) I describing a mode with t,'a --1 • Thus I as noted 

in Sec. IV C, the classical growth rate scaling, Ts - 3/ 5 ,.A-2/ 5 
I is notre­

stricted to modes with m ~ 2. 

Another modification of the classical m=l tearing mode is obtained by using 

the ac Ohm's law which leads to Eq. (49) I but allowing tJ. I. --1 (which can 
40144 

also pertain for m > 1). · This yields the dispersion relation 
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. (58) 

where Y cl is defined in Eq. (56). Equation (58) allows extension of the 

classical result to regimes in which w ""w*"" v • 
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Figure Captions 

Figure 1. Perturbed flux surfaces are indicated by solid curves. The 

dashed curves are unperturbed flux surfaces. In (la), the safety factor 

is nonresonant and the deformation, exaggerated for clarity, is relatively 

-harmless. In the resonant case of (lb), the entire shaded region is 

filled by a single field line, and the flux surfaces have been locally destroyed. 

Figure 2. Magnetic field lines of the field component B , near the radius ....... n 

r *, at which the sheared equilibrium field B is perpendicular to the plane 
.......() 

of the figure. The field strength, I B \ , is indicated by the thickness of ....,n . 

the tines. 

Figure 3. A flux tube, distorted by a radial displacement, ~ ex exp (t k · x), 
. r "'"' -

of the plasma "frozen" inside it. Dashed lines show the unperturbed flux 

tube. It is evident that the radial field perturbation would vanish if the 

displacement were constant along the direction of ~ • In fact the in­

dicated relation between Br and. ~r can be inferred from the figure. 

Figure 4. ·Perturbed version of Fig. 2. The geometry of the distortion is such 

that annihilation and reconnection takes place even for an infinitesimal 

perturbation. 

Figure 5. Radial structure of the radial field perturbation Br = i 1\f , associated 

with a kink-tearing mode having t:::.' ~a -l. Dashed lines indicate the approximate 

boundaries of the tearing layer. 

Figure 6. Possible forms of 1\J (r), near and within the tearing layer, which 

-1 
yield t:l, -..).. • In case (6a), w(rs) is quite small; in case (6b), 1\f chanoes 

sharply within thP. tearing layer. 



Acknowledgements 

This work was done at the suggestion of Oscar Manley I who also drew 

mY attention to some useful references·. The discussion in Section VI in 

particular I owes much to instructive conversations with H. R. Strauss and 

D. W. Ross. This work wa's supported by the U.S. Energy Research and 

Develqpment_Administration Contract EY-76-C-05-44 78. 



-0 
-.0

 
-

.. 

/ 



.. 

::
J>

 
8 ~
m
 

0 --
..

 

*' -
-", 



II 

!1-.1 
0 

m
m

 

~
 

w
 

("t") 

L.LJ 
0

:: 
:::> 
C

!:l 
....... 
LL. 



::
J>

 





/~
 

- -r >"
' 

,. 
__

 j_
 

- 0'" .-
- c .• 




