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I. ABSTRACT

A system of statistically treating validation
calculations for the purpose of determining computer
code bias is provided in this paper. The following
statistical treatments are described: weighted regression
analysis, lower tolerance limit, lower tolerance band, and
lower confidence band. These methods meet the
criticality code validation requirements of ANS 8.1%.

II. INTRODUCTION

Westinghouse Savannah River Company recently
established a methodology for statistically treating
validation calculations to determine computer code bias.
This' methodology, which meets the criticality code
validation requirements of ANS 8.1', allows for:

o the use of experimental as well as statistical
uncertainty data;

» the “weighting” of validation calculations based on
the degree of uncertainty;

e the use of a small number of data points when
limited benchmark experiment data is available;

o the treatment of data that is not normally distributed;
e the ability to extrapolate results beyond the range of
applicability; and

« the ability to “adjust” the subcritical margin based on
the degree of knowledge of the neutronics and the
cause for any bias trends.

III. OVERALL APPROACH

~ The approach developed for determining criticality
code bias, illustrated in Figure 1, is a tiered approach that
uses knowledge about the benchmark data and the
neutronics resulting in observed bias trends.

The first step in determining the code bias is to see if
there is a clear trend in the calculated results. Such a
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trend will indicate a tendency of the code to bias the
results based on an independent parameter. The ability
to predict this trend will lead to a more accurate
determination of the true bias for the desired parameter
(or range of applicability).

Two statistical treatments are available to evaluate a
bias that has a clear trend: the single-sided lower
confidence band and the single-sided lower tolerance
band. The single-sided lower confidence band defines
the region where the true bias is expected to be, within a
prescribed degree of confidence. This method contains
the smallest statistical determination of bias and bias
uncertainty among the methods, but should be used only
if the reason for the trend in bias is well known.

If the reason for the trend in bias is not known, then
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Figure 1 - Approach for Determining Criticality Code Bias




a more conservative single-sided lower tolerance band is
used. The tolerance band defines the region above which
a proportion of bias will lie for some prescribed degree of
confidence.

The benchmark validation results may not have a
clear trend. In this case, a lower tolerance limit should
be used. This type of statistical treatment is only valid
over the range of applicability of the benchmark
experiments and assumes that the benchmark results
have a normal distribution.

There will be situations where there are an
insufficient number of benchmark experiments applicable
to a specific problem or the data exhibits a non-normal
distribution. For these cases, a validation may still be
performed, with an increased minimum subcritical
margin (MSM). This approach is also presented in this
paper.

IV. DATA REGRESSION FITS

Looking for a trend in data is not always obvious.
Therefore, regression techniques are used as an aid to
identifying clear trends. Developing a fit to data requires
the analyst to consider the following questions:

¢ Isall of the data of equal weight or is some data
more reliable than other data?

¢  What independent variables should be used for
developing the fit?

e What type fits are there and what will work?

o How does the analyst know there is a “good” fit?
A. Data Uncertainties

Knowing the uncertainties associated the with
validation experiments and computer calculations will
allow the analyst to develop a “truer” fit to the data. If
some data are more reliable than other data, then the
good data should be treated with more weight. This will
prevent the fit from being skewed toward data that are
more or less suspect.

“Weighted” data has known statistical uncertainties
and/or experimental uncertainties associated with each
data point. The three types of uncertainties are:

Experimental Uncertainty (o) - Modeling of
validation experiments frequently result in assumptions
about experimental conditions. In addition, experimental
uncertainties (such as measurement tolerances) influence

the development of a computer model. Recent efforts by
the Organization for Economic Cooperation and
Development - Nuclear Energy Agency’ (OECD-NEA)
have resulted in the quantification of such uncertainties
in validation experiments.

Statistical Uncertainty (o) - Monte Carlo calculation
techniques result in a statistical uncertainty associated
with the actual calculation. This type of uncertainty is
dependent upon many factors, including the number of
neutron generations, the number of starting neutrons, and
the problem geometry. For this paper, o, refers to the
statistical Monte Carlo uncertainty associated with the
computer modeled validation experiment, or the
convergence criteria for deterministic (Sn) type methods.

Total Uncertainty - This is the total uncertainty
associated with a calculated kg on a benchmark
experiment. The total uncertainty for an individual
benchmark calculation is:

o, = (o2 +02) M

where the subscript (/) refers to an individual
benchmark calculation.

B. Normalizing k¢

In many instances, benchmark experiments used for
validation may not be exactly critical. Experimental
results may show that the experiment is slightly above or
below a kg = 1.0. For these cases, a possible approach to
calculating a bias would be to use a difference in kg,
(Ak.p) (i.e., ken(calculated) - k.«(experimental)). Note
that this approach could also allow the limited use of
subcritical experiments to determine a bias and bias
uncertainty.

Statistical treatments can certainly be used with a
Ak.y. However, the majority of linear and non-lincar
regression fits will not be possible if there are both
negative and positive values in the data. Therefore, use
of a Ak, approach will eliminate many statistical
methods from consideration.

As an alternative, the calculated k.g values could be
normalized to the experimental value. This assumes that
any inherent bias in the calculation is not affected by the
normalization, which is valid for small differences in ks
To normalize k.g, the following formula applies:

k.g(normalized) = kg(calculated) / k.g(experimental)




C. Identifying Independent Variables

The independent variables selected for fitting the kg
results need to be sclected with care. These variables
must relate to parameters used in establishing the range
of applicability of the benchmark calculations.

Table 1 presents scveral types of independent
variables that may be tried in establishing the fit. The
list is not all inclusive and it is important to note that the
calculational bias is rarely the function of a single
parameter. Understanding the reason for a trend in bias
with respect to a particular parameter is important in
establishing the bias statistical treatment.

D. Types of Data Fits

Data fits are used to corrclate data to an equation.
The types of data fits include linear, non-linear, and
polynomial fits.

A linear fit is determined by a linear regression
analysis that results in an equation of the form:

y=a+bx )
where y=Ker
x = independent variable
a =y intercept
b = slope of the line

Each benchmark calculation has a total uncertainty
that can be determined using equation (1). This total
uncertainty can then be used to “weight” the data when
performing a linear regression analysis. From
Bevington®, the coefficients of the linear equation can be
found using a least squares fit from the following
equations: :

1
a=<(SHR SHy, - THx TH %y,

; |
b=—(ZW, TW %y~ ZW x5 LW, )

3
A=W TWx - (W x)
1
W=-——
o}

Inserting the coefficients a and b from equation (3)
into equation (2) will vield a straight line fitted to the
weighted data.

Non-linear equations are handled by “transforming”
the non-linear equation into a linear equation and then
solving for the applicable coefficients. The transformed

non-linear equation is then represented by:

Yr =ar +br Xy €3]

Table 1 - Typical Independent Variables for k

Regression Fits
Example Bias Fit Independent Variables
Variable Comment
Enrichment Used as a parameter fo characterize
bias from low to high enriched
systems
Fissile Primarily used for solution forins of
Concentration | fissile material.
Average Used to characterize the energy
Energy Group | spectrum of the fissioning neutron.
of Fissions Other measures include the average
energy (ev) of the fissioning neutrons.
This helps to characterize the system
as a fast, intermediate, or thermal
system.
Geometric Variables include: Unit Cell
Measurement | Dimensions, Lattice Spacing,
Interstitial Moderator Dimension,
Array Size, etc. A
Neutron Primarily used for poisoned systems.
Absorber
Moderation Used to characterize the moderating
(H/X) Ratios capability of a system. The common
parameter is an H/X ratio. However,
this parameter does not provide
measurement of moderating
capabilities of compound systems.
Other Thermalness:
Dimensionless | p/[n(thermal)*f(thermal)]
Parameters
Thermal Absorption Ratio: (Thermal
Absorptions/Total Absorptions)




Table 2 presents the linear
transformations for several types of

Table 2 - Linear Tran.<rﬁ;fmations  for Nonlinear Equations

non-linear equations. Note that the | Form of Calculate The Transformed Convert Straight Line
total uncertainty must also be | Equation Values Constants (ar and by) To
transformed to provide a weighted fit. : Original Constants
. Yr=_ | Xr= |oir= ar= [ br=

Figure 2 presents an example case
using fictitious data. This figure shows | Y~=a+bX |Y VX |o a b
the effect of weighting data with | Y=1/(a+bX) | I/Y X o;/ Y? a b
uncertainties for a linear fit. For this § v = x/a+bX) | X7y X Xo;/Y? a b
example, the two largest value keff data _ X ]
points have been assigned an ‘Y abbx logY X (oge)o;/Y | loga logb
uncertainty significantly greater than ] Y =ae logY X (loge)oi/Y | loga bloge
the remaining data points, representing | Y = aX® logY logX | (loge)oi/Y | loga b
benchmark experiments with large |y - 44pxe Y x e a b
experimental uncertainties. As can be . '
seen from the figure, the shift in linear gﬁ‘f‘fn")" s

slope when weighting is applied shows
the impact of the “less” certain data.
This shift in curve shape, can result in a significant shift
in the bias represented by a tolerance or confidence band.

E. Goodness of Fit

There are two steps that should be employed when
determining the goodness of fit. The first is to plot the
data against the independent variable using different
scales of axes. This allows for a visual evaluation on the
effectiveness of the regression fit.

visual inspection of the data plot and the associated fit
will not necessarily reveal how good the fit is to the data.
The linear correlation coefficient is one standard method

- used to numerically measure goodness of fit.

The linear-correlation coefficient is a quantitative
measure of the degree to which a linear relationship
exists between two variables. For weighted data, the
linear-correlation coefficient is

Sz =3)3)

The second step is to numerically determine a r= v A ©®)
goodness of fit after linear or non-linear relations are Zi(x—:'c)z 1 1 (y- _y)z
fitted to the data. This adds a useful measure because ol o’
The value of the linear-correlation
Linear Regression Fit of Data coefficient is often expressed as a squared
term, 7. The closer 7 approaches the value of
1010 1, the better the fit of the data to the linear
10081 @ equation.
1.006
1004 7 Note that neither the coefficient by itself,
rzr e ) . nor the comparison of coefficients can provide
g 10007 Unweighted Linear Fit + Weighted Linear Fit an absolute measure of how good the fit is.
* 0.998 1 \
0.996 . .\
0994 § TTeToTTUtTteemomemsmsscemes S ——
* o *
0.992 ] . .
0.996 * .
0.988 + -+
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0
Independent Variable

Figure 2 - Example showing the effect of weighted data and unweighted
data on a linear regression fit.




V. STATISTICAL TREATMENTS

As stated earlier, the approach to determine bias and
bias uncertainty relies on three types of statistical
treatments: a tolerance limit, a tolerance band, and a
confidence band.

A. Tolerance Limit ‘

This method defines a limit above which the true
population of k.s benchmark calculations is expected to
lie. It is used when data are shown to have a normal

distribution and the data cannot be reasonably fit to an
independent variable. This method cannot be used to

extrapolate beyond the range of applicability.

There are several tests to determine if data are
normally distributed. One common test is the Chi-square
test, which has a limitation that the sample be at least 50
data points. Since there are typically fewer than 50
benchmark experiments for validation, the Shapiro-Wilk*
test is another test that can be used.

The one-sided lower tolerance limit is defined by the
equation:
K =keff -USp
K; = one —sided lower tolerance limit
keff = mean keff value ©)
Sp = sqrt(pooled variance)
U = one - sided lower tolerance factor

L.ower Tolerance Limit Representation of Bias and Bias Uncertainty

1.010
.
1.005
*
1.000 ¢ . <> N
* *
§ ooos$ ol
= *e o * .
*
0900+ . .
02985 +
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0.980 + + + o +
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1200.0

Figure 3 - Example data showing the Single-Sided Lower

Tolerance Limit as a representation of bias and bias uncertainty.

The weighted equation variables for the single sided
lower tolerance limit are presented in Table 3. The one-
sided lower tolerance factor, U, is found in Natrella®
using confidence (y) and proportion factors (P) as
variables. Note that Natrella gives a method to
approximate U; however, this approximation is non-
conservative.

The pooled variance is:

SP =Vsz+6.2

where: §* = variance about the mean )
G = average total uncertainty
Figure 3 presents an example of the single-sided lower

Table 3 - - Single-Sided Lower Tolerance Limit Equation

Variables
Variable Weighted Data
Variance About 1 1
The Mean (__)Z —(y- 7)2
2 n—1 o 2
= 1 1
P
Average Total "
Uncertainty 5=
v L
o?
Mean k. Value 1
_ Z?keﬂ?
keff = : 1
X—
O;




tolerance limit as it applies to bias and bias uncertainty.
It is important to note that this method is only good for
the range of applicability of the benchmark experiments.

B. Tolerance Band

When a relationship between a calculated k.¢ and an
independent variable can be determined, a one-sided
lower tolerance band may be used. This is a conservative
method that provides a fitted curve above which the true
population of k. is expected to lie. The tolerance band
equation is actually a calibration curve relation. This
was selected because it was anticipated that a given
tolerance band would be used multiple times to predict
bias. Other typical predictors such as a single future
value, can only be used for a single prediction to ensure
the degree of confidence desired.

A similar method involving a fixed-width tolerance
band is proposed by Dyer‘, however the technique
presented by Dyer cannot be used to extrapolate beyond
the range of applicability.

The equation for the one-sided lower tolerance band’
is

KL=Kﬁt(x)“
prann| L, (- 2 N R )
‘f [” -] T Vb
where:

Sp = Square root of the pooled variance

non-linear equations, the tolerance band equation is used
with the transformed non-linear values and then the final
result is transformed back.

Figure 4 presents an example of the one-sided lower
tolerance band for a weighted linear fit of the example
data.

C. Confidence Band

If a clear relationship exists between an independent
variable and k.g, and a good understanding of the physics
causing this relationship exists, then a one-sided lower
confidence band may be used. The confidence band is a
fitted curve, above which the mean bias is expected to lie.

The equation for a confidence band is very similar to
the tolerance band.

- _ 2.1-2) (x-%)
K, =Kp(x)-S,q.|2F2 L 0 x)]

F{ftn=2) - the F distribution percentile with
(degree of ﬁt, n-2 degrees of freedom Lower Tolerance Band Representation of Bias and Bias Uncertainty
The degree of fit is 2 for a linear fit. 10—
a = 1 minus the desired confidence, 8, = (1- ) 1.005
—_ L 4
n = the number of benchmark keff values 1,000 Weighted Linear .
x = the independent fit variable 055 o’ Fit * o
— N . ) e >
¥ = the mean of the independent variables | 2oo0 . L ¢ ¢
. . . - *
z,p_; = the symetric percentile of the Gaussian
ot bt . 0.585 Single Sided Lower Tolerance
or normal distribution that contains the P 4 Band (Bias + Bias Uncertainty)
fraction 0980 e —
2,(n-2 075 —=—" =
n (," ) = the upper Chi - square percentile o 00 oo 000 oo 1000 1200
a independent Variable
y=1-5-4 . .
2 Figure 4 - Example data showing a Lower Tolerance Band as a

This equation was developed with the least squares representation of Bias and Bias Uncertainty.
technique and is applicable to linear equations.

For




where:

Sp = Square root of the pooled variance

F{f“"2 = the F distribution percentile with
degree of fit, n - 2 degrees of freedom.
The degree of fit is 2 for a linear fit.

o = 1 minus the desired confidence, f, = (1- )

n = the number of benchmark keff values

x = the independent fit variable

X = the mean of the independent variables

o
7=1"?"ﬁ

Note that there is a change in the probability value
for the F-distribution lookup; the F-distribution percentile
is determined at a value of 20w

As with the tolerance band, values for the confidence
limit are calculated at various values of the independent
variable, X, and are then plotted to give the bias and the
bias uncertainty. Figure 5 is a graphical example of the
confidence band. Note that this band is much closer to
the fitted equation than the tolerance band because itisa
measure of the mean bias.

D. Non-Parametric Data

Two situations where the statistical techniques
described above may not adequately determine the
computational bias are: (1) data that do not have a
correlation with an independent variable and the data is
not normally distributed, and (2) an insufficient amount
of data. Data that do not have a normal distribution may
be handled with non-parametric techniques. For

Confidence Band Representation of Bias and Bias Uncertainty
1.009 T
1.004 4
- .
1 )
. 0% Weigted Linear ¢
2 Fit * *
0.994 7 * ¢ . «
e e o e e e O
———f " — -~
0ge9t+ ==
Single Sided l.ower Confidence
Band (Bias + Bias Uncertainty)
0.984 + + + + +
0.0 2000 400.0 600.0 800.0 1000.0 12000
independent Varlable

Figure 5 - Example of confidence band representation of bias

and bias uncertainty.

insufficient data, expansion of the range of applicability
with an increased minimum subcritical margin (as
needed) can be used. Each of these techniques is
described below.

1. Non parametric Techniques

Data that do not follow a normal distribution can be
analyzed by non-paramefric techniques. The analysis
results in a determination of the degree of confidence that
a fraction of the true population of data lies above the
smallest observed value. The more data available in the
sample, the higher the degree of confidence.

The following equation determines the percent
confidence that a fraction of the population is above the
lowest observed value:

S (1-g) g™
F=1 j=0jt(n— J)'( )
where: q is the desired population fraction (normally

0.95)

n is the number of data samples

m is the rank order of the smallest sample (m =
1 for the smallest sample)

For a desired population fraction of 95%, and a rank
order of 1 (m = 1), the equation reduces to:

B=1-¢"
p=1-095"

For example, if the data sample size is n = 19, then §
= 62.3%, or there is a 62.3% confidence that 95% of the
population lies above the smallest observed value.

The equation can also be rewritten to provide
information about the fraction of the population, given a
confidence level.

log(1—
log(g) = —Og(n—ﬁ)

If the sample size is n = 19, and the degree of
confidence is f = 0.95, then q = 85.4%, or there is a 95%
confidence that 85.4% of the population lies above the
smallest value.

By using these equations to determine a confidence
level or a population fraction, an additional subcritical
margin is assigned when determining k.g(safe). As
stated earlier, the normal value of k(safe) is:

ke(safe) = 1.0 + (Bias) - (Bias Uncertainty) - MSM




For non-parametric data analysis, k.g(safe) is
determined by: :

ken(safe) = Smallest kg value - (Bias Uncertainty) - MSM
- Non-parametric margin

where: ' Smallest ko valué is the lowest calculated value
in the data sample.

Bias uncertainty = the total statistical and
experimental uncertainty

MSM = Minimum Subcritical Margin

Non-parametric Margin = additional safety
margin from Table 4.

Table 4 - Non-Parametric Subcritical Margins

Degree of Confidence for | Non-parametric Margin
95% of the Population

>90% 0.0

> 80% 0.01

>70% 0.02

> 60% 0.03

> 50% 0.04

>40% 0.05

<40% Additional data needed
(This corresponds to less
than 10 data points.)

2. Insufficient Data

The range of applicability of an analysis may result
in fewer than 10 benchmark experiments. This is
particularly true for cases with unusual moderating
materials.

When this occurs, the analyst should examine the
problem to see if the range of applicability can be
expanded to include more benchmark experiments. This
is particularly acceptable if the behavior of the fissile
material is well known.

In the event that less than 10 benchmark
experiments are available, then the analyst will need to
apply a minimum subcritical margin to account for the
lack of data. The amount of margin must be determined
by engineering judgment because no deterministic
guidance is available.

E. Extrapolation of Results

Often, available experimental data do not completely
cover the range of applicability of the problem to be
analyzed. One of the advantages of performing a linear
or non-linear fit to benchmark validation calculations is
the ability to extrapolate beyond the range of
applicability.

For obvious reasons, extrapolation cannot be
performed if using a single sided lower tolerance limit as
the statistical treatment. However, if a good fit of the
data to an independent variable is possible, then a single
sided lower tolerance band or confidence band can be
used for extrapolation. Some key points on extrapolating
these bands follow.

e The equations of fit do not necessarily retain their
“shape” beyond the range of applicability. For
example, some polynomial equations will oscillate in
shape. Therefore, the shape of the fitted equations
need to be checked to verify that the equation still
reflects the expected trend in the data.

e  Published guidance® recommends that extrapolation
be limited to +/- 5% of the independent variable.
This percentage may not reflect the degree of
extrapolation fairly and must be evaluated in each
case. In any event, justification of the degree of
extrapolation must be documented in the analysis.

+  Extrapolation of a tolerance band or a confidence
band should not result in a positive bias value (i.c., a
ks greater than or equal to 1.0).

s Extrapolation should only be used in cases where
there is a good fit to the data and experimental data
suitable for benchmark calculations is not available
in the desired range of applicability.
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