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Abstract

We have been using genetic algorithms to study the structures of atomic clusters
and related problems. This is a problem where local minima are easy to locate, but
barriers between the many minima are large, and the number of minima prohibit a
systematic search. We use a novel mating algorithm that preserves some of the geo-
metrical relationship between atoms, in order to ensure that the resultant structures
are likely to inherit the best features of the parent clusters. Using this approach, we
have been able to find lower energy structures than had been previously obtained.
Most recently, we have been able to turn around the “building block” idea, using
optimized structures from the GA to learn about systematic structural trends. We
believe that an effective GA can help provide such heuristic information, and (con-
versely) that such information can be introduced back into the algorithm to assist
in the search process.

1 Introduction

One of the main interests in genetic algorithms (GA’s) is their application to difficult
optimization problems. In many such problems, there are many possible solutions, with
no clear way to conduct a systematic search. The problem is compounded when there are
many optimization parameters, especially if these parameters are strongly coupled. We
have recently applied genetic algorithms to one type of these problems, the determination
of the lowest energy configurations of a collection of atoms. This is a particularly difficult
problem because the number of metastable local energy minima grows exponentially with
the number of degrees of freedom available to the system [1, 2]. In many cases, especially
in systems with strong directional covalent bonds like carbon or silicon, metastable energy
states are separated by large barriers reflecting the high energy cost of breaking bonds to
rearrange a cluster’s structure. Attempts to use traditional simulated annealing methods

[3] to find the global energy minimum usually fail, leaving the system trapped in one of
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the numerous metastable configurations. Thus, unless some of the rules are known for
constructing the ground state structure of the atomic cluster, we do not have reliable
predictions for the global energy minimum for clusters once their sizes go beyond 10 to
20 atoms.

It is clear that an algorithm is needed which can ‘hop’ from one minimum to another
and permit an efficient sampling of phase space. Genetic algorithms, in principle, can
do this using an optimization strategy modeled on the Darwinian evolution process. The
fitness of a population of candidate solutions to the problem is improved by selecting a
group of best-performing candidates to act as parents. A “mating” operation is then per-
formed among the parents to produce children to form the next generation of candidates.
This process is repeated until the best solution is located [4, 5].

A key ingredient for the success of a genetic algorithm is the efficiency of the mating
operation in producing good solutions to the problem. Traditional implementations of the
genetic algorithm, using various forms of string recombination as the mating operator,
have been tried previously on the present problem of molecular geometry optimization,
but without much success [6].

We feel that the problem of the traditional mating operation is that it does not ef-
ficiently transfer favorable properties from the parents to the child. With this in mind,
we have constructed a mating operation based upon the physical structure of the parent
clusters, in such a way that resulting structures are much more likely to inherit promis-
ing characteristics of the parent structures. We have applied our approach to a number
of problems, including carbon clusters [7], the Thomson problem of point charges on a
sphere [8], and Lennard-Jones clusters [9]. In each case, we have found the genetic algo-
rithm to be helpful in locating optimal solutions. In the most recent (and challenging)
application of locating low energy silicon clusters, the genetic algorithm has led to a new
understanding of the structural trends - potentially more useful than knowing the lowest
energy states of particular clusters.

2 Method

Before discussing the genetic algorithm approach, we should first point out some of the
challenges in accurately determining the structures of atomic clusters. (We only discuss
theoretical problems; there are a number of experimental difficulties as well.) The atomic
arrangement will usually be a low energy one; therefore, our searches are focused on find-
ing the lowest energy configurations. However, calculating the energy of a cluster is not
trivial. First-principles total energy calculations are quite accurate, but are computation-
ally intensive. Therefore, searching many different configurations using this approach is
not practical. In some cases, reasonably accurate empirical models exist, which produce
fairly reliable energies and structures. However, if there are several structures that are
close in energy (which often happens), then these empirical predictions must be supported
by more accurate techniques. Even when the empirical potentials are reliable, as appears
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to be the case for carbon [10}, the calculations of the energies and the local optimization
of the structures still require significant computational resources. Given that there are
a large number of local optima (as discussed in the results section below), it is therefore
important to explore possible low energy structures as efficiently as possible.

To achieve this goal, we devised the following genetic algorithm approach. Starting
with a population of candidate structures, we relax these candidates to the nearest local
minimum using a conjugate-gradient minimization or molecular dynamics quenching. Us-
ing the relaxed energies as the criteria of fitness, a fraction of the population is selected
as parents. The mating operation is performed by a “cut-and-paste” procedure: First, we
choose a random plane passing through the center of mass of each parent cluster. We then
cut the parent clusters in this plane, and assemble the child from the atoms of one parent
which lie above the plane, and the atoms of the other parent which lie below the plane.
If the child generated in this manner does not contain the correct number of atoms, the
parent clusters are translated an equal distance in opposing directions normal to the cut
plane so as to produce a child which contains the correct number of atoms. The resulting
child structure is then relaxed to the nearest local minimum.

3 Results

3.1 Carbon clusters

We first illustrate the above algorithm by an application to the case of Cgp. In this sim-
ulation, the interatomic interaction in the carbon clusters is described by a tight-binding
potential previously shown to be very accurate for description of fullerene structures
[10, 11]. Mating operations are performed every 30 time steps: 4 structures with the
lowest energies are chosen as parents from a population of 16 candidates structures. We
adopted an ‘elitist’ strategy in which the 4 parents are included in the next generation
together with 12 new structures formed by mating operations between different parents.
Each new structure is relaxed using molecular dynamics (MD) quenching. After 30 time
steps, the energy of the new structure is examined. If the new structure is not within a
certain energy range (~ 0.2 eV) of the energy of the parent structures, it is discarded and
replaced by another child. Otherwise, it is fully relaxed to its lowest energy state (this
usually takes about 200 MD steps). If the energy of the fully relaxed structure is lower
than any of the parent structures, it is incorporated into the parent population and the
highest energy parent structure discarded.

Figure 1 shows the results of the Cgy simulations. The energy per atom is plotted
for the lowest energy (solid line) and highest energy (dashed line) structure in the pop-
ulation as a function of the number of MD steps expended by the simulation. Several
generic features of the algorithm are apparent in these results: In the initial stage, the
energy drops very quickly and the population soon consists of reasonable candidates. A
sampling of the structures of the population during the initial period indicate a sequence
of structures of unfinished cages very similar to that observed in simulated annealing.
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Figure 1: Running the genetic algorithm on Cgy.

The initial stage usually occupies only a small fraction of the total time spent by the
algorithm. The results from the initial stage resembles what would be obtained by the
simulated annealing method, except that the genetic algorithm obtains it more efficiently
by quenching without going through long annealing procedures. The rest of the time is
spent in an end game, where the remaining defects in the structure are removed until the
ground state structure is found. '

3.2 Thomson problem

In view of the success of the genetic algorithm in solving the structure of carbon clusters,
we decided to test the robustness of the scheme in applications to other kinds of cluster
problems. The first is the well-studied historical Thomson problem of finding the arrange-
ment of N charges constrained on a sphere [2]. We studied this problem to observe the
effect of long range forces on our algorithm. The problem is also of interest in the study of
symmetry-breaking in the ground state and metastable structures due to the constrained
finite number of particles. The similarity of the spherical geometry to the cage structures
of the Cgo clusters also encouraged us to apply our approach to this problem.



This problem has been used as a test case for optimization, and there are a number of
results for systems less than 100 particles [2, 16, 17]. From these studies, the most reliable
results had come from random searches, rather than simulated annealing approaches.(2]
The difficulty apparently arises in the fact that most simulated annealing studies would
use one starting structure and try to optimize that, rather than using multiple initial
structures.

Our approach was quickly able to locate the known results (for N < 132), and to
extend these results up to 200 particles [8]. For less than about 80 particles, the problem
is fairly trivial, as there are only a handful of possible solutions. However, the number
of solutions rapidly grows, with an estimated 270 possible local minima for N = 132 and
nearly 8000 for N = 200 [2]. The fact that we (apparently) could locate the minimum for
most of these cases demonstrates the efficiency of our approach.

3.3 Lennard-Jones clusters

We have also studied the case of Lennard-Jones clusters to observe the behavior of the
algorithm on compact clusters (as opposed to the cage-like structures that occur in the
previous cases). This is a simple interaction, modeling the interaction between noble gas
atoms such as argon. There are many studies of these clusters for N < 100 [18, 19, 20], and
the number of known local minima grows much more rapidly than that of the Thomson
problem - for N = 55, the estimate is on the order of 10?! minima. Again, we find that
our algorithm efficiently reproduces most of the ground state structures reported (with
exceptions for the N = 75, 76 and 77 Lennard-Jones clusters; see Ref. [20]). In several
cases, we were even able to locate structures with lower energies than those previously
reported. (In one case, we found two different structures with lower energies than had
been found previously.)

3.4 Silicon clusters

Most recently, we have been studying Si clusters [21}. Unlike the previous cases, there
are few known results except for the smallest of clusters (N < 10), and even structural
trends are not well understood. Further, there have not been any empirical potentials
whose results were confirmed by more accurate calculations. Even well-accepted potentials
which describe bulk behavior reasonably well produce non-physical results for clusters.
Most empirical models predict that the N = 20 cluster would be higher in energy than two
N = 10 clusters, an unphysical result. The lack of success in determining the structures
of these clusters demonstrates the challenge of this problem.

Recently, our group has produced a more accurate Si potential, and we have begun
applying it to Si clusters. The accuracy of the potential is very important: if the potential
leads to unphysical clusters, or over-estimates the energies of clusters that are actually low
energy, then even a sophisticated search algorithm will not lead to important results. On
the other hand, if the potential can be used to identify low energy candidates correctly,




Figure 2: Structures based upon the N = 9 silicon sub-unit.

then these clusters may be checked using more accurate calculations. Rather than use the
genetic algorithm to find the lowest energy structure (within our empirical model), we
have used it to generate a set of low energy solutions, producing a smaller search space
that was then studied using more accurate treatments.

Using a combination of a new Si potential and the genetic algorithm, we have identified
new low-energy structures in the range from N = 10 to N = 20. The genetic algorithm
approach is essentially the same as that of the carbon clusters. To ensure a good global
search, 10-20 ecologies were run for each value of N. Also, we performed simulated
annealing to produce other candidate structures, and to compare the effectiveness of this
approach with that of the GA. We found that for clusters larger than 13 atoms, the GA
was able to produce lower energy candidate structures, indicating that this is a better
search strategy.

For N < 13, our results are consistent with previous predictions. However, the N = 13
structure that we found is significantly lower in energy than previous results. Unlike
previous calculations, we find that this structure is built upon that of a nine-atom sub-



Figure 3: Cage-like low energy structures for Si;7, Sijg and Sigg.

unit. Although this sub-unit (shown in fig. 2) is not the lowest energy N = 9 structure,
there is a family of clusters based upon this sub-unit (or several such units, for N > 18)
for all clusters in this study. These structures are shown in fig. 2; with the exceptions of
N =9, 17, 19 and 20, these are the lowest energy structures that we have found.

For N >17, we have found another family of structures that are more cage-like than
the previous structures. These are the lowest energy structures that we have found for
N =17, 19 and 20. These structures, shown in fig. 3, have one central atom, surrounded
by a shell of atoms. Such “stuffed fullerene” clusters have been suggested previously for
larger clusters [22, 23, 24, 25].

4 Discussion

The work presented here demonstrates that our approach is successful for a number of
applications. The fact that one mating approach is applicable to these reasonably dis-
parate problems is striking, especially given the strong differences in geometries. These
are problems that other approaches or traditional GA’s have not been able to address.
The difficulty is not only that we must rapidly explore many minima; with the large
number of possible structures available, we must also ensure that favorable “traits” of the
parents be preserved through the generations. In our case, that corresponds to good local
structures. Using string operations to generate new structures will not do this.

In most applications, a successful genetic algorithm must be able to preserve the rela-
tionship between strongly coupled parameters. This will only be successful for traditional
linear operations (such as crossover) if the coupling is extremely simple and is also known
in advance. We feel that any GA application using such operations will be inefficient, if
the parameters are strongly interdependent. (Of course, if the search space is sufficiently
simple, then such operations combined with local optimization may be successful. In




such cases, however, a genetic algorithm will not be preferable to a random search or
to simulated annealing.) It is clear that mating algorithms that respect important rela-
tionships between related parameters may be much more efficient. For our applications,
the approach we described preserves most local atomic environments, while searching the
complicated solution space in an unbiased way. The arbitrary numbering or ordering of
the atoms is not taken into account in the “mating” process; rather, it is the physical
arrangement that is important, and that is used to generate new structures.

In many applications, searching for optimal solutions is aided by using “heuristic”
information. If some factor is known about good solutions, then building this into the
search can greatly speed up the search. However, if this “known factor” is not necessarily
a part of the solution, forcing solutions to include such information may miss other good
solutions. In the case of the Lennard-Jones particles, most results have been obtained by
growth rules, searching for a structure based upon the results of smaller structures. By
avoiding such biases, we were able to locate the optimal structure for V = 38, which is
not similar to any other optimal clusters for N < 100.

In the case of the Si clusters, we were able to turn around the “building block” idea.
The genetic algorithm generated a number of structures which contained a “structural
unit” in the optimal structure. It is not surprising that some core arrangement of atoms
exist, but in our case, it was the genetic algorithm that led to the particular common
sub-unit. By knowing what sub-unit may appear, we may also try to extend results by
building structures by hand, using the identified sub-units. This might be able to extend
our predictive abilities, even when the problem is sufficiently complex that our GA breaks
down. Furthermore, this suggests the idea of “seeding” the GA with some possible sub-
units. If we put likely sub-units into the initial population, then the search may more
efficiently locate low energy structures. If there are several possible sub-units, then such
seeding may help broaden the search, preventing one class of structures from dominating
the population. "

In general, we believe that searches through complex solution spaces may be aided
by genetic algorithms. However, blind application of bit-string mating operations seems
unlikely to efficiently improve solutions, unless the parameters may be optimized more
or less independently. Our application demonstrates that genetic algorithms may be
constructed in such a way that complex interrelationships between parameters may be
preserved by the mating process, leading to new solutions that might otherwise be missed.
Our approach might be made more optimal in a number of ways; some variations and
additions are currently being explored. We feel, however, that these applications are an
interesting and useful demonstration of an alternative approach to genetic algorithms,
and may provide some insight towards other challenging optimization problems.




5 Acknowledgments

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State Univer-
sity under contract no. W-7405-Eng-82. This work was supported by the Director for
Energy Research, Office of Basic Energy Sciences, and the High Performance Computing
and Communications Initiative. Part of this work was made possible by the Scalable
Computing Laboratory, which is funded by Iowa State University and Ames Laboratory.

References

[1] L. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985).

[2] T. Erber and G. M. Hockney, Phys. Rev. Lett. 74, 1482 (1995); review article in
Adv. Chem. Phys. 98, 495 (1997).

[3] S. Kirkpatrick, Science 220, 671 (1983); D. Vanderbilt, J. Comput. Phys. 56, 259
(1984).

[4] J. H. Holland, Adaptation in natural and artificial systems (Ann Arbor: The Uni-
versity of Michigan Press, (©1975.

[5] D. E. Goldberg, in Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley (©)1989. -

[6] For some examples, see Y. Xiao and D. E. Williams, Chem. Phys. Lett. 215, 17
(1993); T. Brodmeier and E. Pretsch, J. Comput. Chem, 15, 588 (1994); D. B.
McGarrah and R. S. Judson, J. Comput. Chem. 14, 1385 (1993); J. A. Niesse and
H. R. Mayne, Chem. Phys. Lett. 261, 576 (1996).

[7] D. M. Deaven and K. M. Ho, Phys. Rev. Lett. 75, 288 (1995).

[8] J. R. Morris, D. M. Deaven and K. M. Ho, Phys. Rev. B 53, 1740 (1996). Recent
updates may be found at http://cmp.ameslab.gov/~jrmorris/thomson.html.

[9] D. M. Deaven, N. Tit, J. R. Morris and K. M. Ho, Chem. Phys. Letters 256, 195
(1996).

[10] C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, J. Phys. Cond. Mat. 4, 6047
(1992).

[11] B. L. Zhang, C. Z. Wang, and K. M. Ho, Chem. Phys. Lett. 193, 225 (1992); C.
Z. Wang, B. L. Zhang, K. M. Ho, and X. Q. Wang, Intn. J. Mod. Phys. B 7, 4305
(1993).

[12] J. C. Grossman, L. Mitas, and K. Raghavachari, Phys. Rev. Lett. 75, 3870 (1995).

9




[13] E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3322 (1984).

[14] D. Tomének and M. A. Schluter, Phys. Rev. Lett. 67, 2331 (1991).
[15] See for example P. Ballone and P. Milani, Phys. Rev. B 42, 3201 (1990).
[16] J. T. Wille, Nature 324, 46 (1986).

[17] E. L. Altschuler, T. J. Williams, E. R. Ratner, F. Dowla and F. Wooten, Phys.
Rev. Lett. 72, 2671 (1994); 74, 1483 (1995).

(18] J. A. Northby, J. Chem. Phys. bf 87, 6166 (1987).

[19] N. J. A. Sloane, R. H. Hardin, T. D. S. Duff, and J. H. Conway, Discrete Comput.
. Geom. 14, 237 (1995). '

[20] J. P. K. Doye and D. J. Wales, J. Chem. Phys. 103, 4324 (1995).

[21] K. M. Ho, B. C. Pan, C. Z. Wang, J. G. Wacker, D. E. Turner and D. M. Deaven,
submitted to Phys. Rev. Letters.

[22] E. Kaxiras, Chem. Phys. Lett. 163, 323 (1989).

[23] J. L. Elkind, J. M. Alford, F. D. Weiss, R. T. Laaksonen, and R. E. Smalley, J.
Chem. Phys. 87, 2397 (1987); L. R. Anderson, S. Maruyama, and R. E. Smalley,
Chem. Phys. Lett. 176, 348 (1991).

[24] U. Rothlisberger, W. Andreoni, and M. Parrinerro, Phys. Rev. Lett., 72, 665
(1994).

[25] J. Pan and M. V. Ramakrishna, Phys. Rev. B 50, 15431 (1994); M. V. Ramakrishna
and A. Bahel, J. Chem. Phys., 104, 9833 (1996).

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its-use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

10



