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ABSTRACT. The aim of data assimilation is to infer the state of a system from a geophysi-
cal model and possibly incomplete or nonuniformly distributed spatiotemporal observational
data. Used extensively in engineering control theory applications, data assimilation has rel-
atively recently been introduced into meteorological forecasting, natural-resource recovery
modeling, and climate dynamics.

Variational data assimilation is a promising assimilation technique in which it is assumed
that the state of the system is an extrema of a carefully chosen objective function. Provided
that an adjoint model is available, the required mode! gradients can be computed by integrat-
ing the model forward and its adjoint backward. The gradients are then used to extremize
the cost function with a suitable iterative or conjugate gradient solver.

The problem we address in this study is the explosive growth in both on-line computer
memory and remote storage requirements of large-scale assimilation studies. This imposes a
severe physical limitation on the size of assimilation studies, even on the largest computers.
By using a recursive strategy, a schedule can be constructed that enables the forward/adjoint
model runs to be performed in such a way that storage requirements can be traded for
longer computational times. This generally applicable strategy enables data assimilation
studies on significantly larger doniains than would otherwise be possible given particular
hardware constraints. We show that this tradeoff is indeed viable and that when the schedule
is optinized, the storage and computational times grow at most logarithmically.
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[1]. INTRODUCTION

Data assimilation has relatively recently become an important tool in many areas of
geophysics, such as weather and climate forecasting [1-6], model sensitivity analysis {7,
8], and in the inclusion of field data sets into theoretical model-studies [9-11]. In weather
forecasting, field data that may be spatially and/or temporally heteregeneous is continu-
ously blended into dynamical models as soon as the field data is available. As a result,
the predictive capabilities of today’s weather models have significantly improved {1,12].
Occan forecasting has, on the other hand, not experienced comparable success. Reasons
for this are that (1) the spatial and temporal scales of the relevant oceanic dynamics are
several orders of magnitude smaller and larger, respectively; (2) oceanic data gathering is
at present very limited in coverage and sometimes of incompatible quality; (3) boundary
fluxes at the air/sea interface are poorly understood and yet have a major influence on
oceanic flows; and (4) the computing demands of oceanic forecasting have only recently
become marginally suitable for some but not all of the types of studies at reasonable
resolutions.

A specific approach to data assimilation is called variational data assimilation [12]. An
objective function is defined that provides a norm of the distance or misfit of the state set to
observational data. The state set may comprise model predictions, parameters, boundary
data, and/or initial conditions. The misfit is usually weighted in order to account for
measurement errors, model uncertainties, etc. The object is to find the state set that
extremizes the objective function. This procedure is usually carried out as a constrained
optimization problem, which is generally solved iteratively by some extention of Newton’s
method or a descent algorithm.

The optimization problem requires the computation of the gradient of the model with
respect to the state set. One of the other strategies that accomplishes the calculation
of the gradient is the “adjoint method” [3]. Provided an adjoint to the tangent linear
model exists, the process of computing the gradient involves integrating the original model
forward in time (the forward problem) recording the model’s history, and then using the
history in the adjoint model to integrate backward in time to the point of origin (the
adjoint problem). Along the way the partial differentials that constitute the gradient of
the results at some t final with respect to the state set at some particular time step are
multiplied in reverse order until the adjoint model reaches the origin once again. By the
chain rule, the multiplication will yicld the gradient, and it will do so at a computational
cost roughly twice that of the forward problem.

As described above, the adjoint method is what we will call the “conventional approach.”
Its main advantage is its low computational cost. However, its disadvantage is that 1t
quickly encounters computer memory storage problems even in low-resolution studies. In
this paper we present an alternative to the conventional approach that circumvents in a
significant way the storage problems of the adjoint method at the expense of a possibly
greater, but manageable computational expense.

The problem is motivated in Section 2. The alternative gradient method is presented
in Section 3 and is compared with the conventional approach. Section 4 demonstrates
how such alternative is implemented in practice in an ocean climate problem, and we
describe how it compares with the conventional approach in terms of computational effort
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and memory usage. Section 5 summarizes our findings, provides details of the strategy’s
computer implementation, and tells where to obtain code that implements the method.

[2]. STATEMENT OF THE PROBLEM

For the sake of clarity we will assume that the physical problem in question can be
modeled by an evolutionary equation. The physical m-dimensional real domainis R C R™
with boundary JR. The evolution equation is discretized in time so that the problem is
defined at physical times #; = t;—; + 6t;. Without loss of generality we may assume that
discrete time progresses in equal-interval steps, hence 6t; = 6t and t; = [6t. In the discrete
forward/adjoint method of computing a gradient the state set is required at periodic time
intervals of time. The state set is computed using the evolution equation, which, for
simplicity, will be assumed to be computed at equally-spaced intervals of time At. In
most instances 6t < At. We define the time-index ¢ € T C Z% so that :At = 16¢t. The
semi-discretized “forward problem” is defined as

(2.1) u; = Fi({u;})
i=1.n0<j<i
Ug = U1
(2.2) uilar = Vi,

where the completely or partially unknown U and V are respectively the initial and bound-

ary data for the state set that minimize an objective function. The “reverse problem” is
the adjoint of (2.1),

(2.3) ui = F({ui}s {u;})
i=n..0,1<k<n,je€0n]

If the forward problem is a semi-discretization of an evolution equation, we think of u; and
u? with domain R x 7 as vectors of the state variables and their adjoints.

Equations (2.1) and (2.3) will be solved in some high-level computer language such as
Fortran or C. Define S = Ujs; and S* = Ugs} as the set of computer memory addresses
required to represent the vector set {u} and {u*} at index location i, so that u; and uj
have temporary memory locations s; and s}, respectively. It is assumed that s; N sk = 0,
sTNsp = @, and s; N sy = §. We call this temporary computer storage medium the
“register”.

Let f and f* be the representations of F' and F™, respectively in some high level
computer program, or “program” for short. These take the form of subroutines, functions,
etc. The action of f : S — S and f* : §* — S*. Define the m- and i- norms as the
memory and time of execution of some program Q as ||Qll; and |[|Q|]:, respectively. As
will be evident in what follows, these norms amount to simple direct sums. The register
memory of the state set is ||S]|m = R, and it is safe to assume that |S*|lm < R. The other
‘type of memory that will play an important role in the analysis is the available memory
external to the program. This is usually some external storage device such as a memory
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disk or tape. For simplicity we call this recording device the “tape” and assume that it
has fixed memory of size T. The specific use of the term “writing” will be reserved for
the process of recording to tape. Similarly, the term “reading” is reserved for the process
of accessing information from tape. The distinction between a non-reading or non-writing
program procedure f; and the same procedure that reads or writes the state set on tape

will be indicated as f;. It will be convenient to define the following specific m- and t-
norms:

p= max | fillm

(2.4) T = Ofg.afn I filles

respectively, the maximum memory required to restore f; given S and the maximum
computing time (wall-clock time) to execute f;. It is worth noting that p is essentially
fixed regardless of the number of processors, while 7 can vary significantly depending on

the number of processors. Since f* is a linear mapping on S*, it can be assumed that
™ < 71 and

where 7* and 7 refer respectively to analogous norms to (2.4) of f* and f , and the ¢’s are
positive multiplicative constants. Note that || fi]|¢ > R, since the subroutines may require
working registers.

In the discretization and coding of a typical evolution equation (for example, of a climate
or meteorology problem) we can identify f; as the collection of subroutines and functions
that take the state set from time ¢; to ¢;;., (forward integration) in which || fi]|m and || fi]l«
are approximately the same for each level 0 < ¢ < n and thus equal to x and 7, respectively.
In the same fashion f} is the collection of subroutines that take the state set from time
t; to ti—1 (reverse integration) in which || f¥||» and ||f}||: are approximately the same for
each level 0 < ¢ < n and thus equal to p* and 7* respectively. Let us consider the memory
and the time norms of two strategies that may be used in the n—step gradient computation
by the adjoint method.

In one strategy the minimal memory norm is achieved by writing nothing on tape. It
requires stepping forward from ug to u, using f;, followed by a single reverse step from u,
to un~1 using f:. The process starts again from ug forward to u,—; using f; followed by
a reverse fi_, from up—; to u,—z. This process is repeated until the reverse integration
reaches step 0 once again. The t- and m- norms for this strategy are respectively

- 1

(2.5) | I1Slm + 1157w = 2R,

where only register memory is used. For simplicity we are ignoring here, as we will do
from now on, the register memory that is used for working arrays, etc. For an explicit
fourth-order Runge-Kutta time integration scheme, for example, this register memory can
be significant but can be easily accounted in the estimates provided.
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Another strategy is the conventional approach, which steps forward from g to u, using
fi, then steps in reverse using f7, reading the appropriate state variables from tape. The
time and memory norms for the latter strategy are

T+ 7T*=n?+nt* < 2nf
(2.6) ISlm + SIm + 1S*lm =nR+2R =T + 2R.

Hence the conventional approach yields the adjoint as a fixed multiple of the time for the
forward program. However, the tape grows linearly in both number of steps and size of
the state set, which for typical geophysical applications will quickly overwhelm even the
largest storage capabilities of computer facilities {13].

[3]. RECURSIVE ADJOINT METHOD

The recursive strategy or “schedule” is specifically designed to circumvent the storage
limitations of the conventional adjoint method at the expense of a larger computational
effort. The computational effort will be defined more precisely below, but for now it suffices
to know that the computational effort is directly proportional to the wall-clock time, which
in turn depends on the number of processors. One strategy that reduces the tape size is to
produce the gradient by using the usual forward/adjoint sweep but writing less often than
is really required. While this alternative saves some tape space, it produces a degraded
gradient. It will be shown below that the gradient produced by the recursive method will
be identical to its nondegraded counterpart obtained in the conventional way.

The description that follows will present a heuristic explanation of the theoretical de-
velopment that appears in [14]. The basis of this strategy is to limit the tape size to
dR, , where d < n snapshots (snaps, for short) of states {u} at any given point during
the program execution. This is done by carefully overwriting. It requires at most an
additional r-fold increase in additional full forward unrecorded computations, or “reps”.
The recursive strategy is not unique. However, from Theorem 6.1 due to Griewank [14],
among the partitioning algorithms the “binomial partitioning” schedule is optimal. The
theorem states that an n-step gradient calculation with the adjoint method can be solved
recursively by using up to d > 0 snaps and at most 7 > 0 reps if and only if

!
(3.1) n < n(d,r) = S(—i—c%-)—

Note that n(d,r) = n(r,d) and n(0,r) = n(d,0) = 1. To illustrate the sense in which this
method is superior we appeal to Stirling’s formula and find that for a fixed d or r,

r = 0(n'/?)
or

(3.2) d = Onr).

To see more clearly the relationship between n and the number of snaps and reps, a
contour plot of In n as a function of the number of snaps and reps based on (3.1) we present
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reps

snaps

FIGURE 1. Contours of Inn versus snaps d and reps r.

Figure 1. Since the values that the binomial takes are discrete, the contours appear jagged.
The figure clearly illustrates the logarithmic rate of growth of n when d = r. In fact, when
d = r these grow as log, n.

The schedule for n = 56, r = 5 reps, and d = 3 snaps appears in Figure 2 and is worth
explaining in some detail. Note that

n =56 = (r”).
S

Along the horizontal is the number of reps, and along the vertical the time step i. The
tree structure of the schedule is evident. Horizontal lines are drawn at locations in which
writing is performed. As is evident, when reading the figure from left to right, there are
five self-similar groups or pennants. The top pennant and the first to be executed has
three snaps at i = 0,35, and 50. A write occurs at 35 = (r_i+3) and the write at time
step 50 = 35 — r. Execution requires a forward sweep from ¢ = 0 to 56. The state at 50 is
restored once more, and a forward sweep to 55 follows. A forward/adjoint from 53 to 56
and back again to 53 is executed then. The first pennant is completely swept by repeating
the last two steps until the adjoint reaches 50. State 35 is then restored and a forward
sweep follows, writing at 45 = 49 — (r — 1). After the second uppermost triangle is swept
through, state 35 is recovered, and a forward sweep follows, writing at 41 = 44 — (r — 2).
After completing the first pennant, state 0 is restored, and a forward sweep is initiated that
ends at 35 = ("717°), writing along the way at (“3“). At this point, the schedule should
be obvious. the last pennant is performed when (r"§+3) = 1. Note that at no instant will
the depth of the tape be more than three records long. In addition, if the tape is thought of
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33

FIGURE 2. Schedule for n = 56, r = 5 reps, and d = 3 snaps.

as a stack, the order of the records is maintained, as a result of its last-in-first-out nature.
It is evident from the figure that there are a total of 1 forward recorded sweep, 1 adjoint
reverse sweep, and r forward unrecorded sweeps.

From Figure 2 it may be concluded that the ¢-norm and m-norm of the recursive schedule
are, respectively,

(3.3) Di=T+T"+rT < (2+7)n7
(3.4) D, =T+2R=(d+2)R,

since T = dR. The first expression on the right-hand side of Equations (3.2) and (3.3)
hold generally for any n(d,r), d > 0, and r > 0 recursive adjoint problem and the far
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right-hand side for any general recursive adjoint problem involving the evolution equation
typically encountered in climate or meteorology studies. Also note that if the number of

reps r and sweeps d are similar, then
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Conventional versus Recursive strategy comparison. The

FiGURE 3.

added effort due to increased reps r. From left to right, the conven-
tional case, then r = 1, »r = 2, r = 3. The curve represented by stars
corresponds to r = d.

Comparison of (3.2) with (2.6) leads to a working measure of the “computational effort,”
which is proportional to the wall-clock time: a convenient measure is the total number of
forward steps. We shall employ this measure in this and in the following section, in which
a comparison between the recursive and the conventional approach is effected. Table 1
shows the schedule characteristics for several values of n, d, and r. From Table 1 confirms
some of the particulars of the recursive strategy which have previously been mentioned,

such as the fact that the number of reverses and the n is identical. It can also be surmised
that the number of reads is one less than the number of reverses because every reverse
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FIGURE 4. Conventional versus Recursive strategy comparison. The
points on the conventional curve correspond to n in intervals of 5, the

first point being n = 10. The other curves are labeled with their corre-
sponding n.

requires a prior read, except for the last reverse. By inspection, the number of writes is
(d:l) so that d/(d + r) is the ratio of writes to n.

The performance of the recursive method compared with the conventional one may be
assessed graphically. Figure 3 illustrates the relation of the memory, measured in snaps, and
the wall-clock time, assuming it is proportional to the effort. The conventional approach
is represented by the left-most curve. All other curves represent different snap and rep
combinations. In both the conventional and the recursive case, the memory required to
solve a problem will be equal to dR, where R is defined as before and depends on the
resolution and the number of spatial dimensions in the problem. On the other hand, the
effort for the conventional case is basically n, while in the recursive strategy it depends on
the choice of snaps and reps. From left to right the recursive strategy curves correspond to
decreasing the number of snaps. The line-connected curve in the lower corner corresponds
to the case of snaps and reps being equal. The conventional case is, in effect, the limit
of snaps d equal to n in the recursive strategy. As can be surmized, the curves reflect
the previously mentioned characteristic of the recursive method, namely, that the effort




10 J. M. RESTREPO, G. K.-LEAF, A. GRIEWANK

TABLE 1. Schedule details for several
sets of snaps d, reps r, and steps n.

steps | snaps | reps | effort | reverses | reads | writes
252 S ) 1302 252 251 126
126 5 4 546 126 125 70
126 4 5 630 126 125 56
70 4 4 204 70 69 35
56 3 3 196 56 55 35
56 3 ) 266 56 59 21
35 4 3 119 35 34 20
35 3 4 140 35 34 15
21 5] 2 56 21 20 15
21 2 5 91 21 20 6
20 3 3 65 20 19 10
15 4 2 39 15 14 10
15 2 4 55 15 14 )
10 3 2 25 10 9 6
10 2 3 30 10 9 4
6 5 1 11 6 5 5
6 2 2 14 6 ) 3
6 1 ) 21 6 5 1
) 4 1 5 4 4
) 1 4 15 5 4 1
4 3 1 7 4 3 3
4 1 3 10 4 3 1
3 2 1 3] 3 2 2
3 1 2 6 3 2 1
2 1 1 3 2 1 1

increases for the recursive method when fewer snaps are used. Hence, in practice, the user
wishes to maximize the number of snaps in the calculation rather than the number of reps.
Figure 4 illustrates in greater detail the memory and computational effort dependence on
the number of snaps and reps. In this figure it is possible to gauge the relative additional
effort required by the recursive strategy over the conventional procedure for a given n.
For example, for n = 50 the conventional strategy requires 50 snaps and an effort of 3.9,
whereas the recursive strategy for the same n requires between 11 and 48 snaps with an
effort of about 4.8. Hence, we expect an order of magnitude increase in the wall clock time,
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a very reasonable price to pay for the significant savings in terms of tape memory. The
non-smooth changes in the curves corresponding to the recursive strategy in the Figure 4

are a result of changing the value of the rep count. A comparison of Figure 4 and Figure
3 bears this conclusion. recursive curves

12.0 T T —

10.0

8.0 conventional

6.0

log(n)

4.0

2.0

0.0 3 1 i e —_t i
0.0 2.0 4.0 6.0 8.0 10.0 12.0

log(effort)

FIGURE 5. Comparison of the conventional and recursive strategy. The
memory requirement of the conventional case is n. The recursive curves
are labeled according to the number of snaps d used. Natural logarithms
are used.

Figure 5 shows a comparison of the conventional strategy (the left-most solid curve)
with the recursive strategy with regards to the effort given by n. The finite extent of the
lines joining the points as well as the density of points per curve is a result of the way
in which the graph was generated: the maximum number of snaps and reps was limited
to 20. Bounding the snaps and reps this way limits the number of points belonging to
each line and the density of points corresponding to d = 2, say, is much greater than the
number of points corresponding to d = 20. The slope of the recursive curves gets closer to
the slope of the conventional case the more snaps are used. Note that in the conventional
case the number of snaps is equal to n. Hence, this figure shows the clear advantage of
the recursive method with regard to memory. Specifically, whereas an increase in n in the
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conventional case leads to an increase in tape usage, the recursive strategy enables the
user to consider a wider range of n for a fixed tape size dR. The feasibility of this latter
strategy is dictated by the speed of the machine or the willingness to pay for the higher
effort involved. Compare this to the previous figure, which shows the price paid in higher
wall-clock times as a result of the smaller number of snaps employed. It may be that the
effort required in large problems is significant, but this must be weighed against the fact
that these problems may be simply impossible to consider with the conventional strategy.

[4]. APPLICATION TO A QUASI-GEOSTROPHIC OCEAN PROBLEM

The recursive procedure’s viability will be demonstrated by applying it to a quasi-
geostrophic model [15] [16], which was considered in Tziperman and Thacker’s study [13],

hereafter referred to as T&T. The dimensionless equations over a unit-square box in = and
y are

e+ ¥z + RI($,() = —e{ + e AC + curlr
(4.1) ¢ = Ay,

where (z,y,t) and ((z,y,t) are the streamfunction and the vorticity, r(z,y) is the wind
stress, J(-,-) is the Jacobian of its arguments, and A is the Laplacian operator. The
dimensionless real parameters R, €, and €, are the Rossby number, the bottom friction
factor, and the horizontal friction factor, respectively. The state variables evolve in time ¢
and are subject to no-flux and no-stress boundary conditions at the edges of the box.

The equations were discretized using multigrid finite-difference techniques. In what
follows it will be understood that the state variables are defined only on the uniformly
discretized grid in z and y. For the sake of clarity w e will omit explicit mention that these
quantities are discretized in space. On a discrete time grid ¢ = i1At, the state variables ¢*
and 1 evolve to a steady state  and %. Following [13], an assimilation problem is defined
as follows. The observational data will be the steady-state vorticity Z, which is independent
of time. The state set is taken to be the forcing term curlr, the initial vorticity ¢®, and the
parameters €, and €. The observations { are determined from a particular (fixed) choice
of friction factors €, and €, initial vorticity (° and forcing curl?. The system is then
integrated forward in time until a steady state is reached, at which point the observations
are written. For purposes of this artificial assimilation problem, we now “forget” the state
set values which produced the observations. The task of the assimilation will then be to
reconstruct the state set that generated the observations. To this end, a cost function 1s
chosen that measures the fit of the model result to the observations. Since the observations
represent the steady state, the cost function should measure the departure of the model
from steady state as well as the departure from the observations. In (13] the authors use
the following discrete cost function:

H" (curlr, ¢, e, en) = 3 [C(C° = O + DC™ = )2

where the sum indicates a sum over all the discrete values of the variables over the unit
box. The first term measures the deviation from the observations, while the second term
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in conjunction with the first measures the deviation from steady state. The matrices C
and D are the inverse of the covariance matrices of the observations. The final time step,
n, is arbitrary in this problem. It is chosen to be sufficiently large so that steady state is
achieved. A small value of n reduces the computational cost per optimization iteration;
however, it increases the number of optimization iterations. Since the number of written
histories depends on the number of time steps n, the storage requirements are reduced
when n is small. ‘

The optimization task is to find the state set {curlr,(°, €, €p} for which H” is a mini-
mum subject to the constraints of the model equations. A common strategy for computing
the minimum is to introduce Lagrange multipliers and the corresponding Lagrange func-
tions for which we seek an unconstrained extremum. A gradient-based iterative algorithm
such as the conjugate gradient method is then applied to this unconstrained problem. For
the discrete quasi-geostrophic model, the Lagrange function has the form

L"=H"+ > #¢' — Ay
1=0
n ] i—~1 o . .
+Y >N {%%— + ?%F + RI(W ¢ + e — e AT — curlr} .
=1

The descent algorithm requires the calculation of the gradient of L™ with respect to
the state set. The gradient involves the Lagrange multipliers {u!, A}, which are deter-
mined from the gradients of L™ with respect to {¢},%'}. Equating these gradients to zero
generates the adjoint equations for {*, A'}, which may be symbolically expressed as

e+ A + RIJNAY) — AT(M\ )l = o —enAp + 0,
(4.2) AX = p,

where U is the forcing term arising from the gradients of the cost function with respect to
{¢t,4'}. The discrete adjoint equations are integrated backward in time to generate the
Lagrange multipliers A* used in computing the gradients of the cost function as needed
by the conjugate gradient procedure. Thus, in the conventional approach, each conjugate
gradient iteration requires a forward integration of n steps, which generates the value of
the cost function, followed by a backward integration of the adjoint equations. This adjoint
integration generates the gradients used in the conjugate gradient iteration. Observe that
the state set is required to effect the calculation of the Lagrange multipliers from the
adjoint equations. Thus, in the conventional approach involving n time steps, n state sets
have to be saved. Since only the state variables are time dependent in this particular
problem, we need only to write the state variables ¢ i o' at each time step. The remaining
components of the state set need to be written only once during the forward-backward
sweep. The observations were synthesized by running the discretized version of (4.1) to
steady-state using curlr = — sin(rz)sin(wy), & = 0.05, e, = 0.0001, and R = 0.01.

To demonstrate the performance of the recursive forward-backward integration strategy
for the calculation of the gradient, we compared model runs of this experiment using the
original multigrid Fortran code against a version of the code which was identical in all
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respects to T&T’s code. except for a subroutine that generates the schedule and for minor
modifications to the program to enable us to implement the schedule. As a first step, we
verified that our program results yielded identical results to the conventional case. The
wall-clock time was negligibly higher for the recursive program running in the conventional
mode, reflecting the additional computational expense of generating the schedule.

In the experiments to be reported, the optimality tolerance for the NAG conjugate
gradient routine was set to 1072 in all model runs. The square of ¢ — 1~ summed over
the box was used as the error tolerance in the conjugate-gradient calculation. The forward
run used to create the observations stepped in time until the residual was below 10~7.
The multigrid depth was fixed at four levels for all experiments that follow. The codes
- were executed on a Sparc 10/51 running SunOS 4.1.3U1. The Fortran Sun compiler used
was Fortran Version 1.4 with optimization flags turned off. All runs were performed in
double-precision arithmetic. Wall-clock times reported encompass the solution to the full
problem. In all experiments performed, the answers from both strategies were identical.

In T&T’s study, n = 1. In their experiment such a choice is possible since the assimila-
tion occurs at just one time level. The role of the integration time length in connection to
T&T’s problem was investigated by Marotzke [9], where he concluded that in this quasi-
geostrophic model, advective phenomena would not adjust quickly enough. He suggested
that the assimilation be carried out over longer time spans. Hence there is some flexibility
in choosing the integration time, since the only requirement is that it must be longer than
n*, where n* is the minimum number of steps for a steady-state solution. In the general
case, assimilations may occur at multiple time levels, in which case the number of time
steps used is determined by the problem and cannot be arbitrarily chosen.

Suppose that for a particular resolution the problem “fits” and thus can be solved on
a particular machine using the conventional approach. In order to double the spatial
resolution, the conventional strategy would require a sixteenfold increase in tape storage:
fourfold due to the increase in resolution, and fourfold for the increase in the number of time
steps. The doubly resolved experiment no longer could be performed on this particular
machine. However, the problem could be solved by using the recursive approach as long
as the maximum tape length was not exceeded. Suppose that the maximum tape length
on this machines is 100000 floats. The requirement of the singly resolved T&T problem
with n = 56 and a 32 x 32 spatial grid with four refinement levels is 60984 floats. Table 2
provides the results of a couple of runs using the recursive strategy for the doubly-resolved
problem. Supposing that the conventional procedure could be could be carried out, for
n = 224, the tape length for the doubly-resolved problem would be 946400 floats and 1t
would have taken 153.56 seconds to execute. The table demonstrates that the doubly-
resolved problem can be succesfully carried out in approximately twice the amount of time
that it would take to run the conventional procedure assuming that it could be possible to
compute conventionally in the first place.

A different situation in which tape length is a limiting factor in assimilation studies arises
when the integration times are very long, causing the state set history stored on tape to be
extremely large. Figure 6 shows a comparison of tape usage for the conventional and the
recursive strategy. In the recursive trials the snap count was held fixed at five, explaining
why its curve for tape usage is a vertical straight line. As mentioned previously, for the
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FIGURE 6. Comparison of the conventional and recursive strategy on
the T&T problem. In the recursive strategy the snap count was held

fixed at d = 5. The recursive strategy has a fixed tape length of 10890
floats.

conventional case the tape usage is proportional to the number of time steps n. From
Figure 6 the tape T = 1089n for the conventional case. It follows from this experiment
that with a fixed amount of tape on a particular machine, the conventional approach
would quickly fail as the number of time steps increased. Figure 7 shows the wall-clock
time for the same experiment. In all trials the conjugate gradient procedure converged in
three iterations. The conventional strategy took a wall-clock time of ¢t = 0.147n + 0.0571
seconds. The recursive strategy took longer to complete, and its growth is not linear.
Table 3 contains further information on this particular set of trials.

[5]. CONCLUSIONS

We have shown in this study how a recursive strategy for the adjoint-method calcula-
tion of the gradient may be applied to variational data assimilation studies of large-scale
geophysical problems. The main result is that significantly larger assimilation studies can
be performed with this recursive strategy than is possible with the conventional forward-
adjoint methods, given the physical limitations of available computer storage hardware.
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FIGURE 6. Comparison of the conventional (left) and recursive (right)

strategy for the T&T problem. In the recursive strategy the snap count
was held fixed at d = 5.

TABLE 2. Wall-clock time and tape length for the recursive
approach in the T&T problem for a doubling of resolution.

n | Time (sec) | Tape (floats) | Snaps | Reps
224 356.94 42250 10 3
224 315.92 84500 20 2

While the recursive strategy requires additional computational effort (or wall-clock time)
the strategy is viable. Furthermore, the recursive strategy yields the gradient with no
degradation, as compared with the conventional approach.

In theory, when the number of snaps and reps (i.e., the number of storage units measured
in R, and the number of additional unrecorded forward runs) is equal, these are both
bounded by log, n, where n is the number of time steps in the evolution equation. In
practice, the strategy is best used by picking the maximum number of snaps that the
particular computer hardware can manage, thus minimizing the number of reps.

Insofar as computer program design, the best strategy for large-scale problems is to con-
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TABLE 3. Ratio of the wall-clock time for the
recursive (d = 3) and conventional approach versus
n and number of reps for the T&T problem.

n | Time Ratio | Reps
21 1.7665 2
56 2.0687 3
126 2.3139 4

252 2.5274 5
462 2.8306 6
792 3.0425 7

struct programs that are as compute-intensive as possible and the least memory-intensive.
This yields the greatest variation in the computational effort for any given choice of snaps
and reps. This is especially true in parallelized programs because the computational ef-
fort will drop as more processors are used, whereas the storage requirements remain fixed
independent of the number of processors.

The implementation of the recursive strategy requires minimal modification of conven-
tional codes that compute forward and adjoint problems. The requirements are that four
modules be provided: (1) a forward module that runs without writing the state set be-
tween a specified starting and an ending time step; (2) a module that computes a single
unrecorded forward and a single adjoint step, given a specific time step; (3) a module
that writes to tape the state set at the current time step; and (4) a module that retrieves
from tape the last recorded state set. An additional module, which is to be considered the
driver, runs the above-mentioned modules according to the recursive schedule. The driver
requires as input the total number of time steps, the number of snaps, and the number of
reps.

One approach in the implementation of the schedule driver is to have the schedule
computed only once at the top of the program. The schedule instructions are saved in
integer arrays, which are then called in sequence to drive the four modules. The benefit of
precomputing the schedule is not warranted in some applications, since the schedule module
increases insignificantly the overall computational effort. The preferred alternative is to
use the schedule driver to control the above-mentioned modules, thus not wasting register
memory for the schedule arrays needed in the first approach that could otherwise be used
in the adjoint problem. An estimate of the additional memory for the integer schedule
arrays of the first approach is as follows: a “schedule array” with the instruction directives
of size 2rn is required, plus one or two arrays of similar size that direct the writing and
reading of snaps from tape. The total register overhead is then on the order of 4rn integers.
The user’s particular application will clearly dictate which alternative works best.

This schedule driver is available via anonymous ftp from info.mcs.anl.gov. The fileis
called /pub/tech_reports/restrepo/schedule.tar.Z. Alternatively, the schedule soft-
ware is available in either Fortran or C versions from the Word-Wide-Web in the software
section of http://www.mcs.anl.gov/people/restrepo/index.html.
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