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Abstract

NE/SQP is a recent algorithm that has proven quite effective for solving the pure and mixed
forms of the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that
its direction-finding subproblems are always solvable; in addition, the convergence rate of this
method is Q-quadratic. In this paper we consider a generalized version of NE/SQP proposed
by Pang and Qi, that is suitable for the bounded NCP. We extend their work by demonstrating
a stronger convergence result and then test a proposed method on several numerical problems.
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1 Introduction

In a recent paper {18] Pang and Qi presented a general algorithm to solve various mathematic
programs that can be formulated as systems of nonsmooth equations. Various convergence results
were shown for several general nonsmooth formulations. One specific nonsmooth system considered
was the upper bounded nonlinear complementarity problem (UBNCP).

The UBNCP differs from the standard version in that the variables, normally bounded below
by zero, are additionally bounded above. Upper bounds on the variables in an NCP are actually a
frequent feature in many nonlinear programs and in energy and economic applications {22] {3] [13].

When the variables are bounded from above and below, it suffices to consider only the upper
bounded version of the NCP. This is because if the vector of variables, lower bounds and upper
bounds are, respectively, z,/,u € R?, with | < u, then without loss of generality we can replace z
by the translated vector Z = z — [ and apply the usual lower bound of zero and a new upper bound
t=u-—1 R

In {18] Pang and Qi established convergence results for an \IE / SQP method for the UBNCP; see
[9, 10, 11, 17]) for a discussion of the NE/SQP method and its variants. Their proposed algorithm
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handled the upper bounds explicitly by incorporating them into a direction-finding subproblem; we
refer to this approach as the upper-bounded NE/SQP method (UBNE/SQP).

This approach has several immediate advantages over using the bounds as additional constraints
and solving the associated augmented NCP. First, the NCP function may not even be defined for
variables outside these bounds, so maintaining the iterates within them easily permits computations
involving such functions. Second, the problem size can be greatly reduced by considering these
bounds as part of the subproblem only; see below for a more detailed explanation.

In this paper, we extend the convergence results for the upper-bounded NE/SQP method by
showing that under a local Lipschitzian assumption this algorithm is actually @-quadratically con-
vergent; previously, it was known to be Q-superlinearly convergent. We conclude by comparing the
UBNE/SQP with the NE/SQP algorithm as applied to an associated augmented NCP that handles
the upper bounds as explicit constraints.

2 The Upper Bounded Nonlinear Complementarity Problem

Let a € R™ be a given positive vector and f : R} — R be a once continuously differentiable
function. Then, the upper-bounded nomnlinear complementarity problem is to find a vector pair
(z,y) € R* x R" such that the following conditions hold:

u=f(z)+y >0, 2>0, vTz=0,

(L

v=a-z>0, y>0, vIy=0.

Notice that if we let z7 = (zT,4y7T) and let w(z,y)T = (u(z,y)T,v(z,y)T) (where v 1= u(z,y),v =
v(z,y)), then we have the equivalent NCP of order 2n given by

<w(z) >0, 2>0, w(z)Tz=0. (2)

In principle, any method that solves a general NCP could be applied to this augmented system.
However, it is desirable, especially for large-scale applications, to take advantage of the specific
structure of the problem given in (1) and develop an algorithm that maintains the variables within
their bounds and works on a problem of the original size.

Another reason to avoid using the augumented system (2) concerns the Jacobian matrix Vw(z).

It is not hard to see that Vi) I
T
Vuw(z) = < 27 0) .

A condition needed in various NCP algorithms such as NE/SQP is that certain principal submatrices
of Vw(z) be nonsingular at a limit point of iterates; see for example the b-regularity condition for
NE/SQP. By using this augmented form, we introduce a zero block in the lower right corner of
Vw(z) and potentially violate these nonsingularity conditions more often as a result.

We first define the minimum sum map H : R} — R" as

H(z) =min(z, f(2)+) + min(a — z, f(z)-). 3)

This function H is locally Lipschitzian and is intimately related to the UBNCP, as is shown in the
next lemma.




Lemma 2.1 Consider any a € R™ with a > 0 and let the function H be defined as in (3). Then
z* solves the UBNCP if and only if H(z*) = 0 and ™ € [0, a].

Proof. It suffices to observe that a vector z* € [0, a] is a solution to the UBNCP if and only if the
following system holds:

1.z}=0= fi(z) >0,
2. 0<2f<a; = fi(z) =0, and
3.z =a;=> fi(z) 0.0

Remark: Note that if such an z* exists as given above, then the associated vector y* is uniquely
determined as follows: y® = 0 when z] € [0,a;) and y = —f;(z*) > 0, when z] = a;. For this
reason, it is sufficient to say that z*, by itself, solves the UBNCP.

Motivated by the nonsmooth function H shown above, in the next section we present several
general nonsmooth concepts relevant to the UBNE/SQP method to be described below.

3 Nonsmooth Analysis

Consider a locally Lipschitzian function G : R* — R™. By Rademacher’s theorem [6], G is almost
everywhere F-differentiable. Denoting the set of points where G is F-differentiable by D¢, we can
define for any z € R", the generalized subdifferential of G at z in the sense of Clarke by

9G(z) = conv{lim VG(z?) : 2’ — z,2’ € Dg}.

It is known that this is a nonempty set that is both convex and compact.
Employing this concept, we can define the notion of a semismooth function. In what follows,
we use the notation y —p, z to mean y — z,y # ¢ and ﬂ%:_zﬂ - ]Tliz_ﬂ’h # 0.

Definition 3.2 Let z,h € R", with h # 0. Then the function G : R® — R™ is said to be
semismooth at z if G is locally Lipschitzian there and Vh € R*,h # 0,

Jim {Vh:V € 9G(y)} 4)

exists.

It is interestng to note that semismoothness at z implies directional differentiability there with
G'(z,h) equal to the above limit for all A # 0; see Proposition 2.1 in [20]. Also, the class of
semismooth functions is quite large in the sense that it includes the smooth functions, convex
functions, and piecewise smooth functions. Additionally, the sums, differences, products, and
composites of semismooth functions are semismooth. This fact allows us to conclude that the
function H defined by (3) is semismooth.

Another generalization of gradients for nonsmooth functions involves the notion of a subgradient
[4]. For a concave function ¢ : D C R™ — R, a subgradient at a point z € D is defined by a vector
b(z) that satisfies

W(z) - P(z) — b(z)T(z —2) <0, Vze€ D.




Now, suppose that z := ¢ + th € D, for some ¢t > 0 and Yh € R™. Then we obtain

Y(z + th) — ¥(z) — th(z)Th
i ,

<0, Yh €R".
The next concept, that of upper subgradients, extends the above idea for functions + that are not

necessarily concave.

Definition 3.3 A function ¥ : R® — R is said to be upper subdifferentiable on a set D C R™ if
there ezists a function b: D — R™ such that for allx € D and h € R™

— _ T
lim sup D(y +th) — ¥(y) — th(y)' h <
y—z,y€D,t]0 t

0. (5)

We call b an upper subgradient function of ¥ on D and b(z) an upper subgradient of ¥ at the
point .

Remark: Note that when D is an open set and % is continuously differentiable on D, then %
is upper subdifferentiable there with Vi(z) serving as an upper subgradient. This fact will be
heavily used in the convergence analysis that follows. One immediate consequence of the definition
of upper subdifferentiability is that upper subgradients are additive in a certain sense. This is
borne out in the next lemma.

Lemma 3.4 Let f,g : E C R* — R be given functions and let by and b, be upper subgradient
functions on a common domain D for f and g, respectively. Then by + b, is an upper subgradient
function on D for (f+g9):=f+g.

Proof. For all vectors h € R™, we have

lim sup, .z yep e jo{(f + 9)(y + th) — (F + 9)(y) = tbs(y) + by (y)) R} /t
S lim supy—-—»z,yéD,th{f(y + th) - f(y) - tbf(y)Th’}/t +
lim Supy—»r,yéD,th{g(y + th) — g(y) - tbg(!/)Th}/t
< 0
where the last inequality follows from the definition of upper subdifferentiability for by and b,. O
It is interesting to note that the upper subgradient is related to several known directional

derivatives. For example, if 1 is locally Lipshitzian, then putting y equal to z in (5) yields b(z)Th >
P (z,h) for all b € R™, where ¥P(z, h) is the upper Dini directional derivative defined by

> Pz + tf;) - w(x)'

¥P(z,h) = limsu
tio

The upper subgradient function is also related to the Clarke and Michel-Penot directional
derivatives [14] of a locally Lipschitzian function at a point z.-The Clarke directional derivative at
z in the direction h is given by

(. h) = lim sup L) = (@)

y—z,t10 t
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and the Michel-Penot directional derivative is defined by

4 tk) — tk
¥°(z,h) = sup limsup Pzt th+tk) — plz + )
k€R™  tl0 i

Each of these directional derivatives induces an associated subdifferential given respectively by
(z) = {u € R* : uTh < 4°(z,h),Vh € R"}

and
3°Y(z) = {u € R" : uTh < ¥°(z,h),Yh € R"}.

The following result (Proposition 4 in [18]) summarizes the relationship between an upper
subgradient and these various other notions.

Proposition 3.5 Suppose that ¥ : R* — R is locally Lipschitzian on the set D C R™. If ¢ is
upper subdifferentiable on D with upper subgradient function b(-), then for each x € D,

b(z) € 8°%(z) C BY(z).

Hence, for any h € R™,
pP(z, h) < b(z)Th < ¥°(z, h) < ¥°(z, h).

The next lemma calculates upper subgradients for the special case of a function that is the
minimum of two continuously differentiable functions. This is a crucial lemma for the convergence
analysis that follows.

Lemma 3.6 Let r,s : E C R* — R, be two continuously differentiable functions with () :=
min(r(z), s(z)). Also, let the following sets be defined:

T.:={z € R":r(z) < s(z)}, Ts:={z€ R™:r(z)> s(z)},and
T.:={z € R* :(z) = s(2)). .

Then the following conditions hold:

(a) Vr(z) is an upper subgradient of v at each point z € T,

(b) Vs(z) is an upper subgradient of ¢ at each point z € T, and

(¢) if T. is partitioned into arbitrary subsets T. and T, then Vr(z) and Vs(z) are upper subgra-
dients of ¥ at each point =€ Tt and T, respectively.

Proof. Conditions (a) and (b) follow from the earlier fact about upper subgradients of continuously
differentiable functions on open sets. Now let z € T.(z) and let the function b(y) be defined by

by) { Vr(y), fye T, UT],
y =
Vs(y), fye T,uT/.

Then we have the following:

. RY—p(y)~tb(x) T h
im SUPy—.410 P{y+th) wgy) tb(y)

min (r(y+th),s(y+th))—Min (r(y),s(y)) ~tb(y) "k
t

= limsup,_,, 0
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lim sup,_,, 40 TLy'*'th)'T(yt)_tvr(y)Th, ifye T, UT. and

IN

lim sup, g o SR @=tVs@Th ey o T, U T,

So we see that

. +th)—{y)—th(y) T h
lim $up, 4 (0 b(y+th) tlfgy) €]

< max(limsup,_; o ﬂi‘“")‘T(yt)—tVT(y)Th,
s(ytth)=s(y)=tVs(u)Thy
€

lim SUPy—z.¢10

< 0.

The last inequality is valid because 7 and s are continuously differentiable functions on the open
set {z€ R*:z2=y+th,y—z,t|0,hfixed}. O

This lemma indicates, for-the given function, how the notion of an upper subgradient generalizes
that of a gradient when differentiability at a point may not exist. In what follows, we will use this
last result for the mininum sum map H defined in (3). First we describe the NE/SQP method for
the UBNCP as presented in [18].

4 The Upper Bounded NE/SQP Method

In view of the result from Lemma 2.1, we can solve the UBNCP by finding a constrained zero
of the function H. If we define the norm function 6(z) equal to 1 H(z)TH(z), we see that for a
given a € R}, a solution z* of UBNCP corresponds to a minimizer of the following mathematical
program with #(z*) = 0:

minimize , 6(z)

: (6)
subject to z € X := [0, a].
Like the standard NE/SQP method, the upper bounded version is also an iterative algorithm. The
latter method attempts to find an Z € R™ satisfying the constraints of (6) where #(Z) = 0. At each
iteration, there is a specific quadratic program to solve whose solution will, in general, be a descent
direction for the merit function 6.

Similar to the case of the standard NE/SQP, the functions ¢ : X X R* - Ry and z : X X B" —
R, are respectively, the subproblem objective functlon a,nd the forcmg function and are defined as
follows: R

oz, d) = Z(lﬂz!(m) + bi(z)" d)?
z-l
and
T 12
(e d)= 5 gb (=) ),

where b;(z) is an upper subgradient of the function |H;|(z) := |H;(z)| at z on {z : |Hi(z)] # 0} NX
(i.e., the nonzero set of |H;|), and it is an arbitrary vector in the Michel-Penot subdifferential if
H;(z) = 0. At the kth iteration of this method, given an iterate z¥ € X, the resulting quadratic




program subproblem (QP,) is to solve

minimize 4 qS(zk ,d) )

subject to zF +d e X.

Remark: For the function H defined above, we note that |H;|(z) = H;j(z) forall ¢ = 1,---,n
when z € X.

In the convergence analysis of this method, it will be important to know specific values for
the vector b;(z) as described above. The next result indicates that on the zero set of H; (i.e.,
{z : Hi(z) = 0}), the zero vector can be used for b;(z). The proof of this result relies on the fact
that the Michel-Penot directional derivative for the function |H;|, that is, | H;|°(z, d), majorizes the
usual directional derivative |H;|'(z,d); this follows from the inequalities presented in Proposition
3.5.

Lemma 4.7 Consider any a € R™ with a > 0 and let the Junction H be defined as in (3). If
Hi(z) =0, then 0 € 3°|H;{(=z).

Proof. First note that the directional derivative |H;|'(z, h) exists and is nonnegative for all » € R".
Its existence is guaranteed because H was shown to be semismooth. Thus H; and |H;| are also
semismooth, hence directionally differentiable. As for the nonnegativity, suppose for the sake of
contradiction that this is not the case. Then for some A € R™, |H;|/'(z,h) < 0. Hence, there
exists a ¢ > 0 such that for all t € [0,%) |H;|(z + th) < |H:|(z) = 0, which is a contradiction,
since the function |H;|(-) is always nonnegative. Consequently, with A any vector in R™, we have
|H;i|°(z, h) > |H;|'(z, h) > 0, which shows that 0 € 8°|H;|(z). O

On the nonzero set of H;, there is some flexibility in choosing the vector b;(z) in the subproblem
(7). However, for the convergence analysis that follows, it is important to specify particular values
for b;(z) when z € X and H;(z) # 0. In the next set of lemmas we describe explicit values for
upper subgradients b;(z) of | H;|(z) on this set. We first consider the possible relationships between
the pairs of arguments (z;, f;(z)4) and (a; — z;, fi(z)-) for i = 1,2,---,n.

Lemma 4.8 Let f : R} — R" be a given function that is continuously differentiable. Consider the
vectors z,a € R™ with a > 0 and z € [0,a]. Then the set of indices {1,--+,n} can be partitioned
into the following seven sets:

Si(e) =it (@ < @)
Sa(z):={i:a; —z; < fi(z)-}, v
S3(z) :={i:(z; 2 fi(2)+,a; — z; = fi(z)-, fi(z) < 0)},
Sa(z) = {i: (i = filz)+,ai — z; > fi(z)-, fi(z) > 0)},
Ss(z) :={i: (z; > fi(@)4,ai — x; > fi(z)-, fi(z) < 0)},
Se(z) = {i: (z: > fi(z)+,0i — @i 2 fi(z)-, filz) > 0)},
Sr(z) = {i: fi(z) = 0}.

Proof. The result follows from the fact that a; > z; > 0 must be maintained for all indices
t=1,---,n. 0




Remark: For use with the functions ¢ and z defined above, the seven index sets can be partitioned
into four sets as follows:

$1(z), So(z), S7(z), and T(z) = (S1(z) U So(z) U S7(z))°.

However, part of the convergence analysis of the UBNE/SQP method requires that the indices in
the set T(z) be analyzed according to their membership in S3(z), S4(z), S5(z), or Se(z). For this
reason we maintain the seven index sets in what follows.

Using these seveb index sets, we can analyze the possible values of the function |H;|(-). The
next lemma establishes, for each of these seven index sets, what values this function can take on
at points that are arbitrarily close to each other. This is directly relevant in the analysis of the
Q-quadratic convergence rate which appears below.

Lemma 4.9 Consider the function H as defined in (3). Let z,z,a € R", with a > 0 and z,z €
[0,a]. Then, if z is sufficiently close to z, the following values of |H;|(z) are valid:

(a) |Hi|(z)= 2, |Hi|(z) = @i i € 51(2);
(b) [Hil(2) = a; — =, |Hil(z) = ai — = i € S3(2);
(¢) |Hil(2) = ai -z = ~ fi(z), |Hil(z)= min(a; —zi,—fi(z)) i€ 53(z);
(d) |Hil(2) = z = fi(2), |Hil(z) = min(z;, fi(z)) i € Sa(z);
(e) |Hil(z) = ~fi(2), [Hil(z) = - fi(2) i € 85(2);
(f) Hil(2) = fi(2), |Hil(z) = fi(z) i € Se(2);
(9) |H:l(z) =0, |Hil(z) =0 i € S7(2).

Proof. Since f(-) and {H;|(-) are continuous functions and z is sufficiently close to z, the above
statements follow by examining the relationships described in each of the index sets in question. O

We can also specify possible upper subgradient values for |H;| on its nonzero set via the index
sets listed above.

Lemma 4.10 Consider the function H defined as in (3). Let z,a € R™, with a > 0 and z € [0, a].
Then, if i € {1,---,n} — S7(2), the following values of b;(z) are upper subgradients of the function
|H;| at the point z; (e; is the ith standard basis vector):

(e i € 51(2)
—e; 1 € 53(z)
—e;,—Vfi(z) i€ S3(2)
e, Vfi(2) 1 € S4(2)
-V /fi(z) 1€ 55(2)
| Vi(z) i€ Sela).

bi(2) = 4

Proof. The result follows from noting the assertions given in Lemmas 3.4 and 3.6 as applied to
the index sets in question. O




Remark: In the UBNE/SQP method, we take b;(z) = 0 if ¢ € S7(z) (for which H;(z) = 0) and
b;(z) as given above otherwise. This approach is consistent with the requirements on b;, imposed in
the definition of ¢. Note that even when H;(z) = 0 but ¢ ¢ S7(z) the values of b;(z) listed above,
which are used in the UBNE/SQP method, are valid, since by Proposition 3.5 upper subgradients
are necessarily elements of the Michel-Penot subdifferential.

Before presenting the UBNE/SQP method, we introduce a version of s-regularity for the UB-
NCP. The reader will note the similarity with the definition in [17] applied to the standard NCP.

Definition 4.11 Let a be a given vector in R}, and X :=[0,a]. Then the cone of feasible direc-
tions of X at a point x € X, denoted Fx(z), is defined by {d : z+¢ed € X, V sufficiently small ¢ >

0}.
A point = € X is said to be s-regular if for every b(z) = (b;(z)) € II'.,0|Hi|(z), there ezxists a
direction d € Fx(z) such that for each ¢ where H;(z) # 0, we have

| Hil(z) + bi(2)Td < 0.
We now present the UBNE/SQP method.

Algorithm 4.12 Upper-Bounded NE/SQP
Step 0. (Initialization) Having a vector a € R% ., select p,o € (0,1), and an arbitrary vector
z% € X :=[0,a]. Set £ = 0.

Step 1. (Direction generation) Given z* € X, solve the (convex) quadratic program (QP;) using
the choices for b;(z*) as explained above; let df be an arbitrary optimal solution obtained. If
$(z*,d*) = 6(z*), terminate the algorithm; otherwise, continue.

Step 2. (Step length determination) Let m; be the smallest nonnegative integer m such that
6(a* + pd¥) = B(a*) < —ap™a(at, db); (8)
set zktl = gk 4 pmrdk,

Step 3. (Termination check) If z**! satisfies a prescribed termination rule, stop. Otherwise, return
to Step 1 with k replaced by & + 1.

Remark: In Step 1, when the condition ¢(z*,d*¥) = 6(z*) is met and z* is s- regula,r, then z*
solves the UBNCP; see Proposition 10, part (c), of [18]. T

We next describe the major convergence result for the UBNE/SQP method presented in [18].
First, however, we need to introduce a new regularity concept.

Definition 4.13 Given a € RY_, we call the vector z € [0, a] gb-regular (for generalized b-reguar)
if for all indez sets a such that

Ss(2)U Se(z) C a C S3(z) U Sa(2) U S5(2) U Se(2),
the principal submatriz V, f, is nonsingular.

The reader will notice the similarity between the notion of gb-regularity and that of b-regularity
described in [17]. We have the following convergence result.

9




Theorem 4.14 [18] Consider any a € R™ with a > 0 and let H : R} — R"™ be defined as in
(3). Suppose that z* is a limit point of a sequence {z*} produced by the UBNE/SQP method with
associated directions {d*}. If z* is both s-regular and gb- regular, then H (a:*) = 0 and z* € [0, q},
that is, z* solves the UBNCP. Moreover,

(1) there ezists an integer K > 0 such that Yk > K, the step length 1, = 1; hence z*t! = z* 4 d*;
and

(ii) the sequence {z*} converges to z* Q-superlinearly; in other words,

k+1 *
lim ____—“:z: il = 0.
k—oco ||zk — z*||
It remains to show that under a suitable assumption on the function f, the UBNE/SQP method
is actually Q-quadratically convergent.

Theorem 4.15 Consider any a € R™ with a > 0 and let H : Rt — R" be defined as in (3).
Let z* be a limit point of the sequence of iterates {z*} generated by the UBNE/SQP method with
associated directions {d¥}. If z* is both s-regular and gb-regular, then z* is a solution to the
UBNCP. Furthermore, if f : R} — R™ is Lipschitzian in a neighborhood around z*, then the rate
of convergence is Q-quadratic; in other words, 3 a constant ¢' > 0 such that

[lz**+! — 2|

lim sup <c.

koo |l2F — 7|2
Proof. The fact that z* is a solution was shown in Theorem 4.14, so we proceed to the rate of
convergence result. From the proof of Theorem 4 in [18], we know that there exists a ¢ > 0 such
that the following useful inequality is valid for all £ large enough:

cllz* +d* — || < || [H|(=) — |H|(2*) - b(z*)(" - b)) 9)

Here b(z*) is an n x n matrix with the ith row being the transpose of b;(¢*), which is an upper
subgradient of |H;|(z*) at z* if H;(z¥) # 0 and a vector in 3°|H;|(z*) otherwise. We now show
that the right-hand side of (9) is bounded above by || f(z*) — f(*) + Vf(zF)(z* — z*)|.

In what follows, k is taken large enough so that z* is sufficiently close to z*. We consider the
following expression:

| [Hil(z") = | Hil(2F) = bi(e")T (2™ — 2*)]. (10)
If i € S7(z*), then by Lemma 4.9, H;(z*) = Hi(z*) = 0. Since Lemma 4.7 indicates that b;(z*) = 0
is valid here, we see that (10) is equal to zero. If i € §;(z*)US2(z¥), then using the suggested values

in Lemmas 4.9 and 4.10 we see that the same expression is also zero. Also, for i € Ss(z¥) U Se(z*),
(10) has the value

|fi(z") = fi(@¥) = V£:(2")T (2" — 2*)I. (11)
For the remaining index sets S3(z*) and S4(z¥), based on the result from Lemma 4.9, there
are two cases to consider for each index set, depending on which argument is the minimum. In all
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cases however, we get a term equal to 0 or of the form given in (11). So we see that there exist
constants ¢y, cz > 0 such that the following is valid:

llz* +d* — 27| < Y| |H|(2") ~ |H|(z) = b(aF)(a* = =¥

< all A=)~ |H|(z*) - b(z*)(z" — 2*)ly
< allf=*) - f(2%) = V()= - 2F)lh
< allf(z¥) - f(F) - V(") - 5.

In view of the fact that f is assumed Lipschiztian in a neighborhood around z*, and by part (i) in
Theorem 4.14, we see that the desired result follows. O

5 Numerical Experiments

5.1 Test Problems —_—
A Nash-Cournot Production Problem [NC]

This numerical problem first appeared in [16], it concerned a simplified production model under
the Nash-Cournot equilibrium framework. The defining function f : R} — R™ is of the form

£@) = )~ o3 1) — (3o ), i=..um,

where 3 ,
Ci(Qi) = a;q; + _L__Li—llﬁiqg‘f'l/ﬁi’ p(Q) - 50001/‘7@—1/‘7
1+ 5
with Q =37, ¢;. The data a;, L;, B;, and 1 are positive scalars. Notice that the function ¢; is not
twice differentiable at ¢; = 0 if 5; > 1. By means of a straightforward calculation, it can be shown
that V f(g) is a P-matrix for any positive vector ¢, as long as ¥ > 1. From the relevant literature,
the solutions that have been obtained had all variables positive.

Two Optimization Problems [HS-100,HS-113]

We have selected two minimization problems (#100 and #113) from [12]. Both problems are of
the form

min ¥(z) : g(z) <0,
where ¥ : R® — R and g : R® — R™. For problems #100 and #113, respectively, (n,m) =
(7,4) and (10,8). The Karush~Kuhn-Tucker (KKT) optimality conditions for these mathematical
programs give rise to the function f: R™ x R — R™™ given by

=  THOT TR )

?

which is a mixed NCP in the variables z and A. For problem #113, we have also imposed the
constraints that z > 0 since the reported optimal solution has all positive values; the resulting
KKT conditions produce a pure NCP.




A Spatial Price Equilibrium Problem [SPE]

Ever since Samuelson’s suggestion that this equilibrium problem is amenable for analysis by math-
ematical programming [23], numerous formulations and solution procedures based on this approach
have been proposed and studied. To summarize the discussion, we give the NCP formulation of
a multicommodity version of the model that appears in [8]. The defining function of the NCP is
given by

Fzom) ( xf + ch(z) - n¥ : @ = arc joining nodes ¢ to j )
z,7) = ,
5F(r) - DFR)— QF(z) : LeN

where N denotes the nodes of the network, £ = 1,..., K denotes the commodities, and Q{‘(x) is
the net supply of commodity & at node I:

Q@)= D =i- 3 <,
a€T(l) agH(l)

where T'(1) (H(!)) is the set of all arcs whose tail (head, resp.) is the node !. The transportation
cost functions c(z) and the supply and demand functions SF(x) and Df(r) can take on different
forms. In particular, the following polynomial functions have been used:

ck(z) = Th+ Qb + Tjps 8572]
Sf(x) = Hf+Jf(=F)?+ pRFY “Z“J"c
Df(r) = Ef-GH=xF)?+ P wfjn';-‘.

Note that these are asymmetric functions in general.

A Traffic Equilibrium Problem [TE]

The general traffic equilibrium problem was formulated as a variational inequality problem in [24].
Its NCP formulation involves the function f defined by (see [2, 1])

AT¢(AR) - Tu )

fth,u) = ( ITh - D(u)

where h,u are respectively, the path flows and origin-destination shortest times vectors, A is the
(arc, path) incidence matrix of a network, and I is the (path, OD-pair) incidence matrix, that is,
1 if arc a is incident to path p
Agp =

0 otherwise

and
1 if path p joins OD-pair &
e Lo =

0 otherwise.

There are various forms for the arc cost function c¢(z) where z = Ah is the vector of arc flows, and
for the travel demand function D(u). The special case of a constant demand function is important
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in its own right. That of a separable arc cost function is also noteworthy; this is the case where
¢q(z) depends only on z,; for example,

ca(z) =, + ﬂaxi-

This cost function is commonly used in practical traffic analysis; see [1]. An example of an asym-
metric demand function is that derived from a logit model:

_ rije " L,
D;j(u) = d?jmv LE
with r;; = €7 being positive constants; see [1].

It should be pointed out that when the NCP(f) with f as given above is solved by a Newton-
type method (such as NE/SQP), a complete knowledge of all the paths of the traffic. network is
required in advance. In order to avoid such an (often prohibitive) enumeration of the paths, some
methods for solving this problem have employed the idea of path-generation embedded within a
Newton scheme; see [19] [5]. In the latter reference, the authors develop an NE/SQP-based method
that solves the traffic equilibrium problem by generating paths as the algorithm proceeds, thereby

making it attractive for large networks.

5.2 Results

In what follows, we report the results of various numerical tests on several NCP problems. All the
relevant programs were written in FORTRAN using double-precision accuracy. We have used the
software QPOPT [21] to solve each quadratic program subproblem and performed our computations
on a SPARCstation 5.

For each test problem, we have tried two starting points (z* and z°) and two sets of upper
bound vectors.a. The upper bounds are somewhat natural for the problems being considered. For
example, these upper bounds could represent limits on primal or dual variables (HS-100, HS-113),
or bounds on network flows as a result of capacity limitations, etc. The first method of choosing
the upper bound vector a was to take a; = 1000 for all ;. * This corresponded to the case where
the upper bounds in a typical application would be far from tight.

In the second method for selecting a, we first took the solution vector z* and then applied the
following logic:

a; = |z7|, if © > .2%n, or a; < 1.d — 5 then set a; = 20.

~ The point of this approach was to set a certain fraction of the upper bounds (the first 20%) so that

at a solution, the corresponding upper bounds would be tight. The remaining variables would have
bounds that were not too far off (i.e., 20 higher than z}). The exception to this approach was if z}
was very small (i.e. |z}| < 1.d — 5), the associated search direction might not be useful since the

upper and lower bounds would be essentially zero; hence we forced those indices to have an upper
bound of 20. '

NC We set 22 = 10 for all i and z? = 1 for all i.

*The exception being for HS-100, where —100 < z; < 100 for 7 = 1,..., 7, since these variables were unconstrained
and optimal values were much smaller than 100.
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HS-100 We set z¢, ¢ =1,...,7 was chosen as in [12]; z3,...,2§; = 1. The second starting point
was chosen so that z? = 1 for all 3.

HS-113 We took z%,...,2%, as given in [12] and z%,,...,2%; were set to a value of 1. For the
second initial vector we took z? = 1 for all i.

SPE The vector z* was set to all ones and z° was taken to be all zeroes.

TE The vector z* matched starting point a in [7]. The second vector z® was calcuated as follows:
for z1,...,z3s (the path flow vector) we used the starting arc flows as suggested in [1] and
solved for the starting path flows using the arc-path incidence matrix A. It is interesting to
note that this approach yielded some negative components; the algorithms did not have a
problem with such a point, however. ° ’

Note that for all tests, we initiated the variable y (as described above) at zero. In the ta-

bles below, the designation “UBNE/SQP” refers to using the UBNE/SQP method whereas “Aug.
NE/SQP?” refers to using the standard NE/SQP on the augmented system (of size 2n) as described
above. The stopping criteria were as follows for each i:

for UBNE/SQP  |Hi(z)| = | min(z;, fi(z))] < 1.d -6
for Aug. NE/SQP |H;(z)| < 1.d - 6.

Also, the quantity 8(z); refers, respectively to 2 Hi(z)? or %ffi(a:)z if UBNE/SQP or the augmented
system approach was used. Lastly, the column “improv.” measures the CPU improvement in using
UBNE/SQP over NE/SQP as applied to the augmented system. The results are summarized in
Tables 1-4.

Table 1
upper bound —=method #1
starting point= group a

| Problem I'size| 8(z®)] 6(z*) | # ofiters. | CPU (secs.) | improv. |
NC-UBNE/SQP 10 | 3,492.2 | 6.1D-18 6 0.10
NC-Aug. NE/SQP 20 | 3,402.2 | 6.1D-18 6 020 50%
HS-100-UBNE/SQP 11 730.0 | 1.2D-16 12 0.17

{"HS-100~Aug. NE/SQP | 22 730.0 | 8.2D-26 9 0.39 56 %
HS-113-UBNE/SQP 18 1 6,934.5 | 2.3D-16 28 2.16
HS-113-Aug. NE/SQP | 36 | 6,934.5 | 8.7D-16 23 4.20 49 %
SPE-UBNE/SQP 42 | 7,538.3 | 4.2D-16 12 7.66
SPE-Aug. NE/SQP 84 | 7,538.3 | 6.3D-16 9 2032 | 62 %
TE-UBNE/SQP 50 | 1,300.9 | 2.4D-15 7 8.21
TE-Aug. NE/SQP 100 | 1,300.9 | 1.0D-24 8 3047 73 %

®For HS-113, method #2 and starting point z°, UBNE/SQP was not able to eventually satisfy the bounds. This
is because the starting point was not within these bounds. The resulting solution was just slightly off, and so we
adjusted a by setting a> = 3 (instead of approximately 2.36368).




Table 2
upper bound =method #1
starting point= group b

8(z°) | 6(z*) | # of iters. | CPU (secs.) | improv. |

} size l

| Problem
NC-UBNE/SQP 10 | 321,987.9 | 1.7D-15 9 0.12
NC-Aug. NE/SQP 20 | 321,987.9 | 1.7D-15 9 0.30 60 %
HS-100-UBNE/SQP 11 8,918.5 | 1.5D-14 11 0.17
HS-100-Aug. NE/SQP | 22 8,918.5 | 9.5D-17 10 0.43 60 %
HS-113~-UBNE/SQP 18 | 200,859.6 | 2.5D-14 16 1.24
HS-113-Aug. NE/SQP | 36 | 200,859.6 | 1.1D-23 18 3.58 65 %
SPE-UBNE/SQP 42 7,625.0 | 6.3D-14 9 4.51
SPE-Aug. NE/SQP 84 7,625.0 | 9.7D-26 9 20.22 8%
TE-UBNE/SQP 50 1,359.2 | 1.2D-33 9 9.96
TE-Aug. NE/SQP 100 1,359.2 | 3.1D-20 10 37.23 73 %
Table 3

upper bound =method #2
starting point= group a

| Problem ['size | 6(z%) ] 8(z") | # of iters. | CPU (secs.) | improv. |
NC-UBNE/SQP 10 | 3,427.1 | 2.8D-19 6 0.08
NC-Aug. NE/SQP 20 | 3,492.2 | 2.7D-15 6 0.19| 58%
HS-100-UBNE/SQP 11 730.0 | 2.5D-15 11 0.18
HS-100-Aug. NE/SQP | 22| 730.0 | 8.2D-26 9 041 56%
HS-113-UBNE/SQP 18 701.6 | 3.8D-13 34 1.74
HS-113-Aug. NE/SQP | 36 | 6,934.7 | 4.0D-18 21 4161 58%
SPE-UBNE/SQP 42 | 4,163.9 | 2.1D-16 8 4.15
SPE-Aug. NE/SQP 84 | 7.538.3 | 4.7D-16 9 21.08| 80%
TE-UBNE/SQP 50 | 1083.7 | 6.3D-17 16 14.71
TE-Aug. NE/SQP 100 | 1300.9 | 1.9D-14 7 2096 | 51 %
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Table 4
upper bound =method #2
starting point= group b

| Problem | size | 8(z°) | 8(z*) | # of iters. | CPU (secs.) | improv. |
NC-UBNE/SQP 10 | 22,918.4 | 1.9D-18 5 0.05
NC-Aug. NE/SQP 20 | 321,987.9 | 1.7D-15 9 0.31 84 %
HS-100-UBNE/SQP 11 8,918.5 | 1.9D-16 14 0.24
HS-100-Aug. NE/SQP | 22 8,918.5 | 9.5D-17 10 0.44 45 %
HS-113-UBNE/SQP 18 1,733.9 | 8.8D-20 20 1.12
HS-113~-Aug. NE/SQP | 36 | 200,859.6 | 3.3D-22 17 3.49 68 %
SPE-UBNE/SQP 42 4,331.5 | 2.6D-16 8 3.96
SPE-Aug. NE/SQP 84 7,625.0 | 1.1D-17 9 20.82 81 %
TE-UBNE/SQP 50 1,293.3 { 3.4D-16 10 10.0

| TE-Aug. NE/SQP 100 1,359.2 | 1.9D-19 10 37.54 73 %

6 Conclusions

In this paper, we have considered algorithms for solving the upper-bounded nonlinear comple-
mentarity problem. We have extended the results concerning the recent NE/SQP-type algorithm
proposed by Pang and Qi by showing that it is actually Q-quadratically convergent under a suit-
able Lipschitzian assumption. Based on our test examples, we have additionally shown that the
proposed algorithm, which handles the upper bounds in the subproblem and consequently solves

~ small problems, can be much more efficient than the method that treats these upper bounds via
an augmented NCP.
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ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thercof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
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