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Abstract

In this thesis, we present some works in the direction of studying quantum effects in
locally supersymmetric effective field theories that appear in the low energy limit of
suprestring theory. After reviewing the Kahler covariant formulation of supergravity,
we show the calculation of the divergent one-loop contribution to the effective boson La-
grangian for supergravity, including the Yang-Mills sector and the helicity-odd operators
that arise from integration over fermion fields. The only restriction is on the Yang-Mills

kinetic energy normalization function, which is taken diagonal in gauge indices, as in
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models obtained from superstrings. We then present the full result for the divergent one-
loop contribution to the effective boson Lagrangian for supergravity coupled to chiral
and Yang-Mills supermultiplets. We also consider the specific case of dilaton couplings
in effective supergravity Lagrangians from superstrings, for which the one-loop result is
considerably simplified. We study gaugino condensation in the presence of an interme-
diate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry
of the effective supergravity theory. Furthermore, we include in the Kahler potential
the renormalization of the gauge coupling and the one-loop threshold corrections at the
intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new
running behaviour of the dilaton arises which we attribute to S-duality. We also discuss
the effects of the intermediate scale, and possible phenomenological implications of this

model.
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Chapter 1

Introduction

Amongst the theories of physics beyond the Standard Model (SM), supersymmetry
[1, 2], despite the present lack of its present experimental observation, appears to be the
strongest candidate. The phenomenological predictions of supersymmetry for physics
beyond the SM have been argued to be within experimental reach in the foreseeable
future [2, 3]. If realized in nature, supersymmetry must be broken, and phenomenological
consistency requires that it is broken at a scale of order 1 TeV [3].

From the low energy point of view (where by ‘low’ we mean lower than the scale
at which supersymmetry is broken), requiring supersymmetry beyond the electroweak
scale has the following theoretical merits. First, supersymmetric theories suffer from
perturbative divergences much less than non-supersymmetric theories. This is by the
virtue of the cancellations of the boson and fermion contributions to the loop correc-
tions. More specifically, the precise cancellation of the quadratically divergent graphs
of fermion loops and boson loops that contribute to the masses of scalars results in
the stabilization (i.e., protection against radiative corrections) of the hierarchical mass
scales that unfold as one goes across the energy scales (namely, the electroweak scale,
M, and possibly Mgut which is a mass associated with a grand unified theory much
higher than Mw). In other words, supersymmetry provides a partial solution to the
gauge hierarchy problem, so that once the origin of the mass scales is explained, super-
symmetry makes sure that their relative ratios remain unchanged perturbatively. This
merit of supersymmetry is a direct consequence of the nonrenormalization theorems.

The other motivating feature of supersymmetric extension of the SM is that the
renormalization group running of the three gauge couplings of SU(3) x SU(2) x U(1),
(a3, @2, 1), in the supersymmetric SM unify at about 10'®GeV [4]. In contrast, in the
nonsupersymmetric minimal SM, the renormalization group equations running of the ex-
perimentally measured gauge couplings approach at around 10'*GeV but do not meet
at the same point, instead there is a notorious mismatch of a few standard deviations.

In other words, the MSSM value of sin 6y (Mz) obtained by using the supersymmetric

RGEs and assuming unification, agrees remarkably well with the experimental value.




The standard nonsupersymmetric GUT models were disfavoured because their predic-

tions for proton lifetime is well below the observed lower bound ~ 1032 years. Also,
GUT without supersymmetry occurs at about 10!'® GeV. One would need to keep the
scalars of EW theory massless below this scale. Such a mass is generally generated by
loops. It should be mentioned that the unification of the couplings has more theoretical
motivation than experimental. However, the experimentally inferred near unification is
quite suggestive.

As we go higher energy scales and approach Mp;, the gravitational effects become
stronger. The moment we include gravity, if we insist on having supersymmetry, the
physics can nolonger be described by a globally supersymmetric theory. Within the
framework of General Relativity, supersymmetry must be gauged, since the algebra of
supersymmetry charges contains the momentum vector p,, i.e., one of the generators
(spacetime translations) of the Poincaré group.

This brings us to the motivation for supersymmetry but from the point of view of high
energies. Supergravity (locally supersymmetric) theories, as fundamental theories, are
nonrenormalizable. However, as effective theories of a more fundamental theory (which
presumably contains a consistent description of quantum gravity) they are completely
sensible. Currently the only consistent theory of quantum gravity is string theory, which
requires supersymmetry for consistency. Furthermore, it provides a unified theory, with
the scale of unification of gauge and gravitational couplings at Mg ~ 2 x 10'7. This
differs from the MSSM value by a factor of ~ 20. There are numerous approaches in
attempt to account for this apparent discrepancy, and perhaps the most realistic and
promising one is the presence of extra massive states in the low'energy effective theory of
superstrings (a generic feature of most orbifold models) and thus introducing threshold
corrections to the running of the gauge couplings.

The recent string duality revolution has taught us that all the superstring theories
that used to be thought of as different theories in fact correspond to different regions of
the moduli space of one and the same theory (which in addition contains the 11 dimen-
sional M theory) where a perturbative expansion is possible. In other words, what used
to be thought of as different superstring theories, ére régio:ns in the moduli space where
there exists some definition of weak coupling; although this weak coupling may corre-
spond to strong coupling of another region. These regions, in which the description of

physics varies from one to another (say the number of supersymetries, gauge structure,




or even spacetime dimensions) are mapped into one another by some duality symmetry;
for example S duality (strong-weak duality which in extended supersymmetric gauge the-
ories often translates to a generalization of electric-magnetic duality in electrodynamics
with magnetic monopoles) or T duality (which translates to the duality of a theory
compactified on a large space to one on a small space.) The remarkable property that
is central to all of the string duality development has been supersymmetry! — without
it none of them hold. But that is not the high energy motivation for supersymmetry
in four dimensions that we have in mind. If we take superstring theory seriously as a
unified fundamental theory which describes the physics beyond M, and assume that
the theory is compactified to four dimensions not too far below that scale, then local
supersymmetry in four dimension is forced upon us, because the low energy effective
field theories of the superstring in four dimensions are also supersymmetric.

The most phenomenologically successful string theory is the Eg X Eg heterotic string
theory, whose effective field theory in 4D is N = 1 supergravity coupled to super Yang-
Mills and matter, with a gauge group that accommodates the SM gauge structure. In
addition, the second factor of Eg provides a ‘hidden’ gauge group. The hidden sector
can be of great phenomenological importance, namely the strong coupling dynamics of
an asymptotically free gauge group of the locally supersymmetric theory in the hidden
sector can lead to the breakdown of supersymmetry at a high scale, where the effective
theory is still supergravity. The hidden sector can only couple to the observable sector
via gravitational-strength interactions or by anomalous U(1) interactions, and through
these, a set of soft supersymmetry breaking terms in the observable sector are generated
which lead to the breaking of supersymmetry at a scale comparable to the electroweak
scale.

In practice, however, making contact between superstring theory and phenomenology
has proven extremely difficult. This is mostly due to the vast number of superstring
vacua, thereby introducing a huge arbitrariness So on the one hand, superstring theory
provides a framework in which there are no arbitrary parameters (all the parameters and
couplings are determined by the vevs of the modulus fields — the fields parameterizing
the vacuum manifold of the superstring) which is in principle fully predictive. On the

other hand, the theory can have a multitude of vacua which limits its predictive power.

!The duality in four dimensional SYM with N = 2 supersymmetries [5] and N = 1 [6] also rely

heavily on holomorphy arguments that are direct consequences of supersymmetry.




The vacuum selection, which boils down to lifting the degeneracy of the vacuum states
is a problem which gets added to the problem of “how is supersymmetry broken?” in
the phenomenological study of superstrings. These problems have long been expected
to be one and the same, as it is very suggestive that supersymmetry breaking can
lift the flat directions of the theory (or stabilize the moduli fields), and some of the
recent developments indicate that this is in fact the case. Closely related to this issue
is the notorious ‘dilaton runaway’ problem, in which, if we assume that the string is
weakly coupled, and do not include any nonperturbative effects with a stringy origin,
we can expect that the potential that arises for the dilaton (the modulus field whose
vev determines the YM gauge coupling in the effective field theory) has its only stable
minimum in the extreme weak coupling, supersymmetry preserving limit.

Since the early days of superstring phenomenology, it has been apparent that in
order to make contact between the underlying theory and the effective field theory it
would be necessary to include quantum corrections in both. An early example is the
string threshold effects and the loop corrections to the gauge coupling of the locally
supersymmetric effective theory giving the moduli dependence of the latter, and the
connection with the modular invariance (exact in string theory) of the effective theory.
Modular symmetry is anomalous in the effective supergravity theory. To fully restore this
invariance in the effective theory, i.e., to determine the counter-terms which cancel the
anomaly, requires the understanding of the divergences in the locally supersymmetric
effective field theory. The renormalization of the Kahler potential is also relevant in
lifting certain flat directions in a supergravity effective theory. The determination of the
full loop corrections may also have nontrivial effects in the study of gaugino condensation
as a mechanism for supersymmetry breaking.

In this thesis, we shall describe many of the above issues in supergravity effective
theories in detail. In particular, we shall describe some works which are in the direction
of including quantum effects in the locally supersymmetric effective field theories which
include YM gauge fields as well as matter, with field dependent gauge couplings, t.e.,
superstring inspired supergravity. We shall discuss the calculation of the divergent one
loop corrections to the above system. We shall also discuss non-perturbative corrections
in the context of a specific model of gaugino condensation in the hidden sector, which
also includes perturbative corrections to the Kahler potential as well as non-perturbative

effect, which is S duality imposed as an approximate symmetry.




The organization of the thesis is as follows. In Chapter 2 we give a rather brief
review of the Kahler covariant formulation of supergravity which is the framework used
here essentially throughout. In that chapter we also recall some basic facts of life about
superstrings and the effective quantum field theories which they give rise to upon com-
pactifications, with heavier emphasis on the heterotic strings which are the most relevant
for our applications. Chapter 3 essentially sets the notation and outlines the strategy
used in calculation of the one loop effective Lagrangian of the supergravity, YM, matter
system. This calculation is discussed thoroughly in Chapter 4. In Chapter 5 we first
present a brief discussion of gaugino condensation in the hidden sector, and also of du-
ality symmetries (modular invariance and S duality) . We then examine a superstring
inspired toy model of gaugino condensation which incorporates certain radiative correc-

tions to the Kahler potential, as well as S duality and modular invariance as underlying

approximate and exact symmetries, respectively.




Chapter 2

(Classical) Background Material

2.1 Kahler Covariant Formulation of Supergravity (A Review)

As was first pointed out by Zumino [7], supersymmetric o-model has Kihler sym-
metry, ¢.e., the complex scalars of the matter supermultiplets parameterize a Kahler
manifold [10]. This Kahler symmetry is an invariance of the mater coupled to super-
gravity system, provided that the fermions undergo a chiral (and field dependent) phase
transformation [11].

In the Kahler covariant formalism [13] Ké&hler transformations have a geometrical
interpretation at the superfield! level, as they appear in the structure group on equal
footing with Lorentz transformations.

In the following, a brief description of supergravity in the Kahler covariant for-
mulation is given, following mainly reference [12]. After constructing the superspace
k action, eventually, we outline the essential steps in obtaining the component tree level
Lagrangian for supergravity, super Yang-Mills (YM) and matter system.

The 2-component spinor notations used here in this chapter are those of ref. [12]
which are more or less standard in supersymmetry [10]. We do not list them here
because the intention of this chapter is not to discuss the details of the formalism, but
to give an overview of the structure of the Kahler superspace and to sketch out how
one obtains the component form of the Lagrangian. In Chapter 3, where we discuss the
1-loop effective Lagrangian (which also uses slightly different notation than here), we
shall be much more explicit about our notation.

First, Kahler transformations K(¢,?) — K(¢, %) + F(¢) + F(P) (where ¢ is any
chiral superfield) is accompanied by the transformation

i

Q — Qe vImF, (2.1)

where w is the chiral U(1) weight of the superfield Q@ under Kihler transformations.

!We assume that the reader is familiar with the basics of superspace and supersymmetry, at the level
of the introductory chapters of the text by Wess and Bagger [10], as well as with General Relativity and
differential geometry {8, 9].




Furthermore, the superspace covariant derivative is also covariant with respect to Kahler

transformation, as we shall see. Let us introduce the superspace coordinates z™ ~
(z™,6#,8;), and the local frame coordinates (z%,6%,8;) such that
Dy=E Moy = (%,Da,Dé‘), (2.2)

where M = (m,p, i), A = (e, @, &), and D, and D, are the ordinary spinorial derivative

operators, for example,

& - D
Da—gg-;‘}'iea((f G)anm.

Here 5% = ¢° and 61?3 = —¢12® The derivatives D4 satisfy DcDp — (-l)bcDBDc =

~Tcp 4 D4 with b = 0,1 for vectorial and spinorial index B, respectively (likewise for

(2.3)

¢); Tcp? are the components of the torsion in superspace. In equation (2.2), E4 ™ is
the inverse super-vielbein which in the flat spacetime limit reduces to:
&m 0 0
EsM =1 i(ame), 6+ 0 |. (2.4)
i(oc™e)* 0 63‘
The torsion two-form is then given by:

T4 = dE* + EBgp* + w(EA)EAA, (2.5)

where VEA =dzMEpy4 and ¢34 = dz2MouB A(z) is the Lorentz gauge connection. The
last term in (2.4) corresponds to covariantization with respect to Kéhler transformations:
A = dz™ Apy is the connection one-form for the Kahler transformations. The Kahler
weights w(E4) is given by w(E?) = 0, w(E®) = 1, and w(E4) = —1. The superspace
one-form A is given by (see [13])

Au = {BMOMK(s,P)

Aé = —%Eé‘ MoK (¢, )
31 7 i ,
Aad - ‘EGad = §(DaAo'1 + DdAa) = —g [Dade] -Ka (26)
where G4 = 02,6, is an auxiliary field which is related to the spinorial component of
the Uk (1) field strength (namely, F§ = 3(c%€)%G.). The other objects of interest are

the superfields X, and X¢ given by:

X, = —%(DdDd—SR)DaK

X¢ = —%(DQD“—SR)’D""K. (2.7)
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The chiral superfield R will be discussed momentarily, but let us first reexpress the X
fields as (see [12]):

- . 7 <
Xy = 7ﬁkéaadDagpk’D°‘cpk+-Z-Kk,;Dac,oka

X% = %l}x'k,;c?““é‘i)aa’;’l)agak + %Kk,;pﬁaﬁpk. (2.8)
It follows from the definitions of X, and X% that they satisfy:
DX, =0, D,X%=0, DX, =DsX". (2.9)

In the component form of the action, we shall find that the lowest components of the
superfields X, and X will appear. Also relevant to the construction of the component
field action are the chiral superfields R and Ri (with w(R) = —w(RT) = 2), whose

F-components involve the Riemann tensor, and satisfy:

1 2
DR = —§Xa - g(Ube)awTwcb
DéRt = —%X""‘ - %(Wbe)é“éch@ (2.10)

where T, and T, are the components of the torsion superfield, and (a':b)o, 8= };(acc'fb—-
6%5°),# Applying the Bianchi identity along with taking another spinorial derivative in

(2.10) imply that:

D*D,R + DsDERT = —%Rab ab _ %(D"‘Xa + D X%) - 4G,G* + 32RRT.  (2.11)

INTRODUCING YANG-MILLS FIELDS

The YM connection is
A=E*ALT, = A'T,, (2.12)
where the indices 7 are the Lie algebra indices. The YM field strength two-form
F= %EAE’BFBA - FT, (2.13)
is given by the usual expression in terms of the YM connection:

Fr=dA" + %APA%T

Pq’ (2'14)

where the coefficients ¢}, are the structure constants of the Lie algebra. Spinorial com-

ponents of F satisfy the covariant constraints:
FB =0, Fap=0, F§=0, (2.15)

8




which together with the Bianchi identities constrain the other components of F as

follows:

Foa = i(aae)ng
Foe = iaefwe
1 af 1, &8
Fab = §(ea‘ab) Dﬁwa+'2-(ﬁab€) Déwda (216)

where W, = W] T, and WE = W4T, are the Yang-Mills superfields of Kahler weight
+1 and -1, respectively. They satisfy, as a result of the Bianchi identities and the

constraints, the well known equations:
DW® =0, DW, =0, D*W, = DW= (2.17)

It should be noted, especially as we have not been terribly explicit, that solviﬂg the YM
Biaﬂchi identities makes use of the complete structure of the Ux(1) Kéhler superspace,
i.€., the derivatives are covariant with respect to YM as well as Lorentz and Ug (1) gauge
transformations [12]. In the presence of YM fields, the previous discussion is modified,

and the appropriate modification of eq. (2.7) and (2.8) leads to

-3 oz 1 _
Xo = —Q—Z-Kk,;a;dDagakD"‘c‘ﬁk + 5 KiiDa" FF + WD,
~

Xé =
2

K 5D, 7 Do + %K,c,-cpda’?f’k + WD, (2.18)

The Kahler D-term that appears in the r.h.s. of eq. (2.11) is:

—%D"‘Xa = —EKiD.o* D% — i}g’k,-agd (D" DD + DF D D)
A | . T
+K  FFF* + TeRimiD ©* Do D7D
K VEWID G — K gVEWIDAGE - J(DUW)D,,  (2.19)
where
Raj; = 0:0:Kj5— K" K3  Kizs, (2.20)

where, V* and VTE are the holomorphic (antiholomorphic) generators of the gauge sym-

metry defined by variations of the coordinates of the Kihler manifold,

6a§0k = —a r@kv 6a¢z = —O(T‘_/,,-—Qb-];,
0 _ - 0

V. = VHe)s=, V=V —=

T (<P)a<,9k T (‘P) ag_ok

VE = —i(To),  VF= —i(To)F (2.21)

r




the generators satisfy the underlying Lie algebra commutation relations [V, V] = ¢,5 'V}
(likewise for Vs, and [V, V;] = 0). Furthermore, the Killing potentials (i.e., solutions of
the Killing equations for the metric) D, (¢, %), are given locally in terms of the generators
and the Kahler metric K;; = PK(e?) i

Bpkagk
- 577 BD((P,-@) - 1 aD(‘lpa_Qp_)
I\ijV,.J = Z-a—gai—-, Il.iJ—VT = —1—55].—. (222)

The Killing potentials D, are in turn solved for in terms of the holomorphic and antiholo-
morphic functions F, and F, which arise as the Kahler transformation induced by the
action of the gauge symmetry generators on the Kihler potential: (V;+ 177)}& =F.+F,.
We simply quote the result that the solutions to the equations (2.22) is: D, = K;(Tr¢) .

LocAaL SUPERSYMMETRY TRANSFORMATIONS

In the following we shall outline the construction of the supersymmetric Lagrangian
for supergravity coupled to Yang-Mills and (chiral) matter fields with the above ingre-
dients. The matter fields parameterize a Kiahler manifold. The transformations of the

-objects E# (the superspace frame, or super-vielbein), matter superfields, ©* and G’_‘
and the YM connection one-form A" = dz™ A}, under the superspace diffeomorphisms,

Lorentz and YM gauge transformations (£a7, Ap 4, and o, respectively) are:

§EA = LEA+ EBAA - -;;w(EA)EAIm(F(L,o) — " F.()

bcF = Legh—a'VH(g)

§7° = Lt —o'VE(p)

6AT = LeA” —ida” + o Alcy, (2.23)
where Ly = t¢d + di¢ is the Lie derivative in superspace and ¢ and d are respectively
the interior product with respect to the superspace vector £4 and the exterior deriva-
tive. The compensating &-dependent Lorentz and YM transformations correspond to
Ap? = icdp4 = ied2Cpcp? and o = ~ig A7 [12, 10]. The above local supersym-
metry transformations can then be cast into the following form which will prove more

convenient later when we derive the transformations of the component fields:
1 .
SEM® = Dué*+ EmP¢Top” - Zw(EA)EM 4B (—KkDB‘Pk - KEDB'@k)

- %w(E)EM Agh (12Gb 4 5'?°‘Ix’k,-¢Da99kD5,¢fc)

10




bk = EADL0*, 67 = €4DaTh
l -
6T = ai*Dsl - Jw(I)leA (KxDag* - KzDa7")
_ %w(F)Ffb (1264 + 5§ K1y Do* Do T )
suf = eADuf +TE 64D g 05™, (2.24)

where ' and ©* are generic superfields which are assumed to have the following trans-

formation laws:

: OVE(p)
k k T T 2
ou = Léu -« —W——u
6T = Ledl - %w(l“) T Im(F(p) — o Fr(¢)). (2.25)

The reason for introducing these generic fields will become clear later in our discussion

of the component field supersymmetry transformation.’
INVARIANT SUPERFIELD ACTIONS

Invariant actions are obtained by integrating superspace densities over all directions
(commuting and anticommuting) of the superspace. Remarkably, the supergravity plus
matter action is simply the integral over the volume element of the superspace con-

structed above:

'Csugra+matt = _3 / E = Esugra + eDmatter Py (2.26)

where the integration over d*zd%¢ is understood. E is the super-determinant of the
supersvpa,ce vielbein Epr2 , e = dete,, ®, and Dmater is the terms induced by Kahler

superspace structure and contains the matter field contributions:
1 7 S - _
Dratter = _EDaXal =+ §¢;a;n&Xa| + §¢maamaan!a (2-27)

where the vertical bars denote the projection to the lowest component of the superfield.
We shall discuss the matter contributions to some detail later on. The Yang-Mills and

superpotential contributions are:

| E TOYADS . E - — T YAISX
Low= [ o hol@VWs + [ 2 Fl@WEW (2.28)
and
=1 [Ek LML v
Lo=35 [ Z<W@) +3 / =) (2.29)




Where the gauge kinetic function, f,; and the superpotential W are holomorphic func-
tions of the chiral fields. The Kahler invariance is verified by recalling that the Kahler
weights of R and R' are +2 and —2, respectively, and since w(W,) = —w(W;) = 1,
for the YM action to be Ux(1) invariant, the gauge kinetic function, f.s must have
zero Kihler weight. Furthermore, w(e®/2W) = 2 = —w(eK/?W), hence Ly, is Kahler
invariant.

As for gauge invariance, the YM term is invariant provided that the gauge kinetic
functions satisfy

fors = Cpr qqu + Cps qfq'ra (2°30)

and the superpotential term is invariant if
§W = o F (o)W (p). (2.31)

Finally, since the action is directly written in superspace, supersymmetry is auto-
matic by construction.

Do the Lagrangians in (2.26)-(2.29) correctly describe the dynamics of supergrav-
ity, matter, and Yang-Mills system? The justifications are the superfield equations of
motion, and also the component-field actions corresponding to the superfield actions
(2.26)—(2.29). For details of the former approach (i.e., the derivation of the equations
of motion) we refer the reader to ref. [12]. Here we shall discuss the component fields,
mainly because the starting point of our calculation of the 1-loop effective Lagrangian
of supergravity, YM and matter system is the component-field tree-level Lagrangian for

the system, which we shall construct next.
CoMPONENT FIELDs

The supergravity multiplet consists of the vielbein e, ¢, the gravitino, (%2, ¥ma),
and two auxiliary fields, M (complex scalar) and vector field b,. These are given by the
# = 6 = 0 components of the supervielbein, Eps 4 (in the Wess-Zumino gauge (see [10],
for example)) and of R and G, superfields:

en® ¥  F¥ma

Evil=| 0 6 o0 : (2.32)
o o &
1 1 :
Rl=-2M, Rf=-2M, G.|=-3b, (233)




where the vertical bar indicates projection to the lowest component (§ = 8 = 0) of
the superfield. For the components w,, g4 of the connection (¢p* = dz™w,p 4) and

torsion Tayyn 2 and Top # which are related by
Tun? = (1M Ey BENCTop 4. o (2.38)

The lowest component projection of the superfields X, and X% of eq. (2.18) are thus

obtained using:?

¢l = A, Dug'|=V2xh, DDuy’|=—4F,
Anl = iam, WP =iX, D*W,| = -2D,
Doyl = EMDye'| = (ea™Dmes’ — %ea ™2 64D, 00 )|
= @™ (Dndi - X (2.35)
Then it is straightforward to show that
X, = —ﬁh o (D L 7 o k) + %Kk,—cx’;i’k _iN.D,.  (2.36)
Now let us consider the superfield —%D"‘XQ, as given in eq. (2.19). Using:
DD | = €™ [x/ivmx“ ~ O F + i(Pmd™)*(Dnd’ — \/iiﬁx%)] (2:37)

one obtains:

1 . —_ A .
_’é'DaXaI = _I(ijgmnp A‘LDnAJ - %K’iixa’la.;ndpmxja

- 0T A ] 1. mn IN(ofy ST
-+ (Dmxat)a.m AUX J + IlijF F] -+ §I\ijg ) (¢mx )(d)nxj)
l 7 SYAVAY 7 1
+ 7R () XE) + V2N KV + VAR ) KV,
4+ DD, — 7"y’ K5 F7 — mo X’ Ixz—Fz
\/—("/)m ) 7 \/—("/) X) %
1 _
= m- msi m—J mn I,'i_DnAz___ n )
Qﬁ(d’ 6"0™ % — P X 9™ Kix( ﬂwx)
1 . . 1 -
— —={(no" "X — 29U X gV K ;{ D AT — —= U X). 2.38
Qﬁ(tﬁoax U X' g™ ) K55 ﬁde) (2.38)

Hence, one obtains for the matter contributions in equation (2.26) and (2.27):

Dmatter = -A’ijgmanAiDﬁAj - %I(ijxaio';napmf(jd

2The complex conjugate expressions of the lowest component fields omitted here for brevity.
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1 3 % > t 17 1 - AY S
+ —(Dmxw)o;naﬁiyxa’ + KFiF7 - -z-liijgm"(tbmx Y(%nX7)

1
+ 4 “j](X XJ)( ]) - —I\zg(X Xj)b +D"D,
- \/—(zbmff"amx’)lx,,D nAl — T(;bma ")) K 5Dy, A

= K [(Bnd™ L) $nX') + (0™ X ) ()] |
— V2K [N+ RNV + §(zzma—m,\f — $mo™N)D, , (2.39)
where the covariant derivatives are given by:
bmAk = A  —al V}, (2.40)
and (see [12])

. , 1 R
Dmex = asza — Wma ’YX?\/ - (4_-R amA] - Z-AjamA])

1: . : -k N .- 3Vz 1 : N
- Zlij,;(xjomxk)x + ia,, ( A% 26kD ) XIZ + I‘jkx{,DmAk
DAl = O, — P ,\Tagn,\s r

o sq
1 .
+ (le’jamA Ix—(‘) Al — —em %b, + a D, + I\Ux om0 )AL.(2.41)
. In the above equations, D, is the Killing potential, not to be confused with the gauge
auxiliary field D, = —~1DoWy|. '
The supersymmetry transformations of the component fields can be derived by start-

ing with the superspace transformation laws of the supervielbein and a (Lorentz invari-

ant) generic field I' as given in eq. (2.22) with
éal =0, €Ot‘ = fa 7 §a| = &a. (2'42)

this is a laborious procedure and has been worked out to great detail in ref. [12]. For

instance, the lowest component of the transformation of the supergravity multiplet gives:

bem © €0 P + zéU“Tbm _
6, 2Dm€™ -—(60 m) b + 3 (&fm) M

i

it

- \/-«ﬁ“ (Ki&x' — K:£X) (2.43)

where D% = 0, 6% + EPwmp @ + €% A,,, and the Kahler connection A = %KjamAj -
%I&'J—amAj - %em %ha + %a:n D, + ;i—]x”ij—xiampz]_ . The transformations of the auxiliary com-

ponents, and all the other component fields in the theory are found in [12].
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CONSTRUCTION OF AN INVARIANT ACTION

Given a chiral superfield r with w(r) = 2 (which cancels the Kéhler weight of the #

integration) and components:

1 1. |
rl=r, ﬁDar] = Po, —ZD D,r| = s. (2.44)

The supersymmetry transformation laws for the components of r can be found and they
are given by:

or = ﬁf“pa—%(ﬁ'zfxi— (EX)
1

60 = V2% +ivV2(0™E)o(Dmr — ﬂzbmp + iem boT)
~ %pa(lfﬁx" - Kiéxh),
§s = —iV2(E6™)Dmpe — H(E6™Um)s + (E6™ 0™ )(Dnr —'%lbnp + ie, *boT)
+ Lia(ep) - 22 e, + wEi T (245
These can be used to show that the Lagrangian density
L=¢ [s + %(@Zm&mp) -r(M + Q]J.mﬁmnlzn)] + h.c. (2.46)

(where e = det e,, ®) has the desired transformation property that §£ is a total diver-

gence, and therefore is a supersymmetric action:
6L = Oy, (iV2e(E5™p) — 4e(E6™ P,)r) + hoc. (2.47)

Referring back to the discussion of the superfield action for supergravity, SYM and

matter, with superpotential W, where we have:
; 1
r=-3R+eAW 4 T WITW (2.48)

Recall from equations (2.26)—(2.29) that the first term gives the Lsugratmatter With the
canonically normalized Einstein term, and the second and third terms give Ly, and Lym.
For the sake of an example, let us consider the construction of Lgp from the second term

in (2.48); i.e., let us start with r = KW which gives:

r] = r= (W) =W,




= Yo oo Lk k
Pa = ﬁDarl =75 [e (KxW + Wi)Dyyp ] |
= K EW + Wik, .
s = _%Dapaﬂ = X12(K W + W) FF — -;-e"’/z(zf,-j — K T + KK W
- -;-CK/ 2(Wij = Wik + 2W,K;)(x¢'x7), (2.49)

which using (2.46) gives:

1 . g ] .
Sl = KPPHIGW + W) = MW + —s(Gna™x") (KWW + W)
1 - > ' - 1.1
= 5l(Ki; = KiTf + KKGW + (Wi = Wil + 2WK))(x'x7)
~ Ym0 W] + h.c. . (2.50)

Lsugra+matter and Lym are similarly obtained are are given by:

1 1 - -
£sugra+matter = —'Q'R + §€mnpq(¢m0'npp¢q - ¢mUnDP¢Q)

1. _ 1
- gMM + gbaba + Dmatter (251)

‘where Dpatter Was given in eq. (2.40) containing the complete matter dependence other

than the superpotential. The YM Lagrangian is:

1 1 1 1 <
e = - = Zprma s b mnpg pr 5 \T .M s
Lym PG F Bl £ P, 2, 4+ 26N 0 DX
— DD’ — (A6%A )by — iFT (4 0n X° 4 BraGnA®)
1 = - 1 - - - -
+ §€mnqurrnn(¢p°'q>‘s — Pp0yA°) + g(x/\s)@@bm’%bm + 290,31y )

+ (0R)30mb™ + 2™ n)

(GG~ GG — i) (G N ) (o XT)

13frs

4 0A
V2 _ o o

— z%()‘rAs)(,‘bma,mxz) _ 2\/§(¢m0‘nAT)(XZ&m?LAs)]

1[ azfrs _ I‘l afrs
894747 U AL

V(¢ o™ A7) F,p = V(A AT)D + FI(XTA)

+

JO¢X)(ATAT) + hec. (2.52)

In the above equations, F,, = 0,,a], — Ona), — cl,a5,al, are the bosonic components of

the YM gauge field strength. Solving for the auxiliary fields in the Lagrangians (2.37),
(2.48)—(2.50) we find:

M = -357w, - (2.53)
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u(x o°x’) - -?-’-Re frs(N0%X°) (2.54)
50 frs

o= A/ZA—zj(A W+ WJ)+ (ATAS)I";] 22, (2.55)
P 1 VEZ [0fuye i Ofuwses] _
vs Refrs< T [6A1 X' =g x|~ Ds) (2.56)

It can be verified that these equations are precisely the lowest components of the equa-

tions of motion of the superfield action of (2.26)-(2.29).

2.2 The Heterotic String and Compactifications

In this section, we shall briefly review some relevant facts about heterotic string, it’s
effective field theory in 10 dimensions, and the compactifications to four dimensions.
We shall not go into any details of the worldsheet theory because we are concerned with
the physics in the low energy effective field theory in four dimensions.

It is well known that the negative-norm ghost states of the 26 dimensional bosonic
string theory are removed by world-sheet supersymmetry [14]. This supersymmetric
theory has ten spacetime dimensions. In addition, in the spacetime supersymmetric
theory the so called GSO projection [15] eliminates the potential tachyonic ground state.

If all the heavy modes of the superstring are ‘integrated out’ (or in practice, the
theory is truncated which means the massive modes are discarded), the effective theory
is described by the massless modes in ten dimensions. For example, anticipating the
case of heterotic theory (with one supersymmetry) these modes are:
¢ gyN, Th 10-dimensional metric (symmetric and traceless) corresponding to the gravi-

ton. In terms of the string states , this mode is given by:*
(eMa, + o &% — sy aly)lo), (2.57)
¢ By N Antisymmetric tensor, corresponding to:
(oM &, — N aM)jo), (2.58)
¢ ¢, Scalar field (dilaton) corresponding to:

sun(a™ a0y, (2.59)

*aM and @Y are the oscillators in the mode expansions of the string right- and left-moving coordi-

nates, X%, and X/, and m,n < —1 correspond to the creation operators in the Fock space of the string

states [14].




and their superpartners, which are gravitino ¥5s, Majorana fermion x (dilatino). To the
above fields one must add the YM gauge potential A}, and gaugino \".

These are exactly the contents of the physical spectrum of 10D supergravity coupled
to YM gauge theory. Ten dimensional supergravities are thus the low energy limits of
superstring theories.

The field contents of type I, type IIA , and type IIB supergravities in ten dimensions
corresponding to open string with N = 1 susy (I), and closed superstring with N = 2
supersymmetries in which the left and right moving fermions are of opposite (IIA) and
the same (IIB) chiralities are as follows:

Type I:
bosons: Graviton, dilaton, antisymmetric rank 2 tensor, YM vector potential,

fermions: Gravitino (spin 3/2), spinor (dilatino), gaugino.

Type 1IA:
bosons: Graviton, dilaton, antisymmetric rank 2 tensor, vector, antisymmetric rank 3
tensor,

fermions: 2 Gravitinos(with opposite chiralities), 2 spinors,

Type 11B:
bosons: Graviton, dilaton, antisymmetric rank 2 tensor, 2 scalars, self-dual antisymmet-
ric rank 4 tensor,

fermions: 2 Gravitinos (with the same chirality), 2 spinors,

The presence of the antisymmetric tensors in the 10-D supergravities has far reaching

consequences in the developments in string-string dualities [16].
THE HETEROTIC STRING

The heterotic string [17] is constructed using the fact that in closed string theo-
ries, left- and right-moving modes are decoupled, and the left-moving modes can be
of different type from the right-moving modes. In particular, one can take the right-
moving modes to be the superstring modes (this introduces supersymmetry and therefore
fermions, and also removes the tachyon), while taking the left-moving modes to be the

bosonic string modes and left-moving fermions which arise from the fermionization of
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the extra left-moving bosons. More explicitly, the action that describes this type of

construction is as follows:

u=0 A=1

9 n
= ;—; / d2o (Z(aaXuaaX# + 2040 tup) —2 Aéa+Aé) \ (2.60)

where 0+ = %(-38—7, + %), and 7 and o are the time and spatial coordinates of the
worldsheet. The fields 1, and A* are Majorana-Weyl fermions. The right-moving parts
of X* together with 9% are the right-moving modes with critical dimension- D = 10.
The right moving fields have supersymmetry: §X* = ey and §¢} = €0, X* where
€ has + chirality only. The left-moving modes are the left-moving parts of X* and
the fermions A4. The latter are singlets under the Lorentz group, and there is no
supersymmetry amongst the left-movers. Depending on whether all A4 obey the same
boundary condition, they carry an SO(32) or Eg X Es symmetry, which indeed turns
out to be a gauged symmetry (for discussion, see for example [14]). .

To give a feeling for how the gauge symmetry arises, let us simply remark that be-
cause the right-movers are in 10 spacetime dimensions, while the left-movers are in 26
dimensions, 16 of the left-mover coordinates, Xj are toroidally compactified on a 16
dimensional torus, giving rise to extra massless states whicfl turn out to be vectorlike,
and are associated with gauge fields of SO(32) or Egx Eg. The details are found in stan-
dard references [14, 18, 19]. Remarkably, anomaly cancellation in the ten dimensional
supergravity and superYM theory requires precisely the choice of SO(32) or Eg x Eg
gauge groups [20].

The ten dimensional effective field theory of heterotic string theory is N = 1 super-
gravity coupled to super-YM in ten dimensions. This is because the truncation of the
theory (i.e., discarding all the string modes except the massless ones) leaves us with the

following spectrum:

bosons : 8% x (8vy + 1 adj(G))F 1+ 28 4 35y + 8yadj(G)

fermions : 8% x(8v + 1adj(G))F = 85+ 565+ 8cadj(G)

and (14 28 + 35y )Bose (corresponding to a scalar, second rank tensor, and the graviton,
respectively) + (85 + 565 )Fermi (corresponding to a Majorana-Weyl fermion, and grav-
itino, respectively) constitute the N = 1 supergravity multiplet in 10 dimensions and
(8v +8¢)adj(G) correspond to the super-YM multiplet, where G is the either the Fgx Eg
or the §0(32) gauge group, which are both rank 16, and 248 dimensional groups.
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This should make the phenomenological appeal of the heterotic string apparent.

Type 1A is unsuitable because it is non-chiral, and type IIB has the undesirable fea-
ture that all of its massless states are contained in the N = 2 supergravity multiplet,
therefore there are no nonabelian gauge fields in the effective 10-dimensional field the-
ory. Type I is also unsuitable because the gauge group (50(32)) does not admit any
complex representations. Heterotic string on the other hand has an effective theory
which accommodates chiral fermions and also provides a large gauge symmetry which

can contain the gauge structure of the Standard Model.
COMPACTIFICATION FROM 10D pOowN TO 4D

The different string models in four dimensions correspond to the choice of the com-
pact space K in the decomposition of the 10d spacetime R1® = R* x K and on the choice
of boundary conditions imposed along the compactified directions. Let us start with the
simplest case in which we compactify only one direction on a circle of radius R, i.e.,
R1% = R® x §1. Then along the compact direction the momenta are given by:

™ —nwR pL=—= +nR (2.61)

PR=5% 2R

and mass formula M? = g—nR—zg + n?R% + (Nr + Np — 2) where m and n are integers
corresponding to the quantization of momenta along the compact direction and the
winding of the string around the circle n times, respectively. Notice that the latter is
purely of stringy origin. The mass formula exhibits another stringy property, namely

the invariance of the spectrum under the duality transformation:

mee——mn, R—— i (2.62)

2R’
This is a manifestation of modular invariance in string theory about which we shall say
more in this and subsequent chapters. It exchanges, simultaneously, the Kaluza-Klein
momentum states with the winding states and large R with small R. Modular symmetry

holds to all orders of perturbation in string theory.
ToroipAL COMPACTIFICATION

In compactifying supergravity theories from ten dimensions to a lower dimension, the

general scenario is that one ends up with extended supersymmetries. This is certainly
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the case in toroidal compcatifications which generically leads to N = 4 theories in four
dimensions [14]. However, in order to obtain a chiral model in four dimensions, and to
make contact with phenomenology, at most N = 1 should be required. However, we can
. still learn some lessons from considering the relatively simple case of toroidal compact-
ification. Especially, since they are in some sense fundamental to the interesting case
of orbifold compactification. We shall see shortly that requiring N = 1 supersymmetry
in four dimensions puts certain constraints on the compact 6-dimensional manifold K.
But before that, we consider the compactification on 772.

We identify the compact dimensions by vectors of the defining lattice of the 2-torus.
The compact metric has three independent components: gyx — gmn, 911,912, 922 and
the antisymmetric tensor has only one independent ‘compact component’: Byn —

By, Byz. From the compact components of these we can build two complex moduli
fields:

v = 912, zﬁ
g22 922
T = Biz+iyg (2.63)

where g is the determinant of the 2D metric on the torus (= g11922 — ¢%,)- U is usually
referred to as the ‘complex structure modulus’, and T as the ‘Kahler modulus’. Note

that Im7T = /9 gives the size of the torus. Here the left- and right-moving momenta

are:
2 _ 1 _ _ ,
PL = Simzimp (™~ ™) - T(me+mU)|
2 _ 1 3 5 )
PR = Simrimy 0~ mel) - Time + mU)l (2.64)

Once again, the mass formula which depends on p% + p? is invariant under a modular

symmetry, in this case under two copies of SL(2, Z):

T-modular transformations: T — 2—%, ad -bc =1,

U-modular transformations: U — ;‘,’%ﬁ—:, ad —-bcd=1.

The T-duality is the analogue of the large-small radius duality in the previous case. It
also requires exchanging the momentum quantum numbers m; and m, with the winding
numbers n; and ne. The duality symmetries imply that 7 and U each live in the funda-

mental domain of the complex plane [14]. In other words, the space of these moduli is not

the product of two complex planes SL(2,R)/0(2)xSL(2,R)/0(2) = 0(2,2,R)/(0(2)x
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O(2), but the subset with which all the points of the product complex space are identified
under the action of the duality group SL(2, Z) x SL(2,2) = 0(2,2, Z).

For the d-dimensional torus, the above result immediately generalizes to the follow-
ing. The moduli space of the torus is M = O(d, d, R)/O(d) x O(d) with points identified
by the duality group, O(d, d, Z). In particular for the heterotic string which has 16 extra
left-moving coordinates, the moduli space is M = O(d+16,d,R)/0O(d+16) x O(d) with
points identified under the action of the duality group O(d 4+ 16,d, Z). In this case, for
d = 6 (six dimensional torus) pr, and pr are defined on the so-called Narain lattice {21],
an even, self-dual lattice Ay; ¢ (a generalization of the Az 2 lattice of the T? compactifi-
cation, characterized by the integers my, mg, n1,n2 of eq. (2.64)). The dimension of the
moduli space of the d-torus on which the heterotic string is compactified is d(d + 16) or
132 for T®. This corresponds exactly to the number of independent components of gyr,
Bpn, and AL (m,n=1,---,6,and I = 1,---,16).

As noted above, toroidal compactifications result in extended supersymmetries [14] in
4 dimensions (generically, NV = 4). But the lessons which can be learned from them, for
our purposes, are the presence of modular symmetry amongst the moduli, and that the
latter are expected to show up as degrees of freedom in the four dimensional compactified
theory.

Requiring N = 1 supersymmetry in the 4D theory turns out to be somewhat restric-
tive on the compact space. It can be shown that the necessary and sufficient condition
for one supersymmetry in four dimensions is that the compact 6-fold must have holon-
omy group SU(3) (or equivalently, has vanishing first Chern class), which in turn implies
that the compact 6-fold is a Kdhler manifold with R;; = 0 (for details, see [22] or [14}).
These manifolds have been studied extensively, and are called Calabi-Yau (CY) man-
ifolds. Compactification of the Eg X Eg heterotic string on a CY manifold yields the
gauge group Fg X Eg in the 4D theory [22]. We shall not discuss CY compactification in
any further detail here. Instead, we turn to orbifold compactifications which are easier

to study phenomenologically [23].

ORrBIFOLD COMPACTIFICATION
Actually, orbifolds can be thought of as singular limits of CY manifolds. In our
discussion of compactification, we have so far not considered the possibility of twists in

the boundary conditions along the compact directions, although we have used identifica-
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tions corresponding to the shift symmetries of the lattice defining the underlying torus
of compactification. For instance, if in the 2-torus example, we identify X* and —X*
(¢.e., mod out by 2, corresponding to a rotation by 7), we end up with the orbifold
T2/ Zy = R?/A;y/ 25, with four singularities at the fixed-points of the rotation. In order
to be explicit, let us discuss the case of the heterotic string compactification on a Z3
orbifold to four dimensions. In this case, the point group (discrete group of rotations)
is Z3 acting on the lattice of the underlying 6-torus. Let us take the following complex

coordinates for the six-dimensional compact manifold:

1

zZ' = 7_§(Y3+iy4)
Z? = -\;—§(Y5+z'Y6)
ASEES i(y7+iys). (2.65)

The lattice for the underlying torus is defined by identifying (a = 1,2, 3):

Z°=27Z%+1 (2.66)
and
Z% = 2% 4 ¢*™i/3, (2.67)
i.€.,
- - 3 -
Z=7Z+Y (maér+naf) (2.68)
A=1

where m) and n) are integers, and the basis vectors of the lattice are defined as follows:
& =(1,0,0), &=(0,1,0), &=(0,0,1), f= e2mil3g, (2.69)

The generator for the point group is:
Q = diag(e®™/3 213 (2mif3), (2.70)

The SO(6) rotation group (acting on the real coordinates Y*, k = 3 - - -8) has a subgroup
SU(3). The coordinates Z provide a 3-dimensional representation of this SU(3), and
) is a finite element this SU(3). Note also the action of Q on the basis vectors of the

lattice
Qér = fr, Qf=-& - fi (2.71)
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Thus the discrete group generated by € is a symmetry of the torus. The orbifold is

constructed by identifying the points on the torus that are mapped into one another
under the point group generated by Q. The fixed points of the combined action of 2

and lattice translations by 3°3_,(ma&\ + ny f:\) turn out to be of the form:
27i/3
V3

hence there are 27 fixed points (singularities) altogether. As mentioned earlier,  is in

Z=1

(k1,k2,k3), kx=0,%1, (A=1,---,3) (2.72)

fact a finite element of SU(3). If we associate with Q an action on the gauge degrees
of freedom, for example, by taking £ to be an element of SU(3) subgroup of an Eg X
SU(3)x Eg C Egx Ef (this is called the ‘standard embedding’) the theory turns out to be
at the tree-level modular invariant [14]. The states of the toroidally compactified theory
do not necessarily correspond to the states of the orbifold, because one has to select
the states that are invariant under the action of the point group, and its embedding in
the gauge group. Even then, these point group invariant states are only a part of the
story, they correspond to the ‘untwisted sector’. These are obviously a subset of the
states of the underlying toroidal compactification. The additional states, or the ‘twisted
sector’, are obtained by imposing twisted boundary conditions, i.e., satisfying boundary
conditions along the compact directions up to the action of the point group (in our case,
rotation by 27 /3). Let us now briefly discuss the massless states. It can be shown [18, 23]
that point group invariant compactified theory indeed has N = 1 supersymmetry. The
embedding of the poiﬂt group into the gauge group reduces one of the Fg factors to
Eg x SU(3). The adjoint representation of Eg (which is 248 dimensional) decomposes
under Eg x SU(3) as: '

248 = (78,1) + (1,8) + (27, 3) + (27, 3),
and requiring point group invariant states eliminates the (27, 3) and (27, 3) and leaves
only the adjoint of Eg, (78,1), and the adjoint of SU(3), (1, 8). Note that 8 is Q-
invariant because it is contained in 3x3, and 3 and 3 have opposite phases under
transformation. The matter fields in the compactified theory are obtained from right-
movers which transform as 3 of the SU(3) subgroup of SO(6) of the spatial degrees of
freedom of the compact manifold, together with the left-movers in (27,3). The former
transform with a phase €2™/3 and the latter with e~2™/3 under ©, and so these are point

group invariant. Likewise, right-movers which transform as 3 of SU(3) are linked with
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thé left-movers in (27, 3). In this way, three copies of point group invariant 27 and 27
of Eg are generated (one for each index a in (2.66). These are three copies of chiral
superfields in (27, 3) of Egx SU(3) and their antiparticles. In addition, in the untwisted
sector there are a set of point group invariant Fg-singlets (moduli) whose expectation
values are related to the size and shape of the underlying torus. There are two ‘twisted
sectors’ of the Z3 orbifold compactification which are not discussed here. The Eg gauge
symmetry of the heterotic string’s observable sector (and likewise, the hidden Eg) can be
further broken and additional matter can be generated by adding Wilson lines [23, 24]
which amounts to the full embedding of the lattice translations (of the underlying 6D
torus) as well as the rotations by the point group in the gauge degrees of freedom. This

further increases the possible consistent models based on heterotic strings.
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Chapter 3

Supergravity Coupled to YM and Matter at One Loop

3.1 Introduction

Understanding the structure of the divergences in supergravity is a necessary step
in determining the counterterms [25], [26], [29] that are needed to fully restore modular
invariance in an effective supergravity theory from superstrings. The determination of
these loop corrections may also provide a guide to the construction of an effective theory
for a composite chiral multiplet that is a bound state of strongly coupled Yang-Mills
superfields, which in turn could shed light on gaugino condensation as a mechanism for
supersymmetry breaking.

The paper [30] (hereafter referred to as I), gives the divergent contributions to the
bosonic Lagrangian in a gengral supergravity theory coupled to chiral matter, in a general
bosonic background, averaged over quantum fermion helicities. That work extended the
results of several earlier calculations [37]-[40] on loop corrections to supergravity. In
particular, using specific choices of the gauge fixing and of the expansion of the action,
the authors were able to cast the resul‘gs in an especially simple form in which most of
the one-loop corrections can be interpreted in terms of renormalizations. More recently,
the authors of I and myself extended and completed these results to incorporate the
Yang-Mills sector [41], including helicity-odd operators that arise from integration over
quantum fermions. This work appears in ref. [31] (hereafter referred to as II) and is
combined with the results of I in a short letter in [32]. Our results are completely general,
except that we assume that the tree-level gauge kinetic energy normalization function
f(z) [42], where z represents the complex scalar fields of the theory, is proportional to
the unit matrix. This is the case for all known theories derived from superstrings, up
to possible multiplicative constants for different factor gauge groups that correspond to
higher affine levels [43]. This modification is easily incorporated into our formalism, as
explained in Section‘ 4.5.

The generalization of the results of I to the more general case considered here can

be summarized as follows. We define an operator of dimension d as a Kahler invari-
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ant operator whose term of lowest dimension is d, where scalar and Yang-Mills fields
are assigned the canonical dimension of unity. Then, among the ultra-violet divergent
terms generated at one loop, all operators of dimension 6 or less (as well as many op-
erators of dimension 8) that involve neither the Kdhler curvature nor derivatives of the
gauge kinetic function can be absorbed by field redefinitions, interpreted as renormal-
izations of the Kéhler potential, or take the form F,i(z, 2) (W“Wb)F + h.c., where W¢
is a chiral Yang-Mills supermultiplet, the subscript denotes the F-component, and the
matrix-valued function F,;(z,Z) is not in general holomorphic. The remaining terms
of dimension 8 and higher must be interpreted as arising from higher order spinorial
derivatives of superfield operators.

As noted in I; the effective cut-off for effective theories derived from superstrings
is field dependent [29], [44], [45]; moreover the field dependence is different for loop
corrections arising from different sectors of the theory [29], [45]. As in I we use here
a single cut-off and neglect its derivatives; terms involving derivatives of the cut-off
have a different dependence on the moduli and must be considered together with terms
that are one-loop finite. Our results, some of which are collected in the appendix, are
presented in such a way that the contributions from different sectors can be isolated and
the corresponding Pauli-Villars contributions can easily be evaluated.

This chapter only serves as a synopsis of the calculation of the one loop effective
Lagrangian by giving a rather brief overview and outlining some general strategies and
gauge fixing procedures. Also, in the subsequent sections of this chapter we establish
our notations and conventions (which are somewhat different from the notations that

we used in the introduction to the subject in Chapter 2.)

3.2 Conventions

Our space-time metric signature is (+ — ——). We use uppercase notation (R, T') for
derivatives of the Kahler metric, and lowercase (r, 7) for those of the space-time metric.
Our sign conventions for, respectively, the Riemann tensor, Ricci tensor and curvature

scalar are as follows:

_ A _ s B A
Tﬁpa = g# TAvpe = 80'71‘/‘() - ap’ygcr + YerYvp — 7p)\71/d’

— gkv
T=0""Tu,

Ty

— pP
= Tupvs




and covariant differentiation is defined by

VA, =0,A, — 7,4, elc. (3.2)
The scalar field redefinition covariant quantities are defined identically with
9w — 215, v—=T, r—=R, V,—-D; I=1i7, (3.3)

where z¢, 7™ = (z"”)‘L are the scalar partners of left and right handed Weyl fermions,
respectively. Because the scalar metric is Kahler, there is only one type of nonvanishing

element of the Riemann tensor, namely

i A i i _ _pi
skm = Omlie = Dl = —Ripg,
Rsjim = Rakjm = Rajen = Rakjn

= —Rajmk = —Rakm; = —Rmjnk = —Romknj- (3.4)
Note that since Rj‘kl =0, [D;, D;] = 0, and the tensors
Agyoiy =Dy ---D; A, AU = DM ... DA, (3.5)

are symmetric in all indices. It follows from the Bianchi identities that D;R7;, is totally
symmetric in {jk}.

We work in the K&hler covariant formalism [13], which differs from that of Cremmer
et al. [42] by a phase transformation on the fermions that removes phases proportional to
Im (W/_W_), where W is the superpotential. In this formalism the fermion U(1) Kahler

connection is just

T, = 2 (KiDu# - K7D,2™), (3.6)

where D, is the gauge covariant derivative. It is convenient to introduce the notation
A=W, A=W (3.7)
Then the classical potential is V = V + D, where
V=e®(4A -344), D= %DQ’D“, D, = K;(T°2Y). (3.8)

With these conventions the tree level Lagrangian [42], [13] for the case f(2)qp = dapf(2) =
Sanlz(2,2) + 1y(2,2)] is
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The tree-level supergravity Lagrangian [42, 13] (also see Chapter 2) we adopt, with
f(2) = = + iy (which is trivially generalized to f,; = dgpk.f, ks = constant, and so

includes all known string models), is?

1 1 T v Yr v - s =M
7_5[1 = §'I' - ZFI_LVF“ - ZFMVF“ + I(imD“Z D#Z bt V

Ty cprim (o i g i R
+5APA+ K (XL Pxi+Xr pXR)
S o
+€-A/2 (ZfiAz/\R/\L - Aij;(zRX‘}J + h.c.)
1- ) 1- . v
10 P+ M)y — 297 (0 P+ M)v™,

- T Ty 12 a 7 i
- [gwya””v"x\aF;‘,, +%u PZ Kim v LX' 7907750 Da + i9huy* Lx'mi + h.c.]

+ (in‘% [21%(:/;2)’% - o fiDa - Fow f,-] X + h.c.)
+4 fermion terms, ‘ (3.9)
where
M= (M) = K2 (WRAWL), m=e K24, (3.10)

K(z,%) is the Kihler potential, W(z) is the superpotential, T* is a generator of the

gauge group, and
Aiyip = Di ---Di)A, AV =D"...DA D'= K™Dy, (3.11)

with D; the scalar field reparameterization covariant derivative, and K*™ the inverse

Kahler metric.

In the notation of [37] [see eq.(3.91)], the masses operating on the left-handed grav-

itino and chiral fermions are
m¥ = e"KI24, m¥ =2e7K/24,;. (3.12)
These are related to the elements of Mg in (3.38), below, by (see [37])

M = ghe KA = gt My, MP = K™e KP4 = K247 (3.13)

'Here we have slightly departed from the notation of Section 2.1 to 2 more conventional notation,
with indices p,»,--- for spacetime (rather than m,n,---) and a,b,--- (rather than r,s,t,---) for the
gauge indices. Also we denote the chiral fields by Z* and Z* with scalar components z* and z° instead
of ' with the scalar field component A*. Furthermore, we switch to the use of four component Dirac

spinors. The conventions regarding the fermions are summarized in the next section.
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Note that the normalization of our chiral fermions is the same as in [42], which differs
by a factor v/2 from [13]. The covariant derivatives D, include the spin connection,
the gauge connection, the Kdhler connection (3.6), the affine connection, and the field

reparameterization connection for chiral fields. For fermions:

) 1 .
Dy = [vu+zn(vw”)+mru] "

|

- 1 ] ;
D! = {D# + 57 (Vur”) = insT u] x! + Du2Th X, (3.14)

[The gauginos have the same Kéhler weight as the gravitino, and an additional connec-
tion (see below).] Operating on a function of scalar fields, D, = D,2!D;, where D,, is

gauge and general coordinate covariant.

3.3 Dirac algebra

We work in the Weyl representation for the Dirac matrices; for a flat metric:

o 0 -1 ; 0 o
‘)/ = ’y = 5 = _7’5 = R )
o -1 0 ! -t 0

_ 10
vs = 170717273=<0 1), ot = [y, y"]. (3.15)

B | =,

To evaluate the fermion determinant, we note that an arbitrary 4 X 4 Dirac matrix My

can be written as

My = RAR+ LBL + RCL + LDR, (3.16)

where A, B contain an even number of Dirac matrices «,, C, D contain an odd number,
A, B,C, D have no explicit 4s-dependence, and L = %(l —vs) and R = -12-(1 + v5) are
the helicity projection operators. Then TrMy = TrRA + TrLB = TrMg, where My is

RAR RCL
Mg = : (3.17)
LDR LBL

and Trf(My) = Trf(Ms), where f is any function that can be expanded in a Taylor

the 8 >< 8 matrix

series. Writing My = My(7s), we have

My(~vs) = RBR+LAL+ RDL+ LCR,

l[Tr./\/(( )+ TeMa(—7s)] = -1—(TA+TrB)—lTr 4¢ (3.18)
) 4\7s a\—7s = 3 T =3 D B .
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Similarly, if f is an arbitrary function of My,
1 1 A C
5 {Trf [Ma(ys)] + Tr f [Ma(=75)]} = —2-Trf(P), P= D B (3.19)

Setting My = —t P + Mo, f(My) =In My, (3.19) gives the trace T, that has been
evaluated previously? [30, 37, 38, 39, 40]. To evaluate the determinant T_ we define

Ms =70 (=i P + Mo), (3.20)

which is a 4 x 4 matrix in Dirac space that we write [37] in terms of the 2 x 2 Pauli

o-matrices as

Ms = - (';‘ ;) L oh=(L0), ot = L (ot - atat),
i = oldt=o% [DZ‘ ~-I, (a_,a.,_)} ,
B = old; =0 [f); -1, (cr.,.,a..)] ,
C = m+ M, =M(@y), D=m+M,c* =Mc")
L,(0_,04)= —gfeA,,poai o4l as. (3.21)

The'matrix elements in My are defined, up to the v5 ambiguity noted in [45], in terms

of those appearing in the fermionic part of the quadratic quantum action (4.71) by:
D,=D,+ivL,=iDfR+iD;L, Me = M(c*)R+ M(c*")L. (3:22)

The matrix-valued derivative operator D,, is defined in (3.14) of I, the additional gaugino
connection L, is given in (B.19) of the Appendix, and the elements of the mass matrix
Mo = MR+ ML are given in (2.16), (2.17), (A.11) and (B.10) of I, together with (C.15)

below. The tilde operation on }4,B,C, D amounts to the interchange o4 < o_. Thus

0 - {0 0
AL = (0 0)’ AR‘(—A’ 0)’

2
M =R (p* - %Gxupav*v”v""r") R =R D’R,

2
B‘B = L (p_ - 'Q'EZG/\upa'Y)"YV’)’p’YU) L=L .p2L, (323)

where the appropriate zero’s in the transition from 2 x 2 to 4 X 4 matrices is implicit in

the last two lines. More, generally, products of o can be converted into products of y*

2The contributions from the terms M., c** were not fully included in [37].
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(040 Y'0p — —ILy™R, (0_0y)"o- — —Ry™HL,
(040-)" — Ly*"L, (0-04)" — RY*"R. (3.24)
Then defining

Si = -;—[TrlnM4(M,c'r‘):(:TrlnM4(—M,—&‘)],

My(-M,-G) = —( “ _C) = My(-M, =75 )70, (3.25)
: -D B
(3.23-24) immediately gives:
S, = %Tr In [My(= M, ~5) My(M, 5)]
I ( -R[pi_+ A{M]R —REPTM - {m Jp-]L>
2 —L[i p~M — Mi pt]R -L[p? + MM]L
= %Tr In (= P? — M3 + [P, Mo]) = %Tr In (-D* - HE). (3.26)

where D = Dg and Ho, defined in (4.31-32), are the operators that appear in the
quantum Lagrangian, as we shall see shortly.. Although the matrix in (3.26) is 8 x 8,
the helicity projection operators L, R project out half the elements, so the counting of
states is unchanged when we take the Dirac trace. Since Trln M(M) = Trln M(—-M),
we have Sy = T4, and (3.26) is equivalent to (3.19), up to the ambiguity described
in [45]: terms even and odd in 75 can be interchanged using vs = (/24)€***7v,7,7,Yo -

Th(_e next step is to cast S_ = T_ in the form of (4.35), below, and to take its
Fourier transform to obtain an expression of the form (4.36), but before performing the

p-integration we write

MTHM(15) = M(=75)] = M™ MG Mo[M(75) — M(~15)]
. -1
=2 <02 - %U,WGW + z’DuM“) iD,N¥, (3.27)

where My is® the matrix (3.25) with

C=D=0, A,=D}+1I,(04,0-), Bu=D; +L.(0_,04),

®It might seem more efficient to take instead Mo = My(—M, —) but this form turns out to introduce
a spurious quadratic divergent term involving M,.. To explicitly regulate ultraviolet (or infrared)
divergences, one should introduce a regulator mass matrix pgo and set Mo — Mo+ po; see the discussion

in Section 4.3.
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1 g Mi(o¥ )
=M - M(- = - ;
5 [M(7s) (=7s)] ( MI(a‘“’) Y
d -
Ju=3(D} - D}), = 2(M ~ I), (3:29)
and
-R R Ry, M;L 0 Ry, ML
N, = ( Yo Vel ) M, = ( ) Ve > - (3.29)
—Ly, MR Ly, JL Ly,MR 0
We then redefine the integrand by [48]
T(p,z) — UT(p,2)U™, U =exp (—id- _6_) exp (ia . _3_) (3.30)
k4 K 7 ap ap ?

which leaves the (properly regulated) integral unchanged. In the absence of background

space-time curvature, the 8 X 8 matrix valued operator d, is simply

)
d,=D,= v + au(z). (3.31)

In the presence of space-time curvature, one has to expand [40] the action at 2’ =z + ¥

~ in terms of normal coordinates, {# = y* + %7{,‘V(z)y”y” + 0(&3):

dy = 3+ 0u(2,6) (3:32)

where 7%, is the affine connection, and the full connection a,(z,§) includes terms that
depend on the affine connection and its derivatives. The expansion of (3.27) for this

case is determined in [40]. We then obtain:

d*p
T [ GaaT(:2),

with
1 v
T(p,z) = —§Trln [1 + 2A(x,p)p2725(:v,p)] ,
ATl = —TWALA, +h+ X + (0¥ + GY) P, M,
Ay = putGy + bus -P RS (" + GU)P;W d h = —%GWGW
m+1 . I\ a
Gr = mZ o (07 5p) Gz Gur= 100Dl

(z)“( a)n L s a . d
Z D 5 F, F=h,M*N* D —3—pX=[D“’X](9pu’

s
i

1 0? 0®
Py, = PH o=k ZpkeTvs —1,
v Y i op° 0" +0 (6p3)
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2 . 3
T = g* — .l.r#PUV_. 6__ - _z_v)\,,.upav 0 0 ( o* ) ,

3 Opdp° 6 8p°0p° Op> ap*
- T _tgu 0 i
X 3 3VT3p“+O(6p ,
1 o2 93
by = 9 (Vurpw = Vurpu) m +0 (ﬁ) ’ (3.33)

Finally we write A™! = —p%(1+ R) and expand
A=(14+R) N (=p%) = Y (-R)(-p?) (3.34)
n=0
to obtain the expression (4.40), where we have set pg = 0.
Once all these manipulations have been performed we can simplify the expression

for the fermion connection by using simply
D% = D* tiysL,. (3.35)

The point is that the part of the gaugino connection arising from the dilaton has been

included in the “vector” (.7;}/ ):

[y

B+ J) = —(D++D )

5 (Dj +D;) + ivsLy, (3.36)

2

rather than in the “axial vector” (J,) part of the connection.
We conclude this section by listing some Dirac traces that are useful in the evaluation

of T_ and of the ghostino and fermion determinants:

Trysy*y" 177" = —4ie"??,  Trys0®o* = 4ie*, O = g7 ey = 77,

WP

Tr(ys7* 7Py 7% 79S) = —4i[er5¢g™P 4 20 ge
+€aﬁwg54 + eaﬁ'vt,‘ e + eaﬁ& ¢ + eaﬁCcfg'vc + 2P 75]
Tr(,yso_aﬁ,},'yo.ﬁe,),C) = 42[ ozl3'Y5 e + eaﬁe'y 8¢ + ea/@&cg'yc + eaB(Sg'ye + eaﬁe( —yé]

Tr(750aB675 C) — 41[ af3vé €C+€aﬁe'y 5(+€aﬁfyg 55+€aﬁ5¢: 'y(_l_eaﬁ(é 'ye]

Tro, cr‘“’F””Fb = 8F‘“’Fb

pv

Tr0 0 0y Orr FE° FYY FAT = 32iF* Fy, , F? ,

Tr(c- Ao - Bo -Co- D) = 16 [A*B**C,, D,y + (A- B)(C - D) + A*(B -C)D,,)
+64 (A" B,,C" D,y — A*B,,C,sD” — A*B*C,,D,,),
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Tr(y%0 - Ay'c - B) = 8(g"A,0B* +24%B," +24,"B*),
Tr(v#9"0- Ao+ B) = 8(g" A, B" +24*B," —24,"B*),
Tr(Z,,v*c - Ay’c - Bys) = 8irk (A""Bu,, - A"”BW) , (3.37)

where 0 - A = 0, A¥, etc., and Z,,, = 377777 ,5,, is the field strength arising from the
spin connection (note that 7,7, Z* = ir). To evaluate the last trace in (3.37) we used

the relations (A.14) and (B.25) of the Appendix.

3.4 Quantum Lagrangian and Gauge Fixings (A Summary)

The one-loop effective action is determined from the quadratic quantum action:
1aga -
Lonad(®,0,) = 5867 (8105 + (ADFOK) S + Los + Lon =

1 . _
-5972° (D} + Hs) @ + %ez“’ (i Po — Mo)©

1 .
+582° (D2 + He) e+ O(3a), (3.38)

where ¢! = &/, 0!, 9; = 3/0¢’, and the column vectors,
QT = (hﬂll"‘ia"éivém)a GT = (¢#7 )‘a’ X1L7 X%aa)a CT = (c,,,ca,ca),

represent the boson, fermion and ghost quantum degrees of freedom, respectively, with
o = —Ca&¥ an auxiliary field introduced [30] to implement gravitino gauge fixing. The
connection (A7)¥ in (3.38), which is defined explicitly in [30, 31}, is chosen so as to
preserve all bosonic symmetries, and also to simplify matrix elements involving the
graviton. In particular the quantum variables 3',3™ are normal coordinates in the
space of scalar fields: (A,-);? = I‘fj is the affine connection associated with the Kahler
metric K, giving a scalar field reparameterization invariant expansion. In (3.38) v
represents background fermion fields that we set to zero; that is, we calculate only the
one-loop bosonic action.

For the boson sector, we use a smeared gauge-fixing:

L — L+ Ly, ng=——‘g_£CAZABCB,

st 0 Ca
zZ = , C= . (3.39)
0 —g* C. ‘
‘The Yang-Mills gauge-fixing term:

C* = DAL + Vz_gﬁ’iﬁz (275 - (x2)'27],
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preserves off-shell supersymmetry [33] in the limit of global supersymmetry and coincides
with the string-loop result [34] for chiral multiplet wave function renormalization. The

graviton gauge-fixing term:
v 1 3 a fv
v2C, = (v b = 5V = 2D,2' 71,37 + 2]3,,,44) ,

is the one originally introduced by ’t Hooft and Veltman [35], generalized [30] to include
the Yang-Mills sector. The script quantum and classical Yang-Mills fields and field

strengths are canonically normalized [41]:
Ay = VA, Ay=+TA,, Fu =+v1TF,, VID,A, =D,A,,

where D, is the gauge and general covariant derivative, and D), = D, — d,z/2z, D} =
D, + 0,z/2z. In the earlier literature two gravitino gauge fixing procedures have been
used: a) a Landau-type gauge [36, 37] v - ¢ = 0, implemented by the introduction of
an auxiliary field, and b) a smeared gauge [39] L — L — FMF, F = y-¢, M =
1 (i P +2M,) supplemented with Nielsen-Kallosh ghosts. Here we use an unsmeared
gauge G = 0, with the gauge-fixing function [30]

G = -y (P - Myp, — 2P KinRX™+ PZ™ Kin LX)
T . .
+§a”")\aF§p + 2impx’ = 75D A%, (3.40)

where D, contains the spin and chiral Kéhler connections. The quantum Lagrangian
is obtained by the introduction of an auxiliary field a: §(G) = [ da exp (iaG), and a
shift in the gravitino field: 4’ = ¥ +va, ¥’ = ¥ + @7, so as to diagonalize the gravitino
kinetic energy term. The ghost and ghostino determinants are obtained in the usual
way as, respectively: '

(1’)3 + H)g = %503, A,B=aupu, (D?+ Hc)

a  06G*
B~ 9B’

where D, is related to D, or D, by additional connections. With these choices the

one-loop bosonic action takes a very simple form:
$i = 3Tl (D3 + He) - 5Trln (—i Po + Me)
+2STrln (D2 + H.) , (3.41)
2
where

STrin (D2 + H.) = 2Trln (D2+H.) —-2Trln (D?+H,)

Ca Ca,p
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which just reduces to determinants of the form of those for scalars and spin-% fermions.
Moreover the ghost and non-ghost sectors have separately supersymmetric quantum

spectra, except for the Yang-Mills fields:
. ;
5(Trl)e = (Tr1)g —2Ng = 2N +2Ng +10. (Trl), =4, (Trl),, =4+ Ng,

where N(Ng) is the number of chiral (gauge) supermultiplets. To evaluate (3.41) we

separate [37, 31] the fermion determinant into helicity-even and -odd parts:
—%Trln(—i D+ Mo) = —%Trln M(ys) = T- + Ty, (3.42)
where here D, contains all fermion connections, and

T = -i—[TrlnM("/s)“TTIHM(—'YS)L

[Trin M(7s) + Trln M(=7s)],
oy DF  M*

M-  o:D;

)
4

M = 70(_ip + M@) = ( ) ’ Gi = (17 :l:&) (3'43)

Then defining
D% + He = (~i Po + Mo) (i Po + Ma),
The one-loop bosonic action (3.41) reduces to:
= & H2 ‘
$1 = STrhn (D’ +H)+1T-.

The helicity-odd term 7_ is at most logarithmically divergent, and is finite [30, 31] in
the absence of a dilaton, that is, for f(Z) = g~2 + i0/8%2 = constant. As discussed
in [45, 31] there is an ambiguity in the separation (3:43) of the fermion determinant into
helicity-even and -odd contributions, because terms that are even and odd in <5 can be

interchanged by the use of the identities:
vs = (2/28)e* Py, MV Vo Ouw = 1Y50°7 €y, €lC. (3.44)

In most cases the choice is dictated by gauge or Kahler covariance. However supersym-

metry must be used to fix the off-diagonal gaugino-a and gaugino-dilaton mass terms:

z
Ma)\a = —\/;Faﬂya'”u,

fz' pny W 1717
4z (Fa — Y5 Fy )U;w’ (3.45)
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and the dilaton-dependent gaugino connection:

M apy Gkvpa
A/\a./\b = 6ab—2—$— 24 YAV pYo- (346)

(3.45) and (3.46) are precisely the choices that allow Pauli-Villars regularization of the
quadratic divergences [45]. The choice (3.46) further insures the nonrenormalization (58]
of the topological charge § = 872y, and is consistent with linear-chiral multiplet dual-
ity [60] for the dilaton supermultiplet.

The above summarizes our conventions and choices of gauge. We present further
details of these gauge fixings and the calculation of the one-loop corrected effective

Lagrangian of supergravity coupled to SYM and matter in the following chapter.
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Chapter 4

The One Loop Calculation

4.1 Introduction

In this chapter we present the calculation of the one-loop effective Lagrangian for
N = 1 supergravity, Yang-Mills, and chiral matter system. In Section 2 we discuss
gauge fixing and the definition of the action expansion in more detail than outlined in
Chapter 3, and in Section 3 we evaluate the helicity-odd fermion loop contributions.
Ouf result for the one-loop corrected effective action is given in Section 4, and applied
to generic models from string theory in Section 5. We summarize our results and discuss
applications in Section 6.

In Appendix A we specify our Yang-Mills sign conventions and list relations among
the covariant scalar derivatives of the Kdhler potential K, the superpotential W and the
gauge field normalization function f that follow from gauge invariance of these functions
and that are useful in evaluating traces. Appendix B contains the matrix elements of
the operators that appear in the one-loop effective action and the traces that needed to

evaluate the divergent contributions [equations (4.72-75) below].

4.2 Gauge Fixing and the Expansion of the Action

The S-matrix is independent of gauge fixing and also of shifts in the propagators
that are proportional to L4 = 8L/8¢* where ¢* is any field. However, certain choices
" can lead to an effective Lagrangian that better displays the symmetries of the theory.

For example, we expand the action S in terms of normal scalar coordinates [47, 48] sl
_ g, 1 ds
S =58(z)+ D15,z + 2DI.DJS|ZZ 24, (4.1)

where Dy is the field redefinition covariant derivative and interpret the determinant of
the second term in (4.1) as the one-loop effective action for a scalar theory. This is differ-
ent from that of a standard Taylor expansion by terms of the form FIL(2)['(2)} . (D15).,
where T}, is the connection associated with the covariant derivative Dy, and F'L is an

arbitrary matrix-valued function of the background scalar fields. Such terms vanish by

39




the classical equations of motion for the background fields z: D;S|, = 815z = 0. The
expansion (4.1) yields a manifestly field redefinition invariant effective action. It there-
fore preserves nonlinear symmetries among the scalar fields, up to quantum anomalies.

Supersymmetry is also a nonlinear symmetry in supergravity theories, even when
auxiliary fields are used. We have no formal argument by which we can determine the
gauge fixing and expansion prescription so as to yield an effective action that is mani-
festly supersymmetric.! Instead, we adopt a pragmatic approach, and use prescriptions
that give the most boson-fermion cancellations, and/or simplify the calculation. We
find that with our prescription the operators of dimension six or less can be interpreted
as renormalizations of the tree Lagrangian, except for those that depend on the scalar
curvature tensor. Additional operators of dimension eight can be isolated into terms of
the form FJLT5K—DISIZ, which do not contribute to the S-matrix. It turns out that the
gauge fixing prescription with these properties yields an effective quantum Lagrangian
that is of a particularly simple form: all the propagators are the same as those of
standard scalar or spin-% fermions. It is possible that this feature contributes to the

enhanced cancellations.

4.2.1 Gauge-fixing the gravity supermultiplet

We set background fermions to zero, and use unhatted symbols for quantum fermion
fields (%, x, A). The commonly used gauge fixing for the graviton [35, 50, 37, 39], when
generalized to include the YM sector, is defined by

L~ L+3C,C%,

l 174
C,,:E(V huy ~

where Z1j(z, %) is the scalar metric, 2, A are the quantum scalar and gauge fields, and

-21-Vuh',j - 2D,z 71537 + 2xF;,,A;> ) (4.2)
the symmetric tensor h,, is the quantum part of the gravitational field. The gauge
fixing (4.2) leads to a Lagrangian of the desired form, (3.38).

For the gravitino, two types of gauge fixing have been used: the Landau gauge [36, 37]

v -2 = 0, which is implemented with the aid of an auxiliary field, and the smeared gauge

Since we set background fermions to zero, our effective action cannot be manifestly supersymmetric.
However supersymmetry constrains [42, 13] the bosonic part of the action; by “manifest supersymmetry”

we are referring to these constraints.
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fixing [39] L = L—-FMF, F=v-9%, M = %(i.@ + 2M,), which requires Nielsen-
Kallosh ghosts. Neither of these has the feature that the quantum Lagrangian reduces
to the simple form (3.38). In addition, while the Landau gauge propagators have the
correct poles for constant background fields, the smeared gauge fixing propagators do
not. Here we adopt an unsmeared gauge which satisfies both requirements.
In a supergravity theory in which the Yang-Mills normalization function satisfies
Refos = ap7, the part of the Lagrangian that depends on the gravitino ¢, is [42, 13]
1 - vy 1 T . v 14 a
Lo = B GP+ MY, = Jha (D + My"b + [25,07 VA,
- o .1 - .
~%u PE" Kimy L + %u7* 152" Da — ity Lx"ms + h.c.]

+four — fermion terms. (4.3)

where

i = (M)l = &2 (WR+WL), R,L= —;—(1:1:75)
my = (ma)] = e E12Dy(eEW), D, = Ki(Tuz)'. (4.4)
We take the Landau gauge condition G = 0, where

G = —4(GP-Myp, - —a"p/\ F,
—2(P2 Kim RX™ + PE”‘K;@LX Y+ 2impxt — 75D A° (4.5)

which we implement by inserting a é-function in the functional integral over ¢. Writing
§[G] = /da exp (1aG),

and defining
Y =¢+ye, Y=9¢+ay,

We obtain
L = *%@Z’“(i P - My, + lc'v'y“(i P — M)7,a + matter terms
= -—lzﬁ"‘(zﬂ MYy, — a(i P +2M)a + a (2 o’ AFy, + 2imx’ — 75’Da/\">
—iz, PEN® — 20, (D*Z™ K LX' + D*7 Ko RX™). (4.6)

Note that 1 is C-even: 9 = C¢7, then ¢’ = C¢'T requires a = —Ca7, i.e. o is C-odd;




note also that o has negative metric.? All the terms remaining in the Lagrangian (4.6)
are of the form of either a mass or a connection; that is, (4.6) is of the form (3.38).

To obtain the ghostino determinant we use the supersymmetry transformations [42]
; : 1 e i_ Y ip i
0, = (iD, — -2-7,,M)e, iy = 5(222 R —im‘L)e,

iéxm = [%(pme — ZmﬁbR)} €, mt = ]’immﬁ’ m™ = ,—iﬁzmi’

WA* = [“27“’7” o — %D“] € (4.7)
to obtain
agf = DuD”’ - %‘yu‘yu[D#’ ‘DV] - Z[p7 M] - QMM + ﬁ'limi + D

z 1 1 o
§°'apF:p[Z‘7u Fyu + ;’YSD ]

—D,,ziK,-mD“Z’ﬁ + %75[7“, YD, 2™ K7D, 7. (4.8)

+2imm PEL + 2im; P2 R +

For constant background fields the ghostino propagator becomes
D“D, —2MM + m'm; +D = D*D, + MM +V, (4.9)

where V is the potential. When we evaluate this at a ground state with a flat background
metric, the vacuum energy necessarily vanishes: V' = 0, so the (4-fold) ghostino pole is
at p?2 = —D? = M? which is the correct pole for unitarity. If the cosmological constant

is nonzero the curvature is also, and there are additional terms in all the masses.

4.2.2 Yang-Mills Gauge Fixing

We first discuss the simpler case of flat SUSY Yang-Mills, where a similar gauge
fixing dependence arises [33], and where a “supersymmetric gauge” can be found.

In background field calculations of the effective one-loop action, the Landau gauge
fixing condition D#*A, = 0 has frequently been used [37, 41, 40]. For W = 0 (i.e., no
superpotential), the dimension four operators of the resulting supergfavity Lagrangian

for the gauge nonsinglet scalars can be interpreted in terms of two renormalizations:

2In the notation of (3.1), Zae = —2; including the contribution proportional to DetZ.. we get a
quartically divergent term proportional to In 2 which cancels a similar contribution from the graviton
ghost [37].




the renormalization of the gauge kinetic function, zf(z,2) = Re f(z)g, and that of the
Kahler potential K(z,Zz). Here (and throughout) we consider the case z§ = 6fz at tree
level, for which the results are:

In A2

oK = 3272

[-—%K,ﬁj(TaE)’ﬁ(T“z)j} + higher dimension terms, (4.10)

where T* represents the gauge group on the scalar field z™ = (Eﬁ)T, and .

62}6 In A

e = 353 [QD (T.z) D;(Tz) - 6C;)6b] + higher dimension terms, (4.11)

where Cy; (2) is the Casimir of the adjoint representation and the field redefinition covariant
scalar derivative D; is defined in Chapter 3. The fact that (4.11) is not the real part of
a holomorphic function has been discussed elsewhere in the literature (see, e.g., [26]).
In the flat SUSY limit + — constant, K;7 — 8;m, and the renormalizations reduce to

constants that depend on the Casimirs of the matter representations R:

i In A2 lnA
o InA? 2 .o InA? e
620 = 8 Ty (L) = 8 1 XR:CR

When a superpotential is included, the results obtained in the Landau gauge can no
longer be interpreted in terms of these renormalizations. This is similar to the result

found in [33]. However, if we use a smeared gauge fixing prescription defined by
L—L=2CC% €% =DHAL+ 2 [(T°2)F - (T°2)'5™] Kim, (4.12)

the results can once again be interpreted as above, with, instead of (4.10),

2 . - -
K = !?;1}2_17}5 (—%Kﬁj(TaE)m(T"z)J +e K A;AY > + higher dimension terms, (4.13)

where A;; is defined in Section 3.2; in the flat SUSY limit it reduces to the second

derivative of the superpotential W':
e_KAijA-ij — eKVV,’ij‘

Note that the gauge-dependent term in (4.13) differs by a factor of two from that in
(4.10). The result (4.13) agrees with the chiral matter wave function renormalization

found in [33] and in a recent string loop calculation [34].
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Unlike the Landau gauge, the smeared gauge fixing (4.12) gives a quantum La-
grangian of the simple quadratic form. The field-dependent masses as we have seen
have the correct poles for unitarity when evaluated at the ground state configuration for
the background fields, i.e., D,z = A, = 3;V = 0, where V is the scalar potential [30].
We will use gauge fixing prescriptions for supergravity that share this feature.

In the general supergravity Lagrangian [42], the function fg;(2), where a, b are gauge
indices, that determines the inverse squared gauge coupling constant, is matrix-valued.’

Throughout this calculation we set
fab(z) = 5abf(z) =bap (:D + iy) -

The Yang-Mills gauge fixing prescription is modified when z # constant, and, since
we are now including background as well as quantum Yang-Mills fields, gauge-graviton
ghost mixing must be included. We discuss only gauge fixing of the bosonic sector in
this section. The fermion sector gauge fixing is unchanged from that defined in I, and
is summarized in Appendix B.2. Our gauge sign conventions are those of [42] and are
defined in Appendix A.

The gauge-fixed Lagrangian (incorporating also the gravity gauge fixing (4.2)) is
defined by

5 o C,

a _ Tylu Aa _?__ - @\t _ a _\1am
ce=7D Au+ﬁ1\,m[(T 275 - (T72)'57)

V2C, = (V”h#,, - %v,,h; -2D,21 21537 + 27-';;,,A;> ) (4.14)

where hatted variables refer to quantum fields and unhatted ones refer to background
fields, h,, is the quantum part of the space-time metric whose classical part is g, , and
K7 is the Kéhler metric, which here is a function of the background fields. Following [41]

we have introduced canonically normalized Yang-Mills fields:

~ -

Au = \/EA;” Ap = \/EA/J-? }.;w = \/EF;w’ \/ED#AV = DLA;” (415)

and we have adopted the shorthand notation

O,z O,z
D, =D, - -QL‘; DZ:D#+—2“;-, (4.16)
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where D, is the gauge and general coordinate invariant derivative. Under a gauge
transformation with parameter 8 = T,3% and fixed background fields we have, neglecting

terms of order 2, A:
63 = —i(ﬂz)i, 6™ = +i(Bz)™, 5./1: = +zD,B% (4.17)

If we implement the gauge fixing condition in the usual way, the ghost determinant
contains a factor DetZz that translates into a quartically divergent term proportional to
Trln z in the effective action. Note however that we have rescaled the quantum Yang-
Mills fields [41] [see (4.15) above] and the quantum gaugino fields [37] (see Appendix
B.2 below) in order to canonically normalize their kinetic energy. If we rescale the gauge
parameter in the same way as the Yang-Mills supermultiplet, and take, instead of 3, the

gauge parameter
v=+vzB, VzD,B=7D,y,
we get
§A, =Dy, &= vz),, 63" =+ ¥2)™, 4.18
w=D, \/—( ) \/—( ) (4.18)

and no Trilnz term is generated in the ghost determinant. We therefore adopt the
prescription (4.18).

Under a general coordinate transformation z — 2’ = z + €, we have
63' = #0,7', 6A, = VI (V. A, + A, V,€%),

which is general coordinate, but not gauge, covariant. To obtain a manifestly gauge
covariant result, we add a compensating gauge transformation with parameter y*(e*) =
—e* A7, giving

63 = D2, A, = EF,,. (4.19)

Then, relabelling the gauge parameter as €, = 7,, the ghost determinant M is

obtained in the usual way as

0
4 - 2
Mg = BGA(SCB, (4.20)

where the variation §C is determined from

63 = _ﬁ(sz)feb +eD, 2, §57 = ﬁ(be)ﬁ‘eb + €D, 5™

6AS = DLea + € F°

op’?

Shyy = Ve, + V6. (4.21)




This gives a contribution to the gauge-fixed Lagrangian:

i g = PMEG =z (D4 Hp)e
= @ [(DID"); + qiaf] ca — V2 [D"™FL, + gf (Du#!)] ca
~* [V = 1 = 2 (D) 21 (D7) + 272, 7,,°)
-2 [(Duzl) Gal — faw’D"’] ct, g=ct b =—v2c

a _’f_ aS\M I, i _ _____7’_ d
9 = \/E(T 2" Kimy @ = x(Taz) . (4.22)

The rescaling of the graviton ghost in order to canonically normalize the ghost kinetic
energy yields a factor Det~%2 in the functional integration that cancels a factor Detz2
from the gravitino auxiliary field [37], [30]. The matrix elements of Hgy, and of the
covariant derivative D are given in (4.26), (B.29) and (B.30).

Finally, we modify the graviton propagator by adding terms that are proportional
to L4 = 0L/0¢*, where ¢# is any field. This modification, which is equivalent to a
nonlinear redefinition of the quantum variables, does not change the S-matrix and can
lead to simplifications as well as enhancing manifest covariance under the symmetries

of the theory [46]. We define the graviton propagator by

- - 1
A;wl,po‘ - Am},pa - 2PI‘W’PU‘C§ - '2' [gl-wﬁpd + gpd'cuu]
1
+ 5 [gup['l/o + gup»cuo- + gua’»cup + guaﬁp.p] 3
_ 1 1 : :
AI:u = 'ﬁ (DID;WS - §guuD15> s (4.23)
and by
_1 1 1 1 .
pr,ap = Euu,ap - §guu£ap + §gup£au + §gup£au = Euu,ap + 4P;w,pa'£aa
L = Guu' G g i L, LS=¢°"L,, = 9 L (4.24)
urap upr vy See 3g#IU:3AZ, ’ @ AV T -
The spin-2 projection operator is defined as:
1 1 4
P;u/,pa' = ‘2‘ (g,u.pgua + 9vo9uc — g;wgpo') = EPuu,pa~ (4'25)

It should be emphasized that the propagator modifications that we use have been chosen
purely for convenience; they considerably simplify the matrix elements that are listed

in Appendix B.1, and are not necessarily derivable from a generalized metric [46]. A
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natural choice® for this metric would be Gap = /§(Zs) 45, Where A, B run over all bose
degrees of freedom and the metric Zp is defined in (4.26) below. Then defining A7} =
Lag - I'YgLc, where 'Yy is the Christoffel connection derived from the metric G435,

the propagator corrections would be precisely half the ones used here (with additional

-1

ap,bo proportional to

corrections to scalar propagator A}'Jl and the vector propagator A
Luv o). It is possible that the use of this generalized metric would reduce the need for
field redefinitions as described in Section 4 [see (4.81-83)], but its use would make the
intermediate calculations more cumbersome. -

Once the above prescriptions have been implemented, the quadratic quantum La-

grangian for the bosonic sector takes the general form:
1 T 2 2 u
Loose+ Lgp = =587 [Za (D*+ M) +1{D,, X3}] @
1_
+5¢ (2o (D + MZ) + {Du, X233} <,

where & = (h,,,A% 3,5™), D, is covariant under scalar field redefinitions as well
as gauge and general coordinate transformations, and the X, connect fields of different
spin; in addition, there is a vector-vector connection [41] in X;. Following the procedure
described in [41], we introduce off-diagonal connections in both the bosonic and ghost
sectors, as well as an additional connection for the gauge fields, so as to cast the quantum

Lagrangian for the full gauge-fixed bosonic sector in the form

| . 1 R
Lhose+ Lon = —587Zs (D3 +He) @ + S (D2 + Han) e,
. 0%y
Dg) = Dll + VM’ (Vu)ap,bo = _6‘166"“'6”_2_;’

1 .
(ZV#)aﬁ,au = (Vu)au,aﬁ = 1 (Fapudar + Faandsr)

« 1 e ‘

Vi = Vdia = [Wdea) = o fi (Fasw = iFaa)
. 1
b = Dy+ By, (Bu),, =(By), = _7§

g Fova- (4.26)
This introduces corresponding shifts in the background field-dependent “squared mass”

madtrices:

M} — He = M3 —V,V*, M2} — Hy, = M2, — B,B*. (4.27)

The elements of M7 were evaluated in [41]; here they are somewhat modified by the

*This choice for G***° coincides with that of Fradkin and Tseytlin [46] for the case of supergravity

with their parameter ¢ = 1, which corresponds to A = —1/2 in their pure gravity case.
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different Yang-Mills gauge fixing and action expansion. These modified matrix elements
are listed in Appendix B.1 below.

As explained in Sections 3.3 and 4.3, we evaluate the fermion determinant by first
writing it in two-component notation, separating it into helicity-eveh and -odd contribu-
tions, and then recasting these two contributions in Lorentz covariant four-component
notation. As discussed in [45], this separation is not uniquely defined. The choice
that respects supersymmetry as well as manifest gauge and Kahler covariance allows a
consistent Pauli-Villars regulation. We follow that choice here; the corresponding ma-
trix elements are given in the Appendix B. The contribution from fermion loops to the
effective action is evaluated (see Sec. 3.3) by introducing [37] the 8 x 8 matrices

Dy 0 0 M
n=(% 0) wem (S M) b
0 D7 M 0

u
that operate on an eight component fermion fI = (fz, fr = fi)- The helicity averaged

contribution of the fermion determinant is then
3 . i 2 2 _
- ZTrln(—z P+ Mo)y = —gTrln (E + Mg — P, M@]) , (4.29)

Because the fermion mass matrix and connection contain the terms c#*M,, and :L,7s,

respectively, they do not commute with 7,; thus

1 1 1
p2 = D? + Z [7“: '}'V] G/.w"'}' '2‘ {Dw')’# {Du, 7U]} - 5 [-Dm 'Yu [Dm 'YV]] s
1 1 1
P.Mo] = {3, D"Mo} + 5 D% [, Me]} + (Mo 1% ]
D*Me = [D* Meo]. (4.30)

Therefore, in analogy with the boson case discussed above, we write

- %Trln(—i P+ Mo)s = —%Trln (D% + Ho) , (4.31)

; 1 - i 1 ,
H@ = M(g) - '2_{7’17 DuMe} + Z [,\/Il, M@] [7#7 M@] - §[M(")7 [DIJ»’ 7#]] + Z[7u77 ]Guu
l v 1 v i v
=27 Pus 17 [Dps 1] = 5 [Dvs v 1D "1 + {lr*, Me], 7" [Dy, vl}

. 1 1
D® = p,- 3 [v., Mo] + 57" [Dy,7,] - (4.32)
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4.3 Helicity-Odd Fermion Loop Contributions

In this section we determine the helicity-odd operators that arise from integration
over fermionic degrees of freedom. They are particularly relevant to the evaluation of
anomalies [26], [29], in effective supergravity theories, which is currently of special in-
terest in attempts to extract physics from string theory. We show that these terms are
finite, except in the presence of a Yang-Mills sector with a nontrivial kinetic normal-
ization function f(z), in which case there are logarithmically divergent contributions
that are invariant under chiral U(1)g transformations, ¢.e., under Kahler (or modular)
transformations up to a possible dependence of the cut-off on the Kihler potential. We

also indicate how the finite contributions to the effective action can be obtained.

4.3.1 General formalism

The fermion loop contribution is given by
L= —%Trln (=i D+ Mo) = —-;-Trln M. (4.33)

To evaluate the determinant (4.33), we write

1

T=TrlaM=T,+T_., Ti= 3

[Trin M(7s) £ Trln M(—7s)]. (4.34)

Only T4 has been calculated previously for supergravity [30]-[40]. Here we will evaluate

the additional contribution, 7_.:

T = —%TrlnM(—‘ys)M_l(’)’s) = —%Trln{l - M7 M(75) = M(=75)]}

Tt S M M(ys) - M=) (4.35)

n=1

S

Using the techniques described in [48], [37], we can write the trace in (4.35) as (seeSection
3.3)

I = [de1), T@)= [ 2T, (4.36)

and then expand T'(p,z) as

o0

T(p,2) = Tr Y 2-{3 (~R)'Rs)",
£=0

TL=1




where R, Rs are defined in (3.33-34):

1 ~ 3
R = — [P? =T A0, +h+ X + (0¥ + G”) P M|,
1
Rs = — [(p +G*) PN . (4.38)

The operators appearing in (4.38) are defined in Section 3.3 as power series of the form
> n ca(O)(D-8/0p)"0, where D, = D} R+ D} L is the fully covariant derivative defined
in (3.22) of the Appendix, and the operator O is a function of the background bosons.
The coefficients ¢,(O) are constants with, in particular, ¢o(G) = 0 in the expansion of

G % more specifically

d 92
Gt ="GE GE= -G'f# oo +0 ( apap) , G%, =-G% =[Df,Df] (4.39)

Thus we have to evaluate the following contribution to the effective one-loop Lagrangian:

L13 —%T_ = —i 4(d2p)4 E {Z‘( RY'Rs)™, (4.40)

n=1 £=0
‘where now the trace is over only Dirac indices and internal quantum numbers (and
Lorentz indices for the gravitino).

To keep the integrals finite, the integration should be performed including Pauli-
Villars regulator masses go: —p~2 — (—p2+ud)~! in the derivative expansion. However,
as shown below, 7_, when suitably defined, contains no quadratically divergent terms.
Once the integrals are properly regulated-including the appropriate definitions of 7. —the
coefficients of log divergent terms are independent of the regularization scheme. On the
other hand, if one wishes to evaluate finite terms, one has either to expand around an in-
frared regulator mass yp or, alternatively, to resum the derivative expansion [51] [52]. In
particular, the ultra-violet finite terms include the standard chiral anomaly. We explic-
itly evaluated this term for the vector-vector-axial vertex induced by Dirac fermions with
a common mass lg, and recovered the large mass limit of the Adler-Rosenberg formula
[53]; the complete expression for this formula requires a resummation of the derivative
expansion which will be presented elsewhere [52]. We emphasize that, because of the
anomaly, Kahler invariance is broken at the quantum level. Classically, this invariance
permits a choice [42] of Kdhler gauge such that the classical Lagrangian is derivable from
only two functions of the scalar fields, the (in general matrix-valued) gauge normaliza-

tion function f,3(2) and the generalized Kahler potential G(z,2) = K(z,2) +In |W(2)]?,
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where K and W are the Kahler potential and the superpotential, respectively. For the
purpose of calculating the anomaly [26], [29], one has to undo the Kihler rotation of
Cremmer et al. [42], by performing a phase transformation [13] on the fermion fields.
We work throughout in this Kdhler covariant formalism.

As was discussed in [45], the separation (4.34) of T into helicity-odd and -even parts
is not uniquely defined because we can interchange terms that are even and odd in 73
using s = (4/24)e***?¥,7.7,7Y, and similar identities. In most cases the correct choice
is dictated by gauge or Kahler covariance. The remaining ambiguities are resolved by
supersymmetry. A fully SUSY-invariant result for the quadratically divergent terms
requires the introduction of Pauli-Villars regulator fields [40], [49]; there is a unique
definition of the matrix elements that allows a supersymmetric Pauli-Villars regulariza-
tion [45]. Specifically, this fixes the forms of the fermion mass matrix and connection

matrix:
1

m+ (aaF:V + iﬂa'YSF:V) Ulwa F’uu = §€yupanaa

. 1
D, = D,+il,y; - EZLueAupa'Y/\')’u'Yp'faa (4.41)

M

where I',, L,,,m, and a, B are proportional to the unit matrix in Dirac space. D, which
contains the spin connection, is the gauge and general coordinate covariant derivative,
', is the Kahler connection, F),, is the Yang-Mills field strength, and L, is an additional
axial connection for gauginos arising from the noncanonical form of the kinetic energy
term. T4 are defined by (4.34) using the explicit ys-dependence in (4.41). Then the

operators appearing in the derivative expansion of (4.38-39) take the form:

Gi = Ga+inly -[Ly,Ll, G =Dy, D},
b¥ = prxiT,+1), L% =DfL,-D¥frL,, D*L =[D% L),
I = 5(Di-Dp)=5(Df-D;) - Tu, M;:%(M—M),
M = m+M,=m+M,0*, M=m+M,=m+M,o",
M,, = aF,, —iBF,, M, =aF,, +i3F,, (4.42)

where I';, is the Kéhler connection and I'}, is an off-diagonal A-¢ connection. We consider
only the case where the gauge field normalization function f(z) is diagonal in gauge

indices; then, since I, is diagonal, L, commutes with 7,, and we have
LI,, = L, = Auv =Ly + [F:‘,Lv] — [0, L),

Ly = V,L,-V,L,, [L,L)]=0. (4.43)
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Note that the spin connection in D, drops out of the covariant derivatives D, M. This
is because we have taken the vierbein, and therefore v,, to be covariantly constant [54]:
[f?u,'y,,] = 0. The spin connection is even in s and therefore contributes to D#M
through the commutator which vanishes [see the definitions (4.59) below].

To identify the ultraviolet divergences, we have to study the large p behavior of
the integrand in (4.40) and keep terms up to O(p™*). A priori R,Rs ~ p~!, so the
ultraviolet divergent part of (4.39) can occur only in terms with n < 4, £ < 4 —n. Aside
from terms involving L,, by construction, the integrand is odd in 75, and we need at

least four v,’s to get a nonvanishing trace:
T xTr (A“,,p,'y“'y"'y”’y"‘ys) = —4ie"”"?"TrA 140, (4.44)

so TrRs = 0. Finally, we note that Gf in (4.39) vanishes except when sandwiched be-
tween functions of p, and is of order p~?! in power counting. Once all p-differentiations
have been performed, surviving terms must have at least three v,’s that are not con-
tracted with p* because of antisymmetry. After integration over p, the tensor A,,,, in
(4.44) can be constructed only from the four-vectors J, and L, the tensors M,,,G%,,
the Riemann tensor, and their covariant derivatives D,. Each factor of G%, and of D,
reduces the apparent divergence of a given term by one power of p. Furthermore, in the
covariant derivative expansions (3.33-34) of the operators O appearing in (4.37) the in-
dices ;- - ftn in D, ---D, O are automatically symmetrized, so at most one derivative

of each operator can contribute to A,,,, in (4.44).

4.3.2 Quadratically divergent contributions

By construction, 7_ is antisymmetric under 45 — —v5. Therefore we can evaluate,

instead of (4.37)
T. — 2IT-(3) - (=), (4.45)
where T_(—+s) is obtained from T_(1ys) by the substitutions
(DY, D", M,M,J,M;)— (D~,D",M,M,-J,—Mj).

The matrices R, Rs are defined in (3.33-34). Since [d*pTrRs = 0, the potentially

quadratically divergent contribution to 7- is

1
Tr (R% -~ RRs) — ST N - 9 M) PN, (4.46)

52



with N,, M, given in (3.29). Under Lorentz invariant integration, with M = m +

0 M*, we have

d'p pM M’ (1 £ v5) « | d*p p*y MA*M'(1 £ v5) =4 [ d*p m $M'(1 £ 7s).
um

It follows that there are no quadratically divergent contribution involving the mass ma-
trix. The averaging procedure (4.45) eliminates a residual spurious quadratic divergence
proportional to Tr. 7, J#. This divergence would vanish identically if a Pauli-Villars reg-
ularization were used with P-V masses that leave all classical symmetries unbroken.
However this is not in general possible for the classical Kihler symmetry.? Moreover,
in the Pauli-Villars regularization described in [45], there are no P-V fields that can
regulate quadratic divergences proportional to M,, M**, so the integrals, which are ill-
defined unless they are explicitly regulated, must be defined in such a way that these
divergences do not appear. Note that no quadratically divergent contribution to 7_
arises if (4.35), as defined by (3.20), is expanded without performing the the transfor-
mation (3.30) that makes use of partial integration, which is ill-defined if the integrals
are not finite. However this transformation renders many terms explicitly covariant and

thereby considerably simplifies the derivative expansion.

4.3.3 Logarithmically divergent contributions

In the remainder of this section, 7_ is understood as the average (3.45). Since we
encounter only logarithmic divergences, after symmetric integration we may make the
replacements:

2 P 2
pupo f(p°) — 'Zguvf(p )s

4
PuPuPppvf(P2) - 5—4 (9uv900 + Gupvo + Guo9up) f(P2)' (4.47)

To evaluate the terms with p-derivatives, we write

1 ] 1 1 9 2
¥ - —— AW L pEG— — 0, A = gH — SptpY
2" Bp, —p? —27 T o, I pt?

g 1 1 o 1 1
apy _p2 pu - _p2 AP’ H P#Guua_py _p2 d - __p2 puGngpy7 (4‘48)

where the first line is obtained by partial integration over p, and it is understood that

operators multiplying the first (second) line on the left (right) are independent of p.

*A detailed discussion of Pauli-Villars regularization of 7_ will be given elsewhere [52].
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Similarly

0 1 P 2<gpuv+ PUpE L gMVpP 4uvp)
= L 2 _ 2 ,
Fpa0py 72" - PU+ 9"+ g - e
0% 1 1 2
— P T oo — —('r - —=p’p” Pru, + 2r*Y ),
0p.0p, —p? PP Tipo —p? 2P P B YuPy
1 9? 2
oo e = P T (4.49)

where the last line is obtained by partial integration.
It is easy to see that the nonvanishing terms in T involve the connection L, and/or
the off-diagonal mass M,,,. In the absence of these contributions, since e#**7r,,,, = 0,

. the only helicity-odd terms are:
e TI(DTNT,Ts), € TGA,T,Ts), e Ti(G), DT, (4.50)
where

L

S1GE, - ()G

e 1 -
Dj = (Df +D;) =0, +7,, GAV =

The first term in (4.50) can be written

ST (D (R,7,00)] = 2 0TI T, ),

where we used cyclic permutations in the trace together with the relation
Te[DL(TITT)) = Tr{0(T T T) + ilT,, TT I} = 3, Te(T T T ). (4.51)

Note that if a field-dependent ultraviolet regulator mass A is present one cannot drop
the total derivative on the right hand side of (4.51), but integrating by parts gives
Oln A = OA/A which is finite for A — oo. For the second term in (4.50), defining

D% =9, + T, we have
Gi, =0,I'F - 8,TF +[I'E,Tf] = D, I'f - DT - [T, TE] (4.52)
By the above argument the DI terms give finite contributions, so we are left with
P T(THTE — T Ty )T = T,)(TF - T7)] =0,

again using cyclic permutations of the trace. Since €7 D, [DS‘, D;] vanishes by virtue
of the Bianchi identity, the third term in (4.50) reduces (up to a total derivative) to the

same form as the first term: GV — [J, J].
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First consider the terms quartic in R,Rs. To obtain the logarithmically divergent

piece, we drop all p-derivatives:

1 1
R — —2p#M”, Rs g '_zpuNu' (453)
-P —P
We note that F;“’F,‘,’I,F‘f" and F;‘”F,’,’pf’ﬁ” vanish if any two of the indices a,b,c are

equal; there are therefore no terms cubic in M,. Then using v, M~v* = 4m, together

with egs. (3.37) and (A.12-13) and cyclic permutivity of the trace, we obtain:

H(My,Mz) = Tr(pMy g J pM2 8 Jvs)

b lg—z 4TI' (M#ijszjp_Mlﬂijﬁzij) s
F(My,My) = Tr(gMy pM2 8 J ¥ J7s)

— 4p*Tr [(Ml‘“’mz - mlﬁéw) .,7,,(7,,]

e (R AT

F'(My, My, M3, My) = —F'(My, My, Mz, M3) = Tt (pMy pM2 pM3 pMy7ys)
— Ty (W Mg M3, MY, — MY Mg M, )
+8ip4Tr (ml Mf,,m;;]l?j‘" - m4M3,m2M§”’) , (4.54)

where M; = M, M, M;, AZ»“" = 1€¢7(M;),s, and the traces on the right hand sides
are over internal indices only. In evaluating these expressions we used the fact that since
Tr (MIM2ZM2M2vs) = Tr (M2MIMZM2ys), these terms do not contribute to

1

3 [F'(M1, My, M3, My) — F'(My, M1, My, M3)] = F'(M; ; My, M3, Ms).

Finally, since the expression (4.38) for Rs is odd in vs: [Rs(s)]* = + [Rs(—7s)]%, it
follows that Tr(Rs)* does not contribute to T(ys) = ~T(—vs). The logarithmically

divergent contributions from the quartic terms in (4.40) are therefore given by:

Tr[ —R3Rs + RsR*Rs + R*RE + (RR5)*

4 1
-3 (R§RR5 + RsRRE + RR?) ] ~ (Ts+T3) - (4.55)
For the terms quartic in M Wé obtain
T) = —%F’(M,M,M, M) = -‘-133Tr (37 ¥4°° M, Mo — M* 517" My, 1)
~2Tr (mMmM — M, md*) (4.56)
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and for the terms quadratic in M, we find:

TrR*Rs — 0, Tr(RRs5)? — —;18—H(M,A7_I),
TIR*RZ = TIRsR*Rs — pisé [F(M,M)— F(M,M)] = ;12(1:;’ + Ty,
TRRE = TrRsRRE= TrRIZRR; — ﬁgé [HV(M, My)+ H(, My)

—F(M, My) - F(M, My)+ F(M;, 1) + F(Mj, M)]
1
T2t
1y = T ([{m, M*} - {m, 1Y 17, 2.))
2t

Ty = T [({Mup M} = {8, 4*}) (5%, 2.} - (457)

1 11 _
= ST+ T - SFHOM M) = -3 2T,

Then

T, = —2(T/+T)+ ;IZH(M,M) = 2TV — 1,

8

= =20 = ST ({77, My T M} = {57, B, KT, Y) . (4.58)

To evaluate the cubic and quadratic terms, we use a shorthand notation according

to which the covariant derivatives imply the matrix products:
Dy, =(DE, 7)), DEM =D:*M -MDF, (4.59)

where here M is any mass matrix. Using the Dirac traces in (3.37), the first identity in

(A.12), and the additional identities

Tr([A4,BIC) = -Tr(A[B,C)), D.(MM)=[d},MM)], D, (MM)=[d;, MM],
[d:-,MMI] = (D.M)M;+ MD; My, [d;,MM1]=(D#M)MI+MD:M1,
Tr ({A,B}CD) Tr(B{A,CD}) = Tr(B{A,C}D) - Tr(BC[A, D)),

(4.60)

together with the facts [see (3.37)] that Tr(o - Ay,0 - Bv,) and Tr(o - Ay,0 - By.,7s5)

are symmetric in {g, 7}, and that [L,, J,] = 0, we obtain
TrR2Rs — I%Tr{ — 2 %*(M, i)D} T, - 2X*(5, M)D; T, — L(M, i)

+ (K2, 5) — R20(M, M) + X420, M) G,
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TrRRZ +

TR —

where
XE(My, M)
X;V(Mla M2)

L(My, M)

+ [R2(My, M) - X2 (0, M) + X2 (01, M) G,

+2 (040,31 + X, 00)] +2 (b — mI1#) L,

L (X201, M) + X2, ) },

TrRsRRs — ;14-1&{ — 4 [X# (M, 1) - X2 (M, My)| D} 7,

+4i [ X2 (My, M) - X# (M, My)| D} 7, — 2L(M, Mp) + 2L(M1, M)
-g [X+(M, My)+ X~(My, M) — X*(My, M) — X~ (3, M7)]
+ K2, My) - 282y, )] (G - G) |,
]—)lzTr{6i)Z"_‘”(MI, M) (D,’:Ju + D;JL)

—4 [X¥( My, My) + X~ (M1, M)} + 3L(Mj, MI)}7 (4.61)

= (DEMpeIT, - DERR M}, + BT}, D Mp? - M3, D3 7

~ 1 S+
= M{W’Inz + mle‘“' X;y = §€”Vanpo.,

4
= 2{Luam1}{ju9 m2} + '3'{L;u M{W}{jw M/fy}

42 ({L MEHT MY + {0, ME WL M2Y) . (462)

Again, the traces on the right are over internal indices only. Here and throughout the

remainder of this section, éff,, is understood as one fourth of the Dirac trace of [Djf, D¥,

and has no contribution from the spin connection, and the derivative operators D, are

understood to operate only on the object to their immediate right. The expressions

(4.62) can be simplified further using the relations

X# (D:jy + E;ju) %X‘w (G'Iu - é;y) ’
x# (DrJ, - D;7,) = -2%X*[Jw ),
{J., M} = % (DjM — D;M) ) (4.63)

il

that follow from the definitions (4.42) and (4.59). Defining

X1
X, =

Tr [Xt(M, M)+ X~ (M, M)],
Tr (X (M, M)+ X~ (M, Mp))
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= iTr (Do M}, D; Mp# — D+ M1, Dy M),
Xy = iTr [D”M,uD;M;’“ _ b°M,,D; i1
— DMLD M D+"MjquA7pu},
Xs = Tr[X*H(M, M)+ X~ (Mp, M)- X+(My, M) - X~ (M, M))]
= —Xi+Xa—iTr (D" Mo D, 0" — D" 1,,D,007), (4.64)

where we dropped total derivatives, we obtain

T; = Tr (722725 - RRZ - RsRRs + %Ri) — % (gxg - ng + 1y + 2T4”)
—;I%Tr (D°M,,D,M" ~ D° ¥,,D,M")
+]%Tr{)z’ﬁ"(M, M)GE, - X¥(M,M)G3, + 2 (mM"™ — mM*)

— [X2(Mp, M) + X2 (M, M)] L + X4 (M1, My) (G, - G

- [XEV(M’ MI)GZ-V + X-I;L-V(Mv Ml)é;u] - L(Ma M)}a (465)
where ¢4, 74 are defined in (4.57-58), and
4 8
14 = §X4 - §X2 (466)

Finally, to obtain the logarithmically divergent parts of TrRRs and TrRZ, we use (4.47-

49), giving
TrR2 8 Xo— LM M L e My (G — G-
Ty — 554’ 2_1?( I I)+? +( I, I)( uv uz/)v
4 4z —~p _ —_—
TRRs — g Xt oD ({07, Moy Ly, B} = {17, Mo} Ly, 1)

—-;)lzTr i ({£7,m}Dym ~ D*m{L,, m}) + L(M, i) + 2L(Mr, M)

—S%Tr (22, Mo} D, %% — DO Mu{L,, 51°))

+3%Tr ({27, M, } D, M7 — D° My, {L,, M*})

4z 2 . P — 1 = v Y8y

~a T (LM, M,,}) - =T (Lo [X2(M, M1) + X2(8, M7)))
1 v Uy ~ LY 3 N—

+o5Tr (X5 (M, MD)GF, + X (3, M) G|

+;%T5Tr (M”"MW — M""MM,) + total derivative. (4.67)
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Inserting these results in (4.39) gives

7 In A2
-5T- = g%32 > (T4 + Tu + Ts - TTRR; + TrRY)
11n A2 = _ =0, -
= gt fz Tr{Tl (B (0, )Gy, — K2 (3, )G,

-3 (D“M,,,EDJT’J”” ~ D°M,.D,M*)

—irte (M¥? M, ~ M7 M ,,)

Ly M — [ L, MM + 3 ({12, m} Dy = DPmiL,, })
5 (12 Mo ML, TE™Y = {7, M )L, BE74))

-3 ({57 Mo} D 19% — D7 ML, 11°4))

+2;’ [LP ({M, Dp02°%y — (D, M, M,,})

cabutre, i)}
(4.68)

To evaluate (4.68), we note that the connection is block diagonal in the x-A-a sector,
and the axial part is diagonal in the A and « sectors, with Jyy = —Jaa- Using the

reality and symmetry properties of the off-diagonal A-a masses:

_ T
Miag = —MHig = ‘m:)l:a7 M,\ = )“‘: = - (M,;\L:) ) (469)

o

it is easy to see that there is no contribution that involves only these masses. For the

off-diagonal A-x masses:

~, ~uv AT
max = mly, My =iMy, My, = -iMfy, Myy=- (M),
MM = M,\”MAX =0, (M*™M,,):=(M,M"):. (4.70)

It follows from these relations that the last line in (4.68) vanishes.

Using the fermion matrix elements given in Appendix B.2,b we obtain the nonva-
nishing contributions to T_. The contributions to the mixed chiral-gauge sector are
listed in Appendix B.5. All other contributions maybe found in Appendix C of II. Note
that these expressions are fully covariant, although the expansion (4.49) of T_ is not.
This noncovariance is necessarily the case since 7_ contains the chiral anomaly that
breaks classical Kahler invariance. However, the logarithmically divergent contributions
are Kahler invariant, up to a possible dependence of the effective cut-off on the Kahler

potential [44, 29, 45].




The ghostino determinant also contains helicity-odd contributions, but since it has

the same form [30] as that of a four-component scalar, its evaluation is straightforward;

the result is given in Appendix B.

4.4 The One-Loop Effective Action

The quantum action obtained by the prescriptions [30, 31] defined in I described in

Section 4.2 above takes the form
1 A 1. .
Ly=-58"Zq (D? + Ho) @ + 5076 (i P — Me)© + Lk + Lan. (4.71)

The last two terms are the ghost and ghostino terms, respectively, ® = (hy,, Ae 5 ™)
is a 2N + 4Ng + 10 component scalar, ©® = (9,,A%,x! = Lx* + Rx*,a) is an N +
.NG + 5 component Majorana fermion, where N is the number of chiral multiplets,
Ng is the number of gauge multiplets, and the matrix valued metrics Zg and Zg are
defined in Appendices B.1 and B.2 below. We set background fermion fields to zero,
s0 1, A%, x! are the quantum gravitino, gaugino and chiral fermions, respectively, and
o is the auxiliary field introduced to implement the gravitino gauge fixing condition.
The matrix-valued covariant derivative D, is defined as in Section 3.2, and D, includes
additional terms in the connections that are given in (4.26,32) above.

The one-loop contribution to the effective action is

L = %Trln(bz + He) - %Trln(——i D + Mo)
+iTrin(D? + Hgp) — iTrin(D? + Hyp). (4.72)

The general results obtained in [48], [40], [37], [55] give for the bosonic determinant:

2

-;—Trln(f)2+Hq>)—\/§{ A T—H<I>>

327

In A2 1 1 F 2 uv
t353 T (2}1@ rHs + 12GWG + 75 [r +2r rw]) ,
(4.73)
and for the fermionic determinant we have
- %Trln(—i P+ Mo) = --;- (Ty +T.) = —éfmn[z‘ﬁ + Heol - %T_, (4.74)

where in (4.74) D, and He are the 8 X 8 matrices defined in (4.29-32). The helicity-

averaged part, T, of the fermion trace is —-}4- times (4.73) with the substitutions He —
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He, G®

uv

— G'ﬁ),, and the trace includes a trace over Dirac indices, so
1 .

Similarly, the ghost and ghostino contributions are equivalent to, respectively, —2 times
the contribution of a (4 + Ng)-component scalar and +2 times the céntribution of a
four-component scalar. For bosons, Hg and f)u are defined in Section 4.2; the matrix
elements of H and of

Guu = [D;“ Du]7 (475)

are given in Appendix B, and the helicity-odd contribution, 7, of the fermion determi-
nant that was evaluated in Section 4.3, eq. (4.40). The traces in (4.73-4.74) are given
explicitly in Appendix C of II and in Appendix B of I. Here (see Appendix B.5) we list
only the contributions to the matter and YM sector, involving background Yang-Mills
fields and Jor i‘ntegration over the quantum Yang-Mills supermultiplet that were omitted
in L.

If L(g,K) is the standard Lagrangian [42, 13] for N = 1 supergravity coupled to
matter with space-time metric g,,,, Kdhler potential A, and gauge kinetic normalization
function fo, = é4(z + ty), then the logarithmically divergent part of the one-loop
corrected Lagrangian is

In A2
3272

In A2
3272

Less = L(gr, KR)+ Lo+ (X ABLalp + XAEA) +9 (L+ NgL,), (4.76)

where the classical Lagrangian £(g, K) is given in eq. (3.9) and also in Appendix B
below, L is the one loop correction found in I after renormalization of g, K [eq.(3.6) of

1], and

L = [W*(3Cqbum ~ D(TyzY Di(T.2)) +hc| — 24 K aaD

+£§—5 (W + W) DDy — = (Fi, - iF2,) (F2* +iF*) D2 D2 Kim
+ N; 2 [L’ZWabWab +2D°-D (K D, 2 DE™ + 2V + 4DM3;)]

+US? W W™ + 12 (W + W) DDy + 22D + 2D (11V + 8K D,2' D*F™)
+2 (W + W) (KinD,2'D?2™ — 2M} — 2V) + 4D (27M3 + TM3)
—26iD,29D,z" Kim D" F* + %Duz"wszﬁiﬁjDaDi (T°z)"

2 IR K o
+-D,e KR ALAMD,(T02) + f-x—D,, [(T°2)'R,7 A Aji + hc.|
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+2iF2, Di(T,2) R}, D*z*D" 5™ + 3De"‘ R AA + g-pp,,zivﬂzmzzim
Dy(T,z2)

6z
1 19 s " au 11 7 a uy
+§ = +p'pi )| D (820" + 0,y0"y) — po) + 3p'pi ) 0,90, 2D F}

_é (1 + 3x2pipi) (0,20 + 8,y0"y) (Fﬁv + if’;y) (Faup _ iﬁ’;"’)

+ [4D. (Duz D*2™ K jm + V + 3M} — 2D) + 13iF2, K D*2 D*5™]

-5 { [:? (Fow — i) + %D“} (8,2 + i0,y) Kim(T*2)' D 2™ + h.c.}
—p'pi { [i (Fe* — iF2*) + 9,,D%| (8,5 + i0,9) Kim(T°2)'D,7™ + hoc.}
+2i2%p'p D, 2D, F™ K DO F™ + 22%p' p; D [SMj, + M? 42V — 2e~"'aa]
—a:zpip,- [QzZWabWab (1 - a:?p'ipi) — 4z (W + W) D
+ (Wt + W) DD, + 2732} +22%pip' DD, A D K i
3

+5pi0’ (Fo = iFg,) (F2* +3iF") D2 D43 Kim

+23 [40i5(T*2) (T*2) Was + iD, 2™ (T2) pruis (F2 — iF2*) Dy’ + hc]

+ {p;jD“zj [% (B, - id,y) (T°2)'D, — fiw (Ouz + i(?uy)] + h.c.}

+ {W [2m3pépiMf + fiag(ﬁ - /i)e'K - mzp” (AjikA-k - A,-jfi) e‘K] + h.c.}

+ {(e—KAJ'A’ﬁ + D“sz“Zﬁl) [4pmij(Taz)*'Da - (,;ﬁu-j + Zf-p,-j> f‘iv} + h.c.}

—%'K,-m [D¥2™(Tz) — D24 (Taz)™] [FpiD?# (F2, - iF2) +hc]

Da - a_\k =7 ? . v - v
422 [Iskm(T DFDHZ" 4 2 (B + i) (F* — iF) +h.c.]

X (p,-jDuzifj + h.c.)
— [W0ii f(TazY Dy + 27D, 2 DP 2 (2010 — Riimp™ W) + hoc |
+2z2p,’ijﬁ'D'l?pziD”2m + atpi P WW,

(4.77)

= 2°(p'p:)  WW — 2M} + 3M} — 2MIMF + V2 + D2 + 6K aaM
+2V (2M} - M} + e Kaa) - e (@4 +hc) (V + M3)
+e"2Kaz-A"ajAj - 2¢72K (ZziAiaA + h.c.) + zzpijDuziD”szﬁmDyfﬁD”Z"

+e~ 5D, 7 DrE™ {(a, A;) (@m — Am) + 22 pi AFpl A; +f"‘f’ ]



+e—K{DuziD“zj [(ai - A;) (-é%d — :z:pj,,fi“)

Figd- fian A)pjkfik} + h.c.}

2z
" [p,puzng [2aa; - zpa(a — 4)*
+%- W Z*DPE™ [ |28a; — zpik(a — A) ]
fz‘fj Py LT
+%D#z D*2’a(2a — A) + h.c.

+z (pijDuziD“zj + h.c.) (Mi - f/)
+e K [zpijDuziD“zj (akﬁk - QAa) + h.c.]
*16% (8,2 + i8,y) (8= + id*y)|* — =3p'p; (W + W) (Mj + V)
+23p i [W (mpijDﬂ;iD“zj +eKaa - 2e"K?zA) + h.c.]

+%K,-,7,Kjﬁ (4D, D*2 D, 5" D* 5" + D, D*2"D, 5" D¥ )
1 N2 —a 1 —

-3 (DL D2 Kin) + WV + 5 (Was + Was) D*D*
12,15 iy g

-5V 4 305 (Du2'D* 5™ K — 2V)

B (Bﬂza”:c + 0,y0%y

2

) K7D, 2 D+z™

0,20z 0,y0%y g T T
— s ) (20,2 D*2" Kin — V)
o#z0,z + 0*yd,y
4z

+§Vpﬂzipﬂ‘zmmm + (

+ (Fa,+iF2) (Fev - iF2Y) ( - gﬁ'imDuziD”2m> (4.78)

Our notation is defined in Appendix A below. Here W = W?, where

a 1 a v s e RV 1 a
we = Z( o B —iFg, ) - 53D Ds (4.79)

is the bosonic part of the F-component of the composite chiral supermultiplet con-
structed from the Yang-Mills chiral superfield W*(8) = Af + O(6). The renormalized

Kahler potential is

In A2

Kp=K
rR=HK+355

[e-K (Az-,-,ziif — 24, - 4AA) — 4K - (12 + 4x2p,-p") D] . (4.80)
and the renormalized space-time metric is given by

9 = (1- f)gfu + €y

In A2 [N, 55— N ; 2 . N

— 0 __ G 2, .1 “ N Y G g2

€ = €-3 [—6 (r+V)+ 5 D +2z2°p;p"D + 3xDaD,(T z) + 5 M,\} ,
InA? Ng 1

= Gt gz (e 57ow)
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NG 7 =T 1~
_guu6—‘z‘2‘ (apxapl' + 8py0"y - D#Z D*z A‘i’r’n)
[ Vuoz Ouzdz + 0,y0,y

z

+Ng |2

1 z sh 1 =m e
= 5 =5 (Dwr'Du™ + D,2'D,2") A,-m]

o N+17 Ng .’1:2p.; ¢
~GuaF, P (T R S
a N+29 N
teF,F,° ( 6 + ‘2—G — z%pip* ) (4.81)

where the superscript 0 refers to the result of I. The terms in (4.76) proportional to L4

can be removed by field redefinitions:

In A2 1
A A _ LA A AB
¢" = Ppr=9¢" - 322(X +5X £) (4.82)
with
1 - :
Xirh = tJms Xoppy = ——= Ziz a Vs
4z2\/—ff b z\/ﬁ(7+z PP)5b9u

X' = (X)) =4eK A’A + 2 (2 + ﬂ’:zpjpj) D, (T%2)

—4zDp* — 2p% (T,2)™D, — Ng—c?——{D“ :

+NG F [ S 0iW + op Dy DHF + 7K (‘_‘jAJ' - 26‘4) -V- M’ﬂ ’

Xpa = — (16 + 2x2pip,-) K. [(Taz)iD;,Eﬁ‘ - (T, E)ﬁ‘D zi]
+2pip’ (072 Fupy + 0°yFupy) + 32y yFa,,“ + &= (7 NG) Fapy
+% [(Faw ~ iFap,) P2 pis +kh.c.] ~(5+= p’p,-) i‘—fva. (4.83)

The terms in (4.77-78) of the form g(z,2)WWW are the bosonic part of the effective
Lagrangian (in the notation of [13])

Lywp = / d*6E¢(Z, 2)|WW 2. (4.84)

It should be possible to write the remaining terms in superfield form® [up to total

derivatives and field redefinitions of the form (4.81-83)], and thus to extract the fermionic

®Note that F* = —e~%/24* and M = —3e=%/2A are the bosonic parts of auxiliary fields of the chiral
superfield Z* and the gravity superfield, respectively. It is easy to show that calculating the one loop
corrections before or after elimination of the auxiliary fields in terms of their classical solutions gives
the same result to the loop order considered. Our results are expressed in terms of these auxiliary fields

in [32].
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part of the Lagrangian for these higher dimension operators. However, there may be

additional fermionic terms, e.g, those of the form [56]
Lyyen = / d*0E¢(Z, Z)(WW)™! +h.c., (4.85)

that cannot be obtained in this way, as they have no purely bosonic components. The
determination of such terms requires retaining fermionic background fields [57], [40], [49].

Notice that the' coefficient of In A2F#¥ F,,,, is not a holomorphic function, except in
the limits of a flat K&hler metric (D; — 8;) and flat space-time (Mp; — o0, in which case
operators of dimension greater than four are suppressed). This nonholomorphicity is dis-
tinct from from the holomorphic anomaly [25, 58] that arises from the field-dependence
of the infrared regulator masses. In other words, when the Kahler and/or space-time
metric is not flat, there are corrections that correspond to D-terms as well as the usual-
F-terms.

The quadratically divergent contributions to the one-loop Lagrangian are given by
(B.33-B.35). The Pauli-Villars regularization of these terms was given in [45]; they
contribute additional renormalizations of the metric and the Kahler potential that are
determined by the field-dependent squared masses of the Pauli-Villars regulator fields
that play the role of effective cut-offs. The field dependence of the effective cut-offs
in the logarithmically divergent contribution to the renormalized Kihler potential will

generate additional terms in the effective Lagrangian proportional to

DilnA?% = 2%, I=417,

that do not grow with the cut-off, and therefore have to be considered together with the

finite terms that we have not evaluated here.

4.5 The String Dilaton

In effective supergravity from superstring theory, the classical Kéhler potential
K (z, %), superpotential W(z) and Yang-Mills normalization function fe3(z) take the

forms
K(z,2) = —In(s+3) +G,7™), W(2)=W(y'),
fab(z) = 6abka37 yi7 ?m # S. (4—86)

Although we have restricted our analysis to the case f,; = 6, f, it is equally applicable

to the case fop = dapkof, ko = constant, provided we make the substitutions Fj, —

65




L -1 i
Al — ki A5, T® — ko *T?, cape = ka *Cabe, (Cave # 0 only if k; = ky = k¢) in

all the relevant equations. Our results are therefore applicable to all known effective tree

kzF“

py

Lagrangians from superstrings, including those where the integers £, > 1 correspond to
higher affine levels [43]. In this case the operators a, p;;, 1 — z2p;p*, and their covariant

derivatives vanish identically. In particular M{ = M2 = M2, and (4.76) reduces to

In A2 In AZ
nh (X4BLalp + XAL4) + Vg L+ NgLy),

L = (W?+W") (3Ccbs — Di(Ty2Y D;(Taz)) + 2D (13V + 9KinD,2' D 2™
N + 5

Less = L(gr,Kr)+ Lo+

+ [(s +3)2W W 4 2 (Wt + W"”) DDy +8D% -8 (V + 2M2) D]

N+5

(s +3) (Fo, —iF2,) (Fev +iF2%) + 4g2D| D,2'D 2™ Kim
+-2-(s + P Wa W™ + 11 (W 4 W*) DDy + 20D + 154M2D

+(5—’;—3—) (w + W) (K,-mDpziD”Eﬁ‘ -2V + 21)) — 24iD,2'D,z" K7 D* F*

+(3—1'S—) (Fo, - iFz) (Fev +iF*) D2 D* 2™ K,
D(T,z)
3(s+3)
Dy(T.z2)’
3(s+3)

( DRom + —22—

+ [4D* (V - 2D + 3M? + K;n D,/ D*2™) + 18iFp, Ky D2/ D7

+ [13iF2, K7, D2 D" 37

D,
(s+3)

+2¢F;, D;(T, z)

mﬁszj(Taz)ﬁ) (C—KJ‘IiAm + Duzi'D‘uEm)
Qe‘K
H o kv =m
zmkD D¥z (5 + §)
- z _ .
it (B - iB) + 29 ‘;Da] DL Kin(T%2) +hc.}
633" e | -ma = 0,803 0,80,5 __, v
( sF3) e + zF,w) (F:” - zF;“’) + 40-—=D 4 28i—=—=D*F¥
(s+3)°

(s+3)? (s+3)?
L = T (Wa W W) - (W+W) (M?+7) +D?

1 5 aqyb 2 2 PR
+3 (w§b+wab)v D —2<D+§V) M +-§(M +V) Dy D45 Kim
—é-vz + %Kﬁffﬁ (4D,2'D#27D, 7 D" 5" + D,2'D*5"D, 27D 2 )
0,80”3

(s +3)?

D, [(T°2)'R;%,* A*Ajr + hc |

12
s+ 8 s

s+s

_%K"ﬁ‘KﬁDﬂziD”EmDsz'Dufﬁ + % (2Ii’imDuziDu2m - V)
0,50*50,30"5  20,50,3
(s + 3)4 (s +3)2

+ (B +ifs,) (rer - ibe) (

Kim (D“z DVE™ L DEEADY 4 )

8,808 s+ 3
2(s + 5) 4

KD, 7D m) ; (4.87)
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with, instead of (4.1‘0),

In A2 (e'

w57 (¢ [44 A7 — 248 + (No - 4)AA| —4K3 - 16D).  (4.88)

Kr=K+

Here we have considered only the standard chiral multiplet formulation of supergrav-
ity. Their is reason to believe [26], [29], [59] that the dilaton in the effective field theory
from superstrings should be described, in fact, by a linear multiplet, which is dual to
the chiral multiple used here. It has been shown [60] that a variety of classically dual
theories remain equivalent at the quantum level. In [45] it was observed that once the
ambiguous matrix elements (4141) have been fixed in a supersymmetric way that ad-
mits Pauli-Villars regula,riz_ation, the axjon y of the dilaton supermultiplet appears only
through its dual h*#° = €/P7#9,y/4z?. This suggests that the properly regulated chiral
supergravity theory also remains equivalent to the linear multiplet version for the dila-
ton at the quantum level. Some loop corrections using the linear multiple formulation
have been carried out in [61].

Further simplifications occur in specific models, such as the untwisted sectors from
orbifold compactifications where the scalar Riemann tensor is covariantly constant and

the Ricci tensor is proportional to the Kahler metric for each untwisted sector.

4.6 Here Is Where The Action Is.

In this section we recapitulate the results of the calculations of paper II (as described
in the previous chapters) put together with the results of I, and present the full one-loop

bosonic effective action of supergravity plus YM and chiral matter:

‘Ceff = 'C(A) + Ly- ~loop = L(]\’R) + \/_ LO + \/—32 5 (L] + Lo+ Nng)

Ly = L (Ng=1)+ 2Kim (D,,z DHEF™ + 5F‘Fm) 8D+ 28MM

+2N (K,-mF*'Fﬁ - —§MM - Z) + 227D, Di(T°%2)*

( fzfm + 2Rzm) (FzFﬁl + D#ziD“Em) )

= N+5 - i m tyu M Y 1 \2
L= 5= [Am (2F F™ - D,2'D"2 )MM—g(MM)
+N+51xm]x a (D z”D"EmFJF"+’D ZD*D, Z DY I
3 J

+8 (A’,-ﬁFJ'Pﬁ - §MM> [I(im (Fiﬁ"ﬁ + Duz"pﬂzﬁ) - -;-MM]
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2
where F* = —e~K/24% is the bosonic part of the F-component of the chiral super-

multiplet Z°, M = —3¢"%/2 A is an auxiliary field in the gravity supermultiplet (see eq.
(2.53-56)). The results of {30, 31] were calculated using the classical Lagrangian (1) that
is obtained after elimination of the auxiliary fields, and are expressed in those papers
as functions of the boson fields and their covariant derivatives. It is easy to show that
calculating the one loop corrections before or after elimination of the auxiliary fields in
terms of their classical solutions gives the same result to the loop order considered. Here
we use the auxiliary fields to present the results in a form that lends itself more easily |
to an interpretation in terms of superfield operators.

The real function Kgr(Z, Z), given in eq. (4.80), contains logarithmically divergent
contributions to the the renormalized Kéahler potential. In L, , we have also introduced
scalar field reparameterization invariant covariant derivatives (p;j, pmi;) of the variable
p, defined as the squared gauge coupling p = 27! = g°.

In effective supergravity from superstring theory, the classical Kahler potential
K(z,Z), superpotential W(z) and Yang-Mills normalization function f,;(z) take the
forms given in eq. (4.86). In this case 1 — (4z)~2fif; = A + (2z)"!f*A; = 0, and
pi = Dip = —(22)71f; is covariantly constant: p;; = pmi; = --- = 0. Then Ly and L,

reduce to:

Ly = (W +W*) [38Ca8u — Di(T32) Dj(Ta2)'] — 24iD,2'D, 7™ Kin D" 1
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s+ 3

where the second line follows from the tree level equations of motion.

In addition, in the untwisted sector of orbifold compactifications, the Riemann ten-
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sor is covariantly constant and its elements are related to elements of the Kahler met-
tic. Moreover in many models there are global symmetries that impose R*™/*W;; =
R™" W1 = 0. In this case L; can be expressed entirely in terms of F*, D, 2%, M, their

complex conjugates, and the Kahler metric; an explicit example is given in [30].

4.7 Conclusions

In this chapter we have shown the calculation and the result of the divergent loop
correction [31] to supergravity and superstring effective models, including the gauge
sector.

Some comments on the implications and applications of our results are in order.
It has already been shown [45] that, using the gauge fixing and expansion procedures
defined here, the one-loop quadratic divergences, as well as the logarithmic divergences
in the flat space limit and in the absence of a dilaton, can be regulated a la Pauli-Villars.
Regularization of the full supergravity divergences without a dilaton are under study [52].
An objective of this study is to determine the extent to which, in the string theory
- context, a modular invariant regularization procedure can be achieved that preserves
the continuous SL(2, R) symmetry of the classical effective Lagrangian. To obtain the
full one-loop Lagrangian, including all finite contributions, requires a resummation of
the derivative expansion. A procedure for resummation will be described elsewhere [52].

We have presented our results for one-loop corrections to the classical general super-
gravity Lagrangian [42, 13] with at most two-derivative terms. As seen in Section 5, the
result simplifies considerably for the classical effective Lagrangian derived from string
theory, due to the the absence of a potential for the dilaton and the special form of its
Kahler potential. These features are modified when the effective Lagrangian includes a
nonperturbatively induced [72] superpotential for the dilaton and/or the Green-Schwarz
counterterm [26)] that is necessary to restore modular invariance. The latter term de-
stroys the no-scale nature of Lagrangians from torus compactification and the untwisted
sector of orbifold compactification, and generally destabilizes the effective scalar poten-
tial. However this term is of one-loop order and therefore should be considered together
with the full one-loop corrections. An interesting question, that will be addressed else-
where, is whether these corrections can restabilize the potential.

An important unresolved issue in the construction of effective supergravity La-

grangians for gaugino condensation is the correct form of the kinetic term for the com-
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posite chiral multiplet that represents the lightest bound state of the confined Yang-Mills
sector. It has recently been shown [27], in the context of both the linear and chiral multi-
plet formulations for the dilaton, that such terms can be generated by higher dimension
operators. The contribution (4.84) to the effective Lagrangian determines the leading
one-loop contribution to these operators; similar terms occur in string theory [65]. This
is one example of how the determination of loop corrections can serve as guide to the

construction of such an effective theory.




Chapter 5

Gaugino Condensation, Threshold Corrections, and

S-Duality

5.1 Introduction

As discussed in Section 2.1, a basic feature of superstring constructions in four di-
mensions is the presence of massless moduli in the effective field theory. These fields
whose vevs parameterize the continuously degenerate string vacua, are gauge-singlet
chiral fields; furthermore, they are exact flat directions of the low energy effective field
theory (LEEFT) scalar potential. Generically, the moduli appear in the couplings of
the LEEFT. For example, the tree level gauge couplings at the string scale depend on
the dilaton, 5, and the Yukawa couplings as well as the kinetic terms depend on the
T-moduli (and S through the K&hler potential) . There is mixing of the moduli beyond
tree level, due to both string threshold corrections [25] and field-theoretical loop effects.

Since the supersymmetric vacua of heterotic strings consist of continuously degen-
erate families (to all ordérs of perturbation theory), parameterized by the moduli vevs,
the latter remain perturbatively undetermined. This degeneracy can only be lifted by a
nonperturbative mechanism which would induce a nontrivial superpotential for moduli,
and at the same time break supersymmetry. We shall assume that this nonperturbative
mechanism takes place in the LEEFT and is not intrinsically stringy. This certainly ap-
pears to be the most “tractable” possibility. A popular candidate for such a mechanism
has been gaugino condensation which is briefly reviewed in Section 5.2.

In this Chapter, we wish to consider gaugino condensation in a superstring-inspired
effective field theory, with approximate S-duality invariance [66, 67] and exact T-modular
invariance. We generalize the work in ref. [67] to incorporate an intermediate scale My
(Mcona € M1 € Mgying), and we are interested in how the intermediate-scale thresh-
old corrections will affect gaugino condensation and supersymmetry breaking[85]. The
intermediate scale may be generated by spontaneous breaking of the underlying gauge
symmetry, or alternatively, by a gauge singlet field, A, which is coupled to the hidden-

sector gauge non-singlet fields ®;. In the latter scheme, A is assumed to acquire a VEV
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dynamically and therefore gives the gauge non-singlet fields masses without breaking
the gauge group. We assume the latter scheme because of its simpﬁcity. In fact, this
scheme has been seriously considered when studying the gauge coupling unification
[69]. Incorporating the intermediate-scale threshold corrections into gaugino conden-
sation is non-trivial in the sense that the field-theoretical threshold corrections at My
are dilaton-dependent. Hence, these modifications can have non-trivial implications
for supersymmetry breaking by gaugino condensation. Furthermore, a priori, nothing
prohibits intermediate scales in the hidden sector.
The outline of this chapter is as follows. After a brief review of gaugino condensation
(Section 5.2), and of duality symmetries, modular and S-duality in Section 5.3, we
| shall review >the quantum corrections to the gauge couplings in superstring effective
supergravity theories and the connection with modular invariance of the effective theory
in Section 5.4. We shall discuss our model in Section 5.5, and arrive at the renormalized
Kahler potential including 1-loop threshold corrections at an intermediate mass, and
constrained by duality symmetries. The issues related to the scalar potential, dilaton
run-away, and supersymmetry breaking, as well as the role of the intermediate mass are .

discussed in Section 5.5. Concluding remarks are given in Section 5.6.

5.2 Gaugino Condensation (A Review)

A possible mechanism for breaking supersymmetry within the framework of (N =1,
D = 4) LEEFT of superstring is gaugino condensation in the hidden sector. In this
scenario, the nonperturbative effects arise from the strong coupling of the asymptotically
free gauge interactions at energies well below Mp;. Corresponding to this strong coupling
is the condensation of gaugino bilinear (L\)h.s,. Let us briefly remind the reader the
overview of the development of gaugino condensation. It was recognized many years
ago that gaugino condensation in globally supersymmetric Yang-Mills theories without
matter does not break supersymmetry [70]. In fact, that dynamical supersymmetry
breaking cannot be achieved in pure SYM theories was shown by topological arguments
of Witten [71]. In the locally supersymmetric case the picture is rather different, namely,
gaugino condensation can break supersymmetry [72], and the gauge coupling is itself

generally field-dependent. When the gauge coupling becomes strong, it gives rise to




gaugino condensation at the scale!
- - -_— - 2
Mcond ~ MStT’ing(ReT> l/Ze ReS/2bo = Mstrin.q(R‘eT) 1/26 l/bog“:

which breaks local supersymmetry spontaneously (M3, ~ (AA)ns. ), and S is the dila-
ton/axion chiral field. Supersymmetry breaking in the observable sector is induced by
gravitational interactions which act as ‘messenger’ between the two otherwise decoupled
sectors. _

However, there are generally two problems associated with the above scenario. First,
the destabilization of 5 — the only stable minimum of the potential in the S-direction
being at § — oo; t.e., in the direction where exact supersymmetry is recovered and
the coupling vanishes! This is contrary to the expectation that the vacuum is in the
strongly coupled, confining regime. This problem, the so-called dilaton runaway prob-
lem, is present in most formulations of gaugino condensation, in particular the so-called
‘truncated superpotential’ approach [74], where the condensate field is assumed to be
much heavier than the dilaton and therefore is integrated out below M 4. In fact,
the dilaton runaway problem is perhaps a more generic problem in string phenomenol-
ogy where the underlying string theory is assumed to be weakly coupled without any
nonperturbative effects being taken into account [86]. We shall return to the dilaton
runaway in Sections 5 and 6.

The second difficulty is the large cosmological constant that arises from the vacuum
energy associated with gaugino condensation. An early attempt to remedy these diffi-
culties was proposed by Dine et al. [74], in the context of no-scale supergravity whereby
a constant term, c, is introduced in the superpotential which independently breaks su-
persymmetry and cancels the cosmological constant. The origin of ¢ is traced to the vev
of the 3-form in 10D supergravity, and is quantized in units of order M,;. Therefore,
this approach has the unsatisfactory feature of breaking supersymmetry at the scale of

the fundamental theory.

5.3 Duality Symmetries

Modular symmetry, with the group SL(2, £) subgroup of §L(2, R) duality transfor-

YThese arguments are modified by, for instance, the requirement of modular invariance [73].
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mations, written in its simplest form:

~ % 6
where af — By =1 and o, 3,7, 6 are integers,? is an exact invariance of the underlying
string theory. However, this symmetry is anomalous in the LEEFT. Cancellation, or
partial cancellation, of this anomaly in the effective theory can be achieved by the Green-
Schwarz (GS) mechanism, which is especially clear in the linear-multiplet formulation
of the LEEFT ({75, 76, 77]. In the corresponding chiral formulation, the adding of GS

counter-terms amounts to modifying the dilaton Kahler potential:
—In(§+85)—= -In(5+ 5 -bG),

where b = —%bo, and by is the Eg one-loop B-function coefficient. G = Z;In(T* +
T —T|®|?), and & is any untwisted sector (non-modulus) chiral field of modular weight
(1,1,0) in the theory. We neglect the twisted dector matter fields. For simplicity, here we
only consider models where modular anomalies are completely cancelled by GS mecha-
nism, for example, the (2, 2) symmetric abelian orbifolds with no N = 2 fixed planes,
like Z3 or Z7 [75, 76, 77]. The role of the gauge coupling and its renomalization in
superstring effective theories, and the connection with modular anomaly cancellation
are reviewed in the next section.

Recently, another type of duality symmetry has been receiving much attention in
string theories. In this case the group of duality transformations is §L(2, Z), but acting
on the field S instead of T¢, and is referred to as §-duality. Like its T-analogue, this
group has a generator which is the transformation § — 1/§, and since S is related
to the gauge coupling, this duality transformation is also referred to as ‘strong-weak’
duality. Font et al. [78] have conjectured that S-duality, like 7-duality is an exact
symmetry of string theory. More recently, there has been mounting evidence that S-
duality is a symmetry of certain string theories [79]. However, these theories all have
N=4orN=2 supersymmetries. At the level of string theory, there are two different
types of S-duality, namely (¢) those that map different theories into one another, and
(#2) those that map strongly and weakly coupled regimes of the same theory into each
another. Indeed, presently there is no evidence of an S-dual N = 1 string theory,

and it is therefore difficult to justify the use of S-duality as a true symmetry in the

2There is, generally, one copy of the group per modulus field Tt
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corresponding LEEFT. However, it has been shown that in the effective theory, the full
SL(2,R) duality transformation is a symmetry of the equations of motion of the gravity,
gauge, and dilaton sector in the limit of weak gauge coupling [66, 67]. As in [67], we
shall take S-duality as a guiding principle in constructing the Kahler potential for the
gaugino condensate, which is, so far, the least understood element in the description
of the effective theory for gaugino condensation. That is, we assume that S-duality
invariance is recovered in limit of vanishing gauge coupling, § + § — oo.

In the following we review some elements of S-duality transformations derived from
the general formalism of ref. [66] (see also [67]). In the simplest case, in the presence of
a YM field-strength F),,, the scalar fields parameterize the coset space G/H, where G =
SL(2,R), is the (noncompact) group of duality transformations and H is its maximal
compact subgroup U(1). Under the action of SL(2,R), the bosonic component of the

dilaton transforms in the usual way:

, as—tb
§—> 8 =,
ies+d

where a, b, ¢, d are real, and ad—bc = 1. The transformation of the fermions is determined

(5.2)

by the considering the invariance of the corresponding kinetic terms and their coupling
to the dilaton. One then obtains the transformation property of the supermultiplet. As
shown in ref. [67], the transformation law (B.1) can be promoted to that of the dilaton

(chiral) supermultiplet as follows:

aS(0') — b

where 1/2
_ ics + d _ _1/2
-6 = (—ic.§+ d) =£7740, (5.4)
and
s — s = €71/ %(ies + d) s (5.5)
Similarly, for the gaugino one finds:
AL — EY2%(es + d)AL, (5.6)
which implies that:
Wo(8) — £Y2%(ics + AW, (8);  U(8) — &(ies + d)*U(9), (5.7)
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where U is the composite field containing the gaugino condensate: U = eX/2H3. Here,
H is the usual chiral multiplet. Note that U and H have different Kahler weights,
therefore, U differs from an ordinary chiral superfield; in fact it can be shown to satisfy
the constraint U = (D? ~ 8R)V, where V is a vector multiplet which contains the
components of a linear multipiet and a chiral multiplet ([67, 64]).

It follows from the above transformation laws that the chiral field # transforms as:
H — (ics+ d)'/°H. (5.8)

This, together with the fact that ReS — |icS + d|~* ReS, fixes (up to an S-invariant
factor) the function f(S,5) in the Kahler potential (21): f = (§ + §)/3. Notice that
the T-moduli are inert under S-duality transformations.

There have been other recent discussions of gaugino condensation with S-duality
[80] but with a rather different approach than ours; namely, by modifying the gauge
kinetic term by replacing the gauge kinetic function S with the function § + 1/5, and
introducing a very different nonperturbative superpotential for the dilaton than one gets
using the standard approach of ref. [70] as we do here. Other crucial differences with
this work are the renormalization of the dilaton in Kahler function (including threshold
corrections), and the use of SL(2, R) approximate symmetry to constrain K in our

approach.

5.4 The Role of the Gauge Coupling

In this section, we recall a few facts about the perturbative corrections of the gauge
coupling function in the superstring effective field theory as well as the connection with
modular invariance of the effective theory.

As mentioned earlier, in our approach, the one-loop renormalization of the gauge
coupling is completely included in the Kahler potential K, i.e., the renormalization
effects are completely absorbed into K by replacing the tree-level gauge coupling S + S
in K by the one-loop renormalized gauge coupling. Therefore, it is worthwhile to discuss
the renormalization of gauge couplings in superstring LEEFTs. For simplicity and
explicitness, we restrict ourselves to untwisted sector of orbifold models.

Let us first recall the Lagrangian for supergravity plus super-YM. Recall from eq.
(2.26) and (2.28-29) that in the Kdhler covariant formalism {12] the classical superfield
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Lagrangian is given by:

L=-3 / d*0E + / d*6 (§E§ Fa(Z)WeeWt 4 5J%e"’/zvv(Z)) the, (5.9

where Z stands for the chiral fields in the theory. The first term in eq. (5.9) corresponds
to the kinetic energy for the gravity sector as well as the chiral fields. The chiral fields
enter through the dependence of the spinorial derivatives of E on the Kihler potential,
K(Z,Z). The second term describes the super-YM coupling to the theory, with the
(holomorphic) gauge coupling function fy3(Z) and the YM ‘field-strength’ superfield

W, = W, T? = (%132 - R)e™ D,

where V' is the vector multiplet containing the YM gauge potential. We shall take
fab = féap = 58,4 corresponding to the bare coupling of the effective superstring theories
where S is the dilaton/axion chiral superfield. The component fofm of the second term
contains:

[dteva <-—%Re FTr(F?) - %Im f Tr(FF’)) ,
and thus Ref is the YM gauge coupling, while Im f gives the axionic coupling.

Finally in the last term of eq. (5.9), W(Z) is the superpotential which is a holomor-
phic function of the chiral matter fields (independent of .5 and other internal moduli,
until supersymmetry is broken nonperturbatively). '

In discussing the gauge couplings in effective theories, it is important to to distinguish
between the Wilsonian couplings, and the physical, or effective couplings. In particular
in the effective supersymmetric theories that we are considering, there are powerful
statements that can be made about the two types of gauge coupling. The (holomorphic)
Wilsonian gauge couplings in supersymmetric YM theories, which appear in the Wilson
effective action, do not renormalize beyond one loop. These are functions that appear
in the Wilson effective action, Sw(u), the local functional of quantum operators. In
Sw(p), only momenta between the scale p and the UV cut-off contribute to loops.
The physically measurable ‘effective’ (or funning) couplings appear in the c-number
valued generating functional of 1PI graphs, I'; this is in general a nonlocal functional of
background fields that contain the IR momenta p < g running through loops, as well.
Right at the UV cut off, the Wilsonian couplings, i.e., the coefficients appearing in front
of the operator terms in Sy are the bare couplings of the theory. The relation between
the two effective actions may formally be written as [58]

ezr[écl 7#] e (eiSW [Qvﬂ'] ) s
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where the expectation value on the right hand side is taken in the the presence of back-
ground fields. In the supersymmetric YM theories, it is known that, unlike the Wilsonian
gauge coupling, the effective coupling renormalizes perturbatively at all orders, and that,
indeed, higher order corrections introduce nonholomorphicities {58]. The generalizations
of these results to supergravity effective theories of superstrings have been carried out
more recently [25, 77, 83, 84].

The gauge coupling in all N = 1 effective heterotic string constructions is given at
tree level by:

= koReS = k (5.10)

Otg strz'n.g

ReS is the ‘universal’ gauge coupling at string scale, and &, is the level of the affine
Lie algebra associated with the factor G, of the product gauge group. Subsequently,
we shall set k, = 1, and throughout the analysis G, refers to the IR strong group
With‘gaugino condensation. The exact (i.e., all-loop) Wilsonian coupling is given by the
holomorphic function: fir = S+ f(1), and the moduli dependent one-loop (i.e., all-loop)
correction f(1)(T*) has been determined [84] (see below). The effective gauge coupling,
with LEEFT-loop corrections to all orders is given by [83, 58]:

(J)

A2
geff(p )=Re§ + boln—+ cK + ——~Ing;5(p%)

S?ZT(T)IH det Zeff(pz), (5.11)

where, bo = (—3T(adj) + 3, n,T(r))/16x? (the YM B-function coefficient), and ¢ =
(=T(adj) + 3, n,T(r))/1672, and Z is the kinetic normalization matrix. It is worth
mentioning that in our discussion, the above result for the (physical) effective gauge
coupling is obtained by starting with the definition of Wilsonian coupling of ref. [83, 84]
with a constant UV-cutoff. It can also be obtained by a Pauli-Villars regularization
involving a field-dependent UV cutoff [77]. In the latter, definition of the Wilsonian
coupling differs from the above, and due to the dependence of the the cut off on Kéhler
potential, it is non-holomorphic. To one-loop order, one has to evaluate the r.h.s. of
the above equation at tree level, at 2-loop the r.h.s. is evaluated to one loop, etc. The
one-loop result has also been obtained in [77]. Threshold corrections due to integrating
out the heavy string modes have been calculated in reference [25]. These corrections are
only dependent on the moduli 7%, and not on the dilaton. All the perturbative dilaton

dependences in the effective gauge coupling arise from field-theoretical loop effects. We
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shall see in the next section that threshold corrections in the effective field theory also
introduce dilaton-dependent terms in the running coupling. ‘
Let us now turn to the question of modular invariance. As inputs from string theory,
for general fields ®’ (ignoring for the moment the GS counter terms), we have the
normalization matrix for the kinetic term, and the Kahler function. The former is given
’by:
Zyy = &y [[(TF + T4 + 0(8%), (5.12)
i

where the rational numbers ¢} are the modular weights of the field ®/. They depend on
the twist sector of the orbifold which gives rise to the matter fields &/, and the modulus
field T". The Kahler function at the tree level is given by K = —In(§ + 8) - 3, In(T* +
T%)+ O(®?). For the modular transformation given in eq. (1) of the text, K transforms

by the usual transformation law:
K—K+F+F, F=Y In(ivT +86). (5.13)
i
Under a modular transformation, the non-modulus chiral fields, transforms as:
®! - ci(rHe’. (5.14)
Hence, the kinetic matrix Z;; transforms according to:
zZ - (Ch'zc. (5.15)

It follows from eq. (5.13-15) thét the reparametrization induced on the matter fields by

modular transformations is given by:
Ccf = C TIGwT + 6%, (5.16)

where C{; is moduli independent.

For a generic supergravity theory with super-YM, under the combined transforma-
tions: K — K + F + F and & — C}&’ with C} holomorphic function of the moduli
®!, the Kahler invariance of the (exact) integral of the RGE’s, i.e., eq. (5.11) imply
that:

fw = fw +cF - 2—;2 ST c), (5.17)
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where ¢ is the group theoretical factor given after eq. (5.11) above. For C and F

corresponding to modular transformations, eq’s (5.13) and (5.16), this gives:

Refw — Refw — R%Zzaf In [(69T" + 62, (5.18)
with
of =Y T(®')(1-2¢}) - T(adj); T(®) = tr(T*7)), (5.19)
I T

and T,(r) are the generators of the representations of the fields ®7.

Furthermore, the transformation law (5.18) corresponds, up to a modular invariant
function, to the transformation of the logarithm of Dedekind function. In fact it will give
the complete modular dependent perturbative correction, f() to the Wilsonian coupling
[25, 76, 77] :

Ref) = —ﬁ \; o In |g(iTH?, (5.20)

modulo a moduli independent part which has been argued to be a constant in most
orbifold models [84].

In the context of the effective theory of gaugino condensation modular invariance
is restored by including factors of (¢7%) in the superpotential (see eq (2)), and in the
definition of the fields, so as to parametrize the above modular dependent correction of
the gauge coupling, as well as by introducing GS counter term as discussed in section 2-B.
However, the inclusion of the 7 factors tends to spoil the boundedness from below of the
scalar potential. To avoid this, we may restrict ourselves to the orbifold models which do
not receive string threshold corrections. These models have been classified [25, 76, 84].

For such models, the modular anomaly is solely cancelled by the GS counter term.

5.5 The Model

This model basically generalizes the model of gaugino condensation with S-duality
of ref. [67] to the caseé in the presence of an intermediate scale. Other works based
on the truncated approach have addressed gaugino condensation in the presence of an
intermediate scale [81]. However, our approach is quite different from those works in
three respects. First, the effective Lagrangian approach is adopted here rather than the
truncated approach. In the truncated approach, the mass of the composite is assumed
to be much larger than the mass of the dilaton, and the condensate is integrated out

below the condensation scale. Here, both the composite field and the dilaton are treated
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as dynamical fields. Due to this very assumption made in the truncated approach, these
two approaches are not equivalent in the case where the mass of the composite is of the
order the dilaton’s mass or lower. Second, invariance under S-duality is used here to
constrain those parts of the Lagrangian which cannot be obtained using the argument
of anomalous symmetry. Third, the (dilaton dependent) one-loop intermediate-scale
threshold corrections to the gauge coupling are included in this study.

The scheme of generating the intermediate scale considered here involves the cou-
pling of the hidden-sector gauge non-singlet fields ®; to a gauge singlet A. When A
dynamically gets a vev, ®; become massive and the intermediate scale is thus generated.
Since A is a singlet, the hidden-sector gauge group does not break. Such a scheme has
interesting implications for gauge coupling unification [69]. Since we are mainly inter-
ested in the effects of the intermediate scale rather than the effects of gauge symmetry
breaking, we choose the above scheme due to its simplicity. For consistency, the pat-
tern Meondg € My < Mstring is always assumed. Therefore, we shall integrate out the
hidden-matter fields below M; and the effective lagrangian at M ,,g Will consist of the

moduli and the gauge composites only.
| The superpotential for the hidden sector matter fields that we use is the following:

Wan = %,\"J’A@@j + %A’AC‘. (5.21)

It is worth remarking the curious fact that in all the examples of semirealistic superstring
models with exa,ctly. three generations of matter that have been studied so far [82] no
cubic self-coupling of gauge singlets seems to arise in the superpotential. However, there
are indeed cubic couplings in the superpotential that involve two or three different gauge
singlets (kos(A¥)2A? or Kop,AYAPAY with @, B, and « all different). The cubic self-
coupling is, however, not ruled out on any physical grounds. So, just to be consistent
with the current literature, one should perhaps introduce at least a pair of gauge singlets,
one of which is coupled to the gauge-charged matter fields. In that sense our case is
a toy model describing the situation where the gauge singlets have mutual couplings
comparable to our A’. However, for the general analysis of gaugino condensation in the
presence of an intermediate scale, no new feature can be expected to arise from the extra
gauge singlets as compared to our simplified case.

When constructing our model, two symmetry principles have been used to constrain

the Lagrangian: First, the LEEFT must be T-modular invariant to all orders. Second,
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S-duality is a symmetry in the weak-coupling limit (S + §) — o0, as has been discussed
in Section 5.3. Furthermore, we adopt also the point of view that the Kahler potential
is renormalized instead of the gauge kinetic term when including the renormalization
effects of the tree-level gauge coupling § + 5. This viewpoint is especially clear in
the linear-multiplet formalism of the LEEFT. For example, in the linear-multiplet for-
malism, the cancellation of modular anomaly is achieved by adding the Green-Schvs}arz
(GS) counterterm through the linear multiplet, which contains the string two-index anti-
symmetric tensor field. When going from the linear-multiplet formalism to the chiral
formalism by performing the supersymmetric duality transformation, the GS countert-
erm of the linear-multiplet formalism transforms into the renormalization of the tree-
level coupling S + 5 in the Kihler potential of the chiral formalism only. The gauge
kinetic term of the corresponding chiral formalism remains unrenormalized [77]. Hence,
we will include the renormalization and intermediate-scale threshold corrections only in
the dilatonic part of the Kahler potential. It is worth noting that in the exact S-duality
limit, in our chiral multiplet approach, the superpotentials for the matter field as well
as the chiral condensate are absent. In constructing an effective theory for the chiral
condensate field, consistent with the symmeteries of the underlying theory (modular
and S duality symmetries), we include the wave function renormalization of the conden-
sate, H, in the Kahler potential. Put differently, the usual superpotential Wyp ~ H?
is absent by requiring S-invariance in the ¢ — 0 limit; and so in the effective theory
for this field, rather than having a quantum correction of the form W, ~ H3In(H/p),
we have a renormalization of the Kahler potential corresponding to the wave function
renormalization of H. .

Let us start with the construction of the Kihler potential. We derive the Kéahler
potential K in two slightly different ways. The first derivation is straightforward: we take
the canonically normalized mass of the fields ®; (which is a field-dependent, modular-
invariant quantity) as the dynamically generated intermediate scale My, and the gauge
coupling at the condensation scale is obtained easily by running the gauge coupling
from the string scale first to the intermediate scale, and then to the condensation scale
together with the fact that the matter fields of mass M; decouple below Mj.

In the second derivation, we apply the result derived in ref. [83] for the corrections to
the gauge coupling at a field-theoretical threshold to one loop. Their result was derived

for a generic supergravity model with a threshold scale, with no reference to modular
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invariance. In a modular invariant theory, we can show that both approaches result in
the same gauge coupling, and therefore the same Kahler potential K.
The no scale case of the Kahler potential [67] (without matter fields, i.e., with pure

Eg gauge group) at the condensation scale is given by
K=—-Inm-3n(l-m?Q)+G (5.22)
where,

mo = S+5-bG+3bInQ; G = —3In(T+T); Q= |H[%5/3; —3b=2b = S—LC(ES).
(5.23)
Here, My; = 1; and notice that the UV cut-off is taken to be Myring = (S+ S —bG’)'l/2
meaning that the condensation scale is really in these units, @/(S + S — bG).
In the presence of an intermediate scale the renormalization of the gauge coupling
in mg will be different from that of ref. [67]. If we include the threshold corrections at
one loop, we get ‘

2 -—
mo—m=5+5-bG+3 b In || fp<in (HEFITZBGN | (594
Mst'ring MI

and the Kihler potential at the condensation scale is:
K=—-Inm-3mn(1-m?Q)+G. (5.25)

Here, b> and < are proportional to the B-function coefficients above and below the

intermediate scale, respectively:
b> = (3Cg — Cn)/2472,  b< = Cg/872, (5.26)
where Cg and Cjy are the quadratic Casimirs:
Co=T(adj); Cum=YnT(r); T(r)=Ten(T?), (5.27)
T

with 7 labelling the representations of the gauge group, and n, being the number of
fields in the 7 representation. As expected, in the absence of My, i.e., for 8~ = b<, we
recover the Kahler potential of ref [67]. Let us briefly note that the general form of the
Kéhler potentials (3) and (6) is simply obtained by starting with the modular invariant
tree level Kihler potential (supplied with the appropriate GS counter-term, G) which

includes the kinetic term for the condensate field, H:
K =—-In(§+ 5 -b5G)~3In(e~%? - (S, 5)|H[?),

36




and imposing S-invariance, which gives f = (S 4 5)!/% up to an S-invariant factor.
Finally one replaces S+ 5 — bG with the one-loop renormalized effective coupling at the
condensation scale, which we have denoted m = 2/ ng H(Meond)-

The modular invariant scale M; has to be detefmingd — it is the modular invari-
ant, canonically normalized mass of ®, and not simply the vev of the gauge singlet A,
which has a nonzero modular weight. Before computing Mj, let us make the distinction

between the GS terms above and below the threshold, namely,

G>
G<

—3In(T + T - |47 - S |2:/%),
—3In(T + T - [{A)]?). (5.28)

Indeed, the difference arises only due to the change in the spectrum as the threshold is
crossed. ‘We analyse the theory with all the massive fields (®; and A) “integrated out”

- at the condensation scale, so that in the first line of eq (5.28), these fields are replaced
with their vacuum expectation values to obtain G< in the second line. We discuss what
kind of an approximation this replacement entails at the end of this section.

It is straight forward to show that the canonically normalized mass is:

P ' )\A‘ZeG/E! b -2
M? = 5 (K9?)22A)% = ' ( ) ) 5.29
1= (B7)A 9(s+ 35— bG) 1+.<3+.§—bG' (5-29)

Modular invariance is automatic due to the appropriate G-S terms, provided that A has
the following modular transformation property: A — |i7T + 6|~ 1A, i.e., has modular
weight —1.

We now derive the above Kahler potential by a different argument. It can be shown
[83] that in the presence of a mass, in a YM + supergravity effective theory, the gauge
couplings receive threshold correction at a scale Ay given by

11
9:(p<)  9%(p>)

> P2> < A% > <\
boln-p+boln—2—(c —C )IX
1 P
1 ] . _
- 53(T(adj)” - T(adj)<)Ing™>

1 r
+ 53 Z T(r)Indet Z7,, e (5.30)
The group theoretic factors ¢> and ¢< are respectively given by:

¢ = (=Cg+Cp)/1672; < = ~Cg/167%
¢ —c< = b3 —b§ =—3/2(b> —b<) = Cpr/167° (5.31)
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The Kahler function, wave function renormalization matrix Z of the massive fields, and
the (effective) céupling g on the right hand side of the above formula are all tree level
quantities at the intermediate scale. The derivation of the above equation assumes non-
canonical normalization of the tree level kinetic terms in the supergravity Lagrangian.
In particular, modular invariance plays no role, and the intermediate scale is not fixed
by modular invariance and canonical normalization. Therefore, we take A2 = |AA]?
as one would in the noncanonical normalization. The Kahler term in eq. (5.30) must
contain the contribution of the massive fields, i.e., it is Kiee = —In(S + S — bG) + G,
with G given in the first line of eq. (5.28). For the UV cut-off, we use Mtring and
for condensation scale M2 , = Q/(S + S — bG), as before. The normalization matrix
for the @ fields is given simply by the Kdhler metric components KI>J" One only finds
contributions from the diagonal blocks: Z;; = 3[1 4 b/(S + § — bG)]e®/3. Hence,

b
. G/3 2
QZ_:T(T)III det Z7, e Q;T(T);hl [3‘3 (1 tTITo bG)],

b G/s]2
Z:T(r)nrln [3 (1+ S+§—bG)e

(b5 - b8)1n [3 (1 + 'S_I?bfb“é)) eG/3]2 , (5.32)

Finally, notice that in our scheme of generating the intermediate mass the T'(adj)” —

T(adj)< = 0, and thus the corresponding term in the threshold correction will be absent.

Making the above replacements in eq. (5.30) gives:

s - s A2 o [(Q/(S4+ 5 -0G)
S5+5-4G — S+38§ bG+2[ b01n<———M3mg b 1In AP

(b3 - b3) [G In(S+5-5G) -1 ( e )]
e g5 — Dg —In + —_— — in
9(1 'l S+ gb._bG )2

IAAJ2S/3(1 4+ 5 +;_6G)'2)

. S :
S+5-bG + 3b ln( SIS 0N

string

Q
+ 3b<In R 5.33
(|)\A|2ec/3(l + S+;—bG)_2/9 ( )

which is precisely the same as in eq. (5.24). To summarize, our Kahler potential is
given by eq. (5.25) and (5.24) which is the extension of that proposed in ref. [67].
This extension consisted of the renormalization of the gauge coupling in K, including
the one-loop field-theoretical threshold corrections around M;, the modular invariant,

canonically normalized intermediate mass scale.
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A comment on integrating out the heavy fields and replacing them with their vevs is
perhaps in order. We have obtained the renormalized Kahler function at the condensa-
tion scale. Since the masses of the heavy fields (O(M|)) are, by assumption, much larger
than the condensation scale, we must integrate out all the heavy fields. We assume that
the gauge-singlet A is heavy, with M4 ~ O(M;) > M ong; t.€., the self coupling of A
in the superpotential W(A4) = -’;—’A" is sufficiently large. Then it is easy to show that if
we integrate out the fields A and ®* at tree level, the following terms are generated in

the effective potential:

Veiy = MK [(Kﬁafx’em)lanz"«?“zfa,,z‘a"zﬁ+(Vava)|— ((Va}’i’,-ﬁ)lauzia“éj-i-h.c.)]
(M72K*® K5, K 43)|0,2° 04370, 20" 2™. (5.34)

The quantities denoted by a vertical bar are evaluated at the vacuum (a = (a) , ¢* =
{(¢) = 0). The last line follows from the fact that V, = 8V/8a vanishes at (A). Since,
the effective potential (5.34) that arises contains only 4-derivative couplings, at energies
well below M4, i.e., at the condensation scale it can be ignored, and in our analysis,
we can replace the heavy fields with their vev’s.
We close this with the following remarks. We notice that a constant term is generated
in the superpotential, namely
= —(A)°. (5.35)

In essentially all models of gaugino condensation, introduction of a constant super-
potential is necessary for breaking supersymmetry. However, the constant is usually
either introduced in an ad hoc way, or its origin is from compactification of superstrings.
Namely, the vev of the compactified components of the 3-form, Hjy,, from 10-D super-
gravity [74]. In the latter case, the constant has the undesirable property that it is of the
order of Planck mass (thus breaking supersymmetry at Mp;) and that it is quantized,
presumably in units of Mp;. The above constant c is clearly much smaller (of the order
of Mj) and it is continuous. The second remark has to do with the fact that we know
[see eq. (5.28)] that |(A)|? < (T + T). Further, we know that the vev of T is not deter-
mined perturbatively. The nonperturbative superpotential for the condensate is what
will eventually allow us to fix (T'). So, how are we justified in integrating out A but not
T? The only justification we offer is the fact that the 7 modulus remains massless to all
orders in perturbation theory until supersymmetry is broken (nonperturbatively) by the

gaugino condensation (or otherwise), whereas A is by construction massive (M4 ~ My).
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5.6 Scalar Potential and the Vacuum

The dynamical fields at the condensation scale in our model are S5, H, and T. The

scalar potential is given by:
V = X [KI(KW + Wi)(K;W + Wy) - sWP] (5.36)

and the K&hler metric written in terms of m = 2/g2 ((Mcona) [eq. (5.24)],Q = |H|%eC/3,

and their derivatives with respect to the scalar fields is given by:

Kiz=m 2 {mmsi + m(§ — Dm+ (€4 ) (maigs + maq:)
+ 3mifgi; + (€ + )aigs] + m*Gizl, (5.37)

where
z
bl

— .1/3 -
z=mlQ, £=—"—

=1-2¢/3+€%/3,

S]]

and

m;=0m, q=InQ, ¢ =01nQ, et

Notice that G; = 0 unless ¢ = j = ¢, mp; = 0, and ¢, = 0. The nonperturbative part of

the superpotential is of the form

k
Wnp = ae~5/by" (111 %) , Y =HePT (5.38)

with n < 3 (the Veneziano-Yankielowicz superpotential is the special case of n = 3 and
k = 1). The reason the exponents n and £ are introduced is because, as stressed earlier,
it is the Kahler potential (5.25) that includes the gaugino cond_ensé,te wave function
renormalization, while the superpotential vanishes in the weak coupling limit.

Is the potential positive semi-definite? Numerical analysis indicates that the answer
is yes. Analytically, this would be obvious if (W) could be shown to be zero. In fact,
numerically® we find that at the minimum of V,

o (W)~0.

*m= 2/ggff(Mcond) — 0.

~To see that (W) = 0 at V = 0, guided by the second numerical result above, we
expand V in powers of m in the limit m — 0. A lengthy but straightforward calculation
shows that when (W) = 0, V ~ O(m)+ higher order as m — 0; and for (W) # 0,

*In the numerical analysis, the value of (Ret) was fixed and s and h were varied (see later).
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0 Re(S)

Figure 5.1: The boundary between the kinematically forbidden (below the curve) and

allowed regimes contains the nontrivial minimum of the scalar potential V' (s, k).

there would be a pole ~ 1/m in V (this is because the threshold corrections at M
cause the Kahler potential to be no longer exactly ‘no-scale’). No such pole was found;
the minimum of V (s, k) corresponds to the minimum of m(s, k) (which is zero). The
analytical asymptotic expansion of V in m, and the numerical results are compatible only
for (W) = 0. The reality of the K&hler function, and the hierarchy M ,nq < M; < My

restrict the kinematically allowed region of the parameter space such that:*
a<V2t, Xa/3>h

(for simplicity, we take both s and h to be real). The kinematically forbidden and
allowed regioﬁs are typically separated as shown in Fig. 1. The boundary between the
two regions contains the nontrivial minimum satisfying m = 0 and (W) = 0 (as well as
the trivial minimum (s, k) = (o0, 0)).

Both m and (W) increase monotonically from zero in both A and Res near the
vacuum®. The plot shown in Fig. 2 shows that V(s,k) also monotonically increases

in both directions, and particularly sharply in the h (condensate) direction, indicating

*Hereafter, lower case letters indicate the scalar components of the corresponding superfields.

5¢Vacuum’ here refers to the nontrivial minimum of the potential.
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confinement. In the direction of the dilaton, the potential increases quadratically as a
function of S. This can be seen by looking at the S-dependence of V(m =~ 0). Further-
more, we notice that the dilaton does ‘run away’, but in the correct direction! Namely,
to some finite value of s (which separates the kinematically allowed and forbidden re-
gions, at the nontrivial minimum of the potential). This is in addition to the usual
runaway behaviour to s — oo, which is the susy-restoring and deconfining limit. Also
interesting is the behaviour of m = 2/ ng f(Mcond) near the vacuum, which as noted
above, is m — 0 or gesf(Mcong) — oo (while g;; remains finite). This is exactly what
one expects physically, since the condensate — the bound state in the strong coupling
regime — is expected to correspond to a stable vacuum solution. Notice, however, that
the relations (V) = (W) = 0 imply that supersymmetry remains unbroken.

So far, the role of the intermediate scale has been masked. In the following, we
show that in the effective theory that we are considering, the free parameter g in the
nonperturbative superpotential (5.38) is intimately related to the intermediate mass.
Furthermore, we shall see that the intermediate mass plays a role in allowing a sensible
hierarchy between the Planck scale and condensation scale, consistent with the phe-
nomenologically acceptable values of {(Res) and (Ret). For this, we shall give a rough
argument below. Of course, the obvious effect that can immediately be associated with
the intermediate mass is the shift it causes in the condensation scale, since in its presence
the gauge coupling runs differently, as discussed in Section 5.5.

In the presence My, the vacuum is characterized by two independent conditions:
m= 0’, (W) = 0. (5.39)
These two conditions together imply that:
(t+1- |a|2)57’/2p2’><1x7,“ = 1. (5.40)
Here, Ab = b> — b< and Ab = b — b<. This can be re-written as follows:

—~ -1
A _ Ab/24Ab
s+35-bG=5b [%"-’u“ﬂ‘b (t +1- ia|2) /288 _ 1] : (5.41)

This equation should be viewed as a relation between s, ¢, and g in the vacuum of the
theory. Is this compatible with phenomenologically acceptable values, (s + 3) ~ O(1)
and (t+%) ~ O(1)? If in eq. (5.41) we set {t+%—|a|?) ~ 1,% which is also the assumption

®Notice that this does not restrict M; since A can be chosen small enough to give the assumed

hierarchy M; < Mpi.
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Figure 5.3: The runaway behaviour of the dilaton in both directions. In the left direction
the minimum corresponds to the effective coupling becoming strong. There, the potential

‘runs’ into the kinematically forbidden region.
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in the numerical analysis, then it is easy to see that in order to get (s + 3) ~ O(1),

somL (5.42)

should be O(1). That is to say, for 5</Ab of order unity,
i~ Ma) ~ O(My). (5.43)

The free parameter of the effective superpotential for the condensate is, therefore,
‘locked’ to the intermediate mass. This rough argument also shows that, with mild
(O(1)) fine tuning, it is at least possible in this scheme to obtain a phenomenologically
acceptable value for the dilaton, and at the same time achieve condensation and gener-
ate the desired hierarchy. 7 To see this, consider eq. (5.40) again which together with
eq. (5.43) tells us that:

[(h)] ~ exp (—_—%t—gz) p ~ exp <——<§;—s_)) M. (5.44)

Again, we see that the parameters, which are admittedly model-dependent but are nev-
ertheless, dictated by the presence of the intermediate mass and the choice of the gauge
group can allow for a condensate whose vev is suppfessed compared to the parameter u

which by requirement of phenomenology is of the order of the intermediate mass.

5.7 Conclusions

Perhaps the most peculiar feature of the model of gaugino condensation that we
have discussed above is the running behaviour of the dilaton, which is schematically
shown in Fig. 3. The finite value of ReS that the potential “runs” to is, as noted
earlier, on the boundary of the kinematically forbidden region, and this value corresponds
precisely to 1/gcsf(Mcong) — 0. We interpret this running of Re S in both directions
as a manifestation of the approximate S-duality which constrains the Kihler potential
which we have started with — the behaviour of the strong and weak coupling (small and
large §, respectively) regimes are alike. The intermediate scale serves basically to shift
the renormalization running of the gauge coupling and allow for a hierarchy between

the unification and condensation scale by shifting the condensation scale and/or the

"We hesitate to call this stabilization of the dilaton because the finite value of (Re S) at which the

potential runs to a minimum is at the boundary of the kinematically forbidden regime; V' is not smooth

there.




unification scale (see ref. [69] for detailed discussion of the latter). The intermediate
mass (or rather, the vev of the gauge singlet) was assumed, but of course a realistic model
should dynamically generate such an M; consistent with phenomenology as discussed
near the end of the previous section, and thereby giving a phenomenologically correct
hierarchy of scales. This is of course a more significant issue in the models where
supersymmetry is broken by gaugino condensation at the scale M nq4.

However, as we have seen, neither S-duality nor the 1-loop corrections to the dilaton
in K (including the dilaton dependent threshold corrections at M; are enough to break
supersymmetry in such models. If one is to include any perturbative (1-loop) corrections
to K, results such as those presented here or in ref. [67] seem to indicate that it is more
meaningful to include the full renormalization of the Kahler potential, and all other
terms that arise at 1-loop in the supergravity and super-YM effective action which are
relevant to gaugino condensation, such as

[ o il g;“:f\ Y(ReS ) {WaW,2. (5.45)

These have been calculated as discussed in previous chapters, and work along this di-
rection is under progress elsewhere [85]. Indeed, as it has been argued by Banks and
Dine, if stabilization of the dilaton (and other moduli) and supersymmetry breaking are
really one and the same phenomena, as they appear to be, then stringy nonperturbative
corrections to Kahler potential are crucial and should be included [86]. A realization
of this proposal in the context of linear multiplet formulation of gaugino condensate
appears in ref [87]. Of course, the exact form of these nonperturbative corrections are
not yet understood. But one can perhaps expect that the recent developments in string
dualities can shed some light on the latter, and on the stabilization of string moduli and

supersymmetry breaking.
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Appendix

A. Relations among operators

In this appendix we derive relations among the various operators that appear in
the traces needed to evaluate the one-loop effective action. We adopt the gauge sign

conventions of [42], [62]:

Dy, = V,+id,, Au=T.AL TZJ_: (Tij)* ’
'Duzi‘ . = 6/.1.21. + ’I:AZ(TaZ)i7 Dﬂiﬁl = auzﬁ - iAz(Taé)'ﬁ,
1 .
Fm/ = -{[Du’Dv] = VMAV - VVA/‘ + 7’[‘4“’ A"]’
Fi, = V,A2-V, A% - AbAC (A1)
Our other conventions and notations are given in Section 3.3.

We first consider constraints on covariant scalar derivatives that follow from gauge

invariance. We define
Koy = %A’,ﬁj(Taz)m(sz)f , D, =Ki(T.2), D= %Dma,
fab(z) = 6abf(z)1 f=z+y. (A2)
The classical scalar potential is V +D. It follows from the gauge invariance of the Kahler
potential K that:
6. K = KiT.2) - Ku(Tu2)™ =0, D;D;D, = DzD;zD, =0,
KinDa(T.2)™ = KjaDi(Taz)!, DY (T.2)™ = D™(T,z)',.

Kij(Taz) + Kj(To) = Kin(Ta2)™,  DiDj(Tuz)' = —Rjni(Taz)™, (A3)
where K;; = 0;0; K = 0;K;, and the second and third lines follow from the first by taking
successive scalar derivatives. Here 8y = 8/92!, I = 1,7, Dj is the reparameterization
covariant scalar derivative, and R;z ;5 is the Kahler curvature tensor. Indices are lowered

and raised, respectively, with the Kahler metric Kz and its inverse K. Similarly, it

follows from the gauge invariance of f that
6af = f:i(Taz)i =0,
fiiTzV P = —fiDi(Ta2)' 1, fij(Taz)(Toz)' = — fi(Taz)’ Di(Thz ),
FiFa DT = —f fam(Ta2)™ = =F fi(TazY,  fij = DiD;, (A4)
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and from the gauge invariance of the superpotential W that
Ai(T,z) = Ap(T.2)™ = D,A,
Aij(Toz)' + AiDj(Toaz)' = DoA; + K;a(Tu2)™ A,
Aijk(Taz)i + A,-jDk(Taz)i + Aiij(Taz)i + Ai.Dij(TaZ)i
=D Ajr + K’jm(Taf)mAk + A’km(Taf)ﬁA]’. ' (A.5)

The tensors Aj;,..;, are reparameterization invariant covariant derivatives [30] of A =

eXW. Using (A.3) and the definitions (A.2) we obtain
Kab = Ko = 2D, K¥(Kas = Ki) = ~525C8ID.D", (A6)

where Cg ) is the Casimir in the adjoint representation, ¢gp. are the structure constants

of the gauge group, and
(sz)’D (T, z)’ (Taz)’D (sz)’ + teqpT° z)J
Dy K j(TaZ)™(T%2) Di(Tt2) = DyKomj(TaZ)™(Tt2) D(T2) — §cg)pava. (A.7)
Combining (A.3) and (A.5) we obtain
A;DYT.2)™ = A D™(T,z) = —AT(T,2)! + A™D, + A(T,2)™,
AiD(T,2)f = A;D™(T.z)* = AxD¥(T,3)" = -AK(T,2)" + A*D, + A(T.2),
iy ) 1 -. .
DA% A; Di(T,2) = ——§A”kA¢-jk(Taz)’D“
1 ; a =\ 17 a =\ A%
+ 2R]mkAJ’°A,~D (To2)™ + DA, AY + D (T,5)™ AL A;. (A.8)

To evaluate the one-loop effective action, we find it convenient to introduce the scalar
field reparameterization covariant derivatives of the variable p, defined as the squared

gauge coupling:

1 fi i < iR
P=; = 92, Pi=DiP="'2—'§7 p' = K" Dmp=K"pg,
fifi
pi; = DiDjp=-— (fzj ==L
1-
Dip;i = pri = —;fmpi = 22pmpsi,
D; (wzpipi) = 2%p'p;j;, Dnm (zzpipi) = 2% phpi,
D; Dy (wzpmi) = 2%p'pij, elc.,
frmii = Rinife = —28%pmi; — 22 Fmpi; — %{—m (A.9)
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It follows from [D, D;)(z%p;p*) = 0 that

Fool i+ %fkfjpki = fup ™ + %fkfipkj- (A.10)
In addition we introduce the variable
a=A+ £—A,~ = e (jy — ), @iy, =Di - Dja. (A.11)

The variables a,p;; and 1 — z%p'p;, and all covariant derivatives thereof, vanish for
effective supergravity theories obtained from superstrings in the classical limit: f(2) =
s, K=—-In(s+3)+ G(2,Z2+# s,5), W, =0.

We will also need the following identities involving the Yang-Mills field strength and
the space-time curvature. It follows from manipulating products of the antisymmetric

tensor €,,,, that

. 1 — — 1
Mln sz = §g:Mlu Mi,, - MIILPM;U’ M;w = §€uVP<TMz'pa7
7 VI ¢ e v 2 a v
Eo, RS R = —(Fo, ) — (Fo,F) +4Fg,FEFFY,,
(Fe,Fv)? = _z(ngFg‘”)z+4F;,,F,,,,,FWF,,W, (A.12)

where M:;,, is any antisymmetric tensor-valued operator. Using the first of these gives

TrA* B,,C,o D7 = -‘lITr [(D-4)B-C) - (4-B)(C-D) - 4B,y C,uD*],

TcA* B,,C? D,y = %Tr [(A-B)C- D)+ (D-4)(B-C)~ 4*B,,C,,D”],
TrA” B#C,, D, = %Tr [(A-B)(C-D)=(D-A)(B-C) - AB,,C,, D],
PR = oFeFe. (4.13)
It follows from the the symmetry properties of the space-time Riemann tensor that
Pporr FL7 F#° = -;-TW v FeFe (A.14)
and, using (A.12) with My = F, M, = F, My = -F,
o %TF:pF;‘p - %rw P EWFS (A5)
In addition:
Fo[D*,DFf = cacFl, FHF?,
+riFe FrP — -l—rw, S Sl S (A.16)

vippta 2
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It is convenient to isolate terms that do not contribute to the S-matrix, using the

classical equations of motion:

gL = —-K1;D,D*27 —V; - lDa(fl’az)Jf\"IJ - -1-f1 {K, 1,J = {i’j ;
z 2 W 7,7
@9 oo = @0 H e = D" Fous+ P
+%Kﬁz (Duz™(Tu2)’ = D' (Tuz)™) - (A.17)
The first of these gives, in partigular (M = myiny, M 2 = mymy )
L f—c- * = V2% — iV - 22V + = (B, + id Yz + i0¥
i (ﬁ ) PpWV + — (Byz +19,y) (8z + i0"y)
—2x2p,~jDusz“zi +2ze7 K (2(1A - &iAi)
+2z (f/+ M: - Mf) ,
—%D“ziﬁi +he = (QZ—""D#z"KmD"DVzﬁ + h.c.) -~ -Vxﬁv
+w (V + sz) + Mﬁ[’f’ + total derivative,
z 4 4z
E%D“(Taz)lﬁ I = 9%2”5’2 (QA’ij#z*’DuszaD,-(Taz)f +8zDM;

—2D"D Ky — 7K [D*(Tu2) A A7 + hoc]

+ (Js',-ﬁffjﬁ,mzﬂ' (Ta2)™ [(Ta2) DuZ™ + (Tu2)"D,7']

+h.c.)

- a;”ﬁ D*Kjm [D*2(Tu2)™ + (Taz) D4 2" )

+bzD* [Duzkpjpkjlfim (Dyfﬁ‘(Taz)i + D#zi(Taz)’h) + h.c.]

+total derivative.

(A.18)

We absorb a part of the one loop correction into the Kihler potential; a shift § K in the

Kahler potential gives a shift Asx £ in the Lagrangian:
igAgKﬁ = —0KV +8Kip (e K A'A™ + D, 2'D*7™)

va .
- {«51{,- [e-""A"A + Q%DQ(T“Z)’] + h.c.} : (A.19)
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Taking 6 K = D, the last equation in (A.18) can be written as
a+ bz?pip; . I _ 2 i 2 : -K - 2 2 _ Y
———WD (TaZ) L[ = (a + bz p pz) —\-/-g:A'DL: + 2D [6 aa — 3M¢ - 3M,\ - V]
+ [KinKim D2 D27 (Tu2)™(T.2)" + hoc |
-ally a |5~ 7 =
+zx—2D [Ix"ﬁ(Taz) D" — h.c.]
~—D[0,20" + auyaﬂy])

+b2D" [Dy2* 07 pij Kim (Du™(Taz) + D2 (Tu2)™) + hic |
+total derivative. (A.20)

B. Matrix Elements and Supertraées

In this Appendix we list matrix elements of operators appearing in Egs. (4.72-4.75)
and traces needed to evaluate the divergent contributions to the one-loop effective action
(4.76). Notation and conventions are defined in Section 3.2, and the relevant part of the
tree Lagrangian [42], [13] is®

1 - 1 - ) = z 1% Y= uy
—\/—Eﬁ(g,h,f) = -2-7‘-*-}\.sz ZDuZ - ZF;“,F -ZF“VF -V
@y zr (o i L o Py
t5APA+ i Kin (XL Pxi + Xz ﬂXR)
S R L
+eK/2 (Zf,'A'ARAL — A XX + h.c.)
1

-3 - o 1 v z
+ (2)\% [QIxzm(TaZ')m - %fipa - ZO'#,,F:' fzjl XL + h.C.)

+Ly + four — fermion terms,

. %Cw = Ll-ltﬁm/"(i P+ Myy sy, — i‘@[;/ﬁ’“(i P+ My, - [giﬁw””'r”/\aﬂi’p
+9, PEP K" LX* — %%7"75/\%4 + i,y L m; + h.c.] ,
M = (M) =K (WR+WL), m;=eK24; (B.1)
If we define
STrF = TrFp — zll—TrF@ — 2TcFy, + 2TcFop, —%T_ = \/5!;2—:2:/’, (B.2)

8In I we defined €°!® = 1; here we denote by €*”?7 the covariantly constant tensor. With this

definition there is no factor g‘% multiplying the FF term in the Lagrangian.
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where TrFp is defined below [see (B.24)], the effective Lagrangian (4.2) is

1 A? In A2
T = ST + g

In the following subsections we list the matrix elements that were not included in I;

Ly Lo Lo m) 1]
[STr(zH s7H + GG >+T, (B.3)

the subscript 0 refers to the contributions without the Yang-Mills sector that are given
in Appendix B of I, except that ordinary derivatives are replaced by gauge covariant
derivatives.

- The contributions to STrH from each supermultiplet have been given in [45]; below

we list the analogous contributions to STr -S$TrG?; we drop all total derivatives.

Boson matrix elements

As in [41] we rescale the quantum gauge fields: A, = /z.A,. Then the operator Hg

can be expressed as

Z¢Hy = H+X+Y-N-S—K,
8T ZsHo® = 2'Hpjz? + B X, ,0h*° + 28#'Y,, 12" — A*N,, AY
—2A8S, 12 — 20 K, , AP, (B.4)

with, in addition to the matrix elements of Zg given in I,
Zz',au = Zuu,ap =0, Zau,bu = ""g;wéab' (B5)

Using the results of [41] and Section 2 above, the elements of H, X,Y are modified with
respect to those given in (B.3) of I by

Hip = (Ho)1i+ D1+ qiqes +v10— VuiV¥)y;, ¢ = _ﬁ(Taz)z,

a g ALY ey — Ky, = Yy =
q; ﬁ(T 2" Kim, Vim = vmi = (V,V¥#),, = (VLV*)., =0,
flf-] 1 v ra s Uy e
ViV = aron = gofihs (FEFL FiFEFL),
V.V# . z wv re s UV Ta _ Z,]
v = V) = =geu (FEFLFFLFL), 1T ={
1 - g 1 a ap fa Y
Y;u/I = _5 (DuDu + D,,D#)IXIJZ - ’8—fIF F * g;wfIF Fa’p’ IN] = 7 ] s
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1 1
X;w,pa = (XO)uv,pa - 2P#VyP0D + -2-PHV,P€7'7:/C\IT'7:(IAT + Z (prFaw + f:pfaua)

1
—1_6_ (F:AfapAgUO + f:AFapAg;LO' + f:Afaa)‘gyp + ngfa,a-,\gup) N
(B.6)

where f; = fi(f;) for I = i(3), etc.. The potential V = V + D now includes the D-term
D defined in (A.2) above:

Di = 5 fiD+ D Kin(T*)",
Di = S hPD— s fDuT 5 — 5y D Kin(T )
+%(Taz)jk'm(T“2)ﬁ + %DQD,-(T“z)j ,
Dij = ap;D - gizapa(fiffjm + fiKm )(T°2)™
+2 K ()™ Kin(Ta2)" (B.7)
The additional nonvanishing elements of Zg He: are —~Nypy 5., Sap,1, and Ky ap, with®

: 1 .1
Noppr = Guv (lCab + Ko — —fapd}'{“) + 2cach§U + 5 (Sf““i’fbu o _ faypfbu ﬂ)

2
z? P p 1 po
_‘2“PiP (Faup]:bu + FarpFp,” — EQ#V]:GPO']:b )
Viz  0,z0°z 08,y0°y
~ubat ( 2z 42 + 2z2
v.,8,z 0,28,z 9,y0,
+6ab ( “x B uxzu + #Qyzz y + Tp,u) 3

— .2 k_ Ouz K z - v_J
Sau,j = ii'ﬁh]}g [D”_(Taz) - *é;v—(TaZ) ] - ‘é‘PIJ (fay#_ F lfay#) DYz
307z

1 V7% . T
+Z;fl [D faup. + "_2'(1:—' (]:auu F 1fauu):|

) ) .’ ',ZI
+2DVZI\ -KIKFap.m Ia J7 K= { " )
5,7,k

i 1 N

K., ) (DZ]: o+ DyF, #P) + 1 (g wo D" Fg, + 9D F, :u)
0%z “ 30°% - o

_g (gup}-av + gVP]::u) + E_ (gup}.a-ay +gupfau)

1 iy o\ i
. (auyfyp +0,972,) - g Fe

&

9y
P4z’

(B.8)

°In [37], [41], there is an additional graviton-gauge mass term Quu,qap; this term drops out when the

prescription (4.23) is adopted.
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In writing the above expressions we used the notation in (2.2-3) and the first identity in
(A.12) with M,y =

Fo, My = F, M2 = —F,. The inverse metric Z~! must be included

in evaluating the traces of these operators, which are defined such that

TrHe =
TrH% =

TrH + TrX + TrN,

TrH? + TrX? + TrtN? 4+ 2T1Y % — 2TrK? — 2Tr5°. (B.9)

In the expressions for the traces given in Appendix C of II (the chiral-gauge sector is

given below) space-time indices are raised with g#¥ and scalar indices are raised with

_Kiﬁz

Finally we need

oy

uv

(6.);
(62),

(G‘C‘;") aB,y6

<Giy) ap.bo

(¢z)...

(6%) s,

gG)
(G‘“’ ap,af

(Gz +Ge + Gg + ng + GG’z + GgG)m, ’
z I ) i’j
(G.), £iF2,Ds(To2)!, 1,7 = {i .

( 8‘“’).1]’ Iv']z{:',_"yn

%7
1
G
(Go‘“’ ) afs T3 4 [F Farvgps

+F o Fasvgsy + fﬁﬂfawgaa + fgufacsyga'y - (g V)] s

9o <Cach + = [faku]:b}‘y - Fahyfb)‘u]) + 6ab7'op;w
vV,.0%y  0Pyd.z
—-6ab (Gpuo‘}\ [ £ - 22:; - (l‘ A V)

2z
1
~bab (Oxyakygpugw + 090, y9ou + 0pY0uyguo — (1 < V))

1

+'2' [faauj:bpu - fapu]:bou + szPiPi (]'-au.pfbua + ~;Ea,up-7:~.blw')

—(p < V)]

(Gii)l,ap =-D, [gpl (fayp + ij-aup)]

3)\
—GPIW)\_&E_g’fI (]:a,u :FZJ: ) ,u<—rI/), {

-4(G%) fos zpr

1 &ty
Z[ (ngDu e

=+

|72 Fuss + FhuFacs — (1 o V)|, I
pr,ﬁ)\> Faar
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My
+ | 9apDyu — Tepua&\ Fapy — (p = v)],
z
Ny | oy
(Gfg)aﬁ,ap = (gﬁpD# - g@mm) Faar + (gapD# - Eeppa/\ Fapy
oy
—9ap Dufapu - 2z eppa)\f - (,u g I/). (B.lO)

Fermion matrix elements

As described in Chapters 3 and 4, we take the Landau gauge condition G = 0, where

G = —(iP- M)y, - 2P KinBX"+ P7 KinLX')
z ) a
+50°AF;, + 2imrx’ — vsDaA?, (B.11)
which we implement by introducing an auxiliary field a. After an appropriate shift in

the gravitino field 4, we obtain for the bilinear fermion couplings of the gravity sector:

1

—5loe ~ 5P D~ M), — &l P+ 2M)e

+izd, FEA® = 2, (D*E Kim LX' + D*2' Kim RX™)
—-a (2 YPAaFy, — 2imrx! + 75DaA°> . (B.12)

To obtain the ghostino determinant we use the supersymmetry transformations [42]

i6x’ %(?ziR —im'L)e, 6™ = [E(Péﬁ‘ll - zmﬁ‘R)} €,

. 1 e T B
6%, = (Dy= 5y, 6N = [47 V' F, - 51D ] e, (B.13)
yielding
2 956G 1, _ o
D+ Hgp = e = D“D#—E'y“'y [Dy, D] — [P, M) - 2MM + wm'm; + D

. - =M : z z o 1 v o 1 a
+2im; PETL 4+ 2im; PR + §crapFa"[Za“ F, - ;75D ]
. .1 _ .
~-D,2'K;»D*™ + 575[7“,7”]D,,2m1{5m’1),,z’. (B.14)
The metric for the gaugino field, as obtained from the classical supergravity La-
grangian given in (3.23), is Z,, = é4z. Following [37] we rescale the gaugino field

A = /=), so for the rescaled field X, Z,; = 8,;. The matrix elements of Mg are given
by (4.32), (3.25) and (B.9-10) of I and by

M = (M) =émy, my=-—




1_. ”
M; = g2t (mbI + M&UGW) ’ MaI = '2' ad (mya + M.‘I‘a”w)’

) 1 . —\7R *
Mai = Mie = = (%ﬁpa - 2Kim(TaZ) ) = Maz

; - )
My = My =-Zp(rrxime), 1=,
4 i
M2 = —M;:maa-}-Mg:UW, QM;":—M;:T?LM%-M;‘:O‘W,
~ 1 v 1 1 v
Mag = —Mag = \—/_;’Da, My = MEY = —5.7:;‘ R (B.15)

with covariant derivatives as defined in (3.35) (see also section 3.3)
D#m’\ = —eK/2 ('D#Eﬁ‘ [@n — fi'ﬁz] + D#zi [;—i& - xpikﬁk}) ,
z
-l .apy = .apy P
DpMa.A = -DpMa.A - ZE?MGA’)’S’ -DpMAa = DpMAa + ZEMAO.‘YS’ A= ,m,a,

DPM:Z'V = _DPMi‘:zU = ('DPM:?V)* = (DpMi‘:zy)*
_i:— [Pi (Dp + ZQ?—) + Dpszi_—,'] (.7:0,“, — iﬁaw,) ,

Dyma; = Dymy, = (D,,ma;)
1 fi . . 8oz . -
= 7 [’Da (m [2i8,y — 0,z] — zpiijz’) + -—:T—Ix,-ﬁz(Taz) |

+—21?c-ﬂ(]1']ﬁ(Ta2)mDsz + h.C.) - 2K'imDﬁ(Ta2)ﬁDp2ﬁ:l N

F i * 1 - i SyR 17 i Ouz
D,‘maa = — (Du'r_naa) = ﬁ (Iﬁim [D”_Z (TaZ) + D#zm(Taz) ] - E’i—pa) ,
DMz = (D) = —%‘D,,f;‘”. (B.16)

Here « is the auxiliary field introduced in I to implement the gravitino gauge fixing;
its couplings to chiral and Yang-Mills matter are given in (3.10) of I. In addition, there
is a A-9 connection [37], (Dy)ay = (Dy)ve = —Fauy, that contributes as follows to the

covariant derivatives of the fermion mass matrix:

(D,,M)a“ = - (DpM),m = —euK/Zafaup’

(D*M)y = —2K;; DDz’ — M{Fp*, (D,M). = D,D,2" + MFZ,
(D,M); = D,Mj+2KD*2"Fs, (D,M)!=D,MI+D*2'F2,
(DPM): = —MEFF, (D,M)% = MIFL, (B.17)

The nonvanishing matrix elements of G, involving the gaugino field are

(G‘j‘:") ab Cabe g, + 8oy (T + Y5 Ly + Zu) + (FapuFy , — 1 = V)
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—[(Dp + ty5Lu) Faps — (0 < V)],

(¢4),, |
- [(Du - i75Lu)]:apy - ([I, And V)] . (B].S)

(62)..

D, is the gauge and general coordinate covariant derivative, Iy, and Z,, are given in

Section 3.3, and*®

) 1
Fuy =VzFu, L, = .._2.%, L = 55 (0,20, — 8,59,y). (B.19)

The other matrix elements of G, are as given in Appendix (B.12) of I, except that now

the chiral matter connection includes the gauge field:

' , (B.20)

; ]
(Guu).ll = (Rw).ll + ZF:L?VDJ(TaZ)I + 5.11 (Zp £Tw), [,J= { 5

where (R,,)} is defined in (B.8) of I, and the 7-) connection gives an additional con-

tribution to the gravitino matrix element of G, :
(6) = 900 (£l + Z) = Tyo + (FguFaor = = v). (B.21)
Finally, in the 8 x 8 matrix notation of (2.14-17), setting G, = G, + ivsL 0,
: . ]
Ho = MeMe + 7[v*,7"1Guw — i PMo - 2D*ME " — 4yPy, MO MY’
—2L,L* +iD" L5 + 2i7,7,775[ L7, ME'),
D® = D, + 27"M2, + 0,717,

v A
G2, = Gu+2v" (DuMS - D,MD) + 477y (MEMS, - MEMS,)
+ oo (15001 = 2L, L7) - (4 < )| = 2iL, 170, — 4l MOIs
=2 [ ({28, M3} ~ 4122, M2 )s) +{Ls Q)7 = (= v)]
Mo = me+ M§'o, =me+ M,. (B.22)

Then, defining Hg = Hy + Ho + Hs, with

Hy = MoMo — 47"y, Mo,ME’,

Hy = —iPMe —2v"D*MS, + 2iv,7,7,7s5[L7, ME],
1 ~ .
Hy = Z[’}'”,‘yu]Guy - 2L#Lu + ZD#LM’)’E,,
G:w = Guu - Zuy,s (B.23)

1°We use the notation L, L., to denote the field operators defined in (B.19), and also the matrices
defined by these fields multiplying the unit projection operator in the space of gauginos, as in (4.41-43),
(3.36-37), (B.22), etc.
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we find the following traces (Tr includes the Dirac trace): Trl = 8Tr1, where Tr is over

internal symmetry indices only):

1
=TrH, =
3 1

~TrH? =

T [meme — 2M3 ME'| = Tr [/am — 2, M*]

8

1 2 a 2.4 2, %L pe puv
Tr (M3), +4K2 - 2D (1 - 2%0'p;) + NoM} + SELE,
l 2 v
§Tr[(m@m@)2 + (O'uUO'nggyM(ga)“ + 4m@Mg m@Mf?,,

+16ME M3, (MS, ME ~ Mg"Mﬁ,)}
o [ (mm)z + 2mM#Vﬁ2M“” + 2MuumMuum + 4MuuMPoM”'VMpa

+8 (™ M,,)? - 16M“”M”"MMMW], (B.24)

and using (A.12), partial integration and the relation

we obtain

1
—gTrH3

Py My, = 29'D*M,, + 2y D* M, ~s, (B.25)

1 . — e =2
= —gTr{~i Pme + 27 [Lu, Mg"] + QZ‘MsDuMS"}}

= T{D,mb*m—aD,M" D*M,, - 4L, M"|[1”, M,,)

H{ L A L*, ] = i (L )M + (L m] M) }, (B.26)

where L, is defined in (4.43). The remaining traces needed to evaluate TrHe, TrH3

are:
%TrH3
1
5TrH§
1
—2—Tr (H1H3)
1 20 Auv
STrCp, G4

0,y0*y
xz

= (N+ Ng+5)r—2Ng

= NGTrh2+(N + 5)’:1—2 - r ([T, L“])2 - %’I‘r (6,.6™)

= -;-Tr [G —~ ZL#L"> Hy - 2MS ME'D,L” - iGL,,{Mg",m@}}
. {éwé“”+16éwM6"M6"7m

+8D,MS, (D*ME ~ D*ME) + 4T, L][I", L*]

+16 (D, ME{L, M} - D, ML {L”, Mf’u})

2 14 vo
+2([1}, L#]) - 32 (MO, ME MO ME + MOME MS, ME’)
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~32M2 M2 (ME° MY — 3ME ME’) + 80L, LY M5 M2,

—80L,L° M5 MO, +24D,1* M2 Mg"} + NgTr (g2 - gz) (B.27)

where TrhZ, Trg?, Trg? are given in (C.66) of II, and I, is the gaugino-gravitino con-

nection.

Ghost matrix elements

For the gravitino ghost, Hgy, is defined by (B.14). For the bosonic ghosts we have

v 3 a

Hu - (H; ) + = -7: faup’
Viz  9,z0"z

ab _ _ a Ly _ Y%

Hp = Kab+ Kb 2}'“,,.7: ~ bap ( 5 122 ),
1 oz

h v

HS = —ﬂp Fouw + fw—ﬁ— +v2¢.1D, 2,
1 .
hya o a
(Y, = =D~ Fo o = VoD, (B.28)
(Ggh)pa = ~Toou + = (]: Faov = (;u A V)) )

(Gf";) b CabeF, + 5 (FapuFy , — (@ = b)),

3 =
A a 1 a a
(G‘Zﬁ) p = (G/.w p = —\/§ (Dﬂfpu - Dufpu) . (B'29)

Mixed chiral-gauge supertraces

The following illustrates the evaluation of the supertraces. We give an outline and
the result of the evaluation of the traces which give rise to divergent contributions to the
effective action [as derived in Section 4.3)] only for the mixed chiral-gauge sector. The
reason other sectors are not included is brevity. All other contributions can be found
in Appendix C of II. The results from different sectors are then added up into the full

one-loop effective Lagrangian which was presented in Chapter 4.

For the bose sector we have Hg? = —§, and
2 8 - m otz Dy 24 az\m
TrS? = ;Aim[ (T2 ][ DH(T,2) ]-4—— [(T.2) Kin Du(T*2)™ + hoc.]
0, 9:8 T

+2K8 -+ -z [pij(T“z)’(sz)’F:“ (Ff# - iFf,’u) +yh.c.]

—21 [xpmiijzm(T“z)iDuzj (F:" - zf’;"’) - h.c.]
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2

+f2—PiPi (D,'ff:p +

o,y

T

=V ? i v, a az/ 0* 58,,(36”:3
Fa") +fcp¢pFa“F,,u( E )

2 4

: 90,z0°z 0 y(’)”y) - 0 yapx}
_ X vy e 4 P v e ZP
zp;p [Fa FW( 6 + 7 + FJRFD, )
\/ZB_ 1" rvp aVy v o j a . Ta
- (D,.’Fa + -;—-7:,,”) [f pi;D* 2’ (FW, - ZFM) + h.c.]

+J2—Empfm (D:’f:” + "’”yf:”) (042 Fy, - 20yF,)

T

—F*F5, { [(6;—2 + 2%) 'D”sz,-jfi + h.c.] + :c3D,,ziDp§’7‘pijpfﬁ}

39,2 .9 L s
+FY4FS, { [(Tgf + z—g?i) DP2ipiif + h-c-] + %Dpz’v"s’"wpﬁﬁ}

_1
16
+8x FY FE K§ + 4 (

F’:“FSM {i 8,z +10,y) D2 pi; f + h.c.]

2 om  OuT
\/ED“}. -
0%z 30,y0"z - .

—IZ—"F;WFW - F:#Fp#

!
—2—=F}, D)F -

F;W) (T°2)' KinD,2™ - hoc]
d,20%z

z

+22Fy  Fa, [4D° 2D, 3™ Kim + © (D7D pij + hc. )|
i v, a ] z
—5a’ Ay, (D2 D?7pis — hoc.) . (B.30)

In writing this expression we dropped total derivatives and used (A.10) and (A.12-A.14),
as well as the Yang-Mills Bianchi identity. In addition we used (A.3-5) and (A.8) and

Vapi; (Fo = iF*) Du#' Dy(T°2) = =D, 2'pii(T°2) (VaDLFL¥ — iFe#d,3)
—z(T%zy (F;’“ - iF’;"‘) (p;jD,[D,,zi + pmij’Duim’D,,zi) + total derivative,
—iFy, [D“ziDUEmIi'iji(T az)j - h.c.] = total deriv.

+iDHF2, K [D”Zﬁ‘(Taz)i - DY (Ta3)™] + o 2, FKL,

FoDPD* ol = 2 Fe F(T2), = {’

2"

(B.31)

To evaluate the fermion matrix elements we use (4.46); we have

1 %= a Y% ey a
Tr(HY) = Trh2, +2[(mM*), (mM,,): + (H*'m)} (M,m); +h.c]

8 |
= T} +e %D (20" + 8az) + 2D (V - M)
+e—;h: [4(T.2) 45(T°2Y (@ - A) - 2 ((Tur)D* 4@ +hc)]
+4%£(Taz)i(T°2)ﬁAkiﬁ,’§ +2M} [2K2 + (3a2pp;i - 4) D]

+23;; {a:(@a- 4) [FD - (T°2)D.] + he },
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-—-;-Tr(he“’)z = (D m) (D“m)1 -8 (D M‘“’) (DpMpu)

+ { (L i (M2 + (L, e, (M) 4 hec )
+2[ L, lS[L#, m)} + 8L L, (M), (M*); (B.32)

with

(B (o) =5 st 4 )

zp
4

+ p4 ( 0,20°zF"* F,, + azc')pyF"“F,,u— ,y0PyF**F, )

+-;- (D220 (Fow = iFp) [VEDLF™ = ity (F* +iF)] +hc.}

1 o .
-5 (D% pi;fi0,5 (F**F,, — iF™E,,) + h.c]
2 B

—?D”z’DuimpijpﬁﬁF”“Fp“ + -gDpz’DpzmpijpfﬁF”“Fy,,,

+

(\/—D”}"’“ + 8, yFe — —3 :z:F”“) 87z F,,

8LPL, (M), (M*)F = ””" "' (40,y0°y Fp F** — 8,907y F, F*),
{IL s s (M2 + [Lw,m]m (M#)7 +hee.} =13, (B.33)

and,

2 (ﬁum) (D“m) + oL, L, mE = —2 22 [(T 2) KinDu(T°2)™ + h.c]

+%A’iﬁDﬁ(Taf)mDuZnDj(T“z)iD“z’ + 4xICZF:yF

t+zpip’ { KinKjmD*2 (T.2)™ [(T°2)Du5" + (T°2)*D,7| + huc.}
—0"2pip DK [(Taz)' D™ + (T,2)" D, 2] '
—2{Kjn(T.2)" D, [pin(T°2)D*2* + pa(T°2)"D*7"| + hoc.}

1 TP 1 a Nk =M Z\ ™ k
_5;Da {p,-ﬂ?uz P Kim [(T z)"DHEZ™ + (T°2) D“z ] +h.c.}

+2D, [pi; D, D#2FDL(T2) + hc.] - 2"3“%& [ox(T22)D*2F — h.c]
+ (8,28 + 30,y0"y) %”—D + 22?Dpy D, 7 DHE™ i,
2 o . _
+ [;F:”Byyk'imDﬂz’(T“E)m — 2Dp'p;i;Dy2* (O + 2i0,y) + h.c.]
O0,z0%z  0,yd*y
2

z2

+4zF2, F*D,2" D" 2" K, + K2

+2i (\‘/?_DZJ-"“’ _ % “”FW) Kin [D,7™(To2) — D2 (Tu2)™| - (B.34)
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We write the x-A contribution to T as

T = TE+TE+7 +t57 =T, + 15,

T¥ = —4(mM*) (M) +h.c.
= (zW+D) (azzpipiMf + (a— A)ai;—g +h.c.,
16 [/ =, - iy a - _ e
3 = 3 [(D Mou)a (DpMpﬁ)z- +L°L, (Moy), (Mp”)i]
165 = a
50 [, (Do) <),
Xg _Ei_p’_i_ uvrya aLy_ a 0o BV 2)
30 = —5R0,y8,aF Dt + L0F, CRI I )
T¥ = 2iL"m¢D,m: +h.c.
= —28,y0"ypip'D + 2%‘}@" [KinD, 2'(T2)™ + hoc.] + %Fnga

—_ Zg:y {D“’z‘i [ijp” + %K]m(Tai)ﬁDz(T“z)J] _ h.C.}
% o
+—D%0%y [Pij(TaZ) D, ~ h.c.] : (B.35)

where

i
: 32
+—‘“zp;p 9y [Fe, (VEDLFE + B,yFs” — 0,aFr) + 8,yF2, Fi] . (B.36)

8iL7 (M), (D,M™)" + hc. = o [D?5'pi; 7 (40,92, F2¥ = 8,yFi* F2,) — hoc]

In addition we have

(@) = a(en),, (65) " - (c8)

= 64(D,M,,) (D*M** - D" M*)

z a
a t

a
2

~128i [L¥ (M,,),, (DuM*)" —hec],

N A t= v 914 e % v 9 Y muv 2
64 (DuM,,) (D*M* - D*M**)" = —22%pip (Dgf: +2E )
1 ;= . 5 . .
-1 {'D”z’p,-,-f" [F;‘VF:,,B,,:E —iF L, (0, +10,y) + 423,yFspr”] + h.c.}
+ (\/EDZ]-';“’ + auyﬁ’;‘”) {2xpipi(9pxF§V + [(F;‘,, - iﬁ’,‘,‘,,) D"zip,-_.,-f—j + h.c.]}
+ELFR, Emp"f’?pw@"x + wzpijpfaDpziD”Z’ﬁ} + E%-p—f’é‘ Y Fp,0%y0,c

—FprFy, [zpipi (0,20"x +20,y0"y) + 4x3pijpf%D,,ziD”2m] , (B.37)
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Using the classical equations of motion (A.17-20), we obtain, with k! = —4K2,

%STrH;‘c’g = T}, + (Du'DH2™ + AiA™e -")( ——(T“z)’(T z)nR,m,n)

o 2 i ,
—e~K (A4 +hc) - “—\/egf”Apz -2 g” "lz:a,,c‘w

+2”\’/’§”z [ic* (KinDu2™(Tu2)’ - hoc.) + D*(Ta2)! L]
1 [P H o a fi DY 7 a - e 1
+—\7_5 2 zp' pi0*yF;, + ?p,-j z (Fup - zFl,p) + h.c. }

-——l—STrG’ig — X9 + 422" p;D [3M,,2, +V - e"KaZz] +1022p" p, DM}
+4z [p,J(T“z)’(sz)J (Wab + =D Db) + h. c] —4MIKE
+2 [w:p,mJ 5™(T°2)'D, 2 (F‘“’ zf’f”) + h.c.]

3‘62‘ (P —iF) (Fpu+ if’,,,,)‘ (8,20 + 8,y0%y)
- (:-35 + pipi> @,yc’?,,zb“F;‘" + piTpi’D (50,20 + 30,y0"y)
—izp'p; K [’D" (T, z)i - DT, E)ﬁ‘] auyﬁ’:p
+ {w [ 22p'p;M? + (a — A)fiale K — a,,fppzfp,-,g] + h.c.}
—22? [(Fe* By, — iF# Fy,) DP2D¥ 0 pij + huc|

otz 3,,y3 z

+2TF:‘>DIIFVP + FI‘PFG + F:ﬂ F:'# (

—e %D (203" + 16ac‘z) +2D (3V +17M}) + 4M} (D + K2)

0,20z _ 3,,y8py>

T T

-K
€ {ope ‘A (a7 _ 945\ — g (7 — XY FD _ orTeny
+— {2D%(Tu2) A (a7 - 247) - a; (a— &) [F'D - 2(T2)'Da] + hc}
—4aKLFe, FY — pip* [(0%0 + 2i0y) Kjn (Tu2 DuZ™ + hoc| D°
i - v =R 1 v i =\ re j a : a
—5Kin (D 2™ (Tuz) - D2 (Tu2)™) [FpiD?27 (F2, —iF2,) +hc ]
—2{Kjn(Tu2)™ D2 [pr(T°2) D*2* + ppa(T°2)'D*5"| + hc.}
1 . i F] 1 a_N\k =T @\ k
+5-D, {piDus' F Kim, [(T22)FD*2™ + (T°2)"D*2*] + boc.}
+ {p,-jD"z“' [QDa’Dk(T“z)jD,,zk + fiFre (6 - a—g”iF;:,,)} + h.c.}

Ozt 8ﬂy0“y)
R
z

—4zF2, FH*D, 2D 7™ Kim + K2 (

DIIJ_';JV _ R A _
~2i (2 ‘:/5“ 6; F‘“’) Kin [D,2™(To2) = D,24(Ta2)™|
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+

13zpip’

zpip
4

96

(F‘“’F“ 8,20z + F 20,00 )

(Fev F2,0,99°y — 4F 2 F2,0,y0"y)

+222p;;pL, DD, 7 D? ™

1 “
ESTrGig

2
_4X9 z? pzp " uy Ouy “;w)
137 — 7 (D FH 4+ —\/3—3 F‘?

+zpip’ [%ﬁpgy (\/EDZ}':V + 6uyf’5‘") i 7;2 T =
+% [(F5 = iF3) D°Z i + hc| (VEDLFL + D,y Fi)

1 e I . -
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