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ABSTRACT

Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates.
The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene
in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 °C
in an inert atmosphere, followed by dissolution of the inorganic template by conventional
demineralization methods. X-ray powder diffraction of the carbons showed broad d,, peaks in the
diffraction pattern, indicative of a disordered or turbostratic system. N, BET surface areas of the
carbonaceous materials range from 10 to 100 m*/g. There is some microporosity (r < 1 nm) in the
highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and
mesopores with radii of 2-5 nm. Electrochemical studies were performed on these carbons. Button
cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode and metallic
lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of
the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting
that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

1. INTRODUCTION

The need for rechargeable high energy power sources has led to a new era of research and
development in the battery field. Lithium secondary batteries are among the energy systems of the
future because of their low density, high energy and long cycle life. The application of carbonaceous
materials for the negative electrode of lithium ion batteries has been investigated intensively in
recent years, where the reversible insertion/extraction of lithium into/from a carbon matrix occurs
upon charge/discharge instead of the deposition/dissolution of metallic lithium. The dendritic
growth of lithium on charging can be avoided and hence the use of carbon anodes can be expected
to prolong the cycle life of a whole cell and to improve the safety reliability.

At present, extensive efforts have been dedicated to the research and development of
different carbonaceous materials that can deliver high specific capacity, good coulombic efficiency
and long cycle life [1-4]. The structure of the carbon is a major factor in the intercalation of
lithium, both in how much can be intercalated and at what voltage. So far, a wide variety of carbon
materials such as natural graphite, cokes, carbon fibers, non-graphitizable carbon, and pyrolitic
carbon have been investigated [5-8]. However, anode materials that show stability and good cycle
life are needed for lithium ion batteries.

Surface area and porosity are two important parameters to consider when selecting a carbon




material to be used as an anode electrode. For disordered carbons, both parameters are critical since
the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an
exfoliation mechanism occurs in which the exposed surface area continues to increase) [9]. Here,
we describe the synthesis of disordered carbons where the porosity and surface area are controlled.
Tomita et al [10] have shown the preparation of ultrafine carbon tubes by using an aluminum oxide
film with uniform channels as a template. Our approach is to use pillared clays (PILCs) as inorganic
templates. These modified clays have aluminum oxide supports between the layers that help to
prevent the collapse of the layers upon heat treatment. Five organic compounds are used to produce
the carbon: pyrene, styrene, trioxane/pyrene, ethylene and propylene. Carbon from pyrene as the
precursor is produced by a mechanisms described by Sandi et al. [11] in which the alumina pillars
in the clay should act as acid sites to promote condensation similar to the Schéll reaction [12].
Carbon from styrene and trioxane/pyrene are produced by the incorporation of liquid monomer in
the PILC, followed by a low temperature polymerization reaction. The polymerization of styrene
produces a linear polymer while the trioxane and pyrene reaction produces a condensation polymer
similar to phenoplasts. Carbon from ethylene and propylene are synthesized by a mechanism similar
to that described by Tomita et al [10] in which the gaseous hydrocarbon is deposited in the PILC
layers and subsequently pyrolyzed. After elimination of the inorganic matrix via demineralization,
the resulting layered carbons show holes due to the pillaring Al,, cluster unit where lithium diffusion
may be able to occur. In a previous study of these materials using small angle.neutron scattering,
Winans and Carrado [13] showed that the diameter of the holes was about 15 A, which is the
approximate size of the Al,, pillar. Therefore, lithium should be able to diffuse rapidly through this
molecularly porous carbon.

2. EXPERIMENTAL

2.1 Synthesis

The synthesis of the calcined pillared clays (PILCs) has been described in detail elsewhere
[11,14]. The calcined PILC was loaded with organic using different procedures described as
follows. For pyrene, the pillared clay is stirred in a 0.1 M solution of pyrene (Aldrich, 99%) in
benzene (J.T. Baker, 99+% A.C.S.) at room temperature overnight. After filtration, the samples
were dark green. Styrene (Aldrich, 99+%) was loaded in the vapor phase. Liquid styrene was heated
under a nitrogen flow in a vacuum system. The styrene vapor was carried out to a round bottom
flask containing the PILC. The PILC was stirred and heated to 150°C. The PILC turned yellow
as the loading process progressed. Trioxane (Aldrich, 99+%) was heated to 70°C. Pyrene was
added once the trioxane was completely melted. PILC was then added to the solution and the final
sample turned dark green. The reaction was catalyzed by addition few drops of HC1 0.1 M.

The pyrolysis of these samples took place in stainless steel tubes that were purged with
nitrogen for several minutes. The tubes were sealed and heated to 700°C for 4 hours. Before
opening the tubes, pressure was released by cooling the tubes in liquid nitrogen for approximately
30 minutes.

Ethylene and propylene (AGA, 99.95%) were loaded in the gas phase, where the loading and
the pyrolysis processes were done in one step. In this case, a three-zone furnace was used. Quartz
boats containing PILC were placed within a quartz tube. The tube was initially flushed with nitrogen
for about 3 hours. After that period of time, the gas was switched to propylene or ethylene and the




gas flow was kept about 5 cm’/min. The temperature of the oven was gradually increased from room
temperature (about 5 °C/min) to 700 °C. The oven was then held at that target temperature for 4
hours.

The clay was removed using conventional demineralization methods. The loaded/pyrolyzed
PILC was placed in HF, previously cooled at O °C to passivate the exothermic reaction, and stirred
for about one hour. It was then rinsed to neutral pH and refluxed with concentrated HCl for 2 hours.
The sample was washed with distilled water until the pH was > 5 to ensure that there was no acid
left. The resultant carbon was oven dried overnight at 120 °C.

2.2 Characterization

X-ray powder diffraction (XRD) patterns of clay precursors and carbons were determined
using a Scintag PAD-V instrument, with Cu K, radiation and a germanium solid-state detector at
a scan rate of 0.5° 20/min. N, BET surface areas, pore size distributions and thermal isotherms
were obtained in an Autosorb 6 instrument (QuantaChrome Comp). Approximately 0.10 g of
material was weighed into a pyrex tube and evacuated at 80 mTorr overnight at room temperature.
After backfilling with He, the carbon was briefly exposed to air prior to analysis. The static
physisorption experiments consisted of determining the amount of liquid nitrogen (LN,) adsorbing
to or desorbing from the material as a function of pressure (P/P, = 0.025-0.999, increments of 0.025).

2.3 Electrochemical Testing

2.3.1 Electrolyte

The electrolyte was 1M LiPF dissolved in 50 vol.% ethylene carbonate (EC) & 50 vol.%
dimethylcarbonate (DMC) obtained as a solution from FMC Lithium Division (Gastonia, NC).

2.3.2 Cell assembly

The cell hardware used in the galvanostatic cycling studies was provided by either obtained
from either Ray-O-Vac or Eveready Battery Company. The button cells were size 2016 or 1225, and
consisted of nickel-plated stainless steel. Cells were assembled in a helium-filled
recirculating/purification glovebox (Vacuum/Atmospheres DLX series). Carbon electrode pellets
were dried at 80 °C in a vacuum oven inside the glovebox prior to assembly. All cell hardware and
separator materials were also rigorously dried in like manner.

The dual electrode configuration in these cells uses metallic lithium as the anode. Cells
fabricated are cathode capacity limiting and contain metallic lithium (FMC) foil (0.008"; 0.203
mm) as the anode. Li foil was punched out and cold pressed into a copper screen (0.25 mm thick,
Goodfellow Co.), that had been spot-welded into the cap. Electrolyte was added to the lithium
surface via a gas-tight syringe. To help wet the lithium surface with the electrolyte one or two drops
of 1,2-dimethoxyethane (DME, 99.9+%, Aldrich) was added to the cell. Two pre-punched Celgard
2400 separators (Hoechst-Celanese, Charlotte NC) were placed on top of the wetted lithium foil.
More drops of electrolyte and only one drop of DME was added. The cells were allowed to sit
undisturbed for about 15 minutes to let the DME evaporate. The carbon electrode pellet was placed
against the separator, and a nickel-foil spacer was situated on top of the carbon electrode pellet. The
spacer acts as both a current collector and also fills the button cell space, depending on the thickness




of the pellet. The button cell can was placed over the rest of the cell and against the grommet. The
cell was loaded onto the die spot for crimp-sealing, and was subsequently pressed to a stack height
of 0.061" and 2000 psi. After crimping, the cell voltage was immediately checked for shorts. Those
sealed button cells which displayed a good voltage, were transported out of the glovebox for
electrochemical testing on an Arbin 2400 station cell cycler.

2.3.3 Pellet Fabrication

Electrodes were prepared using 90% by weight of the carbonaceous materials, 5% by weight
of Super S carbon black (Alfa Chemicals), and a binder solution made of polyvinylidene (PVDF,
Aldrich, 99+%) dissolved in N-methyl-pyrrolidinone (NMP, Aldrich, 99+%). The Super S carbon -
black is used to provide electrical contact between carbon grains. An excess of NMP was added to
make a slurry. The slurry was oven-dried at 120 °C overnight. :

This resulting powder is used to make pellets in carbon-steel dies. About 20-30 mllhgrams
of carbon is put into the die and evened-out with the plunger. The die and plunger are put into the
press and are pressed at about 5000 psi. The die is rotated 180 degrees and pressed again at 5000 psi
in a one-stroke motion. The die is released from the press and the pellet is carefully removed to
avoid fracturing.

3. RESULTS AND DISCUSSION

The XRD pattern of disordered carbons contains only a few diffraction peaks. For cokes and
soft carbons heated to near 1000 °C, only the (002) and (004) peaks due to the stacking of the layers
and the (100) and (110) two dimensional peaks due to in-plane order can be readily observed. The
broad d,,, peak in the diffraction patterns is indicative of a disordered or turbostratic system [4].

Table I shows the d, and the Lc (layer dimension perpendicular to the basal plane) of the
carbons synthesized by the above procedures. The layer dimension Lc is calculated from the 002
reflection peak as described by Kinoshita [15]. The carbons synthesized from propylene and
ethylene showed the largest d spacing, whereas pyrene resulted in the shortest of the series, being
closer to pyrolytic graphite (d,= 3.35 A). This implies that the carbons synthesized from ethylene
or propylene have a higher degree of disorder than the others previously mentioned. In the first stage
of heat treatment at 700°C, the pillared montmorillonite sheet remained intact as evidenced in the
XRD pattern (not shown), but the organlc precursor is converted to amorphous carbon [16]. The Lc
values are in the range of 28 to 34 A, which indicate that the carbon particles are composed of a
spherical assemblage of many quasi-graphitic crystallites [15]. Furthermore, the Lc values obtained
for these carbons are comparable with those of the disordered carbons heated at temperatures higher
than 1500 °C.

The surface areas of the carbonaceous materials range from 10 to 100 m%g. There was some
microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however,
comes from mesopores with radii of 2-5 nm.

Figure 1 shows two examples of LN, physisorption isotherms. In the type III isotherm
(Figure 2a) there is little adsorption at the beginning. However, once a small island of adsorbate
nucleates on the surface, additional adsorption occurs more easily because of the strong adsorbate-
adsorbate interactions. Type IV isotherms (Figure 2b) usually occur when multilayers of gas adsorb
onto the surface of the pores in a porous solids. Initially, the adsorption looks like a type II or type




T adsorption, but eventually the adsorbed layer gets so thick that it fills up the pores. As a result,
no more gas can adsorb and the isotherm saturates [17]. A large hysteresis is observed in the
adsorption/desorption isotherm of the carbon sample prepared from pyrene. This hysteresis loop has
been observed for samples in which the surface area comes mainly from macropores [18].

Figure 2 shows the coulombic efficiencies calculated as the ratio of the reversible capacity
in discharge (or lithium intercalation) over the reversible capacity in charge (or lithium
deintercalation) for different coin cells cycled from 0 to 2.5 V at a constant current rate of 18 mA/h.
It was not possible to obtain all the lithium back upon intercalation at that voltages, as confirmed
by the efficiency values.

Figure 3 shows the variation of discharge specific capacity as a function of cycle number for
several coin cells made with the carbonaceous materials mentioned above. This phenomena is due
to the well-known irreversible capacity loss effect [4]. This occurrence comes from the formation
of a passive layer product due to electrochemical reduction of the electrolyte at the low voltages
experienced by the carbon electrodes at end of discharge or intercalation. This reaction contributes
greater to the observed discharge capacity in early cycles. After the formation of the passive layer
is stabilized, the irreversible capacity then is decreased in subsequent cycles. This capacity cannot
be recovered in this cycling voltage range even up to 2.5 V, thus demonstrating that the reduction
product is very stable. After 5 to 10 cycles are completed, the rate of specific discharge capacity
loss per cycle decreases, even becoming fairly flat for one styrene electrode tested.

Coin cells made with trioxane as the carbon electrode exhibited the largest variation in
capacity. One of the possible reasons for this behavior could be the presence of small amounts of
oxygen on the carbon surface. A comparative study of the oxygen K-edge near edge x-ray
absorption fine structure (NEXAFS) of these carbon samples showed that there is still some oxygen
on the surface of the carbon made from trioxane [19]. Guidotti and Johnson [20] found that the
presence of CO, on the surface of carbon anodes derived from polymethylonitrile divinylbenzene
also increased the capacity fade due to irreversible reduction reactions.

Table II summarizes the specific capacity, irreversible capacity in the first cycle and the
standard deviation associated with the capacity upon cycling. The irreversible capacity is defined
as the difference in capacity between the first and second discharge. Pyrene exhibited the lowest
irreversible capacity and capacity fade. However, the performance of these cells in terms of
delivered capacity is much higher than graphite (370 mAh/g at 200-300 mV vs. Li) and some other
alternative materials currently under study. Carbon K-edge NEXAFS studies showed that these
carbon contain hydrogen on the surface [19]. Computer simulations of Li reactions with disordered
carbons containing hydrogen [21] have showed that Li readily bonds to a proton-passivated edge
carbon resulting in a configuration similar to the organo-lithium molecule C,H,Li,. As a result, it
provides a second channel for lithium uptake, which only works if the edge carbons are saturated
with protons.

While some hysteresis occurs in the discharge-charge voltage profiles [22], these carbon
electrodes do deliver very high (675-794 mAh/g) and stable capacities (>50 cycles). Carbon
electrodes prepared from the trioxane precursor showed the largest hysteresis effect. We believe that
oxygen on the surface is the main cause of this undesirable phenomenon in lithium ion batteries.

4. CONCLUSIONS

It has been shown that carbonaceous materials prepared by the templating method exhibit




more than twice the reversible capacity obtained by graphitic materials. High cycling efficiency and
low irreversible capacity are also two factors that make these novel materials good candidates for

the new generation of secondary batteries. Control over porosity and surface area are achieved with
this unique method. The presence of hydrogen on the surface and edges of the carbon contributes
to this high capacity since Li bonds to a proton-passivated edge carbon.
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TABLE I: CRYSTALLINE PARAMETERS OF CARBONS PREPARED
FROM DIFFERENT PRECURSORS

Carbon from dyg, sEacing I_:c
A A

Pyrene 342 32
Styrene 3.50 28
Propylene 3.56 28
Ethylene 3.58 30

Trioxane/pyrene 3.49 34




TABLE II: EFFECT OF DIFFERENT CARBON PRECURSORS ON THE
PERFORMANCE OF LI/CARBON COIN CELLS

Carbon from Average specific Standard deviation,  Irreversible capacity,
capacity, mAh/g mAh/g mAh/g
Pyrene 720 60 62
Styrene 730 45 177
Propylene 794 91 180
Trioxane/pyrene 675 75 165
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FIGURE 1. NITROGEN ADSORPTION-DESORPTION ISOTHERM OF CARBON
SAMPLES FROM A) PROPYLENE AND B) PYRENE, USING PILCS
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