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ABSTRACT

In the two-fluid model for two-phase flows,
interfacial area concentration is one of the most important
closure relations that should be obtained from careful
mechanistic modeling. The objective of this study is to
develop a one-group interfacial area transport equation
together with the modeling of the source and sink terms
due to bubble breakage and coalescence. For bubble
coalescence, two mechanisms are considered to be
dominant in vertical two-phase bubbly flow. These are
the random collisions between bubbles due to turbulence

in the flow ﬁeld, and the wake entrainment process due to

the relative motion of the bubbles in the wake region of a
seeding bubble. For bubble breakup, the impact of
turbulent eddies is considered. These phenomena are
modeled individually, resulting in a one-group interfacial
area concentration transport equation with certain
parameters to be determined from experimental data.
Compared to the measured axial distribution of the
interfacial area concentration under various flow
conditions, these parameters are obtained for the reduced
one-group, one-dimensional transport equation. The
results indicate that the proposed models for bubble
breakup and coalescence are appropriate.

[. INTRODUCTION

In the analysis of two-phase flow, the formulation
using a two-fluid model is considered the most accurate
model. With proper averaging in this model, the two
phases are considered separately in terms of two sets of
conservation equations that govern the balance of mass,
momentum and energy in each phase (Vernier and
Delhaye, 1965 [1]; Kocamustafaogullari, 1971 [2]; M.
Ishii, 1975 [3]; Boure, 1978 [4]). However, the averaged
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macroscopic fields of the two phases are not independent
of each other, and there are certain phase interaction
terms in the field equations to characterize the interfacial
transfers of mass, momentum and energy. These terms
contain a parameter that specifies the geometric
capability of the interfacial transfers, i.e., the interfacial
area concentration (or density), defined as the total
surface area of the dispersed fluid particles per unit
mixture volume (Ishii and Mishima, 1980 [5]).
Therefore, a closure relation of the interfacial area
concentration is indispensable in the two-fluid model for
detailed treatment of the phase interactions. In other
words, a mathematical description of this area
concentration should be developed in terms of the field
variables of the two-phase flow.

Since the interfacial area concentration changes with
the variation of the particle number density due to
coalescence and breakage, analogous to Boltzman’s
transport equation, a Population Balance Approach
(PBA) was recently proposed by Reyes (1989 {6]) to
develop a particle number density transport equation for
chemically non-reacting, dispersed spherical fluid
particles. A similar method was employed in combustion
theory, known as the spray-equation (Williams, 1965
[7]). For the purpose of interfacial area transport,.
Kocamustafaogullari and Ishii (1995 [8]) generalized
Reyes’ model, leading to the following equation:
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where A%, ¥,t) is the particle density distribution
function, which is assumed to be continuous and specifies
the probable number of fluid particles at a given time ¢, in




the spatial range of dx about a position x, with particle
volumes between 7 and 7 +d7. Moreover, v, (X%, 7, )

denotes the local time-averaged velocity of the particles
with volume between 7 and ¥ +d7, and s,(%, 7, )
refers to the fluid particle sink or source rate due to phase
change. If the phase change only causes fluid particle
shrinkage or expansion, s,, can be expressed in the form
of -3/2t(fdv/dt), which Shraiber (1996 [9])
thought it should be presented on left hand of Eq. (1).
However, for the case of homogeneous nucleation boiling
or condensation in a subcooled boiling flow, spn should
also include the population change rate of fluid particles
with specific volumes. Detailed treatment of the phase
change term may follow the approach suggested by
Kocamustafaogullari and Ishii (1983 [10]), whereas the
wall nucleation rate must be specified . as a boundary
condition.

The interaction terms in Eq. (1), s(Xx,7,1),
represent the net rate of change in the particle number
density distribution function caused by particle breakup
and coalescence processes. Some phenomenological
models for these terms were summarized by Prince and
Blanch (1990 [11]) and Lafi and Reyes (1991 [12]).
These models presented the detailed insight of the
mechanisms for coalescence and breakage phenomena.
However, due to the dependence on the fluid particle
volume, many adjustable parameters and assumptions
were imposéd, which may be far beyond the ability of
justification with the existing experimental data. For
most two-phase flow studies, where the primary focus is
on the average fluid particle behavior, the detailed
volume dependent particle number density transport
equation would be too tedious and complicated for the
field equations in practical applications. From this point
of view, the present study starts from the integral form of
particle number density transport equation, i.e.,
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where n(x, ¢) is the total number of particles of all sizes

per unit mixture volume, and v (%, t) is the average

pm
local particle velocity weighted by the particle number.

This velocity is identical to the time-averaged bubble

velocity weighted by the gas void fraction, i.e., v, inthe
time-averaged two-fluid model (Ishii, 1975 [3]), if the
statistical sample size is sufficiently large. The major
efforts here will focus on the integral source and sink
terms caused by binary coalescence and breakage of

single size particles. Furthermore, because of the
differences in inertia and buoyancy forces between liquid
droplets and gas bubbles, unified models for the source
and sink terms are unlikely at least for the adjustable
coefficients. Therefore, the models developed in this
study will be limited only to the two-phase flow system
with the dispersed phase as gas bubbles.

A general approach treats the bubbles in two groups:
the spherical/distorted bubble group and the cap/slug
bubble group (Ishii and Kojasoy, 1993 [13]). Because of
the differences in bubble shapes and mobility of the two
groups, two bubble number density transport equations
are required that involve the inner and inter group
interactions as shown in Fig. 1. The mechanisms of these
interactions can be summarized in five categories. They
are the coalescence due to random collisions driven by
turbulence, the coalescence due to wake entrainment, the
breakage upon the impact of turbulent eddies, the
shearing-off of small bubbles from the skirt of cap
bubbles, and the breakage of large cap bubbles due to
flow instability on the bubble surface. Some other
mechanisms such as the laminar shearing induced
coalescence (Friedlander, 1977 [14]) and the breakage
due to velocity gradient (Taylor, 1934 [15]) are excluded.

The laminar shearing induced collision occurs at high
gas flow rate. Bubbles rise preferentially through the
center of a pipe. A gross circulation pattern is thus
formed with a net upward velocity in the column center
and a down flow in the outer annular region near the wall.
This flow pattern gives rise to a radial velocity
distribution, and the bubbles in the center zone would
overtake the bubbles of same size in the outer zone.
However, the direct result of the flow pattern should be
the mean flow parameters and bubble number density
distributions. This phenomenon is governed by the field
equations especially including the lateral force such as the
lift force proposed by Drew and Lahey (1987 [161).
Under such a condition, the coalescence should also be
directly induced by localized random collision rate or
wake-entrainment rate. Therefore, the laminar shearing
induced collision is eliminated here as an independent
mechanism. On the other hand, the bubble breakup due
to velocity gradient, according to Clift et al. (1978 [17]),
occurs in viscous flow with large velocity gradient. For
the case of low viscosity flow like in air-water or steam-
water system, the velocity profile is relatively flat.
Moreover, the high mobility of gas bubbles allows
bubbles to be redistributed by shear force before
disintegration. = Therefore, this mechanism is also
excluded.
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Fig. 1 Mechanisms of bubble coalescence and break-up in two-group model

In practice, when the void fraction of a two-phase
bubbly flow is small, no cup or slug bubble exists. The
two-group transport equations is then reduced to one
group, and the interactions between the two groups can
be omitted. As the first step of the general approach, the
focus of this study is on the first group transport equation
for bubbly flow without the occurrence of cap or slug
bubbles. In section two, three models are developed for
bubble coalescence and breakage, including the bubble
coalescence due to random collisions driven by
turbulence, bubble coalescence due to wake entrainment,
and bubble breakage upon the impact of turbulent eddies.
With these¢ models, the one-group interfacial area
transport equation is obtained in section three, whereas
the adjustable parameters are evaluated in section four
with the existing experimental data obtained from vertical
two-phase bubbly flow (Kashyap et al, 1994 [18]). This
approach provides a solid foundation for the latter phase
investigation of the two-group transport equations to
obtain the general closure relation of interfacial area
concentration for the two-fluid model.

II. MODELING OF BUBBLE COALESCENCE AND
BREAKAGE

For dispersed bubbly flow without phase change,
only three mechanisms responsible for bubble
coalescence and breakage are considered in the one-group
bubble number density transport equation:

5n;xt t) (vg(x Hn(x, t))

=S,,,RC(5C., t)+Sn,WE(f’ t)+Sn,T1(f’ t)

The terms on the right hand side of Eq.(3) are the bubble
number source and sink rate per unit mixture volume with
a subscript “n” standing for net bubble number density

®)

change, “RC” for random collision due to turbulence in
the continuous medium, “WE” for wake-entrainment
caused by the relative motion between the bubbles in the
wake region and the seeding bubble, and “T7” for
turbulent eddies that impact the bubbles resulting in
bubble breakage. The disunion of the transport equation
from phase change effects and the existence of cap/slug
bubbles not only greatly simplifies the investigation, but
also enables effective justifications of the presented
source and sink terms by comparing the model with
experimental data. Moreover, the one-group transport
equation with uniform bubble size matches the two-fluid
model, which focuses on the average fluid particle
behavior without considering the detailed bubble volume
dependence. Here, the average bubble size is
characterized by the bubble Sauter mean diameter, D:

6f‘l/f(f,‘1/ Hdv a0
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with a, as the surface area of a bubble with volume % «
as the local time-averaged gas void fraction, and g;
representing the local time-averaged interfacial area
concentration. In this section, the source and sink terms
in Eq. (3) are modeled individually by assuming binary
interactions between spherical bubbles.

A. Random Collision Induced Bubble Coalescence

In bubbly flow, one of the mechanisms that drives
bubbles together is the turbulence in the continuous
medium. To model the bubble coalescence rate induced
by this mechanism, the bubble random collision rate is of
primary importance. These collisions are postulated to
occur only between neighboring bubbles, because long
range interactions are driven by large eddies that




transport groups of bubbles without leading to significant
relative motion [11, 19]. Between the two neighboring
spherical bubbles of the same size as shown in Fig. 2, the
time interval for one collision is given by:

At=—, )

L
U,

where u; is the root-mean-square approaching velocity,

and L denotes the mean distance between the two
bubbles, i.e.,

L~De-6D. 6)

Here, De is the effective diameter of the mixture volume
that contains one bubble. In terms of the local time-
averaged void fraction and bubble Sauter mean diameter
D, De is given by:

D
Deoc—r. 7
Nz )
Since the bubble traveling length for one collision varies
from De to (De-D), a factor § is introduced into Eq. (6) to
feature the average effect. By substituting Eq. (7) into
Eq. (6), the average traveling length is given by:
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where &, is a collective parameter considering the
proportional sign between De and D/o.'”. At small void
fraction, the modifying factor, &,, plays a minor role due
to the fact that De is much larger than D. However, it is
important if the traveling length is comparable to the
bubble size. When the void fraction approaches the
dense packing limit (o = «,,,,), the mean traveling length
should be zero, which leads to 8, equal to o, "®. Using
this asymptotic value as the approximation of §,, the
mean traveling length is reduced to:

Fig. 2 Geometric definitions of two approaching bubbles
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Accordingly, for the two bubbles moving toward each
other, the collision frequency is given by:

1 u al?
t 173 max
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Since the bubbles do not always move toward each other,
however, a probability, P, for a bubble to move toward a
neighboring bubble is introduced to modify the collision
rate. By assuming a hexagonal close-packed structure as
shown in Fig. 3, if the neighborhood bubbles are fixed in
the lattice structure, this probability is given by:

D? w3
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De
P =1, a>a, (12)

where a, is the critical void fraction when the center
bubble can barely pass through the largest free space
among the neighborhood bubbles. In reality, the
neighboring bubbles are in constant motions, and thus the
critical void fraction can be very high, close to the dense
packing limit. From this point of view, an approximation
of the probability is

2/3 A
Pc~[ i ) . (13)

amax

Multiplying (8) by P, the collision rate for a two-phase
mixture with bubble number density » is obtained as:
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Fig. 3 Illustration of hexagonal closed packing structure




The functional dependence of the collision rate in Eq.
(14) is similar to what Coulaloglou and Tavlarides [19]
proposed in 1977 for a liquid-liquid droplet flow system,
analogous to the particle collision model in an ideal gas.
The difference is that the present model contains an extra
term in the bracket, which covers the situation when the
mean free path of bubbles is comparabie to the bubble
size. However, the model in the present form is still
incomplete because no matter how far away the
neighborhood bubble is located, the collision would occur
as long as there is a finite approaching velocity. Actually,
when the mean distance between the neighboring bubble
is very large, no collision should be counted because the
range of the relative motion between the neighboring
bubbles is limited by the eddy size comparable to the
bubble size. To consider this effect, a modification factor
is introduced to Eq. (12), i.e,,

1:1 ex( C-Ilﬂ 15
- Pl — z‘ 3 ( )

where L, is the average size of the eddies that drive the
neighboring bubbles. This effective eddy size is assumed
to be of the same order of the mean bubble size, because
smaller eddies do not provide considerable bulk motion
to a bubble, while larger eddies transport groups of
bubbles without leading to significant relative motion.
Therefore, the bubble collision rate is modified to:
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For each collision, coalescence may not occur and
thus a collision efficiency was suggested by many
investigators. A detailed review of the modeling efforts
was given by Lafi and Reyes (1991 [12]). In general, the
collision efficiency is defined as:

7e ~exp(- 7)., an
where y is determined by the mechanism of bubble
coalescence upon each collision. The most popular
model for collision efficiency is the film thinning model
[20]. In this model y is assumed to be the ratio of the
average coalescence time to the average contact time.
The bubble contact time refers to the time required for a
bubble to travel a characteristic length driven by
turbulence, while the coalescence time is defined as the
time required for the liquid film thickness between the
colliding particles to decrease from its initial thickness,
hy, to a critical thickness, 4., which specifies the film
thickness at the instant of rupture. Prince and Blanch
[11] employed a film thinning model developed by
Oolman and Blanch (1986 [20]), and provided a
simplified expression for 3.
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Since the critical film thickness and the initial film
thickness depend on the fluid properties, y is proportional
to the square root of the Weber number. A physical
explanation given by Kirkpatrick and Lockett (1974 [21])
is that when the bubbles approach faster, they intend to
bounce back without coalescence due to the limitation of
the film drainage rate governed by surface tension.
However, flow visualization of Stewart (1995 [22])
shows that the bubble coalescence seems to be a random
process. After collision, the bubbles always bounce away
unless a “key” position is assumed, with one slightly
ahead of the other. Once in the key position, the bubbles
“dance” together, some times for several wobble cycles
before coalescing or drifting away. This observation is
not supportive to the film-thinning mode! that requires
only the bubble motion upon collision slower than the
drainage process regardless the relative position of the
bubbles after collision. According to Steward, even when
a key position is achieved, the bubbles may not
necessarily coalesce, which also cannot be explained by
the model. Mathematically, the proposed efficiency
implies that the coalescence rate decreases exponentially
with respect to the turbulent fluctuating velocity, which is
much stronger than the linear dependence of the collision
rate, resulting in an overall decreasing trend of the
coalescence rate as the turbulent fluctuation increases.
This caused serious trouble when the model was applied
to experimental data following the procedure specified
later in section 4. Tremendous discrepancies were
obtained at different liquid flow conditions. For these
reasons, a constant coalescence efficiency is assumed in
the present model to depict the randomness of
coalescence phenomena after each collision. Further
studies on the coalescence efficiency is needed. Finally,
the bubble coalescence rate due to random collisions
caused by turbulent fluctuation is given by:

‘max | “max max

The coefficient Cpc and C are adjustable parameters,
which depend on the fluid properties and should be
obtained from experiments. The remaining unknowns are
the maximum void fraction and the mean bubble

fluctuating velocity. By definition, «,,, is the dense
packing limit of void fraction when the coalescence rate
approaches infinity. The mathematical expression of this
value for spherical bubbles can be rigorously derived
from the hexagonal close-packed structure, which leads

&, equal to 0.65. However, the distortion of bubbles at




high liquid velocity may disobey the spherical bubbie

hypothesis and the bubble size distribution in reality may

violate the uniform bubble size assumption, resulting in a
higher dense packing limit. This case comes from the
lower section of a vertical concurrent loop in slug flow
regime, where dispersed bubbles exist and rapidly
develop into gas slugs along the flow path due to
significant bubble coalescence. Therefore, a rational
choice of a,,, should be at the transition point of slug
flow to annular flow, i.e., ¢, equal to approximately 0.8
(Wallis, 1969 [23]). This choice also leaves room for the
one-group model to be applied with the second group
transport equation at high void fraction conditions, where
the assumption of dispersed bubbly flow is improper.

According to Ishii and Kojasoy (1993 [24]), the
mean bubble fluctuating velocity, », in Eq. (17), is
proportional to the root-mean-square liquid fluctuating
velocity difference between two points of length scale D,
which is given by (Batchelor, 1951 [25]):

u ~ 61/3DV3 (20)

where ¢ is the energy dissipation rate per unit mass of the
continuous medium. In a complete two-fluid model, €
comes from its constitutive relation. The advanced
approach for bubbly flow is the two-phase x—€ model
(Lee et al., 1989 [26]; Kataoka and Serizawa, 1991 [27];
Bertodano et al., 1994 [28]).

B. Wake-Entrainment Induced Bubble Coalescence

When bubbles enter the wake region of a leading
bubble, they will accelerate and may collide with the
preceding one (Nevers and Wu, 1971 [29]; Otake et al,,
1977 [30]; Bilicki and Kestin, 1987 [31]; Stewart, 1995
[22); Katz and Meneveau, 1996 [32]). For spherical
bubbles, since the external flow is indistinguishable from
that around a solid sphere at the same Reynolds number
[17], the wake structure of a leading bubble can be
analogous to that around a solid sphere. For an air bubble
with attached wake region in water medium (Rep, > 20),
the effective wake volume, in which the following
bubbles may collide with the leading one, is defined as
the projected area of the leading bubble multiplied by the
effective length as illustrated in Fig. 4:

“ﬂwz%ﬂDZ(Lw—D/Z) @D

The number of bubbles inside the effective volume is
given by

N,=Y%n=—aD*(L,-D/2)n. 22)

Assuming the average time interval for a bubble in the
wake region to catch up with the preceding bubble is AT,
the collision rate per unit mixture volume is thus
obtained:

1 N,
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where #,, is the average relative velocity between the
leading bubble and the bubble in the wake region. If the
transient for a bubble to reach its terminal velocity is
assumed much shorter than the collision process, the
average relative velocity, u,,,, can be expressed in terms

of the relative velocities of the continuous medium inside
and outside the wake region:

Uy z(Vf(z)— Vfo), (24)

with Vqz) as the local liquid velocity at the center line, z
as the distance measured from the center of the leading
bubble as shown in Fig. 4, and Vy, as the ambient liquid
velocity. For a turbulent wake, which satisfies most of
the practical bubbly flow regime, the wake velocity on
the center line roughly satisfies (White, 1991 [32]):

/2 2/3
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Fig. 4 Illustration of the wake of a leading bubble

Here, u;(D) is the terminal velocity of a bubble of
diameter D. By integrating Eq. (25) over the effective
wake length, (L - D/2), the average relative velocity in
the wake region is given by:
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(26)




The exact form of F(D/Ly,) is not important since the
effective bubble wake region may not be fully
established. According to Tsuchiya et al. (1989 [33]), the
wake length is roughly 5 to 7 times the bubble diameter
in air-water system, and thus D/Ly, as well as F(D/Ly,)
are treated as constants depending on the fluid properties.
As long as their values obtained from experimental data
fall into the range for D/L,, = 5~7, the mechanism should
be acceptable. Substituting Eq. (26) into Eq. (23) yields
the following simple expression of the bubble collision
rate per unit mixture volume due to the wake-entrainment
mechanism:

D 1 n’
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w

The final form of the bubble coalescence rate for wake-
entrainment is then given by

Ryg =Cyg D*u, (D)n? (28)

where Cyg is an adjustable constant mainly determined
by the ratio of the effective wake length to the bubble
size. A proper choice for Cyg should yield an effective
wake length roughly 5 to 7 from Egs. (26) and (27). The
bubble terminal velocity, 1., is a function of the bubble
diameter and local time-averaged void fraction. Based on
the balance between the buoyancy force and drag force in
a two-phase bubbly flow, Ishii and Chawla (1979 [34])
applied a drag-similarity criterion with the mixture-
viscosity ‘concept to obtain the following expression for
the relative velocity:

D A /2
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C. Bubble Breakup due to Turbulent Impact

For binary bubble breakup, the impact force comes
from the inertia force, Fy, of the turbulent eddies in the
continuous medium, while the holding force is the surface
tension force, F. To drive the daughter bubbles apart
with a characteristic length of D, a simple momentum
balance approach gives the following relation:

pr3D
AT?

«F,-F (31
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with AT as the average breaking time. Here, the inertia of
the bubble is dominated by the virtual mass because of
the large density ratio between liquid and gas.
Rearranging Eq. (31) leads to the following average
breakup time:

-1/2 2
ATocB(x-E?i) we= 214D
u, We o

>We,,. (32)

The velocity, u, as defined in Eq. (20), is assumed to be
the root-mean-square velocity difference between two
points of length D, which implies that only the eddies
having a size equivalent to the bubble size can break up
the bubble. We_, is a collective constant, designated as a
critical Weber number. The reported value of We  for
bubble breakup varies in a wide range due to the
resonance excitation of the turbulent fluctuation (Sevik
and Park, 1973 [35]). In an air-water system, Prince and
Blanch [11] suggested that We, equals 2.3. From the
defined bubble breakup time, if the bubble number
density is », the bubble breakup rate per unit mixture
volume should be:

U (1 We,,

12
1
Rpen—=n We) ,We>We, . (33)
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In a homogeneous turbulent flow, the chance for a

bubble to collide with an eddy that has sufficient energy
to break the bubble is approximately {19]:

up
,CF
i < expl ——5- |, (34)
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where 7, is the critical mean square fluctuation velocity
obtained from We,. Finally, for We>We,_, the bubble
breakup rate per unit mixture volume is given by:

We U we_ )"
Ry =Cp exp(— W;’) nb’—(l-——TN—;—’-) (35)

Again, the adjustable parameters Cz7 and We,, should
be evaluated with experimental data. This expression
differs from the previous models [11, 12] because the
breakup rate equals zero when the Weber number is less
than We_,. At low liquid flow rate with small void
fraction, the turbulent fluctuation is small and thus no
breakup would be counted. This unique feature was
confirmed by experimental observations and allows the
fine-tuning of the adjustable parameters in coalescence
terms independently without considering the bubble
breakage effect. Afterwards, the coefficients C7y and
We_, may be found at relatively high liquid flow rate with
fixed adjustable parameters in the coalescence terms.




[II. ONE-GROUP INTERFACIAL AREA
CONCENTRATION TRANSPORT EQUATION

In the two-fluid model, the parameter of interest is
the interfacial area, a;, rather than the bubble number
density. To obtain the transport equation for interfacial
area concentration, Eq. (2) can be modified with the
following geometric relation:

3
=2 w[“—") (36)

% \a’

where y is a factor depending on the shape of the

bubbles.  For spherical bubbles y equals 1/36m.
Substituting Eq. (36) into Eq. (2) leads to:
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The second term on the right-hand-side represents the
effects of void fraction variation. If the gas phase is

assumed to be incompressible, without phase change the
following continuity equation is applicable:

(3N
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Subsequently, the one-group interfacial area transport
equation is reduced to:

2
2 9.(a )=L(z] .
57 +V a;vg 3w 2, %S”’j (39)
With the models for the bubble number sink and
source rates developed in section 2, the net rates of
change in interfacial area concentration per unit mixture
volume due to random collision, wake-entrainment and
turbulent impact are given below, respectively.

Coalescence due to Random Collision:

CRC(“:G,-Z) 1 &3 o3 40
Sarc = i (a‘” —a”3) I-exp —C.__a“r;'ax - (40)

3”afmax 'max max

Coalescence due to Wake-Entrainment :

1
Sa i ==“3;CWEurai2- “4n

Breakup due to Turbulent Impact:

1 a; ( We )1’2 ( Wec)
= 1 - cr - T 42
Sam 18C””'(a)1 we ) P\ Twe » U

for We 2 We,, .

Eqgs. (39) to (42) constitute the one-group closure
relation for interfacial area concentration in two-phase
vertical dispersed bubbly flow. The variables in these
equations are coupled with the field equations in the two-
fluid model. For the information of the local interfacial
area concentration, the field equations should be solved
together with the closure relations. However, the
presented model is limited only to the two-phase
dispersed bubbly flow. At high void fraction when cap or
slug bubbles appear, another transport equation should be
provided for the interfacial area concentration of cap or
slug bubbles. The two groups are not independent. The
inter-group transfer terms should also be modeled
individually. As shown in Fig. 1, these terms include the
breakage of the cap bubbles with the daughter bubbles in
the first group, the coalescence rate of the small bubbles
with the daughter bubble in the second group, and the
inter-group coalescence with the daughter bubble in the
second group.

The study on the two-group transport equations for
interfacial area concentration is the next phase task.
However, if the present one-group model is justified with
the existing experimental data, a solid foundation will be
provided for the two-group approach. In such a way, the
mechanisms as well as the source and sink terms
presented in this paper can be isolated from the
complicated fluid particle transfers between the two
groups, and the evaluations to the presented models are
more effective. To do so, the one-group model will be
further reduced to a one-dimensional form in the next
section by averaging over the cross-sectional area, and
the model is then compared with experimental data
obtained at different axial locations for vertical bubbly
up-flows under steady state condition [18].

IV. EVALUATION OF THE ONE-GROUP MODEL

The simplest form of interfacial area transport
equation is the one-dimensional formulation obtained by
applying cross-sectional area averaging over Eq. (39):

Ae), 2 (la)fve))

= <Sa,RC> + <Sa,WE) + <Sa,77>

43)




Due to the uniform bubble size assumption, the area-
averaged bubble interface velocity weighted by
interfacial area concentration can be given by:

o). - el Lol

which is the same as the conventional area-averaged gas
velocity weighted by void fraction, if the internal
circulation in bubbles is neglected. The exact
mathematical expressions for the area-averaged source
and sink terms would involve many covariances that may
further complicate the one-dimensional problem.
However, since these local terms were originally obtained
from a finite mixture element, the functional dependence
of the area-averaged source and sink terms on the
averaged parameters should be approximately the same if
the hydraulic diameter of the flow path is considered the
length scale of the finite element. Therefore, Egs. (40),
(41), and (42) with the parameters averaged within the
cross-sectional area are still applicable for the area-
averaged source and sink terms in Eq. (43).

To utilize the experimental data at different axial
locations under steady-state condition, the transient term
in Eq. (43) is dropped, leading to

L ((a(ve ) = (Surc)+ (S (52m)- @9

Without phase change, the gas superficial velocity should
be constant that is known from fixed flow conditions in
the experiment, independent of the axial positions. Since
the change of the gas velocity due to the mean bubble
relative velocity variation is insignificant, the area-
averaged void fraction is approximately constant.
Thereafter, for a given flow condition, the only variable
that should be specified is the energy dissipation rate per
unit mixture mass, & A sophisticated approach is to
couple the transport equation with the field equations and
the constitutive relation of & such as the k-e model
(Bertodano, 1994 [27]). However, for the purpose of
evaluating the model in one-dimensional form, the
following simple algebraic correlation for £ is employed
in this study without solving the momentum equation:

1 3
= fow —— 46
&= fow 55 (Wl (46)
where, <Vm> denotes the mean mixture velocity, Dy

refers to the hydraulic diameter of the flow path, and fpy,
is the two-phase friction factor (Todreas, 1989 [36]):

025 0316 025
Hm Hm
R N =% YA
Jow f/(ﬂj] ' RCS}ZS(#,J

For dispersed bubbly flow, the mixture viscosity, i, is
given by (Ishii and Chawla, 1979 [34]):

. ‘
Hn = (1 _ (a)) (48)

To identify the adjustable parameters in the source
and sink terms, experimental data of a steady air-water
concurrent up-flow in a 5.08 cm pipe (Kashyap et al,
1994 [18]) are used. In their experiments, interfacial area
concentration and void fraction were measured with a
double-sensor conductivity probe at three different axial
positions (L/Dp=2, 32, 62). In Table 1, seven cases of

- tests are summarized for different flow conditions. With

the measured interfacial area concentration at L/Dp=2 as
the initial condition, Eq. (45) is integrated numerically to
predict the axial distribution of interfacial area
concentration.  The process involves the algebraic
correlation of the energy dissipation rate per unit mixture
mass specified in Eq. (46), in order to decouple the
momentum equations from the interfacial area transport
equation and the continuity equations. Subsequently, the
adjustable parameters in the models are determined if the
predictions at the other two locations match the
experimental data.

Table 1 Test conditions (Kashyap et al.)

Sjg> (m/s) | <jp> (m/s) <a>
case 1 0.023 0.77 ~2.5%
case 2 0.117 0.77 ~10.0%
case 3 0.058 1.11 ~4.0%
case 4 0.117 1.11 ~7.0%
case 5 0.023 1.58 ~1.6%
case 6 0.058 1.58 ~3.0%
case 7 0.117 1.58 ~6.5%

Table 2 Adjustable parameters

Crc C Cyg Cy We,,
0.0565 3 0.151 .18 2.0

At low liquid flow rate with small void fraction,
bubble breakage can be neglected due to the very small
Weber number compared to the critical value. In such a
case, the fitting involves only 3 constants, i.e. Crc, C,
and Cyg. In fact, only two sets of data were employed in
the process. After these parameters are fixed, the




transport equation is further applied to one high flow rate
condition solely for C7y and We,,. The final results of
these adjustable parameters are summarized in Table 2.
For the wake entrainment mechanism, the coefficient is
0.122. Assuming a flat cross-sectional wake velocity
profile, the effective wake length for bubble coalescence
estimated from Egs. (26) and (27) is about 7 times the
mean bubble diameter, which agrees with the observation
of Tsuchiya et al. (1989 {33]). For bubble breakup, the
critical Weber number is found to be 2.0 for the best fit to
the experimental data, which is slightly smaller than 2.3,
a value suggested by Prince and Blanch (1990 [11]). This
discrepancy may be caused by the one-group approach
assuming uniform bubble size. In reality, bubble
breakage exists as long as the size of certain bubbles
reaches the breakup limit in spite of the fact that the mean
size does not exceed it. Therefore, the critical Weber
number for bubble breakage based on the average bubble
size should be smaller than that based on the actual size
of a breaking bubble.

At a very low liquid flow rate with a small void
" fraction as in the case 1, no bubble breakage is expected.
Fig. 5 illustrates such a variation in the area-averaged
interfacial area concentration along the flow path. No
bubble breakage is involved because the Weber number
is smaller than the critical value. Since the void fraction
is small, the drop of the interfacial area concentration
caused by rgndom collisions is only about one tenth of
total decrease. However, as the void fraction increases to
10% in case 2 with the same liquid superficial velocity as
in case 1, the change in interfacial area concentration due
to random collisions increases to roughly 20% of the total
change as shown in Fig. 6. Moreover, because of the
large coalescence rate, the mean bubble size grows
rapidly. At about L/D,=40, the bubble Weber number
becomes greater than the critical value and thus the
bubble breakage term takes effect, resulting in a slower
overall decrease in interfacial area concentration along
the flow path.

An extreme condition is for case 7 as shown in Fig. 7
with a liquid superficial velocity of 1.58 m/s, and bubble
breakage exists at the very beginning. In this case, the
coalescence rate seems to be balanced by the breakup rate
along the flow path, resulting in a relatively flat axial
distribution of the interfacial area concentration.

By applying these adjustable coefficients obtained
from only three sets of experimental data to the other
flow conditions, the results are presented in Figs. 8a and
8b. The mode! predictions of the changes in interfacial
area concentrations are generally in good agreement with
the measurements. The maximum relative difference is

[ai-ai(L/Dr=2)] (1/m) [ai-ai(L/Dy=2)] (1/m)

[ai-ai(L/Dy=2)] (1/m)
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about 8% at a very small void fraction with high liquid
flow rate. Nevertheless, the conciusion is based on the
only set of the published experimental data that have
three axial measurements for each flow condition. Fine-
tuning of these adjustable parameters is needed when
more data become available.

V. CONCLUSIONS

In this study, a one-group interfacial area transport
equation together with the modeling of the source and
sink terms for bubble breakup and coalescence was
presented. For bubble coalescence, two mechanisms
were considered to be dominant in vertical two-phase
bubbly flow. These include the random collisions
between bubbles due to turbulence in the flow field, and
the wake entrainment process due to the relative motion

of the bubbles in the wake region of a seeding bubble.
For bubble breakup, the impact of turbulent eddies was
included. These phenomena were modeled individually,
resulting in a one-group interfacial area concentration
transport equation with certain parameters to be
determined from experimental data.

By area-averaging over the local one-group transport
equation, a one-dimensional form of interfacial area
concentration ~ transport equation was obtained.
Compared to experimental data for the axial distribution
of the interfacial area concentration under various flow
conditions, the adjustable parameters in the model were
obtained. ‘The results indicate that the proposed models
for bubble breakup and coalescence are appropriate. The
ranges of the adjustable parameters agree with the
physical observations. However, the comparison was
based on the only set of published experimental data that
have three axial measurements for each flow condition.
Fine-tuning of these adjustable parameters is needed
when more data become available, especially for three-
dimensional analysis. The adjustable parameters for
application of the localized transport equation have to be
verified through the coupling to the three-dimensional
two-fluid model with a k-g model added.
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NOMENCLATURE

English

2 interfacial area concentration

C constants

Co bubble drag coefficient

D bubble Sauter mean diameter

D, hydraulic diameter

T two-phase friction factor

] superficial velocity

L length

L, bubble wake length

n bubble number density

r collision frequency for two bubbles
R collision rate

Re Reynolds number

s volume dependent source/sink terms
S source/sink terms

t time

u, relative velocity




u RMS fluctuating velocity

v velocity

4 bubble volume

We Weber number

X space coordinates

z flow direction coordinate

AT time interval

Greek Symbols

a void fraction

) parameter defined in text

€ averaging factor

Y parameter defined in text

il coalescence efficiency

u dynamic viscosity

P density

o) surface tension

Subscript

a interfacial area concentration

b bubble

cr critical

D bubble

€ effective

f liquid

g gas

h hydraulic

i interfacial

j index of summation

m mixture

max maximum

n bubble number density

p particle/bubble

ph phase change

pm bubble mean value

RC random collision

t turbulent

TI turbulent impact

v bubble volume

w bubble wake

WE wake entrainment

z flow direction
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