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Abstract

This is the final report of a three-year, Laboratory-Directed Research and
- Development (LDRD) project at the Los Alamos National Laboratory.
Detailed geochemical sampling of high-temperature fumaroles, background
water, and fresh magmatic products from 14 active volcanoes reveal that

they do not produce measurable amounts of tritium (3H) of deep origin
(<0.1 T.U. or <0.32 pCi/kg H20). On the other hand, all volcanoes

produce mixtures of meteoric and magmatic fluids that contain measurable

3H from the meteoric end-member. The results show that cold fusion is
probably not a significant deep earth process but the samples and data have
wide application to a host of other volcanological topics.

1. Background and Research Objectives

Jones et al. (1989) published a provocative paper in Nature proposing that "cold
fusion" of deuterons inside the earth is partly responsible for the Earth's interior heat flow

and (possibly) for 3He anomalies observed in volcanic emissions. These authors have also

suggested that d-d fusion in the Earth might cause tritium (3H) anomalies detectable in
volcanic emissions. Although there has been much talk and research on the physics and
chemistry of "cold fusion" since 1989, very little volcanological research has been
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conducted on the topic, other than speculation (McHargue et al., 1991; Palmer, 1991;
Sheely, 1991). Theoretically, 3H and 3He could be produced in the following reactions:

p+d----emme- > He + gamma (5.4 MeV)
d+d---mm-m- > He + neutron
L T p—— >3H+p

In the last fusion reaction, 3H (t'?=12.4 y) would decay to 3He. Thus, if 3H can be

found in magmatic water as opposed to meteoric waters that may contain 3H from H-bomb
tests and natural atmospheric reactions, this would provide possible evidence for natural

fusion in the Earth. Any primordial 3H would have decayed away by now.
Water is the dominant gas in most volcanic eruptions (Giggenbach, 1992; Tedesco,

1995), thus determination of stable isotope (SD/8180) and 3H content of magmatic water is

critical to our understanding of magmatic processes and conditions by which magma is
generated in the crust or mantle. These isotopes are necessary to evaluate interactions
among magmatic waters, groundwaters, and precipitation. However, no systematic

experiments except ours (described below) have been conducted on the 3H content of
magmatic water because of the short half-life, the large H-bomb excess in the atmosphere,

and the large samples (=300 ml) required to accurately analyze low-level 3H(5T.U.
where 1 T.U. = 3.193 pCi/kg H20). The few measurements previously made on the 3H

content of steam from volcanic fumaroles are poorly constrained by other chemical and
isotopic data and display large analytical variations (Mazor et al., 1988). As a result, any

3H found in volcanic steam has been explained as meteoric contamination (Quick et al.,
1991) and the prevailing wisdom has assumed that 3H (magma) is essentially zero.

Our objectives are to determine if anomalous 3H is present in magmatic water from
active volcanoes, independent of magma composition or tectonic setting, and to determine

the source of 3H. Because "cold fusion" is a highly controversial subject, we have been
told repeatedly by many outside critics that a variety of volcanoes must be investigated to

demonstrate whether a universal phenomena exists. As a result, we have analyzed 8D,

8180, 3H, 3He, and other chemical/isotopic constituents in sample suites from fumarole

condensates, thermal/nonthermal groundwaters, precipitation, and youngest volcanic
products at 14 active volcanoes of vastly different magma type and tectonic setting




(Table 1). We began by looking at a variety of subduction zone and hot spot volcanoes of
basaltic to rhyolitic composition but, with time, acquired data from volcanoes of more

unusual composition or setting (i.e., Vulcano, Italy).

2. Importance to LANL’s Science and Technology Base and National
R&D Needs

If direct evidence of anomalous 3H can be detected in the magmatic water of
several volcanoes of contrasting magma type and tectonic setting, it would lend strong
support to the theory of natural fusion in the Earth and would require revisions in concepts

on primordial 3He, mantle heat flow, and plate tectonics (McHargue et al.,, 1991).

However, if we can show that magmatic 3His essentially zero, we can eliminate "cold
fusion" as a significant deep earth process.

3. Scientific Approach and Accomplishments

Our approach requires direct sampling of active, high-temperature volcanic fumaroles
and fresh lavas, followed by analysis of a variety of chemical/isotopic parameters on the
samples. Condensates from fumaroles are collected through Ti and/or pure SiO7 glass
tubes and a condenser submerged in coolant. Our approach is unique because we collect

large samples of condensed magmatic water from many fumaroles for 3H analysis (never
done before) and because we use three isotopes of water to eliminate effects of meteoric
contamination or contamination by near-surface groundwaters (Fig. 1). We also collect
extensive background samples of fluids and rocks to compare with magmatic samples.

The approach is demonstrated by our data set for Galeras volcano (Fig. 1). High-T
fumaroles (<400°C) occur at the summit of the active cone. The fumarole condensates have
pH<1 and contain significant amounts of Cl, F, sulfur compounds, and trace metals (Goff

etal., 1994). Clearly these condensates are primarily magmatic fluids. The 8D/5180

relations (Fig. 2) show that high-T condensates are isotopically enriched compared to all
thermal/nonthermal groundwaters or rain. However, it can be seen that some meteoric
water is mixed with magmatic water in even the highest temperature fumaroles, a

characteristic common to most volcanic fumaroles (Shevenell and Goff, 1993). The 8D of

magmatic water (-35%o) is determined by extrapolating the mixing line to the 5180 value of

magma. The latter value is obtained from analyses of fresh lava bombs exploded out of the




crater. Note that fresh lava samples display relatively constant 8180 (+7.37%o) but

variable 8D due to open-system magmatic degassing (Taylor et al., 1983).

The same type of mixing relation between magmatic and meteoric waters is revealed
in a plot of 3Hvs. 8180 (Fig. 3). High-T fumarole condensates have 3H/86180 values
different from all thermal/nonthermal groundwaters or rain. Local meteoric waters (cold

springs, streams, and wells) show relatively constant 5180 but variable 3H due to presence
of anthropogenic 3H. Extrapolation of the mixing trend to the 8180 value of magma yields

a (statistical) 3H content for magmatic water of 0.00+0.03 T.U.
Some of our other data sets show anomalous 3H values as high as 3 T.U. (Table 1).
We resampled Mount St. Helens in FY94 to see if the previous value would remain

constant but the magmatic 3H value decreased significantly. The second data set had a

better distribution of 3H with respect to 3180 values. Some later data sets, such as the one

for Vulcano, actually extrapolate to negative 3H values. After examining the errors
associated with the various analyses and methods, we conclude that extrapolated magmatic

3H values greater than (0.0 T.U. shown in Table 1 are caused by slope errors (clustered
data) or end-point errors (8180 of magma varying or not well constrained) during
extrapolation.

The secular 3H production by in-situ neutron irradiation of 6Li by U/Th decay can be
calculated from the compositions of the lavas (Andrews et al., 1989; Shevenell and Goff,
1996). Contents of Li, B, F, Cl, Sm, Gd, U, and Th as well as the major components
must be known to perform the calculations. Secular values of <0.01 T.U. have been
calculated from averaged analyses of several lava samples at most volcanoes (Table 1).
Although the lavas are too young to be in secular equilibrium, the calculations show the

amount of 3H that may be produced in the source regions of the magmas. These values are
much less than the 3H values that we can detect at any of the volcanoes; thus fission

reactions are not producing significant magmatic 3H.

In FY9S, we began to look at more unusual sites such as Vulcano, Italy (microplate
boundary trachy-rhyolite). Due to our sampling success, the Yucca Mountain Project
funded a sampling expedition in FY9S5 to Paricutin, Mexico (cinder cone field andesite)
because of its similarities to the Lathrop Well cone near Yucca Mountain. While in Mexico,
we attempted to sample the giant andesitic stratovolcano of Popocatepetl but it was too




dangerous to sample safely. Also in FY9S, we accepted samples for tritium and stable
isotope work that were collected by T. Fischer, Arizona State University, at Kudriavy
(Russia) and Papandayan (Indonesia).

In FY96, we combined efforts with another LDRD project (Remote Sensing-
Volcanology Subtask, F. Goff, P.1.) to reduce logistical costs while taking samples and
making measurements at White Island and Ruapehu volcanoes, New Zealand. Even
though fumaroles were hot (<400°C), the White Island data suffers from masking effects
by a geothermal system lying above subsurface magma, an effect also noticed at Alcedo
Volcano in the Galapagos Islands of Ecuador. Ruapehu was too active to sample
completely and safely for this investigation, although perfect for the remote sensing study.

In conclusion, after investigating 14 active volcanoes we find that the magmatic 3H
is <0.1 T.U., lower than our sampling and analytical capabilities can measure. These
results imply that “cold fusion” does not occur in the deep earth to any measurable extent.
We are in the process of writing up these results for journal publication.

Although we did not find magmatic tritium, this project had a series of successes
with respect to other volcanic and geochemical processes. Our samples provided
information on the rapid mixing of young meteoric water with degassing magmatic water in
the porous cones and domes of young volcanoes (Shevenell and Goft, 1993). Our
samples were used to perform secular 3H calculations on a variety of young magmas (i.e.,
Shevenell and Goff, 1996). Our samples show that magmatic volatiles mobilize many
metals including gold due to their extreme acidity and ligand content (Fig. 1; Goff et al.,
1994). Our samples offer additional insights into other degassing phenomena in magmas
(Goff, 1996).
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Figure 1: Modified cut-away perspective drawing of Galeras volcano (viewed from the
north) showing the basic geology and configuration of shallow hydrothermal system.
Magmatic volatiles mix with young near-surface groundwaters to form acid springs.
Magmatic fluids discharging inside the volcano create conditions favorable for deposition
of gold and copper. Magmatic fluids discharging at the summit have mixed with
precipitation falling in the summit crater and cone. The resulting mixtures contain
measurable tritium from the meteoric end-member but no detectable tritium from a deep
source (from Goff et al., 1994).
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