skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvent Refined Coal (SRC) process: trace elements. Research and development report No. 53, interim report No. 30. Volume III. Pilot plant development work. Part 6. The fate of trace elements in the SRC process. [111 references]

Technical Report ·
DOI:https://doi.org/10.2172/5044975· OSTI ID:5044975

Instrumental neutron activation analysis was used to study the distribution and fate of up to 36 elements in the Solvent Refined Coal Process Pilot Plant located at Fort Lewis, Washington. The elements Ti, V, Mg, Ca, Al, Cl, Mn, As, Br, Na, K, Sm, La, Ga, Cu, Sb, Se, Hg, Ni, Co, Cr, Fe, Rb, Cs, Sc, Tb, Eu, Ce, Sr, Ba, Th, U, Hf, Ta, Zr and Zn were measured in feed coal, insoluble residues, process solvent, process and effluent waters, by-product sulfur, SRC-I solid product, liquid-liquid separator oils and SRC-II liquid products. The material balance was calculated for each element from the concentration data and yields of each process fraction for both the SRC-I and SRC-II processes. Except for Ti, Cl and Br in the SRC-I mode and Hg in the SRC-II mode, each element was substantially lower in the SRC products than in the original feed coal. Residues from the process contained more than 80% of the trace element content found in the coal, except for Hg. More than 98.5% of the total contents of K and Fe in coal were retained in the insoluble residues. Elements such as Hg, Se, As and Sb can form volatile compounds (such as Hg/sup 0/, H/sub 2/Se, AsH/sub 3/ and SbH/sub 3/) stable under the process conditions. The high enhancement factors of Se (957), As (202) and Sb (27.4) in the aqueous phase of the separator water compared to that of the oil are evidence for the formation of volatile species which are more soluble in water than in the oil phase.

Research Organization:
Washington State Univ., Pullman (USA). Nuclear Radiation Center
Sponsoring Organization:
USDOE
DOE Contract Number:
AC01-76ET10104
OSTI ID:
5044975
Report Number(s):
DOE/ET/10104-T3; TRN: 80-017685
Country of Publication:
United States
Language:
English