4/%%9"*8 v 14 4-.“/’ B’E-O’;‘éé-'/

(oNF- 8508 25-- S+

SLAC-PUB-4561
March 1988
M)

INTRODUCTION TO HUMAN FACTGRS*

JOAN M. WINTERS SLAC-PUB--4561

Stanford Linear Accelerator Center DE88 009021
Stanford University, Stanford, CA 94309

Introduction

There is much te be done in Human Factors. First, I'm going to give a brief overview
of the field. I'll give some background on human factors, talk about what the nature of
the problem is, what the costs are, how they can be alleviated, and why we don’t just run
out and fix them. Second, Pau] Hoffman will discvsa highlights from cnrrent research and
some elements of the business case. Finally, Tamara Sturak, Mznager of the Human Factors
Project, will talk about activities of the Project.

Much of this material is adapted from the Report of the Interactive Systems Task
Force (otherwise known as INTERSYS), on which I labored. The results were published as
a SHARE strategic direction statement in SHARE Secretary’s Distribution #323, October,
1982. IBM responded in March 1984, after gathering views from people in a variety of areas

Presented at Session G200, Human Factors Project,
SHARE 79, Anakeim, CA, February 29-March {, 1988

: AQTE -
*Work supported by the Department of Energy, contract DE—AC03~TGSF00!h£ b

e
DISTRIBUTION OF TIRD RESMGLNT I UALIMITED

across the corporation. Since INTERSYS atiacked a broad set of subjects, the breadth of
IBM’s response was very appropriate; and we were happy to see IBM go to the effort. I
have also drawn on information developed by the person who preceded me as Manager of
the Human Factors Project, Jim Lipkis, and on many years of work with Project membera,
IBM representatives to the Project, and others.

I should make a couple of caveats: 1 am not an expert in the field of human factors.
We have at least one in the room, Ron Shapiro, our current IBM representative. These are
my vie rs after twelve years of being involved with the Human Factors Project and mere
than six working on a Usability Committee at Stanford Linear Accelerator Center. There
we review commands that are being added to the VM system or enhanced.

The Field of Haman Factora

Thomas Carlyle said, “Man is a tool-using animal.... Without tools he is nothing,
with tools he is all.” Human factors is concerned with designing more comfortable tools for
humans to use. A definition of human factors is a field of applied psychology that studies
attributes of the work or play environment with the goal of making them more conducive
to human effectiveness, Human factors is concerned with relationships between human
characteriatics and behaviour and the “design of things people use, the methods of their
use, and the environment in whick they are used,” as Michael Marcotty said at a SHARE
General Session in 1981. The field is also known as ergonomics, particularly in Europe.

Human factors grew out of World War I attempts to design better airplane cockpits.
The pilots kept pushing the wrong buttons, and the planes crashed. The field emerged in
response. The initial practitioners tried to reduce failure rates, e.g., by designing cockpits
80 that the abort button wasn’t right next to the start button. People studying hardware
human factors have also investigated subjecta like traffic signals and nuclear reactor control
room design. In computing, the initial emphasia was likewise on hardware, particularly
on the design of terminals and workstations and of furniture like chairs for using them.
More recently has emerged the study of the intellectual and psychological factors of using
software, or software human factors. For uhis, human factors draw on cognitive psychology.
Thie branch of psychology attempts to understand humans’ higher mental functions, such
as learning, memory, reascning, problem solving, and the usage of tocla. While our under-
standing of physical human factors is reasonably good, we know few behavioural principles
to apply to software human factors. This circumstance means that at th.: time the study
of software human factors is an art rather than a science. The field is presently based on
experimental data rather than predictive theories.

The goal of human factors is to contribute to the overall usability of systems, but
usability and human factors are slightly different. Human factors are concerned with the
design of the interface between the user and his or her data and between the user and his
or her set of taols; whereas, usability is more general. It also addresses issues like function
and aystem availability. Now there is a very gray area between function and human factors,
for example, the Macintosh interface that allows multiple screens, bit-mapped displays, and
the easy combination of graphics and text. This interface shows definite improvements in
human factors but also represents a significant increase in function.

The Costa of Poor Human Factors

So what’s the problem? People use computers successfully. Why don’t we just go on
the way we have been?

We could, Humans are very adaptable. They will conforrma to just about anything, if
they have ta. But at a cost! Some of the problems with current aystems I’ll mention now.

2

See Appendix A of the INTERSYS Report for an even more extensive list, though still not
a comprehensive one.

Taday’s systems are very large and complex, and getting more so. They lack conceptual
integrity. Like Topscy, they’ve just grown. To their users, maost systems seem arcane,
idiosyncratic, inconsistent, and more difficult than necessary to learn and to use. This is
a particular problem for occasional and discretionary users. As John Ehrman pointed out
many years ago (in 1979), users need to learn many different interfaces and languages just
to develop one application. In his paper on the Tower of Babel, he mentioned editors,
programming languages (like FORTRAN and PL/1), command languages (like JCL, CMS,
and CP), linking languages, debugging languages, document formattiing languages (like
SCRIPT), command procedure languages (at least we’ve got REXX now}, other languages
required by specific applications, and, of course, the natural language or languages of one’s
choice. {With VM/SP 5 IBM has even provided support f{or various natural languages,
which is a good but difficult step.)

Another problem with interfaces is that they’re often rigid and unnatural. This causes
users to make errors at high rates. There are redundant names for the same function,
leading people to try to uncover subtle differences when there are none. The error messages
are often cryptic, assuming users have knowledge of system implementation. The user
assistance facilities are often missing entirely or are available inconsistently and erratically.
For example in VM, see DIRMAINT ? versus HELP ACCESS. Or with VS FORTRAN
Interactive Debug, look at the radically different formats of those task files and the standard
VM/SP task menus. Hardcopy documentation is often obsolete, incomplete, poorly written,
and verbose. For many, it is rarely available when they want to get at it.

The costs of poor human factors in current systems can be divided into direct and
indirect ones. These costs are impossible to quantify fully. Often they are distributed
among diverse users off in isolated locations; whereas, the costs of buying a system or
developing software up front are much more centralized. Due to their invisibility, user costs
are underestimated.

Since the early fifties the tradeoff between machine and people costs has shifted from
minimizing the costs of machines to minimizing the costs of people. Doherty and other
researchers have estimated that the cost of user time wasted merely because of poor system
response time is much greater than the cost of all the computer hardware, software, and
support staff one might have.

Adapting categories of costs identified by Ledgard and Singer and also by Marcotty, I
use three: direct, indirect, and opportunity costs.

In direct costs there are the cost of training and re-training, the time spent diagnosing
and fixing errors, and the unnecessary reruns caused by error-prone aspects of the system
and unhelpful error messages. In 1977, more than a decade ago, Gilb and Weinberg in
Humanized Input estimated that at that point the unnatural choice of a blank delimiter in
JCL had led by conservative estimate to the waste of $100,000,000 in unnecessary reruns,
destroyed files, inefficient operation, and bug hunting. They alsc estimated that another
$50,000,000 had been lost due to the positioning comma. De Greenc cites anaother example
of a NASA rocket that went off course and had to be destroyed to the ture of $35,000,000
because of a hyphen missing from its guidance equations,

Indirect costs include cognitive costs and human suffering. Some cognitive costs are
the mental overload of remembering the many different languages and their idiosyncrasies,
for example how to quit. Is it QUIT, EXIT, END, QQUIT, FINISH, FIN, BYE,or 'm
sure you know others. The bewildering array of command names for similar functions is
made even more complex by the many different kinds of abbreviation rules.

3

Another type of cost is human suffering, elements of which include frustration, anxi-
ety, presaure, fatigue, and fear. I'll give one example, of frustration. A number of years
ago at a university that shall remain nameless, a professor who shall be unidentified was
seen one Saturday morning in a public area jumping on a keypunch. Anxiety can come
when the system does things you don't expect. Pressure and fatigue can be caused by fre-
quent difficulties understanding obscure system error messages and by keeping track of the
mentally-difficult exercises that systems demand. Then of course there's fear. Some studies
have shown that when one talks of system commands new users think that the svaicn is
commanding them rather than that they should command the system.

Finally, there are opportunity costs, limits placed on future usage. Until a few years
ago, most computer users were computer professionals. They had to use the computer,
and they generally got into its obscurities and even liked them, feeling, for example, that
they knew things other people didn’t know. But now managers, professionals in many
businesses, hobbyists, and home users — lots of people — are exploring computera. These
discretionary users will only start and continue to use computers if the systems are easy
enough to operate that these users find benefits quickly and permanently, enhancements
to their ways of work and play that save them time, stimulate their imaginations, inrrease
their overall effectiveness, and promote their satisfaction. Professionals are an especiaily-
demanding audience. For example, in the early days of expert systems one was developed
that was very good at dizgnosing illnesses in patients. Unfortunately, doctors didn't like to
use it. The reason turned cut to be that doctors are trained in judgment and they didn’t
trust the answers they were being given by the expert system. That was the point at whick
the developers of expert systems realized they had to incorporate ways for the aystems to
explain their reasoning for particular conclusions to the human users.

Ideal System Interfaces

0.K., we have identified a problem. How can we alleviate the costs of poor human
factors in computer systems?

At the highest level, we want aystems that are graceful, ones that do not interfere with
human thought pracesses. Even mare, we'd like systems that augment human thought
processes. System interfaces should be oriented toward users’ tasks and terminologies.
Systems should not force users into the perspectives of computers, except, of course, where
appropriate, as for certain tasks belonging to system programmers.

‘This i a very important point: one can hardly ever say that anything is absolutely true
in the area of software human factors. Context is very important.

Varjous ideal system characteristics that may aid in achieving the goal were identified
by the INTERSYS group. These are not absalute, but characteristics that may be aptimized
and weighed against cther considerations that may be present in a particular application.

Ideal Static Attributea:

The report identified eight static attributes of graceful systemn interfaces: simplicity,
consistency, ease of recognition, ease of learning, integration, tailorability, robustness, and
power.

Simplicity is the first static attribute. Simplicity has also been called parsimony. It
means that designers need to minimize the number of operations that users must perform,
the number of systeni-related concepts they need to learn, and the complexity and extra-
neous verbaosity of ayatem cutput. VM CMS HELP is mostly a counterexample. (I think,
supported by preliminary experience at SLAC, that the new VM/SP 5 BRIEF section con-
taine insufficiently-specific information to be useful very often.) If the system knows the

4

information, it shouldn’t require users to re-enter it on input. {f the system knows rele-
vant information, it should tell users on output. It should not say, “Insufficient memory;”
it should tell people how much more it needs, Better yet, the system should just go get
the storage and not bother the users at all. There are trade-offs among simplicity, ease of
recognition, ease of learning, and power.

The second statjc attribute is consistency. That means first that terminology should
be consistent. The same syntax should be used whenever a particular semantic entity
appears. The same semantic entity should be identified by the same syntax. As Teitelbaum
(a previous IBM representative to the Project) showed, when the same information appears
on display screens in a similar context, it should appear in the same place so that people
can take advantage of prior learning to find it.

The third attribute is ease of recognition. This is sometimes called transparency. As
reasonably possible, system designers should take advantage of users' pre-existing knowl-
edge. The operation of the interface also should help users build a conceptual model of the
system that is sufficiently coherent that they can extrapolate from one task how to do similar
ones. For example, if one knows how to compile, load, and execute FORTRAN, it would be
nice if one could make a successful guesa at how to do the same with PASCAL (allowing for
differences in names of the compilers and libraries). Once people have invested in learning
something, they should be able to transfer that knowledge into enalogous circumstances.
Thia attribute is fostered by selection of recognizable dialogue keywords, probably a natural
language subset, and consistent application of those keywords to specific functions. The
ability to proscance keywords aids in their recall. We also need the ability to tailor the
vocabulary to users’ pre-existing knowledge and natural languages.

The fourth static attribute is ease of learning. Interfaces can have all these desirable
attributes, but they still need special aids to help users get started and fill in gaps in their
understanding. Assistance facilities should take into consideration the three or so cognitive
states that a survey dene by the Online Documentation Committee of the SHARE Human
Factors Project identified: learning, problem-solving, and refresh.

The group developed a questionnaire asking people to describe how each one solved a
specific problem with using an interactivesystem. The questionnaire listed thirteen passible
sources of information like online detail about an error message, online help for a command,
online help about a subject area, hardcopy documentation, another person, and “Other.”
The questionnaire was distributed in 1981. 270 people responded, anonymously. Of the
questionnaires returned, we were able to use 229. Our IBM representatives at that time,
Rich Halsvead-Nusslech and Dick Granda, perforined the initial analysis, discovering that
the descriptions of the particular problems could be classified into different cognitive states.
The states had been identified by research in cognitive psychology.

The learner has to learn at least some new concept, relationship, and/or nomenclature
in order to work through a situation. A learner may be someone trying to use computing
for the first time or someone starting in a new area, like a knowledgeable MVS/TSO user
moving to VM/CMS.

A problem solver knows all the critical concepts, relationships, and nemenclature but
does not know how they fall together to resolve the specific prablem. A problem solver could
be a statistician figuring out how to save recoded variables in SPSS or someone debugging
a program.

A refresher has resolved a similar situation in the past but needs reminding of par-
ticular aspects or details. A refresher may reread documentation on a mail system to
recall relationships among its components or look at the HELP for COPYFILE to find an
infrequently-used option like TRANS.

As the survey showed, people in these separate states use different sources of information
and are satisfied differently by those sources. For example, refreshera used online help for
commands less frequently than learners but were more satisfied. In fact, neither learners
nor problem solvers found much satisfaction in most nonhuman information sources. Until
designers can incorporate more aspects of persen-to-person communication into nonhuman
information sources, thcy will nat be very effective in helping peaple in the learning and
problem solving states to satisfy their questions.

Expert systems offer some hope of meeting the need. Also, systems should keep enough
information on users, their recent actions, general levels of expertise, and preferences, so
that the software aids learning by tailoring messages and other displays to people’s current
computing status, cognitive states, backgrounds, and styles. SPIRES HELP provides the
first of these functions. SPIRES is a data base system, and its HELP command displays
what file is selected, how many matches were identified by the last query, and other context-
dependent information.

The fifth attribute is integration, The entire system should atart out and remain coher-
ent to users. Different parts of the aystem should work well together. Users should be able
to combine parts easily, even in ways designers never anticipated. As the system develops
over Lime, it should not become “fragmented.” This was a term identified by the SHARE
LSRAD Task Force, which studied large systems requirements for application development.
{INTERSYS was a child of LSRAD.) As each system evolves, people should be able to add
new tools that integrate smoothly into what’s already there.

The sixth attribute is tailorability. People have different styles, as well as general
and specific knowledge, computing expertise, and computing tasks., Users need session
and application defaunlting, aliasing, and overriding se that they can develop environments
comfortable to themselves and maintain consistency within their conceptual models. Users
also need easy-to-learn and powerful EXEC languages like REXX so that they can combine
several commands into one (incorporating some logic) to reduce their memory Joad. Once
their environments are tailored to their satisfaction, users may need to “port” their views to
multiple systems (like mainframe and pc). IBM’s System Applications Architecture (SAA)
may increase consistency across operating systems, but will it suppert enough tailorability
and ways of easily porting one’s tailorings that we can say SAA has this attribute? Perhaps
we'll learn at one of the many SAA sessions this week.

The seventh attribute ia robustness, Systems shouldn’t break unpleasantly. They
shouldn’t crash or hang; and, moat particularly, they shouldn’t destroy data. Systems
should be somewhat tolerant of minor differences in the way requeats are specified. For ex-
ample, CMS is robust in that it recognizes the minimum abbreviations of commands or any
longer versions of the words, so that users don’t have to remember specific abbreviations.
PLATO (an educational system developed at the University of lllinois) is even better. |
recognizes certain spelling errors and corrects for them, thus removing some of the irritation
of “typo-ed” commands from users,

The final static attribute identified by INTERSYS is power. This provides for the
easy combination of data and processing power from a wide variety of sources, including
from machines other than the ones to which the users are primarily connected, even from
ones produced by vendors other than IBM that obey different protocols. IBM’s Extended
Connectivity Facility (ECF), Advanced Program to Program Communications (APPC),
and related products may help enable such combinations. Power also requires support
for concurrent asynchronous functions, so that one can lay something aside, handle an
interrupt or pursue r thought or three, and return to what ane was doing without losing
any work. Certainly XEDIT’s ability to pass commands through to VM and even be re-

6

invoked itself is a step towards providing power. XEDIT now creates a much more effective
work environment that when it was limited to CMS Subset. Windows may be another
aid in this area. Without these appropriately powerful capabilities, users are forced into
time-wasting behaviours attempting to bypass the limitationa.

Ideal Dynamic Attributes:

The INTERSYS Task Force also identified two dynemic attributes of graceful system
interfaces, to which I've added three more.

The first dynamic attribute is response time. This has been defined as the elapsed time
between a user request and the system response. Response time should be fast enough
not to interrupt human thought processes. Research by Doherty and Thadhani of IBM
indicates that sub-second response time is needed. I believe Doherty now thinks that less
than a tenth of a second is required for human-intensive work. Both have shown that
productivily as measured by the number of transactions per unit time increases in more
than direct proportion to decreases in response time, e.g., transaction productivity goes up
very quickly when response time is faster than a second. Subsequent research by Lambert
where IBM provided sub-second response time to a group of developers showed that guality
measured by the number of errors in coding also improves with faster response time. IBM
has a standard way of estimating development projects, e.g, how long a project should take,
how many programmers it needs, and how many errors the finished code is likely to have.
Comparing the predicted values with the actual ones, Lambert concluded that for their
response tirae of .84 seconds the duration of the project decreased by 22%, the manpower
and system costs decreased by 37%, and the quality increased by 132%. In addition, the
program developers were happier than before.

The reason seems to be related to peaple’s attention spans. People usually don’t think
after each command. They “chunk” commands. They seem to have a sequence of actions
in mind, contained in their short term memory buffers; and they just want to enter the
commands one right after the other before they stop to analyze the output. If something
interrupts them, it’s likely to blow away their short term memory buffers so that they have
to recreate their action list. Restarting takes time and is irritating to people.

At IBM’s T. J. Watson Research Center, there's been a goal of providing sub-second
response time for a number of years now. Last I heard, they achieve this aim for $8000 per
year per professional working on the computing system, while the user salary costs, only
while the workers are sitting at their workstations, are $41,000 per year.

The secand dynamic attribute identified by INTERSYS is system lockout. Some people
have a model of human/computer interaction as being a polite dialogue. The human says
something, the keyboard locks up, the computer processes, the computer displays its re-
gponse, the keyboard unlocks, and the human can say something else. Again, this sequence
secms to interrupt humans' short term memary buffers. Often people in a conversation like
to interrupt each ather or talk altogether at once, so user lockout interferes with graceful
human/computer interfaces.

The third dynamic attribute of a graceful interface is bandwidth. Both INTERSYS and
Doherty have emphasized its importance. Sub-second response time is not enough. People
need te transmit ever more data between their workstations and other parts their systems.
For example, one may look at a graphics display, make a few small changes in light of what
one sees, and then request an updated version in pursuit of the effects of the changes. The
successive iterations should be displayable very quickly, so that people’s short term memory
buffers, which are guiding the explorations, don't get blown away. To do this kind of display
and other sorta of applications like scanning requires much broader bandwidths than are
common today,

The fourth dynamic atiribute is feedback. Interfaces should keep users informed about
the status of whatever’s happening. As I mentioned, SPIRES HELP provides feedback. So
do a number of VM/SP QUERY commands and other software you can think of.

The final dynamic attribute is locus of control. This treats whether the people’s modes
of interaction with computer systems are active or passive. Sotne people like to feel in
control of their camputing sessions; others prefer to be led along. I think this difference
relates to their cognitive states. Learners are more likely to be in a passive state; refreshers
in an active state.

Difficulties in Fixing Systern Interfaces

So what's the problem? Why don’t we just go out, incorporate knowledge from the
field of human factors, and make our system interfaces graceful?

It’s not that clear how to dn it. As Thomas More said, “If you had been with me in
Utopia ... you would frankly confess that you had never seen a people ordered so well as
they were.” That’s fine in Utopia, but we don’t have Utopia here. The characteristica I've
talked about are just that, Utopian. We’re not even sure these attributes will help, though
I’'m fairly sure they would; but it’s not clear how to trade them off, and there may be other
factors we haven't identified yet.

It turns out that intuition is of little help in creating system interfaces with good human
fectors. Moran pointed out that once designers become interested in human factors, the
designers usually feel that they are human and thus can predict whal’s easy for people to
use. The problem is that designers’ intuitions don’t necessarily (or even usually) match
users’. They are from different audiences with different. backgrounds conceptual models,
and tasks and are often in different cognitive statea.

Also, when one is implementing actual systems, one has to face difficult tradeoffs be-
cause of limits in the amount of time, money, and other resources one can spend on the
efforts. There are not yet any algoritl:ms to predict how to make the tradeoffs for any given
set of circumstances.

For example, we want consistency on the one hand and tailorability on the other.
Standards activities push various forms of consistency, but people feel comfortable and are
presumably more productive if they can make their systems feel right to thern. Which ia
more important depends on the situation, the audiences, etc. There is no general answer,
though the answer may often be both, if you can afford it.

We want systems ta be pawerful, robust, and integrated, even after being extended;
and then, of course, we want them to be simple.

Part of the answer depends on identifying who the users are. As I've mentioned,
they have different tasks, professional knowledge, knawledge of computing, personal styles,
intelligence, cognitive states, and organizational requirements. The needs of end users are
often different from those of computer cenler staff. It's hardest to design a general interface
for a multiplicity of audiences.

Research has shown that the numernus features of even simple experirnents interact in
complex ways on subjects, so that it is very difficult to build general models of user be-
haviour. It's easy to over-generalize or misinterpret the results or to create an experimental
design that is inadequate.

A number of years ago, there was an experiment that tried to determine whether
having comments in code was desirable or not, The experimenters thought comments
would be helpful, but the initial analysis indicated that they weren’t. Looking into the
experiment further showed that adding the comments had increased the size of the test
program over a page boundary, so thut the subjects had to keep flipping between the pages

a

and that interruption of their thoughts was interfering with their overall comprehension
of the program. What this experiment finally showed was the importance of context, of
presenting information in ways where people can see the overall structure, rather than the

“badnesa” of comments.

In Conechision

’ve given some background on the field of hum.an fa'ctars, talked abc?ut the nature of
prohlems with current human/computer interfaces, 1c.1entlﬁed some of their co?t?, outlined
ideal attributes of graceful system interfaces, and indicated some reasons \‘vhy'xl; s not easy
to fix the problems. Now Pll turn the floor over to Paul Hoffman, who will give us reason

to hope that we can improve these interfaces.
T}"his work was supported by the Department of Energy under contract number DE-

AC03-765F00515.

DISCLAIMER

This report was prepared as an account of work sponsared by an ageacy of the United States
Governmenl. Neither the United States Government nor any agency thereof, nor any of their
cmployces, makes any warranty, exp ar implied, or any tegal Viability of responsi-
bilily for the accuracy, ¢ or useful of any information, apparalus, product, or
process disclosed, or represents that its use would not infringe privately vwned rights. Refer-
ence herein to any specilic commercial product, process, or setvice by trade pame, trademark,
manufacturer, or otherwise does not necessarily constitute or wmply 1t5 endorscment, recom-
mendation, or favoring by the United Siates Government or any agency thercol. The views
and opinions of authors expressed hercin do nol necessarily stale of reflect those of the
United Stales Government or any agency thereof,

Bibliography
Chapman, J. A., et al., 1982. “Computing for the Information Age: The Report of the
Interactive Systems Task Force (INTERSYS),” SHARE Secretary’s Distribution 323.

Cowlishaw, M. F., 1983. “Design of the Restructured Extended Executor Language,” TR
12.223 (IBM United Kingdom Laboratories Limited, Hursley Park, Winchester, Hamp-
shire, England SO212JN).

De Greene, Kenyon B., 1970. “Systems and Psychology,” Systems Psychology, Kenyon B. De
Greene, editor (New York).

Doherty, W. J., and R. P. Kelisky, 1979. “Managing VM/CMS Systems for User Effectiveness,”
IBM Systems Journal 18(1), 143-163.

Ehrman, John R., 1979. “The Babel of Application Development Tools,” Proceedings of
SHARE 58 1 (SHARE Inc., Chicaga), 29-38.

Engel, Stephen E., and Richard E. Granda, 1975. “Guidelines for Man/Display Interfaces,”
‘TR 00.2720 (IBM Poughkeepsie Laboratory, Poughkeepsie, N.Y.)

Gilb, Tom, and Gerald M. Weinberg, 1977. Humanized Input: Techniques for Reliable Heyed
Input (Cambridge, Mass.)

Ledgard, Henry, and Andrew Singer, 1978, “The Case for Human Engineering,” Proceedings
of SHARE 50 III (SHARE Inc., Chicago), 1447-1466.

LSRAD Task Force, 1979. Towards Mare Usable Systems: The LSRAD Report: Large Systems
Reguirements for Application Development (SHARE Inc., Chicago)

Marcotty, Michael, 1981. “Human Factors and Productivity,” Proceedings of SHARE 56 ¥
(SHARE Inc., Chicago), 328-337.

Markell, R. A., and L. H. Fenton, 1984. “Response io the SHARE Interactive Systems Task
Force Report (INTERSYS),” Proceedingsof SHARE 62 1 (SHARE Inc., Chicago), 865-
879,

Miller, James Grier, 1978, Living Systems (New York).

Moran, Thomas P., 1981. “Guest Edilor’s Introduction: An Applied Psychology of the User,”
ACM Computing Surveys 13(1), 1-11.

No author, 1982. “The Economie Value of Rapid Response Time,” IBM Form Number GE20-
0752,

Smith, Sidney L., and Jane N. Mosier, 1984. Denign Guidelines for User-System Interfuce
Software, ESD-TR-84-190 MTR-9420 (The Mitre Corporation, Bedford, Mass.)

Teitelbaum, Richard C., et al., 1983. “The Effects of Positicnal Constancy on Searching Menus
for Informaticn,” TR 00,3248 (IBM Poughkeepsie Laboratory, Poughkeepsie, N. Y.)

Thadhani, A. J., 1981. “lateractive User Productivity,” IBM Systems Journal 20(4), 407-423.

Winters, Joan M., 1978. “Human Factors Considerations in the Design of Vendor-supplied
Documentation,” Proceedingsof SHARE 51 I (SHARE Inc., Chicago), 536-541.

-, and Keith J. Sours, 1983. “An Empirical Study of the Use and Effectiveness of Online
Documentation: Final Report,” Preceedings of SHARE 61 1 (SHARE Inc., Chicago),
13-46.

10

