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Part 1. General Theory [7] In 1953 the speaker with Professor K. Za_mba

lt is hardly necessary to emphasize the importance That (dec) introduced the spatial coordinate, z, explicitly and
an accurate pre.,dicdon of the parameters of critical Itow accounted for entropy production by the standard friction
plays in a number of industries, notably in nuclear reactor coefficient, f. This equation can no longer be i.ntegrate.,d
safety calculations and in metering, in spite of its expLicitly, so a set of graphical solutions [8] was obtained
importance, the literature of the subject stil.l contains by the method of isoclines. To systematize the study, we
e,-roneous statements. Many of them result from an performed a topological analysis of the model equation
unjustified belief in the generality of certain conclusions which reve,'ds that certain no771e shapes could introduce
drawn in the elementary study of one-dimensional spirals or nodal points, in addidon to the standard saddle
i_;nu'opic flow of a perfect Eas with constant speci.fic heats point. The analysis also clearly showed that the standard
through a convergent-divergent (de Laval) nozzle. This critical cross-section (here denoted x*) dees not occur at
lecture will present a complete and consistent theory of the throat but shifts to the divergent portion. To our further
such flows, applicable to any fluid (single- or multiphase) surprise, certain nozzle shapes could lead to the appearance
and any channel shape. The study is restricted to the one- of more than one critical point (here denoted xi" and x=*),
dimensional approximation, and, although only adiabatic The prece.ding observations lay dormant until the
conditions are discussed, the formalism can be extended to advent of computers emphasized their importance because
_bitrarycondltions at the boundary of the channel, now the model equation [7] could be programmed to

produce numerical solutions, say by employing a Runge.
Elemenlarv Gas Dynamics Kutta discrefization.

We begin by recapitulating the classical results of
elementary gas dyna.mJcs [5], Th_, _.u,;servation equations _ [9]
in the elementary case can be reduced to a single equation Since ill mathematical models use the same general
in terms of the Mach number M, the cross-sectional area A algorithm [10], it is rea._onable to expect the discovery of
and the isentropic index 7. This equation can be integrated features which are common to ali models of this class [ll].
explicitly in the form of double-valued funcdon A(M) By way of example, we display the homogeneous
whose graph is given. All other dependent quantifies (T, P, equilibrium single fluid, model (H.E.M.). To include
etc.) are expressed in terms of the Mach number alone, as relaxation ('FI.R.M.) we introduce a sin£le r_laxation time O
indicattx:! [6]. By the use of a judicious, empirically and an evolution equation (3_). These are merely
inspired reasoning, it is possible to sketch a diagram illustrative examples, and we point to the fact that the
illustrating the variation of M (and hence of P, T, etc.) majority of computer codes in present-day use., including
along the nozzle, given the relation z(A). The set of two-fluid models, can be reduced to one, til-purpose form,
solutions ("portrait") can be sketched exhibiting the effect [12]. To study critical flow it is permissible to simplL"y to
of back-pressure, as is well known . The critical point the form of F.,qn. (2), rather than using the time-dependent
introducesa kindof bifurcation.The criticalparameters equation,and lettheprogram convergetoa stead)'stat_
have fixedvaluesforany 7, and theappearanceofshock (2).
wavesmust bel_ate_set)aratclv.
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The steady-state model (2) represents a _t o! n (n=! or identical with the patterns which occurred in the most
more) ordinary,, quasilinear d.iffer_:ntialequations. In what elementaO' case [8]. Viewgraphs [24] and [25] formulate
follows we shall sketch the topological analysisof tkis themosl importamphysJcaJconclusionsthat foUow.
matrix equationand so demonstrateits power to obtain an The sadctle.point pat_rr, shown in [26] clea.,,'!y
understanding of the underlying physics of the problem re_mbles the elementary parmm [6]. h emphasizes the
without looking for an)' solutions, analytic or numerical, fact that the criucal pressu.reratio P*/Po ('Po-pressure al R)
The unknown, to bedeterTn.ined,state-velocityfuncdon is is not a constant;it dependson the ",quationof stateand
denotedby o whosevariationwith z is required, varies when the noz.z.]eis trur,cated at different cross.

To discretizethe problem [13], we apply Cramer'srule sections in the convergentportion. Most clearly, the
and obtain a set of n simultaneous linea,r algebraic critical cross-sectiondoesnot set-inat the tl'u'oatbut moves
eqr ,dons for the local di_ctional vector V which playsa downstr'eam.
ge: .rolein thecalculationof thefa.n'_ar "chains,"

Viewgraphs [14] introduces a classification of points in Part 2. Spurigus Solutions [27]
the phase-space [2 formed as a uaion of o with z. By Viewgraphs [28] and [29] recapitula_ the contrasting
contrast, the discretize.d form [15] introduces a interpretationsgiven to the continuousand discret:iz.ed
classification of the algebraic equations for V, The versionof our problem, f'trstencounteredirl [14] and[15].
difference in these two fundamental understandingsleads This by itself is anindication, albeit a vagueone, thatthe
us to pose the question [16] concerning the presumable two methods of solving for a trajectory need not
lack of congruencebetweenthe "portrait" of continuous necessarUybeidentical. Sucha suspicionis contraO'to the
solutionsandthe"map"of numericalsolutions, prevaiting intuitive conviction that a computer output

On reflection, one must express surpri_ thai the always represents a con'ect tta.lector).'. In this lecture we
question has not been emphatically pose.d in industo' (and show that the answer to the question posed in [16] is
not o_dy in relation to two-phase flow). The evidently positive in certain regions of the phase space and ne_.ative
negative answer can have far-reach.ingconsequences, in others.

The thei;is becomes clear when we proceed to exarrdne
Topological Analvsls [17] the process of numerically searching for the critical cross-

In [18] we show how a trajectory m arises in the phase section in a system characterizzd by a saddle point S [30].
,spacewhen it traces only regular points. When A = 0, [19], lt is recalled that the topological analysis unambiguously
the vector V becomes normal to 7.,and the trajectory (mI specifies two finite di_ctions of vector V at S, denowd V_
plus mz) bends over with a maximum at Ni. Since the flow and V:. lt is also recalled that at an infinitely small
in a nozzle cannot turn on itself, it is clear that a turning distance from S the directional vectors are either parallel to
point M can only represent a state at the end of a channel, P or to z, as shown in the lower insert. Given that a
and since then: A = 0, choking occurs at the exit cross- numerical algorithm, based on a grid however small, will
section, lt is noteworthy that the hype.rcylinder A = 0 never produce a chain which crosses S--the ordy two in

this case which we seek. More precisely, two runs starting
divides D into a subcritical half-space D_ t'.nda supercritcal with very close boundary conditions at z = 0 will produce
half-space D:. either a run of type a(1)-a or b(3)-b. The "map" of such

Although the illustrations are, of necessity, lirrdted to endeavors will give the appearance of a nonconverging
only two state-velocity variables o I and o:, the topological code a.nd suggest to the operator futile remed.ies: (a) a
conclusions an'validforanyvalueofn, change in the model or Ct) a tightening of the

The picture in [20] shows the intersection of one of the computational mesh. The only satisfactory course is to (1)
numerator determinants (say N_ = 0) in the C'ramer check the character of the singular point, (2)locate the

representation with the hypercylinder A = 0 along manifold singular point, i.e., the critical cross-section, and (3)
determine the directions h and t: for V_ and V:, andS, A standard theorem of matrix algebra asserts that ali

determinants Ni must intersect A = 0 along S. Thus, integrate from $ outwards, (It is possible to think of
alternative schemes, but they ali amount to a statement that

manifold S is the locus of ali singular points of our steady- it is unavoidably necessary to understand the topolngical
state system (2) from [I 2]. structttre of the phase space and suitably to supplement the

In the three illustrations [18], [19], [20], we have main code, because no numerical code can include a
disregarded degenerate cases which are not likely to occur singular point in the trajectory,in real problems.

Viewgraphs [31] and [32] represent two examples of
The topological analysis of system (2) establishes three numerical solutions which contain branches that are clearly

strong theorems quoted in [21]. The bottom line quotes the either irrelevant or plain wrong. Such branches _ called
characteristic equation for the two nonzero eigenvalues of spurious solutions; they are also called "ghosts" or
the lineariz_ matrix eal_. "phantoms." Their appearance is rooted in the inco_ct

The preceding, most remarkable, strong theorems have handling of a singular point.
the effect of showing that even in the most elaborate In [31] two numerical codes, TRAC.PLA and TRAC.
model, the topological relationships in the neighborhood of PD2 produce consistent solutions 1c, which adequately
a singular point are those of a tangent two.dimensional represent the experimental data; they ali pass through
plane. The explicit conclusion is statedin [22], and[23] regular points of the phase space. Whereasa deftly
illustrates the three typical topological patterns. The), are hand.led code would most probably result in an acceptable
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i approximation to 2"E, the two codes, apparently consistent produced together with his collaborators over a span of
w'ith each other, result in spurious branches 2" c, nearly for D' years.

A sb'ni]arinterpretationcanbeputon [33],

The lecture,justgiven fullysupportsC, Truesde].]'s Nole: A more detaileddiscussionofspuriousso]ufionshas
...... admonr'Jon [33]. been given earlier in the submitted extended absu'_t,

T'r,e .aast viewgraph, [34], lists nine topological studies "Spurious Solutions ha Critical Two-Phase Flow Nu.mcr'ical
of v,u'ious aspects of gas d_am.ics, which the speaker Codes."

Part 1. General Theory

Elementary gas dynamics Choked isentropic flow
1. Flow is choked when sonic velocity occurs at

throat.
Perfect gas with constant specific heats

2. Pressure ratio P*/Po, temperature ratio T*/To etc.
nave itxeo values.

4(1+kM:) ]_I 2-g'(z)
/',I: " A(z) 1-?',I: . k = (7"I),"2 3. Discontinuous solutions (shock waves) are not

described_ , by the difl'erential forms or influence
coetl_cients.

for ',sentropic flow (f = 0) this equation can be
integrated explicitly with A as independent variable:

9

=_ii, -- .m=(y . 1?.'2

•"..I+ ] ] _ Introduce spatial coordinate z:.... !1I + 1\
" _I_LJ_. " " "._L_L!_I_L. ,.

"' ii I iii dz ="' 1-M 2+ I'M:..... , ,i I , I>K.I
,, .:: i i i 1SKi 1
,- ,_. ................... numerical integration plus topological analysis

a" li,

integral is double.valued singular points at:

T,,/T = 1 + k.M:, PdP = (1 + kM:) n, n -- ",/('r'-l) M2= 1, A'(z) = yf [ = 0 (isentropic)]
etc. or G('M:,z) = 0

isentropic nozzle flow of perfect gas with constant singular points in nozzle flows, perfect gas c.s.h.specil_c nears

_"_" R,p,m,ed /tom .4irernft Enoinet,ring. luae IP8
r.t

_-"----_ //// ' ./...-_._.___ ,_:_.: One-Dimensional
• ___z_,.___ , / / . High-Speed Flows ft(x)- A(_

_ottlti, Intludln| Comptellibilit T lhd ¢il,',o)h _' [fflcUI I

Fig. ,I,I _tll Irl p)ll,l_"lrltil It.l_I_I)_'hl i ],alvldI_l,l,'.t
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Mixed patterns Mathematical models
(Kestin and Zaremba, 1953) i

,.,.,' ,.r_,/_, ... H.E.M. simplest no dispersion

';'I11_.',. ____/ Dp /Dt+ p _wl_. = - (A'/.4)pw, (I:,

,w_ __ DwlDt +p-'tPl_.== - CrlpA, (2>
a, m' •

_c,)_ , t Dh/Dt-p"'DPIDt = ('Tw/pA, (3)

__ D/Dr t _'lC.t+w_/O. a, = (P,t ,h) "r
,lr. l' •

H.R.M. includes relaxation

r._' y,V' a.(P,h,w) is replaced by e.(P,h,x,w)
' t i Dp/Dl+p_w/C= = -(A'/A)pw, (32o)

' , I _ [

, .' _ _..,___. Dw/DI+p"SP/_.zm-Cr/pA, (32b)

r" _-_'./', ('_¥k_ "_ _"__' " " - Dh/Dt-p"DP/Dt = C'rw/pA, (32c)

Dz/Dt = -(x-_)/O, (32d)
i I i I

, , ..... x = .-r- (._- %) exp (- t/#).

J ' ' _,_. _ I , Einstein, 1920-, s,' _i," • •, s_ •

' i r,;_ Mandei'shtam and Leontovich, 1937
I _ !/ I
_._,,, I Io Broer, 1958, 1970
L

• , s," .,..' •
_,,, j

Generalization to any hlathematicalmodel

number of phases,

arbitrary fluids, and AU(o)_-_ _-_" c3t + Bij (o) az = Ci to,z)
any channel shape

i,j = 1,...,n

2)Bij (c) dz = Ci (o,z) (
(The "model")

Ali mathematical models c3

employ at -- 0

(single and multiphase flow)

conse_'ation of: Set of n ordinary quasilinear

mass differential equations
momentum

energ)' Topological analysis

(Poincar6, Bendixson, Hale)
plus

equations of state

closure conditions
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Cramer's l'ule Discretized solution

system ofn coupled linear algebraic equations
solution: chain, e.g., Runge.Kutta

do__.iiNi (o,z) %._= % +vn (z°._.z0)
dz - A(o) classificationofequations

do'i = 1_. A.0: 1. system of equations has
_ V - dz _''iJ'l C unique solution o(z)

2. ali Nlv 0, system is

(3"(Zk+ 1) ": O[,Zk,' + Vk(Zk+ 1" Z k) inconsistent, no solution"
A=0:--

(numerical solution - chain) 3. ali Ni = 0, system is
compatible, "infinity" of
solutions

Vk calculated from
n,.,,,,t, Nmal_-

%

n simultaneous linear Vn= (dz/dz)n = Nj,n/An

algebraic equations

Is the set of trajectories in
the phase space

Continuous solutions:

system of n coupled ordinary nonlinear he"2(0' 7 Z)
differential equations

topological analysis determines

"portrait" in phase space .Q= union o + z of model equations the same as
the set of system of algebraic

classification of points equations?
A,0: 1. regular points (o"°,z°)

existence and uniqueness
(Cauchy- Kowalewska theorem)

2. ali Ni_0 on A(c_)=0

uniquetrajectory Tonolooical analysis
A=0:-

3. ali Ni--0 on A(o)=0

singular points (o*, z*)

nonunique trajectory

topological pattern depends

on nature of singular point

V = do/dz = Ni/A

solution: ct = o(z)
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Trajectory in phase space
V- vector field in f2

for A = 0 V normal to z (n _ 0) Singular points

A=0 and ali N=0

2 m_ Z

- Nh Np

ho'- CONS!

regular points p'_

Turning points (M)

V normal to z (A = 0, ali N _ 0) Topological analysis
z 6--o ; (Three strong theorems)

I s2,
A<O,w>w' " I /x>O,w<w_

- : 1. Ali manifolds Ni : 0 intersect thes
r i

manifold A : 0 along the same manifoldNz N, which is thu.s the locus of ali singular

z'_.......__..Iv._ [ _ (stationary) points of the system.
' V V

2. The "phase portrait" in the
neighborhood of nondegenerate singular

v,// _' J J_--.-3V'_ points (rank BU = n-l, the only relevant
/, case) has the same topology as its linear

"'" form.o

3. The linearized matrix ec_pof Bij has only

_" two nonzero eigenvalues.
t72

choking at end of channel

a:O O_a,p_n
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CONCLUSION c. The conditions

_(a*) = Ni(o*,z*)= 0, (6)

In all present-day with any _ NI, are necessary and sumcient for

single, and multi-phase choking; the value of z* determines the location

models, it is possible A(z*) of the critical cross-section A* along a given

to encounter only trajectory, lt is clear that z* is located in the throat
of a convergent • divergent nozzle only in isentropic

flows of perfect gases. In practice, lt is found that
saddle points A" places itself in the divergent section of the

_ nodal points channel and that relaxation processes drive it quite
far downstream from the throat. /_Iathematically,

spirals Equations (6") define a singular point afsrstem (2),

(excepting degenerate cases)

Physical conclusions 2
In practice, in convergent.divergent nozzles

(nuclear energy, natural gas meters),

saddle points are most common, d. System (2) admits only saddle points,
nodal points or spirals, ali of which

Singular points constitute isolated singularities. In

p.ractice, in the case of critical two.
phase flov_) it is sufficient to

'_ '_ J__ sad dIepoints.

__ e. Transition from subcritical (_<w*) to
• ' supercritical flow (w>w*) can occur

.J_/,_ only if the isolated saddle point lies on
the respective trajectory.

saddle point nodal point f. The condition A(¢_*)= 0, together with
Ni(o*,z) ¢: 0 tall n components Ni are
meant here], can occur only at the endlt

I//--_ of a convergent or constant.area
channel; these are _rning points.

J

Saddle-point pattern
.... in P,z projection

spiral (focus)

Physical conclusions 1
CI ...... Pr_

a. Through ali points for which &to) ;e 0, called A = 0

_..e.._IZ[_l_,there passes one, and onlyone, trajectory a. P'_--_--_- ..............,

of system (2) [the Cauchy.Kowalewska theorem]. _ _r-/7.7.J[7,t/2

b. The equation Ata'.) -- 0 yields the necessary _. i B_Po
condition for choking which determines the relation
between the critical velocity w* and the remaining
state variables. This relation is independent of the

channel shape A(z) and the externally controlled Zo 0 [ z _ z L
closure conditions, ali of which are located in the [ distance z
vector c. throat

•-- 159
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Part 2. Spurious Solutions

Introduction by Bilick.i _d Kestin (1990), that the inclusion of a rate
A scrutiny of some of the latest critical reviews of the equation (as suggested by Einstein in 1920 and by

state of the an of modelling thermal-hydraulic phenomena, Mandelshtam and Leontovich in 1937) to account for
especially in the context of LWR safety analysis, reveals dispersion and relaxation phenomena fits into the same
the persistence of some misconceptions concerning the form and only requires the inclusion of some measure of
nature of the flow andoftherelation between thepreferred composition, such as the dryness fraction x, as a
mathematical model and its discretized equivalent, lt has component of the state-velocity vector ct.
recently become clear that the ensemble of trajectories in In order to calculate the critical mass-flow rate, it is
phase space of a mathematical model, expressed in the possible to allow the code, based on the complete Equation
form of a set of differential equations, can be radically (1), to converge to a steady state. Alternatively, it is
different from the ensemble of solutions implied in the possible to base the calculation on the truncated form
numerical code, expressed as a set of linear algebraic

equations employed in practical applications. This doj ci(c,z). (i,j= 1 n) (2)
discrepancy becomes acute when critical flow rates are Bij(_) dz = ' ....
computed under conditions of choked flow.

with
General Mathematical Moclel

A majority of practical codes make use of the one- ¢:3/c3t= 0. (2a)
dimensional approximation and ali of them base it on the
standard conservation equations written either as a one-or Although-rather obvious intuitively, it can be shown
as a two-fluid formulation. Even though the underlying rigorously that the condition of criticality derived by the

method of characteristics applied to the set of Equations (1)models differ from each other, they can ali be reduced to
the following, standard form: is completely equivalent to an analysis based on set (2).

For this reason we confine our further di._, ion to an

8a, analysis of the truncated Equation (2).

Aij(a).._.t+ Bij(c)_z = c i(a,z). (i,j = 1..... n) (1) This discretized form is based on the application of
Cramer's rule to Equation (2):

Here, a denotes the vector of dependent state-velocity

variables, Aij and Bij, are explicitly known n x n matrices, d_i Ni(°'z)
dz - A(G) - Bij "1 cj. (= V) (3)though they differ from model to model, as does the vector

ci and the number n of partial differential equations, lt Here
should be observed that only the vector ci contains the

coordinate explicitly as it enters the problem through the _(a) = det Bij (a), (4)
cross-section profile A(z).

The preceding standard form encompasses the vast and the n determinants Ni(a,z ) are obtained from Bij by
majority of computer codes used at present to model replacing thej-th column in it by cj.
single-and multi.phase flows, lt is remarkable, as shown Whereas the set (2), presumed adequately to model the
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physical situation which isi the subject of analysis, relaxation processes drive it quite far downstream from
I constitutes n quasilinear ordimio.' differential equations, the the throat. Mathematically, Equations (6) define a

discretized form (3) can be in_ierpreted as a set of n linear singular point of system (2).

algebraic equations for tl:ie components do/dz of d. System (2) admits only saddle points, nodal points or
directional vectors V. These are then utilized to construct spirals, ali of which constitute isolated singularities. In

an approximation in the form Of the chain practice, in the case of critical two.phase flow, it is
sufficient to discuss saddle points.

a[Zk+ 1] = c(z k) + Vk (zk+ 1 - zk) . (5) e. Transition from subcritical (w<w*) to supercritical flow
(w>w*) can occur only if the isolated saddle point lies

At this point the lecture will pose the question, largely on the respective trajectory.
ignored i.npractically all writings on the subject: f. The condition A(c*) = 0, together with Ni(c*,z) _ 0 [allI

" Is the set of trajector!es in the phase space n components Ni are meant here], can occur only at the
_(o,z) of the Equation_ i (2) the same as the set end of a convergent or constant-area channel; these are
of chains (5) of the syst_)m 3? turning points.

The general answer, as stated earlier, is in the negative.

The ensuing argument will explore the more detailed R g"_g--'k-._ ., ' _Po
' "#__ .,i I ./Np,O __

questionconcerningtheconditionsunderwhichthechains " _N,,,__--....._E__ _" _ PaI

(5)areadequateapproximationstothetrajectoriesof(2)as ' I "_'_3 2"_,,,,,,x_2_--t2/___ _: 0

well as when the differences between them may give rise to tI _. p,,,,V_2,_),k.. _".,"7 :, , \
spurious numerical solutions which are either irrelevant or I _ L_"-;z+'_ _ ,,,',,,','F, ',

erroneous. The latter case can occur when critical.flow t _ _,t'_
solutions are requized. _ [:_,_',@'_I//f_,,i,,//_.2,,//,'"/s 5

I /.'
Topological PrOl_erties of General Model , " [_' '",//;'/'_/

T/ ////,/--'/Y/I,

- - 1 ___,, ..,,\.',.//A clearanswertotheprecedingquestionisbasedon a _ l_, _/,.,-I.,.,, .

I Z:Ltopological analysis of the "portrait" of solutions of system Zo 0 Z*distonce z

(2) in the phase space f2(o,z) contained in Bilicki et al. throol
(1987). The theory of dynamic systems establishes the
validity of three strong theorems.

Figure 1, Portrait associated with saddle point.
1. All manifolds N i = 0 intersect the manifold A = 0 along Projection from phase space t'l into P,z

the same manifold which is thus the locus of all plane.
singular (slationar.v) points of the system.

2. The "phase portrait" in the neighborhood of The diagram in Figure 1 depicts the ensemble of

nondegenerate singular points (rank Bij = n-l, the only solutions ("portrait") in the P,z projection for a
relevant case) has the same topology as its linear form. convergent - divergent channel when conditions (6) define

a saddle point. As already stated earlier, nodal points or
3, The linearized matrix eal 3 of Bij has only two nonzero

spirals, though feasible (see, e.g., Kestin and Zaremba,
eigenvalues. 1953), occur rarely and need not be discussed in this

The preceding rigorously proved propositions lead to the lecture.
following conclusions. The pattern of solutions consists of curves 1, ali of

which pass through regular points only; such flows are
a. Through all points for which A(c) _ 0, called regular, subcritical (w < w*) everywhere. Curves 3 contain turning

there passes one, and only one, trajectory of system (2) points along A = 0. Clearly, they can occur in a channel
• [the Cauchy-Kowalewska theorem], only if it is truncated because a physical flow cannot turn

b. The equation A(cr*) = 0 yields the necessary condition on itself in the channel.

for choking which determines the relation between the Curves 2, 2', and 2" separate the preceding two classes
critical velocity w* and the remaining state variables, and pass through the saddle point at S where A = Np = 0.

This relatior, is independent of the channel shape A(z) The directional vectors t 1, t2 are determined by the
and the exten,ally controlled closure conditions, ali of
which are located in the vector c. eigenvalues of the linearized matrix eotl3of Bij. Point S lies

i c. The conditions on the only trajectories which cross from the subcritical
A(o,) = Ni(o*,z*) = 0, (6) region above A = 0 to the supercritical region below A = 0.

• Curves 2-2" represent critical flow with transition from
with any one N i, are necessary and sufficient for subcritical to supercritical, whereas curves 2-2' represent
choking; the value of z* determines the location A(z*) choked flow which is fully subcritical, except at S.
of the critical cross-section A* along a given trajectory, The regions denoted by F 1, and F2 contain trajectories

lt is clear that z* is located in the throat of a which constitute mathematically correct, but physically
convergent- divergent nozzle only in isentropic flows of unacceptable, solutions of system (2) for flows starting at
perfect gases, In practice, it is found that A* places R.
itself in the divergent section of the channel and that
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Diserelized Codes

Any numerical code calculates a more-or-less V2, Failure to do so produces spurious solutions, Concrete

sophisticated version of chain (5) in which V k = (da/dz) at examples of such misleading answers to important I,

z k results from a matrix inversion of a set of ordinary linear problems will be given in the next section

aigebraac equations, Such a set has, so-to-say, no It should by now be cl-.ar that a numerically generated
knowledge of any singularities, It follows that no chain, Eqn, (5), is a good approximation to the respective
numerical code, however advanced, can produce a solution trajectory when the latter passes exclusively through
which passes through the saddle point required to regular points at which A _ 0, regardless of the local
determine the critical conditions (3"*or the critical cross- values of the Ni's, but will fail if the required solution is

section A*, and hence lhc critical mass-flow at choking, lt that which represents choking, that is one which must cross
is therefore not surprising that most contemporary the sadcllepoint.

- algorithms replace their ignorance of conditions (6) by ]"wt Examt)les of Snurious Solutions

more or less (mostly less) felicitous adhoc assumptions, In the open literature there exist no reports of a

_--_o(E) systematic search for spurious solutions related to two-

__ phase numerical codes, Nevertheless, it is possible toP __.------..._'-........._ interpret some published data as indicating such evidence,

S - I 1 I i i
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Figure 2, Numerical search for a critical cross-section at lhrool

z*. Projection from phase space _ into P,z

plane, Figure 3. Spurious solution 2"c. Measurements an:i

To be more explicit, we examine the process of a numerical calculations performed at
numerical search for the critical cross-section with the aid Brookhaven National Laboratory,

of Figure 2, Here S denotes the saddle point in which V l The first example, shown in Figure 3, represents a

and V 2 represent the two tangents t1, t2 for Figure 1 whose comparison between experimental results of a critical flow

components can and should be calculated from the of water and steam through a convergent-divergent nozzle

linearized matrix ect[5 mentioned above, The two attempts and the output of two numerical codes CTRAC-PIA and
marked a(1) and b(3) start with very close initial conditions TRAC-PD2) carded out at Brookhaven National
and represent the two types of analytic solutions from Laboratory (Saha et ai,, 1982), We assume that the
Figure 1. However, since numerical schemes accumulate experimental results (circles) represent physical reality and
errors, the approximations a and b to the trajectories either would be reproduced by a successful code, The pattern
undershoot or overshoot S, giving the misleading ,h'awn by the experimental points tracing 1E and 2E" is
impression of a code which fails the test of convergence, consistent with the "portrait" of a saddle point from Figure
The essential observation is that slopes V 1 and V2 exist 1. The putative location of the saddle point, of which the

only at S and that those infinitely close are either vertical authors do not seem to have taken cognizance, has been
or horizontal (in this projection), as shown below the placed at z*, somewhat downstream from the throat. The
diagram, lt is, therefore, clear that no forward-marching two numerical codes produce results which are consistent
numerical algorithm will encompass point S and will thus with each other along curve lc; this is a locus of regular
fail to calculate the correct state-velocity components at the points and contains no spurious solutions. In the absence
critical cross-section or its location z* (different from the of a corrective subroutine, both codes produce the spurious
throat), solutions denoted 2C", which bear no relation to the

The correct remedy in practical applications is to physical reality represented by 2E". As expected, the

recognize the inability of a discretized algorithm to forward-marching codes fail to cross the saddle point,
produce an approximation to a trajectory which crosses a tentatively placed at S. lt is noteworthy that both spurious
saddle point, The numerical search with the aid of the solutions are close, though quite wrong, Further, it is clear
main code should be replaced b)' formulating an auxiliary that we are not faced here with an unsatisfactor2,.'
code which locates the saddle point S, Eqns, (6), and mathematical model or a faulty code. The discrepancy is
integrates in the two explicitly known directions V 1 and due to the failure to locate the saddle point,
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The second example is a contrived one, though hckngwled_'nents
J constructed without any thought given to spurious The work described in this lecture has been performed

solutions. The diagram represents the output of four with funds provided by the Office of Energy Research of
standard computer codes of choked flow through identical the U. S. Department of Energy, under the management of
convergent-divergent nozzles and under identical initial Dr. O. P. Manley,
inflow conditions. The exercise, codenamed Benchmark I take this opportunity to express my thanks to Dr.
Test, was prepared for the International Workshop on Two- Z. Bilicki of Gdansk, my collaborator of many years,
Phase Flow Fundamentals (Troy, NY, March 1987, see whose ideas have been essential for the analysis described
Hewitt et al., 1991) for the purpose of comparing the in this lecture.

consistency of output of these under rigorously controlled References "
conditions. Unexpectedly, certain cases, of which Figure 4

- is typical, showed, puzzling at the time, but as presently Bilicki, Z., Dafermos, C., Kestin, J., Majda, G., and Zeng,
understood, clear evidence of a spurious solution in the D.-L., 1987,Int. J. Multiphase Flow 13, 511-533.

output from IMPI. Bilicki, Z., and Kestin, J., 1990, Proc. Ro)'. Soc. London A
428, 379-3971
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