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NOMENCLATURE 

Lower-case Roman letters 

a 

b 

inner radius of the involute (see Fig. 1) 

outer radius of the involute (see Fig. 1) 

unit coordinate vectors directed along the a-axis, the z-axis, and 
normal to the midsurface, respectively 

Fanning friction factor 

weighting functions used for the orthogonality method of solution of 
the differential equations 

h fluid channel thickness 

K unperturbed channel thickness 

plate thickness 

1 
local involute curvature = ; k 

I plate length 

P pressure in fluid acting on plate 

r local involute radius of curvature 

t 

Ul? u2 

"M 

time 

plate deflection components in the directions tangential to the plate 
midsurface 

fluid velocity components 

fluid velocities upstream (u) and downstream (d) of a sudden 
expansion in channel cfoss section 

Miller's critical velocity [see Eq. (2111 



W 

2 

Upper-case Roman Letters 

plate deflection normal to the plate midsurface 

axial coordinate measured downstream from the channel entrance 

R 

S 

T 

W" 

matrix of coefficients in the system of boundary condition equations 
~ q .  (6711 

matrix of coefficients in the system of boundary condition equations 
[= ~ q .  (6711 

m a t h  developed from [A] and [B]; IC] = [B]" [A] 

plate bending stiffness [Eqs. (7)-(9)] 

4 
nondimensional fluid friction number = 

integral coefficient [see Eq. (63)] 

plate-stretching stiffness [see Eqs. (4)-(6)] 

nondimensional plate damping coefficient [see Eq. (30)] 

plate bending and twisting moments 

nondimensional density parameter [see Eq. (B)] 

plate tensile and shear forces 

plate shear force directed normal to midsurface 

- 
plate aspect ratio = Q 
stability number; nondimensional unperturbed fluid velocity 

4 

nondimensional ratio of plate stretching to bending stiffness = 

(ii)*K/D 
plate deflection expansion coefficients [see Eq. (53)] , 



Greek letters 

a involute arc length running coordinate 

- 
total arc length of involute 

axial wave number of perturbation [see Eq. (56)] 

a 

P 

P19 8 2  plate midsurface rotations 

Y O  
12 

plate midsurface shear strain 

EO, EO 

c 
plate midsurface axial strains 

eigenvalue of Eq. (68) = i s  
1 2  

1 

V 

P 

PP 

‘5 

x 

8, 8, 

Additional symbols 

plate midsurface bending curvatures due to perturbation 

plate damping coefficient [see Eqs. (1) - (3)] 

plate Poisson’s ratio 

fluid density 

plate density 

plate midsurface twist due to perturbation 

eigenvector of Eq. (67) 

expansion function for the plate normal deflection 

angular frequency of perturbation [see Eq. (56)] 

the prime is used with variables to indicate that they have been 
nondimensionalized 

the tilde is used mer the symbol for a variable to identify coefficients 
[see m. (5611 of ei(Pf - 01 3 
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ANALYSIS OF HYDRAULIC INSIAJ3ILI"Y OF A N S  INVOLUTE FUEL PLATES 

W. K. Sartory 

Curved shell equations for the involute Advanced Neutron Source 
(ANS) fuel plates are coupled to two-dimensional hydraulic channel flow 
equations that include fluid friction. A complete set of fluid and plate 
boundary conditions is applied at the entrance and exit and along the sides of 
the plate and the channel. The coupled system is linearized and solved to 
assess the hydraulic instability of the plates. 

1. INTRODUCXON 

The Advanced Neutron Source' (ANS) is a highly enriched uranium fission reactor 

presently under design at the Oak Ridge National Laboratory to produce neutrons for 

research use. One primary objective is to achieve a high neutron flux. To meet this 

objective, a small reactor core with a high fission heating density is required, which leads the 

designers to seek high coolant velocities to remove the heat. 

Since the work of Stromquist and Sisman in 1948: it has been known that very high 

flow velocities past fuel plates can cause the plates to deform, buckle, and collapse. Excessive 

fuel plate deformation can impede coolant flow and heat removal and thus must be avoided 

in the reactor design. 

An interesting explanation of the flow-induced buckling was proposed by Miller? 

Miller coupled a plate deformation equation with Bernoulli's equation for the fluid. He 

argued that if a small perturbation (due to an initial plate imperfection or to any other 
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source) caused two adjacent plates to move closer together at some location, then the fluid 

velocity between them at that location would be increased. According to Bernoulli’s equation, 

the fluid pressure between the plates would then drop, tending to force the plates even closer 

together. At a certain critical velocity, the fluid forces tending toward plate collapse would 

e x d  the elastic forces tending to hold the plates in their design configuration, and the 

plates would buckle. 

Miller studied both flat and uniformly curved cylindrical plates’ with different 

boundary conditions along their supported edges. Patterned after the successful High Flux 

Isotope Reactor (HFIR),’ the A N S  will use fuel plates with an involute shape (see Fig. 1). 

Gwaltney and Luttrell’ therefore extended Miller’s theory to involute plates by coupling 

elastic finiteelement models of the plates with Bernoulli’s equation for the fluid. They found 

that the involute plates were much more stable than flat plates of the same span, because of 

the stiffening effect of their curvature, but not as stable as cylindrical plates with the same 

average curvature. 

At the time of Miller’s original work, it was immediately suspected that Bernoulli’s 

equation might limit the accuracy of the stability predictions because it ignores fluid friction. 

Thus, Johanssod modified the fluid equation of the Miller model to include friction and 

found some effect on stability. Later analytical work by S c a ~ l p n ’  and by Smissaert’ a h  

included the effect of fluid friction on the Miller-type instability of flat plates. 

%ere is a conflict in terminology here. In solid mechanics, a plate is understood to be 
flat, and a curved plate is called a shell. In nuclear design practice, the term fuel plate is used 
regardless of Curvature. In the present report, the curved involute fuel plates of the A N S  and 
similar curved fuel plates of other reactors will be referred to either as plates or shells. 
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Fig. 1. Schematic representation of typical involute fuel plate. There is an array of 
several hundred involute plates in each of two assemblies in the PS-2 core. The side plate 
radii, u and b, are referred to in this report as the inner and outer radii of the involute, 
respectively. The inset shows the direction of the a axis, which is taken to be the first 
coordinate axis. The corresponding coordinate direction is shown by the unit vector 4. The 
second coordinate z and the second coordinate vector run into the page. The third 
coordinate direction is shown by the unit normal vector # in the inset. The curvature is 
positive when 4 points in the convex direction. A positive pressure loadingp and a positive 
bending moment MI are also shown in the inset. 
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In the present analyses of Miller instability in the ANS,  a linearized involute shell 

model of the fuel plates is coupled with a linearized hydraulic equation incorporating fluid 

friction to assess the allowable coolant flow velocity. Other changes compared with previous 

work include a fully two-dimensional (2-D) hydraulic model and the incorporation of both 

inlet and outlet fluid and plate boundary conditions. Inertial and damping terms (time 

derivatives) are also included in the fluid and plate equations, although computer cost 

limitations prevent the full utilization of the inertial terms. Incorporation of inertial terms 

and complete inlet and outlet boundary conditions allows the calculation of the normal modes 

of vibration of the coupled fluid-plate system under flow conditions. These vibrational modes 

and their associated frequencies and damping coefficients are of interest in the A N S  design 

in their own right, in addition to their involvement in the Miller instability phenomenon. 
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2 EQUATIONS OF MOTION 

Linearized shell equations using the approximations presented by Krausg were used 

in the present work. After simplification to account for the fact that the involute fuel plates 

are curved only in one direction, these equations result: 

- I :  -P - A- - pphp $1 , 
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M12 = M2, D(1 - v)rD 9 
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aw & = - - .  
az 

The variable a is the arc length coordinate measured around the midsurface of the 

involute plate starting at the inner radius of the involute (see Fig. 1); z is the axial coordinate 

starting at the inlet; t is time; M,, M, and M12 = M21 are plate bending and twisting moments; 

N,, N, and NI2 = N2, are the tensile and shear forces; r (a function of a) is the unperturbed 

radius of curvature of the midsurface of the  involute;^ is the fluid pressure on the plate; w, 

uI, and u2 are the plate deflections; X is a platedamping coefficient; p, is the plate density; 

h, is the plate thickness; K is a plate-stretching stiffness; D is a plate-bending stiffness; Y is 

Poisson’s ratio; e:, e:, and =yl: are plate midsurface strains; B1 and B2 are plate midsurface 

rotations; and K,, and 7 are plate midsurface curvatures and twist in addition to the initial 

involute curvature. (At this stage in the equation development, there is just one fluid channel 

on one side of a single plate. Adjustments will be made later for the more interesting 

geometry of multiple plates with fluid channels on both sides of every plate.) 

The 2-D nonlinear hydraulic equations (treating the channel as flat) are: 

aphv2 a&p2 2 + = -hap -fp(v: + v 2 )  V 2 ,  
at aa az az - + -  
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where p is the (constant) fluid density, h is the channel gap size, vI and v2 are the fluid 

velocity components in the CY and I directions, and f is the Fanning friction factor. 

We now manipulate the equations in several ways. We eliminate many of the 

unknowns from the shell equations in favor of the three deflections. We linearize the 

hydraulic equations by perturbing about steady, uniform axial flow. We also 

nondimensionalize all of the equations. A natural choice of a velocity for 

nondimensionalization is the unperturbed axial fluid velocity, but we chose instead the Miller 

velocity: 

VM = 

where f i  is the unperturbed channel thickness and Cr is the total arc length of the involute. 

The Miller velocity is the critical velocity that would be calculated by Miller’s theory for a flat 

plate with the same arc length as the involute plate. A system of six coupled partial 

differential equations results: 

h* ’ h 2 ’  awe aw 
aa az az’ at 
- + R - - 2 ’ S R - - 2 ’ R N - = O ,  
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The variables vl’ and v2‘ are the fluid velocity perturbations nondimensionalized with 

- 
vM, a* = dCr, Z‘ = de, P is the total length of the channel, R = dP, 2’ is a factor of 2 

introduced into Eqs. (22) and (23) to account for the change from a single plate to an array 

of plates in which adjacent plates deflect in opposite directions so that the perturbation in 

channel thickness is twice the plate deflection, 2” is a factor of 2 introduced into Eq. (25) to 

account for the fact that a fluid channel with a pressure perturbation is present on both sides 

of the plate, S is the unperturbed fluid velocity divided by v, and will be called the stability 

number, w ’ is the plate normal deflection divided by E, p’ is the fluid pressure perturbation 

divided by -pvM2, 1 k‘ = a r  is the involute nondimensionalized unperturbed curvature, U1‘ 
2 

and u2‘ are the plate tangential deflections divided by 8, T = C;;;>’XD, I; = 2f 4 /Ti is the fluid 

friction number, 
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The nondimensional curvature function can be shown to be 

where a is the inner radius of the involute and b is the outer radius (see Fig. 1). 

Along the built-in sides of the plate, the boundary conditions are 

= u l ’  = u*’ = 0 ,  aw. w ’  = - 
aCY - 

and along the sides of the channel 

vl’ = 0 ,  (33) 

at CY’ = 0 and 1. 

Along the leading and trailing edges of the plate, there are assumed to be no 

concentrated forces or moments. There appears to be five edge forces and moments that can 

be set to zero at such an edge: 

N 2 = 0 ,  (34) 

(35) 
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where Q, is the shearing force per unit length of edge directed normal to the midsurface of 

the shell. It is known,!’ however, that only four independent conditions can be set. 

N 2 = 0 ,  (39) 

Q2 + aMzl = o ,  

The shear force Q, may be eliminated using the equilibrium equationg 

Q 2 = = + -  aMzl aM, 
a2 

(43) 
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to give 

aM2, aM2 
aa az 

2 - + - = 0  

in place of Eq. (41). Eliminating the unknowns from the boundary conditions in favor of the 

displacements and nondimensionalizing, 

au; au,’ 
az aa‘ 

vk’w ’ + R- + v-  = 0 ,  

au, 
aa’az’ I au2‘ aa’ az 

k‘(2-2v)R - + T (v - 1)- + R(v - 1)- 

(45) 

at z’ = 0 and 1. At the channel entrance (2’ = 0), the pressure perturbation is related to 

the velocity perturbation, 

p’ + 2(1 + C*)Sv*‘ = 0 ,  (49) 
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where C, is an entrance contraction loss coefficient that we shall take as 0.04' for rounded 

plate leading edges with a radius of hJ2. 

We assume that the inlet flow is guided straight into the channel by ducting or vanes, 

so 

vl' = 0 (50) 

at the entrance (2' = 0). The channel exit condition requires further discussion. 

At a sudden expansion in channel cross section, the Borda-Carnot equation" is usually 

recommended without any correction: 

static pressure rise - +(vu 1 2  - vi) - 1 - 9 2 2 

where vu is the upstream velocity and vd is the dawnstream velocity. Associated with this 

equation, however, is a standard derivation." A fundamental assumption of the derivation 

is that at a channel section located an infinitesimal distance downstream of the expansion, the 

fluid pressure is uniform across the section, and that the fluid pressure in the upstream 

channel drops (due to fluid friction) smoothly to the section pressure at the expansion 

section. This assumption allows the Borda-Carnot equation to be obtained by momentum 

balance. Borda's assumption is also the basis of the theory of jet pumps and ejectors in which 

two fluid streams traveling at different velocities are introduced into a common channel. In 

'For turbulent flow, Vennard" recommends C, = 0.04 when the entrance is rounded with 
a radius of curvature 20.15 of the channel equivalent diam. However, Hobbs12 recommends 
C, = 0 when the entrance radius is 20.13 of the channel equivalent diam. The A N S  is 
expected to use a plate-leading edge radius equal to 0.25 channel equivalent diameters 
(0.5 h,,). 
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the present work, we apply the fundamental Borda assumption of uniform pressure to two 

adjacent upstream channels of the involute exit. Then the pressure in each of the upstream 

channels extrapolates smoothly to the same common pressure at the expansion. Because the 

pressure perturbation is assumed to have opposite signs in adjacent channels, 

p a  = 0 ,  (52) 

at the exit (z’ = I). 

Because the upstream contraction loss coefficient value of 0.04 does not seem very 

definitely established in the literature “J* and because no other authors have used Borda’s 

assumption in the above way to get the downstream boundary condition, it seems worth 

noting here that numerical experiments performed during the present work indicate that for 

the involute plate studied, a change from the present boundary conditions to the lossless 

Bernoulli’s equation at the entrance and exit causes at most roughly a 10% change in the 

calculated stability number. 

If all solutions of the boundary value problem Eqs. (22)-(27), (32)-(SO), and (52) 

decay in time, then the plate is stable. If solution grows in time, then the plate is 

unstable. The calculated critical value of the stability number is the value on the boundary 

between stable and unstable regimes. The calculated critical stability number is generally a 

function of the other nondimensional parameters: R,F,T,N,L, and the radius ratio of the 

involute that determines the curvature function k ’(a ’). 

15 



3. SOLUTI0NAU;ORITHM 

The coefficients of the linear partial differential Eqs. (22)-(27) and (32)-(52) are 

independent of t’ and z‘ but depend on a’ through the curvature function k’. In the 

present work, we use the orthogonality method13 to treat the a‘dependence. Each of the 

unknown functions is expanded in a series of coordinate functions of a‘; for example, 

6 

w’(t’,z’,a’) = wn (r’,z’)+&’) , 
n - 1  

(53) 

where each coordinate function, 4,,(a ?, satisfies all required side boundary conditions on w ’, 

and similarly for the other five unknowns. The use of a six-term series is, of course, 

somewhat arbitrary. Other numbers of terms were also tried, as will be discussed later. After 

substituting all such expansions into the differential equations, each differential equation is 

multiplied by a sequence of weighting functions of a;g,(a’) and integrated with respect to 

a‘ from 0 to 1. This procedure leads to a system of partial differential equations with 

constant coefficients in the independent variables t’ and z’ in which a‘ is eliminated as an 

independent variable. 

In the present work, polynominals were used both for the expansion functions and for 

the weight functions. For example, the first expansion function for w ’ was the same function 

used by Miller for flat plates: 
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The higher expansion functions were higher degree polynominals of the same general form. 

The weight functions used to weight the shell deflection [Eq. (291 were taken to be the same 

as the expansion functions for w 

g,(a')  = +,(a'),  rn = 1 thru 6. (55) 

Similar expansion and weight functions (satisfying different boundary conditions) were used 

for the other variables and equations. 

We then seek solutions of Eqs. (22) - (27) in the form 

W" (f, z' ) I f l"ew - a") , (56) 

and similarly for the other unknowns. The result of the substitution is a system of linear 

algebraic equations for the unknowns Gm etc.: 

G(l,l,l,O)Vl + RG(1,2,0,0)i@V2 - 2'SRG(1,4,0,0)i@@ 

- 2'RNG(l,4,0,0) (-io)@ = 0 , 

RSG (2,2,0,0)@V2 + RNG(2,2,0,0) (-io)V2 

(58) 
1 

2 2 
= - SRFG(2,2,0,0)T2 - hG(2,3,0,0)i@p - - 2'S%FG(2,4,0,0)@ , 

SRG(3,1,0,0)i@BI + RNG(3,1,0,0)( -io)Vl 

18 



1 (59) 
= - - SRFG(3,1,0,0)BI - G(3,3,1,0)~7 , 

2 

G(4,5,0,5)U1 - TG(4,4,0,2)fl - ~RW(4,6,0,1)i& 

- TG(4,5,1,1)U1 + R%(4,S,l,I)( -p2)nl + G(4,5,3,1)Z1 

+ R%(4,5,0,3)( - P2)U1 - 2~%(4,4,2,0)( -p?@ - R"G(4,4,0,0)B4fl 

+ 3G(4,5,1,4y1 + 3G(4,5,2,3)rt1 - G(4,4,4,0)@ 

= 90 x 2'%(4,3,0,0)p + TG(4,4,0,0)(-i~)fl + G(4,4,0,0)(io)% , (60) 

G(5,5,0,7)Z1 + TG(5,4,0,3)fl + TG(5,4,1,1)@ 

- R%(5,4,1,l)(ip)% + 2G(5,5,1,6)Z1 - G(5,4,3,1)fl 

+ vRT-G(5,6,1,0)ipa2 1 - R2vT-G(5,5,0,0)(ip)%l 1 
2 2 

+ R&(5,6,1,0)@U2 + TG(5,5,2,0)Z1 
2 
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+G(5,5,2,2)f11 + R2TiG(5,5,0,0)(iP)Q, 
2 

1 
2 

vRTG(6,4,0,l)ip@ + vRT-G(6,5,l,O)ipzZ1 

- vT-G(6,6,2,0)d2 1 + RT-G(6,5,l,O)i@7, 1 
2 2 

+ T-G(6,6,2,0)iZ2 1 + R2TG(6,6,0,0)(iS)%J2 
2 

The G’s are quadratures involving the expansion functions or their derivatives, the 

weighting functions, and the curvature function in various forms. 

The first argument of G is the equation index that runs from 1 to 6, referring to 

Eqs. (57-62), respectively. 
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The second argument of G is the unknown index that also runs from 1 to 6. For 

purposes of the second argument of G, the unknowns are arranged in the order: 

The third argument of G is a derivative order index on the expansion function that 

runs from 0 to 4. 

The fourth argument of G refers to the way in which the curvature function appears 

in the quadrature. It runs from 0 to 7 and is defined as follows. 

Fourth argument Curvature function 

0 1.0 

4 

k' 

dk' 
da' 
- 

d2k' 
dat2 
- 

,&k' k- 
d a  

21 



As an example, 

The G’s were evaluated numerically by Gaussian quadrature. 

In addition to the four explicit indices expressed as arguments of G, there are also two 

implied indices [the expansion index n from Eq. (53) and the weight index m on g] that are 

suppressed in the equations to reduce the clutter. The expansion index n also appears on 

each of the unknowns [as in Eq. (53)]. The summation convention is understood to apply to 

n and the range convention is understood to apply to m. If n and m run from 1 to 6 (the 

usual choice for most of the numerical work in this report), then there are six times as many 

unknowns and six times as many equations as appear explicitly in Eqs.  (57)-(62). 

The parameter /3 (the axial wave number of the perturbation) appears in Eqs. 

(57)-(62) with powers from 0 to 4. We now restrict its appearance to the powers 0 and 1 

by introducing additional unknowns. For example, we define 

fl, = i p f l ,  (64) 

f12 = ipfll , (65) 

f13 = ipf12, (66) 

and similarly we define one subsidiary variable associated with each of U, and a, by 

introducing another index to eliminate powers of /3. This substitution leads to five additional 

unknowns. To obtain five additional equations, we supplement the system Eqs. (57)-(62) by 

22 



Eqs. (64)-(66) and by the similar equations associated with Uz and Up The system then 

contains (explicitly) 11 unknowns and 11 equations. Taking into account the suppressed 

indices, it contains 66 unknowns and 66 equations. After the appearance of B has been 

restricted to powers 0 and 1, we move all terms involving p(' to the left-hand side and all 

terms involving a' to the right-hand side. That leads to an eigenvalue problem of the form 

[AI% = C[Blx 9 (67) 

where [A] and [B] are square, complex, non-Hermitian matrices, C = is is the complex 

eigenvalue, and x is a column vector of the unknowns of Eqs. (57)-(62) supplemented by the 

new unknowns introduced to eliminate high powers of B. If n and rn run from 1 to 6, then 

[A] and [B] are 66 x 66 matrices. Multiplying Eq. (67) from the left by the inverse of [B], we 

obtain the standard form 

The eigenvalue problem Eq. (68) was solved in the present work with the standard 

EISPACK" subroutine named CG'. 

'Although CG is an implementation of an old and highly respected algorithm, problems 
were nevertheless occasionally encountered with it in the present work. These problems 
always were associated with multiple eigenvalues. If a matrix possesses a complete set of 
eigenvectors associated with a set of multiple eigenvalues, it is possible to define the 
eigenvectors so that they are mutually orthogonal. However, CG does not do this. 
Occasionally, the eigenvectors returned by clc; for multiple eigenvalues were so far from 
orthogonality that, from a numerical point of view, they were not linearly independent. It was 
first believed that this result might indicate that the matrix [q was deficient (lacked a 
complete set of eigenvectors). However, the CG algorithm was then modified for multiple 
eigenvalues to use repeated inverse iteration followed by Gram-Schmidt orthogonalization to 
recalculate the eigenvectors. The vectors generated in this way were tested by direct 
substitution into Eq. (68) and were found to be genuine eigenvectors and also to be 
orthogonal and therefore linearly independent. It is concluded that CG, although old, is still 
unnecessarily unreliable in the special case of multiple eigenvalues. 
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The solutions (usually 66) of the special form of Eq. (56) obtained from the solution 

of the eigenvalue problem must be superimposed to satis@ the upstream and downstream 

edge-boundary conditions. The boundary conditions cannot be satisfied exactly by the present 

approximate solution and are instead satisfied approximately in the sense of the orthogonality 

method, just as the differential equations are satisfied in the orthogonality sense. For each 

of the 11 boundary conditions, we form a series solution with unknown coefficients. Then 

we multiply each boundary condition by one of six weighting functions and integrate with 

respect to a‘ from 0 to 1 to obtain a set of 66 homogeneous, linear algebraic equations for 

the coefficients. For a solution to exist, the determinant of the equations must be (complex) 

zero. If a value of the complex frequency o is found for which the complex determinant is 

zero, then o gives the frequency and decay rate of a normal vibrational mode, and the 

corresponding coefficients give the mode shape. Muller’s method” has been used to calculate 

the complex frequencies. 

The most reliable method of approaching coupled fluid-solid stability problems’6 seems 

to be to choose a number of normal vibrational modes (those of lowest real frequency) and 

to follow their complex frequencies from a fluid velocity of zero where stability is assumed 

to every-increasing fluid velocities until the first mode becomes unstable (the first root crosses 

from the negative imaginary half plane to the positive imaginary half plane or the 

corresponding decay rate changes from positive to negative). Even if such an approach is 

followed, it cannot be proven on the basis of numerical calculations that some mode higher 

than those studied does not become unstable first. In the present work, a large number of 

modes were followed during a preliminary phase of the investigation that was confined to flat 

fuel plates. It was found that the instability corresponded to monotonic collapse (divergence) 
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of the plate rather than to unstable flutter; that is, the complex frequency crossed from the 

negative to the positive imaginary half plane by passing through the origin. 

In the later stages of this work that were devoted to involute plates, the 

computational cost of following a large number of normal modes from zero coolant velocity 

to the point of instability seemed prohibitive. Therefore, it was assumed that instability of 

involute plates also occurred by monotonic collapse (consistent with the theory of Miller and 

the work of all previous investigators of hydraulic instability). The complex frequency was set 

to (complex) zero, and the stability number (the nondimensional coolant velocity) was 

incremented gradually from a small value until the determinant (which was real to numerical 

precision) changed sign. The critical value of the stability number was then taken to lay in 

the interval that contained the sign change. 
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The computational method described has been applied to the A N S  core designs and 

to other experimental geometries. 

The A N S  core design is still evolving. In January 1989, a tentative two-part core 

design, PS-2, was developed that used two sets of involute plates with different radii. The 

inner subcore had these nominal dimensions and properties: 

inner involute radius 

outer involute radius 

involute arc length 

plate length 

plate thickness 

plate density 

coolant gap thickness 

coolant density 

coolant viscosity 

plate elastic 
modulus 

Poisson's ratio 

coolant velocity 

I 

102 mm 

168 mm 

87.35 mm 

494 mm 

1.27 mm 

3390 kg/m' (with estimated fuel) 

1.27 mm 

1096.65 kg/m' 

6.51 x le Pa s 

6.89 x 10" Pa 

0.33 

51.4 ds' 

O+ 

s h e  design coolant velocity for PS-2 was 27.4 4 s .  With the design margin of 0.8/1.5 
included, the plates must be stable up to 51.4 ds. 

tThe amount of plate solid damping is not known at this time, but overall damping is 
believed to be dominated by fluid dissipation. 
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The following nondimensional parameters are then obtained: 

F = 2.98 

R = 0.177 

T = 56,767 

N = 16.49 ’ 

b - = 1.647 
U 

L = O  

Some results of stability calculations are represented in Fig. 2 as a plot of the 

calculated stability number vs the fluid friction number F. Recall that the stability number 

is the ratio of the critical fluid velocity to the critical velocity that would be calculated by 

Miller’s equation for a flat channel of the same arc length. In addition to the PS-2 inner core 

results, the stability number for flat fuel plates (b/u = 1.0) with the same arc length and the 

same other nondimensional parameters as the PS-2 design is also shown for comparison. 
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Fig. 2. Effect of fluid friction on hydraulic instability of fuel plates of A N S  PS-2 
geometry. 
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5. DISCUSSION OF RESULTS 

The lower curve of Fig. 2 for flat plates shows that, as the fluid friction is reduced to 

zero, the critical stability number calculated by the present algorithm goes essentially to 1.0 

in agreement with the frictionless theory of Miller? As the fluid friction number is increased, 

the calculated stability number increases. The increase is significant and exceeds a factor of 

2 at a friction number of 5 or 6. The theory of J o h a m n , 6  which included fluid friction, 

also predicts some effect on calculated stability; however, the effect predicted by Johannson 

depends on assumptions that must be made about the shape of the plate deflection 

perturbation occurring. The present theory, which calculates and uses the shape of the most 

unstable eigenfunction of the fluid-plate system, gives an unqualified prediction of the friction 

effect. 

The lower curve is not smooth but comprises a series of segments. These different 

segments are believed to be associated with different axial modes of the marginally stable 

disturbance. These mode shifts deserve further study because such transitions are sometimes 

associated with the appearance of the oscillatory or flutter form of instability. The study of 

oscillatory modes, however, is beyond the scope of the present work 

The upper curve of Fig. 2 applies to PS-2 inner core involute plates. At small values 

of F, it is a factor of -6 higher than the curve for flat plates because of the stiffening effect 

of the curvature (recall that the stability number of the present work is nondimensionalii 

by dividing the critical velocity by the flat da te  Miller velocity). 

The upper curye also shows an improvement in the calculated stability with increasing 

fluid friction number; however, on a percentage basis, the friction effect is much less than 
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with flat plates. At the PS-2 nominal friction number of 2.98, the calculated stability number 

is -6.75, which corresponds to a dimensional calculated critical velocity of -46.5 m/s .  The PS- 

2 inner subcore plates at the design velocity of 27.4 m / s  would then be operating at -59% of 

their calculated maximum stable velocity, which is just beyond the target design margin of 

0.8/1.5. As the friction number goes to zero, the present involute calculations differ (by 

<lo%) from the frictionless calculated results of Gwaltney and LuttreU.' This difference is 

believed to be due to the difference in 5uid boundary conditions used. It is not known at this 

time why the involute curve of Fig. 2 is smooth whereas the flat plate curve comprises several 

distinct segments. 

As seen from Eq. (31), the curvature of a mathematically perfect involute has a 

singularity at the origin of the involute. Of course, real formed plates cannot have an infinite 

curvature at the origin, and the actual target shape for the forming process differs slightly 

near the origin from the mathematical involute. Although the singularity is a mathematical 

fiction, the question still arises as to whether slight deviations from the singularity have a large 

effect on the stability of real plates and also whether such slight deviations have a large effect 

on this and other computational algorithms. Luttrell" has studied the effect of a small 

change in the shape of the plates near the origin of the involute using the ADINA" finite- 

element program and has concluded that there was little effect on the predictions of the 

Gwaltney-Luttrell' stability algorithm. In the present work, the quadratures involving the 

curvature function have been performed using Gauss-Legendre integration. This method uses 

nodes that exclude the origin and is exact for certain interpolation polynominals. The 

interpolation poIynominals 

interpreted as applying to 

are never singular. Thus, 

plates with a nonsingular 
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approximates the involute shape to a varying degree depending on the number of nodes 

chosen. The sensitivity of the present method has been studied by repeating the calculations 

using differing numbers of Gaussian nodes (which approach the origin by differing distances). 

No unusual sensitivity of the calculated critical stability number to changes in the number of 

the Gaussian nodes or in their proximity to the origin was noted. 

Most of the calculations of the present work were performed using a six-term 

expansion, Eq. (53), for each unknown function. A few exploratory calculations were also 

made with fewer terms. These indicate that four terms are usually adequate. Four terms are 

needed to approximate the rather complicated deflection shape taken by the involute under 

load. The hydraulic equations are believed to require only one term. Numerical experiments 

on flat plates show that only one term is needed for the geometry for both the plate equation 

and the hydraulic equation. It is likely that if the first term of the involute plate deflection 

equation were specifically chosen to represent the deflection shape of the involute under 

uniform pressure load, then a one-term series for both the plate and hydraulic equations 

would be adequate for the involute geometry, too. A great savings in computing time and 

in storage requirements over the present work would then result. 
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a SUMMARY 

A technique has been developed for analyzing the hydraulic instability of A N S  fuel 

plates of involute shape. Fluid friction is included in the analysis. Fluid and plate entrance 

and exit and side-boundary conditions are applied, and normal vibrational modes of the fluid- 

plate system are calculated. As the fluid velocity is increased, in most cases the first 

vibrational mode becomes unstable only after its frequency drops to zero as discussed by 

Miller: so the instability takes the form of a monotonic collapse rather than a flutter of 

growing amplitude. There is some indirect evidence, however, that unstable flutter might 

occur first for very short plates (length less than span). 

Under A N S  flow conditions, fluid friction increases the calculated critical velocity by 

-17%. The effect of fluid friction is calculated to be much greater on a percentage basis for 

flat plates. 
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