

ANALYSIS OF ADVANCED CONCEPTUAL DESIGNS FOR SINGLE-FAMILY-SIZE ABSORPTION CHILLERS

Project 9101 Quarterly Technical Status Report

For the Period September 1 Through December 31, 1977

**Robert A. Macriss
Thomas S. Zawacki
Marie-Therese Kouo
D. M. Sneed**

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared by

**Institute of Gas Technology
IIT Center, 3424 S. State Street
Chicago, Illinois 60616**

Date Published — January 1978

Prepared for the

**UNITED STATES DEPARTMENT OF ENERGY
AC03-77CS31439
Under Contract No. EG-77-R-03-1439**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

TABLE OF CONTENTS

	<u>Page</u>
I. CONTRACT OBJECTIVE	1
II. PROGRESS SUMMARY	1
A. Literature Search	1
1. Refrigerants	1
2. Absorbents	3
3. Refrigerant-Absorbent Pairs with Positive Deviation from Raoult's Law	5
B. Preliminary Screening Tests	5
1. Crystallization Temperature Tests	5
2. Heat of Mixing Tests	8
C. Bibliography	9
III. CHANGES	11
IV. PROBLEM AREAS	11
V. OPEN ITEMS	11
VI. SUPPORTING DATA	11

I. CONTRACT OBJECTIVE

The objective of this research study is the development of radically new fluid systems, specifically tailored to the needs and requirements of solar-absorption cooling for single-family-size residences.

II. PROGRESS SUMMARY

To achieve the objectives of this program the work has been divided into three tasks, Exploratory Research, Data Development for System Evaluation, and Systems Evaluation and Recommendations. To date, we have concentrated our efforts towards completion of the subtasks of Task 1. This technical status report summarizes the activities on this project from the start of the contract to the end of calendar year 1977. During this period, we completed a literature search for refrigerants and absorbents of potential utility to this program; we have identified 27 refrigerant-absorbent pairs which display positive deviations from Raoult's Law; screening tests for absorbent crystallization temperature and heat of mixing have been initiated to aid in determination of candidate pairs; and two broad qualitative criteria have been established for synthesizing new refrigerant-absorbent pairs.

A. Literature Search

During the report period, we began and completed a literature search (Subtask I-B) to provide the data and information necessary for the preselection of radically new, but potentially useful, refrigerants, absorbents, and their mixtures for solar-absorption cooling. The data and information sought related to:

- Physical and thermodynamic properties with emphasis on: heat of vaporization, normal boiling point and saturation pressure, specific heat, endothermic heat of solution (for the mixtures), density or specific gravity, critical temperature and pressure, solubility data (for mixtures), crystallization temperatures (especially for mixtures), etc.
- Toxicity, flammability, thermal and chemical stability, corrosivity, cost, etc.

1. Refrigerants

As a guiding tool for the search and selection of useful refrigerants, we have established the following bench marks and criteria:

- Organic and inorganic compounds to be considered as candidate refrigerants must have a normal boiling point in the range of -50°C and $+70^{\circ}\text{C}$.

- The range of toxicity to be considered in the evaluation of refrigerant compounds is illustrated by examples of toxic compounds in Table II-1.

Table II-1. OSHA MAXIMUM ALLOWABLE EXPOSURE
(8-Hour Weighted Average)

<u>Compound</u>	<u>Formula</u>	<u>ppm</u>	<u>mg/m³</u>
Ammonia	NH ₃	50	35
Carbon monoxide	CO	50	55
Hydrogen sulfide	H ₂ S	20	28
Methyl mercaptan	CH ₃ SH	10	20
Hydrogen cyanide	HCN	10	11
Sulfur dioxide	SO ₂	5	13
Hydrochloric acid	HCl	5	7
Chlorine	Cl ₂	1	3
Phosgene	COCl ₂	0.1	0.4
Arsine	AsH ₃	0.05	0.2

These values purport to represent the greatest amount of a substance to which persons may be exposed for 8 hours a day for a period of months or years without danger to health. Such values cannot be recommended as the sole criterion of use. For example, sulfur dioxide is probably less hazardous than less toxic compounds, such as carbon monoxide, that give no warning of their presence. However, substances having threshold limit values of 20 ppm or less, or the equivalent in mg/m³, are very undesirable and have been rejected in this screening.

With the toxicity criteria established for refrigerants (and absorbents), we have rejected several classes of compounds, on a group basis, as being highly toxic. In these considerations, we have employed threshold limit values (TLV) and OSHA maximum allowable exposure (MAE), where available. The groups include compounds of arsenic, selenium, tellurium ("probably toxic"), and fluorides (TLV 2.5 mg/cu m). Boron hydrides are highly toxic; boron triethyl and boron trimethyl are "probably very toxic." Thus, boron alkyl hydrides such as $(CH_3BH)_2$, and boron alkoxyl hydrides such as $(CH_3O)_2BH$ are likely to be highly toxic and have been rejected. Phosphine, PH_3 , is extremely toxic (TLV 0.05 ppm). No information is readily available on alkyl phosphorus hydrides, such as CH_3PH_2 , but it appears very likely that they also are very toxic; they have been rejected on this basis.

Compounds that yield HCl (TLV 5 ppm), HF (TLV 3 ppm), or HBr (TLV 3 ppm) by reaction with moisture have also been rejected. Among these are silicon chlorides, boron chloride, boron dimethyl bromide, methoxy boron chloride (CH_3OBCl_2), cyanogen bromide (BrCN) and chloride (ClCN), thionyl fluoride (SOF_2), thionyl fluorochloride (SOClF), sulfur chloride (SCl_2), sulfur monooxytetrachloride (S_2OCl_4), chlorine trifluoride (ClF_3), bromine pentafluoride (BrF_5), carbonyl bromide (COBr₂), acetyl fluoride (CH_3COF) and chloride (CH_3COCl), sulfuryl chloride fluoride (SO_2ClF), sulfuryl chloride (SO_2Cl_2), and oxalyl chloride (COCl₂). Nitryl chloride (NO_2Cl), nitrosyl chloride (NOCl), and nitrosyl bromide (NOBr) form nitrogen oxides (TLV 5 ppm) as well as HCl or HBr.

Table VI-1 (in Section VI of this report - Supporting Data) summarizes six groups of refrigerants that passed the preliminary screening and are potential candidates to meet the objectives of this program.

2. Absorbents

The toxicity criteria established for the prescreening of refrigerants were also used to select potential absorbents. Two additional criteria were selected in order to ensure selection of potential absorbents with low volatility, at usual cooling cycle temperatures. These criteria relate to the normal boiling and melting points of the substances.

In general, we found that normal boiling points above 150° to 175°C satisfy the low volatility requirements. The upper limit usually is set by considerations of melting point temperature, which is related to the normal

boiling point in most instances. Criteria for maximum melting point temperatures, however, are more difficult to specify because they are only partially responsible for refrigerant-absorbent solution crystallization. The other factor is formation of eutectic solution, which usually extends the limit of solubility even below the melting point of the refrigerant. Another criterion of the suitability of the selected absorbents for a practical absorption system is their chemical stability and reactivity in the presence of the refrigerant and other conditions in the cycle. At present, only indications of instability can be factored in (arrived at by considerations of chemical structure and general literature information), with hard data to be considered later under conditions simulating an actual absorption system. Examples of such preliminary evidence and information are the following:

Acridine has a very stable ring system but forms additional compounds with a number of types of compounds. Among these are alkyl halides. These halides form quaternary salts that undergo rearrangement in which the alkyl group migrates to an adjoining carbon atom. Thus an unstable system would be anticipated if this compound were used with a halogenated hydrocarbon.

Anthranil is a colorless liquid that is easily volatile in steam. It converts to anthranilic acid with alkali, but is stable to acids.

Chromone behaves like an α , β -unsaturated ketone. Thus the C=C double bond is very reactive, and numerous reagents, such as ammonia, hydrogen cyanide, and sodium bisulfite, can add to it. Also it appears very likely that it will polymerize.

Methylpurines are highly stable to acids, bases, and oxidizing agents. The melting points of only a few isomers have been reported.

Naphthyridine. Six isomers of this compound are possible but only 1,5-naphthyridine (previously called 1,5-pyridopyridine) and 1,8-naphthyridine have been studied. Methyl and hydroderivatives of the latter are liquids or low-melting solids and are readily prepared from 2,6-diaminopyridine. A mixture of several of these derivatives would probably be liquid at room temperature. However, the pyridine group can be alkylated by heating with an alkyl halide at 290° to 300°C, and thus may not be stable when heated with halogenated hydrocarbon refrigerants over an extended period.

Urea decomposes into carbonic acid and ammonia on heating with acids or bases. Heating to 150°C to 160°C eliminates ammonia, and biuret ($\text{NH}_2\cdot\text{CO}\cdot\text{NH}\cdot\text{CO}\cdot\text{NH}_2$) is formed. At somewhat higher temperatures, cyanic acid (NCOH) is formed.

A list of potential absorbents for each category of refrigerants selected (Table VI-1) is summarized in Table VI-2.

3. Refrigerant-Absorbent Pairs with Positive Deviation from Raoult's Law

One of the objectives of Task 1 (Exploratory Research) of this program was to extend the literature search and analysis to binary and, possibly, multi-component refrigerant-absorbent systems to identify those exhibiting positive deviation from Raoult's Law (ideal behavior). The basic characteristic, and the criterion for the identification and selection of such systems, is that they exhibit endothermic heats of mixing, in contrast to the conventional absorption pairs ($\text{NH}_3\text{-H}_2\text{O}$, $\text{H}_2\text{O-LiBr}$, etc.), which exhibit exothermic heats of mixing.

Our literature search and analysis to date has uncovered only very few systems for which actual data on heats of mixing are available. However, we have identified a significant number of systems for which data and measurements exist on refrigerant solubility in absorbents. In order to take advantage of the information available, we have assumed, though not necessarily proven, that the refrigerant-absorbent pairs showing a decrease in solubility over the

ideal solubility, will exhibit endothermic heats of mixing. We have used this criterion to select 27 potential candidate pairs useful to this program. These systems are listed in Table VI-3.

B. Preliminary Screening Tests

To aid in the selection and evaluation of candidate pairs we have initiated at least two types of screening tests. A crystallization temperature test is designed to screen from the potential list of refrigerant-absorbent systems (listed in Table VI-3) those that may solidify at typical absorption cycle temperatures or form immiscible phases. A heat of mixing test is designed to ascertain how each candidate refrigerant-absorbent pair might deviate from the ideal behavior.

1. Crystallization Temperature Tests

During the report period we completed tests with several pure components and refrigerant-absorbent tests. The pure component tests were used for comparison with literature values in order to prove the technique.

Apparatus

The apparatus consists of: a Kartes double-wall flask, a calibrated chromel-alumel (Type K) thermocouple referenced to an ice bath, a Sargent-Welch model SRG single pen recorder, and a Peninsular Thermo-Stir magnetic stirer. The solution is placed in the double wall flask and is cooled by circulating chilled acetone in the outer chamber of the flask. The rate of cooling is controlled by varying the chilled fluid flow rate and the depth of immersion of the stainless steel coil in the dry ice-acetone or ice-water mixture. In some of the tests the acetone cooling solution was replaced by water directly from the tap.

Test Procedure

Prior to the start of each series of test runs, the recorder is calibrated using a Leeds and Northrup precision portable volt potentiometer. At the start of each run, the test solution is heated in the flask to 30°F to 40°F above the anticipated crystallization temperature. Uniform temperature throughout the solution is maintained by continuously mixing the solution using the magnetic stirrer. After a steady temperature is reached in the solution, the cooling solution is pumped in the outer chamber of the flask. As the test solution is cooled the change in temperature is continuously recorded. During cooling, the rate of rotation of the magnetic stirrer is observed so that any changes in viscosity can be noted.

Initially, there is a rapid decrease in the solution temperature. However, once crystals begin to form, heat of fusion is released into the solution. Meanwhile, the solution is also losing heat to the coolant in the jacket of the flask. Hence, during solidification the rate of temperature change is markedly different than the initial cooling rate and a point is reached where the temperature remains constant, an indication that crystallization is taking place. This temperature is then the crystallization temperature. Many times the solution is super-cooled, or is cooled below the crystallization temperature before crystals begin to form. Once formation of crystals occur, the temperature rapidly rises to the crystallization and remains constant for some time. The data obtained for 6 solutions and 3 pure compounds are summarized on Table II-2, which also contains a metastable temperature of subcooling without crystallization characteristic of several of the test samples.

Table II-2. MEASURED CRYSTALLIZATION TEMPERATURES

Pairs	Stabilized Crystallization Temperature, °C	Subcooling Prior to Stabilization, °C
BENZENE	5.0	--
80% benzene, 20% butanol	0.5	--
60% benzene, 40% butanol	-3.9	-1.6
TERT BUTANOL	2.5	--
80% tert butanol, 20% benzene	3.4	3.3
60% tert butanol, 40% benzene	7.9	-7.9
ACETIC ACID	16.6	7.2
80% acetic acid, 20% benzene	4.4	-4.1
60% acetic acid, 40% benzene	2.7	-8.9
RESORCINOL		
10% resorcinol, 90% ethanol	Crystallization not observed; viscosity change -36°C to -49°C	
20% resorcinol, 80% ethanol	Crystallization not observed; viscosity change -22°C	
NAPHTHOL		
10% naphthol, 90% methanol	Crystallization not observed; no viscosity change	
20% naphthol, 80% methanol	Crystallization not observed; no viscosity change	
100% GLYCEROL		
80% glycerol, 20% methanol	Crystallization not observed; slow viscosity change	
60% glycerol, 40% methanol	Crystallization not observed; slow viscosity change	
	Crystallization not observed; slow viscosity change	

2. Heat of Mixing Tests

During the report period we also completed several heat of mixing tests designed to identify refrigerant-absorbent solutions potentially useful to this program. In the laboratory, such measurements were conducted simply by mixing nearly equal metal quantities of refrigerant and absorbent (properly thermostated) and recording the temperature rise or drop upon mixing. The results from 6 different solutions are summarized in Table II-3, below. Four of the six mixtures tested showed evidence of positive deviation from Raoult's Law ideal behavior and are candidates for further investigation for the usefulness to this program.

Table II-3. HEAT OF MIXING TESTS

<u>Compound</u>	<u>Qty.</u>	<u>Compound Added to</u>	<u>Qty.</u>	<u>Temperature Change, °C</u>	<u>Ambient Temp, °C</u>
N-Butanol	20 ml	Benzene	20 ml	- 5.4	22.3
Naphthol/Methanol	10.2g/34.7g	Methanol	44.9g	+ 0.9	23.9
Resorcinol/Ethanol	10.0g/30.0g	Ethanol	40.0g	+ 1.6	24.2
Benzene	20 ml	Acetic Acid	20 ml	- 2.8	24.1
Benzene	20 ml	Tert-Butanol	20 ml	-10.2	24.7
Methanol	20 ml	Glycerol	20 ml	- 2.2	24.1

C. Bibliography

Physical and Thermodynamic Properties of Refrigerant-Absorption Pairs

1. Air Conditioning and Refrigeration Institute, "Properties of Commonly-Used Refrigerants", 1967 Ed. Arlington, Va.: Air Conditioning and Refrigeration Institute, 1968.
2. Andrews, D. H., "Refrigerant-Absorbant Pairs for Absorption Refrigeration." AGA Catalog No. M10060. Arlington, Va.: The American Gas Association, 1964.
3. Andrews, D. H. and Rousseau, R. A., "Solution Thermodynamics for Absorption Refrigeration", AGA Catalog No. M10050. Arlington, Va.: The American Gas Association, no date.
4. Ansul Chemical Company, "Ansul Ethers," Chemical Products Bulletin, Marinette, Wis.: Ansul Chemical Co., 1959.
5. Du Pont, E. I., de Nemours & Co., "Thermodynamic Properties of Freon-22", Bulletin T-22. Wilmington, De.: E. I. du Pont de Nemours & Co., 1964.
6. Hodgmen, C. D., Weast, R. C. and Selby, S., Eds., "Handbook of Chemistry and Physics", 42nd Ed. Cleveland, Ohio: The Chemical Rubber Publishing Co., 1960.
7. Macriss, R. A. and Mason, D. M., "Physical and Thermodynamic Properties of New Refrigerant-Absorbent Pairs." Final Report on Project ZB-85 for the Air Conditioning and Prime Mover Research Committee of the American Gas Association. Chicago: Institute of Gas Technology, October 1964.
8. Weast, R. C., Ed., "Handbook of Chemistry and Physics," 51st Ed. Cleveland, Ohio: The Chemical Rubber Publishing Co., 1970.
9. Zellhoefer, G. R. and Copley, M. J., "The Heats of Mixing of Haloforms and Polyethylene Glycol Ethers," J. Am. Chem. Soc. 60, 1343-45, (1938) June.
18. Jacob, X., Albright, L.F. and Tucker, W.H., "Factors Affecting the Co-efficient of Performance for Absorption Air Conditioning Systems," ASHRAE Trans. 75., Part 1, 103-10 (1969).
19. "ASHRAE Handbook and Product Directory. 1977 Fundamentals," New York, N.Y.: The American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Solubilities of Refrigerants in Organic Solvents

10. Albright, L. F., Shannon, P. T., Yu, S.-N. and Chueh, P.L., "Solubility of Sulfur Dioxide in Polar Organic Solvents," Chem. Eng. Prog. Symp. Series 59, No. 44, 66-74 (1963).
11. Albright, L. F., Shannon, P. T., Terrier, F. and Chueh, P. L., "Solubility of Chlorofluoromethanes in Nonvolatile Polar Organic Solvents." A.I. Ch. E. J. 8, 668-72 (1968) November.
12. Hesselberth, J. F. and Albright, L. F., "Solubility of Mixtures of Refrigerant 12 and 22 in Organic Solvents of Low Solubility," ASHRAE Trans. 71, Part 2, 27-33 (1965).
13. Roberson, J. P., Lee, C.-Y., Squires, R. G. and Albright, L. F., "Vapor Pressure of Ammonia and Methylamines in Solutions for Absorption Refrigeration Systems," ASHRAE Trans. 72, Part 1, 198-208 (1966).
14. Thieme, A. and Albright, L. F., "Solubility of Refrigerants -11, -21 and -22 in Organic Solvents Containing a Nitrogen Atom, and in Mixtures of Liquids.", ASHRAE J.3, 71-75 (1961) July.
15. Zellhoefer, G. F., "Solubility of Halogenated Hydrocarbon Refrigerants in Organic Solvents," Ind. Eng. Chem. 29, 548-51. (1937) May
16. Zellhoefer, G. F., Copley, M. J. and Marvel, C. S., "Hydrogen Bonds Involving the C-H Link. The Solubility of Haloforms in Donor Solvents," J. Am. Chem. Soc. 60, 1337-43 (1938) June.

Toxicity

17. Christensen, H. E., et al., Ed., "The Toxic Substances List: 1973 Ed. Rockville, Md.: U.S. Department of Health, Education and Welfare, June 1973. Available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

III. CHANGES

Nothing to report.

IV. PROBLEM AREAS

An approximate 1-month delay in the contract completion date will be required because of the late start. This has been verbally agreed to by the Technical Manager.

V. OPEN ITEMS

Issue an amendment to the contract regarding the requested extension of completion date.

VI. SUPPORTING DATA

This section presents tabulations of potential refrigerants, absorbents and refrigerant-absorbent pairs (Tables VI-1 through VI-3) selected as a result of the exploratory research (Task 1) completed to date. For the compounds and systems listed in Tables VI-1 through VI-3, there are, also, available additional tabulations of data and information useful to the program. The type of data and information available for all or part of the compounds and systems shown in these tables are listed below:

- Name
- Formula
- Molecular weight
- Melting point
- Boiling point
- Density
- Solubility
- Heat of vaporization
- Entropy
- Specific gravity
- Vapor pressure
- Viscosity
- Surface tension
- Specific heat
- Heat of mixing (calculated)
- Flammability
- Toxicity
- Thermal and chemical stability.

Table VI-1. REFRIGERANT COMPOUNDS

1/78

9101

Refrigerants	Formula	Molecular Weight	Boiling Point, °C	Heat of Vaporization, * Cal/Mole	References †
Water and Alcohols					
Water	H ₂ O	18.0	100	10699	7
Methanol	CH ₃ OH	32.0	64.9	9058	7
Ethanol	CH ₃ CH ₂ OH	46.0	78.5	10646	7
Butanol	CH ₃ CH ₂ CH ₂ CH ₂ OH	74.1	117.25		
Ammonia	NH ₃	17.0	-33.5	5059	19
Amines					
Methylamine	CH ₃ NH ₂	31.1	-7.2	6058	19
Ethylamine	C ₂ H ₅ NH ₂	45.1	16.6	6683	19
Dimethylamine	(CH ₃) ₂ NH	45.1	7.4	6508	19
Trimethylamine	(CH ₃) ₃ N	59.1	3.5	5412	19
Halogenated Hydrocarbons					
R-11	CCl ₃ F	137.38	23.8	6140	19
R-12	CCl ₂ F ₂	120.91	-29.8	4306	19
R-21	CHCl ₂ F	102.93	8	5919	19
R-22	CHClF ₂	86.48	-40.8	4162	19
R-31	CH ₂ ClF	68.5	-9	†	19
R-113	Cl ₂ FCFCClF ₂ (C ₂ Cl ₃ F ₃)	187.38	47.7	7011	19
R-114	Cl ₂ FCFCF ₃ (C ₂ Cl ₂ F ₄)	170.92	3.8	5543	19
R-124a	CHF ₂ CClF ₂ (C ₂ HC1F ₄)	136.5	-10	5521 calc. at B.P.	2
R-133a	CH ₂ ClCF ₃ (C ₂ H ₂ ClF ₃)	118.5	6	†	
R-134	CHF ₂ CHF ₂ (C ₂ H ₂ F ₄)	102.0	-23	5250 calc. at B.P.	2
Silanes					
Difluoromethylsilane	CH ₃ SiHF ₂	82.1	-35.5	5308	7
Chlorodifluorosilane	SiHClF ₂	102.5	--	2810	7
Disiloxane	SiH ₃ OSiH ₃	78.1	15	5418	7

*At 40°C unless otherwise indicated.

†To be reported later.

‡See Bibliography to Section II.

Table VI-2, Part 1. ABSORBENTS REPORTED FOR REFRIGERANTS OF TABLE VI-1.

B78020269a

Table VI-2, Part 2. ABSORBENTS REPORTED FOR REFRIGERANTS OF TABLE VI-1.

Refrigerant	Absorbent	Formula	Molecular Weight	Melting Point °C	Boiling Point
	α-Fluoronaphthalene	C ₁₀ H ₇ F	146.17	- 9	215
	Trichlorobenzene	C ₆ H ₃ Cl ₃	181.45	63-64	208
	Tetraethylene Glycol				
	Dimethyl Ether	CH ₃ O(CH ₂ CH ₂ O) ₄ CH ₃	222.28	-27	275.3
	Dimethyl Acetamide	CH ₃ CON(CH ₃) ₂	87.12	-20	165
	Tetraethylene Glycol	CH ₃ O(CH ₂ CH ₂ O) ₄ CH ₃ -	222.28	-27	275.3
	Dimethyl Ether-	C ₆ H ₅ CH ₂ OH	108.15	-15.3	205.35
	Benzyl Alcohol				
R-21	Di-β-chloroethyl ether	C ₁ CH ₂ CH ₂ OCH ₂ CH ₂ Cl	143.02	-24.5	178
	Diethylene glycol				
	Dimethyl ether	CH ₃ O(CH ₂ CH ₂ O) ₂ CH ₃	134.02	-64	162
	Diethylene glycol				
	Diethyl ether	C ₂ H ₅ O(CH ₂ CH ₂ O) ₂ C ₂ H ₅	162.23	--	189
	Diethylene glycol				
	Methyl ether				
	chloride	CH ₃ (OCH ₂ CH ₂) ₂ Cl	138.6	e.	e.
	Triethylene glycol				
	Dimethyl ether	CH ₃ O(CH ₂ CH ₂ O) ₃ CH ₃	178.2	-45	216
	Triethylene glycol				
	Methyl Ether				
	Chloride	CH ₃ O(CH ₂ CH ₂) ₃ Cl	182.45	e.	116-17/12 mm
	Tetraethylene glycol				
	Dimethyl ether	CH ₃ O(CH ₂ CH ₂ O) ₄ CH ₃	222.28	-27	275.3
	Hexaethylene glycol				
	Dimethyl ether	CH ₃ O(CH ₂ CH ₂ O) ₆ CH ₃	310	e.	195-99/15 mm
	γ,γ'-Dichloro-dipropyl				
	ether	(C ₁ CH ₂ CH ₂ CH ₂) ₂ O	171.07	--	187
	Dichloro-diisopropyl				
	ether	[C ₁ CH ₂ (CH ₃)CH ₂] ₂ O	171.07	--	187
	p-Fluoroanisole	p-FC ₆ H ₄ OCH ₃	126.13	-45	154
	Resorcinol diethyl				
	ether	m-C ₆ H ₄ (OC ₂ H ₅) ₂	166.22	12.4	235
	n-Butyl cellosolve				
	Tetrahydrofurfuryl				
	ether	(C ₄ H ₇ O)CH ₂ O(CH ₂) ₂ OC ₄ H ₉	202.30	e.	e.
	Diethylene glycol				
	Ditetrahydrofurfuryl				
	ether	[C ₄ H ₇ O)CH ₂ OCH ₂ CH ₂] ₂ O	274	--	199-203/14 mm
	Diphenyl sulfide				
	C ₆ H ₆ SC ₆ H ₅		186.26	-25.9	296
	Bis-(β-methylthiol-				
	ethyl) sulfide	CH ₃ SCH ₂ CH ₂ SCH ₂ CH ₂ SCH ₃ ^a	182.18	e.	e.
	n-Butyl butyrate	CH ₃ (CH ₂) ₂ COO(CH ₂) ₃ CH ₃	144.22	-91.5	166.6
	Ethyl laurate	CH ₃ (CH ₂) ₁₀ COOC ₂ H ₅	228.38	- 1.8	273
	Diethyl phthalate	o-C ₆ H ₄ (COOC ₂ H ₅) ₂	222.24	--	298
	Diethyl oxalate	C ₂ H ₅ OCOCOO ₂ H ₅	146.14	-38.5	185.7
	Diethyl malonate	C ₂ H ₅ OCOCH ₂ COOC ₂ H ₅	160.17	-61.9	181.4
	Triacetin	(CH ₃ COOCH ₂) ₂ CHOCOCH ₃	218.21	4.1	258-60
	Tripropionin	(CH ₃ CH ₂ COOCH ₂) ₂ CHOCOCH ₂ CH ₃	260.29	--	175-6/20 mm
	Tributyrin	[CH ₃ (CH ₂) ₂ COOCH ₂] ₂ CHOCO(CH ₂) ₂ CH ₃	302.32	-75	305-10
	Tricaproin	[CH ₃ (CH ₂) ₄ COOCH ₂] ₂ CHOCO(CH ₂) ₄ CH ₃	386.54	-60	>200
	Trimethylene glycol				
	diacetate	(CH ₃ COOCH ₂) ₂ CH ₂	160.17	-42.5	214
	α,γ-Glycerol dichloro-				
	hydrin acetate	(C ₁ CH ₂) ₂ CHOCOCH ₃	171.03	--	202-08
	4-Methyl-2-pentanol				
	acetate	(CH ₃) ₂ CHCH ₂ CH(OCOCH ₃)CH ₃	144.22	--	147.8

B78020269b

Table VI-2, Part 3. ABSORBENTS REPORTED FOR REFRIGERANTS OF TABLE VI-1.

Refrigerant	Absorbent	Formula	Molecular Weight	Melting Point °C	Boiling Point °C
	Cellosolve acetate	C ₂ H ₅ O(CH ₂) ₂ OCOCH ₃	132.16	-61.7	156.4
	Cellosolve succinate	[C ₂ H ₅ O(CH ₂) ₂ OCOCH ₃] ₂	262.31	e.	159-62/5mm
	Cellosolve adipate	[C ₂ H ₅ O(CH ₂) ₂ OCO(CH ₂) ₂] ₂	290.36	e.	e.
	Benzyl cellosolve acetate	C ₆ H ₅ CH ₂ O(CH ₂) ₂ OCOCH ₃	194.23	--	122-25/5mm
	Methyl cellosolve phthalate	O-C ₆ H ₄ (COOCH ₂ CH ₂ OCH ₃) ₂	298.30	e.	e.
	n-Butyl cellosolve phthalate	O-C ₆ H ₄ (COOCH ₂ CH ₂ OCH ₂ CH ₃) ₂	366	e.	e.
	Ethylene glycol diethoxy acetate	(C ₂ H ₅ OCH ₂ COOCH ₂) ₂	234.25	e.	e.
	Diethylene glycol diethoxyacetate	(C ₂ H ₅ OCH ₂ COOCH ₂ CH ₂) ₂ O	278.31	e.	210-15/5mm
	Diethylene glycol dimethoxy acetate	(CH ₃ OCH ₂ COOCH ₂ CH ₂) ₂ O	250.35	e.	204-18/17mm
	Tetrahydrofurfuryl cellosolve acetate	(C ₄ H ₇ O)CH ₂ OCH ₂ CH ₂ OCOCH ₃	188.23	e.	112/6mm
	Triethylene glycol dimethoxy acetate	(CH ₃ OCH ₂ COOCH ₂ CH ₂ OCH ₂) ₂	294	e.	180-84/20mm
	Methoxyacetate of triethylene glycol acetate	CH ₃ OCH ₂ COO(CH ₂ CH ₂ O) ₃ COCH ₃	264	e.	230-34/15mm
	Triethylene glycol diacetate	[CH ₃ COOCH ₂ CH ₂ OCH ₂] ₂	234	e.	e.
	Carbitol methoxy acetate	C ₂ H ₅ O(CH ₂ CH ₂ O) ₂ COCH ₂ OCH ₃	206.24	e.	245-46
	n-Butyl carbitol acetate	C ₆ H ₉ O(CH ₂ CH ₂ O) ₂ COCH ₃	204	e.	e.
	Diethylene glycol diacetate	(CH ₃ COOCH ₂ CH ₂) ₂ O	190	e.	e.
	n-Butyl cellosolve -butyrate	C ₆ H ₆ O(CH ₂) ₂ OCOC ₃ H ₇	185	e.	220
	n-Butyl cellosolve acetate	C ₆ H ₆ O(CH ₂) ₂ OCOCH ₂	160	e.	192
	n-Butyl cellosolve laurate	C ₆ H ₉ O(CH ₂) ₂ OCO(CH ₂) ₁₀ CH ₃	300	e.	188/8mm
R-22, R-124a	Acridine		179.21	108	346
R-134, and Chlorodifluorosilane	Anthranil		119.12	<-18	215
	Chromone		146.14	59	Sublimes
	m-Dimethoxybenzene	C ₆ H ₄ (OCH ₃) ₂	138.16	-52	216.5-217.7
	p-Dimethoxybenzene	C ₆ H ₄ (OCH ₃) ₂	138.16	56	212.6
	N,N-Dimethyl-p-phenylene diamine	NH ₂ C ₆ H ₄ N(CH ₃) ₂	136.19	53	262
	Methylpurine (many isomers)		135.14	234-235	--
	1-Methyl-1H-purine			235-236	--
	6-Methylpurine			271-273	--
	8-Methylpurine				
	1,5-Naphthpyridine (pyridopyridine)		130.14	75	112/12mm
	1,8-Naphthyridine		130.14	98.99	147-148/0.05mm
	Tetraethylene glycol dimethyl ether	CH ₃ O(CH ₂ CH ₂ O) ₄ CH ₃	222.28	-27	275.3
	Tetramethylurea	(CH ₃) ₂ N-CO-N(CH ₃) ₂	116.16	<25	177
	1,3,5-Trimethoxybenzene	C ₆ H ₃ (OCH ₃) ₃	168.19	54-55	255.5

B78020269c

Table VI-2, Part 4. ABSORBENTS REPORTED FOR REFRIGERANTS OF TABLE VI-1.

Refrigerant	Absorbent	Formula	Molecular Weight	Melting Point °C	Boiling Point
R-114	Diethylene glycol				
	Monoethyl Ether				
	Acetate	CH ₃ CH ₂ O(CH ₂ CH ₂ O) ₂ CCH ₃	176.22	25	218
Disiloxane	Tetraethylene Glycol	CH ₃ O(CH ₂ CH ₂ O) ₄ CH ₃	222.28	-27	275.3
	Dimethyl Ether				
	Benzoic Acid	C ₆ H ₅ COOH	122.12	122 ^a	249
	Succinic Acid	COOHCH ₂ CH ₂ COOH	118.09	185	235 ^c
	Phenol	C ₆ H ₅ OH	94.11	41	182

a. Ammonium benzoate sublimes at 160°C, melts at 198°C.

b. Decomposes at the boiling point.

c. Decomposes at 270°C.

d. Decomposes at 150°C.

e. To be reported later.

f. Sublimes.

B78020269d

Table VI-3. REFRIGERANT-ABSORBENT PAIRS FROM TABLE 2
DISPLAYING POSITIVE DEVIATION FROM RAOUlt'S LAW

<u>Refrigerant</u>	<u>Absorbent</u>	<u>Heat of Mixing</u> Btu/lb (Ref. 18)	x_p/i_p^*	<u>Solubility</u> g/g	<u>mole fraction</u> (Ref. 16)	<u>Reason for</u> <u>Rejection</u> (Ref. 17)
Ammonia	Tetraethylene Glycol	3.2				
	Dimethyl Ether					
	Triethylene Glycol	4.2				
	Dimethyl Ether					
	Octylamine	3.5				
Sulfur Dioxide	Dimethyl Acetamide	0				
	Heptyl Alcohol	3.4				SO_2 toxicity
	2-Hydroxytoluene		0.71			
	Phenol		0.67			
	α -Naphthol		0.72			
Ethanol	Glycerol					Vapor Pressure vs Mole Fraction Curves (Ref. 3)
	n-Propanol					
	Resorcinol	0.25				
	Butanol					Vapor Pressure vs Mole Fraction Curves (Ref. 3)
	Benzene					Benzene toxicity
Benzene	Acetic Acid					Benzene & Acetic Acid toxicity
Benzene	Tert-Butanol					Benzene toxicity
R-21	Ideal Solution					
	Diphenyl Sulfide		.288		.306	
	Furfural		.621		.367	Furfural toxicity
	Ethylene Glycol		.10		.055	
	Trimethylene Glycol		.106		.073	
	Diethylene Glycol		.285		.288	
	Triethylene Glycol		.358		.330	
	Tetrahydrofurfuryl Alcohol		.588		.368	
	Benzyl Cellosolve		.392		.368	
	Aniline		.385		.258	Aniline toxicity
	Nitrobenzene		.471		.360	
	Decalin		.272		.267	
	Benzotrifluoride		.366		.323	
	α -Monofluoronaphthalene		.327		.317	
R-11	Ideal Solution					
	Diethylene Glycol Monoethyl Ether Acetate (DEG MEEA)		.338		.303	
	Tetraethylene Glycol Dimethyl Ether (Tetra EGDME)		.302		.329	
	Diethylene Glycol Diethyl Ether (DEG DEE)		.495		.370	
R-12	Ideal Solution					
	DEC MEEA		.267		.280	
	Tetra EGDME		.215		.282	
R-113	DEC DEE		.458		.380	
	Ideal Solution					
	DEC MEEA		.330		.248	
R-114	Tetra EGDME		.275		.212	
	DEC DEE		.465		.288	
	Ideal Solution					
R-114	DEC MEEA		.155		.137	
	Tetra ECDME		.120		.135	
	DEC DEE		.300		.222	

* x_p = Vapor Pressure of Refrigerant

i_p = Pressure of Refrigerant Above that of Ideal Solution

B78020270

VII. PROGRAM PLAN STATUS AND SCHEDULE

Figure VII-1 shows the progress to date on Tasks I through III.

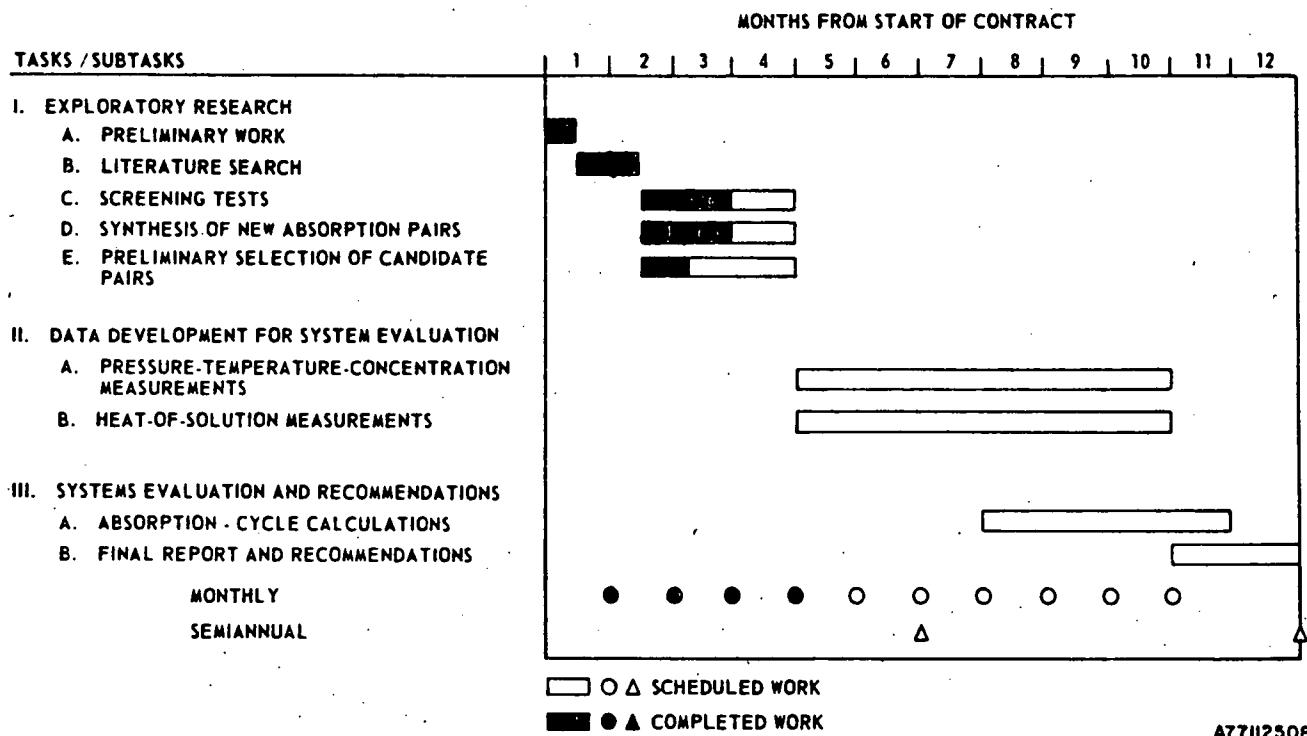


Figure VII-1. PROGRAM PLAN STATUS AND SCHEDULE