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Abstract

Quantum groups in general and the quantum Anti-de Sitter group U,(so(2,3))
in particular are studied from the point of view of quantum field theory. We show
that if ¢ is a suitable root of unity, there exist finite-dimensional, unitary represen-

tations corresponding to essentially all the classical one-particle representations with

(half)integer spin, with the same structure at low energies as in the classical case.

In the massless case for spin > 1, the "naive” representations are unitarizable only
after factoring out a subspace of "pure gauges”, as classically. Unitary many-particle
representations are defined, with the correct classical limit. Furthermore, we iden-
tify a remarkable element @ in the center of U,(g), which plays the role of a BRST
operator in the case of U,(s0(2,3)) at roots of unity, for any spin > 1. The asso-
ciated ghosts are an intrinsic part of the indecomposable representations. We show
how to define an involution on algebras of creation and anihilation operators at roots
of unity, in an example corresponding to non-identical particles. It is shown how
nonabelian gauge fields appear naturally in this framework, without having to define
connections on fiber bundles. Integration on Quantum Euclidean space and sphere
and on Anti-de Sitter space is studied as well. We give a conjecture how () can be
used in general to analyze the structure of indecomposable representations, and to
define a new, completely reducible associative (tensor) product of representations at
roots of unity, which generalizes the standard ”truncated” tensor product as well as

our many-particle representations.
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Introduction

The topic of this thesis is the study of quantum groups and quantum spaces from the
point of view of Quantum Field Theory.

The motivation behind such an endeavour is easy to see. Quantum field theory
(QFT) is a highly successful theory of elementary particles, with an embarrassing
"fault”: except for some special cases, it cannot be defined without some sort of a
regularization of the underlying space, which at present is little more than a recipe
to calculate divergent integrals. Physically, it is in fact expected that space-time
will not behave like a classical manifold below the Planck scale, where quantum
gravity presumably modifies its structure. The hope is that this somehow provides a
regularization for QFT. From a mathematical point of view, it also seems that there
should exist some rigorous theory behind such "naive” quantum field theories, given
the rich mathematical structures apparently emerging from them. And of course, it
would be highly desirable to put the physically relevant quantum field theories on a
firm theoretical basis. »

In view of this, it seems very natural that a consistent theory of elementary par-
ticles should not be based on concepts of classical geometry, but rather on some kind
of "fuzzy”, or "quantized” space-time. With very little experimental guidance, find-
ing the correct description may seem rather hopeless. The approach we will pursue
here relies heavily on mathematical guidance, given the "unreasonable usefulness of
mathematics in physics” (Wigner).

With the development of Non—-Commutative Geometry in recent years [8], a pos-
sible candidate for a new framework has emerged. It is a generalization of the (rather
old) idea that a manifold M can be described by the algebra of functions Fun{M)
on it. In Non-Commutative Geometry, one considers instead some non—commutative
algebras replacing Fun(M), with sufficiently rich additional structures. A "quantum
deformation” or simply ”deformation” of a classical manifold is essentially a (non-

commutative) algebra with a deformation parameter &, such that the classical algebra




of functions on the manifold is obtained in the limit A — 0.

This idea is in fact very familiar to physicists: Quantum Mechanics can be viewed
as a noncommutative geometry on phase space, and the Planck constant plays the
role of the deformation parameter. This example also shows that while the limit
h — 0 may be smooth in some sense, the physical interpretation may be very different.
Furthermore if & is dimensional, it is expected that the "quantum” case should behave
classically at large enough scales.

This is a new and vast field of research, and to make any progress, one clearly
has to choose a particular approach. A simple example of a theory of elementary
particles on a noncommutative space was proposed by Connes [9] and Connes & Lott
[10]. It is based on the space M x Z,, where M is ordinary Minkowski space and Z
is considered as a noncommutative space with a connection, which can be interpreted
as a Higgs field. This leads to a new approach to the standard model. Fréhlich and
collaborators [5] introduced gravity in this context.

Incidentally, it has been pointed out that string theory, a candidate for a theory
underlying quantum field theory including gravity, seems to predict some noncom-
mutativity of certain coordinate algebras [60]. Other recent developments [3] also
suggest some relevance of Non-Commutative geometry to M—-theory or string theory,
which is traditionally formulated in the language of classical geometry.

Of course one would really like to consider truly noncommutative spaces. There
have been many approaches to "quantize” physically relevant spaces like Minkowski
space, fiber bundles, and many others. While many interesting examples have been
found, a clear guideline is missing.

At this point, we want to emphasise (without the need to do so) the importance of
Lie groups in elementary particle physics, notably the Poincare group which dictates
the behaviour of free particles, and internal symmetry groups which may strongly
constrain their interactions.

Quantum groups are remarkable examples of Noncommmutative Geometry, since
they can be viewed as deformations of classical Lie groups resp. their manifolds.
Their mathematical structure is well studied and even richer than that of classical Lie
groups. They depend on a deformation parameter g = e*, where A = 0 corresponds
to the classical case. Furthermore, they act naturally on associated quantum spaces.
Thus it seems that quantum groups, which combine the features of both Lie

groups and Non-Commutative Geometry in an analytic way, should be a powerful

guide towards a realization of the above ideas. In this thesis, we want to follow this




approach and see where it leads to.

It is fair to say that quantum groups are analytic ”deformations” of classical
groups, for "generic” ¢. However when ¢ is a root of unity, their structure is in many
ways very different, and one is facing a truly new and very rich mathematical object.
One of the main points we want to make is that the root of unity case seems to be
the most interesting one from a QFT point of view, beyond its known relevance to
Conformal Field Theory [1, 40].

We will mainly study the Anti-de Sitter group SO,(2,3) and its representation
theory, which will play the role of the Poincare group. This choice is vindicated by
its simplicity and the wealth of interesting features found, which constitute the main
part of this thesis. In the classical case, the Poincare group can be obtained from
S0O(2,3) by a contraction; however we will not do a corresponding contraction in the
quantum case [36], since our main results would all break down.

This thesis is organized as follows. Chapter 1 is a brief, general introduction
to quantum groups and their representation théory, with emphasis on those aspects
which will be important later. Whenever possible, a short explanation is included on
how these facts can be obtained. We will mainly work with the ”quantized universal
enveloping algebra” U;(g). Most of this chapter is well known, but it also contains
some new results and definitions.

In chapter 2, we consider quantum spaces associated to quantum groups, and
study integration on quantum Euclidean space, sphere, and on quantum Anti-de
Sitter (AdS) space. We point out that quantum AdS space has an intrinsic length
scale, above which it looks like a classical manifold.

Chapter 3 starts with a brief review of the unitary representations of the classical
AdS group corresponding to elementary particles, as well as a discussion of massless
particles, (abelian) gauge theories and BRST from a group theoretic point of view.
We then study these issues for the quantum AdS group. In particular, we show that
for suitable roots of of unity g, there are finite-dimensional, unitary representations
corresponding to all the classical ones, with the same structure at low energies®. In
the massless case for spin > 1, the ”naive” representations contain a subspace of
"pure gauges” which must be factored out to get unitary, irreducible representations,
as classically. A definition of unitary many-particle representations is given. Fur-
thermore, we identify a remarkable element @) of the center of U,(g) which plays the

role of a (abelian) BRST operator in the case of the AdS group at roots of unity, for

3For the singleton representations, this was already shown in [12].




any spin > 1. The corresponding ghosts are an intrinsic part of the indecomposable
representations.

In chapter 4, we give a conjecture that ) can be used for any group to understand
the structure of the tensor product at roots of unity, and to define a new, associative
(tensor) product of irreducible representations at roots of unity, which generalizes
the well-known "truncated” tensor product used in conformal field theory, as well
as the many-particle representations mentioned above. We then show how one can .
define an involution on algebras of creation and anihilation operators, for g a root of
unity; lacking a symmetrization postulate at present, we have to work with a version
corresponding to non-identical particles. It is shown how all this might be used
towards constructing a quantum field theory. The main missing piece to achieve this
goal is a way to define identical particles, i.e. a symmetrization postulate. Finally, we
point out that nonabelian gauge fields appear naturally in this framework, without

having to define something like connections on fiber bundles.




Chapter 1

Quantum Groups

1.1 Hopf Algebras and Quantum Groups

In this thesis, we will be concerned with the representation theory of quantum groups
in the Drinfeld—Jimbo formulation, which is a certain Hopf algebra with additional
structure to be explained below. The most economical approach to this goal would
be to start with these given mathematical objects, and study its properties from the
point of view we have in mind. However a reader who is not very familiar with
quantum groups would be left in the dark wondering where all this comes from, and
quite possibly develop some misconceptions. Therefore we first give a brief review
of the underlying mathematical structure. For more details, the reader is referred to
[15, 18] or a number of existing reviews, such as [6, 25].

There are at least two ways to introduce quantum groups. One is to consider the
universal enveloping algebra of a simple Lie group, and discover a new structure on it,
namely that of a quasitriangular Hopf algebra. The other, more geometric approach
is to "quantize” the space of functions on a (compact) Lie group, which turns out to
have a remarkable Poisson-structure. These two approaches are dual to each other,

and they originated in the study of certain integrable models.

1.1.1 Hopf Algebras

The mathematical language to describe both points of view is that of a Hopf algebra.

The most familiar example of a Hopf algebra A is the space of functions Fun(G) on

a (compact) Lie group G. This is a commutative algebra by pointwise multiplication,

but this has nothing to do with the group structure. The group multiplication is




encoded in A as a coproduct, which is a map A : A — A® A, where (A(f))(z,y) =
flz -y) for f € Fun(G). The inverse is encoded as antipode S : A — A where
(Sf)(z) = f(z7?) in the case of Fun(G), and the unit element e € G becomes the
counit € : A — C, with €(f) = f(e) for Fun(G). In this way, all the structure of
G has been encoded in Fun(G). In general, a Hopf algebra is an algebra A with

coproduct, antipode and counit and the following compatibility conditions:

(1d® A)A(a), (coassociativity),
(id®€)A(a) = a, (counit),
(id®@S)A(a) = le(a), (coinverse),
A(a)A(b),

e(a)e(b), and

1®L, €l)=1,

for all a,b € A. This implies

S(ab) S(b)S(a), (antihomomorphism),
S(1)
A(S(a)) with 7(a®b) =bQ q,
¢(5(a))

We will use Sweedler’s [54] notation for the coproduct:
A(a) = ap) @ azy (summation is understood). (1.11)

A is not required to be commutative, and in general it is non-cocommutative, i.e.

A=70A#A.

1.1.2 U,(g) and Quasitriangular Hopf Algebras

The fastest way to introduce quantum groups is to simply write down a certain
deformation of the universal enveloping algebra of a simple Lie algebra g in a Chevalley
basis with a complex parameter g, and study its properties. We will mainly work in
this framework, which was introduced by Drinfeld [15] and Jimbo [27].

Let ¢ € Cand A;; = 2%%% be the Cartan matrix of a classical simple Lie algebra

g of rank r, where (,) is the Killing form and {aiv, ¢=1,...,7} are the simple roots.




Then the gquantized universal enveloping algebra U = U,(g) is the Hopf algebra with
generators { X, H;; i=1,...,7} and relations [18, 27, 15]

[H.H] = 0 (1.12)
[H:, XE] = +A;:XE, (1.13)
X x| = sl m g,
[ i j] = T T a T 03[ Hilg; (1.14)
& 1— Aj £k gty I-Aji—k
> P (X3P X (X7) 0, ¢#7  (1.15)
k=0 s
where d; = (a,00)/2, = g%, [nly = £07 and

n 7)g,!
| { ] = [n] ;- (1.16)

The last of (1.15) are the deformed Serre relations. As algebra, it can be shown [16]
that if ¢ is considered as a formal variable, U is essentially! the same as the classical,
undeformed enveloping algebra with a formal variable ¢ and a different choice of
generators. However it is not equivalent as Hopf algebra: the comultiplication on U
is defined by

A(H,) = H,®1+1® H;
AXE) = XF@q /4t i g XE, (1.17)

and antipode and counit are

S(H;) = —H;
S(Xi-*—) = _qdiX?’ S(Xi_)z—'q_din’_a
e(H;)) = eXF)=0. - (1.18)

The classical case is obtained by taking ¢ = 1. The consistency of this definition can
be checked explicitely.

The Cartan—Weyl! involution is defined as

2

O(XF)=XF, 4(H)= H;, (1.19)

lwithout going into mathematical detais here




extended as a linear anti-algebra map (involution). In particular, 8(¢) = ¢ for any

g € C. It is obviously consistent with the algebra, and one can check that

(00 0)A(z) = A(0(z)), (1.20)
S(0(2)) = 6(57 (). (1.21)

The conventions we use are those of [18] except for a replacement ¢ — ¢~ for
reasons explained in the next section, and agree up to normalization (see below) with
those of [15, 33]. They differ from e.g. [6] by somearedeﬁnitions. In the mathematical
literature, usually a rational version of the above algebra, i.e. using ¢%**i instead
- of H; i1s considered. Since we are mainly interested in specific representations, we
prefer to work with H;. Furthermore, if ¢ is a root of unity, one has to specify if one
includes the ”divided powers” (XF)(*) = %% ("restricted specialization”) or not
("unrestricted specialization”); the representation theory is quite different in these
cases. We will mostly work in the unrestricted specialization, however since we are
really only interested in certain representations, it will become clear from the context
what is appropriate.

Often the following operators are often more useful:

hi = diHi, €t = v/ [dz]Xzi, (122)
Then the first two relations in (1.15) become

[hisex5] = E(oi, o)ex;, (1.23)
leie—i] = 6ijlhilg- (1.24)

In order to have the standard Physics normalization for angular momenta, the nor-
malization of the Killing form will be chosen so that the short roots have length
d; = 1, i.e. (ay, ;) = 1, and the long roots have length 1. In any case, a rescaling of
the Killing form can be absorbed by a redefinition of q.

One could also define another Hopf algebra with reversed coproduct A'(z) =
70 A(z), and S instead of S. However this is essentially the same. The reason is
that U has the very important property of being quasitriangular, i.e. there exists a

universal R € U @ U with the following properties:

(A®id)R = RizRas, (1.25)
(d@AR = RisRiz (1.26)

Alz) = RA(z)R™ (1.27)




for any z € U, where lower indices denote the position of the components of R in
the tensor product algebra Y QU QU : if R = a; ® b; (summation is understood),
then e.g. Riz = ¢; ®1® b;. By considering (A’ ®1d)R = R33R;3, one obtains the

Quantum Yang-Baxter equation
R12R13Ra3 = RazRiz Rz (1.28)

Furthermore, the following properties are a consequence of (1.25) to (1.27):

(S®idR = R, (1.29)
(id@S)R™' = R, (1.30)
(e®id)R = ([d@eR =1. (1.31)

The construction of R and the proof of the relations (1.25) to (1.27) is based on the
so—called quantum double construction due to Drinfeld [15]. It turns out that the
Borel subalgebras B~ and B*, generated by {H;, X;"} and {H;, X; } respectively, are
Hopf-subalgebras which are dually paired (see below). If {a;} is a basis of B~ and
{b;} the dual basis of B, then R = a; ® b;, after factoring out a copy of the Cartan
subalgebra which has been counted twice. The relations (1.25) to (1.27) are then easy
to see.

This universal R is the essential feature of a quantum group, and we will make
extensive use of it. It incorporates the additional structure of Lie groups which is
not used in the classical theory, namely the existence of a certain Poisson structure
compatible with the group structure. Furthermore, all this is combined into objects
which are holomorphic in g. Therefore one should expect that there is a lot to say

about this rich structure.

1.1.3 Fun(G,) and dually paired Hopf Algebras

Before studying U any further, let us now sketch the second approach to quantum
groups; for a general review see [6]. It is based on the observation that any (compact)
Lie group G with Lie algebra g is actually a (coboundary) Poisson-Lie group, i.e.
there is a particular Poisson structure on the group manifold which can be written in
terms of a ”"classical r-matrix” r € ¢ ® g, and enjoys certain ‘compatibility conditions.
_T can again be obtained from a “double construction” [15]; it is not given by the
structure constants of G, it is truly an additional structure on G. Now as in Quantum

Mechanics on a phase space, this Poisson structure can be quantized, giving rise to a

9




non—commutative algebra Fun(G,) which replaces the commutative algebra Fun(G).

If one writes ¢ = e*, h plays the role of the Planck constant, and the classical case
Fun(G) is obtained in the limit &~ — 0, i.e. ¢ — 1. This is the origin of the name
"Quantum group”, and even though this quantization procedure may be formal, the
final result is known to exist. Upon this quantization, the ”classical r-matrix” r turns
into the universal R e U QU.

These two approaches are in fact dual to each other. This means that ¢,~1 =
U,-1(g9) and A = Fun(G,) are dually paired Hopf algebras (notice the replacement
g — ¢~ '). In general, two Hopf algebras & and A are said to be dually paired if there
exists a non-degenerate inner product <, >: U ® A — C, such that:

<zy,a> = <zQy,Ae) >=< z,00) >< Y, a2) >,
<z,ab> = < A(z),a®b>,
< S(z)ya> = <z,5(a)>,
<z,1> = ¢z), and <1,a>=¢(a), (1.32)

for all z,y € U and a,b € A.
The algebra Fun(G,) can be written down explicitely [18] if it is written as

a pseudo matrix group [61], generated by the elements of a N x N matrix A =
(A%})ij=1..8 € Mn(Fun(G,))?. The coproduct on Fun(G,) is defined as classically,

AA = ARA, ie A(AY) = A% @ A%, (1.33)

and S(A%) = (A7)}, €(4) = &;. Now if <, > is a dual pairing of U1 with
Fun(G,), then this implies that 7*; =< ., A%; > is a representation of U1, i.e.

7 iUy — C,

' ‘ k (1.34)
Wtj(a:y) = Ek wzk(:n)ﬂ' j(y), Vz,y € L{q_l;

we will say much more about representations in a later section. In this representation,

the universal R € U,-1 @U,-1 gives the numerical R-matrix:
<R, Aik®Ajz >= Rijkz. (1.35)
Now the definition of a dual pairing (1.32) and (1.27) imply [15, 18]

<z,AT AL > = <Az, A, @A, >

2This corresponds to GL,(N) unless there are explicit or implicit restrictions on the matrix

elements of A.

10




= <T70Az, A, QA >
= <R(Az)RA,QA, >

= <$,RijszkmAln(R_l)mn >, (1.36)

TS

for any = € U,—1, i.e. the matrix elements of A satisfy the commutation relations
RI A AL = AT AV R o, (1.37)
which can be written more compactly in tensor product notation as follows:

Ri,A1A, = A2A1R12; (1'38)
R12=(71’1®7I'2)(R) = <R, A ®A2\> . (139)

Starting from this formalism, one can introduce differential forms etc. and study the
noncomutative differential geometry of quantum groups, see [62, 64, 51, 57]. So far,
we are considering all algebras over €' without any reality structure, which we will
discuss below. |

Now one can recast the commutation relations of U,-1(g) into a more compact

form [18] . For a representation 7, define matrices

L¥ = (d®n)(R),
SL; = (r®id)(R),
[ = (r®id)(R™). (1.40)

Then the commutation relations for these matrices follow from the quantum Yang-

Baxter equation, e.g.

0 = ([d®7®7)(ResRi3Ri2 — R12R13R23) (1.41)

= ngLg’Lf—LTL;Rw . (1.42)

and similarly
RlzL;Ll_ = L;L;Rlz, ’ (143)
Ry LILT = L7LfRy. (1.44)

The coproduct is now
AL* = L*QL*, (1.45)

and €(L*) = I, §(L*) = (L*)~'. The X7 can be extracted from the upper resp.

lower triangular matrices L* [18].

11




One can also turn the logic around and show that there exists a dual pairing
between U,-1(g) and the Hopf algebra defined by (1.38) and (1.33) (with some suitable
additional constraints depending on the group, cp. [41]), which can be seen to be a

quantization of Fun(G).

1.1.4 More Properties of U,(g)

Let us describe &/ in more detail. In the classical case, the Weyl group W acting on
weight space by the reflections o; along the simple roots can be ”lifted” to an action
of the braid group® with generétors T; on representations of g, in particular on g itself
with the adjoint representation. The relations of the braid group are (7;T;)™4 =1 if
(;0;)™ = 1, but the square of T; is not required to be 1 any more. The same can

be done for U [37]: there exist algebra automorphisms of U/ defined as

Ti(H;) = H;—AuH:, TX§=-X7¢",
—Ay
T(XF) = (=g (XX XD (1.46)

=0

i)k

where (XF)® = ([—),i]'q—,, and similarly for lowering operators?

Mw =040, 15 2
reduced expression for the longest element of the Weyl group, then {# = «a;,,f =
i), -, BN = 04y...04y_,(05,)} 1s an ordered set of positive roots. Now one can
define root vectors of U as Xz = T;,...T;,_,(XZ). This can be used to obtain a
Poincare-Birkhoff-Witt basis of U = U~UUt where U* is generated by the X and
U® by the H;: for k = (ki, ..., kn), let Xif = (XF )*...(X] )™ and similarly for X, .
Then the X;" form a P.B.W. basis of ¥, and similarly for 2/~ [38].

Using this, one can find explicit formulas for R = R(q) [32, 33]. They are some-

what complicated however, and all we need for now is the following form:
R = qZ(a"1)ijhi®hj (Z Ck,k/(q)j(g ®Xl_;i) (1.47)

a ~ 1y,
where® (a);; = (i, @;), XI is defined like Xf with XF replaced by XF = qz-izH'Xf,
and ¢ 1(g) € C are rational functions of q. Furthermore, the coefficients in (1.47) are

uniquely determined by the properties (1.25) to (1.27) [16, 32]. Using this, is easy to

3this has nothing to do with the representations of the braid group obtained from R.
“the T; can actually be implemented as w;(...)w; ! in an extension of U, see [33, 34]; we will come
back to that.

5Since we will work with “nice” representations, R converges.
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see that

R = RYg), (1.48)
02 0)R1, = Ra. (1.49)

For the case of U,(s{(2)), the explicit form is

R(q) = gsHOH Zq;z(z (1
>0 [l]q

where we have set d = (o, )/2 =1, 1.e. ¢; = q.

Qo) %”X+)l®<q-%ﬂx-)l) (1.50)

It is easy to check that the square of the antipode is an inner automorphism
S*(z) = ¥z, | (1.51)

where § = ¥ 50 ko and by = Y nsh; if @ = Yonio; [15]. As shown in [15], there is
another element in &/ with that property, namely u = SR,R;. Therefore

v = (SRQ)qu—zﬁ (152)

commutes with any element in ¢/ and will be called Drinfeld—Casimir. It satisfies

A(’U) = (R21R12)—1’U®’U, (153)
v = ¢PR,S5*(Ry), (1.54)
Sv) = v (1.55)

where Rj2 = R and Ry = 7 o R. Furthermore, it is easy to check from (1.49) that
f(v) = v. (1.56)

The value of v on a highest weight representation was first determined in [49], and
can be obtained easily from (1.47): if wy is a h.w. vector with X+ - w), = 0 and

hi - wy = (X, a;)w (see section 1.2), then
vewy =g Py, (1.57)

where ¢\ = (A, A + 2p) is the value of the classical quadratic Casimir on wj.
Later we will need analogs of R for U®! with I > 2. If Ay(z) € U® is the
(unique) { - fold coproduct of = € U, let
R = (R o @ D(Ain 8id)Rs (1.58)
Rz = (1@Ry 1)@ Agon)Ra (1.59)

for [ > 2. They have similar properties as R:
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Lemma 1.1.1

R =Ry =R, (1.60)
and
A'(l)(x) = Ru.iB(z) b (1.61)
Riz.a(g™h) = Ry.u(g), (1.62)
(0®...00) R0 = R (1.63)

Proof (1.60) follows by straightforward induction: For [ = 3, it reduces to the

Yang-Baxter equation. By the induction assumption, we have

R, = (Ruggony®1)(id® Agogy ®id)(A @ 1Ry
= (R?Z)...(l—-l) ®1)(id ® Ag-g) ®id)R13R23
= (1@ Ri2.(-2®1)(id ® Ag_z) ® id)R12R13R23. (1.64)

Similarly,

Rizs = (LR ()(d® Mgz ®id)(id ® A)Ra
= (1®Ri2..(-2 @ 1)(id ® Ap-2) ®1d)R23R13R12, (1.65)

and (1.60) follows using the Yang-Baxter equation. Applying (A1) ®id) to (1.27),
one obtains (Ag_1z@)) @ z(1) = ((Ap-1) @ 1d)R12)A(x)((Ag-1) ®id)R7;), and by

induction and using (1.60) it follows

(Aionze) @za) = (Riz.g-1) @ )((Ap-1) ®1d)Ra2) Agy(x) (1.66)
((Ag-1) IR Ry, a-1)@1)
= R AaE)RE.)™, (1.67)

which shows (1.61).
For illustration let us also show (1.63). From (1.58), one gets by induction

l®...0 9)7?,%)._., = (A ®id)Ra1)(Ra-1)..21®1)
= (Rg-1).21®1)((Af_) ®id)Ra1)
= R, = Rim, ©(1.68)

using the flipped (1.61) and (1.60). Similarly one can see (1.62). O

All this will become more obvious in section 4.3.
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1.1.5 Reality Structures

So far we considered all algebras over C, in particular ¢/ is the universal enveloping
algebra of a complex Lie algebra. If one wants to consider e.g. SO,(5) = U,(s0(5; IR))
or S0,(2,3) = U,(s0(2,3; R)), one has to introduce a star-structure, an antilinear
involution Z, as classically. This star-structure must be such that if z € ¢ is a group
element for ¢ = 1, e.g. z = exp(y) for y an element in the Lie algebra, then T = 277,
1.e. T becomes the adjoint of z in a unitary representation of & (this will be considered
in detail below). ,

There are several possible star—structures on &/. One has to distinguish the cases

g € R and |gq| = 1. If ¢ € IR, then a natural definition is

T = 6(z) (1.69)
IRy = 707, | (1.70)

with
Az) = A(T") ' (1.71)

and Sz = S~'%", which is a standard Hopf algebra star-structure (z* is the complex
conjugate of z € U, where the XF are considered real). Using the uniqueness of R

(see the discussion below (1.47)), one can see that
Rlz = R21 =T10oR. (172)

If |¢| = 1, a natural definition is

¢ = 6(z%) 1.73)
IRy = TRT _ (1.74)

with
A(z) = A(Z°) (1.75)

and Sz° = ST, which is a nonstandard Hopf algebra star-structure; notice that
7° = ¢~!. In this case, R = R~!, and more generally Rﬁ“;), = (Rﬁ?__.,)—l with the

obvious extention of (1.74) to several factors, thus

Rizi =R (1.76)

using Lemma 1.1.1.




Furthermore, (SR;)R; = R; 1SR} = Ry5?R; = (SRaRy)™? (see [6]), so

7 =7l (1.77)

Both 77 and Z° correspond to the compact case, such as SO,(5); however we will
mainly be interested in the case of |¢g| = 1. Having applications in QFT in mind, one
might then be worried about (1.74). We will see in sections 4.4, 4.2 and to some extent
in section 1.2.1 how this can be used consistently with a many-particle interpretation.
In the classical case, the coproduct on ¢ is cocommutative, and it does not make any
difference whether its components are flipped by the reality structure or not.

Reality structures corresponding to noncompact groups can be obtained from
Z° by conjugation with elements of the Cartan subalgebra. We will only consider
star—structures of the form X = +X; and H; = H;. For example, S04(2,1) is
the algebra U,(sl(2,C)) with H = H and X* = — X7, which can be realized as
7 = (—=1)"H/2z5(=1)H/2. Then for || = 1, again R = ((—1)"#/2@(-1)"F/)R-1.
(=12 @(-1)#/2) = R~1. The cases SO,(2,1) and S$0,(2,3) will be considered in

much more detail below. We will only consider star-structures with
R=R"1 (1.78)

for |¢| = 1.

1.2 Representation Theory

We will only consider the representation theory of . The main advantage of this
point of view is that the representation theory of U can be formulated in the familiar
language of ordinary semi-simple Lie algebras.

Let us first collect the basic definitions. We will (essentially) only consider finite-
dimensional representations. A representation of I on a vectorspace V is a map
U — GL(V) such that (zy) v = z-(y-v) and 1-v = v (sometimes we will
omit the - ). Then one can as usual diagonalize the Cartan subalgebra, and every
representation is a sum of weight spaces. A vector vy has weight A if ~,uy = (A, o;)va.
Then X are rising and lowering operators as in the classical case, since (1.12) and
(1.23) are undeformed. We will mainly (but not always) consider the case of integral
weights, i.e. (A, 3;) € d;Z. Classically, all irreducible representations are highest

weight representations V with dominant integral highest weight A, i.e. V = Uw), and
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(A, ;) > 0 for all simple roots ;. Finally, let Q = 3 Zea; be the root lattice and
QY =% Z,a; where Z, = {0,1,2,...}. We will write

A-p if A—pe@t. (1.79)

- Given two representations V;, V; of a Hopf algebra, the tensor product represen-
tation is naturally defined as z - (v; @ v2) = A(z)(v1 ® v2) = (z(1) - v1) O(2(2) - V2).

So far, we have not specified g at all. For the representation theory however, there
are two very different cases. One is if ¢ is "generic”, i.e. not a root of unity, and the
other is if ¢ is a root of unity. _

If ¢ is generic, then the representation theory is essentially the same as in the
classical case, in the sense that all the important theorems have a perfect analog.
This is quite intuitive, since everything will be holomorphic in ¢, which as always is a
very strong constraint. We will quote the main results in a moment. If ¢ is a root of
unity however, the representation theory changes completely, and essentially none of
the classical theorems continue to hold. Roughly speaking this happens because poles
resp. zeros occur in various quantities. While it is more complicated and therefore
often discarded, this is the truly interesting case. The main objective of this thesis
is to point out that many of its features seem to be very relevant to Quantum Field
Theory, and not only to Conformal Field Theory. In any case, the root of unity case
is not well enough understood, and deserves further study.

Consider first the case of generic g. Then the basic results are as follows:

e Any finite-dimensional representation of I/ is completely reducible, i.e. it de-

composes into a direct sum of irreducible representations (irreps).

o The irreps are highest weight representations with dominant integral highest

weight A, and the representation space is the same as classically.
e The fusion rules are the same as classically.

So the Weyl group acts on the weights of an irrep, and in fact a braid group action
can be defined on any representation [39, 25, 33]. Complete reducibility was first
proved by Rosso [50]. ‘

These results are not hard to understand. The first two would be obvious if one
could apply the fact that as algebra, U = U,(g) is nothing but the classical enveloping
algebra [17] (with a formal variable ¢ however, and the correspondence may not be

realized for a given ¢ € C). Since similar issues will arise later, we want to explain here
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why a representation V of I which is irreducible for ¢ = 1 can become reducible only

for ¢ a root of unity. Such a representation must have a dominant integral highest

weight A. If it contains a submodule at go with a highest weight vector with weight

Ao (which is dominant again by virtue of the Weyl group resp. braid group action),
Cr

then the Drinfeld Casimir v must be the same on this submodule, so ¢3* = ¢, ° using
(1.57). However A > ), and we have

Lemma 1.2.1 If A\, A\g are dominant weights with X > Ao, then

Cy > C)y- (180)

Proof  Notice first that ¢y = (A, A + 2p) = c5,(n), Where &;(A) = X — Q"—'{Z’—ﬁ"lﬁi is
the modified action of the Weyl reflection along any root 3; with reflection center —p.
Since A > Ap and both are dominant, A¢ is contained in the convex hull of A and

the &;(1). But the Killing form i1s Euclidean and therefore convex, and the statement
follows. 0O

Therefore if this V is not irreducible at ¢, go must be a phase, and in fact a root
of unity (we assume g # 0).
Complete reducibility can be understood using the concept of invariant sesquilin-

ear forms.

1.2.1 Invariant Forms, Verma Modules and Unitary Rep-
resentations
A bilinear form ( , ) on a representation V is linear in both arguments, while a

sesquilinear form is linear in the second argument and antilinear in the first.

A bilinear form is called invariant if
(u,z-v) = (6(z) - u,v) (1.81)

for u,v € V; this is sometimes called covariant [13]. This can be considered for any
geC.

For ¢ € IR or |g| = 1, consider a star-structure as in section 1.1.5 and denote it

by T, so 5(? = + X7 and H; = H;. Then a sesquilinear form ( , ) is called invariant
if

(u,z-v) = (T -u,v) (1.82)
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for u,v € V; this is also sometimes called covariant. It is hermitian if
(4,0)" = (v, ). (1.89)

A hermitian sesquilinear form is called an inner product. Note that we always consider
g to be a complex number, so § = ¢*; in the literature, ¢ is often treated as an
indeterminate, and our definitions agree with those of e.g. [13] only for |¢| = 1, which
is the case we are mainly interested in. Finally, a representation V is unitary or
unitarizable if there exists a positive definite invariant inner product on V.

Given a highest weight (h.w.) representation V()) with h.w. vector w), thereis a
unique invariant inner product ( , ) on V() for ¢ € R or |¢| = 1, resp. an invariant
symmetric bilinear form for any ¢ € C. Uniqueness is clear, since one can express
any (U - wx,U - wy) in terms of (wx,U° - wy) or (U° - wy,w,) using invariance and the
commutation relations. These two results agree and (, ) is hermitian, because the
star-structure is consistent with the commutation relations; notice that [k;], € R.

Thinking of applications in Quantum Mechanics, the importance of unitarity is
obvious. But invariant sesquilinear forms (or bilinearforms) are also very useful as
technical tools, due to the following well-known observation: if a highest weight repre-
sentation V() is not irreducible, it contains a submodule. Now all these submodules
are null spaces w.r.t. the sesquilinear form, i.e. they are orthogonal to any state in
V(). Therefore one can consistently factor them out, and obtain a sesquilinear form
on the quotient space. To see that they are null, let v, € V() be in some submod-
ule, i.e. wy € U -v,. Now for any v € U - wy, it follows (v,,v) € (Uv,,w)) = 0,
using invariance and the fact that there is only one vector with weight A in the h.w.

representation V(X), namely w,. Conversely,

Lemma 1.2.2 Let w) be the highest weight vector of an irreducible highest weight
representation. L(A) with invariant inner product. If (wy,wy) # 0, then ( , ) is

nondegenerate, t.e.

det(L(X),) #0 (1.84)

for every weight space with weight A — n in L(X).

Proof Assume to the contrary that there is a vector v, which is orthogonal to all
vectors of the same weight, and therefore to all vectors of any weight. Because L(A)
is irreducible, there exists an v € U such that wy = u -v,. But then (wy,wy) =

(wy,uw-v,) = (T-wx,v,) = 0, which is a contradiction. O
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Verma modules For any weight A, there exists a "universal” highest weight mod-
ule, the Verma module M(X). It is the (unique) & - module having a h.w. vector w)
such that the vectors X wy form a basis of M () [13], where the X are a P.B.W.
basis of &/~. This is the only infinite~dimensional representation we will consider, and
only as a technical tool. The importance of Verma modules lies in the fact that all
highest weight representations can be obtained from M ()) by factoring out an appro-
priate submodule. In particular, the (unique) irrep L()A) with h.w. X is obtained from

M()) by factoring out its maximal proper submodule. Since it is a highest weight

module, one can define a unique invariant inner product { , ) on a Verma module for

lg| =1 and ¢ € IR, and its maximal proper submodule is precisely the corresponding

null subspace (see [13] on how to define analogous forms for generic ¢).

Forms on tensor products Now let V; be h.w. representations of U/ for any ¢ € C
with dominant integral highest weight p;, such that the V; are irreducible as long as
g is not a root of unity. Therefore on each V; there is an invariant inner product
(, ) for ¢ € IR and for |¢| = 1, which is non—-degenerate if ¢ is not a root of unity.
It is important to realize that the representation space V; is the same for all ¢ (in
particular for ¢ = 1), only the action of U/ on it depends on ¢, and is in fact analytic
(one way to see this is to use a P.B.W. basis, another is to construct the V; by taking

suitable tensor products, as we will see in a moment). Let
V=We.V, (1.85)
andfora=a;®...Qa, € ®..QV, and b€ V, define
(a,b)g = (a1,b1)1.--(ar, br),. (1.86)

We claim that for ¢ € R, (, )g is a positive~definite inner product:

(, )@ is invariant because of (1.70) for ¢ € IR, and it is certainly hermitian and
positive definite if the ( , ); are. Let M,ﬁ’)l be the hermitian matrix of ( , ); in
some basis of V;. Since the (, ); are determined by the algebra alone, the M,g:)l‘ are
certainly continuous (and can be extended to analytic objects), so their eigenvalues
are real and continuous. Since V; remains irreducible for ¢ € IR as shown above and
the eigenvalues are positive for ¢ = 1, they cannot vanish for ¢ € IR because of Lemma
1.2.2. So (, )g is indeed a positive-definite invariant inner product. Similarly, (, )e
1s an invariant bilinear form for any ¢ € C if it is built from bilinear forms on the V..

Now for ¢ € IR, one can use the Gram-Schmidt orthogonalization method as

usual, and V' s the direct sum of orthogonal highest weight irreps V3, with the same
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highest weights \; and multiplicities my, as classically. This implies that for ¢ € R,
the Drinfeld Casimir v satisfies the characteristic equation
[Tv—gx) =0, ‘ (1.87)
Ar
where the product is over all different highest weights counted once, and not with
multiplicity my,. Since v is analytic, (1.87) holds for all ¢ € C, and one can write

down the projectors on the eigenspaces of v as

P Tyen(v—q ™)
AN = o ¢ ’
C Thuga g™ — ¢)

with 3~ Py, = 1 and P, P, = 65,1, P,- They only singularities are isolated poles in ¢,

(1.88)

and it follows that for generic ¢, the image of P, consists of m,, copies of the highest
weight irrep Vi, with h.w. ),. In fact using Lemma 1.2.1, this may break down only
at roots of unity. Thus we have shown complete reducibility of V for ¢ not a root of
unity.

This argument illustrates the use of inner products. From now on, we will only
consider the case |g| = 1. Then one can define another invariant sesquilinearform on
V=W®..Q0V,, namely

(a,0)r = (a,Ri2..1b)g (1.89)

with Ryz..; as in Lemma 1.1.1. Indeed using (1.75) and (1.74),

(T-a,0)r = (Ap(@)(1®..-®a,;),R1.-(1®@...0b))s
= (01Q...0a,A,(@2)R1.-(5:1®...®b))s
= (1Q9...0a, Rl...rA(r)(fﬂ)(bl ®...Q0b))s
= (a,z-b)r, (1.90)

since the (, ); are invariant w.r.t. , and AET) is the flipped r — fold coproduct. While
it is not positive definite in general, ( ,-)z is nondegenerate if ¢ is not a root of unity,
which will be very important later. To see this, let again M,ﬁz)lt be the invertible
matrix of the inner products ( , ); on the irreps V;. Then the matrix of (-, )z is
e M 153,)1;; oM ,E:’)k;Ri{i'_:}]:;, which is invertible, because Ry, is invertible. In fact,
(, )r remains nondegenerate at roots of unity as long as all the V; remain irreducible,
since then Rq2 . exists and is invertible on these representations, as we will see in
section 1.2.3.

In the classical limit ¢ — 1, (, )g reduces to (, )g since R — 1® 1, however it is

not hermitian unless ¢ = 1 (remember |¢| = 1). In chapter 4, we will show how one
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can define a (hermitian) inner product on a "part” of V using a BRST operator for ¢

a root of unity, and in fact a many-particle Hilbert space, with the ”correct” classical
limit.
Therefore we have to study the root of unity case. But first, we briefly discuss the

~

R -matrix:

1.2.2 R- Matrix and Centralizer Algebra

For a (finite-dimensional) representation V of U, consider the n—fold tensor product
of V with itself,
Ve =V®..QV. (1.91)

This carries a natural representation of I using the n—fold coproduct A,). Classically,
the symmetric group (or its group algebra) generated by 7; ;11 which interchanges the
factors in position 7 and ¢ +1 commutes with the action of U(g) on V®". The maximal
such algebra commuting with the representation is called the centralizer algebra. In

the quantum case, there is an analog of this, namely

Rii1=1d®..0(1o(r@1)R)Q®...Qid (1.92)
where the nontrivial part is in positions 7 and ¢+ 1, and 7 is the representation on V.
Notice that such a definition only makes sense for identical representations. It follows
from (1.27) and coassociativity that f%i,,-ﬂ commutes with the action of &/ on V&,
Therefore representations of & on this space fall into representations of the centralizer
algebra. This is familiar from quantum field theory, where bosons and fermions are
totally symmumetric resp. antisymmetric representations of the permutation group.

The Yang-Baxter equation now becomes

A

Ri,i+1R'i+l,i+2Ri,i+l - Ri+l,i+2Ri,i+1 Rz‘+1,i+2 (1-93)

Acting on V @V, (1.53) becomes A(v) = (R)"2(v®v). Now v is diagonalizable
for generic ¢ with eigenvalues ¢7°*, because of complete reducibility. Therefore (f%)2
is diagonalizable, with nonzero eigenvalues. This implies {e.g. using the Jordan
normal form, cp. section 4.1) that R is diagonalizable for generic q, with eigenvalues
+q2(2x=2%) where 4 is the highest weight of V' if V is irreducible. Such a result was
first obtained in [49] using a different method.

The centralizer algebra provides a connection between quantum groups and con-
formal field theory [23, 1]. For small representations, it can be described explicitely,

and again the root of unity case is very different from the generic case.
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1.2.3 Aspects of Representation Theory at Roots of Unity

Generally speaking, the root of unity case is somewhat more complicated than the
case of generic ¢, but also more interesting and probably more relevant to physics.
Unfortunately, the general mathematical literature on this subject is not very acces-
sible to physicist®. The rank one case (i.e. U,(s{(2)) and its real structures) however
is quite instructive and is discussed in [30, 45]. In this section we will only mention
a few important features, and many of the later sections will be devoted to studying
certain aspects in more detail. In general, it is probably fair to say that the root of
unity case is not well enough understood.

First, the subalgebras of U,(g) generated by X and H; are nothing but U,(sl(2))

algebras (the coalgebar structure is not the same, however}, with ¢; instead of ¢. Let
q= eZm’n/m (194)

with ged(m,n) = 1, and let M = m if m is odd, and M = m/2 if m is even. Similarly
for ¢; = e*™%/™ let My = mif d; = 1, and My = M if d; = 1 (recall our
normalization conventions in section 1.1.2). Then M;) is the smallest integer such
that

. [My)y = 0. (1.95)

Highest weight vectors and irreducible representations " The following cru-

cial formula can be checked easily [30]:

(X7, (X)) = (X7 ) [kl [H: = b+ 1], (1.96)

7

In particular, this shows that (X )M is central in U, and so is (X7 )M®. Now if wy
is a highest weight vector, then (X )M® - w, is either zero or again a highest weight
vector. In the latter case, the representation contains an invariant submodule. In

particular,

(X7)Mo -y =0 (1.97)

on all irreps with highest weight vector wy. Due to the braid group action (1.46)
resp. algebra automorphism, similar statements apply to all root vectors X ir, and
considering the P.B.W. basis of U, it follows that all irreducible highest weight rep-
resentations are finite-dimensional at roots of unity. This is very different from the

generic case.

6[13] is among the more readable sources.




Another important feature 1s the existence of non~trivial one-dimensional repre-
sentations at roots of unity, namely w, with weight Ao = 3= 7 k;c; for integers k;. It
is easy to check from (1.15) that this is indeed a representation of . By tensoring any
representation with w,,, one obtains another representafion with identical structure,
but all weights shifted by Ao.

There exist also "cyclic” representations with (X7 )M® = const if ¢ is used
instead of H;, see [6].

Assume V(A) is a highest weight module of I/ which is analytic in ¢ (i.e. the
vector space V() is fixed, but. the action of U on it depends analytically on ¢, such
as a Verma module with dominant integral A). The submodules contained in V()
for generic ¢ will certainly survive at roots of unity, since a highest weight vector w
is characterized by (3; X}) - w = 0, which at roots of unity may have more, but not
fewer solutions than generically. In fact, highest weight modules typically develop
additional h.w. vectors at roots of unity. We can see this in the example of a Verma
module of U,(sl(2)):

Let M(j) be the Verma module of U,(sl(2)) with highest weight A = j, i.e.
H - w; = jw; and X* -w; = 0. Then M(j) has a basis {w;,(X™)*-w;; k € N}
with weights j,7 —2,.... For generic ¢, M(j) contains another highest weight vector
only if 7 € IN, namely with weight —;j — 2; this can be seen from (1.96). However
for ¢ a root of unity, [H —k+ 1], =0if H —k+1 = M, and (1.96) implies that
there is an additional h.w. vector at weight j —2k=7—-2(j+1-M)=2M —j5 -2
(if this is smaller than j and j € Z), another one at weight j — 2M, and so on.
In fact, the weights of all the h.w. vectors in M(j) can be obtained from j by the
action of the "affine Weyl group” generated by reflections o; with reflection centers
IM —p =1IM —1, for any | € Z. An analogous statement (the "strong linkage
principle”) holds in the higher rank case as well, and will be discussed in section
3.2.3. This can be used to determinine the structure of the irreps of U.

In summary, the highest weight irreps at roots of unity are "usually” smaller than
the irreps with the same highest weight for generic ¢, and they are always finite-

dimensional.

Tensor products The coproduct determines the representation of &/ on a tensor
product, and for ¢ as in (1.94), one can easily see using a ¢ —binomial theorem
that A(XF)Me) = (Xft)M(i)@)qu(i)Hi/Z + qi_M(i)Hi/z Q(XF)M®, cp. [45]. Therefore

if V; are highest weight irreps, then (XF)M® = 0 on V; ® V3, and similarly for any
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number of factors. In this context, it is useful to consider the various quantities as
being analytic in & = ¢’ — ¢, where ¢ is fixed to be (1.94). Then e.g. [M(;), has
a first-order zero in A. In particular, (XF)M®) = % is well-defined, and the
distinction between the unrestricted and restricted specialization mentioned in section
1.1.2 becomes important. We will essentially work in the unrestricted specialization,
i.e (XE)M®) is not considered an element of /.

Consider the tensor product V; @ V; of two representations V;, V, which are irre-
ducible for generic ¢. It is well known (e.g. [45, 30]) that if the V; are "large enough”,
Vi ® V2 does not decompose into the direct sum of irreps at roots of unity, but different
generic irreps ("would-be irreps”) in V; ® V2 combine into irreducible representations;
this will be discussed in detail in later sections. One should notice that this can hap-
pen because 1) all Casimirs, including the Drinfeld Casimir v, approach the same
value on the "would-be irreps” which recombine as ¢’ — ¢, and 2) the larger of the
recombining ”would-be irreps” develops a h.w. vector, which becomes the h.w. vec-
tor of the smaller constituent. In other words, the image of different projectors (1.88)

becomes linearly dependent at roots of unity, and they develop poles. Nevertheless,

Lemma 1.2.3 The image Im(P,) of Py (1.88) for any given X is analytic even at
roots of unity, in the sense that there exists an analytic basis for it. In particular, the

dimension is the same as generically.

Proof One can inductively define an analytic basis of Im(Py(¢')) for ¢’ near the
root of unity ¢ as follows: Suppose the {v;(¢')}¢; are analytic and linearly indepen-
dent at ¢’ = ¢, and satisfy P\(q') - vi(¢’) = vi(¢’). If d is smaller than the generic
dimension of Im(P), take a vector vyp1 € Im(Px(qo)) for go near ¢ which is not
in the span of the {v;(¢")}4, at ¢ = go. Define vg11(q’) = R*Pi(¢’) - vay1, where
k € Z is such that vy41(¢’) is analytic and non—vanishing at ¢’ = ¢ (this is possible
because Py(q’) has only poles). Then vqy1(g’) satisfies Py(q’) - vay1(¢’) = var1(q’) for
¢’ # q, since the P, are projectors. Furthermore, {v;(¢')}&} are linearly independent
except possibly for isolated values of ¢/, and if they are linearly dependent at ¢’ = ¢,
one can redefine d441(¢’) = % (X vas1(g’) — aivi(¢')), so that the new {v;}:} span
the same space at ¢’ # ¢, are analytic and linearly independent at ¢’ = ¢. This is
always possible, because the determinant defined by the {vi(¢’)}&f} is analytic, but

not identically zero. O

Notice that it is essential that the P, have only poles at ¢’ = ¢, and no essential
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singularities. Furthermore, if a vector w is not in @,Im(P,) at the root of unity, then

it is clear that P5(¢') - w will indeed have a pole at ¢’ = ¢ for some P;.

R at roots of unity Finally we need to know whether R makes sense at roots
of unity. This can be answered using the explicit formulas for R given in [33, 32,
34], refining (1.47). It turns out that R is built out of Rg,, i.e. universal R’s of
the U,(sl(2)) subalgebras corresponding to all roots. Looking at (1.50), the term
-[i—!((X"’)l ®(X™)") becomes ill-defined at roots of unity. So strictly speaking R does
not exist as element of i ® U, but its action on representations V; ® V; is well-defined
at rﬂots of unity provided (XF)M®.V; vanishes on all representations V;. In particular,
R is well-defined if all V; are irreps, and then all the formulas for R hold by analyticity.
The same is true for its many-argument cousin Rz ;.

It should be obvious by now that we are dea,lingiwith a structure which is very
different from the usual representation theory of Lie groups and algebras. The most
remarkable objects however are the indecomposable representations which have barely

been mentioned. They will be studied in later sections. But first, we make a digression

and consider quantum spaces.
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Chapter 2 |

Quantum Spaces associated to

Quantum Groups

The classical Lie groups SL(N), SO(N) and Sp(N) act naturally on N-dimensional
vector spaces M (”vector representation”), preserving certain objects such as volume-
elements or bilinear forms. There exists a perfect analog for quantum groups, intro-
duced by Faddeev, Reshetikhin and Takhtadjan [18]. In the spirit on noncommuta-
tive geometry, one does not consider the spaces themselves, but the algebras of func-
tions Fun(M) on them, which upon quantization turn into noncommutative algebras
Fun(M,). Because it is customary in the literature, we will use the dual formulation

of quantum groups in this chapter, namely Fun(G,) as explained in section 1.1.3.

2.1 Definitions and Examples

2.1.1 Actions and Coactions

So far, with "representation” we always meant a left action of ¢ on a vector space
V. In this chapter, we will be more explicit, and instead of writing z - v we will write

zov for v € V. A left action of an algebra A on a vector space V is defined by
(zy)pv=2z>(yov), lov=" (2.1)

for x € A, and V is called a left ¢{-module. If the representation space is not
only a vector space but also an algebra F and A is a Hopf algebra (such as U,(g)),

we can in addition ask that this action preserve the algebra structure of F, i.e.
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z > (ad) = (zqy > a)(zz>b) and x> 1 = le(z) for all @,6 € F and z € A. F is then
called a left A-module algebra.

Similarly, a right action of A on a vector space V' is defined by
v a(zy)= (v az)ay, v'ag=7, (2.2)

and V' is called a right .A-module; correspondingly one defines right .A-module alge-
bras.

Just like the comultiplication is the dual operation to multiplication, right or left
coactions are dual to left or right actions, respectively. A left coaction of a coalgebra

C (i.e., C is equipped with a coproduct) on a vector space V' is defined as a linear map
Ac: V=CRV: v Ac(v)= () ®v(2), (2.3)

such that
(dR Ac)Ac = (ARid)A¢, (e®id)Ac =id. (2.4)

The prime on the first factor marks a left coaction. If C is a Hopf algebra coacting on

an algebra F, we say that F is a right C-comodule algebra if Ac(a-b) = Ac(a)- Ac(b)

and A¢(1) =1®1, for all a,b € F. Similarly one defines right comodule algebras.
Now if the coalgebra C is dual to an algebra A in the sense of (1.32), then a left

coaction of C on V induces a right action of A on V and vice versa, via
vaz =<z,0V > 0@, (2.5)

and right coactions induce left actions. More on these structures can be found in
[41, 51].

For our purpose, we will consider left coactions of Fun{G,) on left comodule
algebras Fun(M,), which according to the above corresponds to right actions of
U = Uy(g) on Fun(M,). Notice that for quantum groups, a left {—module algebra
F can always be transformed into a right Z{~module algebra and vice versa using the
(linear!) Cartan-Weyl involution: a<z = #(z)va for a € F and z € U. Alternatively,
one could use the antipode instead of 4, but this is a priori not compatible with the

algebra structure of F.

2.1.2 Quantum Spaces and Calculus as Comodule Algebras

First a word on the conventions. We have seen in section 1.1.4 that Fun(Ggy-1) is

dual to U,(g). However most of the literature on quantum spaces uses Fun(G,), and
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therefore we will do the same in this section. We may later have to replace ¢ by ¢!
when we make contact with U,(g).

Recall that Fun(G,) is the algebra generated by matrix elements A with relations
(1.38)

RY AT A} = ALAL R (2.6)
where R* = R and R¥*_isthe N-dimensional vector representation of R. This is
nothing but the statement that the R - matrix commutes with the action of ¢, in the
dual picture. The explicit form of & depends on the group and is given e.g. in [18].
Unless we are dealing with Fun(GL,(N)), this has to be supplemented by additional
relations corresponding to invariant bilinear forms or determinants (otherwise U and

Fun(G,) are not dual, cp. [41]).

Quantum Euclidean group and space We only consider the case of Fun(S0O,(N))
and its real forms in detail’. In that case, the tensor product of 2 vector represen-

tations contains a trivial representation corresponding to the invariant bilinear form.

This can be seen from the R - matrix, which by virtue of section 1.2.2 decomposes into

3 projectors [18] RY = (¢Pt — ¢~1P~ 4+ q'~N¥ P%)¥ The metric g;; is then determined

by (P°)%, = —N_—lq)%}l_;v—_l_l)gijgkl, where gizg® = §/. Explicitely,

(q
gi; = 6 g%, (2.7)

where j/ = N + 1 — ¢ and p; are the values of the Weyl vector g in the vector
representation. For SO,(N) with N odd, p; = (N/2—-1,N/2-2,...1/2,0,-1/2,...,1—
N/2). Furthermore, D;- = §; ;¢7% = g** g, generates the square of the antipode (see
section 1.1.4; notice the replacement ¢ — ¢~! pointed out in 1.1.3). The last equality
follows from Proposition 4.3.2.

In the language of coactions, invariance of g;; becomes
9i; A A] = gu, (2.8)

which must be imposed on Fun(SO,(N)). In section 4.3, we will find a very interest-
ing intérpretation of g;;, which will show various consistency conditions between g;;
and the R-matrix. They can be used to show that (2.7) is consistent, in particular
that the lhs is central in Fun(SO,(N)). We refer to [18] or [44] for more details.

'Here, the series B, and D, can be treated simultaneously.
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Similarly, the tensor product of N vector representations contains a trivial repre-

sentation corresponding to the totally antisymmetric tensor,

AR LA IN = i (2.9)

IJN 9

and ¢, also satisfies certain consistency conditions. Both g¢;; and efll““iN depend ana-
lytically on ¢ and reduce to the classical expressions as ¢ — 1.
Now (the algebra of functions on) quantum Euclidean space Fun(EY) [18] is gen-

erated by z* with commutation relations
(P )da*zt = 0. (2.10)

The center is generated by 1 and r? = g;;z°z’. One can go further and define algebras
of differential forms, derivatives, and so on, see [58, 44, 64]. The algebra of differential
forms is defined by (P*){dz*dz! = 0 and g;;dzidz’ = 0, i.e.

dr'dz’ = —qR}dz"dz". (2.11)
The epsilon-tensor is then determined by the unique top - (N-) form
dz*...dz'N = 621"‘£Nd:c1...da:N = ezl"'iNde. (2.12)

One can introduce derivatives which satisfy

(PT)28%9" =0, (2.13)
8’ = g7 + g(R™)}2*8, (2.14)

and
dde’ = ¢ RYde*D, zidr’ = qRYdz"T . (2.15)

All this is consistent, and represents one possible choice. For more details, see e.g.
[44].
It can be checked that all the above relations are preserved under the coaction of

Fun(SO,(N))

Alz') = Ai@d = xfl) ® a:f2),
A(ds') = A,®dd’ (2.16)
etc., in Sweedler - notation.

Finally, the quantum sphere Sév“l is generated by ¢* = z*/r where r is central, so

gijtitj = 1.
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So far, we have not specified any reality structure, i.e. all the above spaces are
complex. To define real quantum spaces, we have to impose a star-structure on
Fun(S0,(N)) and Fun(EY), i.e. an antilinear involution on these algebras. Again,
one has to distinguish the cases of ¢ € IR and |¢q| = 1. In this chapter, we will consider
the Euclidean case, which corresponds to g € IR. Later we will consider the Anti-de
Sitter case, for lq| = 1.

So from now on ¢ € IR. Then there is a star-structure

extended as antilinear involution, which corresponds to Fun(SO,(N, IR)) or
Fun(SO,(N,IR))?. The antipode can then be written as

S(AL) = Al (2.18)

On quantum Euclidean space, the corresponding involution is 27 = 27g;; [18], which
compatible with the left coaction of Fun({S)O,(N)), i.e. A(z?) = A(z?). Even
though the metric (2.7) looks unusual because we are working in a weight basis, this
is indeed a Euclidean space. The extension of this involution to the differentials and
derivatives is quite complicated [44], but this will not be necessary for our purpose.

Since r? = 72, this also induces an involution on the quantum sphere Sév'l, which
becomes the Fuclidean quantum sphere®.

In this chapter, we will often write SO, (N) = Fun(SO,(N, R)) for this real
("compact”) version of Fun(SO,(N)), abusing an earlier convention in the dual pic-
ture. Similarly, we will write O,( V) if the determinant condition (2.9) is not imposed

for the sake of generality.

2.2 Integration on Quantum Euclidean Space and
Sphere

2.2.1 Introduction

As a first application of this formalism, we will define invariant integrals of functions

or forms over ¢ - deformed Euclidean space and spheres in N dimensions.

2These are C* algebras [48].
3another C* algebra.




In the simplest case of the quantum plane, such an integral was first introduced
by Wess and Zumino [58]; see also [7]. In the case of quantum Euclidean space, the
Gaussian integration method was proposed by a number of authors [19, 31]. However,
it is tedious to calculate except in the simplest cases and its properties have never
been investigated thoroughly; in particular, we point out that determining the class
of integrable functions is a rather subtle issue.

In this chapter, we will give a different definition based on spherical integration
in N dimensions and investigate its properties in detail [55]. Although this idea has
already appeared in the literature [24], it has not been developed very far. We first
show that there is a unique invariant integral over the quantum Euclidean sphere,
and prove that it is positive definite and satisfies a cyclic property involving the D
-matrix of SO,(N). The integral over quantum Euclidean space is then defined by
radial integration, both for functions and N forms. One naturally obtains a large
class of integrable functions. It turns out not to be determined uniquely by rotation
and translation invariance (=Stokes theorem) alone; it is unique after e.g. imposing
a general scaling law. It is positive definite as well and thus allows to define a
Hilbertspace of square - integrable functions, and satisfies the same cyclic property.
The cyclic property also holds for the integral of N and N — 1 —forms over spheres,
which leads to a simple, truly noncommutative proof of Stokes theorem on Euclidean
space with and without spherical boundary terms, as well as on the sphere. These
proofs only work for ¢ # 1, nevertheless they reduce to the classical Stokes theorem
for ¢ — 1. This shows the power of noncommutative geometry.

Although only the case of quantum Euclidean space is considered here, the general
approach is clearly applicable to other reality structures as well. In particular, we
will later consider the case of quantum Anti-de Sitter space, which is nothing but
the quantum sphere S';‘ with a suitable reality structure. As expected, an integral
can be obtained from the Euclidean case by analytic continuation. We hope that
this will eventually find applications e.g. to define actions for field theories on such
noncommutative spaces.

The conventions are as in the previous section with ¢ € IR except in some proofs.
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2.2.2 Integral on the Quantum Sphere Sév“l

We first define a (complex - valued) integral < f(t) >, of a function f(t) over SN-1.

It should certainly be invariant under O4(/N), which means

AGLAR <P =<t >y (2.19)
Of course, it has to satisfy

Givipgy <1 =< i s and (PT)IH <P 0 >= 0
(2.20)
We require one more property, namely that I*1=» =< #%1...#"» >, is analyticin (g—1),
i.e. its Laurent series in (¢ — 1) has no negative terms (we can then assume that the
classical limit ¢ = 1 is nonzero). These properties in fact determine the spherical

integral uniquely: for n odd, one should define < ¢1...t"» >;= 0, and

Proposition 2.2.1 For even n, there ezists (up to normalization) one and only one

tensor J't=*» = [+*n(q) analytic in (g — 1) which is invariant under O (N)

A;ll...A;:]h]n _ ]'il---in (2.21)
and symmetric, :
(P 1 =0 222

for any I It can be normalized such that

1i1 wbn ]il--~iz-1iz+2---in (2.23)

Girirgq

for any . I¥ « g".
An ezplicit form is e.g. It = M\ (A™2z%..2™), where A = g;;0°0% is the
Laplacian (in either of the 2 possible calculi), and A, is analytic in (¢ — 1). For

g =1, they reduce to the classical symmetric invariant tensors.

Proof The proof is by induction on n. For n = 2, ¢V is in fact the only invariant
symmetric (and analytic) such tensor.
Assume the statement is true for n, and suppose I.;, and I, satisfy the above

conditions. Using the uniqueness of I,,, we have (in shorthand - notation)

gl2I'n+2 = f(q'—l)In (224)
g2l = fllg— DI, (2.25)
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where the f(g — 1) are analytic, because the left - hand sides are invariant, symmet-
ric and analytic. Then Jpiy = f'Ihip — fI,, is symmetric, analytic, and satisfies
912Jn+2 = 0. It remains to show that J = 0.
Since J is analytic, we can write
Ji1---in — k§o(q _ l)kJZ.i;"in. (2.26)
(¢ — 1)™™ J%~"n has all the properties of J and has a well-defined, nonzero limit as
g — 1; so we may assume Jig) # 0.

Now consider invariance,
Juetn = AR LA JT, (2.27)

This equation is valid for all ¢, and we can take the limit ¢ — 1. Then A;- generate the
commutative algebra of functions on the classical Lie group O(N), and J becomes
Jio), which is just a classical tensor. Now (P');lefl J#-im = (O implies that Jig) is
symmetric for neighboring indices, and therefore it is completely symmetric. With
g12J = 0, this implies that J(o) is totally traceless (classically!). But there exists
no totally symmetric traceless invariant tensor for O(/N). This proves uniqueness.
In particular, J%~i» = X\ (A™2z% . z™) obviously satisfies the assumptions of the
proposition; it is analytic, because in evaluating the Laplacians, only the metric and
the R - matrix are involved, which are both analytic. Statement (2.23) now follows

because z° is central. O

Such invariant tensors have also been considered in [19] (where they are called
S), as well as the explicit form involving the Laplacian. Our contribution is a self -
contained proof of their uniqueness. So < t%1...t'"» >;= It~ for even n (and 0 for
odd n) defines the unique invariant integral over SN=!, which thus coincides with the
definition given in [24].

From now on we only consider N > 3 since for N = 1,2, Euclidean space is
undeformed. The following lemma is the origin of the cyclic properties of invariant
tensors. For quantum groups, the square of the antipode is usually not 1. For
(5)04(N), it is generated by the D - matrix: S?AL = Dj AL (D)% where D} = g**gn.
(note that D also defines the quantum trace). Then

Lemma 2.2.2 For any invariant tensor Jan = Ag...A;zJj""J", Dy Jh s dn-
variant too:

Al AR D} Je-h = D giz-h (2.28)
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Proof From the above, (2.28) amounts to
(ST2AD)AZ LAl Ji2init = Jizinhy, (2.29)

Multiplying with S"IA::Z from the left and using S~*(ab) = (S714)(S7'a) and
(ST1AZ)AL = &2, this becomes

P
AZ Al Jiinte = §T1 AR Jiainit ~ (2.30)
Now multiplying with Aﬁg from the right, we get
AZ L Aln AR Jnie = g0 Jeinh (2.31)
But the (lhs) is just Ji-® by invariance and thus equal to the (rhs). O

We can now show a number of properties of the integral over the sphere:

Theorem 2.2.3

< f(t) > = < f(t) > (2.32)
<fOf®> =0 (2.33)
< f(t)g(t) > = < g(t)f(Dt) >, (2.34)

where (Dt)' = Dit?. The last statement follows from
I’llmln — D;i ]12...11;]1. (235)

Proof For (2.32), we have to show that I»71g; . ...g;, = I'1~*». Using the unique-
ness of I, it is enough to show that I/»1g; ; ..g:. is invariant, symmetric and

normalized as I. So first,

A A7 (Ik""'klgknjn-ugkm) = GhireGlain AL AR
= Alr;"'Ai?]‘[kn.”klgllil"‘glnin
= (]l""'l’gz,,in---gzlil) . (236)

. . 5 ; ; 7
We have used that I is real (since g and R are real), and A% gr,;, = 91,5, Af,- The
symmetry condition (2.22) follows from standard compatibility conditions between R
and ¢, and the fact that R is symmetric. The correct normalization can be seen

easily using g¥ = g,; for ¢ - Euclidean space.
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To show positive definiteness (2.33), we use the observation made by [18] that
th— Al (2.37)

with w/ = u36] + un6y is an embedding S;V“] — Fun(Oy4(N)) for uyun = (¢W-2/2+
g®=M/?)=1 since (P~)u*u! = 0 and giu'e’ = 1. In fact, this embedding also

-N/2

respects the star - structure if one chooses uy = u;q* and real. Now one can

write the integral over Sév ~1 in terms of the Haar - measure on the compact quantum
group O,(N, IR) [61, 48]. Namely,

<t > =< AR LAY > ult it =< AL >l (2.38)

(in short notation) since the Haar - measure <>, is left (and right) - invariant
< A%_- >a= Az'& < A}f«‘ >a=< Al& >4 A;-_ and analytic, and the normalization condition

is satisfied as well. Then < ti#L >,=< A_éAi: >4 utur and for f(t) = 3 fitt etc.,

< ft)g(t) > = fig; < %Ai >4 vkt =< (fiAéuk) (91‘4%“1) >,
| = < F(Au)g(Au) >4 . (2.39)

This shows that the integral over S'év”l is positive definite, because the Haar - measure
over compact quantum groups is positive definite [61], cp. [11].

Finally we show the cyclic property (2.35). (2.34) then follows immediately. For
n = 2, the statement is obvious: ¢ = Dig*.

Again using a shorthand - notation, define
J12...n — Dl 123.,.n1. (240)

Using the previous proposition, we only have to show that J is symmetric, invariant,
analytic and properly normalized. Analyticity is obvious. The normalization follows
immediately by induction, using the property shown in proposition (2.2.1). Invariance
of J follows from the above lemma. It remains to show that J is symmetric, and the
only nontrivial part of that is (P~);3J'*™ = 0. Define

jizem — (P—)12J12---n’ (2.41)

so J is invariant, antisymmetric and traceless in the first two indices (12), symmetric
in the remaining indices (we will say that such a tensor has the ISAT property), and
analytic. It is shown below that there is no such J for ¢ = 1 (and N > 3). Then as
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in proposition (2.2.1), the leading term of the expansion of J in (g — 1) is classical
and therefore vanishes, which proves that J = 0 for any g.

So from now on ¢ = 1. We show by induction that J = 0. This is true for n = 2:
there is no invariant antisymmetric traceless tensor with 2 indices (for N > 3). Now
assume the statement is true for n even, and that J12-("*+2) has the ISAT property.
Define
K1zen — g(n+1)’(n+2)jl2...(n+2). | (2.42)

K has the ISAT property, so by the induction assumption
K =0. (2.43)

Define
M145...(n+2) — g23j12...(n+2) — 814M145...(n+2) + A14M145"'(n+2) (244)

where § and A are the classical symmetrizer and antisymmetrizer. Again by the in-
duction assumption, A;qM145("+2} = 0 (it satisfies the ISAT property). This shows
that M is symmetric in the first two indices (1,4). Together with the definition of M,
this implies that M is totally symmetric. Further, gi4M45("+2) = g,,g,3J12("+2) =
0 because J is antisymmetric in (1,2). But then M is totally traceless, and as in
proposition (2.2.1) this implies M = 0. Together with (2.43) and the ISAT prop-
erty of J, it follows that J is totally traceless. So J corresponds to a certain Young
tableaux, describing a larger - than - one dimensional irreducible representation of
O(N). However, J being invariant means that it is a trivial one - dimensional repre-
sentation. This is a contradiction and proves J=0.
a

Property (2.33) (which is also implied by results in [19], once the uniqueness of
the invariant tensors is established) in particular means that one can now define the
Hilbertspace of square - integrable functions on 5;\7-1‘ The same will be true for the
integral on the entire Quantum Euclidean space.

The cyclic property (2.34) is a strong constraint on I“-*» and could actually be
used to calculate it recursively, besides its obvious interest in its own. An immediate
consequence of (2.34) is < f(Dt) >=< f(t) >, which also follows from rotation in-

variance of the integral, because D is essentially the representation of the (exponential

of the) Weyl vector of U, (SO(N)).




Notice that although it may not look like, (2.34) is consistent with conjugation:

even though the D - matrix is real, we have
F(Dt) = f(D™4). (2.45)
To see this, take f(t) = t; then the (lhs) becomes
D(#) = D(¥g;) = Dittg;; = (2.46)
= Dit'gngi = t'gigs = (D7)t (2.47)

using the cyclié property of g and D¢ = g;.gi, which is the (rhs) of the above.

2.2.3 Integral over Quantum Euclidean Space

It is now easy to define an integral over quantum Euclidean space. Since the invariant
length r? = g;;2'2’ is central, we can use its square root r as well, and write any
function on quantum Euclidean space in the form f(z) = f(¢,r). We then define its
integral to be

< f(z) >p=<< f(t,r) > (r) -7V >, (2.48)

where < f(t,7) >; (r) is a classical, analytic function in r, and < g(r) >, is some
linear functional in r, to be determined by requiring Stokes theorem. It is essential
that this radial integral < g(r) >, is really a functional of the analytic continuation
of g(r) to a function on the (positive) real line. Only then one obtains a large class
of integrable functions, and this concept of integration over the entire space agrees
with the classical one.

It will turn out that Stokes theorem e.g. in the form < &;f(z) >z= 0 holds if and
only if the radial integral satisfies the scaling property

< g(gr)y >=q7" < g(r) >-. (2.49)

This can be shown directly; we will instead give a more elegant proof later. This
scaling property is obviously satisfied by an arbitrary superposition of Jackson - sums,
a = T n
< flr) >.= /1 drop(ro) D f(a"ro)g (2.50)
n==—0oo

with arbitrary (positive) "weight” function u(r) > 0. The normalization can be fixed
such that e.g. < e >, gives the classical result. If u(r) is a delta - function, this is
simply a Jackson - sum; for p(r) = 1, one obtains the classical radial integration

< Fr)N T s = /1 “dre 3 q*(a"ro)V " f(g o) = / C ). (2.50)

n=—oac
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This is the unique choice of p(r) for which the scaling property (2.49) holds for any
positive real number, not just for powers of ¢. We define f(z*) to be integrable (with
respect to u(r)) if the corresponding radial integral in (2.48) is finite. We therefore
obtain generally inequivalent integrals for different choices of p(r), all of which satisfy
Stokes theorem. ‘

Let us try to compare the above definitions with the Gaussian approach. In that
case, one does not resort to a classical integral, and determining the class of integrable
functions seems to be rather subtle. The Gaussian integration procedure is based on
the observation that the integral of functions of the type (polynomial)-(Gaussian) is
uniquely determined by Stokes theorem (and therefore agrees with our definition for
any normalized p(r)); one would then like to extend it to more general functions by
a limiting process. Lacking a natural topology on the space of functions (i.e. formal
power — series), this limiting process is however quite problematic. One way to see
this is because there are actually many different inequivalent integrals labeled by
pu(r), such a limiting process can only be unique on the (presumably small) class of
functions on which the integral is independent of u(r). Furthermore even classically,
although one can calculate e.g. f—r—z—l_ﬁa“’2 by expanding it "properly” (i.e. using
pointwise or L? convergence) in terms of Hermite functions, if one tries to expand it
formally e.g. in terms of {r"e™""}, one obtains a divergent sum of integrals. Thus the
result may depend on the choice of basis and limiting procedure. It is not clear to
the author how to properly integrate functions other than (polynomial)-(Gaussian)
in the Gaussian sense, which would be very desirable, because that approach may be
applied to some quantum spaces which do not have a central length element [31].
The properties of the integral over Sév -1 generalize immediately to the Euclidean

case, for any positive u(r):

Theorem 2.2.4

< flz)>, = < f(z) >z (2.52)
<f@)f()> =0 (2.53)
< flz)g(z) >, = <g(z)f(Dz) >, (2.54)
and
< flgz) > =q V< flz)>: (2.55)

if and only if (2.49) holds.




Proof Immediately from theorem (2.2.3), (2.49) and (2.48), using Dr = r and
p(ro) > 0. O

(2.52) and (2.55) were already known for the special case of the Gaussian integral
[19]. It was pointed out to me by G. Fiore that in this case, positivity was also shown
in [20].

2.2.4 Integration of Forms

It turns out to be very useful to consider not only integrals over functions, but also
over forms, just like classically. As was mentionned before, there exists a unique NV -

form dz*...dz*¥ = éf;"“Nde, and we define

/x Az f(z) =< f(z) >, (2.56)

i.e. we first commute dVz to the left, and then take the integral over the function
on the right. Then the two statements of Stokes theorem < J;f(z) >,= 0 and
Jdwn_1 = 0 are equivalent.
The following observation by Bruno Zumino [65] will be very useful: there is a
one - form
w= ———g?——d(rz) = qldr = dr-l— (2.57)
(g+1)r? T r

where rdr® = gdz'r, which generates the calculus on quantum Euclidean space by

[w, fle = (1 — q)df (2.58)
for any form f with the appropriate grading. It satisfies
dw = w? =0. (2.59)
We define the integral of a NV - form over the sphere r - Sév"l with radius r by
/ dNzf(z) = wrV < f(z) >= drr¥ 1 < f(z) >4, (2.60)

N-=1
-5

which is a one - form in r, as classically. It satisfies

[ S defan) = [ df() (2.61)

T’Sév—l q'r~5'(§v_1




where (drf(r))(gr) = qdrf(qr). Now defining [ drg(r) =< g(r) >, (2.56) can be
written as
[&%i@) = [( [ dfe). (2:62)
z T 7-.55’"'1
The scaling property (2.49), i.e. [ d"zf(gz) = ¢~V [, d"zf(z) holds if and only if

the radial integrals satisfies

/T drf(gr) = ¢ / drf(r). (2.63)

We can also define the integral of a (N — 1) form any_1(z) over the sphere with radius
r:

/ an_; = w / wan-_1). (2.64)

1'-53;,—l r-Sév_l )
The w™! simply cancels the explicit w in (2.60), and it reduces to the correct classical
limit for ¢ = 1.

The epsilon - tensor satisfies the cylic property:

Proposition 2.2.5

eél...z'N — (_I)N—ID;; Eflzu-ile' (2.65)
Proof Define
12N (_I)N—IDI 623...N1 (2.66)

in shorthand - notation again. Lemma (2.2.2) shows that « is invariant. &'~V is

traceless and (g -) antisymmetric in (23...N). Now g;26'%" = 0 because there exists
no invariant, totally antisymmetric traceless tensor with (N —2) indices for ¢ = 1, so
by analyticity there is none for arbitrary ¢. Similarly from the theory of irreducible
representations of SO(N) [59], P*i36'%+Y = 0 where P* is the ¢ - symmetrizer,
1 = Pt 4+ P~ 4+ P° Therefore x>V is totally antisymmetric and traceless (for
neighboring indices), invariant and analytic. But there exists only one such tensor up
to normalization (which can be proved similarly), so £'%-V = f(q)e}z'"N. It remains
to show f(gq) = 1. By repeating the above, one gets e*~N = (f(q))"(det D)€l
(here 12...N stands for the numbers 1,2,...,N), and since det D = 1, it follows f(gq) =1
(times a N-th root of unity, which is fixed by the classical limit). O

Now consider a k - form a(z) = dz*....dz* f;, ; (z) and a (N —k) - form Bn_k(z).

Then the following cyclic property for the integral over forms holds:
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Theorem 2.2.6

an(2)8y-r(a) = (<1 [ By i(z)au(e" D) (2.67)

N-=-1 - N =1
-5y g=*r-Sg

where ax(q¢N Dz) = (¢V Ddz)"....(¢N Ddz ) f;, ;. (¢V Dx).
In particular, when ar and By_j; are forms on Sév‘l, i.e. they involve only dz'l
and t*, then

[ ax®Bys®) = (-0 [ Byt DY). (2.68)

sy syt
On Euclidean space,

[ ox(@)Bn-s{z) = (-1} [ By_(z)an(g" Da) (2.69)
if and only if (2.63) holds.

Notice that on the sphere, dVz f(t) = f(¢)d"z.
Proof We only have to show that

[ f@dg@) = [ deg(2)f(a"Da) (2:70)
T-S,ff_l r-Sév_]
and
/ dz' By (z) = (—1)N-1 / By-1(2)(g" Ddz)'. (2.71)
rsy girsy

(2.70) follows immediately from (2.34) and z'd™z = d"z¢"z'.
To see (2.71), we can assume that By_1(z) = dz*...dz*¥ f(z). The commutation

relations z'dz? = qRY,dz*z' are equivalent to

flgle)de’ = R((d2?)() ® f1))(de’))(f(2))(2)
= (dz/ aRY)(f(z) «R?) (2.72)

where R = R? ® R? is the universal R for SO,(N), using its quasitriangular property
and R(AL® Al) = R faY =<, fu) > f(z) is the right action induced by the left
coaction (2.16) of an element Y € U, (SO(N)). Now invariance of the integral implies

(dz? aRY) < f(z) aR? >,=da? < f(z) >, (2.73)
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because R! ® ¢(R?) = 1. Using this, (2.72), (2.61) and (2.60), the (rhs) of (2.71)

becomes
(—=1)N-1 / ﬁN_l(a:)qND;-dxj = (—I)N'lD;- / dz®...dz'¥ f(g7 z)dz?
g~1r.8Y1 'I‘-Sév—l
= (—l)N_leazmiNij'N < f(.’E) >4

— e‘i‘ig...‘in,rN < f(x) >t

= / dz* By _1(z), (2.74)
T-Sév—l
using (2.65). This shows (2.71), and (2.68) follows immediately. (2.69) then follows
from (2.63).
a

Another way to show (2.71) following an idea of Branislav Jurco [28] is to use

/ (ox 9 SY)fBn—k = / ar(Bn-r YY) (2.75)
r-SY? r-Sg
to move the action of R? in (2.72) to the left picking up R'SR?, which generates
the inverse square of the antipode and thus corresponds to the D~! - matrix. This
approach however cannot show (2.34) or (2.54), because the commutation relations
of functions are more complicated.

(2.67) shows in particular that the definition (2.64) is natural, i.e. it essentially
does not matter on which side one multiplies with w.

Now we immediately obtain Stokes theorem for the integral over quantum Eu-
clidean space, if and only if (2.63) holds. Noticing that w(¢"¥Dz) = w(z), (2.69)
implies

/daN_l(:c) = —1——-/[w,aN—1]i
x l1—gqgJe
x /waN_1 - (~—1)N"1aN_1w
= /(—l)N"laN_lw — (=D oy w =0 (2.76)

On the sphere, we get as easily

/ dan_s(t) « /[W,Q’N—2]i

N—-1 N-1
53 52

1 N-2

= w” /w(waN_g—(—l)

an_sw)) =0 (2.77)

N-—1
S‘I

43




using (2.68) and w? = 0.

It is remarkable that these simple proofs only work for ¢ # 1, nevertheless the

statements reduce to the classical Stokes theorem for ¢ — 1. This shows the power
of the ¢ - deformation technique.
One can actually obtain a version of Stokes theorem with spherical boundary

" terms. Define

qlTo quo 1 £:l
/ wf(r) = / dr;f(r)z(q—l)zjk F(roq™), (2.78)

which reduces to the correct classical limit, because the (rhs) is a Riemann sum.
Define

ql"O'Sév_l a*ro
[ @ = [( [ ante), (2.79)
gkro-SY T} ghro .51

For | — oo and k£ — —oo, this becomes an integral over Euclidean space as defined

before. Then

I
Q
Z
L
I
—
—~—
€
Q
Z
L
I
T
N
P
L
R
2
L
E

ko @N=1 k oiN=-1
qkro-Sq 7*ro 7.5}

1l
||~
—
—
€
R
2
L
|
~—
€
Q
b

/ aN_1 — / an_1. (2.80)

N-=1 N=-1
qlro-Sq qkro~Sq

In the last line, (2.60), (2.64) and (2.78) was used.

2.3 Quantum Anti—de Sitter Space

Let us first review the classical Anti-de Sitter space (AdS space), which is a 4-

dimensional manifold with constant curvature and signature

(+,—,—,—). It can be embedded as a hyperboloid into a 5-dimensional flat space
with signature (+,+,—,—,—), by
22422 -2 - 2= R (2.81)

where R will be called the "radius” of the AdS space. Similarly we will consider

the 2-dimensional version, defined by z& + 22 — 22 = R? (of course there is also a

44




3-dimensional case). The symmetry group (isometry group) of this space is SO(2,3)
resp. SO(2,1), which plays the role of the Poincaré group. In fact, the Poincare
group can be obtained from S 0O(2,3) by a contraction, see e.g. [36].

This space has some rather peculiar features: First, its time-like geodesics are
finite and closed. In particular, time "translations” are a U(1) subgroup of SO(2,3).
The space-like geodesics are unbounded. Furthermore the causal structure is some-
what complicated, but we will not worry about these issues here. With the goal in
mind to eventually formulate a quantum field theory on a quantized version of "some”
Minkowski-type spacetime, there are several reason why we choose to work with this
space and not e.g. with de Sitter space (corresponding to SO(1,4)) or flat Minkowski
space. First, SO(2,3) has unitary positive-energy representations corresponding to
all elementary particles, as opposed to SO(1,4) [22], and it allows supersymmet-
ric extensions [63]. Second, the seemingly simpler case of flat Minkowski space is
actually mathematically more difficult, because the classical Poincare group is not
semi-simple, and the theory of quantum Poincaré groups is not as well developed
as in the case of semi-simple quantum groups. But the main justiﬁcaiion comes a
posteriori, namely from the existence of finite-dimensional unitary representations of
S0,4(2,3) for any spin at roots of unity, and some very encouraging results towards
a formulation of gauge theories (=theories of massless particles, strictly speaking) in
this framework, which will be presented below.

The heavy emphasis on group theory seems justified as a bowerful guideline

through the vast area of noncommutative geometry.

2.3.1 Definition and Basic Properties

Quantum Anti-de Sitter space (g-AdS space) will be defined as a real form of the
complex quantum sphere S5} defined above, with an (co)action of SO,(2,3) which is
a rea] form of Fun(S0y(5)) resp. Uy(so(5)). Therefore the algebra of the coordinates

t'=z'/ris

(P7)it = 0, (2.82)
t-tEgkztk‘tl = 1. (283)

For |¢g| = 1, consider the reality structure

t = —(=1)Ftg; (2.84)
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extended as an antilinear algebra~automorphism. Here E; = (1,0,0,0,—1) for 7 =
1,2,...,5 (resp. E; = (1,0,—1) in the 2-dimensional case), which will turn out to be
the eigenvalues of energy in the vector representation. It is easy to check that indeed
t-1=t-t. Correspondingly on Fun(S0,(2,3)), one can consider the reality structure
Ai = (1)5FE g™ AL g, (2.85)

J

extended as an antilinear algebra—automorphism. The fact that (..) does not reverse
the order is not a problem, since we will not consider the ¢ as operators, only as
"coordinate functions” which will mainly be used in integrals, e.g. to write down
Lagrangians. In fact, in quantum field theory the coordinates are not considered as
operators on a Hilbert space. Thus this reality structure on g-AdS space has mainly
illustrative character; some reality properties of the integral below however will be
used to show hermiticity of interaction Lagrangians (if one would consider the ¢ as
operators on a space of functions on g-AdS space, the adjoint could be calculated from
a positive—definite inner product, and would not be given by this reality structure).
Observables like energy etc. do exist in our approach, in particular elements in the
Cartan subalgebra of U,(S0(2, 3)) which has a suitable reality structure. This is one
of the reasons why we prefer to work with & instead of Fun(g).

To introduce proper units, define

2

¥ = t'R, (2.86)
y-y=yingij = R? (2.87)

for a constant? R € Ro.
So from now on |g| = 1. It is easy to see that (2.84) indeed corresponds to Anti-de

Sitter space for ¢ = 1: consider R* = y-y = yingij = ylyS + 2yt + 33+ yty i + vty
and introduce real variables z* by y; = ZO\*/'%"* , Ys = 52—\"7;51, Yo = 2-31_\47.12";_37 Ys = 2-53%2_3_’

y® = i22. Plugging this into (2.87) gives the classical AdS space. This also shows

that E; = (1,0,0,0, —1) is indeed the energy (in suitable units), and similarly for the
2—-dimensional version.

There are other possible reality structures which could define an AdS space for
lg] = 1, such as 7 = —t and A_j«b = Aj extended as an antilinear involution. This is
however not compatible with the identification of the energy in U,(s0(2,3)) which is

acting on it. It will nevertheless be useful in some calculations involving the integral.

4R is different from r, which has nontrivial commutation relations with forms.
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Integration. One can define an integral < ¢"..t"* >, on gq-AdS space by analytic
continuation in ¢ from the integral over the Euclidean sphere S'g (This clearly corre-
sponds to the Wick rotation in QFT). It trivially satisfies the same algebraic proper-
ties as in the Euclidean case, and is compatible with both reality structures on AdS

space:

Lemma 2.3.1 For |q| =1,

< H. fm >, =< 1 tn >=< 1 >, (2.88)

Proof Define Jir-i1(g) = It~i»(g~1); then for |g| = 1, Ji# = (I~#)*, since ¢
is the only complex quantity in the explicit formula in Proposition 2.2.1. Applying
the above Ub to the statement of invariance (2.21), one gets A;:A;’l Jorwin = Jhein,
Now from a slightly generalized Proposition 2.2.1 where (2.21) and (2.22) are required
only for |g| = 1, it follows that J*=%(g) = I***»(q), since J and I are analytic in g.
Alternatively, one can consider the anti-algebra automorphism p(A4%) = A%,  p(q) =

q~', where q is treated as a formal variable.
Now (2.88) follows from (2.32). O

At first sight, it may not look sensible to define an integral of polynomials on a
noncompact space. However we are really interested in the case of roots of unity,
where the analog of "square-integrable functions” are indeed obtained as (quotients
of ) polynomials, as explained in the following sections. The normalization has to
be refined somewhat at roots of unity, and at this point, we make no statement on

positivity.

2.3.2 Commutation Relations and Length Scale

Let us write down the algebra of coordinate functions on g-AdS space explicitely.
This can be obtained from the Euclidean case [18]. In the 2-dimensional case one

finds
av’y' — ¢ Yy’ = (¢ - ¢ VPR, (2.89)

where y? is eliminated by the constraint y -y = R?. In 4 dimensions we find

Yyt = gty ik >0and 2+ k # 6,
1/2 _ ,~1/2
500 ~1.1,.5 _ 4 q 2
v’y — a7 'y'y o prap—
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2y,.5 q1/2 q 12 2
1 .
— +g—R

( 2 ) 1,5 1‘11/2 1/
= (¢ =-Dyy +q

'y -yt = (1

—4q

where y° is eliminated. The important point here is that these relations are inhomo-

geneous, and therefore contain an intrinsic length scale

Lo = \/|q1/2 —-q"l/le; v (291)

notice that (¢ — 1+ ¢~') & 1, having in mind that ¢ should be very close to 1. Since
lgl =1, g = &
Lo =~ v/27hR. Also, notice that Lo is much bigger that |§ — ¢”!|R which one might

have expected naively (and which will show up later). In flat Euclidean quantum

with h a small number (in fact 2 = X, as we will see below). Then

space for example, the commutation relations are homogeneous, and no length scale

appears.

To make these commutation relations more transparent, one can approximate
them by [y®,y'] = :L3 and [y*, y?] = :L3. As in Quantum Mechanics, this means that
the geomeiry is classical for scales > Lg, and non—classical for scales < Lg. Strictly
speaking, this is only heuristic since the reality structure on the coordinates is not a
standard star structure. However it is clear that there really is such a scale, and in
the compact (Euclidean) version, the argument is indeed rigorous.

This very satisfactory, and the way it should be if this is to find applications in
high energy physics. Being extremely opfimistic, one is tempted to identify Lo with
the Planck scale, where one expects the classical behaviour of space-time to break
down. Of course, there is no justification for this so far. It means that ¢ has to be

very close to one. These considerations are continued in section 3.2.5.




Chapter 3

The Anti—de Sitter Group and its

‘Unitary Representations

3.1 The Classical Case

3.1.1 S0(2,3) and SO(2,1)
The classical AdS group is SO(2, 3) resp. U(so(2, 3)), which is a real form of U(s0(5, {))

and plays the role of the Poincaré group.

The Cartan matrix for its rank 2 Lie algebra B, is

2 -2 2 -1
Aia’=(_1 5 )’ (ai,aj)=(_l . )> (3.1)

so dy = 1, dy = 1/2, to have the standard physics normalization. The weight diagrams
of the vector representation Vs and the spinor representation Vj; are given in figure 3.1
for illustration; the adjoint Vo is 10 —~dimensional. The Weyl vectoris p = %Za>0 o=
%al + 2.

According to (1.22), we define hy = Hy, hy = %Hz, es1 = XE, and ey = \/@Xf
Now one can obtain a Cartan—-Weyl basis corresponding to all the roots, as ex-
plained in section 1.1.4. We choose a slightly different labeling here in order to

have (essentially) the same conventions as in [36]. Using the longest element of

the Weyl group w = mi7Te7i7e, define 5y = a1, 02 = 01020002 = az, 3 = ora; =
a1 + az, B4 = 010007 = o3 + 209, see figure 3.1. The corresponding Cartan—
Weyl basis of root vectors is e3 = {es,e1], e—3 = [e—1,€-2], hs = hi + ho and

es = [ez, €3], e_q4 = [e—3,€e_2], and hy = h; + 2h,. Alternatively one can use the
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Figure 3.1: Vector and spinor representations of SO(2,3)

braid—-group action (1.46) which of course works for the classical case as well, i.e.
{e+1, €43, €24, €10} = {€41, T1€x2, T1 Toes1, T1T2T1es2}. Up to signs, this agrees with
the basis used in [36].

The reality structure and the identification of the usual generators of the Poincare
group in the limit R — oo can be obtained by considering the algebra of generators
leaving the metric invariant, see e.g. [22, 36]. It turns out that the following reality

structure corresponds to SO(2, 3):
H =H, X{=-X{, Xj=X;, (32)
for : =1,2. Then
€= —e_;, € =¢€_3 E3= —€_3, €5= —€_4. (3.3)

We identify the weights of the vector representation (y!,y2, 3>, y%,4°) to be
(B3, B2,0,—PB2, —Bs), see figure 3.1. Then {e+s, h2} is a compact SU(2) subalgebra

2

which acts only on the spacial variables 2!, 22, 2% in AdS space (2.81). It corresponds

to spatial rotations, and we will sometimes write
Jz = hz (34)

to indicate that it can be interpreted as a component of angular momentum. Fur-
thermore {e43, h3} is a noncompact SO(2, 1) subalgebra acting on 2°, 2% and z*. This

is nothing but a 2 dimensional AdS group, and
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is the energy since it generates rotations in the z°, z* —-plane. Then E; = (1,0,0,0, —1)
as in (2.85), and p; 1s as given in section 2.1.2 for the Euclidean case. The reality

structure (3.2) on U(so(2,3)) can now be written as

(=1)Pz*(=1)%, (3.6)

T

where Z° was defined in (1.73) for z € U(s0(2, 3)).
I want to give a brief explanation for the reality structure of SO(2,1). Let

b—c —a

b .
X = ( ¢ ot ) and I € SL(2,R). Then det(X) = —a® — b + ¢ is the
quadratic form on 2-dimensional AdS space, which is invariant under X — L' X L.

1 0
Therefore SL(2,R) = SO(2,1), at least locally. Now for K; = %(0 1 )7

011\ 0 —i
K, =1 Lo ) K= L OZ and Ky = K, £ iKa, then {Ky, K3} is a

2 i
su(2) Lie algebra. Furthermore K, = 1K, K, = 1K, are purely imaginary, and there-
fore L = exp(i(a. K, + au Ky + a3 K3)) € SL(2, R) for real parameters o, 3. Now in
a unitary representation of SL(2, IR) (which will be infinite-dimensional), Lt = L7,
lo) K;r,b’3 = K, 3. But this means that Kl = — K+, and Kg = K;.

3.1.2 Unitary Representations, Massless Particles and BRST

from a Group Theoretic Point of View

Let us briefly discuss the classical irreducible unitary representations of SO(2,3)
corresponding to elementary particles. Of course, they are all infinite-dimensional.

The most important unitary positive—energy irreducible representations are lowest—
weight representations V() with lowest weight A = Eof8s — 58, = (Ey, s) for any Eo
and s such that Fg > s + 1, and both integer or both half integer (i.e. A is integral,
see section 1.2)) [22]. Unitarity will in fact follow from the quantum case. Then s is
the spin of an elementary particle with rest energy Ey. For example, a "scalar field”
has s = 0 and Ep > 1, see figure 3.2; it can be realized in the space of functions f(y)
on AdS space.

These representations have only discrete weights, nevertheless they become the
usual irreps of the Poincare group in the limit R — oo, with appropriate rescaling.

There also exist remarkable unitary irreps with non-integral weights and all mul-
tiplicities equal to one, namely the so—called Dirac singletons "Di” for A = (1,1/2)
and "Rac” for A = (1/2,0) [14]. While it is not clear if they could be of importance
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a) b)

Figure 3.2: a) Scalar field and b) Spinor field. The vertical axis is energy, and the

horizontal axis is a component of angular momentum.

in a theory of elementary particles, we will pursue them nevertheless. (We will also
encounter some more representations with non-integral weights in the root of unity
case. For a more general (classical) discussion, see [22].)

The massless case should be defined as By = s + 1, cp. [22]. In this case, the
rest energy FEy is the smallest possible for a unitary representation of given spin.
For s > 1, it is qualitatively different from the massive case with the same s: the
lowest—weight representations, which are irreducible in the massive cases, develop an
invariant subspace of "pure gauge” states with lowest weight (Fo + 1,8 — 1). The
representations however do not split into the direct sum of "pure gauges” plus the
rest, i.e. they are not completely reducible. This means that there is no complete
covariant gauge fixing, and to get rid of them and obtain a unitarizable, irreducible
representation as required in a quantum theory, one has to factor them out. They
are always null as we will see.

This corresponds precisely to the classical phenomenon in gauge theories, which
ensures that the massless photon, graviton etc. have only their appropriate number
of degrees of freedom. In general, the concept of mass in Anti-de Sitter space is not
as clear as in flat space. Also notice that while "at rest” there are actually still 25 +1

states, the representation is nevertheless reduced by one irrep of spin s — 1.
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a) b)
Figure 3.3: a) Photon and b) Graviton, with their ”pure gauge” subspaces.

The massless representations for spin 1 (”vector field”, "photon”) and spin 2
("graviton”) are shown in figure 3.3, with their pure gauge subspaces. There are
arrows (indicating the group action) into the subspace, but not out of it.

To understand the connection with the usual formalism, let us consider the spin
1 case in more detail. Spin one particles are usually described by one—forms, i.e. |
A(y) = ¥ A¥(y)dy* in the natural embedding of AdS space, where ”automatically”
S g:;y°dy’ = 0. From a group-theoretic point of view, it would be more natural
(and it is in fact unavoidable on q~AdS space) to consider unconstrained one-forms
A =Y A'(z)dz, i.e. including the "radial” component, where z* are the coordinates
of the underlying 5-dimensional flat space. Such a general one—form is an element
of (5, V(Es,0) ® V5 and vice versa, where (@£, V(E,,0)) is a space of functions on AdS
space spa,nned by the (unitary) scalar fields Vg, o), and V; is the 5-dimensional vector
representation.

It is easy to see [22] that as representations,
ViEo0) ® Vs = Vige 1) & ViE,41,0) © ViEs-1,0) (3.7)

see figure 3.4 . V(g, 1) is a vector field, V{g,41,0) is the space of "radial” one - forms
AR(y)dR which is usually not considered in the flat case, and Vig,—1,0) is what is
usually called "longitudinal” modes, which can be killed by the constraint dxA(y) = 0
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Figure 3.4: One-forms from a group theoretic point of view: a) massive and b)

massless case, with BRST operator Q

("Lorentz gauge”) where *A(y) is the Hodge dual of A(y) (in 4 dimensions; nctice
that d * (V{g,,1)) = 0, since d * A is a scalar). In fact, the V{g,_10) part has to be
discarded, since it would lead to negative norm states upon canonical quantization.
In the massless case Eo = 2, V{g,,1) has a null subspace of pure gauges (consisting
of fields A(y) = dA(y)) which is isomorphic to Vg, +1,0), and must be factored out.
The essential and nontrivial point in a gauge theory is to show that the ”pure gauge”
subspaces do indeed decouple, so that they can consistently be factored out. Gen-
erally in QFT, this is best done using a BRST operator @), which has the following

characteristic properties:
1) The épace of pure gauges is the image of @ (at ghost number 0)
2) @ commutes with the S - matrix, the action, etc.
3) Q*=0

Then the physical Hilbert space can then be defined as the cohomology of ¢ at ghost

number 0, i.e.

Honys = {Q = 0}/ 1m(@) lgrseo, (3.8)




where Im(Q)) is the image of @, and 2) guarantees that this is consistent, i.e. SQ(...)
= (...). In the standard formulation for photons, {Q = 0} also implies the constraint
d* A = 0 (on the Hilbert space at ghost number 0), but this could as well be imposed
by hand.

Now notice that in the AdS case (3.7), the radial components of a one—form and
the subspace of pure gauges are isomorphic, and it is tempting to define an intertwiner
@ from the former to the latter. On Vg, 1) and V{g,-1,0) in (3.7), define @) to be 0.
Then @ acting on A indeed satisfies all the properties 1) to 3) of a BRST operator,
and the radial component of A plays the role of a ghost; it is indeed a scalar, and
anticommuting as a one - form.

Notice that we have only one ghost as opposed to 2 in the usual formulation, and
accordingly {@ = 0} does not constrain the longitudinal modes to vanish (this has
to be imposed in addition). So this () does not correspond precisely to the standard
BRST operator in an abelian gauge theory!. Nevertheless we will take the point of
view that the above properties 1) to 3) are the characteristic ones, and call our @ a
BRST operator as well. Actually, we will relax the requirement Q? = 0 in the most
general setting (see theorem 4.1.2), but it will hold on the sectors of representations
relevant to elementary particles.

Thus a BRST operator provides a way to define theories of massless elementary
particles, i.e. massless unitary irreps. I consider this to be the essential feature of
a (abelian) "gauge theory”, and not some kind of ”local gauge invariance” which is
unphysical anyway.

Let us try to see if and how all this works in the g—deformed case.

3.2 The Quantum Anti—de Sitter Group at Roots
of Unity

The quantum Anti-de Sitter group is simply S0,(2,3) = U,(s0(2,3)) as explained
in section 1.1 for |¢| = 1, with the same reality structure (3.2) as in the undeformed

case, 1.e.

T = (-1)"Fz(-1)E. (3.9)

This is consistent with all the properties (1.73) to (1.78), as explained in section 1.1.5.

We do not consider g € IR, because we will mainly be interested in the roots of unity

T wish to thank B. Morariu for discussions on this
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case. The root vectors in the quantum case are defined by the braid group action as

in section 3.1.1, now using the formulas (1.46). We obtain

— -1 —_ —_
€3 = ¢ exe; —ejey, €e_g=gqge_je_3—e€_ze_;, hz=h+h;

€4 = €2€3 — €3€3, €4 = €_3€.9 — €_2€_3, h4 = hl + 2h2, (310)

where hy = Hy,ho = JHa, exy = XE and eyy = ,/[%].Xzi. Up to a trivial automor-
phism, (3.10) agrees with the basis used in [36]. The reality structure is

€1 = —€_1, € = €2, 3= —€_3, 6—4 = —€_4. (311)

So {e42,h2} is 2 SUq;_(Q) algebra (but not coalgebra), and the other three {eig, hs}
are noncompact SO;3(2,1) algebras.

Now we can study q —deformed positive energy representations such as vector
fields. As pointed out before, the representation theory is completely analogous to the
classical case if ¢ is not a root of unity, at least for finite—dimensional representations.

In our case as well, it is easy to see that
ViE.,00 ® Vs = Vigo1) @ ViEy+1.0) © ViE,-1.0) (3.12)

as before for Ey > 2, and the representation spaces are the same as classically. Then
everything is as in section 3.1.2, however we will see below that none of these repre-
sentations is unitary unless ¢ is a root of unity.

In the following sections, we will show that for suitable roots of unity, there are
unitary representations of SO,4(2, 3) corresponding to all the classical ones mentioned
above [56]. They are all finite-~dimensional, and obtained from ”compact” represen-
tations by a simple shift in energy. Moreover a BRST operator () will arise naturally,

for any spin. We start with the 2-dimensional case, which is technically simpler.

3.2.1 Unitary Representations of SO,(2,1)

In this section, we will use some results of [30] on SU,(2), where 2J equals H in our
notation. SO4(2,1) is defined by

[H, X% = £2X*, [X,X"|=[H], (3.13)
AH) = HRQ1+1®H,

AX*) = X*@d"P 4+ e X,

S(X*) = —gX*, S(X")=-¢'X", S(H)=-H

o(XE) = (H)=0
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with the reality structure

H=H, X*t=-X" (3.14)

as explained in section 3.1.1. Comparing with (1.15), this corresponds to the nor-
malization d = (a,«)/2 = 1, but one can easily change to other normalizations by
rescaling ¢, as in section 1.1.2.

The irreps of U,(su(2)) at roots of unity are well — known [30}, and we list some

facts. As in section 1.2.3, for
qg= e2m‘n/m (3_15)

with positive relatively prime integers m,n let M = m if m is odd, and M = m/2 if

m is even. As explained in general, we can assume that
(XM =0 (3.16)

on all irreps (this excludes cyclic representations). Then all finite - dimensional irreps
are highest weight (h.w.) representations with dimension d < M. There are two

types of irreps:

o Vio={el; j=(d-1)+2Zz, m=jj—2,..,—(d—1)+2z} with dimension
d,forany 1 <d < M and z € Z, where HeJ, = mel,

o I} with dimension M and h.w. (M —1)+ 22, forz € C\{Z 4+ Zr,1 <r <
M —1}.

Note that in the second type, z € Z is allowed, in which case we will write Vi, = I}
for convenience. We will concentrate on the V;, — representations from now on.
Furthermore, the fusion rules at roots of unity state that V4. ® Vi .» decomposes
into @an Vo o420 @, I, ., where I? are the well - known reduciblé, but indecomposable
representations of dimension 2M, see figure 3.5 and [30].

Let us consider the invariant inner product (u,v) for u,v € V., as defined in
section 1.2.1, i.e. T is the adjoint of z € U. If (, ) is positive-definite, we have a

unitary representation.

Proposition 3.2.1 The representations V,, are unitarizable w.r.t SO4(2,1) if and

only if
(—1)**! sin(27nk/m) sin(2rn(d — k)/m) > 0 (3.17)

forallk=1,..,(d-1).
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For d — 1 < 2%, this holds precisely if z is odd. For d —1 > Z it holds for

2n 2n
isolated values of d only, i.e. if it holds for d, then it (generally) does not hold for

d+1,d+2,....

The representations Vg . are unitarizable w.r.t SUy(2) if z is even and d —1 < 3*.

Proof Let e{n be a basis of V;, with h.w. j. After a straightforward calculation,

invariance implies

((X)*- e, (X7)F - ) = (~1)F[RIGIG — 1L — b+ 1] (], ) (3.18)

for k =1,...,(d—1), where [n]! = [1][2]...[n]. Therefore we can have a positive definite
inner product (el,,€l) = 6, if and only if ax = (=1)F[E)![F][j = 1]..[ =k + 1] isa

positive number for all £ =1,...,(d — 1), in which case ej:_zk = (ap) V(X ")k - €L

Now ar = —[k][j — k + 1l]ar-1, and

~KH—k+1] = —[K)ld—k+ -2’%4 = —[k][d — K]e"™ (3.19)
= (=1)**'sin(2rnk/m)sin(2rn(d — m—————l-—-
= (1) sin(2nnkm)sin(2en(d - B)fm) L,

since z is an integer. Then the Proposition follows. The compact case is known [30].
O

In particular, all of them are finite—-dimensional, and clearly if ¢ is not a root of
unity, none of the representations are unitarizable.

We will be particularly interested in the case of (half)integer representations of
type Vi. and n = 1,m even, for reasons to be discussed below. Then d — 1 <
& = M always holds, and the V;, are unitarizable if and only if z is odd. These
representations are centered around Mz, with dimension < M.

Let us compare this with the classical case. For the Anti-de Sitter group SO(2,1),
H is nothing but the energy. At ¢ = 1, the unitary irreps of SO(2, 1) are lowest weight
representations with lowest weight 7 > 0 resp. highest weight representations with
highest weight j < 0. For any given such lowest resp. highest weight we can now
find a finite—dimensional unitary representation with the same lowest resp. highest
weight, provided M is large enough (we only consider (half)integer 7 here). These
are unitary representations which for low energies look like the classical one-particle
representations, but have an intrinsic high—energy cutoff if ¢ # 1, which goes to

infinity as ¢ — 1. The same will be true in the 4 —~dimensional case.
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Figure 3.5: Indecomposable representation I?

3.2.2 Tensor Product and Many—Particle Representations
of 50,(2,1)

So far we only considered what could be called one-particle representations. Many-
particle representations should be defined by some tensor product of 2 or more such
irreps, which should be unitary as well and agree with the classical case at least for
low energies.

Since U is a Hopf algebra, there is a natural notion of a tensor product of two
representations, given by the coproduct A. However, it is not unitary a priori. As
mentioned above, the tensor product of two irreps of type V; . is

d+d’'-M
Vi @V = ®aVanopw @ IE,. (3.20)

p=7,7+2,...

where r = 1 if d+d'— M is odd or else r = 2, and I? is a indecomposable representation
of dimenson 2M whose structure is shown in figure 3.5. The arrows indicate the rising
resp. lowering operators.

In the case of SU,(2), one defines a truncated tensor product ® in the context
of CFT by omitting all I? representations [40]. Then the remaining reps are unitary
w.r.t. SU,(2); see [40].

This is not the right thing to do for 5O,(2,1). Let n = 1 and m even, and consider
e.g. Var—11® Var—1,1. Both factors have lowest energy H = 2, and the tensor product
of the two corresponding classical representations is the sum of representations with
lowest weights 4,6,8,. ... In our case, these weights are in the I? representations, while
the Vgn ,» have H > M — oo and are not unitarizable. So we have to keep the IZ’s
and throw away the Vg ,»’s in (3.20). A priori however, the I?’s are not unitarizable,

either. To get a unitary tensor product, note that as a vector space,

E=V:018W S Vo241 (3.21)

59




where
W = VM—p-H,z @ VM—p-H,z (322)

as vector space. Now (X*)P~1 . ¢ is a lowest weight state where ¢; is the lowest
weight vector of I7, and similarly (X~)?~! - e} is a highest weight state with e, being
the highest weight vector of I (see figure 3.5). It is therefore consistent to consider
the submodule of I} generated by e;, and factor out its submodule generated by
(X*)P~1. ¢;; the result is an irreducible representation equivalent to V,_; .1 realized
on the left summand in (3.21). Similarly, one could consider the submodule of I?
generated by ey, factor out its submodule generated by (X~)?~! - ¢j, and obtain an
irreducible representation equivalent to V,_j ,11. In short, one can just "delete” W
in (3.21). These two V - type representations are unitarizable provided n =1 and m
is even, and one can either keep both (notice the similarity with band structures in
solid-state physics), or for simplicity keep the low—energy part only, in view of the
physical application we have in mind. We therefore define a truncated tensor product

as

Definition 3.2.2 Forn =1 and even m,
d+d'~M
Vi@V = @B Vi (3.23)
d=r,r+2,...

This can be stated as follows: Notice that any representation naturally decomposes
as a vector space into sums of Vj,’s, cp. (3.22); the definition of ® simply means that
only the smallest value of z in this decomposition is kept, which is the submodule
of irreps with lowest weights < Z2(z + 2’ — 1). With this in mind, it is obvious that
® is associative: both in (Vi®V;)®Vs and in V3®(Va®V3), the result is simply the
V’s with minimal 2z, which is the same space, because the ordinary tensor product is
associative and A is coassociative. This is in contrast with the "ordinary” truncated
tensor product & [40]. Of course, one could give a similar definition for negative-
energy representations.

This will be generalized to the 4—dimensional case, and in a later section, we will
give a conjecture on a elegant definition of a completely reducible tensor product
using a BRST operator.

Vi :®Vu »» is unitarizable if all the V ’s on the rhs of (3.23) are unitarizable. This
is certainly true if n = 1 and m is even. In all other cases, there are no terms on the
rhs of (3.23) if the factors on the lhs are unitarizable, since no I? —type representations

are generated (they are too large). This is the reason why we concentrate on this
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case, and furthermore on z = z’ = 1 which corresponds to low-energy representations.

Then © defines a two-particle Hilbert space with the correct classical limit. So
Proposition 3.2.3 & is associative, and V3@V 1 is unitarizable.

How the inner product can be induced from the single-particle Hilbert spaces will
be explained in section 4.2.

Before discussing S0O,(2,3), we will consider the compact case.

3.2.3 Unitary Representations of SO,(5)

Again ¢ = e2™"/™_ As explained in sections 1.2.1 and 1.2.3, the irreducible h.w.
representations L(A) with highest weight A can be obtained from the corresponding
Verma module M () by factoring out its maximal submodule. The latter is precisely
the null spaces w.r.t. its invariant inner product, and this is what we have to determine
first.

The following discussion until the paragraph before Definition 3.2.6 is technical
and may be skipped upon first reading. As in section 1.2, Q = Y Za; is the root
lattice, Q* =¥ Z,o;, and

A= if A—peQt. (3.24)
For n € Q, denote [13]"
Par(n) = {k€ Z}; 3 kifi=n)}. (3.25)

Let M(X), be the weight space with weight A — 5 in M()). Then its dimension is
given by |Par(n)|. If M()) contains a h.w. vector with weight o, then the multiplicity
of the weight space (M(X)/M (o)), is given by |Par(n)| — |Par(y + o — A)|, and so on.
The character of a representation V() with maximal weight A is the function on

weight space defined by
ch V(X)) =¢e* 3 dimV(A),e™, (3.26)

neQR+

where again V()), is the weight space of V()) at weight A — 7, and €*~"(n) =
eA=7#)  The characters of inequivalent highest weight irreps are linearly independent;
remember that they are all finite-dimensional at roots of unity. The sum makes sense
even for Verma modules and agrees with the classical result,

ch M(A) =¢e* 3 |Par(n)le™, (3.27)

neQt
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see [26]. ,

In general, the structure of Verma modules is complicated and it is not always
enough to know all highest weight vectors, cp. [26]. The proper technical tool to
describe the structure of a Verma module is its composition sertes, or Jordan-Holder
series. For any module M with a maximal weight, consider a sequence of nested
submodules ... C W, ¢ W; C W, = M such that Wy /Wy, is irreducible, and thus
Wi/Wisr = L(pi) for some yy; this is called a Jordan-Holder series (it is infinite
for roots of unity, but this is not a problem for the following arguments). It can be
constructed inductively by fixing a maximal submodule of the W, (e.g. by factoring
out inductively all but one highest weight submodules of Wy, the sum of which is a
possible Wk+1). There are many ways to construct a Jordan-Hoélder series, but for
all of them we obviously have ch M = Y ch (Wi/Wjy1) = > ch L(ux). Since the
characters of irreps are linearly independent, this decomposition of ch M is unique,
and so are the subquotients L{y;). We want to determine these L(pug).

The main tool to find them will be a remarkable formula by De Concini and Kac
for det(M(}),), the determinant of the invariant inner product matrix of M (), in
a P.B.W. basis, for arbitrary highest weight A. For |¢| = 1, their result is as follows
[13]:

Mtp—kB/2,8) _ q‘(>\+p—kﬁ/2,6)) {Par(n-ks)| 529

q(
dex((3) = TT 1T (14

PR
SR+ ke N 9P —q "

where R* denotes the positive roots, dg = (3, 8)/2, and k = ks really.
To get some insight, notice first of all that due to [Par(n—k/B3)| in the exponent, the
product is finite. Now for some positive root 3, let ks be the smallest integer such that

(AbpkpB/2.8) _ ~(A+p—kp6/2,0) , i
D(N)ie6 = ([kﬁ]dﬁq qdﬁ_g_dﬁ a = 0 (assuming such a kg exists) and

consider the weight space at weight A — kg8, i.e. ng = kgB. Then |Par(nz — kgB)| =1
and det(M(X),,) is zero, so there is a h.w. vector wg with weight A — 75 (assuming
that there is no other with weight > (A — ng)). It generates a submodule which is
again a Verma module (because I does not have zero divisors [13]), with dimension
|Par(n — ksB)| at weight A — 5. This is the origin of the exponent. However the
submodules generated by the wg, are not independent, i.e. they contain common h.w.
vectors, and there might be other h.w. vectors at different weights. Nevertheless, we
will see that all the highest weights u; of the composition series of M(A) are precisely
obtained in this way. This "’strong linkage principle” will be formulated carefully

below. The corresponding statement in the classical case is well-known [26]. While it
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is not a new insight for the quantum case either [12, 2], it seems that no explicit proof
applicable to our purpose has been given (the results in [2] apply only to certain odd
roots of unity, and we will see that in fact the even ones are most interesting here),
and we will provide one, adapting arguments in [26].

To make the structure more transparent, let Z/Vg be the set of positive integers k&
with [k]s = 0, and IV[ the positive integers & such that (A\+p—£3,8) € ZZ. Then

DM\ is=0&keN] or ke IN} (3.29)

The second condition is k = 2(’\(;”;? ) 4 o ( Bzﬁ)Z , which means that

A= kB = o5i()) (3.30)

where 03;(A) is the reflection of A by a plane perpendicular to 8 through —p+ fd—ﬁlﬁ,
for some integer [. For general [, og()\) ¢ A + @; but k should be an integer, so it is
natural to define the (modified) affine Weyl group W, of reflections in weight space to
be generated by those ¢, ;, which map A into A+Q, cp. section 1.2.3. For ¢ = e*™"/™
two such allowed reflection planes L §; will differ by multiples of 2 M(;8;; in the case
of 504(5), M2 3) = m and M(1,4 = m resp. m/2 if m is odd resp. even. Thus W,
is generated by all reflections by these planes. Alternatively, it is generated by the
usual Weyl group with a suitable reflection center, and translations by M(;3;, which
correspond to IV g

Now the strong linkage principle states the following:

Theorem 3.2.4 L(y) is a composition factor of the Verma module M(A) if and only
if p is strongly linked to A, i.e. if there is a descendant sequence of weights related
by the affine Weyl group as

A /\,' = 0’55,1'.()\) > /\kj...i = Gﬁk,lk()‘j--i) =pu (3.31)

Proof The main tool to show this is the formula (3.28). To make use of it, deform
Ato XN = A+ hpfor’ h € C, and g to ¢ = ge™, so that D(X);, 5 # 0. Consider
the inner product matrix (a, b)s for a,b being P.B.W. basis vectors of M(X’); here
h is treated as a formal variable, i.e. no complex conjugation is implied by the
"sesquilinear” form (this is customary in the mathematical literature). Then (a,b)
is hermitian if 2 € IR, and (3.28) holds for any h € C.

%on complex weights, see [13] below Prop. 1.9.
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Although the M()) strictly speaking depend on X, we can identify them for
different A via the P.B.W. basis. In this sense, the action of X is analytic in 4 since
it only depends on the commutation relations of the X g , cp. [13], and so is (a, b) .
According to a theorem ([29], chapter 2, theorem 1.10) for analytic matrices which are
normal for real h, its eigenvalues e, are analytic, and there exist analytic projectors
P,, on the eigenspaces V., which span the entire vectorspace (except possibly at
isolated points where some eigenvalues coincide; for h € IR however, the generic
eigenspaces are orthogonal and therefore remain independent even at such points).
These projectors provide an analytic basis of eigenvectors of (a,b)y near A\. We can

now define

Vi= @ Vi, (3.32)

eqoch®
i.e. the sum of the eigenspaces with eigenvalues e, with a zero of order k (precisely)
at h = 0. Of course, Vi L Vs for k #bk’. The V;, span the entire space, they have an

analytic basis as discussed, and have the following properties:

Lemma 3.2.5 1) (vg,v)x = o(h¥) for vi € Vi and any (analytic) v € M(X).

k
2) Xz-d:v;c = Zalvl + Zhlbzvk_z for vi € V; and a;,b; analytic. In particular at
>k =1
h =0,

M* = &,5:V, (3.33)

is tnvariant.

Proof

1) Decomposing v according to @;V;, only the (analytic) component in Vi con-
tributes in (vx,v), with a factor A* by the definition of Vi (o(h*) means at least
k factors of A).

2) Decompose XFv, = e GeaVe, With analytic coefficients a.,, corresponding to
the eigenvalue e,. For any v., appearing on the rhs, consider (v.,, XFvi) =
Geo(Veny Vey ) = € Qe o With ¢ # 0 at h = 0 (v., might not be normalized). But
the lhs is (XFve,,vr) = o(h*) as shown above. Therefore a., e, = o(h*), which

implies 2).
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In particular, the quotient M(A)/pn is irreducible and isomorphic to L()A). (The
sequence of submodules ... C M2 C M? C M(]) is similar to the Jantzen filtration
[26].)

By the definition of V, resp. M*, we have

ord(det(M(}),)) =Y _ dim M¥_, - (3.34)
k>1 ‘
where M}_, is the weight space of M* at weight A — 7, and ord(det(M(X),)) is the
order of the zero of det(M()),) as a function of A, i.e. the maximal power of A it
contains. Now from (3.28) and the above definition of I\lg R it follows
Ych M = & Y (O dimME_ e
k1 neQ+ k31

= & 3 oxjd(det(M(/\),,))e'”
neQ+

= Y. (> + > )et > |Par(n — nfB)le””

BERT neNI neNEF  neQt
= > (2 + > )hMA—-ng)
BeERT nENg 'n.EI\/’éz

(3.35)

where we used (3.27).

Now we can now prove (3.2.4) inductively. Both the left and the right side of
(3.35) can be decomposed into a sum of characters of highest weight irreps, according
to their Jordan-Holder series. These characters are linearly independent. Suppose
that L(A — 7n) is a composition factor of M(A). Then the corresponding character
is contained in the lhs of (3.35), since M(A)/pn is irreducible. Therefore it is also
contained in one of the ch M (A —nf) on the rhs. Therefore L(A —7) is a composition
factor of one of these M(A — nf3), and by the induction assumption we obtain that
# = A — 7 is strongly linked to A as in (3.31).

Conversely, assume that p satisfies (3.31). By the induction assumption, there
exists a n € IN] U INE such that L(g) is a subquotient of M (X — nB). Then (3.35)
shows that L(y) is a subquotient of M()). O

Obviously this applies to other quantum groups as well. In particular, we see
again that for ¢ = €>™/™ “all (X7 )M®w), are h.w. vectors, and factored out in an
irrep.

With these tools, we are now ready to study irreps and determine which ones are

unitarizable, i.e. for which the inner product is positive definite. As mentioned before,
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basic weights

Figure 3.6: Envelope of compact representations, basic weights and the lattice of w),

there exist remarkable nontrivial one-dimensional representations w), with weights
A=Y %k{ai for integers k;. By tensoring any representation with w),, one obtains
another representation with identical structure, but all weights shifted by Ag. We will
see below that by such a shift, representations which are unitarizable w.r.t. S 0,(2,3)
are in one-to—one correspondence with representations which are unitarizable w.r.t.

S0,(5). It is therefore enough to consider highest weights in the following domain:
Definition 3.2.6 A weight A = Eyf3 + 583 is called basic if

0< (N Bs) = Eo < g’; 0< (MG = (Bo+s) < ;l:; (3.36)

In particular, X > 0. It is compact if in addition it is integral (i.e. (X, ;) € Zd;),
§>20 and (A B1)>0. (3.37)
An irrep with compact h.w. will be called compact.

The region of basic weights is drawn in figure 3.6, together with the lattice of wy,’s.
The compact representations are centered around 0, and the (quantum) Weyl group
[33] acts on them, as classically (it is easy to see that the action of the quantum Weyl
group resp. braid groﬁp on the compact representations is well defined at roots of

unity as well).
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A representation with basic highest weight can be unitarizable w.rt. S0,(5)
(with conjugation _(——)‘C) only if all the SU(2)’s are unitarizable. For compact A, all
the SU,(2)’s are indeed unitarizable according to section 3.2.2, using M(3,3) = m and
M4y = m resp. m/2 if m is odd resp. even. This alone however is not enough to
show that they are unitarizable w.r.t. to the full group.

Although it may seem surprising, there are actually unitary representations with

nonintegral basic highest weight, namely for

m—1 m

A= Bs and )\=(2

1)8s + %/32 (3.38)

for n = 1 and m even. It follows from theorem (3.2.4) that there is a h.w. vector at
A — 2035 resp. A — 33, and all the multiplicities turn out to be one in the irreps. Thus
all SU,(2) modules in $3;, 8, direction have maximal length M(;) = m/2, from which
it follows that they are unitarizable. The structure is that of shifted Dirac singletons
which were already studied in [12], and we will come back to them.

It appears that all other irreps must have integral highest weight in order to be
unitarizable w.r.t. SO,(5). Furthermore, if the highest weight is not compact, some
of the SU,(2)’s will not be unitarizable. On the other hand, all irreps with compact

highest weight are indeed unitarizable:

Theorem 3.2.7 The structure of the irreps V(\) with compact highest weight X is

the same as classically except in the cases

a) A= (m/2—1—3)B3+3B; fors > 1 and % integer, where one additional highest
weight state at weight A — 4 appears and no others, and

b) A =2215; and A = (2 —1)Bs+36; forn = 1 and m odd, where one additional
highest weight state at weight A\ — 2833 resp. A — B3 appears and no others,

which are factored out in the irrep. They are unitarizable w.r.t. SO, (5) (with conju-
gation 6% ).
The irreps with nonintegral highest weights (3.38) as discussed above are unitariz-

able as well.

Proof The statements on the structure follow easily from theorem 3.2.4.
To show that these irreps are unitarizable, consider the compact representation
with highest weight A before factoring out the additional h.w. state, so that the space

is the same as classically. For ¢ = 1, they are known to be unitarizable, so the inner
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product is positive definite. Consider the eigenvalues of the inner product matrix of
(, )q as g goes from 1 to €*™™/™ along the unit circle. The only way an eigenvalue
could become negative is that it is zero for some ¢’ # ¢. This can only happen if
¢ is a root of unity, ¢ = €*™/™ with n’/m’ < n/m. But then the "non—classical”
reflection planes of W, are further away from the origin and are relevant only in
the case A = 2185 for n = 1 and m odd; but as pointed out above, no additional
eigenvector appears in this case for ¢’ # g¢.

Thus the eigenvalues might only become zero at ¢g. This happens precisely if a
new h.w. vector appears, i.e. in the cases listed. Since there is no null vector in the

remaining irrep, all its eigenvalues are positive by continuity. O

So far all results were stated for h.w. modules; of course the analogous statements
for lowest weight modules are true as well. All the V() in the above theorem have

lowest weight —A.

3.2.4 Unitary Representations of SO,(2, 3)

In this section, we will finally see that there are finite-dimensional, unitary positive-
energy irreps of S0,(2,3) corresponding to all the classical unitary representations
discussed in section 3.1.2, for suitable roots of unity ¢g. At low energies, their structure
is the same as classically including the appearance of "pure gauge” subspaces in the
massless case, for spin > 1. Again, these "pure gauge states” can be factored out to
obtain the physical, unitary representations. At high energies, there is an intrinsic
cutoff.

These lowest weight representations can be obtained from the compact ones by a

shift, as indicated in section 1.2.3: if V(A) is a compact h.w. representation, then
Vi =V()ew (3.39)

with w = wyy, Ao = 205 has lowest weight u = —A 4+ Ao = Eoffs — 582 = (Eo,s). It
is a positive—energy representation, i.e. the eigenvalues of hs are positive.

For 7- integer, V{,) corresponds precisely to the classical positive-energy represen-
tation with the same lowest weight. Again, E; is the rest energy and s the spin. For
hs < m/4n, the structure is the same as classically, see figure 3.7. The irreps with
nonintegral highest weights (3.38) correspond upon this shift to the Dirac singleton
representations "Rac” with lowest weight 4 = (1/2,0) and ”Di” with g = (1,1/2), as
discussed in [12].
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pure gauges IR NN\ I

lowest weight

hy~— —~

Figure 3.7: Physical representation with subspace of pure gauges (for 2> integer),

schematically. For hs < I, the structure is the same as for ¢ = 1.

If 2= is not integer, the weights of shifted compact representations are not integial.
For n = 1 and m odd, the irreps in b) of theorem (3.2.7) now correspond to the
singletons, again in argeement with [12]. We will see however that this case does not
lead to an interesting tensor product.

For 7% integer, the cases u = (s + 1,s) for s > 1 will be called "massless” for
the same reasons as in section 3.1.2. FEj is the smallest possible rest energy for a
unitarizable representation with given s (see below), and an additional lowest weight
state with By = Ey + 1 and ' = s — 1 appears as classically, which generates a
 null-subspace of "pure gauge” states. But now, all these representations are finite—
dimensional. |

This motivates the following

Definition 3.2.8 A lowest weight irrep V{,,) with lowest weight p = (Eq,s) = Eofs—
8By (resp. p itself) is called physical if it is unitarizable w.r.t. SO,(2,3) (with con-
Jugation as in (3.2) ff.).

Forn =1, V|, is called Di if p = (1,1/2) and Rac if p = (1/2,0).

For Z- integer, V|, is called massless if p = (s +1,s) for s € 1 Z and s > 1.

Theorem 3.2.9 A lowest weight irrep V() is physical precisely if the shifted irrep
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with lowest weight p — £+ B3 is unitarizable w.r.t. S504(5).

All Vi) where —(p — 203) is compact are physical, in particular the massless
irreps, as well as the singletons Di and Rac. For hy < I, they are obtained from
a (lowest weight) Verma module by factoring out the submodule with lowest weight
(Eo,—(s + 1)) only, except for the massless case, where an additional lowest weight
state with weight (Eq+1,s—1) appears, and for the Di resp. Rac, where an additional
lowest weight state with weight (Eo+ 1,3) resp. (Eo+ 2, s) appears. This is the same

as classically, see figure 3.7.

For the singletons, this was already shown in [12].
Proof As mentioned before, we can write every vector in such a representation
‘uniquely as a - w, where a belongs to a unitarizable irrep of SO,(5). Consider the
inner product

(a-w,b-w) = (a,bd), (3.40)

where (a, b) is the hermitian inner product on the compact (shifted) representation.

Then

(a'wv 61(b'LU)> (a'wv (61 ®qh1/2+q_h1/2®81)b®w)

¢"/?|.(a, e1d) = 1(a, e1d) (3.41)
using hil, = Z&. Similarly,

(e-1(a-w),b-w) = ((ec1®¢"*+47M?’Qe1)a®w,bQw)
= ¢/ (e_1a,b) = —i(e_qa,b) (3.42)

because (, ) is antilinar in the first argument and linear in the second. Therefore
(a-w,e1(b-w)) = —(e_1(a-w), b w). (3.43)

Similarly (a - w, es(b-w)) = {e—2(a-w),b-w). This shows that {, ) is hermitian w.r.t.
Z, and positive definite because ( , ) is positive definite by definition. Theorem 3.2.7

now completes the proof. O

As a consistency check, one can see again from section 3.2.1 that all the SO4(2,1)
resp. SUjz(2) subgroups are unitarizable in these representations, but this is not
- enough to show unita,ri.zability for the full group. Note that as m — oo for n = 1, one
obtains the classical one—particle representations for given s, Fy. We have therefore

also proved the unitarizability at ¢ = 1 for (half)integer spin, which appears to be
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non-trivial in itself [22]. Furthermore, all representations obtained from the above by
shifting Eo or s by a multiple of ™ are unitarizable as well. One obtains in weight

space a cell-like structure of representations which are unitarizable w.r.t. 50,(2,3)

resp. SO,(5).

3.2.5 Tensor Product and Many—Particle Representations
of SO,(2,3)

Finally we want to consider many—particle representations, i.e. find a tensor product
such that the tensor product of unitary representations is unitarizable, as in section
3.2.2. The idea is the same as there, the tensor product of 2 such representations will
be a direct sum of representations, and we only keep appropriate physical lowest—
weight subspaces. To make this more precise, consider two physical irreps V[, and
Vi) as in Definition (3.2.8). For a basis {ux} of physical lowest weight states in
Viw) ® V() consider the linear span < Uuy > of its lowest-weight submodules, and
let @, s be the quotient of it after factoring out all proper submodules of the Zu,.
Let {uxv} be a basis of lowest weight states of Q... Then Q, . = ®V» where
Viam are the corresponding (physical) irreducible lowest weight modules, i.e. @, is

completely reducible. Therefore the following definition makes sense:

Definition 3.2.10 In the above situation, let {ux+} be a basis of physical lowest-
weight states of Q) ,, and Viam be the corresponding physical lowest weight irreps.
Then define
Vw®Wu = D Vo (3.44)
All
Notice that if Z* is not integer, then the physical states have non-integral weights, and
the full tensor product of two physical irreps V{,;) ® V{,) does not contain any physical
lowest weights. Therefore V(u)®V(#/) is zero, and there seems to be no reasonnable
way to get around this.
Again as in section 3.2.2, one might also include a second "band” of high-energy

states. Now

Theorem 3.2.11 If all weights p, 1/, ... involved are integral, then & is associative,
and V)@V is unitarizable w.r.t. SO,(2,3).
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Proof First, notice that the A" are all integral and none of them gives rise to a
massless representation or a singleton. So by the strong linkage principle, none of the
Uwuy can contain a physical lowest-weight submodule. Also, lowest weight states for
generic g cannot disappear at roots of unity. Therefore @), ,» contains all the physical
lowest-weight states of the full tensor product. Furthermore, no physical lowest~
weight states are contained in (discarded states)® (any states). Then associativity
follows from associativity of the full ®, and the stucture is the same as classically for
energies hy < 7+ (observe that ® contains no massless representations, so classically
inequivalent physical representations cannot recombine into indecomposable ones).
a

In particular, none of the low-energy states have been discarded. Therefore our

27i/m wwith m even appears to be

definition is physically sensible, and the case of ¢ = ¢
most interesting physically.

The highest (”cosmological”) energies available in this "low—energy band” are of
order Ep.r = ﬁ in appropriate units, where R is the radius of AdS space, and
h = 1/m. This is by a factor ﬁ larger than the energy scale Ly = \7}:@ where the
geometry becomes noncommutative, see section 2.3.2. From a QFT point of view, the
latter should be the interesting scale. Thus the hierarchy from the curvature radius R
to the geometrical scale Ly is the same as between Lg and 1/ E,,,,. This hierarchy has
to be large in order to have a large number of physical states available. In any case,
this shows that such a theory (imaginary, so far) could in principle accomodate large
systems, with an interesting relation between ”cosmological” scales and a geometrical

scale (even though we do not advertise this as a cosmologically interesting model).

3.2.6 Massless Particles, Indecomposable Representations
and BRST for SO,(2,3)

Letn =1and m = 2M, i.e. g = ™M, ViE,,0) will again be called ”scalar field”, Vig, 1
"vector field”, and so on. V(g, ;) has a subspace of pure gauges in the "massless” case,
otherwise they are irreducible. They are unitarizable w.r.t. S0,(2,3) after factoring
out the pure gauge states.

Consider again vectorfields as one-forms. Instead of studying (3.12) at roots of
unity, we can study the tensor product of compact representations, using a shift. In
particular for A = —(Ey — M)fs;, consider V(X)) ® Vs at roots of unity. For Ey > 2,




Y ool N

Figure 3.8: V() ® V5 for the a) massive and b) massless case. The + in b) means sum

as vector spaces, but not as representations.

one can easily see that
VR VE=VOA+B8)eV(A-8:)8V(A+ ), (3.45)

which is the same as for generic ¢. This follows by analycity from the generic case
(this is why we consider the shifted representations), since the representations on the
rhs remain irreducible at ¢ = €™/ according to section 3.2.4 (notice e.g. that the
Drinfeld—casimir is different on these representations). '

In the (shifted) massless case Ey = 2 however, the generic highest weight represen-
tation V(A4 B;) has an invariant subspace as in Theorem 3.2.7. In fact, V(A+3;) and
V(A—pBs) (the "radial” part according to section 3.1.2) are combined in one reducible,
but indecomposable representation, similar as the representations I? encountered in
section 3.2.1; see figure 3.8 for the noncompact case. This kind of phenqgmenon at
roots of unity is well — known, cp. the general discussion in section 1.2.3. It will be
analyzed in general in the next chapter, but we can understand it more directly here.

As explained in 1.2.3, R is well-defined for ¢ = /™ if acting on irreps with
(XF)M&) = 0 such as the compact V()) or V{g, s). Therefore the invariant sesquilinear

form (1.89) on V(X)) ® Vs,

(v1 ® w1, v2 @ w2)r = (v1 @ w1, Rva @ we)g (3.46)
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is well-defined and nondegenerate for ¢ = ™™ (but not positive definite in general).

Now it is easy to see that for ¢ = ™™ and A = (M —2)83, V(X + B;) and
V(A — B3) on the rhs of (3.45) are combined into one indecomposable representation:
Let wxtg, resp. wy_p, be their h.w. vectors for generic ¢. We know from Theorem
3.2.7 that for ¢ = ™™ V(XA + ;) contains a descendant h.w. vector y_s, at weight
A — B3, which means that ¢)_g, is orthogonal to any descendant of wy4g,, for any
invariant sesquilinear form (while it could happen that this h.w. vector is zero in a
given representation, it can be seen easily that this is not the case here). But since
our ( , )z is nondegenerate, there must be some vector x ¢ V(X + f;) which is not

/M and wy-g, is orthogonal to

in /M
’

orthogonal to ¢)_g,. Since wyyp, is analytic at ¢ = e
V(A + B2) for |g| = 1, this is only possible if wy_g, — @r—p, € U wrig, as ¢ — ¢
i.e. the generically independent h.w. modules V(A — 83) and V(A + B;) become
dependent, so that one has to include different states such as x and its descendants
to span the tensor product at roots of unity. Furthermore, notice that x cannot be
a h.w. vector because (¢pr_g,,x)r # 0, so X¥x € V(A + ;), and the structure
is really indecomposable. This is the reason for the appearance of indecomposable

representations.

BRST operator. At first, this may look complicated. However, the main point
is that this is actually very nice from the BRST point of view: In fact, the BRST
operator ¢} which was defined "by hand” in the generic case is now an element of the
center of I, and maps x into @i_g,. This is exactly what one would like in QFT. It
is not so surprising, since X*yx € V(A + f2), so some Q ~ Y X~ X* should do the
job. We will show that

Q = (v*M — ™M) (3.47)

is indeed a BRST operator. One could take higher powers of v as well.
To see this, consider first the characteristic equation (1.87) of v in the represen-
tation V(A)® V5 for generic g¢:

Ed

(v — g% ) (v — g7 ) (v — g5 ) = 0. (3.48)

For compact representations, ¢y = (M, A+ p) € 3Z. As ¢ — e™/M the first two
factors above coincide, and (v*™ — 1)? contains all the factors in (3.48) separately

(and more). So by continuity it follows that (v*¥ — 1)? = 0, which implies

Q*=0 for g=¢™M (3.49)
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on V(A)® Vs, since v is invertible.

It remains to show that () maps some x into wy_g, for A = (M — 2)3;. We have
seen that as & = (g — /M) — 0, wy_g, becomes pr_g, € U wxyp,, 50 there is
a (fixed) v~ € U such that u~wyrys, = wir-g, + AX(h), where x(h) € V(A) @ V; is
analytic in . Applying Q) to that equation for generic ¢, we get

Q= = Qg (h) (3.50)

wich using (1.57) becomes

—4M(crys, — cr-p)wr-g; T o(h)
= Q(x(h))- (3.51)

—4M(ertp,u” Wrts, — Cr—pWa—p;) + 0(R)

Now wy—g, = @r—g, + o(h), and therefore for h = 0,

Px-p, = QX (3.52)

where x = ¢'x(0) and ¢ = —4M(crtp, — ca-p,) # 0 using Lemma 1.2.1. Thus 2)
‘and 3) of the properties of a BRST operator in section 3.1.2 hold for our @, and 1)
would certainly be satisfied in any covariant theory based on SO,(2,3). States on
which @) does not vanish will be called ”ghosts”. It is obvious that all this generalizes

to higher spins, and works at roots of unity only.




Chapter 4

Operator Algebra and BRST
Structure at Roots of Unity

In this chapter, we study the tensor product of irreducible representations for any
quanturn group at roots of unity using a BRST operator (), generalizing results of the
last section. @ allows us to define in a very simple way a new algebra of representations
of U similar as in QFT, which has a ”ghost—free” subalgebra with involution. For
the AdS group, this generalizes the physical many—particle Hilbert space introduced
above, and can be used to define correlators. Finally we give a conjecture on complete
reducibility, generalizing the standard truncated tensor product used in CFT [40].

The problem of a symmetrization postulate is also briefly discussed.

4.1 Indecomposable Representations and BRST

Operator

Let V; be compact irreps for generic ¢, i.e. with with dominant integral h.w. u,

which remain irreducible at the root of unity
go = eZvr'n/m. (41)

By a simple shift, this also covers e.g. the unitary representations of SO,(2,3), but
excludes the massless representations for the AdS case (they can be built by tensor

products). Then for generic g,

V==We.eVi=86V(X) (4.2)
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with irreps V()\;) because it is completely reducible. The space V is the same for any

g, and the representation of ¢/ depends analytically on
h=q—qo. (4.3)

The projectors Py, (1.88) may have a pole at A = 0, but no worse singularity. If ¢ is
a phase, consider the involution Z° = #(z*) as in (1.74).
Now for go = €?™*/™ with M = m if m is odd and M = m/2 if m is even, the

BRST operator @ is defined as in section 3.2.6,

Q = (vM — ™M) (4.4)

where d is an integer depending on the group, such that quMc* = 1 for any integral

weight A; notice that ¢ is a rational number.

Of course @ can be considered for any ¢. For |q| = 1, it satisfies

since 7° = v}, see (1.77).

If V is completely reducible at go, then () vanishes at 2 = 0 by construction, using
(1.57). In general, it follows that all the eigenvalues of @} are zero at A = 0. This
implies that Q% = 0 for large enough N (depending on the representation), however
@ will not be zero on the indecomposable representations. It is not clear whether
Q% = 0 in general, but this is not essential.

As in the previous section, our essential tools will be the sesquilinear forms (a, b)g
and (a,b)r on V defined in section 1.2.1, for a = 1 ®...Qa; € V1 ®...Q V; and
similarly b € V. Furthermore, define

(a,0) = (a,Q"b)r (4.6)

for £ € IN, which is invariant but degenerate. This will play an important role in

analyzing the structure of V. If ¢ is a phase, then (4.5) implies

QT = _Qa (47)

where T is the operator adjoint w.r.t. any of these invariant inner products.

Now define vectorspaces Gy C V as follows:

Gr={ar €V; Q"'lap=0at h=0} (4.8)
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(again, V does not depend on ¢, only the representation does). At A =0, QY =0
for sufficiently large N because of (1.87). Since @) is a Casimir, the Gj are invariant
under the action of i at A = 0, and Gy C G;... C G C ... C Gy = V for some N.
This is a "filtration”; it is well known that the tensor product at roots of unity has

the structure of a filtration [6]. We can now define the quotients
Gr = Gr/Gr-1 (4.9)
which are representations again (for A = 0), and as vectorspace,

V = 3.0k (4.10)

(but not as representation). The G; with £ > 0 will be called "ghosts”. Roughly
speaking, G essentially contains the a; with Q%ax # 0, but Q**'a; = 0. From the
definition, ) maps Gy, into Gx—1 at h = 0, and it is injective (i.e. it never vanishes).
In particular, Q* : G, — Gy is injective as well, and Q(Go) = 0. Therefore at
h =0, (a,b), =0 if either a or b € Gy_1, which means that ( , )x is a well-defined
sesquilinear form on G or more generally on V/Gr_1 £ @1>1Gi.

From now we will work with these spaces for ¢ = ¢o. Consider v acting on V in its
Jordan normal form, v = D + N where D is a diagonal matrix and N nilpotent, and
DN = ND. Since v is invertible, its (generalized) eigenvalues are nonzero, and D is
invertible. Then v™ = D" 4+nD" 1N 4+ N?(...) is the Jordan normal form of v", so v is
diagonalizable if and only if v” is. In particular for a € Gy, Qa = (vM —v=?M)q = 0,
therefore (v2*™ — 1)a = 0 since v is invertible. This means that a is an eigenvector

2dM

of v**™ and therefore a is contained in the sum of the proper eigenspaces of v, as we

have just seen. Conversely of course, any eigenvector of v will be annihilated by @,
since the eigenvalues and the characteristic equation of v are analytic. Therefore we

see again that @ is nilpotent on V. In summary,
Lemma 4.1.1 For h =0,

Q : Gy — Gr_1 is injective, (4.11)
and Gy is the sum of the proper eigenspaces of v.

Now one can define

Hi = G/ (QGk11)- (4.12)

generalizing (3.8); we do not require that Q% = 0. Since QG4 is invariant, Hj is a

representation of U as well. An element h; € H; can be represented by an element of
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Gx (not uniquely of course), which will still be denoted as hj. Using our sesquilinear

forms, one can choose them in a particular way:

Theorem 4.1.2 Consider V = V1 ®...Q V) as above for h = 0, with V = @Z‘;ng
as vector space (but not as representation). Then one can choose Hy C G such that

(, )& is nondegenerate on Hy, and
(Hk,Hk+1)k =0 fOT‘ { Z 1. (4.13)

Furthermore,
Gr=Hy®QHrn1 & ...0 Q% " Hy, (4.14)

as vector space. Therefore Hy = Hy, and since (Hy, Q(...))r =0, V/Gy_1 is the direct

sum of Hy and its orthogonal complement w.r.t (, )i, as vectorspace.

Notice that this is not trivial, since the ( , )z are not positive definite in general.
Furthermore, if @) # 0, then the representation is indecomposable.
Proof Let ko be the maximal £ such that Gy # 0. Then for any hy, € Hy, = Gu,,
Q™ # 0, and since (, )o = (, )= is nondegenerate, there exists some a such that
(a,Q*hyy)o = (@, kg, )k, # 0. Furthermore from the definition of ( , ) it follows that
(Hk,Gi)r = 0 if I < k. Therefore ( , )i, is nondegenerate on Hy,. This implies as
usual that any linear form on Hy, can be written as (hyg,, . )k, With a suitable hy, € Hy,,
i.e. there is a isomorphism from the dual space H} to Hy,.

In particular, any aq € Go defines a linear form on Hy, by hy, — (ao, hx,)o-

Therefore there is a unique element 7(ao) € Hy, which satisfies
(a0 — Q% *i(ao), Hy, ) = 0. (4.15)

Now define W c G, by
Wk = (id — Q1) Go; (4.16)

then by definition (WJ°, Hy )o = 0, and since ao = (ao — Q®i(ag)) + @*i(as) €
Wgo @ Q% Hy, for any ao € Go, we have

Go= Wk & Q" Hy, with (W, Hy,)o =0, (4.17)

and WX is determined uniquely by this requirement.

Now we can define W,f" C Gy, for any k to be the space which is mapped into Wg°
by Q*,

Wi = Q%)W (4.18)
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(as set). For any ax € Gy, decompose Q¥a; = wk + Q™A accordingly. Then
wi = QF(ar — Q% Fhy,), and we have a = wi* + QF %k for wi = aj — Q% k.

This means that
Gp = WE & QP " Hyy,  and (W, Hyy)e =0 (4.19)

using the definition of ( , )z. This decomposition is unique since QF : Gr — Gy is
injective. |
Now for Gi,_1, define
Hyyo1 = WL, ' (4.20)

Then obviously Hy,—1 = Hy,—1, and (Hgy—1, Hky )k,—1 = 0 using (4.19). Thus we have
shown (4.14) and (4.13) for k = ko — 1. Of course, (Hiy—-1,Q(---))ke-1 = 0.

Now we can repeat this construction: since (Hry—1, Hig Yko—1 = 0 and Q" 1hy 4 #
0 for any hg,—1 € Hp,-1, it follows that (, )i,—1 is nondegenerate on Hy,—;. Again,

this means that for every ag € WOICO there exists some Ay, 1 = t(aop) € Hy,-1 such that
(ao — QF~1i(ao), Hry—1)o = 0. Define W=t = (4d — Q% ~15)WH; then

Wh = W=l g Qb 1H,, 4 (4.21)
and (W(f"'l, Hiy—1)o = 0. Therefore
Go = W1 g Q' H, 1 & Q™ Hy,, (4.22)

and we already know (W(f""l, Hi)o = 0. This implies that for W,f°—1 = (Qk)"IWé°°"l,
W = Wt g QR 1"FH, _; and (W™, Hy,_1)r = 0. Finally with

Hiy—2 = W], (4.23)

(4.14) and (4.13) follows.. Repeating this argument, we arrive at the decomposition
as stated. O

4.1.1 A Conjecture on BRST and Complete Reducibility

There are many indications that the following extension of Theorem 4.1.2 holds, in

the same context:

Conjecture 4.1.3 1) Hy is completely reducible, i.e. it is the direct sum of irre-

ducible representations.




2) Hy defines an associative, completely reducible modified tensor product of irre-

ductble representations.

Furthermore, it appears that Gp is the sum of the analytic images of the projectors
P, at A =0, see Lemma 1.2.3, and GoN Q(...) is the subspace where they are linearly
dependent. This could be used to show 2) from 1).

In the context of the AdS group, 2) would generalize the definition of the tensor
product @ in sections 3.2.2 and 3.2.5, and include the "high—energy” bands as well
as irreps which are unitary w.r.t. the "compact” reality structure. This would also
generalize the standard truncated tensor product used in the context of CFT, and

provide a common framework for @ and &.

4.2 An Inner Product on G

In this section, we will define a hermitian inner product on Gy. To do this, we first
show how to find an element in & which implements /v (or many other functions of
v) analytically on Gy for ¢ = go.

As already noted, v becomes degenerate on different representations at h = 0,
because ¢~ does. For a weight A, define the A —group g» of V to be the set of highest

weights in the generic decomposition (4.2) of V' for which v is degenerate,
an={ o =6} (4.24)

Then define .
Iy, 0, (v = 4)
Hgy#su(q—CA - q_ck')’

where the products go over all possible A ~groups once. As opposed to Py, this is

Py, (4.25)

analytic at go. It is not a projector in V, but it is a projector for A = 0 in Gy,
since then v is diagonalizable on Gy as pointed out in Lemma 4.1.1; it is simply the

projection on the eigenspaces of v corresponding to different A —groups.
Now define

Vo =Y PLg, (4.26)
gx

which is an element of I and analytic at go, where X is some element of g,. It depends
on the choice of A € g,, which simply corresponds to choosing a different branch; pick

any of them. It is easy to see that on Gy,

(Vv)!=v for h=0, (4.27)
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and its inverse on Gy is given by
Vv Z Pq 7%, (4.28)
This follows because the P, are projectors on Gg as shown above.
Using this, we can finally show the following:

Proposition 4.2.1 Define

(a,b)g = cv(a, Vv - big, (4.29)

where ¢y = ¢z 4+ and ¢; is the quadratic Casimir on the V;. Then for a,b € Go,

(a,b)y is hermitian at b = 0, i.e. it is an inner product on Go for ¢ = qo.
Proof To see this, notice first that
Ay = (RiaRiz. ) (v® .. 0 ). (4.30)
This follows inductively by applying (A1) ®id) to (1.53):
| Ap®) = ((Agmn®id)Ra(Au ®id)Ri) " (Ao ®0)
(Ag-1) ®@id) R (Ry;, - @ DRz, 1) - (Ayr®v)

-1
= (Rl—2 (- 1)®1 ((A/(l 1)®1)R21)R12 z) (A(l_l)v@)v)
-1
= (( . (- 1)®1)(R(1 “1).21 ® DR Raa., l) (Bp-1v®v)

(Ri.21R12..0) " (Ri=1)..21Ri2..0-1) @ 1)(Ap-1yv ® v)
= (Ri.21Ri2.0) ' (v ® ... Qv) (4.31)

using (1.58), (1.59) and Lemma 1.1.1. Furthermore \/o = v/v=1. Then

%*

ovia,b)y = (&, Rz iByy(v/o)b)
= (Ruebp(vo)b,a)
= (Al(VO)R12.1b, a)
= (b Ri QIA(I)(\/_l)a)
(5
(5,

®

®

®

b, Riz. ./ Rz Riimv ™" - \/E'a)
(v7'®.®v )V a)r
= CV(bva’)H

®
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for A =0, using (1.61). O

The above definitions may seem a bit complicated at first. We will show below
that all this can be formulated in a very simple way, using an extension of &/ by a
universal element which implements a Weyl reflection. But before that, we show how
the above inner product defines a Hilbert space of physical many-body representations
of the Anti—de Sitter group, with the correct classical limit. Then the adjoint of an
operator acting on any component of a tensor product is determined by the positive
definite inner product, and is guaranteed to have the correct classical limit, since the
inner product has (for ¢ # 1, its adjoint will act on the entire tensor product, see
below). This finally settles any doubts whether the reality structure (1.74) is suitable
to describe physical many-body states.

4.2.1 Hilbert Space for the Quantum Anti—de Sitter group

It follows from Theorem 4.1.2 that (a, Q(...))a = 0 for a € G, i.e. the image of Q is
null with respect to this inner product. Therefore ( , )y induces an invariant inner
product on Hy as defined in section 4.1. Furthermore, ( , )y is nondegenerate on
H,. We want to show that it induces in fact a positive definite inner product on the

physical representations

V(u1)®“'®v(uz) = @ ‘/()‘k) (4.33)
Y

defined in section 3.2.5, where all V{,,y are massive (this is not an essential restriction).
The terms on the rhs are (quotients of ) analytic, generic representations and therefore
contained in (a quotient of) Gy. Thus the results of the last section apply, and the
eigenvalues of ( , )y on Gy are either positive or negative. It is clear that for low
energies, they will be positive as in the classical limit. We claim that they are positive
on all the V{,,) above, and outline a proof:

Consider the tensor product V of the infinite-dimensional (generic) lowest-weight
modules corresponding to the massive representations in (4.33). For fixed Ag, let G,
be the sum of the lowest-weight submodules of V' with lowest weight A;. According to
the strong linkage principle, none of them will contain physical lowest-weight vectors,
for any q on the arc from 1 to e*™/™. This implies that the physical lowest-weight
vectors of G, are linearly independent of the other G, for ¢ on the arc from 1 to

Zm/m and analytic in q.

g=e
Now we can define ( , )y as in (4.29) for states with weights Ay corresponding

to physical G, , where one has to use the value of the classical quadratic Casimir on
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G- R is well-defined for such states, as can be seen from (1.47) and the discussion

in section 1.2.3. Therefore (, )y is hermitian and analytic for ¢ on the arc from 1 to
e¥m/™_ For q = e¥™/™ it reduces precisely to our inner product on Go. Furthermore,
all states with such weights are contained in @G, .

Now ( , )u cannot become null on the physical lowest—weight states of Gy, , where
it is non——degenerate for ¢ on the arc from 1 to e*™/™ since the G, remain linearly
independent, so /v is analytic and invertible, and the other G, are orthogonal.

Therefore the eigenvalues of (, ) on G, are positive, as classically.

4.3 The Universal Weyl Element w

The proper mathematical tool to obtain this inner product and an involution is an
element of an extension of U by generators of the braid group w;, introduced in [33]
and [34]. The w; act on representations of & and implement the braid group action
(1.46) on U via Tiy(z) = wyzw; ! for z € U. All we need is the generator corresponding
to the longest element of the Weyl group, w. Acting on a highest weight irrep, w
maps the highest weight vector into the lowest weight vector of the contragredient

representation. It has the following important properties [33, 34]:

Alw) = RM'w@w=w®uwR;} (4.34)
w? = wve (4.35)

where ¢ is a Casimir with
Ale)=€e®e (4.36)

(for SL,(2) and SO,(2,3), € is +1 for integer ”spin” and —1 for half-integer "spin”,
see Appendix B). (4.34) justifies the name ”universal Weyl element”. One can also
find the antipode and counit of w. Furthermore, for the "real” quantum groups
(=those having only self-dual representations, i.e. all except A,, D, and Es), such
as SO4(5,C) and its real forms, the following holds [49]:

wrw™ ! = Sz = S 0z. (4.37)

We will only consider this "real” case. For "complex” groups, this gets corrected by
an automorphism of the Dynkin diagram. Actually, (4.37) and (4.35) have only been
proved explicitely for the SL,(2) case in the literature, therefore we will supply proofs

in Appendix B.
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Similarly, we define
W = (—1)F¢*w (4.38)

with the same properties except
wri~' = 057z = Shz. (4.39)

Here 8z = (—1)6(z)(—1)F implements the reality structure on ¢ according to section
1.1.5: in the case of S0O,(2,3), F is the energy operator, while the compact case
corresponds to £ = 0.

Denote the (left) action of € U on a representation V by
zov; = v (z), (4.40)

for a basis v; of V. We are mainly interested in (tensor products of) unitary repre-

sentations. The following will be very useful:

Lemma 4.3.1 If an irrep V()) is analytic and unitary at a phase q (for the compact
involution (1.73), say), then it has a basis which is orthogonal and normalized w.r.t.
both its symmetric bilinear form and its invariant inner product, i.e.

(8(z)) = =i(z) and (4.41)

() = wl(z)" = (=l(e)), (4.42)

in that basis.

Proof First, one can check that this holds for the fundamental representations V;
(i.e. the spinor representation for SO,(5)) [49]. We will show the general statement
inductively by taking tensor products with the fundamental representation. Suppose
it holds for 7} on V(u), and onsider V(x) ® V; = @V(X;). All the multiplicities are
known to be one in this case (this can be seen e.g. using the Racah-Speiser algorithm).
Then the Clebsch-Gordan coefficients K¥(q) defined by v = K¥v; @ v; € V(\;)
satisfy [49]

Ki(gRE = (=1ygzlen—aeEK2(g), (4.43)
Ki(g™h) = (=1)“Kii(q). (4.44)

Here K*}(q) is the Clebsch in the reversed tensor product, and (—1)* is the same as
classically (and just a convention unless the factors are identical). The first can be

seen similarly as in section 1.2.2. Furthermore, K(g) is real for ¢ € R.
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Using this, we can write an invariant inner product of 2 vectors in V(X;) as in

(4.29),

(), 00y = g ) K (g K5 () RE (v; @ v, 0 @ i)
= Ki(q)KX(q)8:6]
= &, (4.45)

choosing an orthogonal basis of V(;), which is unitarizable by assumption. But then

the invariant bilinear form of these vectors is

(009, 00N = K3 (g)K R (9)(vs, o) (v5,00)*)

m

s, - (4.46)

using (v, vx)¥) = 6% on the components, by the induction assumption. This means
that the v} are orthogonal not only w.r.t. the sesquilinear inner product, but also

the above bilinear form. O

In the case of SU,(2), this can easily be checked explicitely.

We will always use this basis from now on. By inserting (—1)E, one gets the same
statement for the shifted noncompact representations, with € replaced by 8. Moreover,
the result also holds for the irreducible quotients of analytic representations at roots
of unity of a given unitarity type, such as the physical many-particle representations
defined in section 3.2.2 and 3.2.5.

Now we can get a better understanding of w. First, it intertwines a unitary
representation with its contragredient (=dual) representation, defined by zba; =

a;7%(571z) (remember that we only consider "real” groups):

zo(Wroa;) = (mb)bai=zbl>(§5'"lx)[>az-
= W (a7 (657 x)) = @ > (a;75(S 7 z)) (4.47)
= wb> (.7:!;(11'). (4.48)

Other important properties are as follows. Define
. - lc z .
gi; = Ti(0)gE = (—1)7g¥ (4.49)

where c, is the classical quadratic Casimir of the representation, and (—1)7 is the
value of £. The last equality follows from (4.35), where g;;¢°' = 8. This is nothing

but the invariant tensor (again, for "real” groups):
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Proposition 4.3.2

mi(z)n (22)g" = e(z)g” (4.50)
giimi(z)wi(z2) = e(z)gu (4.51)
gi = ¢#ri((—=1)Fw) (4.52)

asR%g” = (B (4.53)

(4.53) and some more similar relations are contained in [49].
Proof (4.50) follows from

()] (z2)mf (@) = ] (zo)i(1d)
= w2 (@) (S 21))
= ] (z2)m (@)mh (S 1)
= 7 (225 an))m ()
= e(o)6ini (@), (454)
and similarly (4.50). (4.52) follows from the uniqueness of the invariant tensor (cp.
Lemma 2.2.2), noting that

(o) (z)m (- 1)Pw) = 7 (z2q™ )i (21)
= W,i(q—wzbas:zg)wi(xl)
= (¢ @) (BSzs)wi (1)
= (g7 f(Sz2)mi(21)

= n}((-1)Fw)sie(z) (4.55)

is indeed invariant, where we used (1.51). This shows (4.52) up to a constant, which

is one because

7r( yri(®) = wi(ve) and
w/((=1)Pw)rf((-1)Pw) = =F(ve), (4.56)

which is the same. Finally, (4.53) is obtained by taking representations of

(1@®)RAQe ) =(1Q0SHR =(180HR™ .




Furthermore, from (4.34) one immediately obtains (1.60), (1.61), as well as (4.30).

For |¢]| = 1, it is consistent to define

w

=~} (4.58)
and similarly for w. Correspondingly, we have
ri (@) = wl(w). (4.59)

This can be checked explicitely using the known formulas for w in terms of the w;

[33] and their action on a representation [25, 39].

4.4 An Algebra of Creation and Anihilation Op-

erators

In this section, we will show how to define an interesting algebra of creation and
anihilation operators, with involution. This allows us to work with states of different
particle numbers, and to write down correlators as in QFT. It is however not clear at
present how identical particles should be defined, so we only consider distinguishible
particles.

Denote the states of a physical representation Vi) of 50,(2,3)! by a;. We can
make V{,) into a & -module algebra F{) (see section 2.1.1) by defining either a;a; = 0,

or more somewhat more interestingly by

a;a; = gi;a®, a;a;ar =0 (4.60)

where a?

is a (scalar) variable, and g¢;; as in (4.49). We will use this algebra only
to to show how to define an involufion, and to write the inner product on Gy in a
elegant way. Notice that in the noncompact case, g;; 7 0 only if one of the "factors”
is a positive and one a negative energy representation (an antiparticle wavefunction,
i.e. shifted by —2M f; as explained in section 3.2.4). We are using the same letter
a;, because both positive and negative energy representations can be obtained as
quotients of one "big” self-dual representation, namely the Hy part of a tensor product
as in Theorem 4.1.2, which is the direct sum of a positive an a negative energy
representation. This is very nice from the QFT point of view, and one should keep

this in mind for the following.

1This works for other real groups as well.
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Given many left & -module algebras F®), F¢) . generated by a;,b;, ..., one can
define a combined (left) & —module algebra F using the braided tensor product [42].
As vector space, this is simply F = F*) @ F® ® ..., with commutation relations

ab; = (Ryv b} (R1 v a;)y (4.61)

for some v € C; similarly for more variables. This definition requires an (arbitrary)
"ordering” a > b > ... of the different algebras. It is consistent because of the standard
properties of R. '
Finally on the vector space U @ F, one can define a cross product algebra Ux F
via .
za; = (21> a;)z2, or equivalently zova; = z70;52,. (4.62)
This is an algebra, because ¥ is a Hopf algebra and F is a (left) & —-module algebra.
To make the connection with QFT more obvious, we define a ("Fock”) vacuum )

which reduces U x F to its ”vacuum-representation” U x F) by
fla,b,.)z) = e(z) f(a,b,...)). (4.63)
This is é tensor product of representation of ¢, and
zf(a,b,...)) = 21> fla,b,..)z2) = z > f(a,b,...)). (4.64)

In particular this contains the subspace Gy where v is diagonalizable, and we can

apply the results of sections 4.1 and 4.2.
Define
Q = Vo ! (4.65)

with Vo1 as in (4.28). Acting on G, this satisfies
VP =c (4.66)
at roots of unity, using (4.35) and S(v) = v. Furthermore from (4.58),
Q=01 (4.67)

if acting on Go.
Now at roots of unity, define H to be the algebra U x F with the additional relation
Q=0,1e.
H=UxF)/Q. (4.68)
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It is closely related to the H, representations of section 4.1, see also Conjecture 4.1.3.

This is very similar to the definition of the physical Hilbert space in QFT using the
BRST operator (3.8), formulated in terms of an algebra instead of representations,
which is essentially the same. Since @) vanishes on all generic representations, this
contains in particular the (semidirect product of ¢ with the) physical many-particle
states in the case of SO,(2,3), as well as the states of the usual truncated tensor
product in the context of CFT.

Using 2, we can essentially define an involution on H (resp. for G —type repre-
sentations of L/ X F) as follows: for z € U, it is simply the involution F corresponding

to the reality structure considered. If z is either Xz-i or H;, this can be written as
z = QS(z)Q7 . (4.69)
For a generator a; of F, we define
@ = Qa;Q71, (4.70)

and extend this as an antilinear antialgebra~homomorphism on H (resp. Ux F). It
is shown in Appendix A that this is consistent with the algebra H provided the a;
are unitary w.r.t. the reality structure on U, and with the braiding algebra (4.61) if
7 is a phase. It is also consistent with (4.60) provided a2 = (—1)’2a® where (—1)/= is
the value of € on a;; note that g}; = (—1)/*g;;, using (4.59). Again in the noncompact
case, §) can act on a; only if it contains both positive and negative energy states, such
as Hy in Theorem 4.1.2. Now

T = v\/v‘12ea,~v“1\/v‘1—2e’l (4.71)
— ai(_l)fa. (4.72)

in H (resp. on Gy .—type representations), using (4.36) resp. (4.66). This is as good

as an involution, and the main result of this section. In fact, one could define instead

@; = €Qa;027, which really is an involution; we choose not to do this here. Again,

' the operator adjoint can be calculated once there is a positive definite inner product.
We want to indicate how this could be achieved:

Let F be as above for braided copies a;, b;,... of the algebra (4.60). Define an

evaluation of H
(2f(a,b,..)) = e(z)(f(asb,..)) (4.73)
by first collecting the generators of the same algebra using the braiding relations, and

defining (a?) = (—1)2g, with g, € IR, and (a;) = 0; similarly for the other variables.
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This is independent of ordering if ¥ = £1, because a? is then central. It satisfies

(@f(a,b,..)) = (fla,b,..)z) = e(){f(a,b,...)) (4.74)
(fla,b,.))" = (f(a,b, . ))(-1). (4.75)

on H where f = f, + f, + ..., using a? = a?(=1)fs.
One can now write states of Ho in the form f) = fie'—q;b;,...) and g) =
g'*a; b;,...) where a;,, b;,, ...are positive-energy (physical) states, and define an

inner product as follows:
(f,9) = (f9)- (4.76)

This is hermitian, invariant

(zo fo9)=(f,Z>9) ' (4.77)

and it is shown in Appendix A that it is in fact the same as the inner product defined
in (4.29),

(a,-bj..., akbl...) = (a,-bj...akbz...) = (az- ® bj ..., ar @b ® )H, (4.78)

if the normalization on the rhs is chosen as (ai,a;) = o6 (remember that we work

in an orthogonal basis). Invariance can be seen easily:

(e>f,9) = ((@:F522)g) = (Sz:(F)7ag) = (Fz9)

= (f,zvg), (4.79)

using (4.74). Hermiticity follows from (4.75). Positivity was discussed in section 4.2.1
for the case of the Anti-de Sitter group.

One could formulate all this without using w explicitely, in the form @; = (; »
a;)> which can be written in terms of the universal R. Needless to say, this would
be much more complicated. However it helps to understand the main point of this
definition, namely the R involved which "corrects” the flipping of the tensor product
in the reality structure (1.74). In this form, a somewhat similar-looking conjugation

was introduced in [40].

4.4.1 On Quantum Fields and Lagrangians

In this section, we want to show how the above formalism could find application

in a QFT. This can only be very vague at present, because an important piece is
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still missing - the implementation of a symmetrization postulate, in order to define
identical particles. We can nevertheles write down a few generic formulas in an ad-hoc
way.

Consider a (large) number of braided copies of the algebra (4.60) with generators
a;\’(n), for n =1,2,..., N and A going through all possible highest weights of physical
(unitary) representations of a given spin; remember that there exist only finitely many
at roots of unity.

Then consider the following object:

V) = == a0 (4.80)

(™) realized as functions (or forms, ...)

Here fi’(n)(y) is the dual representation of a;’
on quantum AdS space, which is a right Y —module algebra in the dual picture of
chapter 2. This works as in Theorem 4.1.2, where the factors V; are the 5-dimensional
representations ¥°. Then the unitary representations are the quotients Hy, in the
space of functions on quantum AdS space. By this construction, ¥(y) contains both
positive and negative energy representations as discussed earlier, so that 2 can act

on it. Thus we can assume that

UDZG )f}\(n) y) = ZG n)W]’\ f/\(n)(y Z Mn) f)\(n) y)au).  (4.81)

for u € U. ¥(y) behaves very much like an off-shell quantum field. Similarly, we can
consider ¥(y;), ¥(yz),... with (braided) copies y; of quantum AdS space. Then for

example,

(P(y1)W(y2)) = £ 92955 f3,m) (¥1).S3 () (2) + 0(R) (4.82)
A

becomes a correlator in the classical limit, depending on the choice of the gy = ga»

for the representations involved. In particular, gy = E;i—ﬂ:; corresponds to a Green’s

function, where O, is the (quantum) quadratic Casimir (see [18]). More generally,

(Y(y1).--U(yr)) (4.83)

will reproduce the sum of Wick contractions at ¢ = 1 for N — oo.

Using this, one can write down e.g. an "interaction Lagrangian”
S= / U(y)...W(y), (4.84)

where the integral over quantum AdS space is defined in section 2.3.1 (in different

notation), and many similar terms. This is invariant under $0,(2,3), i.e. 2§ = Sz
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in Ux F for = € U, using the invariance of the integral. The only thing we want do
here is to show that § is in fact hermitian, with the involution defined in the previous

section:

[y 2w = [ ¥ 1), (4.85)
If one can find an algebra replacing (4.60) such that the inner product (4.76) is positive
definite, this implies that ¢° is a unitary operator on Hy (in the present version, this
is not the case because of the additional generator a?).

A1) (@)
J

7 3

To see (4.85), let us simplify the notation first by writing a;, b;, cx for a

and ), respectively, and to be specific consider

§= [ wawwrlupty) (4.86)
where ¥,(y) = ¥; a:.f*(y), and similarly (), ¥.(y). We claim that

§= [ 4swav) (4.87)

It is clear that this implies (4.85). We consider only scalar fields here for simplicity.
To see (4.87), first observe that

fiy) =+f(y) (4.88)
using the (auxiliary) antilinear involution on quantum AdS space defined in section

2.3.1. This follows from ?b = —y* and their algebra, (4.43) and (4.44). Together with
(2.88), this implies

/y ba(W) (1) 0ely) = 3 Qerbjai ! / F@)F ) F)
= / () s (1) () (4.89)

as claimed, since this is a scalar and it therefore commutes with &/ and 2.

One could now go ahead and define "ad hoc” correlators such as (¥(y;)e* ¥(y,)),
which in fact can be expressed as sum of contractions as seen above, similar to the
classical Wick expansion. Moreover for ¢ # 1, these contractions can be interpreted
naturally as generalized links, with interaction vertices being Clebsch—-Gordan coeffi-
cients defined by the integral, and crossings given by the R ~matrices in the particular
representations. All these diagrams would be finite, since there exist only finitely
many “physical” representations, which are all finite-dimensional. Moreover, these
correlators are in fact symmetric in the classical limit, since the ¥(y;) commute for
g = 1. Nevertheless, this is not really satisfactory, since an explicit symmetrization
postulate is missing, as well as a dynamical principle determining ”on-shell” states.

These two open problems are probably related.
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Symmetrization. Let us briefly discuss the problem of symmetrization and iden-
tical particles. For generic g, this has been studied in [21]. At roots of unity, the
situation can be expected to be somewhat different.

In principle, one can define projectors (PS’A)Z which act on the tensor prod-
uct of 2 identical representations V(u), and project out the totally symmetric resp.
antisymmetric representations. This can be done using the fact that the R -matrix
discussed in section 1.2.2 has eigenvalues :I:q%(”’z"“) with the same sign as classically,
and one ”just” has to correct the ¢3(x=2%) _factor. The problem is that this may not
give an interesting associative algebra of "totally (anti)symmetric” representations
for more than 2 particles, it is probably too restrictive in general. One may hope that
something more favorable happens at roots of unity on the space H,.

In this context, we can define an interesting algebra:
a;8@; = £a;a; (4.90)

with the bar as in (4.70), taking advantage of U ix F resp. H. It is easy to check that
this is compatible with the cross—product and our "involution” on H. Acting on the
Fock—vacuum }, this in fact defines totally symmetric resp. antisymmetric 2-particle
representations, with a suitable definition of 1/v. Again, it is not clear if this algebra
is interesting for our purpose for more than 2 particles. It would be very desirable to

get a better understanding of these issues.

4.4.2 Nonabelian Gauge Fields from Quantum AdS Space

In section 3.2.6, we have found a BRST operator for spin one particles, corresponding
to abelian gauge fields. Needless to say that one would also like to consider the
nonabelian case. Nonabelian gauge fields are usually described by connections on
principal fiber bundles. Therefore one might try to do the same in the q—deformed
'~ case, see e.g. [4, 46]. However there is a much simpler, extremely fascinating way to
obtain such objects on quantum AdS space (and certain other quantum spaces). It
is in fact much simpler than classically. We will only give a rough outline here.
Consider the calculus of differential forms on q—AdS space, which is the same
as on quantum Euclidean space, except for the reality structure. As in 2.2.4, the

following observation by Bruno Zumino [65] will be crucial: there exists a "radial”

one-form w = Fﬁ’—;—ﬁ%d(rz) which generates the calculus on quantum Euclidean
space, sphere resp. on q-AdS space by
W, fle = (VT - Va)df = ¢df. (491)
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Furthermore on the sphere, it is not possible for ¢ # 1 to work with "tangential” one-
forms only, due to the commutation relations (2.15). Therefore w must be included
in the calculus.

Now consider a matrix of one—forms € (this has nothing to do with the @ in

section 4.4), and write it in the following way:
2, = wé: + ¢B:. (4.92)

Physically, we can imagine that this comes from some spontaneous symmetry breaking
in the radial fields, which are scalars. One can decompose the one-forms B;: into
tangential and radial components, e.g. using a Hodge-star operator * which can be

defined in a straightforward way. Then

0 = wl+&(®+A4), ie
R = wb+E(Pw + Al dy*) (4.93)

J

with the condition w A *(A% ,dy*) = 0, changing notation for the coordinates on AdS
space. Furthermore, we can imagine a reality condition like (2%)f = —Q} (without
going into details here), so that Q) corresponds to some Lie algebra, and (4.92)
corresponds to tr¢ = 0.

Now consider (Q2)§, which after a simple calculation using (4.91) becomes

0 = ¢(dB+ BB), ie.
0.0F = ¢4(dB; + B.B). (4.94)

Decomposing it into radial and tangential components, we get

O = (dA+ AA+d® + A+ AD)
= E(dA+ AA+ (d¢ +[A, ¢])w + o(h)) (4.95)

2nih

where g = ¢ as usual. Thus

1 2 2
S=& / (0 % 2) (4.96)

gives precisely the Yang-Mills action for a gauge field A coupled to a scalar in the
adjoint, like a Higgs field in some GUT models! We do not have to define curvature
by hand. This also contains massless BRST ghosts in a nonstandard form, according

to section 3.2.6. Moreover, if ) transforms like

Qy) — v () (v), (4.97)
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then the components of {2 transform like

A — ~y'Ay+~7'dy + o(k), and
¢ — ¢y +o(h), (4.98)

which are precisely the gauge transformations in a Yang-Mills Theory. Similarly, any
trace of polynomials in 2 gives a gauge invariant Lagrangian in the limit 2 — 0.
How exactly this fits togeﬁher with the BRST operator etc. remains to be seen.
At the very least, this shows that there is no need to define objects like connections
on principal bundles for ¢ # 1, they arise naturally form the mathematical structure
considered. Without elaborating this any further here, we see once again that ¢ -
deformation is more than just a ” deformafion”, it allows to do things which cannot

be done for ¢ = 1, and which look very interesting from the point of view of QFT.
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Chapter 5
Conclusion

We have shown that many of the essential ingredients of quantum field theories, or
more properly quantum theories of elementary particles, have their counterparts in
an approach where the classical Poincare group and Minkowski-space are replaced
by the quantum Anti-de Sitter group SO,(2,3) and a corresponding AdS space, with
g a suitable root of unity. First of all, it turned out that there are indeed unitary
representations which may describe elementary particles of any spin, with the same
low—energy structure as classically. We have defined many—particle representations,
which are unitary as well; this is not trivial. In the massless case, it turns out that
there is a very natural way to define a Hilbert space using a BRST operator (), which
is an element of the center of U,(s0(2,3)); in the classical case, it has to be defined
by hand. Moreover, the same @) works for any spin, and it seems that it can be
used to define the many-particle Hilbert space in a similar way. We have also seen
how the structure of a nonabelian gauge theory can arise naturally from quantum
Anti-de Sitter space; again in the classical case, its description using connections on
fiber bundles is quite ad-hoc.

Moreover, everything is manifestly finite in the quantum case. This should not
be considered a technicality; it seems that if there is a complete theory of elemen-
tary particles; it should be possible to formulate it in a completely well-defined way,
without any vague "remedies” under the name of regularization; it should be regular
by itself. While it may be too ambitious to attempt finding such a theory, any finite
version of a 4—-dimensional quantum field theory would be very interesting in itself.

Apart from all these mathematical features, one may still wonder if it makes
any sense at all to assume that the spacetime we see looking out of the window is

noncommutative, i.e. not a classical manifold. I think that this has been answered as
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well, by pointing out that if ¢ = '™ is very close to 1 (which it has to be, otherwise
there is an obviously clash with observation), the coordinate algebra of quantum
Anti-de Sitter space is classical up to corrections involving a length scale L, = VR,
where R is the curvature radius of AdS space. Thus one should expect it to look
like a classical manifold on length scales bigger than Ly, just like quantum mechanics
behaves classically on scales large compared to k. This shows that » must indeed be
a very small number.

All this can be said in favour of the approach chosen. Nevertheless, we have not
yet succeeded in formulating.a theory of elementary particles, because we do not
know at this time how to define a Hilbert space of identical particles. There may be
a satisfactory solution of this problem in the form of a suitable algebra of creation
and anihilation operators (in which case we have presented an nice way to define an
involution, which is usually a difficult part in the noncommutative case), or perhaps
in a completely unexpected way, — or it might be that this is the downfall of the
approach. Of course one should hope for the first alternatives, and in view of all the

promising features found so far, I cannot believe that this is the end of the story.




Appendix A

Consistency of Involution, Inner
Product

Compatibility of (4.70) with cross product. Applying (.) to za; = 23> a;z2 in
H, we get
2,077 = (Tarl(z)*
= Qa7 7}(FT). (A.1)

. Multiplying from the left with 2~ and from the right with Q, this becomes
a: 07170 = 07Y(Z)1Qarr ((Z)2) (A.2)

where (Z), 2 is the Sweedler notation for the coproduct, which becomes using (4.39)

1

60577 = (057 (@)1 h > (S (Zh)27i((Z)2)
= (8S7(T)12) > @S (@) ((F)2)
= @i (ST (@) ((2)2)05 7 (@)
= akﬂ'k((x)zs (37)12)5 1(33)11
= akﬂ'k(e(xZ))HS Y(@h
= ,0571(%) (A.3)

as desired, using Lemma 4.3.1 and standard properties of Hopf algebras.
Compatibility of (4.70) with braiding. Applying (.) to
ab; =v(Rz2 > b;)(Rq1 v a;), we get

Qb;a:07! = y*Qapr (R bir(Ry) Q7Y (A.4)
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or

bja; = 7 ary(Ra)biri(Ry)
v armi (R )bl (RTY)
v arf (R (RY), (A.5)

using (0 ® )R = R, and similarly for  in the last line. Multiplying with 7(R,)r{(R.),

we get

b (Ry)aimi(Ra) = v asbs, (A.6)
which is just the braiding algebra provided v* = y~*

Equality of the inner products (4.78) Using A(Q) = A(vVo~1)R™1(% ®@ &) and
(f(a)xz = ((S7'z) > f(a) we can write the lhs of (4.78) explicitely as
(a:bj.axh..) = (Vo OWRIW) o (o.bjas) (Vo) Ry Wow ™ Voagb;...)
(Vo1 RTM®) o (-..bjas) (Vo) R7 Voarh...)
(S~ ((\/—:7)27%21\/_ Y VoW RIEG) o (...bjai)axb...)
(SYR;Vo)e(VoYRT @) b (...bjas)akh;...)
(VoR2S*R10) & (...bja:)axh...)
(\/_q_z”v'lw) > (...bja;)arb...)
(Vo(=1)Fv 7 w) > (..bja;)arbr...)
(vw) o (...bja)Vo(—=1)Farh...) (A.T)
using (1.29) ff., (1.54), (4.38) and ((z > a)b) = (a(Sz)b), e(v/v=1) = 1, which is easy
to see. In particular, with (4.52) we can verify that
(ai,0;) = (@a;) = ((v7wea;)vo(=1)Fa;)

= gag7*(=1)" (=1)gijmf (w)

= gog*(~1)FHeml((~1)Pw)ml(w)

= .6} (A.8)

<

(
(
(
{
=
(
(
(

is a (positive definite) inner product on the unitary representations a;; it had to come
out this way, since we always use the orthogonal basis of Lemma 4.3.1.
Using the first line of (A.8) and Apy(v7'w) = (vw®...@ v 'w)R(,), we can
continue (A.7) as
rhs = {(..(viw)e bswj(Rn_l)(v'lw) > atwf(Rn)\/;(—l)Eakbg...)
= q%(ca+cb+"')ﬂ'§(Rn)ﬂ';-(Rn_l)...(at ® bs & ceny \/—'(; > (ak &® b] &® ))@ (Ag)
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where Ri2.. are the components of R(n) assuming there are n factors, and using
A(-1)E =(-1)F®...®(~1)f. Now notice that (A.8) and (1.63) imply

TH(R)TH(R1) (@ @ bs, 0k @ b)g = gags7f(Ra)wi(Ra)
= (@ ®bj,a: ®b,)gmi(R1)7}(R2)
= (a,'@bj,ak@bz)n (AlO)

and similarly for several factors, so (A.9) is nothing but

rhs = ev(a;®b;@...,vv> (@ @b ®..))r
= (ai®bj®....,ak®b,®...)y (A.ll)

as in (4.29).
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Appendix B

On the Weyl Elément w

In this appendix, we want to give some explanations to the remarkable formulas
(4.34), (4.35) and (4.37).

As mentioned before, the braid group action (1.46) on U can in fact be extended
to a braid group action T; on any representation, with explicit formulas in terms
of (infinite) sums of generators of U [39], see also [25]. Then one can consider the
element of the braid group corresponding to the longest element of the Weyl group,
call it T. It was shown in [33, 34] that these T; and therefore T' can be implemented
by a conjugation with w; resp. w, which are elements of an extension of U/, and that
w satisfies (4.34) with suitable definitions. Unfortunately, this requires complicated
calculations.

To get some faith in these formulas, we want to point out first that if (4.34)
Alw) =R w@w (B.1)

holds on the tensor product of 2 fundamental representations, it holds for any repre-
sentations. This can be seen inductively: if (B.1) holds on V; ® V;, then it also holds

on the representations in V; @ V, @ Vi, since the rhs of

(1 ® A)A(w) = R (s (w @ w) (B.2)
acting on V; ®(V2 ® V3) agrees with the rhs of

(A®id)A(w) = R} 4(w @ w) (B.3)

acting on (V; ® V2) ® Vi, by the first statement of Lemma 1.1.1. Thus the lhs agree
as they should.
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Furthermore, since the action of w on any given (finite-dimensional) representa-
tion can be expressed in terms of generators of U, it satisfies A'(w) = RA(w)R™?,
and together with (B.1) this implies A(w) = w @ wRy;.

The action of w; resp. w on the fundamental representations can be found ex-
plicitely, see [49]. For real groups, it is essentially the invariant metric g;;.

(4.35) together with the statement that ¢ = +1 on any irrep now follows easily,
since ¢ = v™!w? is grouplike as already pointed out, i.e. A(e) = e®e¢, and it only
remains to check that ¢ is £1 on the fundamental representations, where it agrees

with the classical limit. This also follows from consistency with the tensor product.

1 = §Sz for real groups. Here we only consider the case of

A proof of wzw™
"real” groups, which are all except A,, D, and FEg, i.e. those for which the Dynkin
diagram does not have an automorphism.

From (4.34), (1.49) and (1.29), we know that
(wRw)R(w'@uw™) =Ry = (05®6S)R (B.4)

Furthermore, it is known that the first terms of the expansion of R in powers of XF

are

R = qZ(a“l)ijhi®hj (1 + Zcz'(q)q%’“X,-* ® q"%h"Xf + ) (B.5)

Now wXZw=! certainly has the form U°XF, as can be seen either from the explicit
formulas in [33, 34] or from the cross product algebra (4.62). On the Cartan sub-
algebra, w acts as classically. Thus by the uniqueness of R [32, 16}, (B.4) implies
that

wXEw ™ = a;05(XF) (B.6)

2

and
wXFw™! = a710S(XF) (B.7)

with a constant a;. Notice that if there exists an automorphism of the Dynkin dia-
gram, then this would only follow up to a corresponding permutation of the simple
root vectors. The constants a; can be eliminated by a redefinition w — wg¢* with
suitable constants b;, using the fact that the Cartan matrix is non-singular. This new

w now satisfies all the equations discussed.
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