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Abstract

We review. briefly. the arguments which gave rise to the current controversy
concerning the origin of compositional order in Ni.Pt;_.) alloys. We note that
strain fluctuations play an important role in determining the state of compositional
order in this svstem and ontline a theoretical framework that tates account of then.

1 The Nature of the Dilemma

As shown in fig D at high temperatures (T > 1000 K) Ni.Pt_ allovs form FCC solid
solutions for all concentrations [1]. Morcover. they display a robust tendency for com-
positional order. Experimentally this manifests itself in significant ordering type short
tange order in the disordered. solid solution phase and in formation of various ordered
structures (L1,. Ll ete.) upon slow cooling to low temperatures. The former is observed
2] and the evidence for the latter is provided

in neutron diffuse-scattering experiments |
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Figure 1: NiPt phase diagram [1]

by the well studied super-lattice Bragg peaks. Concentration oscillations at the surfaces
of these allovs [3] also snggest a strong thermodynamic preference for Ni-Pt rather than
Pt-Pt or Ni-Ni neighbours. Phonons. measured and calculated also tell the same tale [1].
The dilemma we shall discuss here concerns not the fact but the physical origin of the
ahove well established phenomena.

There are two microscopic approaches to the problem of explaining the ocenrrence of
compositional short and long range order. The first is hased on effective lattice Hamilto-
nians which describe the svstem in terms of the occupational variable & which takes the
calne 1if there is an A atom at the i-th site and 0 if the atom at the i-th site is of the I3
tvpe. and semi-phenomenological interaction parameters. For pairwise interactions only.
<uch a Hamiltonian takes the form
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where 1';“,# is the interaction eneroy hetween an o (=A or B) and a 7 (=\ or BB) type
atom at the sites 7 and jrespectively, In this langnage an ordering tendency is dne to AB
bonds heing more attractive than AA or BB bonds. namely. v, = e 4 e BE 2008 >0
By contrast 1, < 0 implies clustering. the parameters are not known apriori hut are
determined by fitting to experimental data. (which is the usual modns operandii when
applving this approach [5].[6]) no conflict arises between theory and experiments as to the
canse of ordering. Indeed. Dalimani et al.[2] found. by fitting to the resnlts of their neutron
scattering experiments in the Ni Pt allovs. that e, is large and positive for nearest
neighbour sites and very small for and J further apart.

So at this level of description
there is. again. no controversy.

However. the matter becomes more complicated if we
follow the alternative approach and attempt to answer the question of what drives the
ordering process on the basis of a. more or Jess. first principles. electronic. description
of the concentration fuctuations. It is at this level that the observed heliaviour of the
Ni Pt_q system becomes problematic.

In short. fairly general. theoretical arguments suggest that allovs of transition metals
with roughly half filled d-hands order while those with almost full or almost empty d-
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bands cluster in the disordered state and. therefore. phase separate at low temperatures
(7]. [8]. [9].[10]. [t1]. Nlorecover. this prediction is horne ont by a considerable hody of
experimental data [10]. [L1). However. there are many exceptions to the above rule. Of
these NiPt_y is one of the hest known examples [12].

Treglia and Ducastelle [12] studied this case with <ome care. However, using an oth-
erwise fairly reliable theoretical seheme. based on a tight-binding model Hamiltonian for
deseribing the electrons. they coneluded that there was no simple wayv of avoiding the
prediction that Ni Pty _, shonld chister in the disordered phase and phase separate
low temperatures. In the end. they snggested that the spin-orbit coupling. which was
neglected in their non-relativistic treatment of the problem. might give rise to a repulsion
between the Pt atoms and hence override the usual band filling argument. To substantiate
or reject this interesting hypothesis was the purpose of two recent reconsiderations of the
problem by Pinski et al. [I3] and Lu et al. [L4]. [15]. Unfortunately. these calculations
resulted in apparently conflicting results. The first suggested that the ordering tendency
in the Ni.Pt(j_ svstem is due to a size effect overriding the band filling mechanism whilst
Lu et al. [14] concluded that it is a relativistic effect but not specifically to do with the
spin-orbit coupling. In this note we wish to examine the implications of these seemingly
conflicting results.

The calculations themselves are quite straightforward in both cases and as such are
not contoversial. Pinski et al. [13] calculated the Warren-C'owleyv short-ranged order
parameter a(q) and found that it increases from the centre of the Brillouin zone (-point)
to the zone houndary (N-point) indicating an ordering tendency (see fig.2). In addition

(0,0.0) (1.0.0) (2.0.01

Figure 20 a(q)in the ¢. = 0 plane for Niy 1Pty s for a temperature about 10 greater than
the theoretical ordering temperature. The peaks are at the X-points of the FCC Brillonin
zone. indicating the tendency for the alloy to order along the (100) divection. i.e. into the
L1y structure at low temperatnres [13]

to self-consistency. these calenlations differed from those of Treglia and Ducastelle {12] in
their treatment of what. in tight binding langnage is called off diagonal randomuness. It
was then argued that this feature, which is the consequence of the size difference hetween




the Ni and Pt atoms., was responsible for suppressing the normally powerful band filling
~mechanism. On the other hand. Lu et al. [} [15] caleulated the formation enthalpy

NEVi Vv Vp) = EONPE ) — é[lz'(.\‘i. Vo) + (P V)] (2)
where UV, is the equilibrinm vohime of the system indicated by the suflix o = L1y, Ni and
Porespectively, The calenlations were performed nsing state-of-the-art self-consistent,
scalar-relativistic and non-relavivistic LAPW calenlations [H. [15]. s shown in fig.3 they
found that non-relativisticallv AL is positive implving phase separation at low tempera-
tures. but scalar-relativistically it is negative and. therefore. consistent with the observed
ordering tendency. Thus. they concluded that ordering. in these allovs. is a relativistic
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Fienre 3: The local density approximation (LD.A) ground state energies and confignra-
tonally averaged encrgics of various ordered and disordered NiPt allovs. The superseripts
NRand SR denote non-relativistic and scalar-relativistic respectivly. V., denotes the equi-
librinim volume for the system specified. V', ix the volume of the L1y ordered componnd
and \'xi, . pr, . is that for the corresponding solid solution. The points marked by - and
>are due to Lu et al. [11] [15]. The dotted line. dot-dashed line and dashed line arve the
conjectured configurationally averaged energies for solid solution allovs as a function of the
Ni concentration ¢. The dotted line is for a rigid lattice having the volume of correspond-
ing to the 50/30 allox. Whilst. the dot-dashed and dashed lines denote non-relativistic
and scalar-relativistic calenlations performed at the equilibrinm volumes of the allovs in
question,

effect. albeit they found the mass-velocity aud Darwin corrections to he the decisive factor
rather than the spin orbit coupling mechanisim snggested by Treglia and Ducastelle [12].
In fact they argue that spin-orbit coupling favours clustering.

Before attempting to reconcile the apparently conflicting views we wish to digress
briefly in order to discuss the theories of compositional order relevant to the above con-
troversy.



2 First Principles Theories of Compositional Order

Currently three wavs of proceeding are being actively persued: the first is the effective
Hamiltonian approach advocated by Connolly and Williams [17]. the second is the elec-
tronically based mean field theories of Ducastelle and Gautier [I8] and Gyorffy and Stocks
[19]. [20]) and the thivd is the hybrid. quasi-random structures scheme of Znnger et al. {21].
As the latter has not. as vet. been hronght to bear on the problem of ordering in metallic
allovs we shall not consider it here any further.

The first strategy consists of determining the energy parameters in lattice Hamiltoni-
ans, like the one in eq.l. by requiring that thev reproduce the results of first principles
total energy calculations for various ordercd configurations. The effective Hamiltonian
so obtained is then used in {ull lattice statistical mechanics calculations based on either
cluster variational (C'VM) or Monte Carlo methods. Clearly. the virtues of this procedure
are conceptual simplicity and generality. Its principle draw-back is its lack of foundation
in theoretical plivsics. Namely, there is no guarantee that a suitable lattice Hamiltonian
exists which reproduces the complex. non- local. long-ranged energetics of the electron
gluc which holds solids together. For a discussion of the non-covergence of the many-atom-
interaction series in solids the reader is relerred to the recent paper by Heine et al. [22].
Nevertheless. it often works. although in what follows, its applicability to the Ni Pt _,
case will be the subject of some reservations.

The alternative. mean-field theory. approach does not eliminate the electronic variables
to produce a lattice model Hamiltonian but attempts to carry out the required sums over
the compositional ensemble in terms of electronic {ree energies. Of course. this cannot be
done without serious approximations. In fact. the only tractable scheme. at the moment.
is the mean field theory hased on the Coherent Potential Approximation (C'PA) treatiment
of the electrons in the compositionally disordered crvstal potential. As a simplification
the electrons may be described by a tight- binding model {11]. [12]. [18] but frequently
a fully first-principles mnltiple scattering methaod. based on a density functional theory
deseription of the crystal potential.is used [19] [20] (SCF-KKNR-C'PA).

Clearly, the main shortcoming of the latter approach is the limitation imposed on it
by the mean-field theory assumption. On the other hand. it is a very genevally applicable
procedure <ince 1t makes no assumption abont the functional form of the variation of
the free energy from configuration to configuration.  In other words, the free energy
s not broken down into 2.30dots. n=hody contributions [22). In particnlar. the above
mean field theory deals readilv with the cases where the interactions are long ranged
and oscillatory [19].+20]. Furthermore., nulike the Connollv-\Williams method. but like
the method of quasi-random structures, it deals divectly with the disordered state whose
mstability frequently signals the onset of compositional order. Thus, near the transition
temperature, T it can be regarded as a first principles Landau theory [6] {20].

Let ns now focus attention on the correlation function a(i) defined by

cofl - ooy, = (EKc/) - (€'>(£!> (3)

In the disordered state where ¢, = ¢ for all ¢ and a(7j) depends only on the vector Ry;
which connects the sites 1 and . the lattice Fourier transform of a(ij) can be written in
terms of the Ornstein-Zernike direct correlation function a(q) as follows [19]

l

a(q) = [ 351 = 25(d) (1)

where 3 s the inverse temperature 1 /kgT . Note that a(q) is the Warren (‘owley short-
range order parameter mentioned earlier and 1s measnred in diffuse scattering experiments.




The above formula is exact and can be taken as the definition of the direct correlation
function S(). The reason for an interest in SEY(q) is that it is more directly related
to the interactions hetween atoms than is a,, which. like the radial Jistribution function
in liquids, is dominated by simple packing considerations. Thns a useful way of compar-
ing dilferent theories and experiments is to compare the direct correlation functions they
imply. For instance, the usnal mean ficld approximation [G]. [23]. [21] for the model Hamil-
tontan given in eq. L. results in S¥() = o(q) which is the lattice Fonrier transform of v,
Of course. when the CV M or Monte Carlo calenlations are used the relationship between
the potential parameters. v(q). and the direct correlation hunetion is more complicated.
Nevertheless, its calculation in either case is straightforward.

In the case of the first principles mean field theory we have veferred to above, S4(q)
works out to be the lattice Fourier transform of

Gl _ 92QCPA
T\ deyde;
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where QPA({c;}) is the electronic grand potential averaged. using the colierent potential
approximation. with respect to the inhomogencous product distribution function

P({ Hp (&) (6)
with each factor heing parameterized by the local concentration ¢, as follows

[’i(fz):('i(c:i'*'(l_(‘1)(1-£:)~ (T)

Starting with the basic equation of the inhomogencous KINR-C'PAL which corresponds
to the distribution in eq.G. one can derive an explicit expression for S¥N(G) in terms of
quantities which are readily available at the end of an SCF-KKR-C'PA calculation. From
the electronic grand potential. neglecting double connting corrections. an expression for
SEHG) s derived that has the form of a susceptibility. Schematicallv. it can be written as

514 “WVZ/ /{,{__)—_;f’_&_) (K. A (K+G: ') (N)
-
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where

M % indicates matrix elements. [(¢) is the usual Fermi function and .-lB(E.t) is
the Bloch spectral function which describes the electronic structure of the random alloy.

Asis well known if. in the solid solutinon. the compositional {lnctuations are such
that like atoms cluster together a(q) has a peak at @ = 0. In the opposite case of
ordering tyvpe fluctuations a(g) peaks at ¢, # 0 where gy is the wave vector of the
compositional modulation. In the case of the fluctuations that arve precursors to the
L1y ordered state gy is one of the X-points in the Brillonin zone. It will he of interest
later that, in principle. a(q) may peak at both the I'— and N-points. This is a very
interesting circumstance hecause it tmay give rise to competition between phase separation
and ordering. In particular. for ¢ = 0.5 on a fec lattice. hoth phase separation and ordering
into the Ll structure are second order phase transitions and hence are due to instabilities
of the disordered phase to § = 0 and g = gy fuctnations respectively. These instabilities
are signalled by the divergence of a(q) at the appropriate wave vectors. In the case of the
two peaks envisioned above, as the temperature is lowered. one of them must win, namely
diverge first at the transition temperature T,. The state corresponding to the other may
then become a metastable state for 1" < T

Returning to our main concern. we note that the g dependence of a(q) for NiysPty.s
that is shown in fig.2 [13} implies ordering tyvpe short range order in the disordered state.
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Pinski et al. {13] found that the structure in a(q) arose predominantly from hybridization
ol 1,, d-states produced by a balance between diagonal and off-diagonal disorder. Namely.
the random overlap of atoms drives ordering and overpowers the usual band-filling effect
which. for Ni.Pt;;_,. should result in phase separation. The differences between the
charge overlaps of Pt-Pt. Pt-Ni and Ni-Ni nearest neighbour pairs may be described as
a consequence of Pt being a big atom and Ni being a small atom. Consequently, the
above mechanism of ordering was regarded as the ¢uantum mechanical description of the
empirical rule. refered to by Hume-Rothery [25]0 that big atoms and small atoms ovder if
they mix at all.

Whilst these results are in good qualitative agreement with the experimental facts
theyv are. clearly. in conflict with the unexceptionable non-relativistic calculations of Lu
et al. [14] which. as will be recalled. yield a positive enthalpy of mixing. NI and hence
imply, on the basis of the third law of thermodynamics, phase separation. Although.
relativistically they find AE < 0 and. hence. conclude that ordering is a relativistic
effect the matter needs further attention for two reasons. Firstly. the inconsistency of the
non-relativistic results may hid some conceptual flaw in our understanding of ordering
and phase separation in alloyvs. Secondly. whilst the relativistic calculations conclusively
indentified the ground state theyv do not conclusively indentify the ordering mechanism.
Fortunately. some recent calculations [13] [16] clarifv. to some extent. both aspects of the
problem.

Recently. Lu et al. [13] found that. if the ground state energies of the pure metals
in eq.2 arve calculated at the volume of the ordered L1y intermetallic compound. rather
than at their respective equilibrium volumes, AE turns out to be negative even in a non-
relativistic calculation. Thus as shown in fig.3 E(Llg) is above the cENT(NT Vyp) +
(I = )ENR(PI.V\py) line hecause pure Ni contracts and pure Pt expands. compared
with the volume of the intermetallic compound. in order to minimize their ground state
CHergy.

Also. we have calenlated E(Ni=Plys. Ve, Pty . ). the configurationally averaged en-
erev lor the disordered NiysPtgs allov. using the same SCF-RIKR-C'PA method that was
nsed in calculating a(q) in our previous paper [13]. As expected. on the basis of the strong
ordering tendency we found ecarlier. £(Nip 2Pty Vi e ) lies above E(NTPL V) [16].
The SCF-KKR-C'PA is exact in the impurity limit. for a fixed cryvstal potential function
which. in the present case. is the local density approximation (LDA) Mmnctional [20]. and
therefore reduces. smoothly. to the pure metal calculation for ¢ = 0 and 1. Therefore.
on the bsis of the above results we coujecture that when the average energy. E(c). is
calenlated as a function of the concentration it will be given by either the dotted or the
dot-dashed lines of fig.3 depending on whether the lattice parameter is kept at its value
for the L1 alloy or is allowed to relax in order to minimise the average energy at eacli con-
centration. These conjectures together with fig.2 provide the following simple explanation
of the inconsistancy in the non-relativistic theory.

As noted before phase separation is a g = 0 instability described by

1
0) = - 9
O = TR a5 0) W
where
o 1
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and Q7 (e) is the configurationally averaged electronic grand potential for the homoge-
neons alloy as caleulated within the SCEF-KINR-C'PA. Evidently. Q¢4 () should e used
for E(NT PG V) in fig 3. Thus, on a rigid lattice Q974 (¢) is given by the dotted line
in fig.3 and hence SE0) > 0 on account of eq. 0. Consequently, as is clear from eq.9.
a(0) will not diverge at any temperature. This is consistent with the o(q) calenlated
by Pinski et al. [13] non-relativistically and on a rigid lattice. As shown in fig.2 a(q)
is peaked at the zone boundary and only its value at the X-point can diverge. In short.
both the conjectured shape of QP4 (¢) on a rigid lattice and the zone boundary value of
a(q) indicate ordering.

On the other hand if the lattice is allowed to relax at each concentration, Q¢P4(¢) is
conjectured to be given by the dot-dashed line in fig.3. thus (f)zﬂc‘P"(c)/acz) < 0 and

therefore S12)(0) > 0. Consequently, a(0) will diverge at some temperature T signaling
phase separation in agreement with the arguments of Lu et al. [I4]. Unfortunately, the
function QP4 (¢) is not sufficient to determine what will happen to a(g) at finite wave
vectors. It can only predict that the solid solution will phase separate unless some other
instability. at finite § = qu. interfers at some T2 > T¢. Since the mean-field theory used
by Pinski et al. [13] was designed to describe compositional fluctuations on a rigid lattice.
it is clear that it cannot describe a(q) in the present circumstance dominated by lattice
relaxation effects.

One way forward is to follow the Connollv-Williams argument [17] and fit effective
Hamiltonians to fully relaxed total energy calculations such as those by Lu et al. [11].
Whilst a(q) obtaiued in this way may lead to usefull insights it is frought with difficulties
because the potential parameters representing elastic forces ave likelyv to be long ranged.

For these reasons as well as for wishing to describe the ordering process in explicitly
electronic terms. in the next section we shall outline a generalization of the mean-field the-
ory that includes an acconnt of stain fluctnations on an cqnal footing with compositional
Hhuctuations.

3 Strain Fluctuations and the State of Composi-
tional Order

Even in crvstalline solids atoms do move about. At finite temperature they move from
lattice site to lattice site by diffusion. as well as vibrating about their equilibrivm positions.
In a multicomponent svstem this means that a given site is occupied by different atoms at
different times. Evidently. when a big atom replaces a small one. the enviromment of the
site in question responds by expanding. Alternatively. when a large atom is interchanged
with a small atom the neighbouring atoms relax towards the site. Here, we are interested
in describing these strain fluctnations whithin the same kind of first principles framework
that we applied to concentration fluctnations.  Although these strain fluctuations are
ubiquitous in metallic allovs and have received considerable experimental and theoretical
attention from physicists. metallurgists and material scientists for the best part of a
hundred yvears. very little effort has been directed towards obtaining a fully microscopic.
electronic, theory of them. For a careful discussion of this point see Zunger et. al. [20)].
Consequently. what follows can only be some very preliminary remarks.

As a straightforward generalization of the mean field theory encapsulated in eqs.3.1.5.
6.7 we may consider the electronic grand potential for the inhomogenons concentration
configuration {c;} on a relaxed lattice. That is to say each lattice point ﬁ? is assumed to

3




have moved to the relaxed position R, = ﬁ?+ 4, under the influence of the compositional
(Kanzaki) forces in order to minimize the free-energy Q74 ({e, 3. {1d;}). Describing the to-
tal displacement field by the set {d;}. going throngh the arguments of Gyorfly and Stocks
[19] and using the chain rule for differentiating with respect to the local concentrations,
we find the following expression for the direct correlation function

‘(2) _ e RERT] 1) o
‘51.:' - Si.f + Z 'k‘/l ' iy (11)
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Evidently. the effects of the strain Huctuations on the short range order are described

. ,,L‘.ll" B . . .
by the new response functions 5,77 and 5f; . A theory for the latter. very interesting.
gquantity (note éuf = 3,4 éc;) can be readily developed in the limit where the displace-

ments. {4} are regarded as small and their effect on QP is taken into account only in
the Harmonic approximation. Under these assumptions we find

e —~1y - St ~
= Z@M(I.’).'ﬁ“ ' (15)
1.3
where the static force constants @, 3(7. J) are given by
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The rest of the theory proceeds along lines entirely analogous to that for 573 [19].[20]
and the end results are complicated response function formulas (for F,CIT“J“ ana $b,300.9))
which have to be evaluated using the results of a SCF-KKR-C'PA calculations for a ho-
mogenous solid solution with concentration é. Although the imiplementation of the theory
Is a major computational task. the above formulas provide a fairly concise conceptual
framework for contemplating the influence of strain fluctuations on the compositional
short ranged order. The extension of these ideas to include long range order is also
straightforward.

From the point of view of our present concern there are a couple of simple comments
which follow from the above considerations.

I Strain fluctuations induce an elastic contribution to the direct correlation func-
tion S¥(q) or, in the mean field theory to the interchange energy v(q). As
was stressed by Khachaturyan [G]. for alloys of large and small atoms this can
be a surprisingly large effect and hence it may play an important role in the
case of the Ni.Pt(;_. system.




I Given the way elastic forces propogate in solids the strain fluctuation contribu-
tion to SB(q) is bound to be long ranged. Indeed. in the elastic dipole limit. we
may expect contributions which fall off as \,(,” = Iﬁ,-‘,[”” (.*.\'])(—L'/ﬁ,:,). Thus
the problem at hand is like that of dislocations where hoth the short-ranged
honds. in the core. and the long ranged. clastic. forces are equally important.
'rom this point of view. the first principles mean-field theory method advo-
cated here is particularly promising since it requires caleulations in G-space
and treats the small and large ¢ limits on equal footing. In this respect it is
quite different from supercell or finite cluster based methods [21]. These con-
siderations are also relevant to the applicability of the Cornolly-Williams type
of approaches. ('learly, to account for large elastic interactions. the effective
Hamiltonian must include long-ranged forces for which both the CVM and
the Monte (‘arlo method become difficult to do. Fortunately. as was recently
demonstrated by Marias et al. [27]. under these circumstances the mean-field
theory becomes a better and better approximation.

Having scetched out a framework for treating the effects of strain fluctuations on the
ordering process let us return to the dilema posed by the results of the non-relativistic
theory. To begin with we note that from eq.11 we have

" I o
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Where a is the lattice constant which is assumed to be a function of the concentration c.
Thus. as anticipated at the end of the previous section. the divect correlation function at
the T-point is given by the second derivative of QCF4(c.a). the clectonic grand potential
for the relaxed lattice. The dot-dashed line in fig.3 is our conjecture for QP4 (e a). Hence.
as before. we conclude that the disordered phase will he nnstable to pliase separation at
177 nnless an ordering instability mtervens.

Interestingly. such an unusual civcumstance has a good chance of ocenring in this
svstem. If we assume that the contribution to S¥)(q) by the strain Huctuations are of the
clustering type for all g then. by taking the Fourier transform of e¢.11 and writing

SE(G) = S9(q) + Y S7(G)(g) (1)

we arrive at the conclusion that SP)(g) is given by a sum of two sets of peaks. The
members of one set are centered on the I'-points and are the contributions from the
second term in eq. I8, whilst the second set are located at the X-points and come {rom
the first term. Although possible. it is unlikely that the superposition of such peaks
will result in monotonic behaviour of S¥(g) and a(g). In short. along the I'-X line we
conjecture a two peaked structure for a(q) in a non-relativistic theory that includes strain
flnctuations. Unfortunately. as the temperature is lowered. which of the two gives rise
to the first instability will be determined only when full calculations of the new response
functions in eq.18 have been calculated.
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Nevertheless, it is instructive to analyse the above hypothetical situation a bit further.
Of conrse, at T = 0. the absolute free energy minimum is that of the ground state which,
given the ground state search of Lu et al. [L1]. may be safely assumed to be a phase
separated state. However, reaching that state from the homogencons solid solution phase
will be difficult if there is a sizable ordering peak. even if it is not larger than the peak
at the zone center. The point is that if nearest neighbour exchange of atoms favours
unlike neighbour pairs the system will ave to wait for long. perhaps astronomically
long. times for a small g clusterinig type fluctnation which could ultimately lead to phase
separation. Thus a likely outcome of cooling at moderate rates would be a metastable
ordered state. Clearly, finding real systems, as opposed to the above hypothetical non-
relativistic Ni.Pty_. alloys, with competing instabilities would be of great physical interest
[28].

Finally. let us speculate on the outcome of a relativistic theory that would be directly
relavent to the experiments on the Ni.Pt_. alloy system. The relativistic calculations
of Lu et al. [14]. displayed in fig.3, suggest that the contribution from strain fluctua-
tions are reduced on account of a relativistic contraction of the Pt atom. Indeed from
our conjectured plot of QP4(c.a) for the relativistic theory shown in fig.3 we expect
((')Q("D"‘/(')cz> < 0 and hence the phase separation instability to be supressed. At the
same time we do not expect S°(§) to change very much. In support of this expectation
we show in fig.4 the densities of states for the NiysPty.s random alloy from non-relativistic

a5 Ty LA MDA SR v T T T T T —
g 20 F 1T .
8%
9p] (EJ 15 - - = i
g =]
Ow
~
=9 o 4+
a3 )
c T
D@/ 5 r -~ - i
0 . AN A —, —— e "
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 -1 -0.8 -0.6 0.2

Energy Relative to Fermi Energy (Ry)

Figure 4: Non relativistic (left) and relativistic (right) SCF-KIKR-C'PA densities of states
(DOS) for NigsPtys. Solid line: total DOS. Dashed line: Ni-contribution. Dotted line:
Pt-contribution. Charge self consistency reduces the effects of the mass-velocity and
Darwin terms. and the relativistic and non relativistic DOS’s look surprisingly similar.
confirming. indirectly. the validity of the nonrelativistic approach to NiPt.

and fully (Dirac equation [29]) relativistic SCF-WKR-C'PA calculations. Suprisingly the
differences are small, particularly in the hybridized d-hand complex which, it will be re-
called. is the region in the densities of states identified by Pinski et al. [13] as giving rise
to the X-point peak in a(q). Thus. we may assume that S(q) obtained on the basis of
a fully relativistic theory will have a negative peak at the zone houndary as before. This
suggests that a(q) will have the same shape as in the non-relativistic calculation whose
reults are shown in fig.2.

In summary thare are two size effects operating in the proplem: one works through
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strain fluctuations and leads to reduced solubility, the other is a manifestation of the
random overlaps of atoms and can cause ordering even wheu the band filling argument
favours clustering. Evidently, in the context of first principles quantum mechanical cal-
culations the first was discovered by Lu et al. [14] and the second has been identified by
Pinski et al. [13]. The cause of order in the NigsPtys alloy may then be described as
follows. The relativistic contraction of the Pt s-orbital [1{] eliminatcs the § = 0 instability
and thereby suppresses immiscibility and therefore allows the second size effect to drive
the L1y ordering process. If substantiated by explicit calculations this explanation will it
nicely with Hume-Rothery’s general conclusion [23) that:

"It is there fore natural that. provided the solvent and the solute atoms are of sufficiently
similar size to permit the formation of a wide solid solution. the tendency to form supcr-
lattices increases with increasing difference in atomic diamelers, since the greater this
difference. the greater the strain to be relieved. Thus. superlaitices are found in the system
copper-gold. where the atomic diameters are Cu = 2.54 4. Au =2.88 4 but not in the
system silver-gold. where the sizes of the two «toms are nearly the same.”™
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express of implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringz privately owned rights. Refer-
ence herein to any specific commercial product, proces, or service by trade name, trademark,
manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.
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