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SUPERCONDUCTIVITY IN A STRONG SPIN-EXCHANGE FIELD*

Peter Fulde and Richard A. Ferrell
University of Maryland, College Park, Maryland

ABSTRACT

A strong exchange field, such as produced by ferromagnetically
aligned impurities in a metal, will tend to polarizé the conduction
electron spins. If the metal is a superconductor, this will hapﬁen«
only if the spin-exchange field is sufficiently strong compared to
the energy gap. When the field is strong enough to break many'
electron pairs, the self-consistent gap equation is modified and a
new type of depaired:superconducting ground state 6CCUrs, In the
idealization of a spatially uniform exchange field with no scatter-
ing, it is found that the depaired state has a spatially dependent
complex Gorkov field, corresponding to a non-zero pairing momentum
in the BCS model. The presence of the "normal® electrons from the

broken pairs reduces the total current to zero, gives the depaired
state some spin polarization, and results in almost normal Sommer-
feld specific heat and single-electron tunneling characferistics.
The non-zero value of the pairing.momentum also gives rise to an
unusual anisotropic electrodynamic behavior of the supérconductor;
as well as to é degenerate ground state and low-lyiné collective ex-
citations, in accordance with Goldstone®’s theorem. The effects of
scattering in an actual superconducting ferromagnetié alloy have

not been studied and may interfere with experimental investigation

of the theoretical results found in this paper for the idealized model.




I. INTRODUCTION

| There 1is expe:imental.evidence,of ferromagnefic alignment of
paramagnetic impurities when they are in_tbe form of a dilute solu-
tion, dissolved in certain non-magnetic metals. A typical example
is the recently reportedl_ferromagnetismvof 0.8 percent of iron
dissolved in gold, which has been‘found to exhibit a Curie tempera-
ture of 9° Kelvin. 1In some cases, when the,host‘metal becomes a
superconductor at sufficiéhtly low temperature, there is further
evidence that the ferromagnetic alignment persists after the onset
of superconductivity; €.g., gadolinium dissolved in lanthanum,2’3
This situation raises the question of the nature of the perturbed
state of the superconducting elections, which are under the in-
fluence of the strong'e§change field exerted on them by the ferro- .
magnetically aligned paramagnetic impurities. The purpose of the'
present paper is to report a new solution to this problem, which
leads to a state quite different from the conventional BCS Qround .
state of the supercoﬁductof.4

. According to the conventional point of view, the exchange field
exerted by the ferromagnetic impurities upon-the conduction electron
sbins is either too weak to produce a change in the BCS state, or it
produces a first-order phase transition to the normal state. The
strength of exchange:field required to overcome the énergy gap and
flip the spin of a superconducting electron is V’Ej greater £han
.the strength at which the phase transition occurs,‘,5 But we shall

demonstrate that at a somewhat lower value of strength, an unexpected

solution of the pairing equations enters. Thus a first-ordef phase

transition takes place from the BCS to this new phase, the "depaired”

state, which subsequently passes continuously by a second-order phase




transition into the normal state as the strength of the exchange

field is increased.

The new solution can be found only by studying significant de-
partures from the BCS solution. Such situations are studied in
Section Ii where the.gap equation is solved for the case of a rela-

tively large number of electron pairs broken. A doubly infinite

‘manifold of wave functions is found, depending upon the assumed

mean momentum of pairing, Q, and the assumed value of the strength
of exchange field; H. In Section III a singly infinite family of
solutions of the gap equation is_selected which represents the
ground state solutions in‘the presence of an exchange field of
varying strength H. According to Bloch's théorem,6 in order that
these solutions should represent the grqund state, they should ex-
hibit zero current. fhis is accomplished by balancing the total'
current of the unpaired electrons against the supercurrent generated
by. the non-zero value of pairing momentum, Q. This requirement
produces a function Q(H) so’that, for every as;umed value of the
exchange fieid, there is a unique value of the pairing momentum.

For these zero~-current solutions the magnetiza;ion is calcﬁlated

and hence the free energy in the ground state. In Section IV the
peculiar anisotropic electrodynamic properties resulting from the
non-vanishing pairing momentum are studied. It is found that a
supercurrent of the usual London type flows in response to an applied
vector potential parallel to Q,; but that no’supercurrent results
for a weak vector potential perpendicular to Q. In Section V it
is demonstrated that the presence of unpaired “normal® electrons.in
the depaired state causes it to have a Sommerfeld specific heat and
a single-electron tunneling characteristic practically indistinguish-~-
able from those of the normal state. Section VI constitutes a brief

summary.
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II. EFFECT OF ELECTRON DEPAIRING ON THE ENERGY GAP

Throughodt this paper the actual system under consideration,
namely a dilute solution of paramagnetic impurifies diésolved ih a
metal, will be idealized by a constant,éxchangevfield independent
of space which acté only upon the electréh spins. If the energy
of splitting of the conduction electrons in the presence of this
exchange field is QHAO, where AO is the BCS energy gap para-

meter, then we can write the Hamiltonian for our model in the form,
W =+ Koy Boy | (1)

where 7{0 is the usual Hamiltonian for a superconductor in the ab-

sence of an exchange field, and ci is the operator 1 for the

i-th electron, depending upon Whether it is aligned parallel ("up")

or anti-parallel ("down"), respectively, relative to the'exchange

field. An approximaté eigenfunction of the Hamiltonian of Eq. (l).'

is obviously the usual BCS ground staté wave function, with the as-

sociated eigenvalue simply the standaxrd BCS.ground state energy. |

. This is true because the second term:in the right-hand member is

proportional to the COmponeht:parallelhtojthb;field»of;ﬁheﬁiotal

electron spimuinntheisupg;conductor,AWhich'operator commutes with )@Lo.
If we want.to find other eigenfunctions of ?{, we may at first ‘

try states of small total spin, corresponding to the breaking of i

ohly a few electron pairs. If the number of electron pairs broken

is small enbugh not to affect'the energy gap, then an energy.of 240

has to be expended for each pair broken, while the reorientation of

the electron spin gains, according to Eg. (1), 2HA  for each pair

broken. Thus, it is not possible to find a wave function of this

type corresponding to an energy lower than the BCS ground state energy,



.

unless H 1is greater than unityov But‘it is easy to eétablisﬁ5 that
the normal étate, because of‘its response to the applied ex;hange.
field, undergoes sufficient spin"orienfation to acquire a lower

free energy than the BCS ground state already at a value of H = 1/(5?
Thus, states‘of small spin excitation reiative to the BCS ground
state are necessarily eicited states of the superconductor. It is
nevertheless\useful, in our search for alternative ground state wave
funcfions, to consider such excited stafesl and to imagine that the
excess spin, and hence the number of unpaired electrons; becomes
continually greater. Eventually.the number of unpaired electrons
will be sufficientiy large to affect the energy gap and to reduce 1it.
" Nevertheless we still will have some pairing taking place and some
cdherence energy; The gap equation of BCS will still appiy in es-

sentially its original form:

: 1
- - T
A v E'[hﬁ(l4h5)]
© .
A A
= NV f 8 4e -V Z (2)
o) E ‘ excl 2EE ’
where
I A i (3)

The prime signifies'an omission from the sum over‘E space, corres-
ponding to the blocking of states by the presence of unpairéd elec-
trons. Otherwise fhe standard notation of the BCS paper is followed.
The effect of'blocking7.is expressed in the second term of the right-
hand member of Eq. (2)1where the ‘sum over momentum sﬁace is to be
carried out over all of the excluded reégions of momentum space, Such

regions of momentum space aré‘prevented by the Pauli exclusion principle
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from participating in the virtual pair scattering which gives rise

to the energy gap A. Becauee of.the blocking of these regions, we

find, in the weak coupling limit (w>>A) the following suppression

of the energy gap:

—— = exp-{ :E: = -l } - (4)

: excl . _ ] .

where the dependence of the right-hand member upon the energy gap

has been indicated explicitly. (In all of the work in this paper

we restrict ourselves to the case of zero temperature.)

The most natural blocking configuration might be assumed to be
one wHich is spherically symmetric. in momentum space, correspondiné
to a uniform distribution of unpaired electrons ;of down spin at the
surfaee of the Fermi sea. More detailed examination reveals, how-
ever, that such excess spin states are unstable.and that the spheri-
cal symmetry of the blocking region can'be modified, leading to a
lowering of the energy of the system. As a result the unpaired
electrons tend to congregate at one portioniof the Fermi surface.
Hence it is necessary to consider asymmetrieal blocking regions.
These give a net current flew for the unpaired electrohs. In order
to satisfy Bloch's theorem it is consequently necessary to have an
equal and opposite current flow for the superconducting electron
pairs. In this Section we find the solution for the general case of
non-zero pairing momentum and impose the requirement of exact can-
cellation of current only in the next Section.

Since it is our goal to find the lowest energy eigenvalue as-
sociated with the Hamiltonian of Eq. (1), we impose the requirement
on the blocking region'that it be such that no elementary excitations

of negative energy are possible. The quasi-particle energy associated
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with the addition of a single particle of wave number k, normal

energy g, in the present model leads to an exgitaﬁion energy of
the usuavaCS quasi-particle energy plus additionalimagnetic and,..
kinetic energy terms which are such that we obtain the bdundary of

the blocking region by the'following formula;

0

B * Qu 4, * Hoa,

~ .~

A [(l+e§/A2)% + qp *hol | (5)

)

QAO is the pairihg momenfum times the Fermi velocity and p& is
the cosine of the anglé between the pairing momentum and k. For
convenience in the analysis, the pairing momentum has also been
measured in unité relative to the actual gap 4, rather than the
'unperturbed gap AO, resulting in the new parameters q =QA0/A

and h = H Ao/Az Stich a bloeking regien is illustrated by the

shaded portion of Fig. 1(a), which correspohds to the region of
momentum space occupiéd with certainty by electrcns of down spin.
Figure Ibshows the region (shaded) which is completely vacant of
‘up-spin electrons and whiéh‘doeé not participate in ‘the virtual
pair‘scattering. This is because of the blocking effect of the
down-spin electrons at the opposite side of the Fermi surface. As
can be seen from Fig; 1 the case of vanishing normal particle energy,

e = O, .gives the intersection of the blocking boundary with the Fermi

%'supface and determines the angle subtended by the blocking region,

be = - a7t (1th) - \ - (e)

The plus and minus signs refer to the case of up- and down-spin élec- E
trons, respectively. Equation (6) applies, of course, only when the

cut-off values of the cosiﬁe of the angle fall within the physical
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region of -1 <y, < +1. Figure 1 is drawn for the special case that
only unpaired dowgfspin electrons are present (1 2 g-h 2 -1). This
.depairing situation involving only a single species of electron spin
will be referred to as type S, while the case of g-h < -1 gives
down-spin electrons encircling the Fermi sea and will be referred to
as type E blocking. In addition to these two cases, we have the
situation of double depairing, when an excess of unpaired electroné
of both up- and down-spin appears at the surface of the Fermi sea.
This occurs for g-h > 1, and will be referred to as type D depairing.
This more complicated type is illustrated in Fig. 2, where it is seen
that the blocking effect of the down-spin electrﬁns is augmented by
the further blocking produced by the presence of a smaller number of
unpaired up-spin electrons on the same side of the Fermi surface. The
ranges of the various values of pairing momentum and exchange field
are shown in Fig. 3, where the stable BCS domain in the lower left-
hand corner corresponds to gqt+h ¥ 1. “Foruvg+hh> llizwe Havéethe .three.
difflerent.bypesrofirdepairing discussed-abovérandcotourringin+the three
Qiﬁﬁereﬁtftegiéhsﬁpﬁ?Ei@d 3separated. by thesdashed 'linés of unit slope.
The width of the blocking region in momentum space is determined
by solving for the single-particle energy from Eq. (5): |
£ - [(gu+ho)? -1 ‘ (7)
The integration over this thiﬁ blocking region at the surface of the

- Fermi sphere gives the result

Nl 20 el - q‘l[G(q+h)%G(q-h)J

-2 An (A/Ao) . ' (8)
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The function appearing here is defined for positive values of the

argument greater than unity as
- ¥ ,
G(x) = x cosh Ly —(x2-l)“ . 4 (9)

For x| <1 it vanishes, while for negative values, we define
G(x) to be an odd function of x: G(x) = -G&x).

It is a straightforward matter to employ Eq. (8) to evaluate
the gap for various assumed values of q and h. Such a calcula-
tion yields the vliﬂés of constant A/Ao shown in Fig. 3. With -
the results of this calculation we can now multiply the values of
g and h by A/AO to obtain Q and H, respectively. This
transformation maps the lines of constant A/AO as shown in Fig.
4, . These lines intercept the Cartesian éxes of Figs. 3 ‘and 5
4 at right angles. Equation (8) greatly simplifies along'the
Cartesian axes and.reduces along H = O to the gap equatjion for

large supercurrents derived by Rogers,8 Bardeen9 10

and Parmenter.
Along the Q = 0O axis, Eq.#(8Jnréd0cesfto§theggap;equatiqnn“’en
found by Sarma.ll The present work extends these solutions away
from the coordinate axes and.out into the H - d élane. As ex-
hibited in Appendix I, simplified expressions can be extracted
from Eq. (8) for the behavior of the constant gap lines in the
vicinity of the axes. Close toothe H =0 and Q = 0O axes these
linés have the'éhape of parabolas which bend toward and away from
the origin, respectively. The same is true in the h - g diagram,
as shown by the dashed lines in Fig. 3. |
The points infinitely removed from the origin in Fig. 3 haQe
been brought in Fig. 4 to the curve

Q-H
2Q

s

Q+

(10)

'Q+H.:%

X

IS

r—  ——— e
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It is along this zero-gap line that the solutions found here by
blocking pass continuously into fhe normal.grouhd—state wave func-
tion. As expected for a second-order transition,'it is shown in
‘Appendix II that in the vicinity of the zero-gap line the gap ié.
proportional to the square root 6f the distance in the . H - Q
plane from the zero-gap line. It will be noted that the region of

depairing folds back upon itself along the curve

h = '(l+4q2)é- - q , o o | “ (11)

labeled f in Figs. 3 and 4. 1In Fig. 4 this curve is an envelope

of the constant gap curves and:becomes a boundary for the depairing
solutions in the Q < H portion. ' The region between this folding
curve and the zero-gap curve contains two depairing solutions for
every value of Q and H. Thus there are two sheets of solutions,
which join along the folding curve. bThe'first of these, the "physi-
cal sheet," is contighous to the BCS ddmain and is accessible by
continuous variafionvbf H and Q away‘from zero. On the other
hand, the second, or "unphysical sheet" is inaccessible to experi-
mental observation, as it cannot be reached by continuous variations
of Q and H. It may be noteéd that type E blocking only gives so-
lutions on the unphysical sheet, and in particular, that the symmetri-
-cal depairing solutions, lying along the line Q = O,‘ are a boundary
of the unphysical sheet. Thus}welsee that tﬁey must be réjected not
only because of their instability with respect to perturbations as
discussed before but also because of their lack of accessibility,

lying as they do on the unphysical sheet.
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III. CURRENT, MAGNETIZATION, AND GROUND-STATE ENERGY

In the above section we have found a large variety of éolutions
to the pairing equation. Most of these correspond to some form of
excited state of the system ana are not of interest to us here. Our
objective is to find ground-state eigenvalues of the Hamiltohian of
Eq. (1). To guide u§ in the searcﬁ for ground-state solutions, we
rely upon Bloch's theorem which requires that the lowest energy so-
lution should have zero current. Allowing for the charge-to-mass
ratie of the electron, it will be convenient for us to discuss cur-
rent in terms of momentum density.. Therefore, we now wish to select
out of all the solutions corresponding ‘to arbitrary points in the
H-Q piane of Fig. 4, those solutions which have vanishing total
net momentum. But we ha?e seeh:that the unpaired electrons assume
an asymmetric distribution at the Fermi surface, which results in a
net total momentum for them. This momentum can easily be calculated
by integrating over the regions shown in Figs.l‘égd 2 (allowing for
the necessary factor of g for the component of momentum in the
direction of the paifing momen?um) to give.the following expressioh
for the total momentum deﬁsity of the unpaired or "normal® electrons: |

N ppa |

Py =55 {é [y(r,) + v(r.)]

!
Wi

o) v ) L G2

where q + h has béenAabbreviated by r The functions which have

+-

been introduced in Eq. (12) are defined as follows:

v(x) = x (32-1)% - cosh™ «x , (13) !




and

| o /2 ~ ' )
s(x) = 2 xU(x) - (x*-1) , (14)
provided x > 1. y(x) and 5(x) -vanish for |x| < 1., Besides this
total momentum of the normal electrons, we have a supercurrent |
momentum density resulting from the common momentum ofpairing9 ds.

which gives a total value to the entire system of paired electrons of

_ 2y« -
P, = $Npgad . o ) (15)

Bloch's theorem requires that P = Pn + Ps should vanish for
the ground state. This leads to the following equation for gq:

0> - 2 q [ylz,) + y(z)] +

—~
}_l
(o))

~—r

[8(r,) + 8(r_)] = O

Nl

In actuality, r, and r; also depend upon q :so that Eq. (16)
is difficult to solve in the general case. -For the case of r < 1,
however, the dependence upon = _ 'disappears and it is possible to
assign a fixed value to the variable T, and to solve for the
~corresponding value: of g by the standard formula for the roots
of a cubic equation. This procedure applies to the region S of
Fig. 3. The solution of Eq. (16) for type D blocking is more com-
plicated, but is facilitated bf approximations which are permitted

for the relatively large values of r, which occur for this case.

The results of numerical computation are represented by the P = 0
curve shdwn in Pigs,.S and 4. Bloch's theorem is satisfied -only by
solutions which fall along this liﬁe. Points which fali off the |
line can therefore ndt repfesent ground-sfate energy éigenvaiues

of the Hamiltonian of Eq. (1). It is of interest to note that the
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Q# 0 portion of the P = O curve lies entirely on the physical
sheet, but that it exhibité a minimum in the H = Q plane at
Q=Q =0.69 and H=H_ = 0.63. For field values H < H_ = there
are no depaired solutions satisfying Bloch’s theorem,'and hence the
BCS state is the only ground state possible.

It is of interest to locate the intersection of the P = O
and A = 0 curves. In other words, we want to find the Qalues of
the parameters Q and H at which the gap vanishes, alwayé keep-
ing the current zero. _This.is gasily found from the‘aSYmptotic
expréssions for the functions ‘y(r,) and &(r,). The result is

that the asymptotic slope in the ; - g plane is determinéd by

coth (¢/h) = qg/h o (17)
or

h/q ~ 0.833 . | (18)

In the H = Q plane (Fig. 4) this intersection is the maximum H
point along the zero gép line, as required by a simple symmetry'
consideration. Denoting the coordinates by QM and Hy, we find
from combining Eq. (10) with Eq. (17) that Qﬁ =fHﬁ = 1/4. Eq. (18)
gives HM/QM = 0.833, so that' (QM, HM) = (0.904, 0.753). In the
vicinity of this point, the region to the right of the zero current
line corresponds to a net positive current and the region to the
left, to a negafive current. i

Bloch's theorem is a necessary but not sufficient condition,
for the lowest energy eigehvalue. It gUaranteés only that the
energy is an extremﬁm rélative'to small changes of the pairing momen-

tum for a fixed value of field H. Thus the zero current réquirement
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can lead to unstable as well as stablé‘solutions. This occurs along
the onndary of the unphysical sheet (Q = O and 0.5 < H < 1.0),

. as alreédy discussed above in Section II, and also along the

0 < Q< Qm portion of the P = O 1line. Such solutions are unstable
with respect to acceieratibn of the supercurrent, and do not come |
~into consideration:here. It is evident from the dependence of the,
energy on the square of the current that all of the points lying
along the Qm <Q< QM portion of the zero current line correspond
to solutions which are locally stable. But further investigation is
required‘to establish their'actual gross stability in comparison to
the other possible zero current eigenfunctions of Eq. (1), viz., the
BCS state and the normal state.

For the purpose of comparing the energies of different zero
current solutions it is useful, instead of summing up the various
contributions to the total energy, to make uée of the following
differential relationship between the expectation value of the
energy in a given state characterized by exchange field H, and
the magnetization which is present in that state:

-1 <>

Q ETHZET -M , | (19)

where @ 1is the volume of the system. Q-l<9#> can be identified
with the free energy density  F. Thus Eq. (19) is equivalent. to
the usual integral formula for the change in free energy upon

passing between two different states,'l and 2:
4 4Jp2 '
F, - F = - \ M d(Ha,) , : (20)

The magnetization is defined by the expectation value of the total

component of the electron spin in the direction of the exchange field:

M = Q7" <2 o0.> : _ (21)
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With this definition of M the actual numerical value can be
calculated directly by integrating over the depairing regions,

with the result
_ NA . A |
Moo= B p(e) - y(s)D (22)

This result is plottea as the curved line in Fig. 5, where the
zero current line has been used to eliminate q and it will be

seen that for Hm < HC<H there are two intersections of the

M
vertical H = constant line with the magnetization curve, and
hence two different magnetizations possible. These correspond
to the two intersections with the zero current line in Fig. 4.
As already discussed, only the upper intersection is locally
stable. From Egq. (20) we see that it is also stabie rela;ive to
the normal state, whosé magnetization curve is the straight line
passiné through the o:igin{ It remains, however, to investigate
the stability of this solUtion‘relative to the BCS state. This
problem is illustrated in Fig. 5 by the areas enclosed by the
magnetization curve and shaded horizontally. When the value of
H 1is such that area A is equal to area B, then,»accordiné to
Maxwell's ?rule applied to Eq. (20), the energies of the BCS and
the depaired states aré precisely equal. For smaller values of
H the BCS state is the energeficaliy more favorable one, while
for larger‘vélUQs of H area B grows and area A shrinks, increas-
ing the stability of the depaired relative to the BCS state.

The actual computation of the relative stability of the de-
paired state is facilitated by the knowledge that the free enefgies
of the BCS and normal states are precisely equal at H = l/{i?

" For the vertical line labeled WEAK in Fig. 5, with this value of
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H, the.areas A and C sum exactly to area B. For this vaiue of H,
the depaired state is more stable than botﬁ the BCS and normal
states by the area C. Thué the field at which the first order
transition from the BCS to the'depaired phase occurs is slightly

less than 1/\|2 and is given épproximately by

H

M
g L

I S
iZ M(l/{a) /{2

(MA-M) dH . . (23)

Neglecting this small difference, we expect the depaired state to
be the éctual ground sfate of tﬁe system in the range 0.71 < H < 0.76.
Over this range of stability, the square of the gap varies roughly
linearly with fiéld, as 1 - H/Hn (see Appendix I). This is
shown in Fig. € by the daéhed parabola and can be compared with the
solid curve (labeled "WEAK") which exhibits the exact variation of
A/Ao vs. H. The gap decreases from the value: 0.23 AO at H = 0.71
to zero at H‘=.HM, where it has infinite slope and the second-
order transition to the pormal state octurs. |

The behavior of the free energy over this range is shown by the
curve, labeled "WEAK", in Fig. 7, where F(in units of the BCS con-
densation energy) is plotted vs. H. As noted above, the magnetization
in the depaired state is only slightly less.than that in the normal
state. Consequently, the free energy is also only slightly lower--
by a few tenths of a percent of the BCS condensation energy. As we
will demonstrate immediatély, this is greatly increased by the ex-
change interaction of the normal electrons among themselves. But
even without this effect, one should not suppose that the depaired
state could easily be spbiled.by a slight increase in temperature
above absolute zero. Although the detailed temperature dependence

of the model remains to be investigated (except for the H = 0 and
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Q = 0 lines studied in references 9 and 11, respectiyely), one. .
should expect that the magnitude of the energy gap should determine
the transition temperature. . .

A further feature of the free energy shown  in Fig. 7 1is the,.
cusp arising from tHe double-valued nature of M vs. H and from
the infinite slope in Fig. 5 at H = Hé. ‘The locally unstable de-
pairing solutions; already rejected above, lie beyond the cusp in
Fig. 7. |

In the above work the interaction between a pair of electrons
has been included, but the interaétion of unpaired electrons ne-
glected. The same potentialgﬁhich produces scattering between
pairs of electrons and leads to the establishment of the.engrgy:
gap will also give exchange scattering‘befween any two‘normal elec-
trons and thereby modify the energy of the depaired state. This
effect decreases the stability of the depairéd state relative to the
BCS state, but its effect on the norhal state is even greater; be -
cause of the larger magnetization. Thé effect pf the interaction
on the spih.susceptibiiity is already well known in non-superconducﬁ-
ing.metals. For the repulsive Coulomb potential this is ﬁhe usual
exchange scattering which favors ferromagnetisﬁ, and for paramagnetic
metals tends to increase the paramagnetic spin susceptibility. It 1is

13 in his discussion of the

an effect which is included by Landau
quasi-particle treatment of the spin suéceptibility of a Fermi liquid,"
and has also been discussed from a somewhat‘different point of view

by one of the present authorsl4. A useful picture for this'effect is
that of the molecular field,:athe basis.of theisWeissiitheory: hﬂva}y

of ferromagnetism. In the preseht-case of interest, because of the

attractive short-range potential of the BCS theory the molecular
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field is opposite in sign relative to its usual direction and is
unfavorable to the polarization of electronsls.“ It Subtracts from
"the actual external exchange field applied to the sample, Hex‘
Thus the net magnetic field which effectively serves to act on

any given electron spin is

H = H -

NV
eff ex 2

M
NA | :

This relationship between the effective forcing field, Heff’
and the response to it, M, 'is similar to that already familiar
in electronic circuitry. There the signal applied to a circuit
element in series with a load impedance is reduced by the current
flowing through the load, in proportion to its impedance. If the
response of the circuit element is known for any value of the net
effective input, tHen a simple construbtion‘pf the "load line" on
a graph of current vs. input leads to a self-consistent determina-
tion of both the net .effective input and the butput for any given
value of appliedAsignallé. In the present case, the load. line 1is
a straight line of slope -2/NV  drawn on Fig. 5. The intercept
with the abscissa axis is Hex' For any given value of the inter-
cept, the load line is completely determined, once the value of
NV  has been specified for the material of interest. 1In the weak

coupling limit, NV - O, the load line becomes the vertical line

(24)

of constant applied H, already discussed in connection with Fig. 5.

For stronger coupling, however, the finite slope of the load line
has important consequences. First of all, it should be noticed

that for a given value of Hex’

the normal magnetization is reduced

by the factor 1 + NV. Consequently the value of the external field

at which the gap in the depaired state passes to zero is increased
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by this same factor, giving

Hy = (1+NV) H, . | . (29)

This situation is illustrated in Fig. 5 by the dashed load line.

A further field-strength of interest is the value for which the
BCS and normal.states have equal‘free energy. In the weak coupling
limit this is l/{§1, Because of the suppression of the normal
state susceptibility, this field is increased by the factor

(1 + Nv)l/Z

. The areas enclosed between the load line correspond-
ing to this value of Hex andvfhe magﬁetization_curve are shown
with vertical shading. Areas A and C sum exactly to area B. As
discussed above in connection with Eq. (23),vthe value of H_  de-
fined in this way is only slightly greater than the value at which
the first-order phase transitién occurs between the BCS and depaired
states. Because of the stronger dependence of H& on NV, it is
evident that the range of stability of the depairéd state is in-
‘creased by strong coupling. As a numerical illustration, NV = 1/2
may be chosen to represent the strongest éoupiihg case encountered
among the'superéonductors. This gives H& = 1.13, while the
equality of the BCS and normal state frée energies occurs at

Hey = 0.87. Application of Eq. (23) yields a slightly lower value

for the.first-order transition to the depaired state, leading to

stability of the depaired state in the following range

0.83 < H_,

<1.13 . (26)
This is a range of stability of about 30 pefcent. The smallest
value of external field for which ‘a depaired solution exists at

all is found by shifting the load line of Fig. 5 to the left until
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it becomes tangent to the magnetization curve. This yields:

H;.= 0.79. Thus it is seen that for strong coupling the effect
of exchange between the depaired electrons is to make most of the
locally stable depaired solutions stable also relative to thé& BCS
state. The ranée of stability covers almost the entire range of
available solutions. This situation is illustrated in Fig. 7 by
the curve labeled "STRONGf for which the free energy is greater
than that of the BCS state only over a small vicinity close to

~

the cusp. Figure 6 shows the decrease ("STRONG" curve) of the
%

Hfrom O.6AO to zero at Hye Near

gap as a function of He
1

X

HM the parabolic vériation discussed above is a good approxima-

tion (dashed curve).
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IV. ELECTROMAGNETIC PROPERTIES

The responsetof_the,depaireq ground state of the superconductor
to an applied electromagnetic field is easily obtained as an exten-
sion of the above work if we limit ouf attention to the case of
small perturbations. For this case we‘may'éxpand the total momentum
of the electrons, including both the‘cohérent pairs and the normal
electrons, as a power series in the deviation in the H - Q plane
from the P = 0 line determined in the previous section. For small
perturbations we may neglect all terms in the Taylor,;eries expansion

except the first-order terms, for which the expansion reduces simply to
— Q 9__?_ B - . : : . ! .

Let QO be the value of the pairing momentum which identifies the
zero current depaired state for some partiqular value of Hex' Thus
the infinitesimal change‘ dQ: can be written as a deviation of the
pairing'momentﬁm away from itséroundstate value, br Q - QOo As
the load line considerations which led tp‘Eq,'(24) still apply for
current-carryingsiatés,we may differentiate Eq. (24); keeping

Hex fixed and neglecting the subscript on 4Heff’l'This éives us the

following relationship between the differential changes in the pair-

ing momentum and in the net effective exchangé'field:’ -

dQ - _._..2V .a_M dH . (28)
o] . :

dH = 5 A D

V_ oM
7 Q

o
Elimination of dH from Eqs. (27) and (28) yields a simple linear
relationship between dQ = Q - Qo and the current J, which is

proportional to dP:

?
By o

277 (Q-Q) (29)

J =- 4wevF. o}
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This equation serves. to define the quantify xf2, “In the weak

coupling limit, dH = 0, and x‘? is. simply proportional to
aP/3Q. ”th has the.dimensions”of the iéciprgcal of the square
of a penetration depth, and therefore the result of compufation

2

is plotted in Fig. 8 as the ratio of X\~ . to the reciprocal of

the square of the London penetration debth,,

-2 dirne ‘
A = : (30)
ML ne? . |

¢ 1is the velocity of light, e and ®m the electron charge and
mass, and n the density_bf conduction electrons. The cugve
labeled WEAK in Fig. 8 represents the result of such a computa-
tion, while the curve labeled STRONG hag'been determined only
near the upper.end point, H&. Exact determihation]of the com-
plete curve would require the evaluation of all four of the par-
tial derivatives occurring in Egs. (27) and (28), which could be
carried out in a straightforward manner. |

Thus we see that there is a one-to-one correspondence be-
tween the value and direction -of the pairing momentum Q and
J, the net current which flows in the depaired superconductor.
As evident in Fig. 8, the proportionality constant is reduced
roughly}by a factor of two compared to the superconductor in the
absence of spin-exchange field, because of the response of the
normal electrons. We may now ask the question; "Suppose that a
uniform current J 1is flowing in the depaired superconductor,
what will now be the effect of a perturbing vector potential?"
This question can be easily answered by noting that the presence
of a weak vector potential can be alternatively described by an

equivalent changé in the vector momentum of pairing according to
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the relation

~

5(Q/ve) = a0, (31)

where vp is the Fermi velocity. It is convenient to resolve the
perturbing vector potential into components parallel and perpendi-
cular to the current. The parallel component All . leads simply

to an increment of the current_in,thé_same qirection, J,,a..inde-

pendent of the magnitude of the current which was already present:
JL’ = =\ 'A,l B : (32)

This equation-is of the same form as London's equation for the cur-
rent which flows in an ordinary superconductor in response to an
applied vectér potential. Thus:the.parameter_ A, ‘introduced above,
can be identified as the,penetration depth_fér the scréening of such
‘a disturbanée by the superconductér.

The response of the depaired state to the perpendicular com-
ponent of the vector potential is, However, quite different. Here
a small perpendicularlcomponent serves only to rotate the direction
of the pairing momentum, by an angle equal to the ratio of eAl/c
to the quantity Qvo/VFf According to Eq. (31) a small perpendi-
cular vector potential does not~élter the magnitude of the pairing
momentum, and thus serves only to produce a perpendicular component
of current proportional to‘thevangle of rotation and to the current
| élready present: V
_ evg

J = ——= JA
L7 gy AL

(33)

The relationship expressed by Eq. (33) can be more readily understood

by substituting for the original current from Eg. (29), to give the
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following relationship between the perturbing vector potential and
. the current which flows in response to it:

Q-QO -2

3 = £ N2 A
e T L

(34)

This is similar to the relationship.discussed above. for Eg. (32),
except now that the penetration depth is clearly current dependent;

and is given by the expression

I

where the quantity Q-Qo can be expressed in terms of J 1if pre-

ferred. It will be noted that only positive values of Q-Q

give stability of the system with respect to éerpeﬁdicular dis-

turbances (instability is formally expressed by_an'imaginary value

for the penetration deptb), It should further:beAnoﬁed that as the
current flowing through the sample is allowed to becbme.vanishingly
small, the §creening bf‘the perpendicular component of the vector
potential becomes progressively'weaker, and corresponds to a pene-
tration depth which approaches infinity. It is important to keep~in mind,
however, thatlthis conclusion holds only for small perturbations

and that the electrodynamic prbperties are Considerably more com-

plicated if this restriction is not satisfied.
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V. QUASI-PARTICLE SPECTRUM

The energy required to add an electron to the depaired state
is easily calculated along_the lines explained in the BCS paper,
In-the present problem_s@ecial,attentiqn must bg paid to the Pauli
exclusion principle, which prevents the addition of a particle to
a momentum state in the blocking region. On the other hand we
get two types of excitation when we add an electron to one of the
vacant regions in Figs. 1 or 2. These correspond to the production
of a bound pair or of an excited pair. Paying_attention to'éuch
details, one readily establishes that fdr every,moméntum K
there exists a quasi-particle excitation of energy given by the
absolute value of the right-hand member of Eq. (5). The depaired
state clearly has arbitrarily low-lying quasi-particle excitations,
as is seen from the fact that along'the boundary of -the blocking
region, Eq. (5) holds. For a given value of o Fig. 9 illus-
trates the relationship between the BCS quasi-pz¥ticle energy _Eg
and the actual quasi-particle excitation energies, E¢ and .E¢,‘
associated with the addition of é down-spin electron of momentum
Kk and an up-spin electron of momentum -k, respectively. It
will be noted that this is the usual relationship of the BCS
theory except for é shift in the zero of energy, as shown by the
solid line drawn across the graph at the positive eﬁergy (prQ)AO.
The energy for the addition of a down-spin electron is measured
upwards from this value, while the energy for the addition of an
up-spin elect:on'is measured down from this value. Differentiation
of these curves with respect to E for a fixed value of g gives
the customary BCS density of state variation shown in Fig. 10, but

again with a shifted energy origin. The density of states for
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down-spin additions is shown to the right of the heavy vertical line,’
while up-spin excitations have the density of states per uriit energy
shown to the left of the heavy ye?ticél line. All of the excita--
tions are of course positive energy, as already guaranteed by the.
condition introduced 'in Section II that no negative energy excitations
should be possible in the depaired ground state. - The actual total:
density of states for the addition of a particle to the depaired.
state is found by superposing the portion of Fig. 10 to the right and
left of the heavy vertical line and integrating over all the values
of . This has been donevfor a few special- cases. Figure'll 'shows
the density of states curve for H = .0.64, Q = 0.75, & = 0.50 AO,

a case attainable with strong coupling near the lower end of the
stability range. It will be noted that the density of states is
qualitatively quite similar to the constant density of states ex-
hibited by a normal conduqtor,lalthough some structure is in evi-
dence in Fig. 11l. For stronger exchange fields, the structure is.
less pronounced and the density of states curve passes continuously
into the constant normal density of states (dashed line in Fig. 11)
as the gap decreases.

It follows from the exisfence of low-lying quasi-particle ex-
citations that the depaired state should exhibit a Sommerfeld type
specific heat linear in temperature. .The Sommerfeld ¥ for the de-
paired state is proportional to the zeré—energy value of the density
of states curve for quasi-particle excitations. For the case shown
in Fig. 11, this is only fourteen percent below the normal value,
and apprbaches the normal value rapidly as the gap decreases. Nor-
mal state behavior in tunneling and in the specific heat can be ex-
pected generally to set in whenever a mechanism exists in a super-

conductor for breaking the electron pairs. The speéific mechanism
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studied in this paper, that of a uniform spin-exchange field, is .
by no means the only possible one.  The opposite situation to that
studied,here,,thaf_of,randomly_oriented andﬂdist;ibuted_i@pgrity .
spins, has been investigated by Abrikogdv_and GQr'kov;777with
somewhat similar results. They found that at an impurity concen-
tration of ninety perceﬁt of that required to reduce the gap to
zero, new properties appear because of the presence of normal
electrons. Normal tunneling behavior of the expected sort has
been observed by Reif and Wool,fl8 for various dilute solutions
(e.qg., iron in indium), but it is not known whether or not their
ferromégnetic impurities are ordered. - If not, then the Abrikosov-

Gorkov theory would seem to apply, but if they are ordered, the

approach developed in this paper might be more relevant.




-7 -

VI. SUMMARY

The problem of a strong exchange field acting on -the electron
spins”inlaAsupe;Cohduqtop“bas,beep.studied in the ideal case of a
uniform_field.in,the_ébsencehof‘scattering processes. It has been
found that a qualitatively new depaired state with unusual proper- .
ties exists over é,finité range of the strength of the exchange
field. As the exchange field increases, the energy gap of the de-
paired state decreases and passes continuously to the normal state.’
In contrast to the completely paired BCS state, the depaired state
exhibits spin magnetization, almost normal tunneling and specific
heat, and an absence of supercurrent for weak vector potentials
perpendicular to the pairiﬁg momentum. It is this last feature
which ié the most striking and which can be expected to be the
most difficult to observe experimentally. This is because scatter-
ing in an actual sample will tend to invalidate the.above treatment
based on plane wave single-particle states, insofar as the momentum
relaxation rate in the‘normal state is greater than the energy gap.
' For short mean free path, all anisotropy in momentum space should
vanish, and the effect of the uniform exchange field can be expected
to be quite differeht from that found above. Taking into account
momentum and spin relaxation in the present model remains a.problem
for the: future. | |

It is interesting to note that the. idealized model studied above

yields a highly degenerate gfound state, characterizéd by the direc-
tion of the pairing momentum, or alternatively, by the wave number
of the sinusoidal spatial dependence of the Gorkov function.
Goldstohe's theoreml9 requires that .there must exist low-lying-collec-

tive texcitations of the system. The nature of these in the present
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model has not been investigated. It should also be noted that the
perturbing field acting upon the superconducting electron spins in
the model treated above can be an ordinary hagnetiqifieid rather
than an exchange field, provided that.the”orbitalkeffects of the
magﬁetic field_can”be_neglected,<“Th§s,:thé resglﬁs_fognd here ex-
tend somewhat the high-field limit of superconductivity discussed
by Clogstonl5- Similarly, the. temperature dependence of the model
(which has not yet been studied) might be relevant to the high-

field effects investigated in tin by Knight and Androes2?
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APPENDIX I, SIMPLIFIED GAP EQUATION

. Equation (8) determines the energy gap A for_gnyAchoicé of
q and h, corresponding to an arbitrary point in the h_;”q
plane. It is useful to hote& however, that considerable simplifi-
cation results when one of the variables is small, corresponding
to the two strips in the quarter plane along the two axes. To
find the dependence of thé gap to second order in the small quan-
- tity, we will need the first three derivatives of the function G(x),

defined by Eq. (9). These are

Gﬁ(x)l = cosh™d X . - ” (36)
" . -1/

G (x) = (x2—l) 2 , (37)

G (x) = -x(x2-l)'3/?‘ o : : (38)

assuming x > 1. Taylor's series expansions in powers of h and

q are immediately found to be,

, 5 -1/2 , |
29 4n (2) = 26(q) + n%(q%-1) E (39)
-0

and

-3/2

1) 77, (a0)

-2q 4n (ﬁl) = 2 coshth - q2h(h
o ‘

Wi~

)
Y
&

respectively. Thus, small excursions from the h = O axis reduce
the gap while small deviations from the g = O axis increase it.
(The mapping into the H-Q plane shown in Fig. 4 changes, however,

this last feature.) For h = 0, Eq. (39) becomes

& = expl-G(a)/a]l - (a1)
o) : :
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the gap-equation_for‘large supercqrrehts derived byARogersgi__.w

‘BardeenQ, and Parmentert®. For q = 0, Eq. (40) can be further

simplified to

‘A B V4~ . ‘
73 = h + (hz'l) 9 | A ] o (42)
and
fl = (on-1)12 9  (43)
(0]

for 20u5 CH5g b O asifound byWSarmaﬁ% :for zero temperature.

The behavior of the constant gap curves in the h - g plane.
is readily obtained from Egs. (39) and (40).. Let the gap = A curve
cut tﬁe axes at q, and hy: Substituting Eq. (41) (written now in

terms of qA) into Eq. (39) yields

dn . 2 :
q-q, =- ———%——— h ; , (44-)
2<qa"l)
a parabola normal to the h = 0 axis and curved'ioward the g =0

axis. Similarly, substitution of Eq. (42) (with h written as hA)

gives

P
[
o
Ea
DﬁOD
O

a parabola normal to the 'q = 0 axis and curved awéy’from the

h = 0O axis. These parabolas are'showh as dashed curvés in Fig. 3.
As the mapping of Fig. 3 onto Fig. 4 is simply a change of scale by
A/AO ‘the behav1or of the constant gap lines in the vicinity of

the H=0 and Q=0 axes is also that of parabolas.
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APPENDIX II. SECOND ORDER PHASE TRANSITION

It is of interest to study the manner in which the energy gap
vanishes as the zero gap line, Eq. (10), is approached in Fig. 4. _
Insertion of the asymptotic expression for G(x) for large values
of x into Eq. (8) gives |

A ' .

0 = Ly 412 4 D g -Gth
n 2 = 5 dnala®hf| s o dn g3y
1 1
_l+__
722
and
a\? 20 .
(F? = 4(Q°-H7) Z (Q,H)
(o]
where
YQ,H) = 1 -5 o alo®H?] o @y

As setting # = O gives Eq. (10), we can write

gl = AR ‘5ﬁ |

2.42))

(46)

(49)

where AH is the vertical distance from the zero-gap line in Fig. 4.

Substituted into Egq. (47); this'gives the linear variation of the
square of the gap with AH. in the vicinity of the phaée‘boundary.
At the intersection of the zero current and zero gap lines, |
4(Q2-H2) = 1, so that Eqgs. (49) and (47) reduce to

A '(Aﬂ 1/2

Ao I_IM ’
as already stated in the text, and as shown by the dashed parabolas

in Fig. 6.

(50)
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FIGURE CAPTIONS

Type S_(single) depairing in momentum_space pro-
duced by the spin-exchange field and by the shift

of the Fermi. sphere to the right. The heavily

shaded portion of Fig. 1(a) is occupied with

certainty by down-spin electrons which are stabi-
liéed by the exchange field. The Galilean trans-
formation Causes.them”to assume an asymmetric
distribution at the Fermi surface, - The shaded

portion of Fig. 1(b) is completely vacant of up-

spin electrons. The remaining regions of the

regions are available for pairing. But because
of the reduction in phase space, the energy gap

is decreased.

Type D,(doqble)Adepairing,in momentum space..

Here the shift of the Fermi sphere to the right
is sufficiently greater than that in Fig. 1 that
unpaired up-spin electrons are also stabilized,
as shown by the heavily shaded region of Fig.
2(b). This requires a corresponding compietely
vacant region for down-spin electrons (lightly
shaded in Fig. 2(a)). The residual phase space
for pairing is less than in Fig. 1, giving a fur-

ther decrease in the energy gap.
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Figure 3. Contours of equal energy gap A  for an idéaluBQ§.
sUperconduétor,$gpjected“to_a_strgng‘spin—exchange
field h, measured in units of the gap. A 1is
the unperturbed BCS gap for h = 0, q is the |

'pairing”momentum (i.e., shift of the Fermi sphere
shown in Figs. 1 and 2), in units of the gap di-
vided by the Fermi velocity. Regions of type E
(encircling), type S (single--see Fig. 1), and type D
(double--see Fig. 2) depairing are separéted by
the.dashed straight lines. The folding line f
separates the unphysical (above) from the physical
(below) regions and maps into ther.boundary. in.Fig. 4.
The zero—cur:ent,line, P = 0, corresponds to
solutions of‘the gap equation‘fqr which the total
momentum of the unpaired electrons cancels that of
the péirs.' The dashed parabolas represent the ap-

proximaté gap expressions derived in Appendix I.

Figure 4. Contours of equal energy gap A for an ideal BCS
’ superconductor subjected to a strong spin-exchange
field H, measﬁred in units 6f the zero-field
gap A,. Q = (A/Ao)q, so that this is a mapping
6f Fig. 3 in which the distance of every point from
~ the origin of Fig. 3 is reduced byjthe factor A/Ao.
The unphysical sheet is shown shaded and joihs the

underlying physical sheet only along the folding
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boundary f. Points infinitely distanf in Fig. 3

are mapped into the zero-gap line, A/AO = 0, a
portion of which forms a boundary of the unphysical
sheet. The spherically symmetric depaired solutions

(Q = 0) also constiﬁute a- boundary of the unphysi-

cal sheet. The zero-current line, P = 0, lies .
entirely on the physical sheet and makes a normal
intersection with the zero-gap line at its point of
maximum H (HM = 0.755). Its local stability por-
tions are above the points W and S for weak and

strong coupling, respectively.

Magnetization of the zero-current depaired states
in units of N&_ (density of states times zero-
field gap) vs. . H (spin-exchange field in.units of
AO). M= 0 in tﬁe BCS state, while the straight
line (n) gives. the normal state magnetization.
The effect of H upon the free energy is propor-
tional to the area under the magnetization curve.
For thelvertical line of Fig. 5(a) at H = l/)/_?:1
the normal and BCS free energies are equal for |
weak coupling. The depaired state has lower free
energy and is stable for all higher fields less

than H, = .0.755. See text for discussion of the

M

slanting load lines of Fig. 5(b) pertaining to

strong coupling.
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Energy gap vs. spin-exchange field, in units of |
the zero-field gap, for weak and étrong_coupling°

Exchange between the polarized electrons is un-

favorable to the normal state and gives a depaired

state stability range of thiity percent for strong
coupling. The stability range for weak coupling

is only eight perceht. The dashed parabolas repre-
sent the approximate gap expression derived in Ap-
pendix. II. - The vertical lines with arrows indicate
the first-oraer phase transitions which occur from
the BCS to the depaired state for weak and for

strong coupling.

Free energy F relative to zero-field normal
state, in units of the BCS condensation energy
Epcgs for weak and-strong coupling. H,, 1s the
external spin-exchange field épplied to the elec-
trbns° The BCS state has no field dependence, |
while the normal state dependenéé'is shown by the
dashed parabolas (labeled n). The stability of
the depaired sfate is only a fréction of a percent
of Epgcgs but is increased by an‘ordér of magni-
tude by strong coupling. The éecond—order phase
transition at the upper field (Hy, and H&)' is
fepresented by the tangency of the solid and

dashed curves.




Figure 8.

Figure 9.

Ratio of the strengths of the London supercurrent
in the depaired and BCS states vs.'spin-exchange
field. AL is the London penetration depth and

N the penetration depth for.a weak vector poten-
tial applied parallel to the pairing momentum.
Only the upper portion of the.strong coupling
curve has been determined exactly. The vertical

lines with arrows indicate the first-order phase

transitions which occur from the BCS'to the de-

paired state for weak and for strong coupling.

Quasi-particle energieé'in the depaired state E

vs. normal state singleFélectron energy €. The
zero-energy reference level for the usual BCS ]
curve has been shifted by the energy . E = & (H-pQ)
to the heavy horizontal line. AoH' is the spin-
exchange ehergy, AOQ the pairing momentum times
Fermi velocity, and. 4, the BCS energy gap. po is
the cosine of the angle between the pairing momen-
tum and single-particle momentum, while A 1is the
actual gap in the depaired state. The energies |
réqpired to add a down-spin (Ey =V‘Ev- EO) or up-
spin  (E4 = E, -‘E) electron are given by the dis-
tances from the line E = EO‘ up or down, respec-
tively, to fhe hyperbola. The intersections of this
line with the hyperbola determine the zero-energy

quasi-particle excitations of the system.




Figure 10.

Figure 11.

-39~

Density of states per unit energy for the gquasi-_
particle excitations formed by adding a down-spin

(E, = E - E;, >0) or an up-spin (E, = E, - E > 0]

1
A4
electron to the depaired state, for a particular
portion of the fermi sphere, Notation is the.

same as in Fig. 9. The state density for zero ex-:

citation energy is given by the intersection of the

heavy vertical line at E = Eb with the BCS curve.

Total density of states per unit energy vs. quasi-
particle energy EQ,p, in units of the zero-field
gap AO, for the depaired state with energy gap
0.5 Ao.” The density of states shown in Fig. 10
has been summed over both spins and over all por-
tions‘of the Fermi sphere.. The dasﬁed line repre-
sents the normal densifyAéfAstatés. The‘strucfure
in the depaired state, which would be observable
in tunneling e%periments, disappears as the ex-
change field is iﬁcreased and the gap decreases.
Because of the densitY-of low-lying quasi-particle

states, the depaired superconducting state exhibits

a Sommerfeld specific heat almost as‘large as in

the normal state. The calculation assumes that the

" tunneling matrix element does not depend upon the

direction of the quasi-particle momentum (diffuse

surface condition).
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