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ABSTRACT

The method of finite differences has been
employed to solve a variety of 3D electromagnetic (EM)
forward problems arising in geophysical applications.
Specific sources considered include dipolar and
magnetotelluric (MT) field excitation in the frequency
domain. In the forward problem, the EM fields are
simulated using a vector Helmholtz equation for the
electric field, which are approximated using finite
differences on a staggered grid. To obtain the ficlds, a
complex-symmetric matrix system of equations is
assembled and iteratively solved using the quasi-
minimum method (QMR) method. Perfectly matched
layer (PML) absorbing boundary conditions are included
in the solution and are necessary to accurately simulate
fields in propagation regime (frequencies > 10 MHz). For
frequencies approaching the static limit (< 10 KHz), the
solution also includes a static-divergence correction,
which is necessary to accurately simulate MT source
fields and can be used to accelerate convergence for the
dipolar source problem.

INTRODUCTION

For too long the interpretation of frequency-
domain electromagnetic data arising from complex
geologic media has been limited by the lack of
interpretation tools. It is only within the last few years
that the ability to model and invert complex 3D EM data
is emerging. A key reason for this development has been
the application of efficient finite-difference methods to
the forward modeling problem.

Over the last five years, we have developed
solutions to the 3D EM forward problem for frequency-
domain applications ([1] and {[2]). Progress has
proceeded on several fronts, including the development
of a fast 3D finite difference modeling code for both
dipolar and MT or natural source (plane wave) fields.
Key features of the forward modeling code is its ability to
simulate fields from the propagation to diffusion regime
(radar to inductive EM), the inclusion of the perfectly
matched layer absorbing boundary conditions necessary
to reduce the size of the model domain and accurately
simulate wave propagation, and the ability to model 3D
variations in  electrical  conductivity,  dielectric
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permittivity and magnetic permeability. The modeling
code also includes a static-divergence correction, which
is necessary to insure accurate MT results. In this talk,
we will review our efforts in forward modeling.

THE FORWARD PROBLEM
Theory
Assuming a time harmonic dependence of &'
where i=V-1, the vector Helmholtz equation for the
electric field given by {1] is written here as

V. X l/UVXE + op,(o + ing) E=S ¢y

In this expression the electrical conductivity, magnetic
permeability and dielectric permittivity are denoted by o,
u and £ respectively, where p, is the magnetic
permeability of free space. Specification of the source
vector S, which includes the appropriate boundary
conditions, determines whether dipolar or natural source
(MT) field excitation is to be simulated. For dipolar
source fields we have, for a total-field formulation

S = -iope I, - i Vi X (/10 M), ?)

where J, and M, are current densities for the impressed
electric and magnetic dipole sources, and Dirichlet
boundary conditions are assumed with the tangential
electric ficlds set to zero on the model domain boundary.
Sometimes a scattered field formulation is desired
because of accuracy considerations [2]. In this case we
have

S=-iop[{c-op) + io (e-€p)]Ep-iop, Vix{(p-po)/uH,], (3)

where p designates background or primary values which
are easy and fast to compute, such as a whole space. With
a scattered field formulation the electric field, E, in
equation (1) is replaced by a scattered electric field, E,,
where we impose the boundary condition that tangential
E, be zero on the boundary of the model domain. The
total electric field is then given by the expression E,= E,
+ E,. In order to simulate natural source fields, S is set
to zero everywhere, except at points where tangential
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electric-field boundary values arc specified. These
boundary values arise from vertically propagating plane
waves in layered or 2D geologic media assigned at the
boundaries of the 3D problem.

The modified differential operators in equation
(1) are defined by

V. =i lle, 0/0:+ j 1/e, 0/0,+ k 1/e, 0/0,
and @
V. =i Vh, 6/0,+ j 1/h, 0/0,+ k 1/h,0/0,,

where ¢; and h; for j = x,y,z are complex coordinate
stretching variables which stretch the x ,y and z
coordinates and define the PML absorbing boundary
conditions originally developed by [5], but are in a form
developed by [6] for ease of implementation.

When equation (1) is approximated with finite
differences using the staggered grid due to [7], a linear
system results in which the matrix is complex symmetric.
This system can be efficiently solved iteratively using
Krylov sub-space methods, including the quasi minimum
residual (qmr) method. The reader is referred to [1] and
[2] for the details on how these solvers are implemented.
Once the electric fields are determined, the magnetic
fields can be determined from Faraday’s law, by
numerically approximating the curl of the electric field at
various nodal points and interpolating either the electric
or magnetic field nodal values to the point of interest.

Even with the benefits of a staggered grid,
which implicitly enforces the auxiliary divergence
conditions on the current density,

Vi . {(c+iog) E}=V, .8/ iop,, )

it is often necessary to explicitly enforce this condition
through a static-divergence correction at frequencies
approaching the static limit. The correction adds a term
to the electric field such that equation (5) is identically
satisfied and is alternated with a series of qmr iterations
on equation (1). All the details on how to implement this
correction procedure for either scattered and total fields
can be found in [8], [9] and [10].

MT Simulations

In Figure 1, we demonstrate the 3D code’s
capability to simulate magnetotelluric fields which are
useful in crustal investigations of the earth. The top part
of the figure shows a conductive block, 2 km thick,
residing in an earth with three layers. The 3D results are
plotted at 1 Hz in terms of apparent resistivity and phase,
given by the following formula

P = | E/H flop, ©)
p™ = | EJH, |’ fop, ' @)
and
6™ =tan” [Im(Ey/H, J/ReEy/H,) ] ®)
0™ =tan™ [Im(E./H, )/Re(E/H,)]. )

The notation TE and TM stand for transverse electric and
magnetic and denote responses produced by inducing
electric and magnetic fields perpendicular to the strike
direction of the model. For a half-space model, the
apparent resistivity will equal that of the half space,
while the phase will be 45 degrees. To verify the results,
we have compared the 3D responses with two 2D codes;
one based on finite elements [11] and the other on finite -
differences that we recently developed. In the 2D case the
block model is assumed to possess infinite strike length,
while in the 3D case it is 80 km. Comparisons between
the different codes are quite good. It must be noted that to
obtain accurate 3D results a static divergence correction,
as discussed above, was required for this simulation.
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Figure 1. Comparison between 3D and 2D codes for a
MT simulation at 1 Hz at the earth’s surface.



The Need for PML Boundary Conditions

[1] has shown the need of the PML absorbing
boundary conditions when simulating propagating fields
in the frequency domain. To summarize the results, the
complex stretching parameters are assigned a value of 1
+ a - i b. On the internal portions of the mesh, a = 5=0
such that the modified Helmholtz equation reduces to the
normal form. Near edges of the mesh e; and A; are
allowed to vary over several cells, but only in the
direction that is perpendicular to the boundary. For
example, along the +z boundary e, = e, = h,=h, =1 and
only e, = h, are allowed values of a and b that differ from
zero. Some guidelines for sclecting the PML stretching
coordinates can be found in [1].

Figure 2 shows a simulation where the
horizontal and vertical magnetic field arising from a
vertical magnetic dipole and calculated on a 120 x 120 x
120 mesh for the three layer model is indicated in panel
a). Resistivities of the layers are 1373, 76, 1000 QQ.m and
6, 41 and 1 are their dielectric properties relative to free
space. The thickness of each layer is 1.1 and 0.9 meters.
The 3D results and have been plotted against the 1D
solution based on Sommerfield integrals. It is
immediately evident in panel b) that the 3D solution
without the PML boundary condition begins to break
down at about 15 MHz, and we can assume that this is
due to reflections due to the mesh boundaries
contaminating the solution. Doubling the size of the cells
along the mesh boundaries, that is using real grid
stretching, does not help matters. Panel ¢) shows that
poor results occur when a real stretching parameter a =
1.0 is employed along 25 cells of each boundary.
However, when complex grid stretching is employed the
results are much better. Panel d) shows results that when
a stretching parameter of b = -0.6 is employed along 25
cells of each boundary, the fields calculated with the 3D
solution match those of the 1D solution almost exactly. In
panel €) we demonstrate how absorbing boundaries can
be applied to shrink the size of the mesh. In this case a
72 X 72 X 72 mesh was used along with 5=-2.0 applied
for 10 cells along each boundary. Notice that both the 3D
and 1D calculations coincide. This example fully
illustrates the utility of the PML boundary conditions as
they not only allow one to accurately simulate wave
propagation, but also allow the mesh size to be
significantly reduced and results in much smaller run
times.
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Figure 2. 1D model used to verify the need for PML
absorbing boundary conditions. Note that the magnetic
permeability has been set to that of free space. At the top
of the figure we also have included wavelengths and skin
depths in the respective layers. See text for panel
explanation.
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