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Numerical studies of the nonlinear evolution of coupled magnetohydro-
dynamic — type tearing modes in three-dimensional toroidal geometry with
neoclassical effects are presented. The inclusion of neoclassical physics intro-
duces an additional free-energy source for the nonlinear formation of magnetic
islands through the effects of a bootstrap current in Ohm’s law. The neoclas-
sical tearing mode is demonstrated to be destabilized in plasmas which are
otherwise A’ stable, albeit once a threshold island width is exceeded. A
possible mechanism for exceeding or eliminating this threshold condition is
demonstrated based on mode coupling due to toroidicity with a pre-existing

instability at the q=1 surface.
52.30.Py, 52.65.+z, 52.35.Jb

The performance gains of the last several years in tokamak fusion plasmas has generated
a resurgence in the observation of low helicity magnetic oscillations {1,2]. Often, the onset
of such oscillations either cause a violent plasma disruption [3,4] or significantly degrade
the plasma confinement {1]. Experimental observations indicate that these instabilities are
associated with magnetic reconnection—an interpretation based on the observation of the
slow growth of these instabilities, mode numbers which are resonant in the plasma, and the
presence of flat-spots in the electron temperature profile about these resonant surfaces [1,2].

One theoretical explanation for such modes is destabilization from the perturbed boot-
strap current. Bootstrap currents arise from the viécous damping of the poloidal electron

flow. The viscous damping of the portion of the flow produced from the poloidal projec-




tion of the diamagnetic current when balanced against electron-ion friction yields a parallel
current proportional to the cross-field pressure gradient, i.e., the bootstrap current. In the
presence of a magnetic island, the pressure flattens within the island separatrix when parallel
transport is fast relative to perpendicular transport. The pressure flattening eliminates the
neoclassical bootstrap current within the magnetic island, but a cross-field pressure gradient
remains outside the island separatrix. Since the pressure contours deform due to the island
formation, a perturbed bootstrap current develops. For an equilibrium with dp/dg < 0,
where p is the equilibrium pressure and q is the inverse rotational transform, this perturba-
tion produces a destabilizing effect [5,6,8].

The destabilization mechanism is predicated on the assumption that the pressure equili-
brates on the modified magnetic surfaces. When the island width is small enough, this is no
longer a valid approximation as perpendicular transport mechanisms allow the pressure to
cross magnetic surfaces faster than the pressure can equilibrate on the perturbed surfaces.
When the magnetic island is smaller than a threshold value, the helical perturbation of the
pressure profile about the island is insufficient to destabilize the island. Neoclassical tearing
modes therefore require a seed island.

In reference 9, simulation results demonstrated the instability mechanism for neoclassical
MHD tearing modes, albeit with an initial condition above the nonlinear island threshold.
Experimental evidence suggests that such an initial condition could be stimulated due to
the presence of a a 1/1 sawtooth oscillation [10,11} or an edge localized mode (ELM). In this
communication, the role of mode coupling to a pre-existing instability at the q=1/1 surface
is demonstrated to be a possible mechanism for the creation of the necessary seed island.
The simulations can be interpreted in terms of a set of coupled island evolution equations.

Such coupled island evolution equatibns which incorporate most of the features of neo-
classical MHD can be developed by using a nonlinear Rutherford theory [12] amended to
include neoclassical effects [13] and expanded to handle mode coupling physics [13-15]. The
effects of polarization currents [16] and toroidal shear flow will be ignored, not because they

are not potentially important from the experimental standpoint, but rather because they
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are not included in the numerical simulations. The result is a set of coupled island evolution

equations of the form

dVVz ! Wnpe,i VVz W2

Ei Ay i i 3 cos(d
L = At gy 2 Buaggs cos(#is), (1)

J
where the subscript i refers to a particular island, ¢ has been normalized to the resistive time
(tr = €2R2uo/n), Iy ~ 0.8227, ¢ is the inverse aspect ratio, Ry is the plasma radius, % is
the plasma resistivity, A’ is the stability index from resistive magnetohydrodynamic (MHD)

theory [17], wne; = 9.26€%58. /s, is related to the local bootstrap current,
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€& = €pi, 8i = piqiqi ", B: = —PBog?€ p;. Here, x, and X|| are the perpendicular and parallel

pressure diffusivities respectively, the mode is resonant at p = r/a = p; = r;/a where ¢; =
mi/n;, p; is the pressure gradient evaluated at the resonant surface normalized to the pressure
on-axis, A; is the tearing mode matching parameter, and B, is the normalized pressure on
axis. (Note that the introduction of S is strictly for convenience when making comparisons
with the later numerical simulations, the real dependency is on the unnormalized local
pressure gradient.) The third term in Eq. (1) describes the perturbed bootstrap current
which is typically destabilizing in tokamaks. The novel aspect of neoclassical instabilities is
that magnetic islands can occur even in the limit of resistive MHD tearing stability, A" < 0.
Finally, the Ei,jo2 represents either coupling to another mode which has an island width of
W; or could also represent the width of a vacuaum magnetic island due to a field error. The
inclusion of this term is analogous to the model used for double tearing modes [14] and can
be developed by application of E-matrix theory [13,15]. The factor E; ; is the magnitude of
the coupling between W, and W; and in the absence of rotation is expected to be order the
inverse aspect ratio [13,15]. In principle,. as the summation indicates it is possible for many
such couplings to exist, but in general they are limited to the coupling of poloidal modes with
the same toroidal mode number (e.g., 1/1, 2/1, 3/1, etc.) and also the nonlinear couplings

(1/1, 2/2, 3/3). The factor of ¢;; is a phase factor between two islands and in general may
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be a function of time (differential island rotation), but for the numerical simulations of this
paper can be set to zero.

In the absence of the fourth term (the mode coupling contribution), this model is the
Fitzpatrick model, which is essentially the equivalent of the Qu and Callen model [5] or
the Carrera model et al. [6] in the limit x)/x. — oo, i.e., where the pressure completely
equilibrates on each flux surface. The nonlinear saturation of a standard A’ tearing mode
can also be included, by replacing the A" with A, (1 — W,,:/W;), where Ws;t is the saturated
island width. However, in the case of neoclassical tearing modes, the A’ will in general be
negative and vary little during the island growth.

The dynamics of the island evolution model can be summarized in the simple phase
space diagram of Figure 1 which assumes A’ < 0 and a sufficiently large bootstrap current
so that the neoclassical mode has a region of instability (i.e., wne; > 2W,|A'].) Under the
assumption that W is small (or weak coupling), the model predicts a small island is produced
with a magnitude of Wi,iyen. This implies that the generated seed island is insufficient to
perturb the bootstrap current and that the mode never “enters” the neoclassical regime,
which begins at the threshold condition Wi,csp and which would then lead to the saturated
island of width W,;.

However, if the magnitude of W; is allowed to increase (e.g., it represénts an unstable

mode), the generated seed island of width W; will become of sufficient size so that the mode

passes into the neoclassical regime. In terms of the phase space diagram this represents a

situation when the minimum of dW/dt located between Wy ipen, and Wippesh, €quals zero. An
appropriate criterion can be derived by identification of this point (and also assuming the
saturation is well separated from the threshold vicinity), and is given by
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Note, that this criterion is on the magnitude of the “unstable” mode and not on the mag-

nitude of the “driven” seed island.

As this criterion reflects, the “unstable” mode must achieve an amplitude such that a
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sufficiently large seed island is driven. This sufficient size is dependent on four features
evaluated at the resonant surface of the “driven” island. Each of these quantities has the
potential to vary in time and are represented by, a large bootstrap current (wy.), a large
coupling coeflicient (E;;), a large ratio of parallel to perpendicular transport (wg), and
zﬂso in some sense a small magnitude of A’, though in the case of the latter it should be
emphasized that the expectation is that A’ is expected to be nearly constant and negative.
At this point, it should be reiterated that this model lacks the very important feature of
rotational shear which presumably could significantly decrease the magnitude of cbupling

between the various harmonics and hence the magnitude of any generated seed island [14,7].

The simulation results presented in this paper are based on the neofar code which uses
a set of model equations based on neoclassical reduced MHD [27]. The details of these
equations are described elsewhere [19]. In the simulations, two illustrative cases will be
considered: the case of 2/2 & 3/2 harmonics and the case of 1/1, 2/1, 3/2, & 2/2 harmonics.
In both cases, many additional harmonics and couplings are neglected which is made possible
due to the spectral decomposition in the poloidal and toroidal directions. In principle such
an approximation is not egregious, because such couplings are deemed to be lower order.
The same equilibrium is used for both cases and the equilibrium harmonics are also allowed
to evolve. The equilibrium is arranged so that both the 2/2 and 1/1 harmonics are unstable
at the q=1 surface, though the 1/1 is manifestly more unstable. Also the pressure gradient
is arranged so that it is zero inside the q=1.27 surface so that neoclassical effects will not
modify the dynamics of harmonics resonant at the q=1 surface. The pressure and g-profiles
used in the simulation as a function of the flux coordinate p are presented in Figure 2.

The results for the first case are illustrated in Figure 3. In this case and in the absence
of neoclassical effects, the 2/2 mode grows in amplitude and saturates due to the quasilinear
flattening of the equilibrium current gradient in the vicinity of it’s rational surface. In this
case the 3/2 harmonic is driven to a finite amplitude due to mode coupling and saturates
at a small amplitude relative to the 2/2. The novel part of the simulations is that the

introduction of neoclassical effects causes the 3/2 harmonic to switch (once it reaches a
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sufficient amplitude) from being driven by the 2/2 harmonic to one driven by the perturbed
bootstrap current. However, to achieve this result the Bootstrap current term has been
artificially enhanced by a factor of 100. This is likely not an inherent flaw in the simulations,
but rather is the result of an inability to simulate experimentally relevant ratio’s of x};/x..
At the threshold condition, increasing the magnitude of the bootstrap current by a factor
of 100 is nominally equivalent to increasing the ratio of x;/x. by a factor of 10%.

Some of this difficulty can be overcome by considering a more robust instability as
illustrated in Figure 4 where the 1/1, 2/1, 3/2, and 2/2 harmonics are included in the
simulations. However, the numerical model of the 1/1 dynamics is not strictly correct in
this neoclassical reduced MHD model, principally because the model cannot reproduce a
sawtooth crash. (Resistivity is a constant across the entire plasma extent.) Nonetheless, the
coupling which it produces should still be correct. To artificially produce a sawtooth crash,
additional dissipation is added in the Ohm’s law on the q=1 resonant modes once the 1 /1
harmonic reaches an amplitude of 10™* at it’s resonant surface). The effect of many sawtooth
cycles coupled to very large differences in the growth rate of the 1/1 and the reconnection
rate at the coupled surfaces are not considered here, but are probably also important.

As illustrated in Figure 3 and in the absence of neoclassical effects, the robust growth
of the 1/1 drives the 2/1 harmonic due to the toroidal mode coupling, but also nonlinearly
drives the 2/2 harmonic which in turn poloidally couples to the 3/2 harmonic. At the
sawtooth crash, both the 1/1 and 2/2 modes dramatically decrease as expected from the
additional artificial dissipation. Subsequently the 2/1 and 3/2 harmonics lose their drive
mechanism and also begin to decay.

The more interesting case is when neoclassical effects alter the dynamics of the 2/1 and
3/2 harmonics after the sawtooth crash. (Note that in the first half of the simulation the
neoclassical effects were not on for convenience.) In both cases, the two harmonics are left
in a state above their respective neoclassical thresholds and therefore they continue to grow
in amplitude.

In conclusion, a possible trigger mechanism for neoclassical MHD tearing modes based on
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the 1/1 mode has been demonstrated in a toroidal geometry but in the absence of rotation.
The dynamics of the island evolution can be interpreted on the basis of coupled island
evolution equations. These island evolution equations are used to formulate a criterion,
Eq. (3), on the magnitude of the 1/1 mode for the triggering of neoclassical MHD tearing
modes. |

This research is sponsored by the U.S. Department of Energy under contract DE-FG02-
86ER53218.
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FIG. 1. The phase diagram of a neoclassical MHD tearing mode coupled toroidally to another
unstable mode illustrates that when the coupling is weak, a threshold exists for the neoclassical

tearing mode, but when the coupling is strong, the threshold is eliminated.
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FIG. 2. Equilibrium pressure and g-profiles are arranged so that modes resonant at the q=1
surface are stable to neoclassical effects and modes resonant at q=3/2 and q=2/1 surfaces are

stable to resistive (A') MHD effects.
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FIG. 3. In the absence of neoclassical effects (N.C. off) the 3/2 harmonic saturates at a finite
amplitude due to mode coupling with the 2/2 harmonic. The 2/2 mode is A’ unstable and saturates
due to quasilinear flattening of the equilibrium current gradient. The inclusion of neoclassical effects

(N.C. on) from the perturbed bootstrap current eliminates the pievious saturated state.
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FIG. 4. An unstable 1/1 harmonic drives islands at the q=2/1 and q=3/2 surfaces, which can

reach sufficient size to be above the neoclassical threshold. In the absence of neoclassical effects
these modes decay. The 1/1 sawtooth crash is initiated by additional additional dissipation to the

g=1 resonant harmonics at the crash time.
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