

DR- 1363

FE-496-T2

Distribution Category UC-90d

NOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

R & D REPORT NO. 53

Interim Report No. 9

DEVELOPMENT OF A PROCESS FOR PRODUCING
AN ASHLESS, LOW-SULFUR FUEL FROM COAL

Volume III - Pilot Plant Development Work
Part 2 - Construction of Pilot Plant

Period Covered: June 1972-June 1974

Contract E(49-18)-496

Date Published - May 1975

Prepared for
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
WASHINGTON, D.C. 20545

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

MASTER

DISTRIBUTION OF THIS DOCUMENT UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

This report has been reproduced directly from the best available copy.

Available from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161

Price: Paper Copy \$7.60
Microfiche \$2.25 (domestic)
\$3.75 (foreign)

RESEARCH AND DEVELOPMENT REPORT NO. 53

INTERIM REPORT NO. 9

DEVELOPMENT OF A PROCESS FOR PRODUCING AN ASHLESS, LOW-SULFUR
FUEL FROM COAL - VOLUME III - Pilot Plant Development Work --
Part 2 - Construction of Pilot Plant

Period Covered: June 1972-June 1974

Contract E(49-18)-496

Prepared by:

The Pittsburgh & Midway Coal Mining Company
Fort Lewis, Washington

for

Energy Research and Development Administration
Washington, D.C. 20545

This report provides a summary of the construction of a 50 ton per day pilot plant on a site located at Fort Lewis, Washington. The plant was designed to study the production of a low sulfur, ashless fuel by solvent refining coal. The as-built configuration of the pilot plant is emphasized, and a complete process description is included. Process and design modifications which were made since the original design report was issued are discussed in detail. The report also includes an equipment list, equipment and piping specifications, as-built drawings, and photographs of the plant-site at various stages of construction.

(The data and conclusions presented in this report are essentially those of the contractor and are not necessarily endorsed by Fossil Energy, Energy Research and Development Administration.)

TABLE OF CONTENTS

	Page
I. Introduction	1
II. Discussion of Engineering and Construction Work	3
A. Design Basis	3
B. Plot Plan	3
C. Process Description	4
1. General Process Description	4
2. Area 01 - Coal Receiving, Crushing, Pulverization, and Drying and Slurry Blending..	7
3. Area 02 - Coal Slurry Preheating, Dissolving, and Flashing	9
4. Area 03 - Mineral Separation	13
a. Filter Section	13
b. Mineral Residue Drying	22
5. Area 04 - Solvent Recovery	24
6. Area 05 - Hydrogen Recovery and Recompression	26
7. Area 08 - Product Solidification and Storage	28
8. Data Acquisition System	29
9. Utilities	30
a. Electrical	30
b. Process and Cooling Water	30
c. Plant Air and Instrument Air	31
d. Fire Prevention	31
e. Fuel Gas System	32
f. Steam System	32
g. Waste Disposal System	32
h. Flare and Blow-Down System	33
i. Inert Gas and Hydrogen Generators	33
j. Desulfurization Unit	34
k. Tank Farm	34
l. Seal Flush System	35
m. Dowtherm System	35
n. Solvent Flush System	35
D. As Built Drawings	36
E. Major Equipment	38
F. Construction Summary	38
G. Photographs	38
H. Pilot Plant Design Modifications	38
III. Appendix	
A. Plot Plan	
B. As Built Drawings	
C. Major Equipment List	
D. Construction Milestones	
E. Photographs	

DEVELOPMENT OF A PROCESS FOR PRODUCING

AS ASHLESS, LOW SULFUR FUEL FROM COAL

OCR Research & Development Report No. 53
Contract No. E(49-18)-496

Reporting Plan

Volume I Engineering Studies

- Part 1 Economic Evaluation of a Process to Produce Ashless, Low-Sulfur Fuel from Coal (designated as Interim Report No. 1)*
- Part 2 COG Refinery Economic Evaluation - Phase I (Interim Report No. 3)*
- Part 3 COG Refinery Economic Evaluation - Phase II (Interim Report No. 4)*
- Part 4 Impact of the SRC Process (Interim Report No. 5)*

Volume II Laboratory Studies

- Part 1 Autoclave Experiments (Interim Report No. 6)*
- Part 2 Continuous Reactor Experiments Using Anthracene Oil Solvent (Interim Report No. 7)
- Part 3 Continuous Reactor Experiments Using Petroleum Derived Solvents (Interim Report No. 8)*

Volume III Pilot Plant Development Work

- Part 1 Design of Pilot Plant (Interim Report No. 2)*
- Part 2 Construction of Pilot Plant (Interim Report No. 9)
- Part 3 Pilot Plant Start-up
- Part 4 Pilot Plant Operation

Volume IV Product Studies

- Part 1 Catalysts Tailored for Hydroprocessing of Coal Liquids
- Part 2 An Annotated Bibliography on Mineral Fiber Production from Coal Minerals (Interim Report No. 10)*
- Part 3 Products from Coal Minerals (Interim Report No. 11)*
- Part 4 Sulfur Removal from Coal Minerals (Interim Report No. 12)*
- Part 5 Developmental and Rate Studies in Processing of Coal Minerals (Interim Report No. 13)*

Volume V Process Design for Commercial Coal De-ashing Plant

* Previously Issued

I. INTRODUCTION

The Pittsburg and Midway Coal Mining Company, a subsidiary of Gulf Oil Corporation, signed a contract with the Office of Coal Research, U.S. Department of the Interior, in October, 1966 to design, construct, and operate a pilot plant for removal of ash and sulfur from coal. Although removal of both ash and sulfur are significant features, the process has often been referred to as a coal de-ashing process. In an effort to apply a more descriptive name, the process will be designated as the Solvent Refined Coal Process. The ashless, low sulfur coal product will be called Solvent Refined Coal. The process originated as a result of research work carried out under an Office of Coal Research contract by Spencer Chemical Company, now a part of Gulf Oil Corporation.

The objectives of the current project are (1) to further study and develop the Solvent Refined Coal Process; (2) to provide additional process and cost data for evaluation of the commercial possibilities of the process and for the design of future commercial plants; and (3) to provide large quantities of ashless, low sulfur coal for end-use evaluation, testing, and market development.

On July 10, 1967, the Pittsburg and Midway Coal Mining Company contracted with Stearns-Roger Corporation of Denver, Colorado, to design a pilot plant to carry out this work. The design was completed in 1968 and was reported in detail in Office of Coal Research R&D Report No. 53. (1)

By 1972, funds became available for construction of the pilot plant, however, the lowest cost proposal for construction (by The Rust Engineering Company) was higher than the funds available. For this reason the design of the pilot plant was reviewed, and a number of items were eliminated or modified to decrease costs. In February 1972, a purchase order was issued to The Rust Engineering Company to enable them to proceed with engineering work required to obtain a fixed price for the revised plant design. This engineering work resulted in revised specifications and drawings for the pilot plant and a lower fixed price for the detail engineering and construction of the plant. A construction contract with Rust Engineering, based on the revised project scope, was signed on June 4, 1972. Field work at the plant site started on June 26, 1972.

Construction of several utility sections of the plant was completed in February, 1974, and these sections were accepted by P&M at that time for commissioning. Most of the work outlined in the original construction con-

(1) "Development of a Process for Producing an Ashless, Low Sulfur Fuel from Coal", R&D Report No. 53, Interim Report No. 2, Volume III - Pilot Plant Development Work, Part 1 - Design of Pilot Plant, Prepared for the Office of Coal Research, Department of the Interior, Washington, D.C., under Contract No. 14-01-001-496.

tract was completed by Rust Engineering in July, 1974.

Since the completion of the original design of the SRC Pilot Plant in 1968, developments on several fronts have provided incentives for deletion, addition, or modification of many items of equipment in the plant. Among these developments are included the passage of the Occupational Safety and Health Act and more stringent emission control laws. Changes were also brought about by the need to resolve interferences in the initial design or the need to improve operability. Several changes resulted from analysis of the results of the continuing bench scale research that is being conducted by P&M on the SRC Process. And finally, some modification of the scope of the plant was required because of limited funding.

Areas of the plant which were significantly modified include the coal slurry preheating and dissolving area which was reduced to one preheater and two dissolvers; the mineral residue separation area in which the solvent recovery from the mineral residue was modified and the centrifuges were eliminated; the solvent recovery area in which one of the two vacuum flash drums and the heavy ends tower were eliminated; the desulfurization system which was redesigned; the hydrogen generation unit which was modified to produce synthesis gas or hydrogen; the waste treatment facilities; and the cement plant and coker areas which were deleted. This report includes an up-to-date description of the process and discussion of the design modifications which have been made since the original design report was issued. Areas of the plant design which were not modified are also discussed in complete detail with emphasis on the as-built configuration.

In addition, this report provides a summary of the construction work, as-built drawings, a complete equipment list and specification, and photographs of the plant-site at various stages of the construction.

II. DISCUSSION OF ENGINEERING AND CONSTRUCTION WORK

A. Design Basis

The original design basis for the SRC Pilot Plant was taken largely from the results of early development work by the Spencer Chemical Division of the Gulf Oil Corporation. (2) Product yields and operating condition data from Run No. 50 of that work were emphasized, and the plant was sized to process a nominal coal feed rate of two tons per hour with dissolving of coal in the presence of hydrogen. Subsequent laboratory work indicated that coal may also be dissolved effectively in the presence of synthesis gas, and design modifications have been made to provide this capability in the Pilot Plant.

Since one of the major objectives of the Pilot Plant is the collection of data and information, considerable emphasis has been placed on designing instrumentation and sampling capabilities. Provisions have been made to measure material balances around the entire plant and around each major section of the plant as well as to measure the performance of individual items of equipment. Major equipment has been designed to handle a wide range of operating conditions so that a correspondingly wide range of process information might be developed.

The general ranges of operating conditions which are expected to be used in the Pilot Plant are as follows:

1. Coal Feed Rate - 0.5 to 2.5 tons per hour.
2. Dissolver Pressure - 500 to 2200 PSIG.
3. Dissolver Temperature - 700 to 925°F.
4. Solvent/Coal Ratio - 1.5 to 4 lbs/lb.
5. Liquid Residence Time - 0.2 to 1.8 hrs.
6. Hydrogen Rate - 800,000 SCFD or Synthesis Gas Rate - 600,000 SCFD.

B. Plot Plan

The Solvent Refined Coal Plant, which has a nominal design capacity of 50 tons per day of coal, is located on a site of approx-

(2) Kloepper, D.L.; Rogers, T.F.; Wright, C.H.; and Bull, W.C., "Solvent Processing of Coal to Produce a De-ashed Product", Prepared for Office of Coal Research, Department of Interior, Washington, D.C. under Contract No. 14-01-0001-275, August 27, 1962 to February 1965.

imately 20 acres in North Fort Lewis, Washington. This plant has been divided into a number of separate processing areas, each designated by a number. The general plot plan for the entire plant showing the overall arrangement is given in Appendix A. The plant layout was designed to provide some extra space between areas for safety reasons and to permit future expansion or modification. A listing of the processing areas included is as follows:

Area 01	Coal Preparation Area
Area 02	Preheater and Dissolver Area
Area 03	Mineral Separation Area
Area 04	Solvent Recovery Area
Area 05	Gas Recovery and Recompression Area
Area 06	Future Cement Plant
Area 07	Future Coking Unit
Area 08	Product Solidification and Storage Area
Area 09	Utilities Area
Area 09.1	Process Waste Water Disposal System
Area 09.2	Tank Farm
Area 09.3	Cooling Water
Area 09.4	Boilers
Area 09.5	Hydrogen/Synthesis Gas and Inert Gas Generation and Desulfurization Units
Area 09.6	Control Building
Area 09.7	Shop and Warehouse Building
Area 09.8	Dowtherm System
Area 09.9	Dry Chemical Storage Building

C. Process Description

1. General Process Description

A description of the Pittsburg and Midway Solvent Refined Coal Process as it is to be studied in the plant is given in the following paragraphs. Figure 1 shows a general block flow diagram of the process. Specific details of the design of all areas of the plant are discussed in depth following this general description.

Raw coal is received in Area 01 by rail or truck, unloaded, crushed, and stored in two 350 ton storage bins. The sized coal (3/4" x 0) is then pulverized and mixed with a hydrocarbon solvent with a boiling range of 550° to 800°F. Initially, a blend of petroleum derived carbon black feedstock FS-120, and a coal tar distillate will be used as a start-up solvent. Ultimately, coal derived liquids will replace the start-up blend as process solvent. Design feed rates to the process are 4000 lbs/hr of coal and 12,000 lbs/hr of solvent for a total of 16,000 lbs/hr of slurry. Solvent-to-coal ratios will be varied from as low as 2/1 to ratios as high as 4/1.

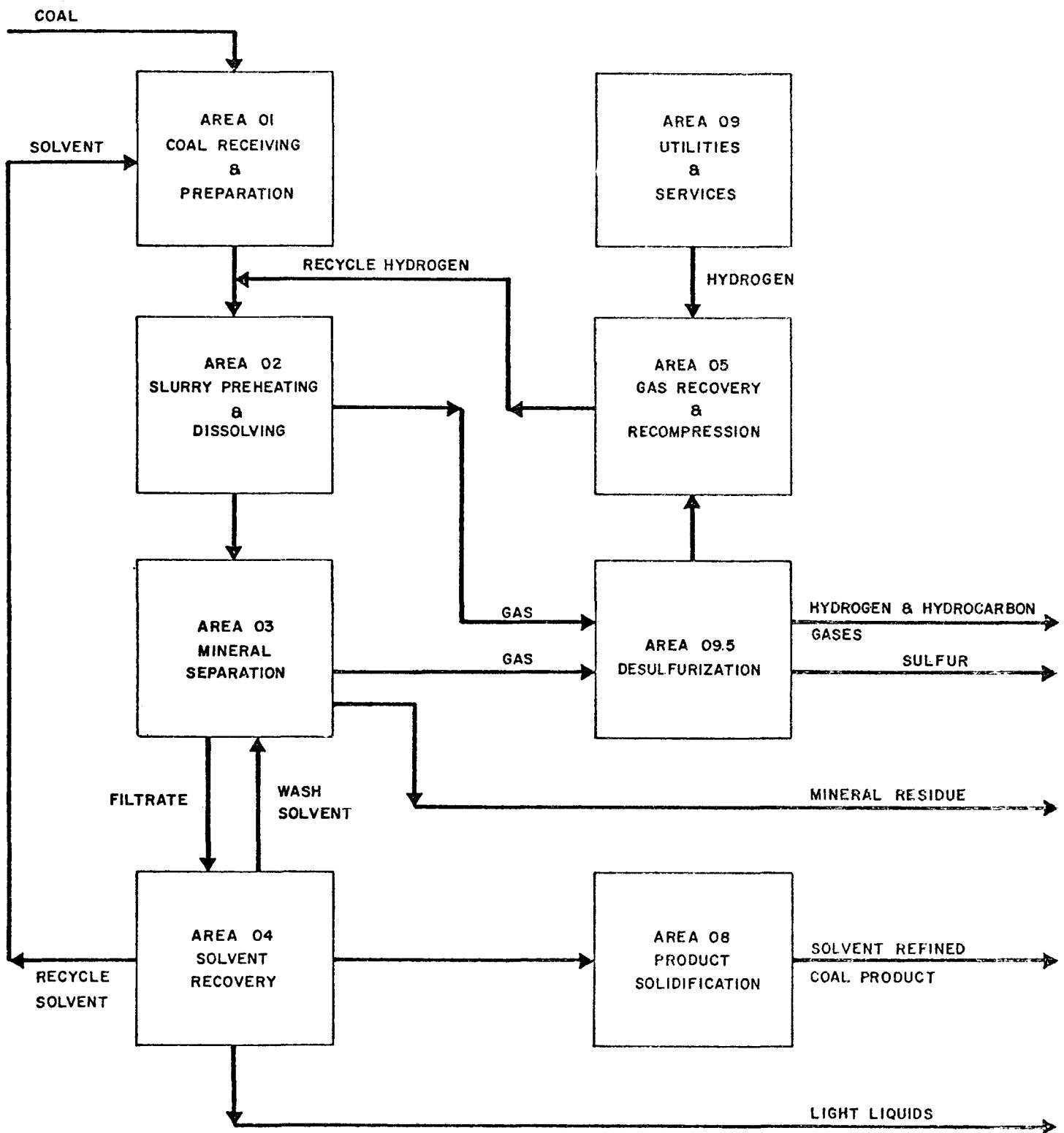
The resulting coal solvent slurry is pumped with reciprocating pumps from Area 01 to the preheater in Area 02. Hydrogen or synthesis gas (hydrogen and carbon monoxide mixtures) and water, is added to the slurry as it enters the preheater. The slurry and hydrogen pass, under pressure, through a natural gas fired preheater to a reactor or "dissolver". In the preheater and dissolver the coal is

depolymerized; dissolution of the coal is accomplished by reaction with hydrogen. The remaining undissolved material consists primarily of inorganic mineral matter in the coal and some undissolved carbonaceous material. Operating conditions in the preheater and dissolver range from 775° to 925° at pressures from 500 to 2000 psig.

Following the dissolver step, the excess hydrogen and gases produced in the reaction (hydrogen sulfide, carbon monoxide, carbon dioxide, methane and light hydrocarbon gases) are separated from the slurry of undissolved solids and coal solution. The excess hydrogen and other gases pass to Area 05 and Area 09.5 where the hydrogen sulfide and carbon dioxide are removed in a diethanolamine (DEA) absorption system. The acid gases (hydrogen sulfide and carbon dioxide) released from the regenerated DEA are then processed in a Stretford sulfur recovery unit for conversion of the H₂S to molten elemental sulfur, which is a product of the process. A portion of the clean hydrogen-hydrocarbon gas stream from the DEA absorber is vented to flare, and the remainder is recycled to the process. Fresh hydrogen from the hydrogen generator in Area 09.5 is compressed and is added to the recycle stream to maintain hydrogen purity in the circulating gas.

The slurry from the gas-liquid separator in Area 02 goes to mineral separation, Area 03, where the solids are separated from the coal solution using either or both of two rotary pressure precoat filters. One filter has a filtering area of 80 square feet, and the other has an area of 40 square feet. These filters consist essentially of a rotating drum inside a pressure vessel. Diatomaceous earth is deposited on a screen stretched around the periphery of the drum using process solvent as the precoat slurry medium. Coal solution is then charged to the filters for the filtration cycle. Hot inert gas is circulated through the filters and filtrate receivers to maintain filtration pressure at approximately 150 psig. Filtration temperature will range from approximately 350° to 650°F.

As the solids are deposited over the precoat on the rotating drum they are sprayed with wash solvent to remove imbibed coal solution. The solids and a small layer of precoat are shaved from the drum during each revolution with a doctor blade. The filter cake, consisting of the undissolved solids and diatomaceous earth, is then taken to an indirect, natural gas fired, rotary kiln for drying and removal of the wash solvent. The wash solvent vapors are condensed, and are pumped to Area 04 for fractionation. The dry mineral residue is cooled with water in an indirect rotary cooler and is stored in a silo.


The solids-free coal solution from the filter goes to solvent recovery, Area 04, where the solvent is removed by vacuum distillation. The heat requirement for the vacuum flash is supplied by a gas fired preheater. The vacuum flash overhead is condensed and is sent to two fractionation columns for separation into a light oil fraction, a

wash solvent fraction, and the process solvent for recycle to Area 01, slurry blending.

The vacuum bottoms stream (Solvent Refined Coal) is the principal product of the process. SRC from the vacuum tower may be solidified on a water cooled, stainless steel cooling belt or may be formed into prills in a prilling tower. The solidified product is then sent via conveyors and elevators to product storage in Area 08.

Operation of all important areas of the Pilot Plant is monitored by a computer data acquisition system. The computer is connected directly to process sensors such as thermocouples, flow meters, pressure transmitters, and chromatographs which measure process conditions. Values of all of these parameters will be constantly recorded, averaged, and used as the basis for engineering calculations of process performance. Input and output devices of the computer are located in the plant control room to provide for rapid access of current information by plant personnel. Permanent records of plant performance are also produced to aid long-range process development.

FIGURE I
Pilot Plant Block Flow Diagram

2. AREA 01 - COAL RECEIVING AND SLURRY BLENDING

The Coal Receiving and Slurry Blending Area consists of conveyor belts, bucket elevators, a coal crusher, storage bins, a dry pulverizer, a dehumidification system, and facilities for blending pulverized coal with process solvent. The area has been designed to receive the coal that will be charged to the remainder of the plant and prepare it for processing.

Coal can be received by rail or truck. It is dumped into a receiving hopper under the railroad siding. The maximum size of the coal is limited by the 3" x 6" openings in the grating covering of the receiving hopper. Ordinarily, the coal will be received in open top hopper cars of 70 to 100 tons capacity. Since the receiving hopper is a single hopper construction, it will be necessary to unload a single compartment at a time. A car puller is provided to position the cars as necessary.

At the base of the receiving hopper is an oscillating track hopper feeder which delivers the coal to a belt conveyor at a 35 TPH rate. As the belt passes under a metal detector, tramp metal is removed. The belt discharges directly into a primary crusher which reduces the coal to 3/4" size for storage. The crushed coal discharges into a bucket elevator which carries it to a shuttle conveyor. The shuttle conveyor can discharge the coal into either of two storage bins. The storage bins will each hold 350 tons or the equivalent of about one week's supply each at the maximum feed rate of two tons per hour.

The coal can be transferred either automatically or manually to the surge bin which supplies coal to the pulverizer system. The nominal rate for transfer of coal to the surge bin is 9 TPH. Separate feeders and duct work are provided for each storage bin. The feeders are variable speed driven belts which discharge the coal into diverter chutes, directing the coal to either the reclaim conveyor or to the crushed coal surge bin. The coal going to the surge bin is raised by a bucket elevator for gravity drop into the surge bin. High and low level switches are installed in the bin for automatic operation. When automatic mode is selected the feeder, elevator, etc. will automatically start and stop to maintain the proper coal feed level.

Proper setting of the chute diverter will transfer the coal to the reclaim conveyor belt. The belt delivers the coal to a bucket elevator which raises the coal for gravity flow to either a railcar or a truck for removal from the plant.

A dust collection system collects dust-laden air from various points in the unloading and storage system up to and including the crushed coal surge bin. The dust-laden air is filtered in a baghouse and is released to the atmosphere. The fines are returned to the surge bin bucket elevator.

Coal from the surge bin is weighed and is fed into the dry pulverizer by a variable speed gravimetric feeder which automatically controls the desired feed rate of 4800 lbs./hr. or less. The weighed coal drops into the pulverizer through a rotary valve which restricts the inert gas loss from the grinding system.

The dry pulverizer is a ball and race type mill which simultaneously grinds the coal to the desired size and dries the coal to a 1-3% moisture level. As the coal is ground in the mill, a hot recirculating inert gas stream dries, classifies, and then conveys the coal from the mill. The inert gas entrained coal is separated in a baghouse dust collector. A reverse gas jet device releases the coal from the bags. The pulverized and dried coal then drops through a rotary valve into a dust scrubber and venturi where it is slurried with solvent. The volume of solvent used is automatically controlled to maintain a desired ratio with the weight of coal fed into the pulverizer.

The dust-free gas leaving the baghouse is contacted with a recirculating cool water stream in the dehumidifier. Water removed from the coal is condensed and separated here. The dehumidified inert gas is recompressed, reheated, and returned to the pulverizer. The recycled inert gas rate is controlled to produce the desired particle size and mill loading. The oxygen content of the recycle stream is continuously monitored, and make-up inert gas input is controlled to maintain a low oxygen concentration. Heat is added by an indirect fired heater to maintain a fixed pulverizer outlet temperature.

The slurried coal from the venturi is accumulated in a slurry blend tank. The slurry is maintained in suspension by both continuous recirculation and mechanical mixing. High pressure reciprocating feed pumps with variable speed motors are fed from the recirculation line. These pump the slurry into the preheater and disposer system. A flow controller varies the pumping rate as necessary to maintain a constant flow. The slurry level in the blend tank overrides the flow controller if necessary to maintain a minimum level in the blend tank.

The reciprocating pumps are equipped with variable speed drives which can be automatically or manually controlled. Normally both pumps operate in parallel, although each pump has sufficient capacity to handle the entire input to the plant if necessary. Generally, the speed of one of the pumps is set manually from the control panel, while the speed of the other is controlled by the flow rate of slurry to the preheater. Either pump can be controlled by either of these methods. This arrangement has been provided so that either pump can be speeded up to compensate for failure or partial failure of the other pump. In order to further alleviate possible plugging problems in the feed pumps, an emergency solvent system has been provided to allow the operator to inject solvent into the suction side of either pump at any time by operating a pushbutton.

3. AREA 02 - COAL SLURRY PREHEATING, DISSOLVING, AND FLASHING

The preheater and dissolver area includes the slurry preheater, two dissolvers, and auxiliary equipment such as the high pressure and intermediate pressure vessels for separation of liquid and vapor products. The entire dissolver area has been designed to carry out the hydrogenation-solution process at pressures as high as 2000 psig and at temperatures as high as 925°F. The coal slurry enters Area 02 via the high pressure slurry pump discharge in Area 01.

Hydrogen is added to the coal-solvent slurry immediately before the inlet to the preheater. The hydrogen stream normally consists of recycle plus fresh hydrogen. In such cases, the hydrogen stream fed to the preheaters contains methane and other light hydrocarbons in addition to the hydrogen. The purity (hydrogen content) of the total hydrogen input stream will generally be in the range 70 - 85%, although this will be studied as a variable in the process. The hydrogen rate is regulated by a flow control loop to give a constant rate of hydrogen input to the process.

All of the heat input to the solution process, including that required for the endothermic heat of reaction, takes place in the preheater. There is no significant heat input to the dissolvers, although they are insulated and provided with electrical heat tracing to avoid excessive heat losses and to assist in startup.

Previous work had indicated that the slurry would go through a gel stage during the early phases of the solution step, probably while it is passing through the preheater. To allow for this effect, the slurry pumps and furnace were specified to be able to handle unusually high pressure drops. In addition, provisions have been made to measure the temperature and pressure at a number of points in the heater, so that significant information can be obtained on heat transfer, pressure drop, and viscosity changes throughout the preheater during Pilot Plant operation.

It is anticipated that coking in the furnace tubes may be a problem, particularly at some low solvent-to-coal ratios, at high temperatures, and during stoppage of liquid flows. To minimize the possibility of coking in the tubes, the specifications for the preheater limit the heat flux to a maximum of 10,000 BTU per hour per square foot of inside tube area. Equipment has been provided in the design for removal of any coke deposits by combustion with steam and air. It is expected that coking will be detected by pressure drop changes early enough to permit the use of this technique.

A high pressure solvent line has been provided at the outlet of the slurry feed pumps to permit washing the coal slurry out of the preheater and the adjoining feed lines in case of failure of the slurry feed pumps. The high pressure solvent can be introduced to the

feed line by operating a pushbutton located in the control room. This opens a solenoid valve and allows instrument air to open a control valve in the solvent line. The solvent is supplied at a pressure of 2800 psig from the process solvent accumulator by a high pressure reciprocating pump. This pump is started by the same pushbutton used to open the solenoid valve. No provision has been made to heat this high pressure solvent as it will be used on an emergency basis only, and the cold solvent will, in this case, help to cool the preheater.

The slurry preheater has been designed with certain combustion safeguards and emergency shutdown systems. These are as follows:

- A. In the event of a high stack temperature (most often caused by uncontrolled combustion or a ruptured furnace tube) a Type I shutdown would take place. A Type I shutdown automatically initiates the following actions:
 1. An alarm sounds in the main control panel, with the source of the trouble indicated on an annunciator panel.
 2. The slurry feed pumps are shut off.
 3. Solenoid valves are actuated to cut off the flow in the fuel gas line, the hydrogen supply line, and the transfer line from the preheater outlet to the dissolvers. The latter valve insures that large quantity of hydrogen and slurry in the dissolvers does not rush back into the preheater in the event of a severe loss in pressure from a ruptured tube.
- B. If the slurry outlet temperature reaches a specified upper limit, a Type II shutdown occurs. This type of shutdown automatically shuts off the main fuel gas supply to the heater. In addition, an alarm sounds in the main control room, while the source of the trouble is indicated on the annunciator panel.
- C. Each pilot burner is equipped with an ultra-violet flame detector. In the event the pilot flame goes out, the safety shut-off valve for that particular pilot and main burner automatically closes.
- D. A steam line has been provided to supply 200 psig snuffing steam to the firebox. The snuffing steam is activated by either one of two pushbuttons located at the main and the local control panels. These pushbuttons open a solenoid valve in the air supply line to a control valve, which in turn opens to let steam into the firebox. The steam purge remains activated until manually shut off.

- E. A high inlet temperature switch actuates a system which closes a block valve downstream of the HP slurry pump and closes a block valve in the water injection system. A high inlet temperature indicates a pump discharge valve failure or other malfunctions in the preheater feed system allowing a backflow through the preheaters.

As the hydrogen-slurry mixture passes through the preheater, some solution of coal takes place, but the dissolvers are necessary to allow time for complete solution of the coal. The dissolver configuration selected for the pilot plant consists of two vertical tubes in series. Each of the two dissolvers has an inside diameter of 24 inches and is 30 feet high. The dissolvers are clad vessels, with a shell of 2-1/4% chromium - 1% molybdenum steel and a 3/16" lining of stainless steel which was applied by a weld overlay technique. The overlay consists of a 3/32 inch layer of 309L covered by a 3/32 inch layer of Type 347 stainless steel. The normal outlet for each dissolver is at the top (inlet at bottom), but the first dissolver has an additional outlet in the center (must be separately piped) to provide for operation at very low residence times. The second dissolver (Dissolver "B") can be bypassed, allowing a four fold variation in reactor volume. Since the pumping rate can be varied from about one-third to full capacity, a twelve-fold variation in residence time is possible in this system. The total dissolver volume has been specified to allow a liquid residence time of about 0.6 hours at the nominal charge rate of two tons of coal per hour with a 3 to 1 solvent to coal ratio. This is in addition to the estimated volume occupied by the gas as it passes through the reactor.

Additional equipment has been provided through the plant to provide synthesis gas instead of hydrogen for additional experimental work. A high pressure water injection system has been provided for use with the synthesis gas experiments. Normally hydrogen will be used without using water injection.

The dissolvers are each provided with a safety relief valve of the type which automatically resets when the excess pressure is relieved. In addition, the first dissolver is provided with a pressure control valve which will open to relieve the pressure with much less of an upset than would occur with a relief valve. The control valve is actuated by a pressure switch which opens a solenoid valve in the air line operating the control valve. Normally the control valve operates to relieve excess pressure, but in case of a severely excessive pressure, the relief valve can also operate. The excess pressure control valve and all relief valves discharge fluids to the flare system.

The effluent from the dissolvers is partially cooled by an air-cooled heat exchanger, and then it goes to a gas-liquid separator (high pressure flash drum) which is maintained at 550°F. The primary reason for holding the high pressure separator at this temperature is to keep the slurry of coal solution and undissolved solids hot enough to allow it to flow freely. Furthermore, there are some indications from earlier work that cooling the slurry and then reheating it prior to filtration can result in some repolymerization of the coal product.

The vapor from the high pressure separator is cooled to 250°F temperature by an air-cooled heat exchanger, is further cooled to 100°F by a water-cooled condenser, and then goes to the recycle condensate separator. The vapor from this separator consists of unreacted hydrogen and light hydrocarbons, mostly methane. The pressure of the entire preheater-dissolver system is controlled by a pressure control valve in the vapor line from the recycle condensate separator. After passing through the control valve, the gas goes to the hydrogen recompression and recovery area.

The liquid from the recycle condensate separator consists of essentially all of the water produced in the reaction, some light hydrocarbon liquids, and a small part of the process solvent. There is some possibility of an emulsion being formed here, but even if there is a distinct phase separation, the density of the liquid may vary from slightly higher than to slightly lower than that of water. For these reasons no attempt has been made to separate the water at this point. This entire stream goes to the flash condensate separation system in Area 03.

The hot slurry in the high pressure flash drum goes through a liquid level control valve to an intermediate pressure flash drum which is maintained at 550°F. The vapor from this drum, consisting largely of light hydrocarbons and hydrogen, goes through a pressure control valve to the flash condensate separator in the mineral separation area. The slurry in the intermediate pressure flash drum goes through a liquid level control valve to the filter feed tank in the mineral separation area. This slurry consists of most of the original solvent, the dissolved coal, and the undissolved coal solids. The intermediate pressure flash drum serves two general purposes: (1) it divides the liquid pressure reduction step into two stages thereby reducing valve wear; and (2) it provides a means of obtaining additional equilibrium data.

4. AREA 03 - MINERAL SEPARATION

The purpose of the Mineral Separation Area is to separate all undissolved solids from the coal solution slurry received from the Dissolver Area. The clarified solids-free coal solution is sent to the Solvent Recovery Area where the solvent used and made in the process is separated from the coal product. The solids removed from the coal solution are further processed in a mineral residue dryer to recover any included solvent and produce a dry solids material for disposal.

In the following discussion, Area 03 has been divided into two sections; the Filter Section and Mineral Residue Drying Section. This division was made to segregate the two operations which are widely different in type of procedures.

a. Filter Section

The slurry feed to the mineral separation system consists of the dissolved coal solution, the undissolved solids, and some light hydrocarbons produced by the hydrogenation reactions in the dissolver. Most of the light hydrocarbons produced in the dissolver, as well as the excess hydrogen and a small part of the process solvent, are separated in the dissolver area and do not reach the mineral separation area. The slurry may also contain some dissolved H₂S, although most of the H₂S is separated in the dissolver area.

The properties of the slurry make the removal of undissolved solids a very difficult separation step. First, the solids are very fine, ranging from about one micron to about 20 microns in size, with probably most of the solids closer to the one micron size. Separation of such fine particles requires the use of a filter aid such as diatomaceous earth. In addition, the filtering surface must be continuously renewed as the filter aid becomes blinded by the fine solids. This means that a rotary precoat filter is the only type of filter which can be considered for this separation.

Another factor which makes the separation a difficult one is the very high viscosity of the coal-solvent solution at ambient temperatures. From previous work, it appears that a temperature in the range of 350°F to 650°F is required to decrease the viscosity sufficiently to attain any reasonable separation rate. In order to minimize vaporization of the solvent at such high temperatures, it is necessary to operate at a pressure of about 100 psig to 200 psig.

Filtration experience at the pressures and temperatures needed is very limited. Therefore, the pilot plant must be considered as a development unit. The plant design and operating procedures will require revision as experience is developed. For ease of description, this section on filters is divided as follows:

1. Feed System
2. Condensate System
3. Filter System
4. Precoat System
5. Filter Cake Removal

Feed System

The slurry consisting of coal solutions and undissolved mineral residue flows from the Slurry Preheating and Dissolving Area into a filter feed flash vessel. The vessel is equipped with a mixer to keep the solids in suspension. In addition, the slurry is continuously recirculated by a pump through a Dowtherm exchanger. The exchanger provides the heat to maintain the slurry in the feed vessel and the filters at the desired temperature level, which is usually between 500 and 700°F)

Although the coal solution has been previously flashed, some additional flashing of light ends will take place in the filter feed flash vessel. The vapor released is let down through a control valve to the condensate system. The pressure of the feed flash is maintained at approximately the same pressure as the filtrate receivers. This minimizes flashing in the filter system. The pressure control system is a split range controller, and if the volume of vapors released is insufficient to maintain pressure, inert gas will be let in to hold the control pressure.

The volume of slurry which will pass through the filters will vary continuously depending on many variables. To provide a workable system, the feed flash vessel is large (about 2000 gallons) and will provide about one hour's surge volume. In addition, a filter feed surge vessel (about 12,000 gallons) will hold approximately seven hour's surge at maximum rates.

The filter feed flash vessel is generally operated about one-half full. When production of dissolved coal slurry exceeds filtration capacity, a slip stream is taken from the discharge of the filter feed flash recirculation pump and is sent to the surge vessel to hold the level on the feed flash vessel on level control.

The surge vessel is normally operated at 20 psi lower pressure than the flash vessel. This differential is necessary in some instances to provide a driving force to return solution from the filters during startup or sluicing. The pressure is maintained by a split range pressure controller which will add or release inert gas as needed. The surge vessel is equipped with a mixer to maintain the solids in suspension, and, if needed, the discharge pump can also be used to recycle the solution. The surge vessel is heated electrically to overcome heat losses while holding a 500°F to 700°F temperature level.

Feed to each filter is supplied by individual filter feed flash discharge pumps. However, these services can be altered if desired. The volume of feed to each filter is flow controlled. The rate is normally more than the filter can handle and the excess is returned on level control. The excess rate not only provides a positive level control (filter submergence), but also provides a means of keeping the filter hot. The excess returns to the filter feed flash system where it is reheated by the Dowtherm exchanger.

Several alternatives provide operating flexibility:

- a. The surge vessel discharge pump can feed to the filters directly if this should be necessary due to pump breakdown.
- b. The surge vessel discharge pump and the feed flash discharge pumps can feed directly to the vacuum flash.
- c. The vacuum flash feed accumulator contents can be returned to the surge vessel. This is particularly useful if some dirty material should get through the filters.
- d. The surge vessel can generally accumulate any flushing material until it can be reprocessed.
- e. Wash solvent can be added to the filter feed on flow control should it be desirable to investigate the effect on filtration rate of dilution with a light solvent.

Condensate System

The vapors released from the filter feed flash combine with the liquid separated in the intermediate pressure flash of the dissolver areas and pass through a water cooled exchanger into the Flash Condensate Separator #1. The combined stream contains hydrocarbon liquids and water. The gravity of the hydrocarbon liquids can be such that in some instances it may be heavier than water, yet at other times it may be lighter than water. In Separator #1, the heavier than water hydrocarbons are separated from water and lighter hydrocarbons. The heavy hydrocarbons are then sent to the light ends column feed tank in the solvent recovery area. The bottom drawoff is automatically controlled by a level control device which is calibrated to sense the difference in gravity.

The water and lighter hydrocarbons flow over a weir in the separator and flow by gravity to the Flash Condensate Separator #2.

In Separator #2, water is separated from the lighter hydrocarbons. The water drawoff from the bottom of the separator is automatically controlled, and the water is sent to the recycle process water tank. A level control device senses the gravity of the liquid and allows only water to pass out the bottom. The light hydrocarbons are withdrawn automatically on level control and flow to the light ends column feed tank along with the heavy hydrocarbons from Separator #1.

The vapors separated in both separators are released under pressure control and can be further treated in the Desulfurization Unit or sent directly to the flare.

The water accumulated in the recycle process water tank is recycled by means of the water booster pump back to the coal slurry feed if desired. Provisions are made for using treated water or raw water if needed to reduce salt concentration. The booster pump is equipped with a control to regulate the volume recycled. Any process water not used is pumped by the recycle water pump through a level control valve to the waste incinerator. Pressure is maintained on the water tank by means of a split range pressure controller using inert gas and venting to the flare.

Filter System

Two rotary pressure precoat filters have been provided to handle filtration of the slurry of coal solutions and undissolved solids. One filter has a total filtering area of 80 square feet while the other has an area of 40 square feet. The two different filter sizes are necessary to provide the flexibility required to explore the effects of conditions on rates and yet maintain a capacity suitable for obtaining useful data. The actual filtration rates obtainable are dependent not only upon the conditions of filtration, but also on the conditions maintained in the dissolvers. It is expected that at some experimental conditions the filter rates may be less than 50 pounds per hour per square foot of area, while at other conditions the rates will be greater than 200 pounds per hour per square foot of area.

The filters have been specially designed for this process by Goslin-Birmingham Corporation of Birmingham, Alabama, in cooperation with P&M engineers. Both filters are of the same design and have the same drum diameter (6 feet). The only difference between the two filters is drum width. One filter has a drum 4 feet wide while the other filter drum is 2 feet wide.

The filters consist essentially of a rotating drum inside a pressure vessel. Filter cloth is stretched around the periphery of the

drum and is normally precoated with a three to six inch layer of diatomaceous earth. A sharp blade is provided to shave off a thin layer of the precoat, together with the solids collected, as the drum revolves. The knife is adjustable to give a cutting rate of 1 to 12 thousandths of an inch (mils) per revolution. An indicator dial is provided to give an indication of the distance of the knife blade from the drum. A switch is provided to automatically stop the knife advance at a minimum distance from the drum. Although the knife advance rate is adjustable, a manual calibration will be necessary.

The filter has been designed to operate at any drum submergence level between 0 and 50%, although a 50% submergence level is considered normal. Two separate methods of level control are provided. The first method will use a bubbler type level control and a level control valve. The second method uses overflow pipes located at 30%, 40%, and 50% submergence. The first method is the normal method of level control to be used in the pilot plant. It has the advantage that the feed system pressure control is not dependent on the filter pressure. In addition, the flow rate of liquid returned to the feed system can be measured. The second method, if used, depends upon gravity flow only and therefore limits the filter vat pressure to the pressure of the feed system.

At a submergence level of 50%, about half of the bearing area supporting the drum is covered with liquid. To keep small solid particles of the slurry out of the bearings, a seal is provided at each edge of the bearing system. In addition, a pressure lubricating system provides a positive pressure and a small flow of lubricant through the seal to help keep the process fluid away from the bearing.

The speed of drum rotation can be manually changed from the highest speed of one minute per revolution to the slowest speed of 12 minutes per revolution. The fastest speed is normally used during precoating. The optimum speed for normal operation is one of the factors to be determined by plant operation studies.

The filters are designed for a maximum operating pressure of 200 PSIG at an operating temperature of 700°F. However, for practical purposes, the maximum operating pressure should not exceed 190 PSIG since the system relief valves are set at 200 PSIG.

Each filter is provided with three spray headers equipped with nozzles for washing the filter cake with hot wash solvent as it emerges from the liquid. The spray headers are spaced around the top of the filter so as to cover all of the drum above the level of the filter except that portion adjacent to the scraper knife. The three spray headers are fed by independent pipes so the effectiveness of each header location can be evaluated by using only one header at a time. The wash solvent should displace coal solution from the layer of mineral residue and precoat. It is expected that excess wash solvent will be drained off before the solids reach the scraper knife. Two other spray nozzles, also fed by independent pipes, are located above the scraper knife. These will not normally be used, (to avoid excessive wetting of the dry

solids) but are available if intermittent washing of accumulated solids from the knife is necessary. The wash solvent in the latter lines is supplied at room temperature.

The wash solvent for the filters is a light liquid fraction derived from the process, (initially a light fraction from the start-up solvent). The wash solvent for the filters must have a boiling range high enough so that most of it remains in the liquid phase at the maximum temperature of the filter (about 700°F). On the other hand, the wash solvent must be light enough to be readily removed from the mineral residue during the drying step. While the optimum boiling range for the wash solvent is not yet known, it is expected to be about 450 to 550°F.

Wash solvent is pumped to the filters from the wash solvent accumulator which is located in the solvent recovery section. It is normally heated in a Dowtherm exchanger to the temperature of the filter, with temperature control provided by a control loop on the Dowtherm circulation. The flow rate of hot wash solvent to the filter is controlled at a fixed rate for each filter.

To permit removal of the precoat "heel" (the thin layer of precoat remaining after the precoat has been cut to a minimum thickness) a sluicing nozzle has been provided in the filter. Process solvent from the solvent flush system flows through a connecting line to this nozzle to wash off any precoat remaining on the filter screen. This connection can also be used for removal of precoat and flushing of the system during an emergency or an unplanned shutdown.

Several other devices are provided in the filter:

- a. An internal agitator is provided to stir the vat beneath the filter drum. It is a rocker type agitator with an adjustable speed from zero to 26 revolutions per minute. The agitator must be removed if a precoat cake of more than 3 inch thickness is used.
- b. A screw feeder is provided to convey the cake cut by the knife to a central outlet. The screw turns at a constant rate of 60 RPM.
- c. Observation ports are provided to admit light and observe the condition of the filter cake and knife. The ports are equipped with wash nozzles which can inject short spurts of solvent to clean the inside of the ports. An inert gas pressure is maintained between the two panes in each sight port to reduce the pressure drop across each pane.

Heat is supplied to the filters by recycling feed back to the filter feed flash vessel where it is reheated by the Dowtherm heater. Additional heat is provided by the hot wash solvent and the hot filter gas recycle. The filter vats are also electrically traced and insulated.

A hood is provided over each filter to collect any escaping gas. Some filter gas will continually escape through the various drive packings. An exhaust fan is provided for the hoods.

The filter feed enters the filter vat, where a selected level is maintained. The liquid is forced through the filter aid by the difference in pressure between the outside and inside of the drum. This pressure difference is maintained by the gas recycle system. Gas also passes through the filter aid through the surface above the liquid level. The solids collect on the surface of the precoat. As the solids cake passes through the vapor space, a wash solvent is sprayed on it to wash the coal solution from the cake. The filter gas passing through the cake forces the majority of the liquid out of the cake and into the drum.

The mixture of liquid and gas goes to the appropriate filtrate receiver (one for each of the two filters). The filtrate receivers are cone-bottom vessels which minimize the retention of solids. The filtrate receiver does not normally contain solids, but some solids could be present at times from filter aid passing through the screen at the beginning of precoating operations, or possibly from slurry breaking through the filter screen. If solids are retained in the filtrate receiver they could later cause contamination of normally clean product.

Liquid product is pumped from the two filtrate receivers by three centrifugal pumps. The three pumps are connected so that any pump can be used with either of the two receivers. The liquid is normally pumped to the vacuum flash section of the solvent recovery area. Alternately the liquid can be pumped back to the precoat slurry tank (during precoating), to a filter, to the filter feed tank, or to the filter feed surge tank. In all cases the rate of flow from the filtrate receivers is controlled by a level control loop.

Pressure control in the filtration system is maintained by circulating a stream of inert gas through the filters. Two separate inert gas systems are provided, one for each filter. The two systems are essentially identical except for a size variation corresponding to the difference in size of the filters. Inert gas is used to minimize explosive hazards. Make-up inert gas is added to the system through instrument purges and through a purge in the filter cake outlet stand-pipe.

The gas circulating in each system always goes through the same filter whether the filter is being precoated or whether it is in normal operation. Consequently, the pressure drop through the filter will not be disturbed or upset when the filter is switched from precoating to normal operation and back again. This should minimize the chance of filter cake damage due to pressure fluctuations. In addition, the separate gas circulation systems will make it easier to obtain good material balances when the filter in operation is switched in the middle of a run. The filter gas always contains the quantity of hydrocarbon

vapor which corresponds to equilibrium conditions in the filter.

The filter gas leaves the filter along with the filtrate through the screen and the main filtrate outlet. The gas and liquid are separated in a filtrate receiver which is maintained at about the same temperature as the filter. The filter gas is then cooled by a series of heat exchangers, the last one water-cooled, to condense normally liquid hydrocarbons.

The cooled gas mixture goes to a gas compressor scrubber. The pressure on this vessel (essentially the downstream pressure for the filtration step as well as the compressor suction pressure) is maintained by bleeding a small side stream of the gas to the flare system. The hydrocarbons condensed prior to entering the compressor are returned to the filter gas after the gas has been recompressed. The gas is reheated in a series of heat exchangers, the last one Dowtherm heated, to the filter temperature before it is returned to the filters. The initial heating takes place by exchange with the hot gas from the filtrate receiver. The liquid hydrocarbons are revaporized in these heat exchangers so that the stream again contains an equilibrium quantity of hydrocarbon vapors.

After re-saturation, the filter gas goes to a vapor surge drum before entering the filter. This surge drum provides additional capacity in the system to help minimize pressure surges and upsets that could break up the filter cake. The pressure at this point is regulated by a pressure control valve on a bypass line to the suction side of the compressor. Enough filter gas is bypassed through this valve to control the upstream pressure on the filter at the desired level.

Precoat System

Because of the extremely fine solid particles to be filtered, it is necessary to use a filter aid such as diatomaceous earth on the filter screen. The filter aid rapidly becomes blinded with the fine particles, however, and the solids plus a thin layer of precoat must be continually removed to maintain a reasonable rate of filtration. The precoat is initially deposited by mixing a commercial diatomaceous earth filter aid with the process solvent and filtering the resulting slurry. The precoat system consists of a precoat receiving tank, a pump to transfer the precoat-solvent mixture to a precoat slurry pressure vessel, a pump to circulate the precoat slurry from the pressure vessel through a Dowtherm heat exchanger and back to the vessel, and a pump to transfer the precoat slurry to the filters. Both slurry mixing vessels are equipped with mixers. The pumps are all rotary gear pumps which were selected in preference to centrifugal pumps to minimize fracturing of the precoat by the highly turbulent action of a centrifugal pump.

A slipstream from the circulating pump is cooled in an aerial cooler followed by a water cooled exchanger and flows continuously (while mixing precoat) to the precoat mixing tank. Dry precoat is added manually to a bucket elevator, which dumps the precoat into the top of the precoat mixing tank. Here the precoat is mixed with the cold process solvent to a high concentration. It is anticipated that the highest con-

centration which can readily be pumped will be used for this tank. This mixture is then pumped to a precoat slurry pressure vessel. The major purpose of this vessel is to prepare a slurry for precoating and to allow for heating it to the filtration temperature. It is necessary to precoat the filters at about the same temperature and pressure as used in the actual filtration step to avoid breaking up the precoat layer by expansion or contraction due to temperature or pressure changes. The process solvent in this tank is maintained at the desired temperature (500 to 700°F) by circulating the solvent (or precoat slurry) through a Dowtherm heat exchanger and back to the precoat slurry pressure vessel. The temperature is controlled by a temperature control valve in the Dowtherm line. The rapid circulation through the heat exchanger also helps to keep the precoat thoroughly mixed with solvent.

The concentration of the precoat slurry in the precoat slurry pressure vessel is expected to be about 2% initially. This is the concentration generally recommended by filter and filter aid manufacturers for precoating. During precoating this slurry is pumped to the main inlet line of the appropriate filter. The rate of gas circulation required through the filter to provide sufficient pressure drop for initial deposition of precoat is higher than the normal gas circulation rate. Initially all of the compressor discharge may be required to provide the pressure drop.

The process solvent is separated from the circulating gas in the appropriate filtrate receiver and is returned to the precoat slurry pressure vessel. The return flow is regulated by a level control loop on the liquid level in the filtrate receiver.

A base coat of asbestos fiber is deposited on the drum before precoating to prevent the fine particles of precoat from wedging in the filter screen. This asbestos fiber base coat can be added in the same way as the precoat, and an attempt will be made to do this. The major problem with this approach is that the long asbestos fibers may become a contaminant for the main precoat layer. In this case they would interfere with uniform cutting of the precoat. To avoid such contamination, an alternate method for addition of the fibers has been provided. This consists of a small feed tank attached to each of the main filter outlet lines. This feed tank is equipped with connections for venting and for pressurizing a concentrated slurry directly into the filter system. Although this slurry would be fed cold, the quantity is so small (about 5 gallons total) that its effect on the filter system temperature would be negligible. At the time of addition of the fiber, hot process solvent would be circulating between the filtrate receiver and the filter.

The precoat cake can be deposited to a thickness of as much as 6". However, the agitator must be removed from the filter vat for cake thicknesses greater than 3". Whenever the knife advances to within 1/4" of the drum, the advance will automatically stop. The remaining heel can either be removed by sluicing or left on the filter where a new thickness of precoat can be deposited over it.

Filter Cake Removal

One of the major problems in designing continuous solid separation equipment for operation under pressure involves continuous discharge of the solids to atmospheric pressure. It is necessary to have equipment which will allow solids to flow out of the system continuously or semi-continuously, without significant leakage to the surroundings. The problem is especially critical with filters, where pressure upsets can destroy the uniform layer of precoat on the filter screen.

The cake removed by the filter knife is dropped into separate 8" diameter standpipes for each filter by an internal screw conveyor. The standpipes are electrically traced to prevent solvent vapor condensation and to keep the cake hot. A Sier-Bath screw pump at the base of each standpipe is used to let the pressure down from about 150 psig to essentially atmospheric pressure. In this case the pump decreases the pressure rather than performing its usual function of increasing pressure. The screws of the pump, together with the solids in the standpipe and in the line to the mineral residue dryer are intended to act as a seal to maintain the pressure differential between the filter and the dryer. It is essential that this pressure differential be maintained effectively, so that there are no pressure fluctuations or upsets in the filter to dislodge the precoat from the drum and disturb its filtering effectiveness. Nuclear type level detectors in the standpipes are used to set the variable speed drives of the screw pumps.

A plug-type shut-off valve is located directly below the Sier-Bath screw pump to isolate the system if necessary. In addition, a sample connection has been provided in the line. When necessary, a sample of the solids will be withdrawn through a plug valve into a special sample bomb.

This system of solids letdown is a new and untried system. In order for it to work the cake must have a semi-plastic consistency. If it is too dry the solids may not flow into the pump without the addition of solvent. If too much solvent is added the cake may leak through the pump. Provisions have been made to add solvent at a measured rate if necessary.

Mineral Residue Drying

The Mineral Residue Drying Section of the Mineral Separation Area consists essentially of filter cake drying in a rotary calciner followed by recovery of the vaporized solvent. The dried mineral residue is transferred to a bin for storage and shipment to potential users of the material.

The solids from each of the two filters after passing through the appropriate Sier-Bath pumps (maximum capacity 3 GPM) are discharged into the rotary dryer at 5 psig and 550°F - 700°F. The rotary dryer is designed to receive wet ash containing as much as 70% solvent with a

boiling range of 450°F - 700°F. The particle size of the solids ranges from 1 to 50 microns. The wet solid will normally be much dryer than the above figure of 70%. Excessive amounts of solvent may enter the rotary dryer at times, however, due to condensation of liquids from the saturated gas in the filters.

The wet solids are heated to 700°F in the rotary dryer by indirect heating with fuel gas and combustion air. The dryer is essentially a rotating cylinder slightly inclined from the horizontal and housed in a refractory lined furnace. The mineral residue is quickly moved into the active section of the dryer by spiral flights. The active section is equipped with several staggered rows of combined agitating and lifting flights. The mineral residue is discharged from the dryer into a standpipe. The dried solids are removed from the standpipe through a rotary valve. The solvent vapors from the dryer, along with dust particles, are routed into a dust collector, where the dust particles are removed.

Solids from the rotary valve and from the dust collector are led to a mineral residue cooler through a duct where the solids are cooled from between 700 and 750°F to 100°F by an indirect water spray.

The cooled and dried mineral residue leaves the hopped portion of the mineral residue cooler through a rotary valve and falls onto a gravimetric feeder for weighing and transfer to a bucket elevator, a chute, and into a mineral residue bin. The bin is equipped with a top dust collector and exhaust blower. It is also provided with a solenoid operated pneumatic sliding valve for control of mineral residue removal. The design flow rate for the mineral residue to the bin is 520 lb./hr.

The vaporized solvent, along with light hydrocarbon vapors, is purged from the dryer with inert gas and is passed through a cyclone dust collector to a condensate scrubber. Here the solvent vapors are scrubbed and condensed by scrubbing with liquid solvent. Condensate is accumulated in a drum, which operates at slight positive pressure. The solvent for scrubbing is circulated by a pump which is rated for a design flow rate of 500 GPM at 245 feet of total differential head. It is cooled by a water cooler and is returned to the scrubber and condensate drum. The solvent temperature at the outlet of the cooler is controlled by regulation of the flow of cooling water through the cooler.

The recovered solvent is filtered and is sent to the light ends removal column. Design flow rate for the solvent recovered is 346 lb./hr.

Uncondensed hydrocarbon vapors from the dryer condensate drum are removed from the system to the Stretford Desulfurizer with a blower. The suction pressure of the blower is maintained near atmospheric pressure. During startup or upon abnormal conditions the blower gases may be vented to the flare system.

A sample connection is provided in the discharge line of the dryer exhaust blower for analysis of the gases by a chromatograph.

5. Area 04 - Solvent Recovery

The solvent recovery area consists of two major distillation sections. The first is a vacuum flash section for separating solvent from the solvent refined coal product. The second section consists of two distillation columns for separating the light ends, wash solvent, and process solvent from a mixture of the vacuum flash overhead and the miscellaneous light streams from other sections of the plant.

The purpose of the vacuum flash section is to separate distillate material, including the process solvent and all lighter products, from the solvent refined coal. After filtration, the clarified liquid is pumped through a gas fired preheater to a vacuum flash drum. A vacuum flash accumulator has been provided to act as a surge tank so that the feed to the vacuum flash tower can be kept relatively constant even if the filtration rate fluctuates greatly. This may readily occur during periods when operating difficulties are being experienced with the filter.

The filtrate or clarified liquid is heated to a temperature of about 800 to 875°F in the vacuum flash preheater.

The vacuum flash preheater is a Foster-Wheeler Corporation vertical, direct fired, natural draft process heater. The normal duty of this heater is 4.4 MM BTU/Hr which is supplied to process liquid containing up to 20% dissolved solids by a combination of one pilot burner and one main gas burner.

The heater tubes are of helical coil construction, and the material is 7Cr-1/2 Mo. The outside diameter of the tube is 3.5" with a tube thickness of 0.41".

The pressure in the preheater coil is maintained at about 100 PSIG by a pressure control valve at the outlet of the heater. This keeps the feed stream in liquid state during preheating. As the liquid flows through the pressure control valve, all of the process solvent and lighter liquids are vaporized and are taken overhead from the vacuum flash drum.

The conditions in the vacuum flash drum determine the quantity of hydrocarbon oil removed from the solvent refined coal product, and hence influence its melting point. If a high melting point is desired for the solvent refined coal product, the temperature and vacuum will be high, and conversely, if a low melting point product is desired, the temperature and/or vacuum will be decreased.

Even when the dissolver product is not filtered, it will be necessary to recover process solvent. This may occur when the filtration rate is not high enough to filter all of the dissolver product, or when the filters are temporarily shut down because of operating difficulties. There will also be times when only part of the solids will be removed. Such situations may arise frequently during operation of the pilot plant, especially in the early stages of operation. At these

times it will be necessary to recover solvent from the unfiltered or partly filtered product, and segregate the off specification product in "slop product" storage until sufficient filtered material has been processed to flush the "slop product" from the system. The "slop product" will have the general appearance and characteristics of the solvent refined coal product except that it will contain an appreciable quantity of solids. The "slop product" is not to be confused with waste product normally going to the waste disposal system.

The overhead product from the vacuum flash goes through an aerial cooler and a water cooled condenser to the vacuum flash condensate drum. The condensed liquid goes directly to the light ends column in the solvent fractionation section.

The vacuum flash system is designed to operate at an absolute pressure as low as 2 psig. The vacuum is attained by a two-stage steam jet system connected to the vacuum flash condensate drum. The absolute pressure in the system is controlled by a pressure control valve in a by-pass line between the first and second stage steam jets. The pressure can then be increased or decreased by adjusting the rate of bleed-back flow from the second stage to the first stage steam jet.

The solvent fractionation section is designed to separate the various liquid products made in the process from the process solvent. The major component of the feed to this section is the overhead from the vacuum flash section. In addition to this stream, however, a number of other light hydrocarbon streams from other parts of the plant are fed into the fractionation section at this point. These other streams are liquids from the flash condensate separator in the solids separation area, from the solids dryer condensate drum in the mineral recovery section, from the condensate separator in the dissolver section, from the filter gas scrubbers, from the filter gas surge tank, and vapor from the vacuum flash accumulator. A light ends column feed tank has been provided to act as a surge tank so that the feed to the light ends column can be kept relatively constant even though the supply streams vary widely.

The combined stream cited above is preheated by a heat exchanger using Dowtherm. The preheated liquid then enters the light ends removal column. The purpose of this column is to separate as an overhead product all hydrocarbons lighter than the wash solvent used in the filtration step. This fraction also includes any water left in the streams from other steps. The light ends removal column is a packed column with the rectification section significantly smaller in diameter than the stripping section (16" and 22", respectively). The column operates at atmospheric pressure, with provision for refluxing part of the overhead product. The quantity of reflux is regulated by a flow control valve.

The light hydrocarbon products and water (if any) are drained through a level control valve from the reflux drum to an oil-water

separator. The oil-water separator has been designed so that the water and light hydrocarbons can be drained off separately. Water is periodically drained manually while the light oil is drained automatically through a level control valve. The light hydrocarbon stream is essentially a stabilized naphtha, consisting of hydrocarbons ranging from C₅ to as high as 350 - 450°F in boiling point. The water phase contains some phenols and other oxygenated compounds, and will be sampled periodically to permit evaluation of the possibility of by-products recovery. Most of this water, however, will be drained to the chemical waste system and treated in the waste disposal area.

The bottoms stream from the light ends removal column is pumped to the wash solvent column. This is a plate column designed to separate wash solvent as an overhead product. The wash solvent is then recycled for use in the filters. The wash solvent column operates at atmospheric pressure, with product reflux through a flow control valve. The temperature at the top of the column can be varied to produce wash solvent of varying boiling range. The most effective boiling range for the wash solvent will be determined during actual operation of the pilot plant, but for design purposes, the boiling range of the wash solvent was considered to be 450-550°F. The wash solvent product is removed from the reflux drum through a liquid level control valve. It is cooled by a water-cooled heat exchanger and is sent to a wash solvent accumulator. In normal operation, some liquid in the wash solvent boiling range will be produced by the hydrogenation reactions in the dissolver. The appropriate quantity of wash solvent is recycled to the filters, while the excess wash solvent is a net product of the process.

For design work, the boiling range of the process solvent was considered to be 550 to 800°F. The bottoms from the wash solvent column will be used directly as process solvent. The bottoms product from the wash solvent column is pumped out of the reboiler through a control valve that is regulated by the reboiler liquid level. It then goes through an air-cooled heat exchanger to the process solvent accumulator. The process solvent accumulator is designed to hold solvent as hot as 650°F, but it is normally expected to hold solvent at about 100 to 150°F.

6. Area 05 - Hydrogen Recovery and Recompression

The Gas Recovery and Recompression Area provides auxiliary services for the Dissolver Area. It has three purposes: (1) It provides a recycle hydrogen stream of a controlled hydrogen concentration and free of H₂S; (2) It removes the sulfur compounds from the vent gas before disposal; and (3) It boosts the pressure of the fresh hydrogen for makeup into the high pressure dissolver system.

The operation of Gas Recovery and Recompression Area is integral to the operation of the dissolvers and therefore its operation must be closely coordinated with that of the dissolver system.

The gas separated from the dissolver liquids in the high pressure condensate separator of the Dissolver Area is treated and recompressed

for recycle to the preheater and dissolvers. A portion of the gas is vented and fresh hydrogen is added to maintain a fixed concentration of hydrogen in the recycle. The fresh hydrogen comes from the hydrogen plant at a pressure of 75 psig. It is compressed to raise the pressure so that it can be fed into the recycle stream.

The high pressure gases from the dissolver area contain H_2S and other sulfur compounds which must be removed. The removal is affected by contacting the gas with Diethanolamine (DEA) at high pressure. The sour gas from the regeneration of the sour amine solution is further processed in a Stretford Unit to recover elemental sulfur.

The H_2S free gas from the DEA unit goes to the recycle hydrogen compressor suction scrubber. Liquid removed in the scrubber is automatically withdrawn through a trap to the flare knockout drum. The scrubber is equipped with two separate liquid level switches at different levels. The switch at the lower level alarms the main panel upon accumulation of liquid due to trap failure. The upper switch stops the recycle compressor before possible carryover of liquid into the compressor suction.

A portion of the H_2S free gas is analyzed, measured and vented as necessary to maintain a constant suction pressure for the recycle compressor. The volume of recycle gas is measured before recompression. A low suction pressure alarm is provided to warn the operator of this abnormal condition.

The recycle gas is recompressed in a single stage reciprocating compressor. The compressor is equipped with a two compartment distance piece. One compartment is purged with inert gas and is vented to the atmosphere. The discharge pressure is controlled by bypassing part or all of the compressed gas through a pressure control valve and a water cooled exchanger back to the suction scrubber. This arrangement allows the recycle compressor to operate continuously even though the hydrogen rate to the dissolvers may drop to zero. A manual bypass is provided for starting the compressor under no-load conditions.

The discharge of the recycle compressor passes through a water cooled exchanger into the recycle scrubber. Any liquids condensed are separated in the scrubber. The condensate free gas then supplies the hydrogen for the process. The liquid which is separated in the scrubber is automatically withdrawn through an on and off level control valve actuated by a level switch in the scrubber. The liquid flows to the flare knockout drum.

The compression system for making up fresh hydrogen to the process is similar to the recycle hydrogen compression system. Fresh hydrogen from the hydrogen plant is measured and flows to the fresh hydrogen first stage scrubber. The excess fresh hydrogen supply is returned to the hydrogen plant on pressure control. A low suction pressure alarm warns the operator of an abnormal condition. Liquid which separates in the scrubber is automatically drained by a trap and is sent to the flare

knockout drum. The scrubber is equipped with two level switches at different levels. The switch at the lower level alarms the main panel of an accumulation of liquid due to trap failure. The upper switch stops the compressor before liquid is carried over into the compressor suction.

The fresh hydrogen compressor is a three stage compressor with interstage cooling. The compressor is provided with two compartment distance pieces. One compartment of each piece is purged with inert gas and is vented to the outside. The third stage discharge pressure is controlled by bypassing part or all of the flow back to the first stage suction scrubber by means of a pressure control valve through a recycle water cooled exchanger. The system provides flexibility in the volume of gas added to the process while allowing the compressor to run continuously. A manual bypass valve is provided for starting the compressor in a no-load condition.

The fresh hydrogen make up to the process is controlled by an analyzer which maintains a set hydrogen concentration in the recycle hydrogen stream. The analyzer adjusts a flow control valve which injects the fresh hydrogen into the recycle hydrogen compressor bypass stream ahead of the water cooler.

Fresh hydrogen storage bottles are provided to supply hydrogen for a period of one hour during upsets in the hydrogen generation plant. These bottles will be charged with fresh hydrogen during plant startup using both the fresh hydrogen and recycle hydrogen compressors. During upsets the hydrogen is fed into the first stage suction scrubber of the fresh hydrogen compressor on pressure control. This reserve supply of hydrogen will also provide make up hydrogen for pressure maintenance during an emergency shutdown.

7. Area 08 - Product Solidification and Storage

This area contains equipment for the solidification, storage, and shipment of the solvent refined coal product (SRC). Molten SRC flows to this area from the vacuum flash drum in Area 04. The coal product is solidified and is stored in 150 ton bins for shipment. Product shipments can be made by truck or rail in bulk or bagged form.

Two methods of product solidification are available: (1) A prilling tower, and (2) a Sandvik cooling belt. Both methods can solidify the SRC by cooling it from about 600°F to about 150°F. However, a system for heating or cooling the molten SRC charge to the prilling tower is provided so that the effects of temperature and viscosity on the prilling operation can be studied. This temperature control system involves heat exchange between molten SRC and a Dowtherm stream which has either been heated in a Cromolox heater or cooled in an air fin cooler. Temperatures as high as 730°F and as low as 500°F can be achieved at the prilling nozzles. The prilling tower uses direct contact with ambient air for cooling and solidification of the product. The molten product is sprayed downward from the top of the tower, and

it contacts the rising air stream countercurrently. The air is exhausted from the tower through cyclones to prevent entrainment of solids.

The Sandvik cooling belt uses a system of water sprays to cool the underside of a stainless steel cooling belt on which the molten SRC is traveling.

Normally the prilling tower will be used to solidify the SRC. The cooling belt is provided for start-up and as a back-up for the prilling tower. After solidification, the SRC is moved to storage bins by a series of conveyors and bucket elevators. Solidified product is weighed just prior to entering the storage bins. Four product storage bins are provided; one for offgrade product, and three for on-grade product. Each bin will hold about 150 tons, or about four days run at full rate. From the bins, the SRC can be (1) directed to the product bagger, or (2) conveyed in bulk for truck or rail shipment. Bulk shipments are weighed just before the product enters the bulk carrier.

All controls for Area 08 equipment are mounted on the equipment or on one of the two local control panels. The main control room can not control any Area 08 operations.

8. Data Acquisition System

The plant computer data acquisition system consists of a computer, various input and output devices, a process interface, and a mass data storage facility. It has been specified to automatically carry out many of the process monitoring and data recording tasks which are necessary in a pilot plant.

All analog input signals enter the computer through Foxboro Spec 200 transducers as 0 to 10 volt signals. These signals are digitized in the Interspec Module (process interface) and are read into the Foxboro Fox 2/30 computer with a resolution of one part in 4000. All of the 228 analog input points are scanned at least twice every minute.

Digital input capability is also provided to enable communication of chromatograph status to the computer. The three process chromatographs in the plant each signal "in-service", start of analysis, stream identification, calibration run, and "come read" status by means of contact closures. The computer responds to changing chromatograph status by executing various programs which read and store chromatograph data.

All of the process information measured by the computer is averaged for one hour periods. The averages are typed out on a logging typer and are retained in the 980K drum memory for a period of three days. During the three day period for which process information is retained, plant personnel will evaluate the data and will also add data from other

sources, such as the plant laboratory or operation records, to more fully define plant operation. Extensive engineering calculations will be performed by the computer using selected portions of the data to document plant operation over the desired period. Permanent records will be retained both as typed copy and as punched paper tape for ease of further processing.

9. Utilities

a. Electrical Power

Electrical power is supplied to the SRC plant by Tacoma City Light at 13.8 KV. The SRC plant underground system feeds 13.8 KV power to nine separate transformers. These transformers reduce the voltage from 13,800 volts (13.8 KV) to 480 volts and feed the load centers. The load centers contain circuit breakers plus other protective devices that accept and pass on the 480 volt electricity from the transformers. Power is fed directly from the load centers to some large motors but most motors and other electrical devices receive power from motor control centers which are fed from the load centers.

A 1500 KW emergency power system is being installed which will provide electrical power in the event of failure of the primary power supply system. The emergency system includes three diesel motor-generator sets, which feed the plant load centers directly, and switchgear which automatically disconnects the primary power supply and connects the emergency system when a power failure occurs. A battery pack power supply for electronic instruments is also provided so that control of the plant will be maintained even during the time required for switching. The seriousness of very short power outages is minimized by the presence of time delay relays on critical motors throughout the plant. These relays allow motors to ride out brief outages thus eliminating the requirement for manually restarting motors which are in critical service.

b. Process and Cooling Water System

Water for the SRC plant is supplied from the Fort Lewis water system. The plant water system provides domestic water, raw water, cooling water and fire water for all parts of the plant. Fire protection water and domestic water supply lines are protected from possible process backflow with a back flow preventer. Raw water is used in the waste disposal system, the slurry preheater and vacuum flash preheater decoking scrubbers, as feed for the boilers and cooling tower, and as service utility water at utility stations located throughout the Pilot Plant.

Cooling water is used for numerous heat exchangers, compressors, mixers, and pumps throughout the plant. The cooling water system consists primarily of the cooling tower, three centrifugal circulating pumps for cooling water, and connecting lines to and from the

various heat exchangers and equipment requiring cooling. The design rate of water circulation is 5000 GPM. Chemical feed sets, including pumps and mixing tanks, have been provided to add chemicals as necessary for cooling water treatment.

c. Plant Air and Instrument Air

Compressed air for instruments and general plant service is provided by two reciprocating air compressors, each capable of supplying 150 SCFM of air at a pressure of 100 psig. The compressors are each equipped with an intake air filter and an after-cooler. The compressed air goes to an air receiver, then through a pre-filter to one of two air dryers. The dryers are the desiccant type, with one dryer being used while the other is regenerated. The dryers are switched between drying and regeneration by automatic timing controls. An afterfilter is provided to remove any particulate matter that may remain in the air leaving the dryer.

d. Fire Prevention

The Fire protection system for the pilot plant consists of:

1. Fire hydrants with fire hose cabinets for hose storage.
2. Wall-hung fire hose racks.
3. Hand held dry chemical extinguishers.
4. Fire hose cabinets.
5. Lever operated deck pipes.
6. Automatic sprinklers.

Nine fire hydrants with cabinets for hose storage have been provided in the pilot plant area, and two fire hydrants with hose cabinets have been provided at the Administration Building. Water for the hydrants, hoses, and deck pipes is taken from the main water lines of the plant. Water for the plant is available through two different supply mains to help insure that a supply of water is always available for fire protection. A fire water booster pump will be added to insure that adequate pressure is maintained.

Wall-hung fire hose racks are provided on each floor of the coal preparation building. In addition, weather-tight fire hose cabinets are provided at strategic locations in the two buildings housing the product solidification equipment and the product storage equipment and bins. In the utilities area, two wall-hung fire hose racks are provided in the shop and warehouse building and one in the control building.

The lever operated deck pipes are provided in the dissolver area to cover any fires in and around the dissolvers. The pipes are designed to spray water on any part of the dissolvers. The location of the lever operating the water is sufficiently remote from the dissolvers to allow access in the event of a fire in or around the dissolvers.

An automatic sprinkler system is provided for all three floors of the mineral separation area, for all six levels of the solvent recovery area and at the upper level of the prilling tower. The sprinkler heads are of the type which produce a fog or mist or water. The sprinklers are activated by heat detecting devices located throughout the above areas. A visual and audible alarm is also activated in the control room when any of the sprinklers is set off.

The hand operated dry chemical fire extinguishers are placed at strategic locations throughout the plant. One hundred 5-pound extinguishers and five 10-pound extinguishers have been provided in the design.

e. Fuel Gas

All fuel for the Pilot Plant will be natural gas. Natural gas will be supplied at 50 psig by Washington Natural Gas Company. The units of the Pilot Plant using natural gas are the hydrogen unit, the dry pulverizer preheater, the slurry preheater, the vacuum flash preheater, the Dowtherm preheater, the mineral residue dryer, the boilers, the inert gas generator, the flare system, and the thermal oxidizer in the waste treatment area.

f. Plant Steam System

Steam is used in the Pilot Plant for the vacuum jet system, for emergency snuffing steam at the fired preheaters, for decoking of the preheater coils, for DEA regeneration, for the hydrogen generation unit, for heating tanks in the tank farm, for the waste treatment plant burner atomizer, for some of the space heaters, and for general service steam throughout the plant.

The steam is supplied at a pressure of 200 psig (corresponding to a temperature of 387°F) by two steam generating boilers. Each of the boilers is capable of generating 35,000 lb. per hour of steam as long as sufficient boiler feed water is available. The boilers are a conventional type fired by gas, complete with all required controls and local instrument panel. Water used as feed for the boilers is demineralized in a cation-anion exchange unit which produces up to 75 GPM of boiler feed water. The deionized water then goes to a deaerating heater before being sent to the steam boiler. The water is treated as necessary with chemicals to control corrosion and scale formation.

g. Process Waste Disposal System

The process waste disposal system handles all of the waste water from the plant except that going to the sanitary sewer system or removed through the storm sewers.

This consists of water from two sources: (1) that actually produced from the coal during the process; and (2) water collected

by the process waste drains located in the various operating areas of the plant.

The water actually produced by the process is accumulated primarily in the light oil-water separator or the recycle water tank in the mineral separation area. This water, rich in phenols, goes directly to the process waste incinerator. The incinerator vaporizes the process waste water and burns all of the phenols and other organic compounds in the water, as well as all of the sludge from the main waste treatment system. The vaporized water is recondensed and is circulated to the main waste water treating system.

The waste water from the process chemical drains flows to a surge reservoir, 60 feet in diameter and 10 feet deep, located in the waste disposal area. Any solids in the water settle to the bottom of the reservoir and are removed through a screw-type sludge pump. The clarified water is removed from the reservoir by a centrifugal pump connected to a floating intake on the surface of the reservoir. This waste water goes to a waste disposal treater where acid, alum, and polyelectrolyte are added.

Water from the waste disposal treater flows to another oil-water separator where additional alum and electrolyte are added. Any oil separated in this step is also sent to the waste incinerator. Overflow from this separator flows to a biological treatment unit where water soluble organic compounds are removed in an activated sludge unit with extended aeration.

The treated water is pumped out of the bio-unit through a sand filter to remove turbidity and through an activated carbon filter to remove any traces of phenolic compounds. Two sand filters and two activated carbon filters are provided so that one can be used while the other is regenerated by backwashing. The treated water is then diluted with raw water in a dilution tank. The diluted water then flows to a catch basin and then to the swamp southwest of the plant site.

h. Flare & Blow-down System

All of the gases purged from the Pilot Plant go into the flare piping system to be carried to the flare stack. All safety relief valves are also connected to the flare system. The entire flare and blow-down system is continuously purged with inert gas to prevent fires or explosions in the lines. The gases are burned in the flare stack, supplemented with natural gas if necessary to maintain combustion. A flame front generator is provided in the flare stack for ignition of the gases.

i. Inert Gas & Hydrogen Generators

The inert gas generator and hydrogen generator are combined in a specially designed gas generating system to concurrently produce

hydrogen or a mixture of hydrogen and carbon monoxide, plus inert gas. The hydrogen generator consists of a reformer, shift converter, monoethanolamine absorber, and a natural gas fired MEA regenerator. This unit will supply 800,000 SCF per day of hydrogen at 75 psig. Natural gas is used both as a feedstock and as fuel for the hydrogen unit which supplies all of the hydrogen for the process.

Flue gas from the inert gas generator passes through a deoxo purifier, a MEA absorber for removal of CO_2 , compressors, a dryer, and a storage tank. The inert gas unit is capable of supplying 30,000 SCFH of nitrogen at a pressure of 250 psig. These units are designed such that the inert gas unit or the hydrogen generator may be operated independently if required.

In cases where hydrogen and carbon monoxide mixtures are to be produced in the hydrogen generator, carbon dioxide from the regenerated amine is compressed and charged to the reformer. In this case, both the inert gas and the hydrogen generator must be operated simultaneously.

j. Desulfurization Unit

The gas desulfurization unit removes hydrogen sulfide and carbon dioxide from the gases produced in the preheater and dissolver in Area 02. This system consists essentially of two units, a diethanolamine (DEA) absorber for removal of H_2S and CO_2 and a Stretford Unit. The DEA is regenerated with steam, and the acid gases (H_2S and CO_2) liberated during regeneration pass to the Stretford sulfur recovery system. Clean gas containing hydrogen and hydrocarbon gases from the DEA unit is sent to the flare or recycled to the process.

In the Stretford unit, hydrogen sulfide is absorbed from the gas stream by countercurrent contacting with the Stretford solution. After reaction, the Stretford solution, containing the H_2S , passes to an oxidizer vessel where air is sparged upward through the solution. Elemental sulfur forms as a froth at the top of the oxidizer. This sulfur slurry is fed to a sulfur melter where the water is vaporized. The molten sulfur is then sent to a storage tank.

k. Tank Farm

Liquid products from the Pilot Plant, as well as raw and used process solvent, are stored in the tank farm. The tank farm includes three 20,000 gallon cone-roof tanks for process solvent, one 20,000 gallon cone-roof tank for wash solvent, and one 20,000 gallon dished-head tank for process naptha. Two centrifugal pumps are arranged so that process solvent can be pumped from any of the three tanks to any other tank, to the process solvent accumulator, to the solvent recovery system for fractionation, or to the tank farm loading pump for shipment out of the plant. A

centrifugal wash solvent transfer pump is also provided in the tank farm to pump wash solvent to the wash solvent accumulator and to the process. The process naptha can be drained using the tank farm loading pump.

1. Seal Flush System

All of the centrifugal pumps in the Pilot Plant operating on hot or solids-containing material require a seal oil to flush and lubricate the mechanical seals. This seal flush oil is provided by a central seal flush system, using process solvent as the seal oil. The seal flush system consists of a seal flush accumulator, two centrifugal circulating pumps, a seal flush filter, connecting lines to and from all pumps using the seal oil, and a water cooled heat exchanger to cool the hot oil returning to the seal flush accumulator. The seal oil is supplied to the pumps and mixers at 150°F and 240 psig.

m. Dowtherm System

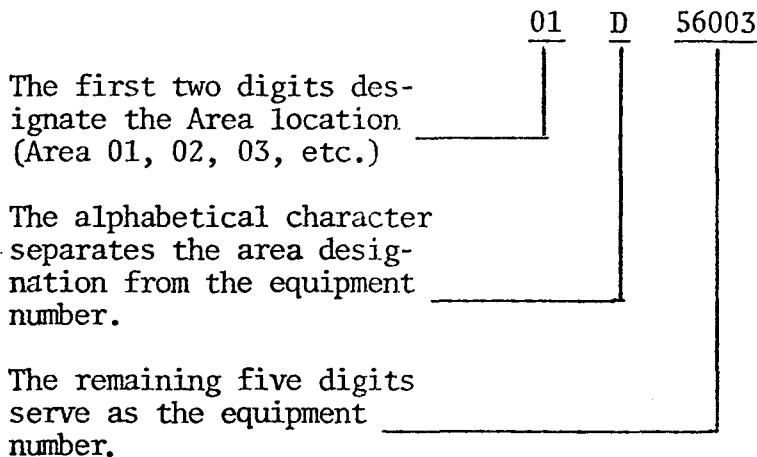
In many areas of the plant, Dowtherm heat exchangers are used to supply process heat. The use of Dowtherm exchangers eliminates the need for numerous fired heaters throughout the plant. The Dowtherm system consists primarily of a surge tank, two centrifugal circulating pumps, a gas-fired heater for the Dowtherm, and connecting lines to and from the numerous heat exchangers throughout the Pilot Plant. In addition, the system is provided with a Dowtherm reclaimer, a reclaimer surge tank, and a reciprocating pump to return reclaimed Dowtherm to the system. In general the Dowtherm is reclaimed by distilling it so that any polymerized material is left behind in the reclaimer. The overhead reclaimed Dowtherm is condensed and enters the surge tank prior to being returned to the main Dowtherm system. Any make-up Dowtherm required can be added at this point. The Dowtherm is supplied to the various heat exchangers and tracing lines at 770°F and 250 psig. The temperature to which the process fluid is heated is normally controlled by a temperature element placed in the process fluid.

n. Solvent Flush System

A solvent flush system is provided in the plant to enable removal of heavy viscous coal products and/or solids particles from all vessels and lines. The highly viscous nature of the materials handled in the Pilot Plant makes such a system necessary for proper operation and for collection of reliable data. The flush solvent system consists of a flush solvent storage tank (accumulator) a flush solvent circulating pump (centrifugal) a Dowtherm exchanger for heating the flush solvent to about 400-600°F, and connecting lines to all parts of the plant requiring flush solvent. Two electrical heaters are provided in a special line to further heat the flush solvent to about the temperature of the dissolvers (700°F to 900°F). This line goes to the dissolver area only.

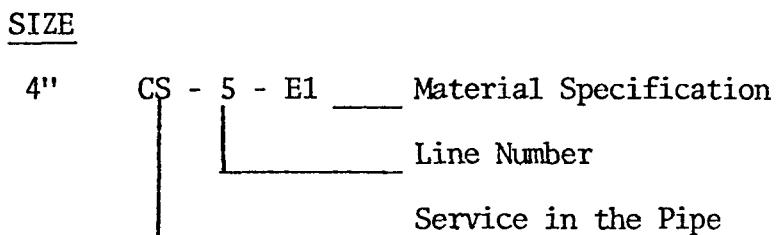
Flush solvent at 400-600°F is provided in separate lines to the filters for both flushing and sluicing of precoat heel, to the filtrate pumps, to the filter feed tank and to the bottoms lines from the vacuum flash drum. In addition to its function of cleaning out lines and equipment, the solvent flush system can also be used for circulating hot solvent during testing and/or during start-up. In such cases, the solvent would be relatively clean and would be returned to the solvent flush system. Return lines have been provided from the dissolver area and from the vacuum flash drum section. An air-cooled heat exchanger has been provided in the return line to cool the solvent coming back to the accumulators. Flush solvent contaminated with coal slurry will be sent to the Filter Feed Surge Vessel for storage until it can be fractionated without interfering with data collection.

D. As Built Drawings


1. General

The as built drawings of the SRC Pilot Plant, which are included in this report, describe details of architecture, piping, mechanical equipment, materials of construction, instrumentation, process flow, and general arrangement of the plant. Material balances for coal processing in the presence of hydrogen and also for processing in the presence of synthesis gas are included with the piping and instrumentation drawings. A drawing index, drawings, material balances and other information useful in interpreting the drawings are all presented in Appendix B.

2. Mechanical Equipment


Mechanical equipment, such as pumps, compressors, tanks, vessels, heat exchangers, conveyors, elevators, filters, pulverizers, etc., are indicated on the flow sheets by symbols. In addition, each piece of equipment has an equipment number in or near the equipment symbol on the flow sheets. A short description or the name of that particular piece of equipment is also given under the equipment number in the margins of the piping and instrument diagrams.

The equipment numbering system is outlined below. Equipment number 01D56003 is a typical number for a centrifugal pump located in Area 01. The numbers are subdivided as follows:

3. Pipe Line Number System

The process piping, which conveys fluids from one piece of equipment to another and also between the various areas, is described by line numbers. Each line number indicates the size of pipe, the service, the type of material flowing in the pipe, the specific line number, and a material of construction specification. A typical line number is described below.

Service abbreviations of the materials handled in the SRC plant are given in Appendix B.

4. Piping System Specifications

Materials of construction for the process piping are designated by a piping material specification number on the flow sheets. This specification number also is used to indicate the pressure class of the piping (300# flanged, etc.), the types of valves, and flanged or welded construction. Process valves are tagged with a number (a typical valve tag number would be V1080) and only specific valves may be used with specific piping material specifications. A summary of piping material specification numbers is given in Appendix B to indicate types of material, pressure classification, and type of construction used in the process piping for the SRC Pilot Plant.

5. Line and Instrument Symbols

Flow of gases, liquids, slurry and material from one piece of

equipment to another is indicated by the following symbols on the P&I Diagrams:

<u>LINE SYMBOLS</u>	
<u> </u>	Process Piping
<u> // // </u>	Instrument Pneumatic Signal Lines
<u>-----</u>	Instrument Electrical Signal Lines
<u> * * * * *</u>	Capillary Tubing
<u> x x x x x x </u>	Flexible Hose

A table of instrumentation nomenclature is included in Appendix B.

E. Major Equipment

A list of all major equipment installed in the Pilot Plant is given in Appendix C. The list includes for each item the item number, a brief description of the item, and the supplier of the item.

F. Construction Summary

The contract for construction of the pilot plant was signed with Rust Engineering Company on June 14, 1972 and construction began with the initiation of site clearing on June 26, 1972. Construction of the plant proceeded for two years and was completed during June, 1974. A chronological record of various milestones of the construction of the plant is listed in Appendix D.

G. Photographs

Photographs of the plant at various stages of construction are included in Appendix E. Each photograph is identified by the subject and the date on which it was taken.

H. Pilot Plant Design Modifications

The original design of the SRC Pilot Plant was completed in 1968 by the Stearns-Roger Corporation. During the four years that passed before construction of the plant was started, many developments occurred that provided incentives for modification of the original design. Many detail changes were required to bring the plant into compliance with the Occupational Safety and Health Act which was passed by Congress. More stringent air and water emission control regulations also provided the necessity for review and modification of several plant systems. The incentive for additional changes was provided by the results of

bench scale research on the process which pointed the way to several significant improvements. Changes in the original design were also required to resolve interferences and improve operability. Finally, some modifications of the Pilot Plant design were required to lower its cost.

The following pages list and discuss some of the more significant modifications of the original Pilot Plant design.

Area 01 - Coal Receiving & Preparation Area

1. Additional pickup ports were added over elevator chutes and bins to minimize dust problems. Capacity of the dust collector was also increased to handle the additional load.
2. The ball mill and all associated equipment was deleted. The associated equipment includes a gravimetric feeder, a secondary coal crusher, and a liquid cyclone.
3. The slurry heating vessel, together with the slurry circulating heater and the slurry heating tank condenser and associated lines were deleted.
4. The Dracco Model #4 dust collector was changed to a Micro Pulsaire Model #130S-6-20.
5. The controls for circulating inert gas through the pulverizer and dust collector circuit were modified to provide better control over the flow and to provide gas to the seals of the pulverizer.
6. The flow circuit for the water circulating through the dehumidifier to cool and dry the inert gas was modified. The modification consisted primarily of separating this water from the cooling tower circuit by adding an indirect heat exchanger between these two streams. This change was made primarily to prevent coal particles from contaminating the cooling water. The water used for direct cooling of inert gas is thus maintained in a closed loop with excess water being diverted to the waste treatment system. A continuous purge to the drain system is necessary to remove the water resulting from drying of the coal.
7. Additional high pressure pumps were provided for pumping seal oil to the seals of the high pressure reciprocating slurry charge pumps.
8. The safety relief valves at the outlets of the high pressure slurry pumps were re-piped so as to discharge slurry back to the slurry feed tank and the slurry feed tank was vented to the atmosphere outside the building.

Area 02 - Slurry Preheating and Dissolving Area

1. One of the two slurry preheaters was deleted.

2. Two of the four dissolvers were deleted.
3. The length of the remaining two dissolvers was decreased from 40 feet to 30 feet.
4. A control valve was added in the slurry feed line to the preheater. It is actuated by a high temperature in the feed inlet line. The purpose of the control valve is to prevent backflow of hot slurry in the event that the safety valve on the slurry discharge pump sticks open.
5. A ceramic type filter element was added above the preheater decoking scrubber to prevent discharge of fine coke particles to the atmosphere during decoking operations.
6. The high pressure solvent pump was changed from a three stage centrifugal pump to a reciprocating pump.
7. The size of the slurry line from the preheater through the dissolvers to the high pressure flash drum was decreased from 6" to 4". The material in this lines was changed from 310 stainless steel to 347 stainless steel.
8. The slurry preheater was moved to a point closer to the dissolvers and the expansion loop in the pipe rack between the preheater and dissolvers was eliminated.
9. The 310 cladding in the dissolvers was changed to a two-pass overlay consisting of a 3/32 inch layer of 309L plus a 3/32 inch layer of 347 stainless steel.
10. The 15" Autoclave Engineers head on the dissolvers was changed to a 15" Grayloc head.

Area 03 - Mineral Separation Area

1. The reclaim vessel and associated equipment was deleted.
2. The centrifuge feed flash vessel and associated equipment was deleted.
3. The filter feed-Dowtherm heat exchanger was changed from vertical to horizontal configuration.
4. Two oil-water separators were added to replace the flash condensate separator. This change was made to provide for separation of water from the light liquid product streams prior to distillation. The large quantity of water present in the synthesis gas mode of operation makes it necessary to do this. Most of the water from the process effluent is separated at this point.
5. The two process fluid heat exchangers in the filtration gas

stream were changed from a side-by-side arrangement to a stacked arrangement to provide a better configuration for more efficient heat exchange.

6. The spare filter gas compressor and associated equipment was deleted.
7. The screw conveyor carrying mineral residue to the fluid bed dryer was deleted.
8. The mineral residue is now carried to the rotary drum dryer by a 2 1/2" line with long radius ells and no sharp bends. The mineral residue will be extruded through the 2 1/2" line by Sier-Bath screw pumps. The pressure drop from 150 psig to atmospheric pressure will be taken across the screw pump and the 2 1/2" line containing mineral residue.
9. The fluid bed dryer, including the associated dust collector and cooler, was replaced by a rotary drum dryer with an associated rotary cooler and cyclone dust collector.
10. The method of condensing solvent vapors also changed significantly. Instead of an air cooler and a water cooled exchanger in series, the system was designed to cool and condense the solvent vapor by quenching with recycle solvent through an eductor. The eductor was designed to minimize the possibility of building up a back pressure in the rotary drum dryer thereby helping to avoid over-pressuring the seals on the dryer. The dryer seals are guaranteed to hold a maximum of only 2" of water. A further advantage of this system is that any solids carried over from the cyclone will be carried effectively into the dryer condensate drum. If the air cooler and heat exchanger had been left in the system, there would have been a strong possibility that solids would plug the heat exchanger and over-pressure the dryer.
11. With the above change, it was necessary to add a water-cooled heat exchanger to cool the recycle solvent stream. This cooler removes the heat entering the system from the hot solvent vapors.
12. A side liquid take-off was added to the dryer condensate drum to prevent solids carryover to the light ends column.
13. To further prevent solids from this source from reaching the light ends column, two filters (to be used alternately) were added in the line from the dryer condensate drum to the light ends column.
14. A dryer exhaust blower was added to remove inert gas overhead from the dryer condensate drum and to provide a means for controlling the pressure in the drum at a low level.
15. To get a more accurate measurement of the weight of mineral

residue produced, the load cells were removed from the mineral residue bin and a weight belt/feeder was added at the outlet of the mineral residue cooler.

16. The pneumatic conveying system originally provided to carry cool mineral residue to the mineral residue bin, together with the associated dust collector, was deleted.
17. A bucket elevator was added to convey the mineral residue from the weigh belt feeder to the top of the mineral residue bin. A small dust collector was added at the top of the mineral residue bin to keep dust from being carried out with the inert gas stream used to purge the mineral residue bin.
18. All of the centrifuges and associated equipment were deleted.

Area 04 - Solvent Recovery Area

1. One of the vacuum flash preheaters and associated equipment was deleted.
2. One of the vacuum flash drums and associated equipment was deleted.
3. The heavy oil blend tank and associated equipment was deleted.
4. The flush solvent lines around the coal product piping from the bottom of the vacuum flash drum were modified to provide a more positive means of flushing the coal product from these lines when necessary. A Dowtherm jacketed valve was added at the bottom of the coal product line leading to the Sandvik belt to facilitate switch-over from the Sandvik belt to the prilling tower.
5. A light ends column feed tank together with a light ends column feed pump and associated equipment were added to provide a surge vessel for the light ends column.
6. The method of heating the feed to the light ends column was significantly revised. The heat exchanger originally provided to simultaneously cool the vacuum flash overhead and heat the light ends column feed was eliminated. The Dowtherm heat exchanger originally used for final heating of the light ends column feed was increased in size to handle the entire load on the vacuum flash overhead. These changes were made to provide better control of both the vacuum flash overhead cooling and light ends column heating.
7. The control method for withdrawal of water from the light oil-water separator was simplified. This was made possible by the addition of the oil-water separators in the 03 Area. This change greatly decreases the amount of water reaching the light oil-water separator and makes it possible to provide a

manual drain at this point.

8. The heavy ends column and associated equipment was deleted.

Area 05 - Gas Recovery and Recompression

The spare hydrogen recycle compressor was deleted.

Area 08 - Product Solidification and Storage

1. The original prilling tower specified by Stearns-Roger was based on general technical information supplied by Horton Process Division of Chicago Bridge and Iron, Incorporated, and was not specified in detail for solvent refined coal. In order to design the prilling tower specifically for handling solvent refined coal, it was necessary to make a number of changes from the original sketch and drawings shown in the Stearns-Roger specifications. The changes required became even more extensive as a result of the necessity for studying the prilling of solvent refined coal over a wide variety of conditions. Developing basic information on the prilling of solvent refined coal, which does not currently exist, requires a study of the key variables such as viscosity, temperature, and pressure over a considerable range of conditions.

One of the objectives of the Pilot Plant work is to produce a high melting point solid prilled product for use as a power plant fuel. The solid product would be pulverized and fed to the power plant as a pulverized solid. For such uses it is desirable to have as high a melting point as possible to avoid melting or sticking in the pulverizer. The production of a high melting point solid in the prilling tower requires that the molten solvent refined coal be heated to a temperature as high as 730°F prior to being forced through the prilling nozzles.

Since the solvent refined coal product from the bottom of the vacuum drum will not always be this hot, provisions had to be made for heating the molten solvent refined coal. A heater was added to raise the temperature of the solvent refined coal by about 130°F prior to entering the prilling tower.

In addition to a requirement for heating, there is also a requirement for cooling the solvent refined coal at times to provide the desired temperature at the prilling nozzles. Thus provision was also made for cooling the molten solvent refined coal.

Both heating and cooling were enabled by the addition of a double pipe heat exchanger in the coal product line to the prilling tower. The heating and cooling medium for the double

pipe exchanger is Dowtherm. The Dowtherm circulates in a closed loop through either a heating or cooling cycle for proper control of the temperature.

Heating of the Dowtherm is provided by a Chromalox electric heater, and cooling is provided by an air fin cooler. When the cooling cycle is used the Dowtherm flows through the heater, but the electric heaters are turned off. When the heating cycle is used, the cooler is bypassed.

2. One of the two Sandvik cooling belts was deleted.
3. The waste product conveying system with its associated equipment was deleted.

Area 09.5 - Desulfurization Unit, Hydrogen/Syn Gas-Inert Gas Unit

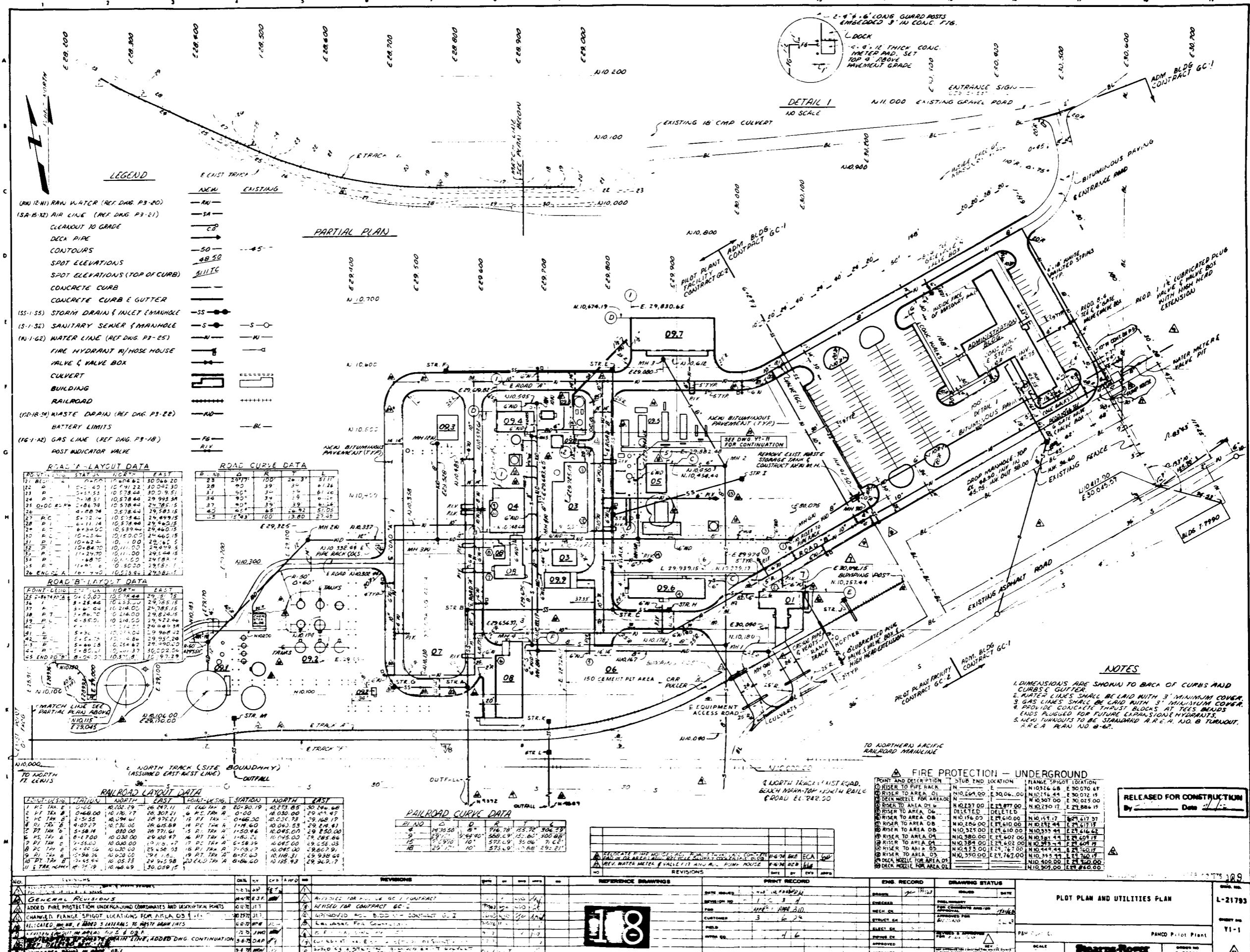
1. The caustic scrubbing system for treating high pressure recycle gas was deleted and a high pressure diethanolamine (DEA) unit was provided for this service. DEA absorption is a more efficient means of removing the greater amounts of carbon dioxide that are produced during operation in the synthesis gas mode. The hydrogen sulfide and carbon dioxide released by regeneration of the DEA is sent to the Stretford unit together with other low pressure streams containing acid gases.
2. The caustic scrubbing system for treating low pressure off gas was deleted and a Stretford unit was added for this service.
3. The hydrogen generation unit and the inert gas generation unit were combined into a single package unit designed to produce either pure hydrogen or a synthesis gas containing up to 50% carbon monoxide. The unit can also produce an inert gas containing CO₂ or a pure nitrogen stream.

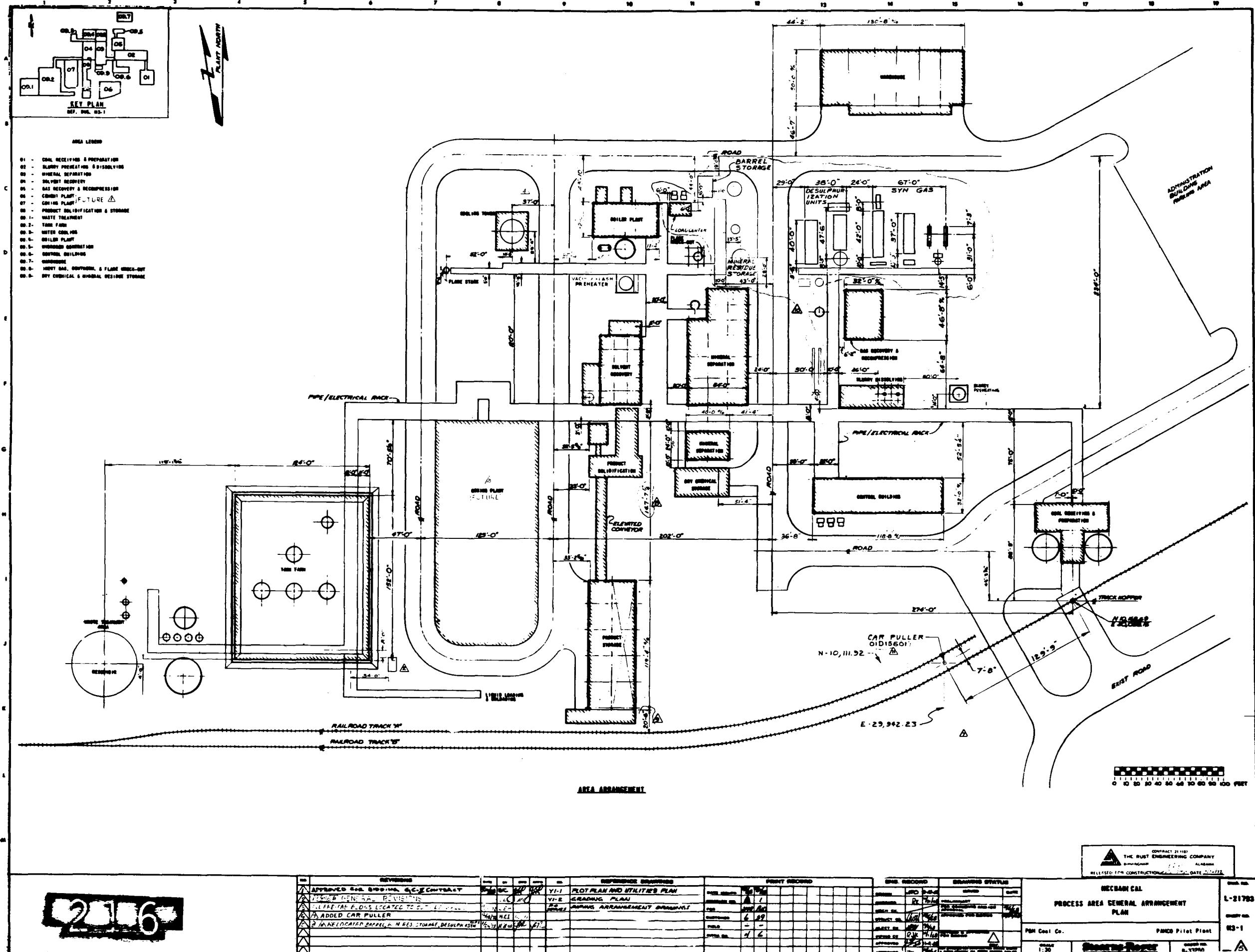
Area 09 - Utilities

1. Since the Pilot Plant was originally designed in 1968, passage of the OSHA regulations required that potable water systems be completely separate from process water systems. Regulations required that a backflow preventer be provided at the plant where the process water system joins the main clean water supply. In the original design, the potable water (drinking fountains, eye wash fountains, plumbing fixtures, etc.) was taken from the process water lines in each area.

This necessitated providing a new and separate potable water system. It was also necessary to heat trace the potable water system for freeze protection.

2. The steam condensate return system which was included in the Stearns-Roger design was eliminated, and provision was made


for return of condensate from the desulfurization unit only.


3. The fuel gas compressors were deleted since they became unnecessary when it was determined that fuel gas could be made available at 50 PSIG.

APPENDIX A - PLOT PLAN

Drawing No.

Y1-1 Plot Plan and Utilities Plan
M3-1 Mechanical Process Area - General Arrangement Plan

APPENDIX B - PROCESS AND ENGINEERING FLOW DIAGRAMS

Page No.

B-1 Service Abbreviations
B-2 Piping Material Specifications
B-4 Instrument Nomenclature

Drawing No.

P3-1 P&I Diagram & Material Balance for Hydrogen Operation
P3-1-A Synthesis Gas Operation Material Balance
P3-2 P&I Diagram
P3-3 Coal Receiving & Preparation
P3-4 Slurry Preheating & Dissolving - Slurry Preheaters
P3-5 Slurry Preheating & Dissolving - Slurry Dissolvers
P3-6 Mineral Separation - Filter Feed
P3-7 Mineral Separation - Filtration
P3-8 Mineral Separation - Filtration Auxiliaries
P3-10 Mineral Separation - Mineral Residue Drying
P3-11 Solvent Recovery - Vacuum Flashing
P3-12 Solvent Recovery - Fractionation
P3-13 Solvent Recovery - Solvent Surge & Vent Disposal
P3-14 Gas Recovery & Recompression
P3-15 Product Solidification & Storage
P3-15-A Prilling Tower
P3-16 Utilities & Services - Inert Gas & Hydrogen
P3-16-A H₂/Syn Gas P&ID
P3-16-B Inert Gas
P3-16-C Area 09 Utilities and Service Isolation Diagram
P3-17 Utilities & Services - Seal Flush & Solvent Flush Systems
P3-18 Utilities & Services - Fuel Gas & Dowtherm
P3-19 Utilities & Services - Steam & Condensate
P3-20 Utilities & Services - Potable, Process & Cooling Water Systems
P3-21 Utilities & Services - Plant Air & Instrument Air
P3-22 Utilities & Services - Process Waste Disposal
P3-23 Utilities & Services - Tank Farm
P3-24 Utilities & Services - Cooling Water for Miscellaneous Equipment
P3-25 Utilities & Services - Fire Protection

A1-1 Floor Plan & Elevations - Administration Building
A2-1 Architectural-Shop & Warehouse (09.7) H₂ Compression
Shed (05) Comp Shed for Mineral Separation (03)
A2-2 Architectural-Control Building (09.6) & Product
Storage Building (08)
A2-3 Architectural-Dry Chemical Storage, Boiler House,
Product Solidification, Waste Treatment Chem.,
Load Center, Barrel Storage
A2-4 Architectural-Mineral Separation Building - Area 03
A2-5 Architectural-Coal Receiving & Preparation Building -
Area 01

M5-01-1

Mechanical-Area 01 - Coal Receiving & Preparation
General Arrangement Plan

M5-01-2

Mechanical-Area 01 - Coal Receiving & Preparation
General Arrangement Plan

SERVICE ABBREVIATIONS

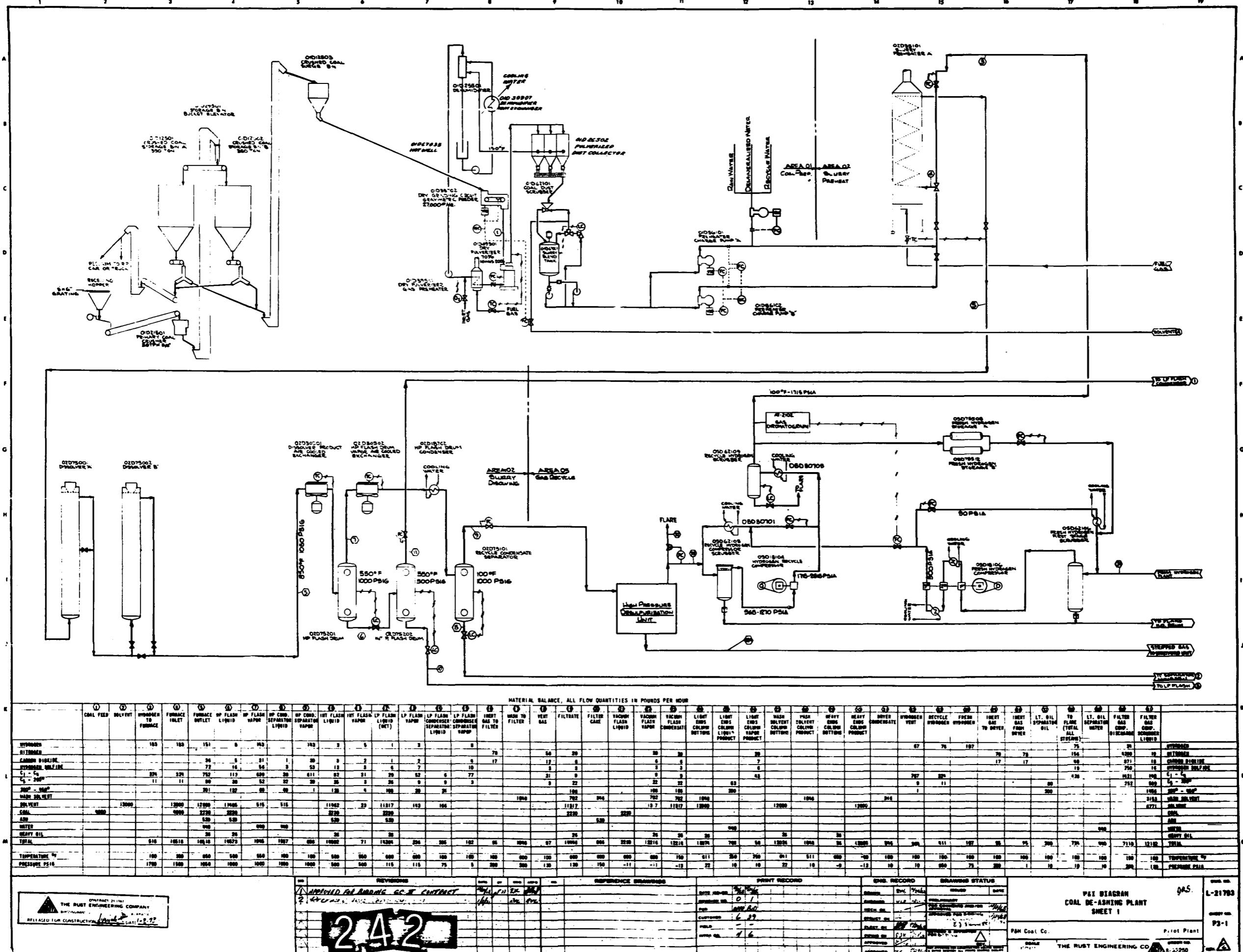
BD	Blowdown (Water)
CH	Chemical (Acid, Amine, Caustic, etc.)
CO	Condensate (Steam)
CP	Coal Product
CS	Coal Solution
CW	Cooling Water
DR	Drains
DT	Dowtherm
FG	Fuel Gas
FL	Flare & Vent
FP	Fire System Water
HL	Liquid Hydrocarbons
HY	Hydrogen/Synthesis Gas
IG	Inert Gas
MR	Mineral Residue (Ash)
NA	Instrument Air
RW	Raw Water
S	Sanitary Sewer
SA	Service Air
SL	Slurry
SS	Storm Sewer
ST	Steam
SCW	Service Cooling Water
TW	Treated Water
VA	Hydrocarbon Vapor
W	Potable Water
WP	Process Waste

PIPING MATERIAL SPECIFICATIONS

PIPING
CODE
LETTERS

<u>DESCRIPTION OF MATERIAL</u>
A1 2500# Ring Joint Flanges, Carbon Steel, Welded Valves
A3 2500# Greyloc Flanges, 316 Stainless Steel, No Valves
A4 2500# Greyloc Flanges, 310 Stainless Steel, Welded Valves
A5 2500# A11 Welded, 304-L Stainless Steel, Welded Valves
A6 2500# Greyloc Flanges, 347 Stainless Steel, Welded Valves
B1 1500# Ring Joint Flanges, Carbon Steel, Welded Valves
B3 1500# Ring Joint Flanges, 304-L Stainless Steel, Welded Valves
B4 1500# Ring Joint Flanges, 316 Stainless Steel, Welded Valves
C1 900# Raised Face Flanges, Carbon Steel, Welded Valves
D1 600# Raised Face Flanges, Carbon Steel, Flanged Valves
D2 600# Raised Face Flanges, Carbon Steel, Welded Valves
D3 600# Raised Face Flanges, 304-L Stainless Steel, Flanged Valves
E1 300# Raised Face Flanges, Carbon Steel, Flanged Valves
E2 300# Raised Face Flanges, Chrome Moly Steel, Flanged Valves
E3 300# Raised Face Flanges, 304-L Stainless Steel, Flanged Valves
E4 300# Raised Face Flanges, Carbon Steel, Welded Valves
E5 300# Raised Face Flanges, Chrome Moly Steel, Welded Valves
E6 300# Raised Face Flanges, 304-L Stainless Steel, Welded Valves
E7 300# Ring Joint Flanges, Carbon Steel, Welded Valves
G1 150# Raised Face Flanges, Carbon Steel, Flanged Valves
G2 150# Cast Iron, Mechanical Joint
G3 150# Cast Iron, Bell & Spigot
G4 150# Raised Face Flanges, Carbon Steel, Welded Valves
H1 125# Cast Iron - Carbon Steel Pipe
H2 125# Copper Water Tube
S1 Carbon Steel, Galvanized, Hub & Spigot
S2 Vitrified Clay Piping, Hub & Spigot
S3 Carbon Steel, Galvanized or Cast Iron, Mechanical Joint
S4 Duriron, Bell & Spigot
S5 Concrete Sewer Pipe
V1 150# Raised Face Flanges, Carbon Steel, Flanged Valves
X1 150# Raised Face Flanges, Carbon Steel, Flanged & Welded Valves
X2 150# Raised Face Flanges, Carbon Steel, Screwed & Flanged Valves

INSTRUMENT PIPING SPECIFICATIONS

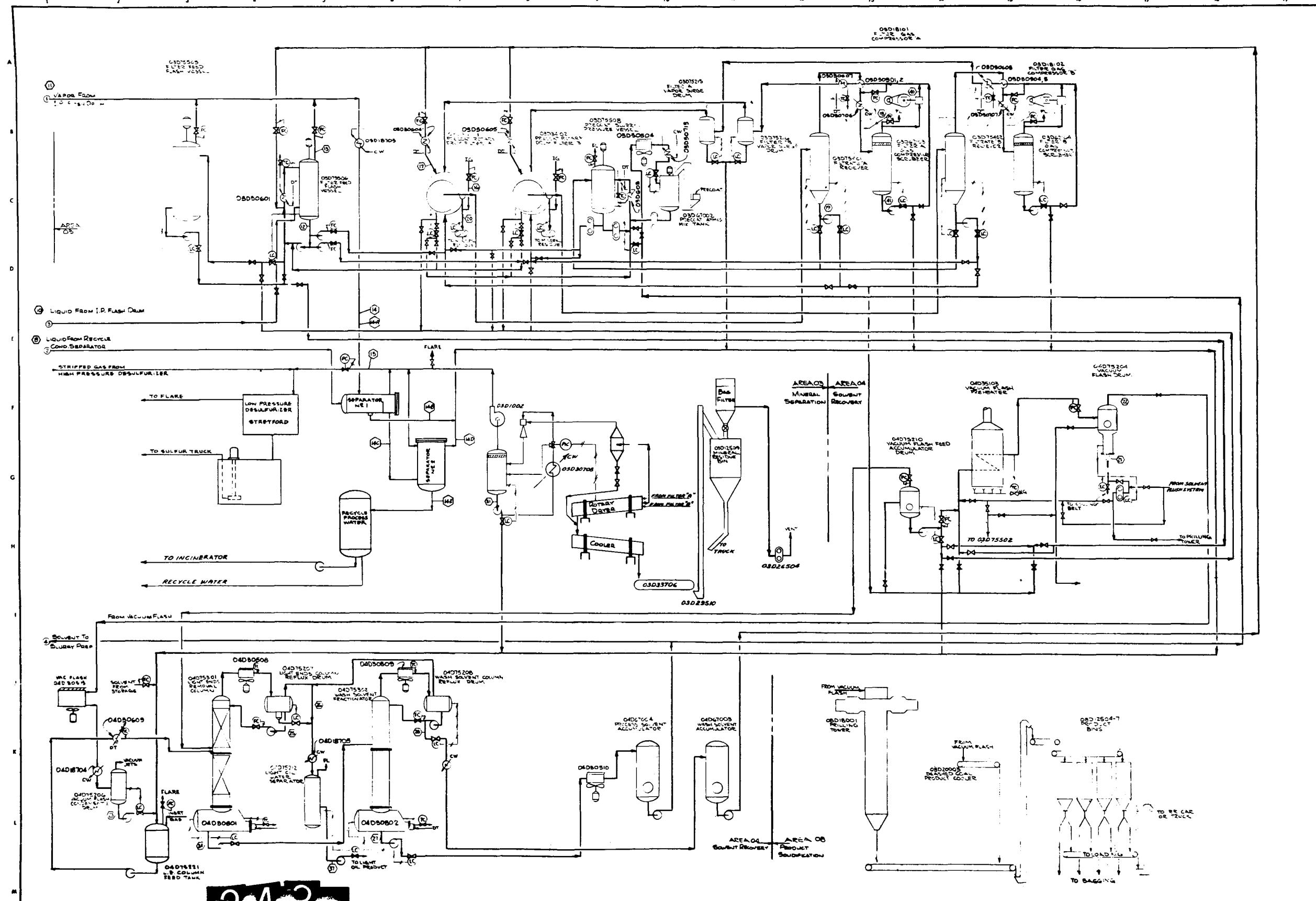

- N1 2500# 316 Stainless Steel Tubing, Swagelok Fittings
- N2 2500# Chrome Moly Pipe, Screwed Valves
- N3 2500# Carbon Steel, Screwed Valves
- N4 1500# Carbon Steel Screwed & Socket Weld Valves
- N5 300# & 600# Carbon Steel, Screwed Valves
- N6 Copper Tubing or Carbon Steel pipe, Screwed Valves
- N7 125# Copper, Brass & Stainless Steel, Screwed Valves

INSTRUMENT NOMENCLATURE

<u>CODE LETTER</u>	<u>DESCRIPTION</u>
A	Alarm Contact (Converts Elect. Signal)
AN	Annunciator Point
AR	Analyzer Recorder
AT	Analyzer Transmitter
CD	Computing Device or Signal Converter
CE	Conductivity Element
CI	Conductivity Indicator
CR	Conductivity Recorder
DC	Density Controller
DCV	Density Control Valve
DR	Density Recorder
DT	Density Transmitter
E/P	Electric to Pneumatic Converter
ER	Electric Relay
FC	Flow Controller
FCD	Flow Control Drive
FCV	Flow Control Valve
FE	Flow Element
FG	Flow Glass
FI	Flow Indicator or Purge Meter
FO	Flow Orifice (Restriction)
FQ	Integrator
FR	Flow Recorder
FRC	Flow Recorder Controller
FS	Flow Switch
FT	Flow Transmitter
HCV	Hand Control Valve
HIC	Hand Indicating Controller
H	High (Alarm Function)
IL	Indicating Light
IN	Indicator Multipoint
KD	Signal Converter
LC	Level Controller
LCV	Level Control Valve
LG	Level Glass
LI	Level Indicator
LMS	Limit Switch
LR	Level Recorder
LRC	Level Recorder Controller
LS	Level Switch
LT	Level Transmitter
L	Low (Alarm Function)

INSTRUMENT NOMENCLATURE (con't.)

M	Motor
PB	Pushbutton
PC	Pressure Controller
PCV	Pressure Control Valve
P/E	Pneumatic to Electric Converter
pHC	pH Controller
pHE	pH Element
pHR	pH Recorder
pHT	pH Transmitter
PI	Pressure Indicator
PR	Pressure Recorder
PRC	Pressure Recorder Controller
PS	Pressure Switch
PSV	Pressure Safety Valve
PT	Pressure Transmitter
R	Recorder (Multipen)
SC	Sample Connection
ST	Speed Transmitter
SV	Solenoid Valve
SW	Switch (Electrical)
T	Trap
TB	Test Block
TC	Temperature Controller
TCV	Temperature Control Valve
TE	Temperature Element
TI	Temperature Indicator
TR	Temperature Recorder
TRC	Temperature Recording Controller
TS	Temperature Switch
TT	Temperature Transmitter
TW	Temperature Well
TX	Test Well
UVS	Flame Scanner
VR	Viscosity Recorder
VSD	Variable Speed Drive
VT	Viscosity Transmitter
WI	Weight Indicator
WT	Weight Transmitter


ALL QUANTITIES IN LB/HR.

STREAM NUMBER	1	2	2A	3	4	5	6	7	8	9	10	11	12	13	14A	14B	14C	14D	14E	15	16	17	
	COAL FEED	SOLVENT FEED	WATER FEED	SYN GAS TO FURNACE INLET	FURNACE OUTLET	DISSOLVER	HP FLASH LIQUID	HP FLASH VAPOR	HP CONO SEP LIQUID	HP CONO SEP VAPOR	INT FLASH LIQUID	INT FLASH VAPOR	LP FLASH LIQUID NET	LP FLASH VAPOR	SEP NO-1 PHASE TO LT. ENDS C.	OL & H ₂ O TO SEP NO 2	LT OIL TO LEC	H ₂ O TO WASTE OR STORAGE	SEP NO 1 VAPOR	INERT GAS TO FILTERS	WASH TO FILTERS		
HYDROGEN (H ₂)				92	92	76	4	72	2	70	1	3		1	6				6				
CARBON MONOXIDE (CO)				1281	1281	951	50	901	25	876	17	33	5	12	70				70				
NITROGEN (N ₂)																							
CARBON DIOXIDE (CO ₂)							720	100	620	27	593	60	40	20	40	107				78			
HYDROGEN SULFIDE (H ₂ S)							2	1	1		1	1		1	1					107	17		
C ₁ -C ₄				324	324	507	77	430	23	407	56	21	21	35	79					1			
C ₅ -200°F				11	11	14	5	9	6	3	4	1	3	1	8		8	7	1				
200°-450°F							16	11	5	5		10	1	8	2	8	4	4	3	1			
WASH SOLVENT							217	185	32	32		179	6	165	14	52	52				1248		
SOLVENT	8000			8000	8000	7657	343	343			7642	15	7347	95	453	453							
COAL	2456			2456	1514	1514							1514		1514								
MINERAL RESIDUE	288			288	624	624							624		624								
WATER	1256	0		1256	1043		1043	1043							1043		1043	1043					
HEAVY OIL							24	24				24		24									
TOTAL	4000	8000	0	1708	13708	13708	10252	3456	1504	1950	10132	120	9931	201	1827	509	1055	10	1045	263	95	1248	
TEMPERATURE °F	100	150		100	100	797	600	600	100	100	600	600	600	600	100	100	100	100	100	100	100	600	
PRESSURE PSIG				22.50	2050	1500	1500	1500	1500	1500	750	750	115	115	50	50	50	50	50	200	200		

ALL QUANTITIES IN LB/HR

STREAM NUMBER	18	19	20	21	22	23	24	25	26	27	28	31	32	32A	33	34	35	36	38	42	43		
	VENT GAS	FILTRATE	FILTER CAKE	VACUUM FLASH LIQUID	VACUUM FLASH VAPOR	VACUUM COND.	LT. ENDS FEED	L.E.C. BOTTOMS	L.E.C. LIQUID PRODUCT	L.E.C. VAPOR PRODUCT	WASH SOL. COL. BOTTOMS	WASH COND.	SYN GAS VENT	ACID GAS FROM DEA UNIT	RECYCLE SYNGAS	FRESH SYNGAS	INERT GAS TO DRYER	TOTAL GAS FROM DRYER	FEED TO FLARE	SULFUR REC UNIT			
HYDROGEN (H ₂)															13	57	37			19	6		
CARBON MONOXIDE (CO)	3	2			2	2	2			2			157	719	526				232	75			
NITROGEN (N ₂)	58	20			20	20	20			20						78	78	78	70				
CARBON DIOXIDE (CO ₂)	25	12			12	12	12			12					593		17	17	737	737			
HYDROGEN SULFIDE (H ₂ S)															1				2	2			
C ₁ -C ₄	15	6			6	6	6			6			72		335				172	100			
C ₅ -200°F	1	2			2	2	9			9			1		2				2	1			
200°-450°F		8			8	8	15			15													
WASH SOLVENT	947	466		947	947	1465	1465				1465		466										
SOLVENT	7547			7547	7547	8000	8000				8000								342,000				
COAL	1514	1514																					
MINERAL RESIDUE		624																					
WATER																							
HEAVY OIL		24			24	24	24			24													
TOTAL	102	10,082	1090	1514	8568	8568	9553	9489	24	40	8024	1465	466	243	594	1113	363	95	95	1240	999	2	
TEMPERATURE °F	100	600	600	600	600	150			611	250	250	641	511	100	100	100	100	100	100	100	100		
PRESSURE PSIG	130	130	150	-11	-11	-13			22	10	10	22	10	10	10	10	10	950	75	250	1	~5	10

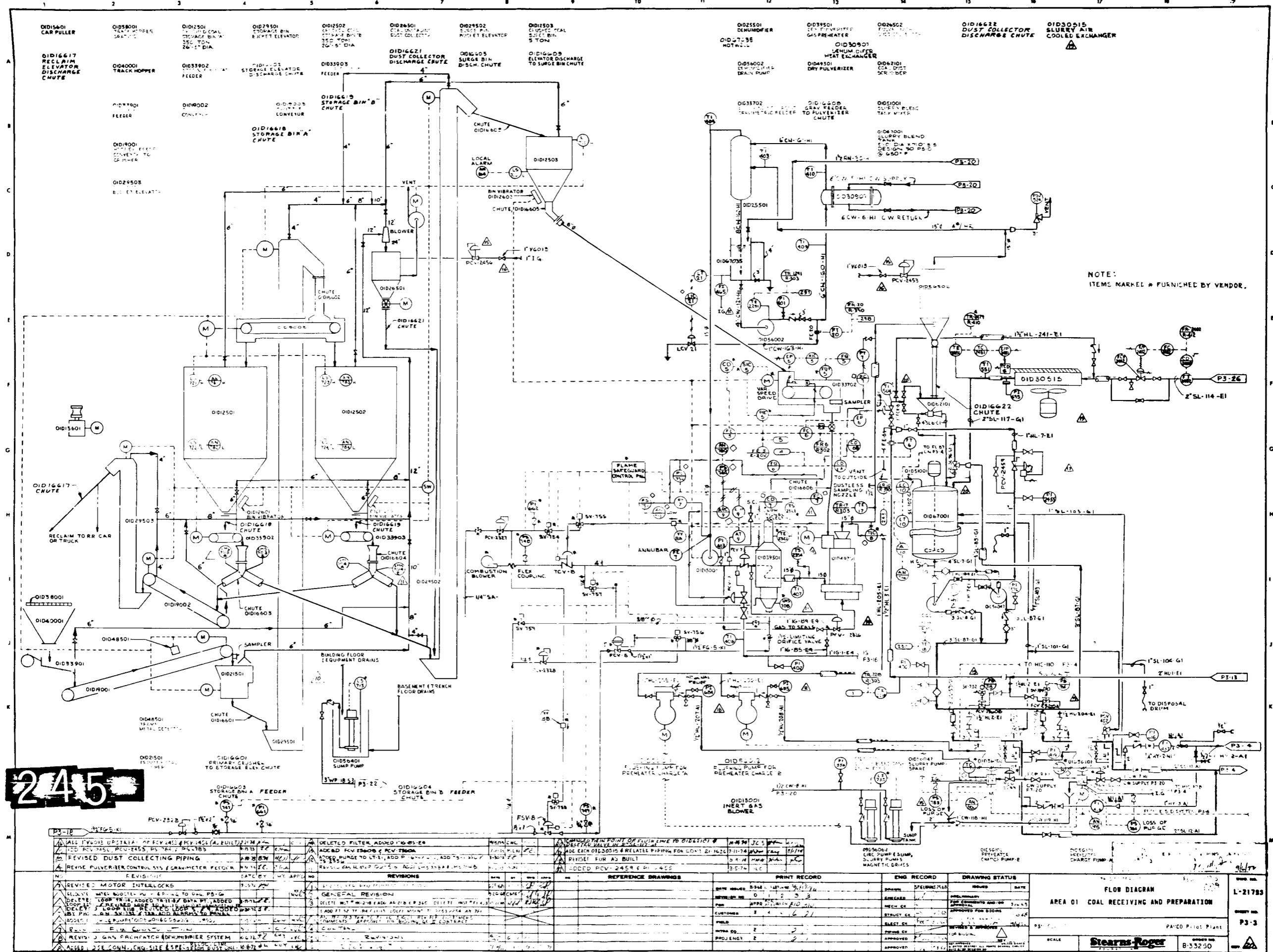
												REVISIONS	ENR.	
												ORIGINATED BY GP		
												DRAWN BY RWH	6-27-74	
												CHECKED BY RS	6-27-74	
												SRC PILOT PLANT MATERIAL BALANCE SYNTHESIS GAS CASE -		
												PITTSBURG & MIDWAY COAL MINING COMPANY SRC PILOT PLANT		
												SCALE HOME	FORT LEWIS, WASHINGTON	
												SHEET NO. P3-1-A (BY PAM)		

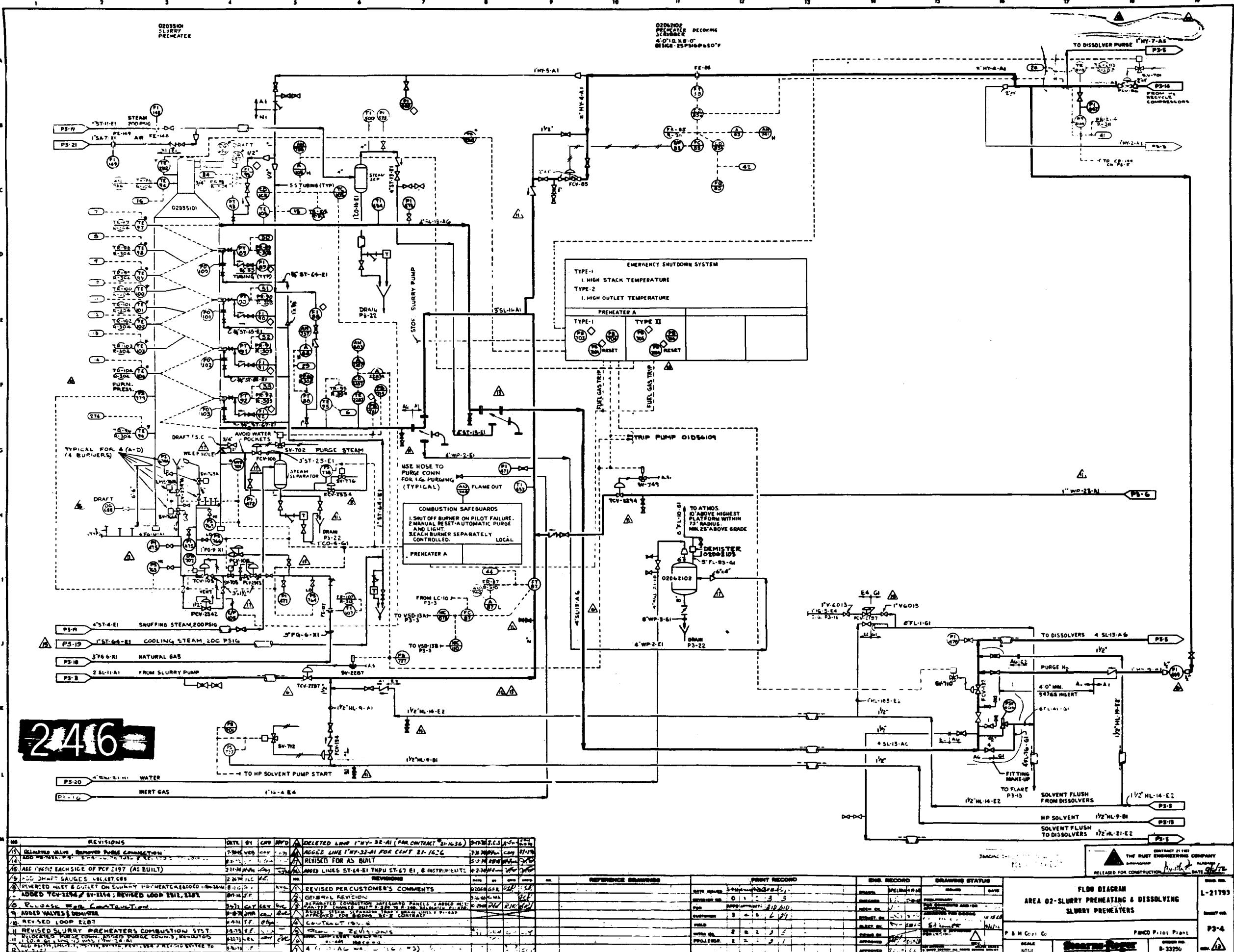
243

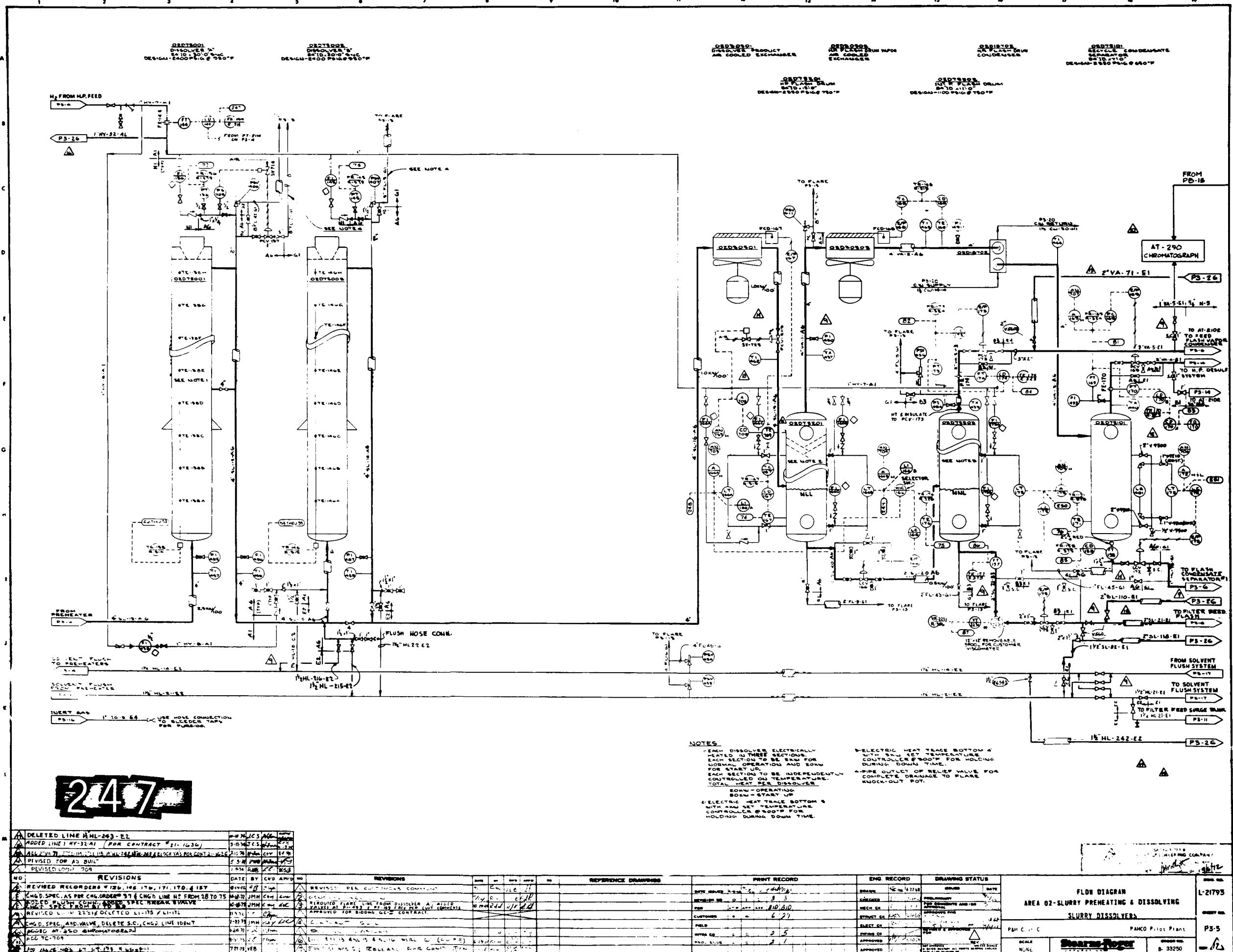
CONTRACT 211881
THE RUST ENGINEERING COMPANY
BIRMINGHAM, ALABAMA
RELEASED FOR CONSTRUCTION *dmh* DATE 1-3-72

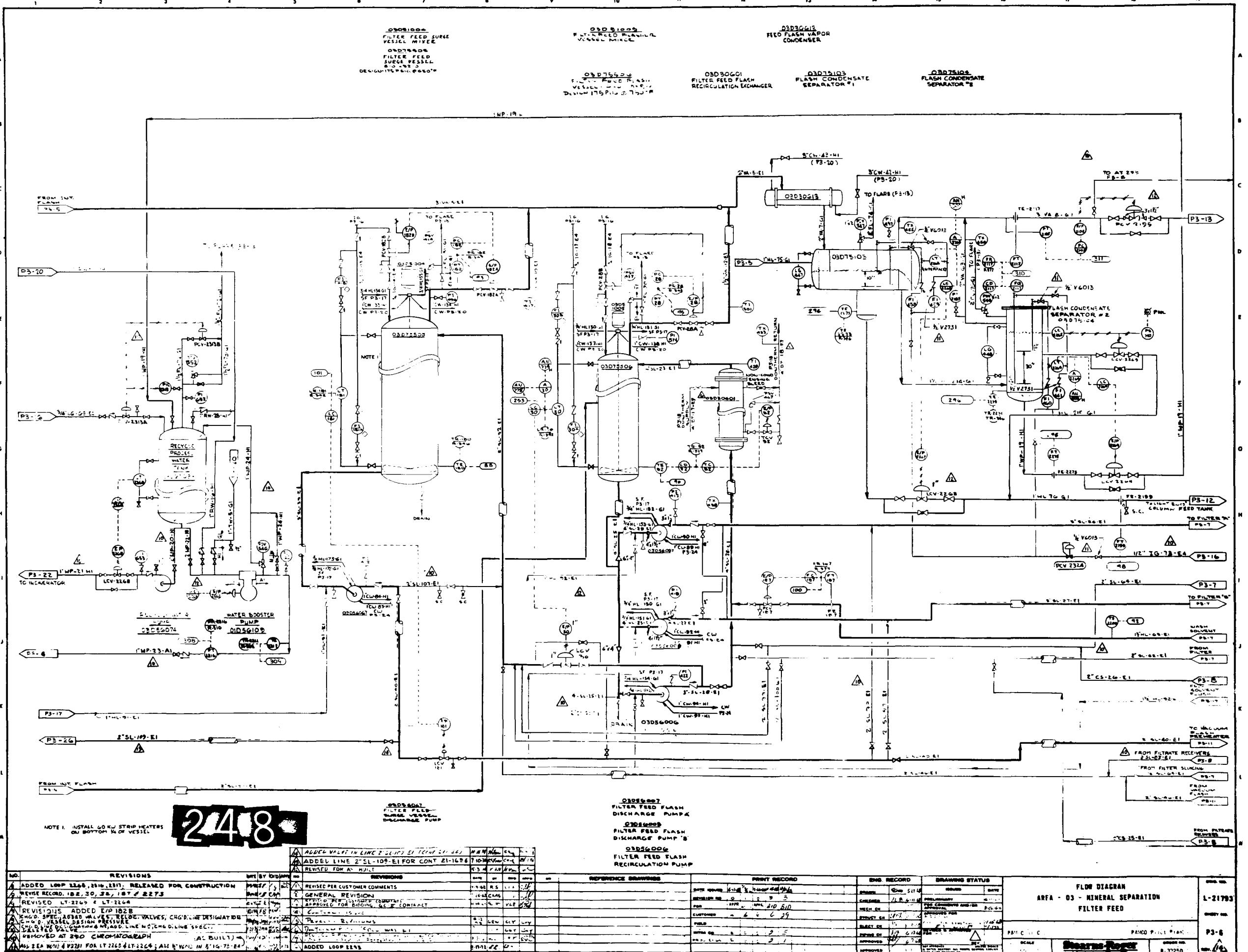
REVISIONS		DATE	BY	REASON	REMARKS
1	AMENDED FOR BIDDING GC IN CONTRACT	10/10/1988	1000	1000	
2	RELEASED FOR CONTRACTING	10/10/1988	1000	1000	
X					
X					
X					
X					
X					

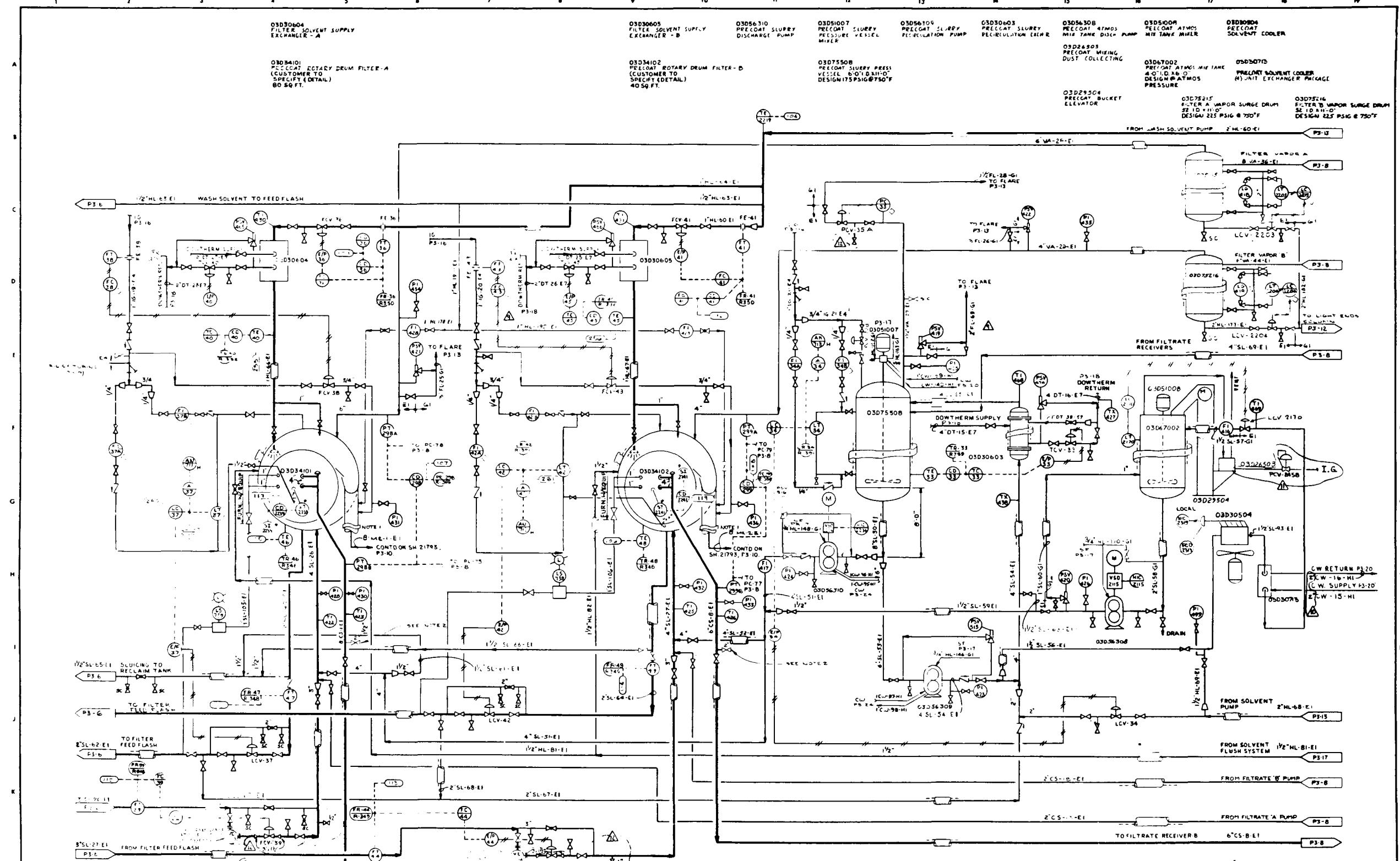
DICE DRAWINGS		PRINT RECORD
DATE DRAWN	10/18/86	
STATION NO	01	
PER	000 810	
CUSTOMER	6:01	
FIELD		
HYDRA CO.	1.6	

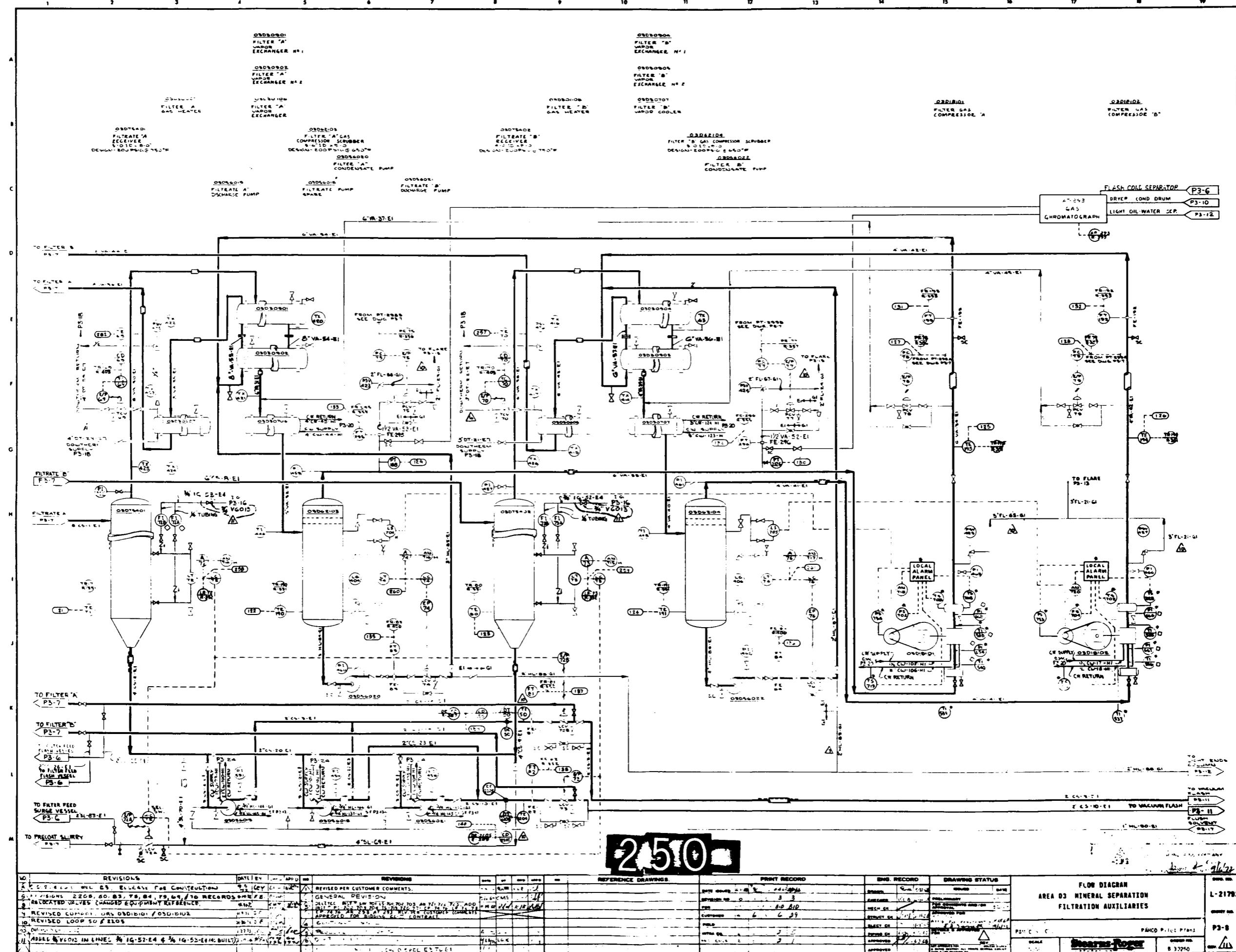

ENG. RECORD		DRAWING STATUS
DRAWN BY	10K 14-16	ISSUED
APPROVED		PRELIMINARY
MECH. CH.		FOR COMMENTS AND OR APPROVAL
STRUCT. CH.		REISSUE FOR 10-14-16
DESIGN CH.	10K 14-16	REISSUE FOR 10-14-16
REVIEW OF		REVISED & APPROVED
APPROVED		NOT APPROVED OR COMMENTED


P&I DIAGRAM
COAL DE-ASHING PLANT
SHEET 2

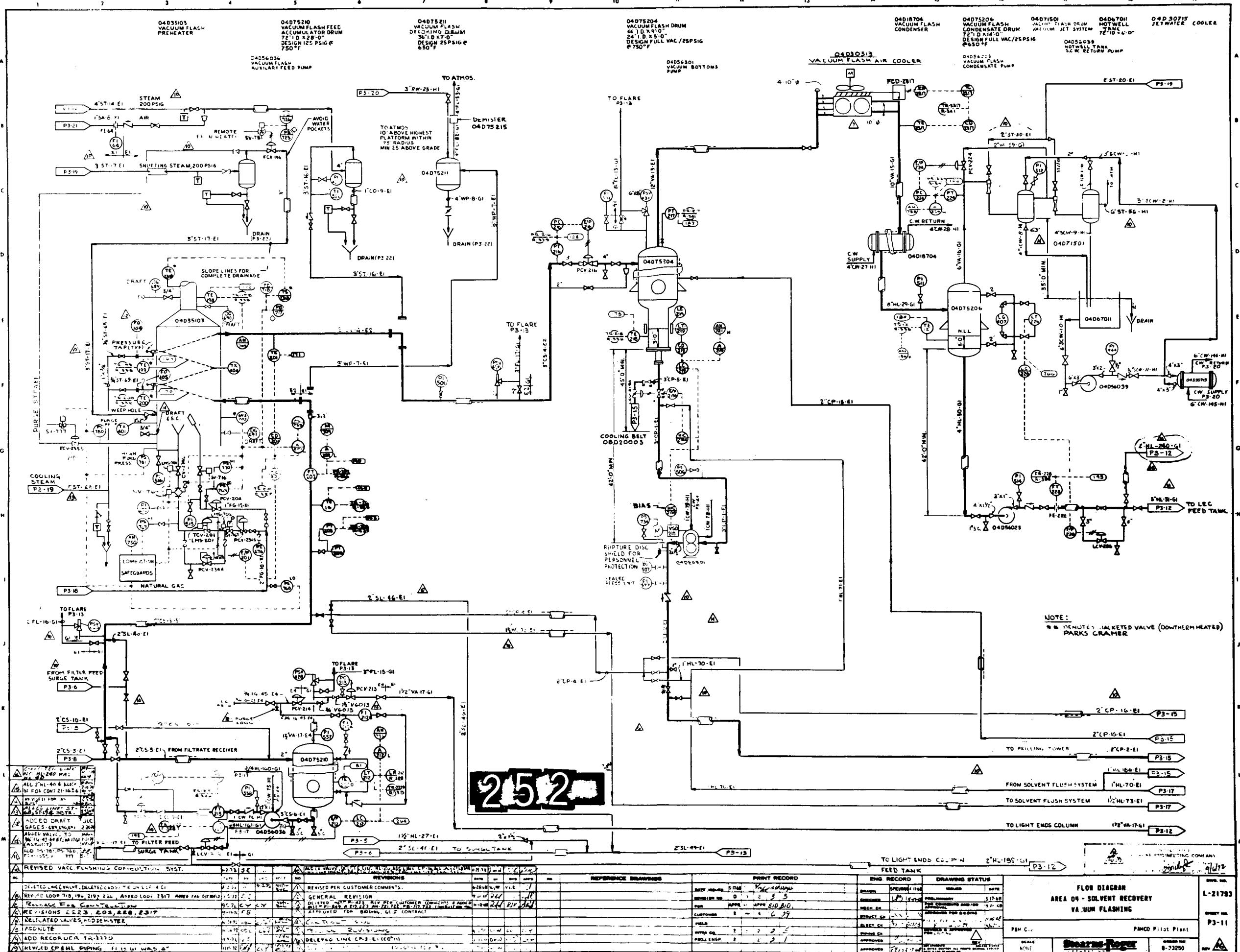

21793


1987 000.

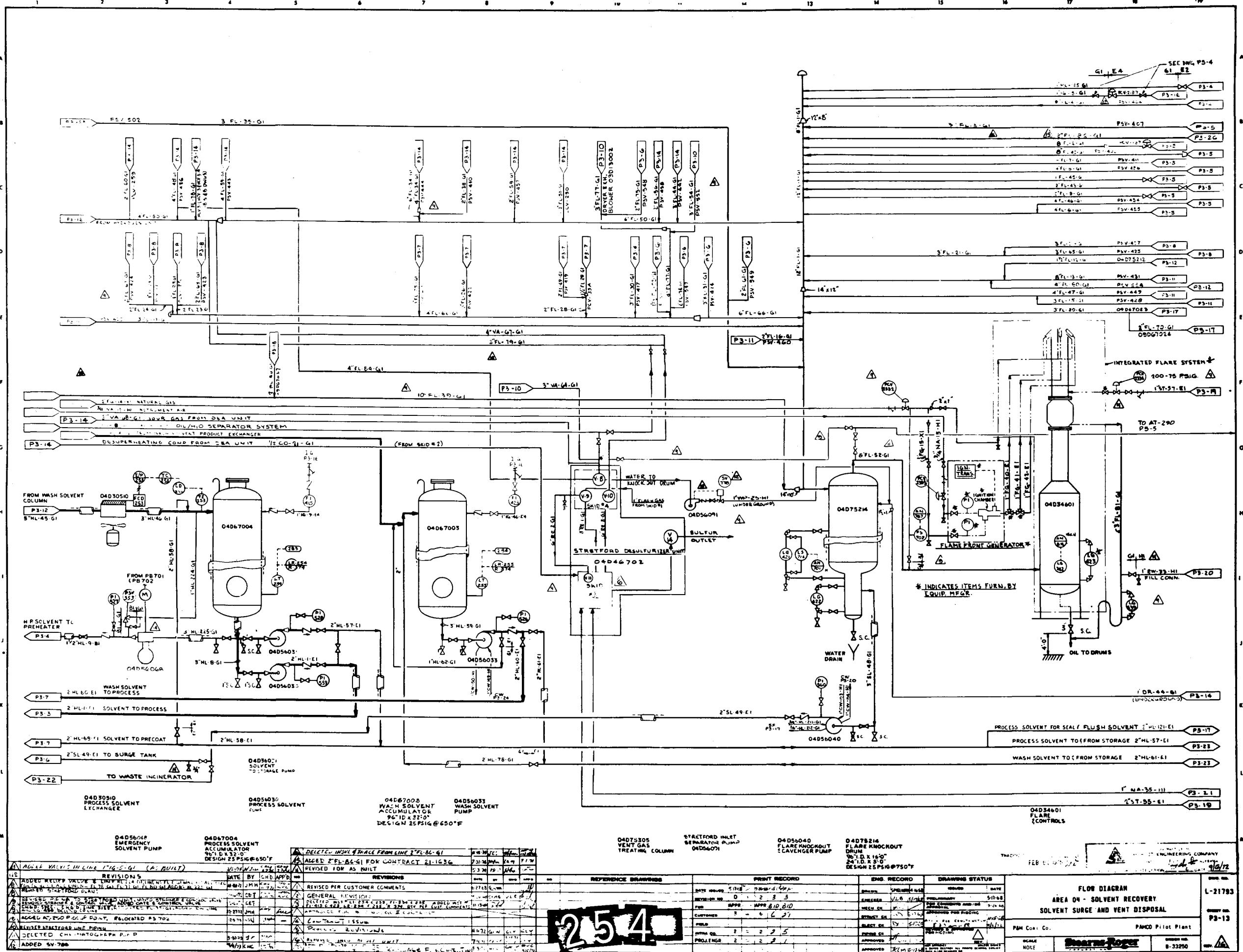

2

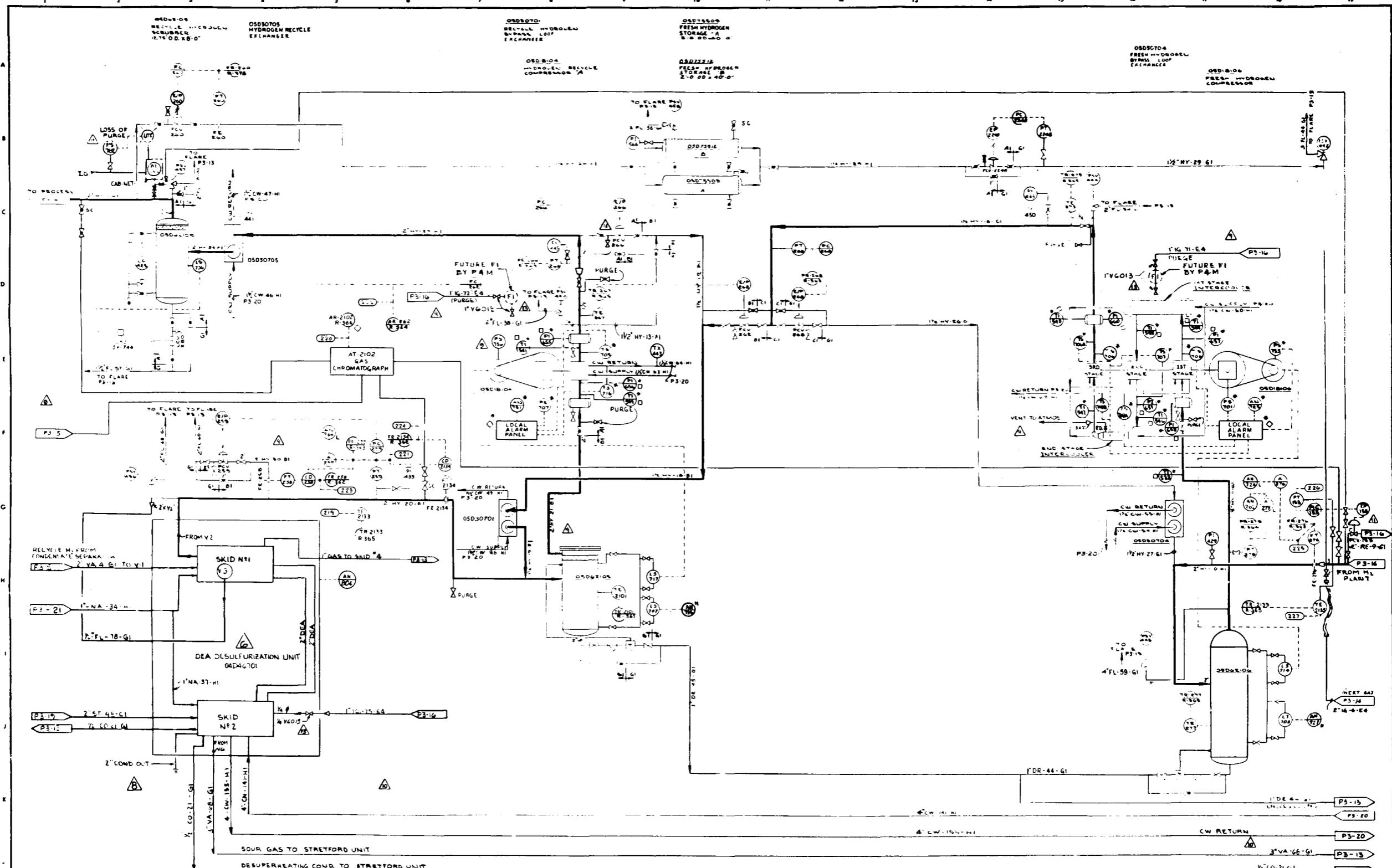


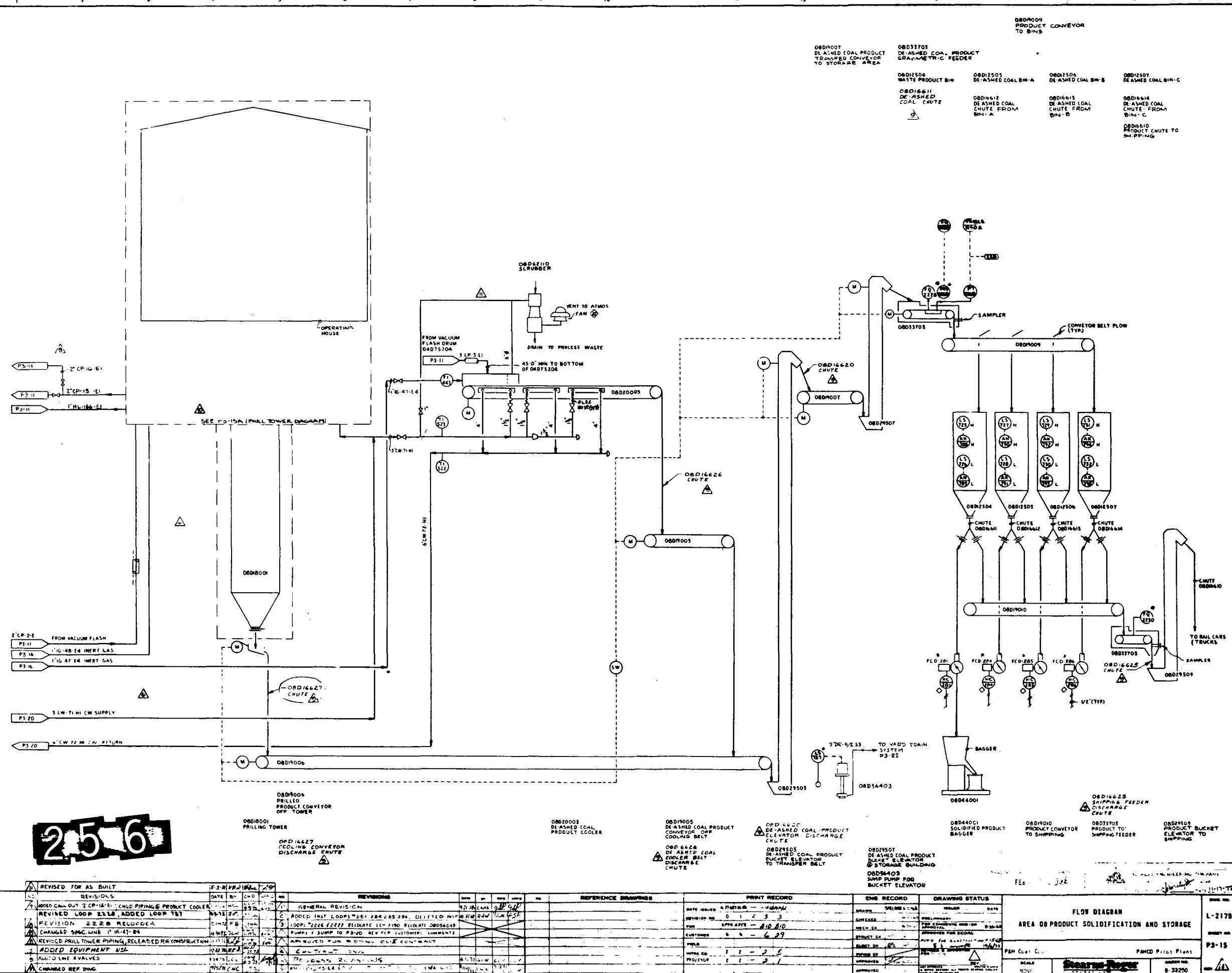
NOTES:

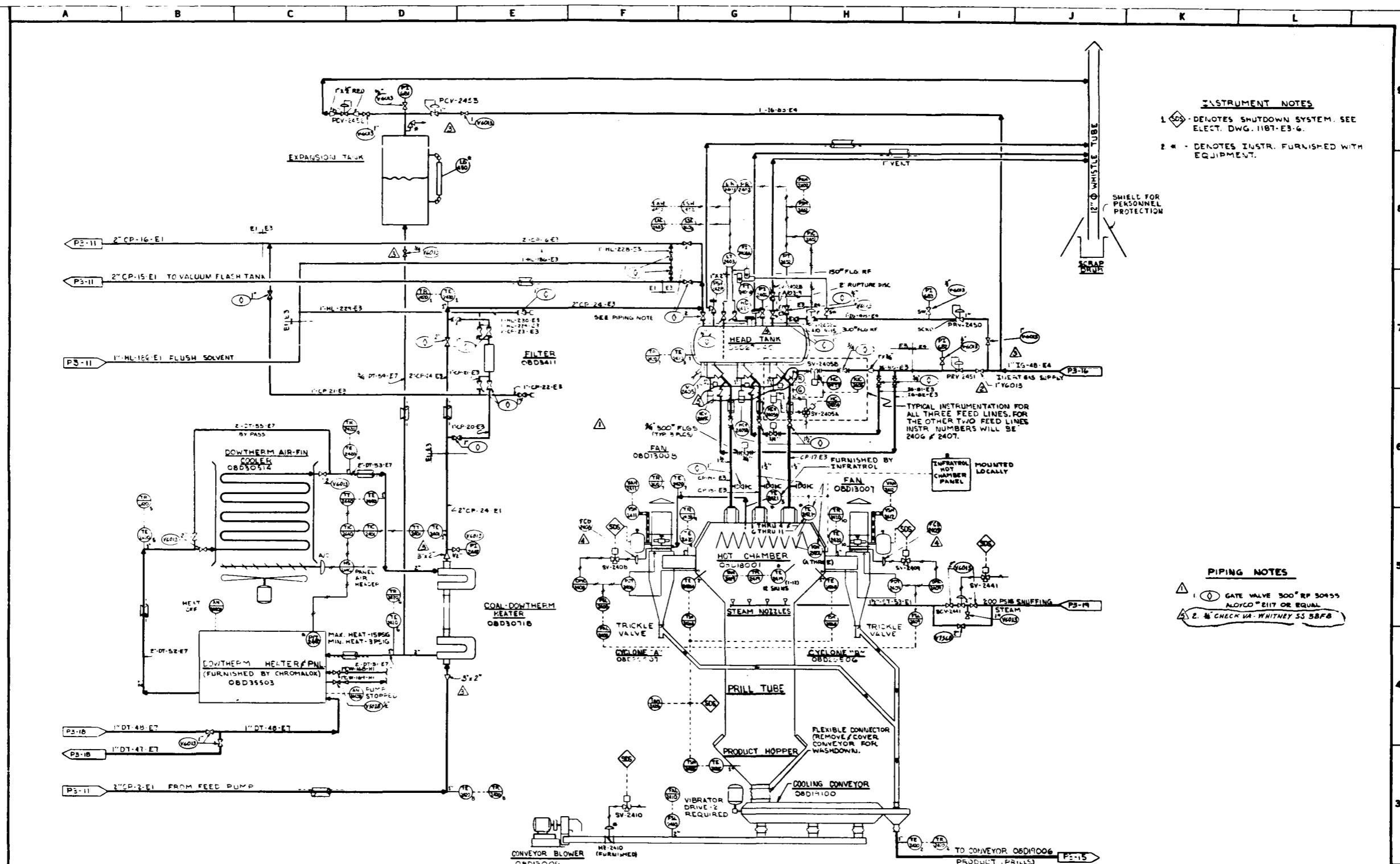

1. ELECTRICAL TRACE PIPE HOPPER AS REQD. TO HOLD 700°F.
2. SEE DETAIL FOR ASBESTOS FIBER TANK TO BE INSTALLED HERE.


249


REVISIONS		DATE	BY	CKD	AMPD	NO	REVISIONS		REF	REFERENCE DRAWINGS
1	1	10-27-02	JMH	6-27-02			1	REVISED PER CUSTOMER COMMENTS		
2	2	10-28-02	FB	6-28-02			2	GENERAL REVISION		
3	3	11-12-02					3	REVISED PER CUSTOMER COMMENTS. APPROVED FOR PRODUCTION. SEE CONTRACT		
4	4	12-15-02					4	CONTRACT ISSUED		
5	5	10-27-02	CKD	6-27-02			5	REVISION P-1		
6	6	10-28-02	CF	6-28-02			6	REVISED P-1		
7	7	10-28-02	CF	6-28-02			7	REVISED P-1 SPECIFICATION		
8	8	11-12-02					8	DELETED LOOP 288		
9	9	12-15-02					9	REVISION P-2		
10	10	12-15-02					10	REVISION P-2		
11	11	12-15-02					11	REVISION P-2		
12	12	12-15-02					12	REVISION P-2		
13	13	12-15-02					13	REVISION P-2		
14	14	12-15-02					14	REVISION P-2		
15	15	12-15-02					15	REVISION P-2		
16	16	12-15-02					16	REVISION P-2		
17	17	12-15-02					17	REVISION P-2		
18	18	12-15-02					18	REVISION P-2		
19	19	12-15-02					19	REVISION P-2		
20	20	12-15-02					20	REVISION P-2		
21	21	12-15-02					21	REVISION P-2		
22	22	12-15-02					22	REVISION P-2		
23	23	12-15-02					23	REVISION P-2		
24	24	12-15-02					24	REVISION P-2		
25	25	12-15-02					25	REVISION P-2		
26	26	12-15-02					26	REVISION P-2		
27	27	12-15-02					27	REVISION P-2		
28	28	12-15-02					28	REVISION P-2		
29	29	12-15-02					29	REVISION P-2		
30	30	12-15-02					30	REVISION P-2		
31	31	12-15-02					31	REVISION P-2		
32	32	12-15-02					32	REVISION P-2		
33	33	12-15-02					33	REVISION P-2		
34	34	12-15-02					34	REVISION P-2		
35	35	12-15-02					35	REVISION P-2		
36	36	12-15-02					36	REVISION P-2		
37	37	12-15-02					37	REVISION P-2		
38	38	12-15-02					38	REVISION P-2		
39	39	12-15-02					39	REVISION P-2		
40	40	12-15-02					40	REVISION P-2		
41	41	12-15-02					41	REVISION P-2		
42	42	12-15-02					42	REVISION P-2		
43	43	12-15-02					43	REVISION P-2		
44	44	12-15-02					44	REVISION P-2		
45	45	12-15-02					45	REVISION P-2		
46	46	12-15-02					46	REVISION P-2		
47	47	12-15-02					47	REVISION P-2		
48	48	12-15-02					48	REVISION P-2		
49	49	12-15-02					49	REVISION P-2		
50	50	12-15-02					50	REVISION P-2		
51	51	12-15-02					51	REVISION P-2		
52	52	12-15-02					52	REVISION P-2		
53	53	12-15-02					53	REVISION P-2		
54	54	12-15-02					54	REVISION P-2		
55	55	12-15-02					55	REVISION P-2		
56	56	12-15-02					56	REVISION P-2		
57	57	12-15-02					57	REVISION P-2		
58	58	12-15-02					58	REVISION P-2		
59	59	12-15-02					59	REVISION P-2		
60	60	12-15-02					60	REVISION P-2		
61	61	12-15-02					61	REVISION P-2		
62	62	12-15-02					62	REVISION P-2		
63	63	12-15-02					63	REVISION P-2		
64	64	12-15-02					64	REVISION P-2		
65	65	12-15-02					65	REVISION P-2		
66	66	12-15-02					66	REVISION P-2		
67	67	12-15-02					67	REVISION P-2		
68	68	12-15-02					68	REVISION P-2		
69	69	12-15-02					69	REVISION P-2		
70	70	12-15-02					70	REVISION P-2		
71	71	12-15-02					71	REVISION P-2		
72	72	12-15-02					72	REVISION P-2		
73	73	12-15-02					73	REVISION P-2		
74	74	12-15-02					74	REVISION P-2		
75	75	12-15-02					75	REVISION P-2		
76	76	12-15-02					76	REVISION P-2		
77	77	12-15-02					77	REVISION P-2		
78	78	12-15-02					78	REVISION P-2		
79	79	12-15-02					79	REVISION P-2		
80	80	12-15-02					80	REVISION P-2		
81	81	12-15-02					81	REVISION P-2		
82	82	12-15-02					82	REVISION P-2		
83	83	12-15-02					83	REVISION P-2		
84	84	12-15-02					84	REVISION P-2		
85	85	12-15-02					85	REVISION P-2		
86	86	12-15-02					86	REVISION P-2		
87	87	12-15-02					87	REVISION P-2		
88	88	12-15-02					88	REVISION P-2		
89	89	12-15-02					89	REVISION P-2		
90	90	12-15-02					90	REVISION P-2		
91	91	12-15-02					91	REVISION P-2		
92	92	12-15-02					92	REVISION P-2		
93	93	12-15-02					93	REVISION P-2		
94	94	12-15-02					94	REVISION P-2		
95	95	12-15-02					95	REVISION P-2		
96	96	12-15-02					96	REVISION P-2		
97	97	12-15-02					97	REVISION P-2		
98	98	12-15-02					98	REVISION P-2		
99	99	12-15-02					99	REVISION P-2		
100	100	12-15-02					100	REVISION P-2		
101	101	12-15-02					101	REVISION P-2		
102	102	12-15-02					102	REVISION P-2		
103	103	12-15-02					103	REVISION P-2		
104	104	12-15-02					104	REVISION P-2		
105	105	12-15-02					105	REVISION P-2		
106	106	12-15-02					106	REVISION P-2		
107	107	12-15-02					107	REVISION P-2		
108	108	12-15-02					108	REVISION P-2		
109	109	12-15-02					109	REVISION P-2		
110	110	12-15-02					110	REVISION P-2		
111	111	12-15-02					111	REVISION P-2		
112	112	12-15-02					112	REVISION P-2		
113	113	12-15-02					113	REVISION P-2		
114	114	12-15-02					114	REVISION P-2		
115	115	12-15-02					115	REVISION P-2		
116	116	12-15-02					116	REVISION P-2		
117	117	12-15-02					117	REVISION P-2		
118	118	12-15-02					118	REVISION P-2		
119	119	12-15-02					119	REVISION P-2		
120	120	12-15-02					120	REVISION P-2		
121	121	12-15-02					121	REVISION P-2		
122	122	12-15-02					122	REVISION P-2		
123	123	12-15-02					123	REVISION P-2		
124	124	12-15-02					124	REVISION P-2		
125	125	12-15-02					125	REVISION P-2		
126	126	12-15-02					126	REVISION P-2		
127	127	12-15-02					127	REVISION P-2		
128	128	12-15-02					128	REVISION P-2		
129	129	12-15-02					129	REVISION P-2		
130	130	12-15-02					130	REVISION P-2		
131	131	12-15-02					131	REVISION P-2		
132	132	12-15-02					132	REVISION P-2		
133	133	12-15-02					133	REVISION P-2		
134	134	12-15-02					134	REVISION P-2		
135	135	12-15-02					135	REVISION P-2		
136	136	12-15-02					136	REVISION P-2		
137	137	12-15-02					137	REVISION P-2		
138	138	12-15-02					138	REVISION P-2		
139	139	12-15-02					139	REVISION P-2		
140	140	12-15-02					140	REVISION P-2		
141	141	12-15-02					141	REVISION P-2		
142	142	12-15-02					142	REVISION P-2		
143	143	12-15-02					143	REVISION P-2		
144	144	12-15-02					144	REVISION P-2		
145	145	12-15-02					145	REVISION P-2		
146	146	12-15-02					146	REVISION P-2		
147	147	12-15-02					147	REVISION P-2		
148	148	12-15-02					148	REVISION P-2		
149	149	12-15-02					149	REVISION P-2		
150	150	12-15-02					150	REVISION P-2		
151	151	12-15-02					151	REVISION P-2		
152	152	12-15-02					152	REVISION P-2		
153	153	12-15-02					153	REVISION P-2		
154	154	12-15-02					154	REVISION P-2		
155	155	12-15-02					155	REVISION P-2		
156	156	12-15-02					156	REVISION P-2		
157	157	12-15-02					157	REVISION P-2		
158	158	12-15-02					158	REVISION P-2		
159	159	12-15-02					159	REVISION P-2		
160	160	12-15-02					160	REVISION P-2		
161	161	12-15-02					161	REVISION P-2		
162	162	12-15-02					162	REVISION P-2		
163	163	12-15-02					163	REVISION P-2		
164	1									





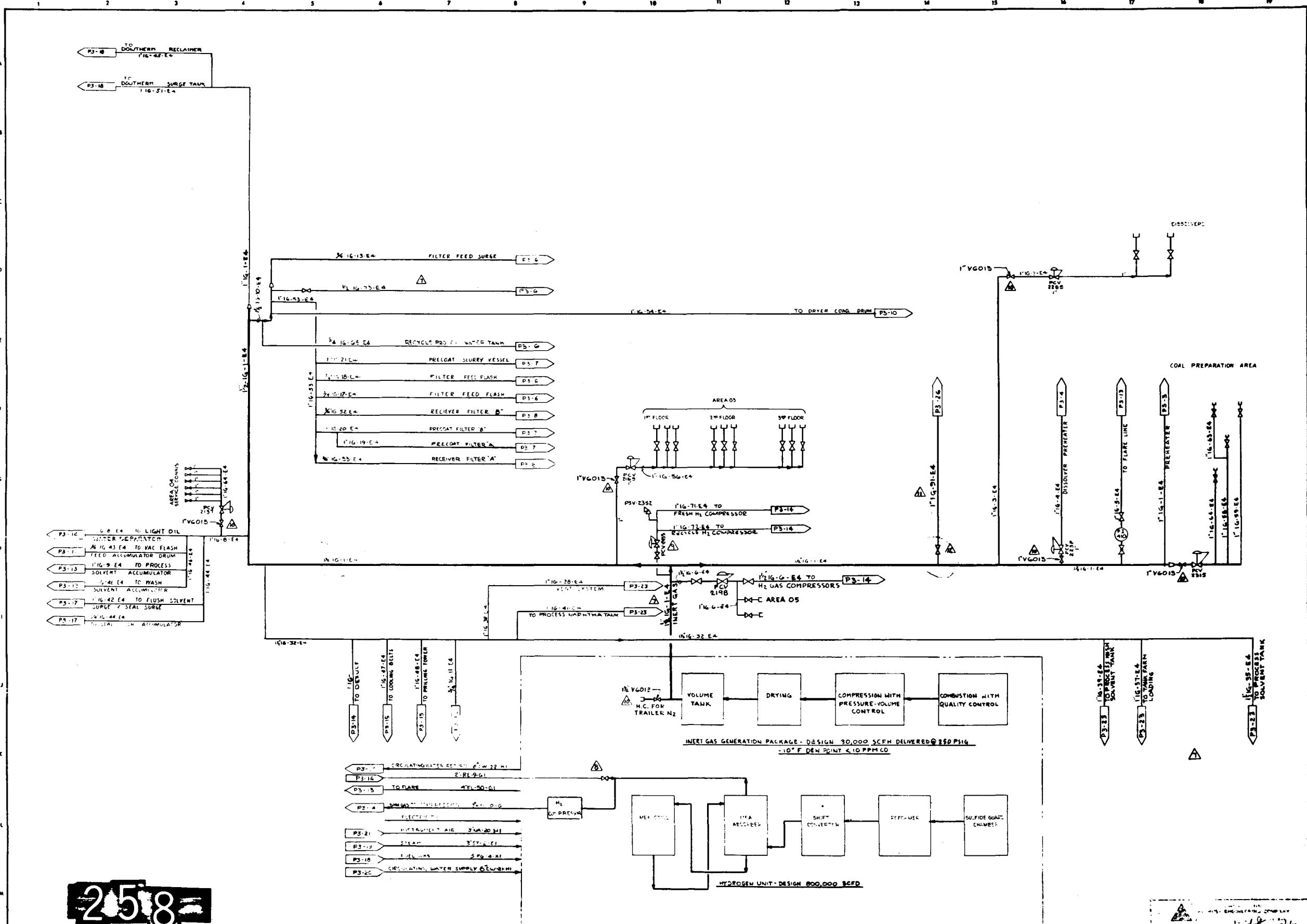

2455

REFERENCE DRAWINGS		PRINT REQS		
DATE ISSUED		1	2	3
INTERIOR NO	0	1	2	3
FOR				APPENDIX B10
CUSTOMER	4	4	6	6
FIELD				
INTRA. ED	2	2	2	2
EXTRA. ED	2	2	2	2

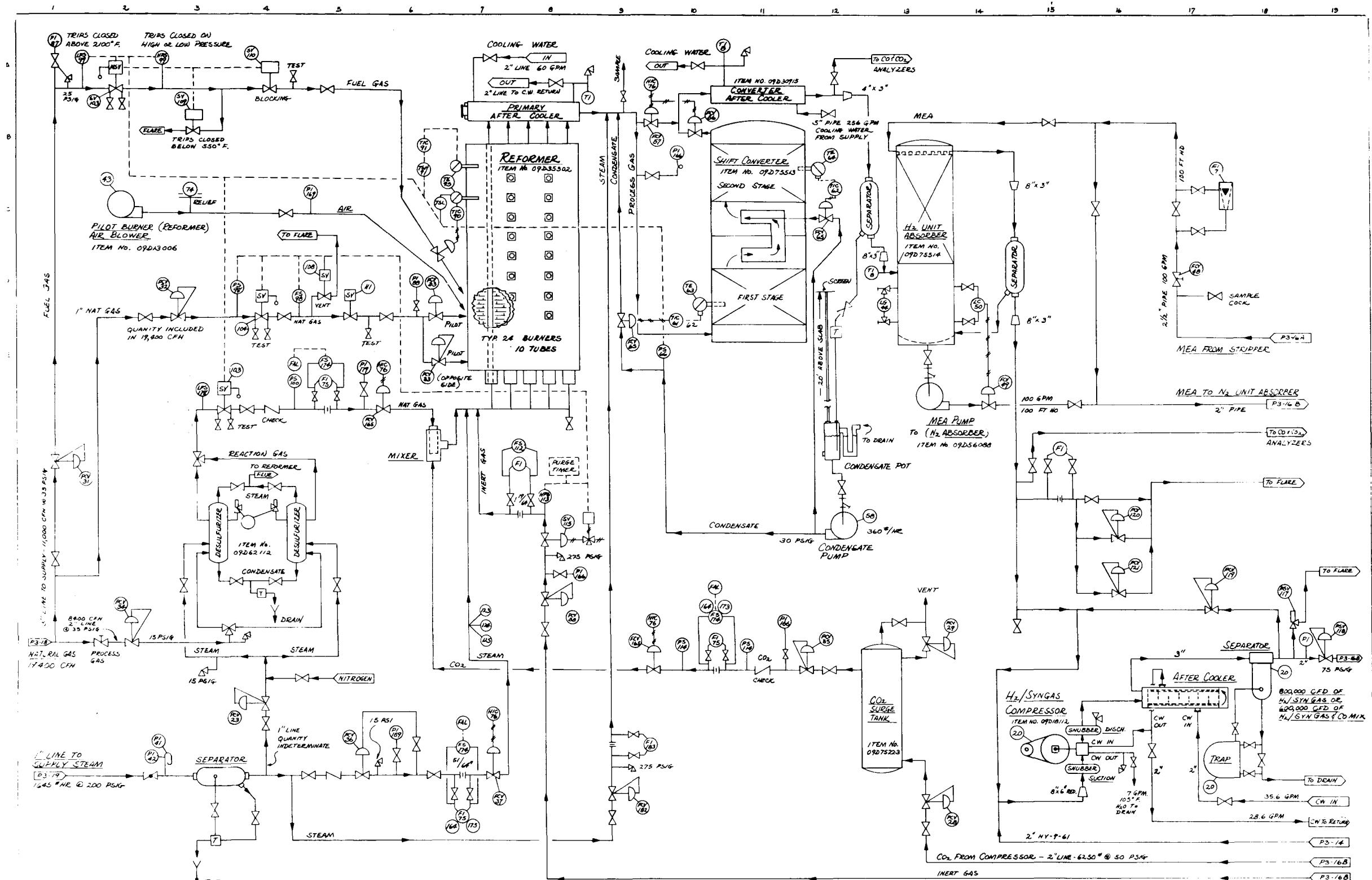
RECORD	ENG RECORD	DRAWING STATUS
44-12	BRWTH	REMOVED DATE
3	CHECKED	1/18/67
810	MECH. DE	REMOVED AND ON 4-27-66
29	STRUCT. DE	REMOVED FOR
5	STRUCT. DE	APR 18 1967
1	PINS DE	NO 4-27-66
	APPROVED	REV. 1/18/67
	APPROVED	SCALE
		NOTE

		AIA REEDS ENGINEERING COMPANY	
FLOW DIAGRAM			
AREA 05 - GAS RECOVERY AND RECOMPRESSOR			
M Coal Co.		PAMCO Pilot Plant	
SCALE NOTE	SECRET REPORT		B-33250
L-21793 P3-14			

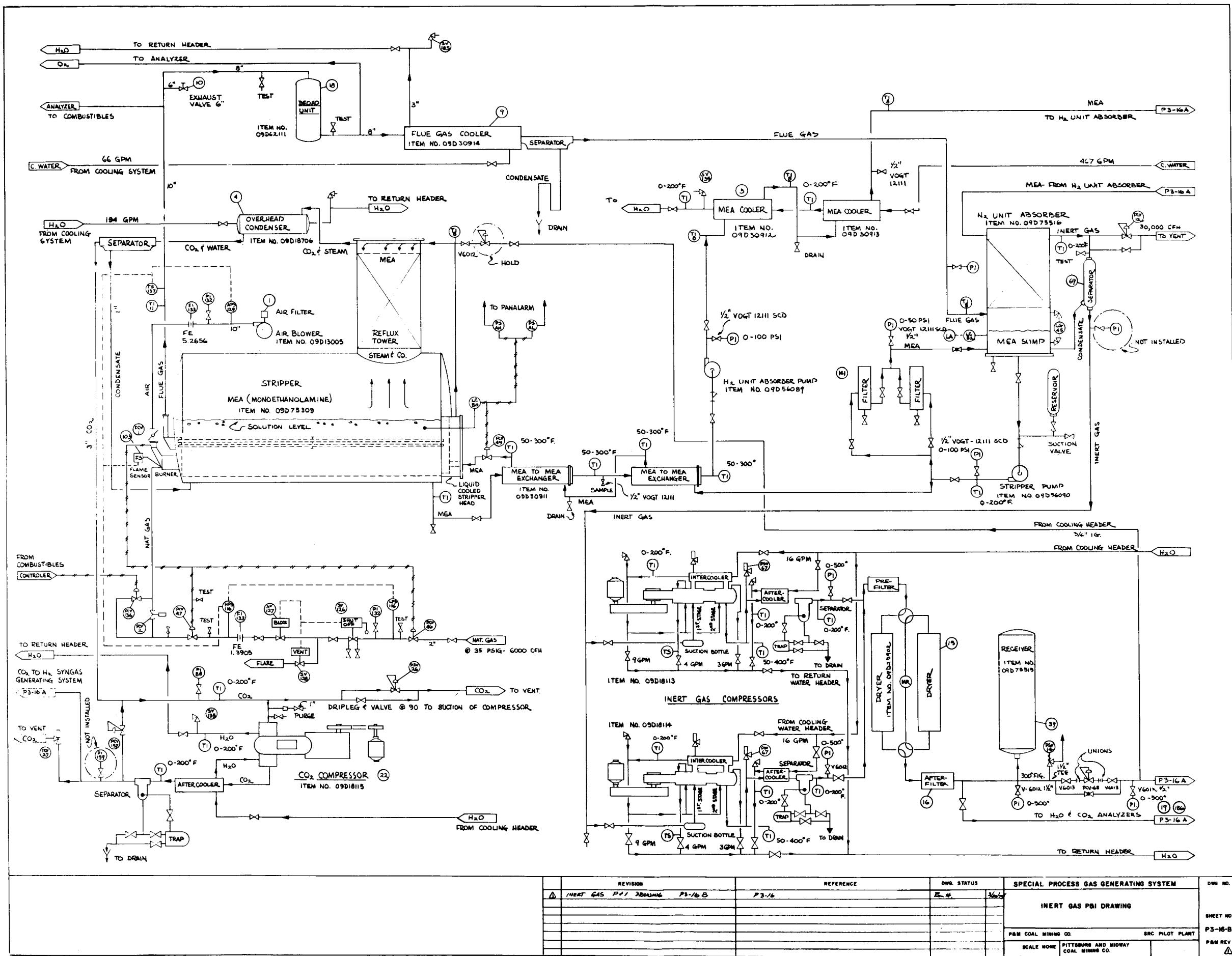
257

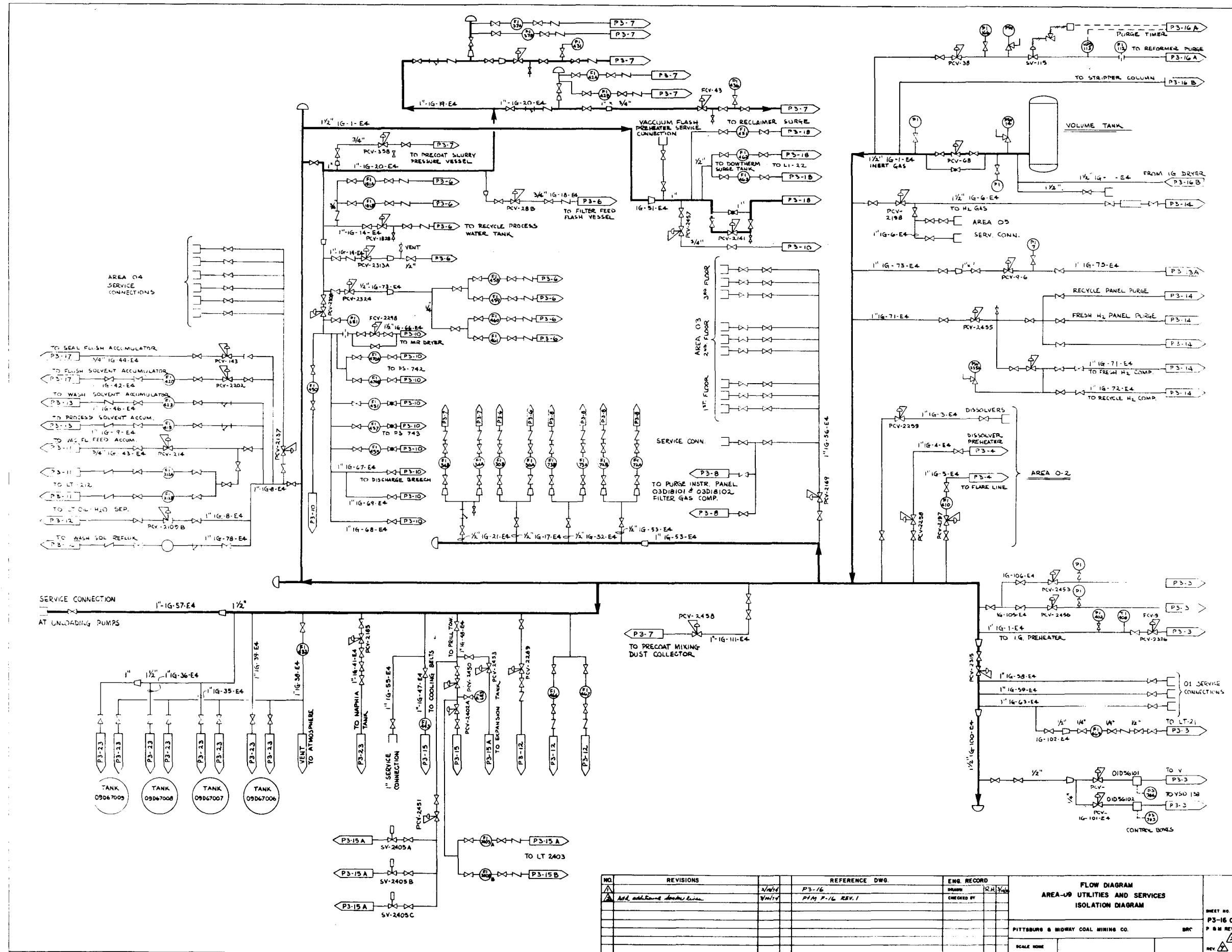

SCALE	1/250	INSTR	SHUT
DESIGN BY	W. J. H.	DATE	1-17-73
DRAWN BY	W. J. H.	DATE	1-17-73
CHECKED BY	W. J. H.	DATE	1-17-73
TYPE BY	W. J. H.	DATE	1-17-73
SUPERVISOR		APPROVED BY	
APPROVED BY		APPROVED BY	
APPROVED BY		APPROVED BY	

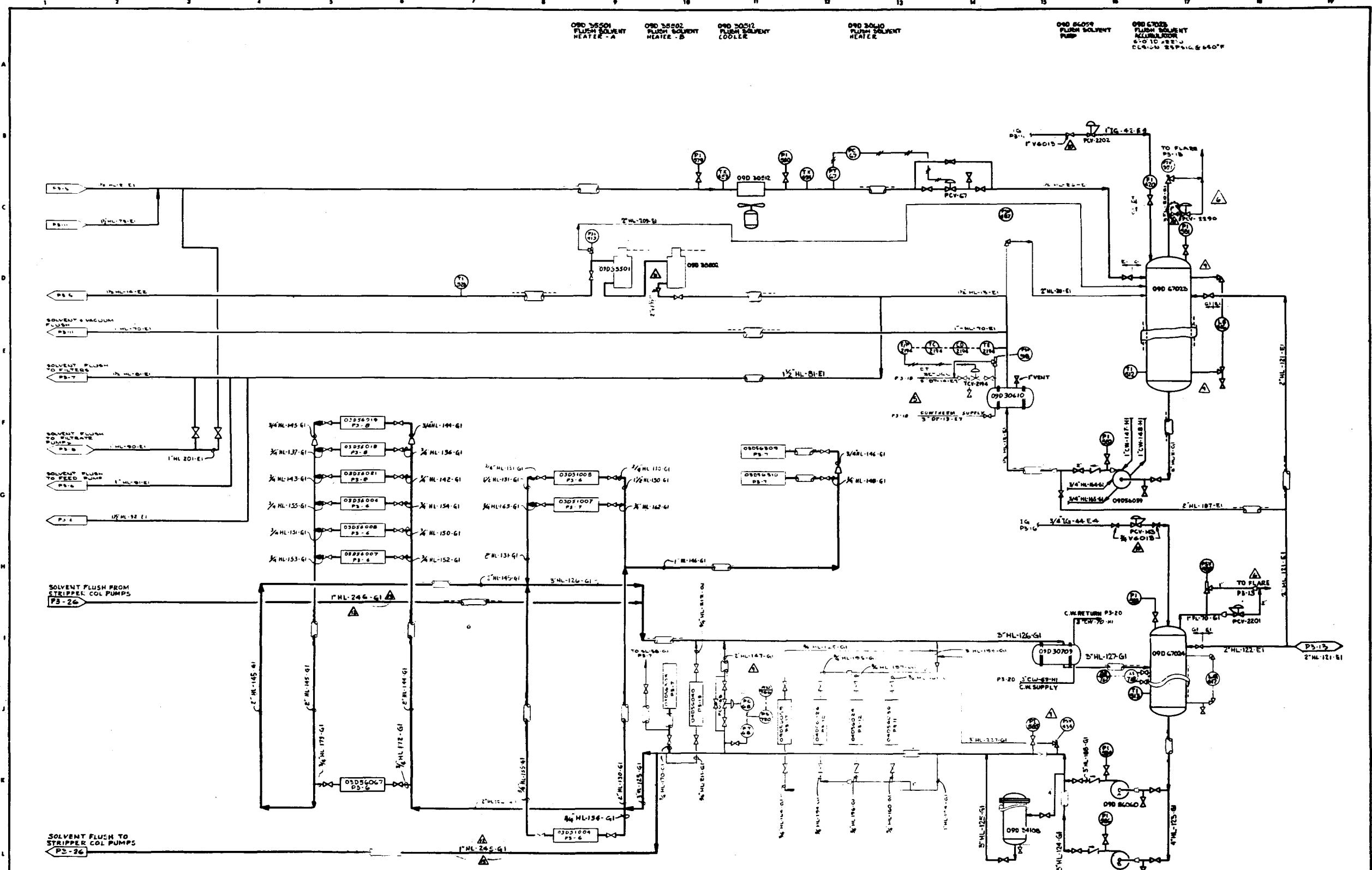
FLOW DIAGRAM
AREA 08-DE-ASHED COAL
DRILLING TOWER FACILITY


P & M COAL CO
FT. LEWIS, WASHINGTON

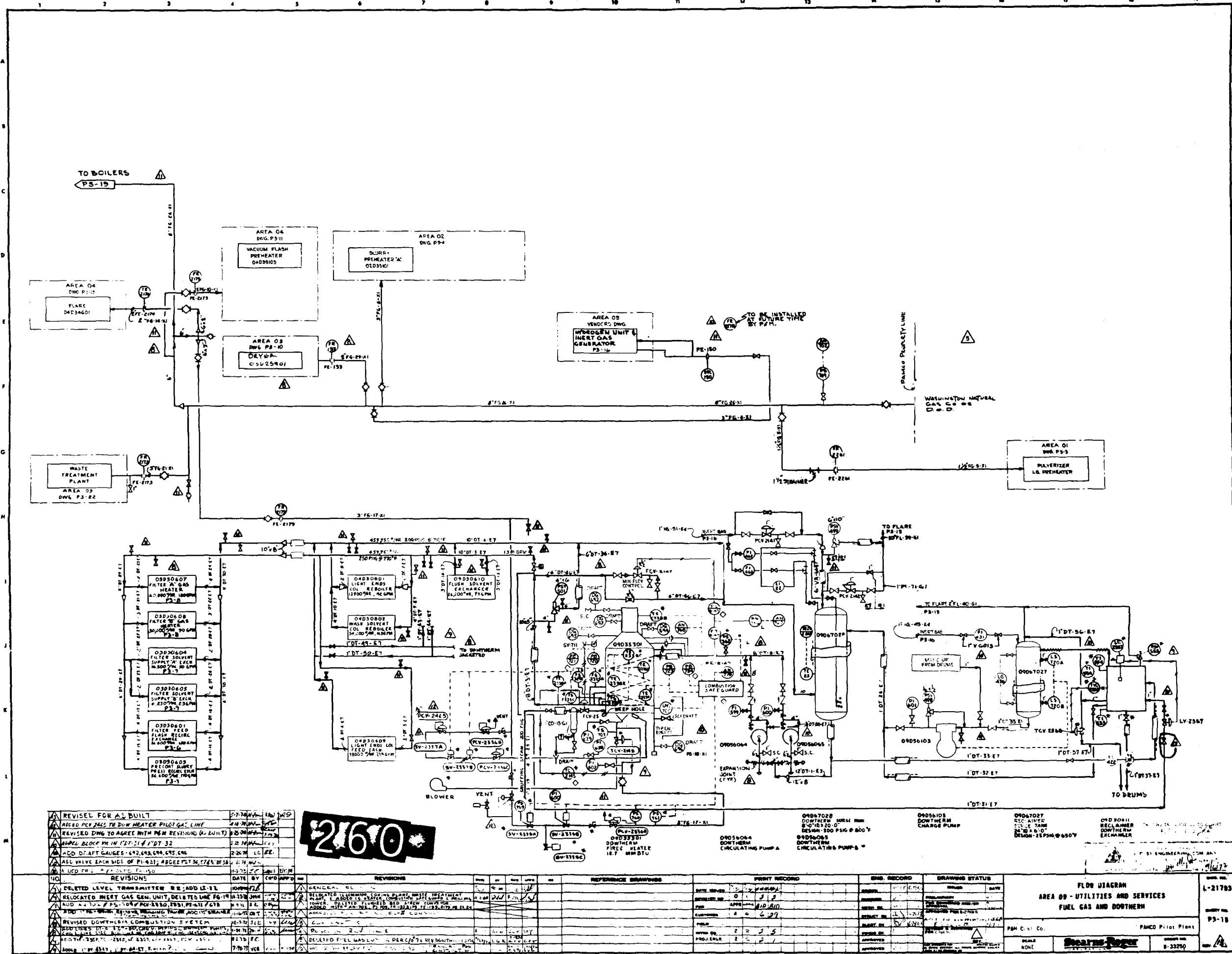
CONTRACT 21-181
THE RUST ENGINEERING COMPANY
BIRMINGHAM, ALABAMA

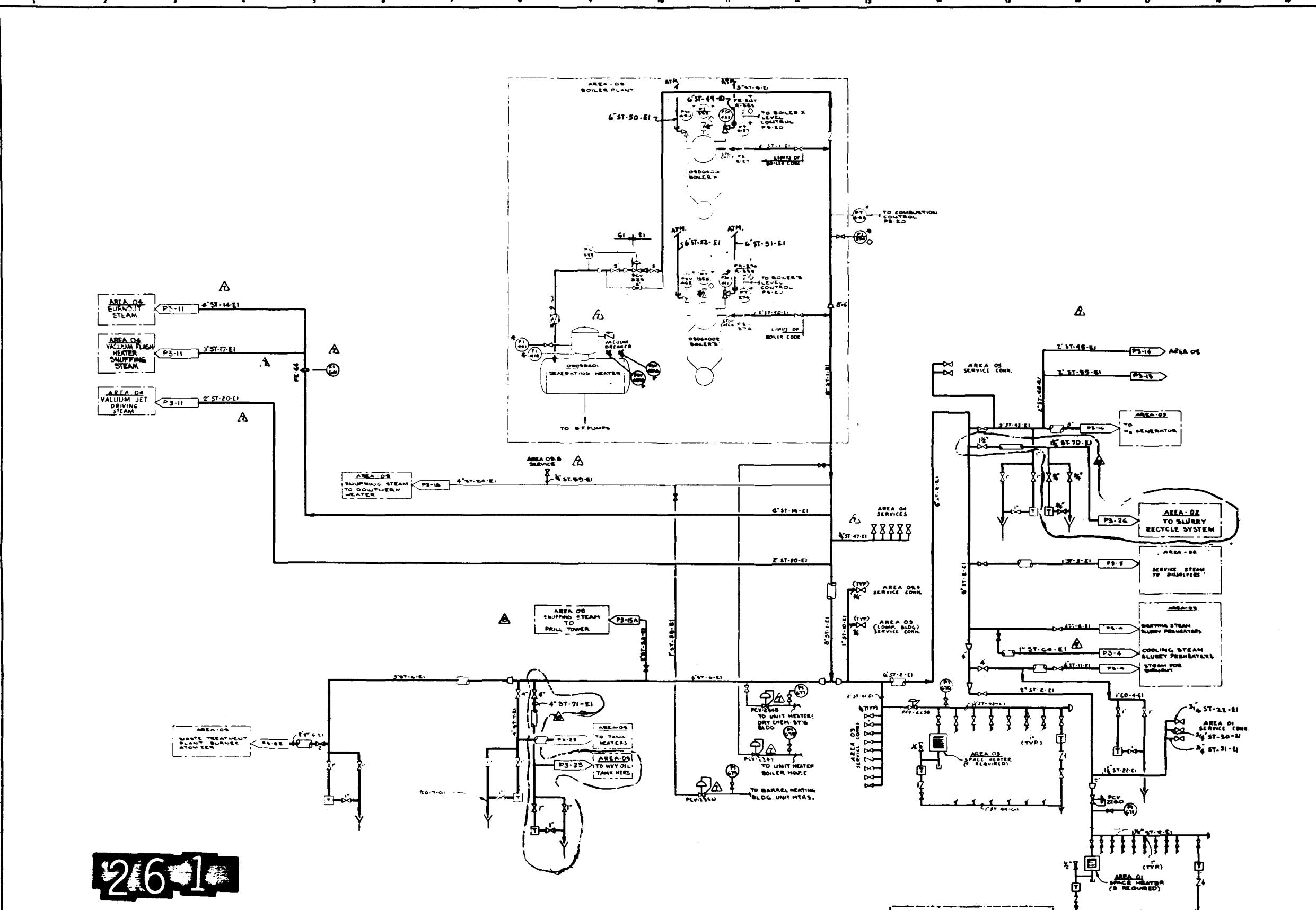

THE RUST ENGINEERING CO.
BIRMINGHAM ALABAMA
1187-P3-15-A 5

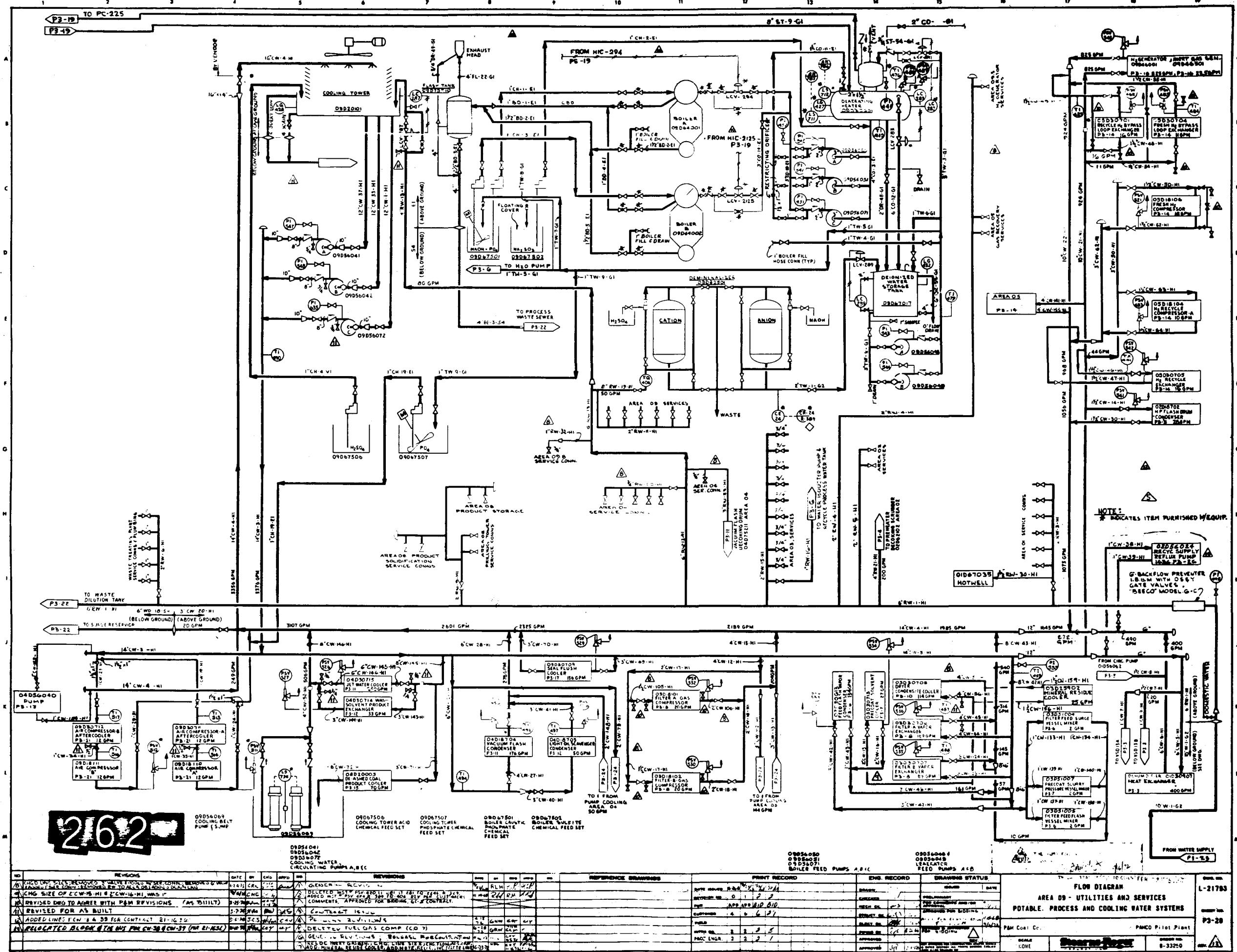


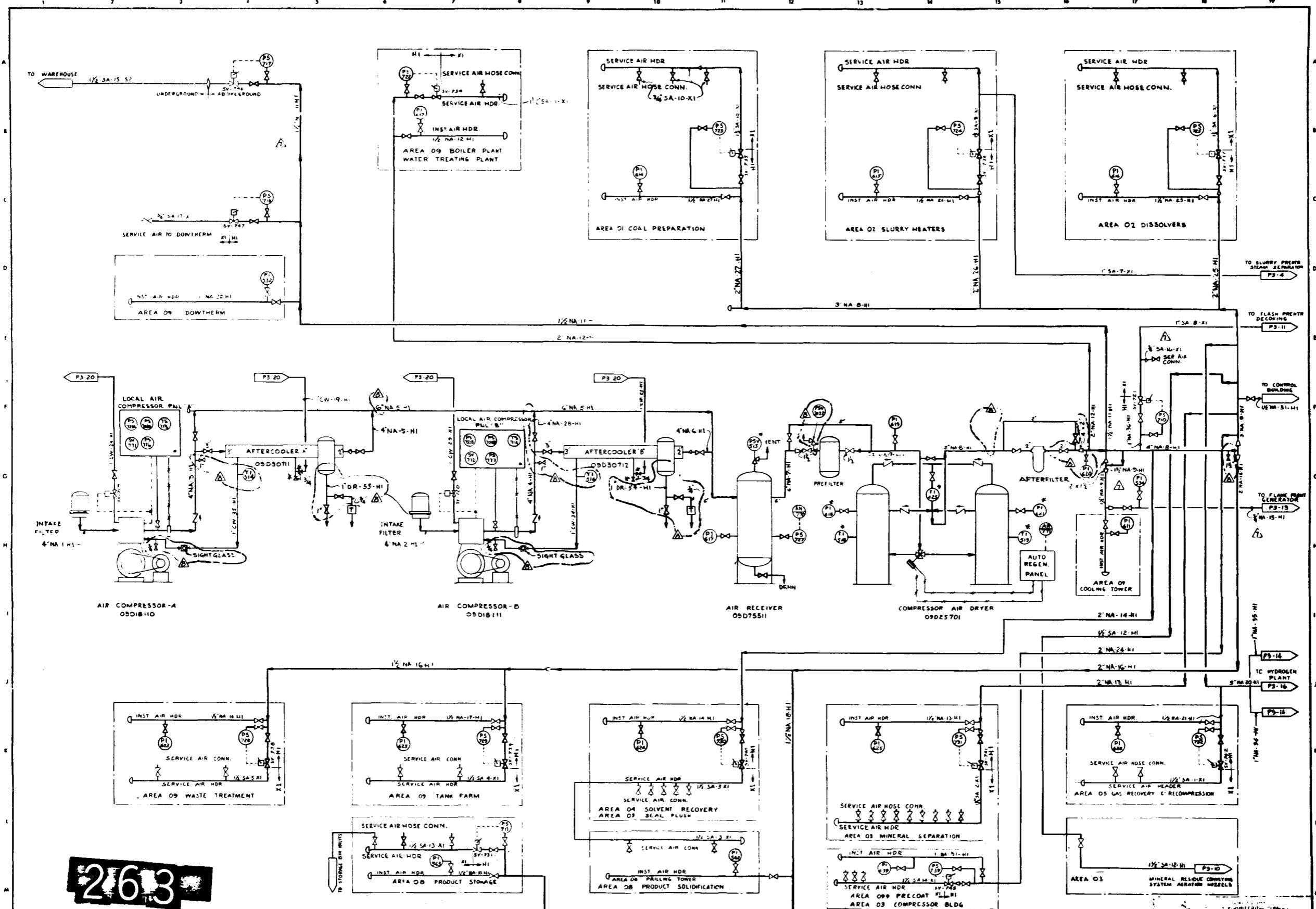

258

REVISIONS		DATE	BY	NO.	REFERENCE DRAWINGS	PRINT RECORD	ENG RECORD	DRAWING STATUS	SPECIAL PROCESS GAS GENERATING SYSTEM		DRW. NO.
				355-560	H2/SYN GAS PROCESSES 1/INSTRUM.	DATE ISSUED REVISION NO. FILE CUSTOMER FIELD AREA OR.	DRAWS CHANGED AMENDS OR. STRUCK OR. ERASE OR. PAPERS OR. APPROVED APPROVED	201A REV A/11/11	MAILED FOR COMMENTS AND/OR APPROVAL APPROVED FOR BIDDING		
									H2/ SYN GAS PROCESS B INSTRUM.		
									P&M COAL CO. SRC PILOT PLANT		
									SCHEM.	PITTSBURGH AND MIDWAY COAL MINING CO. TULSA, OKLAHOMA (1970)	DRAWING NO.

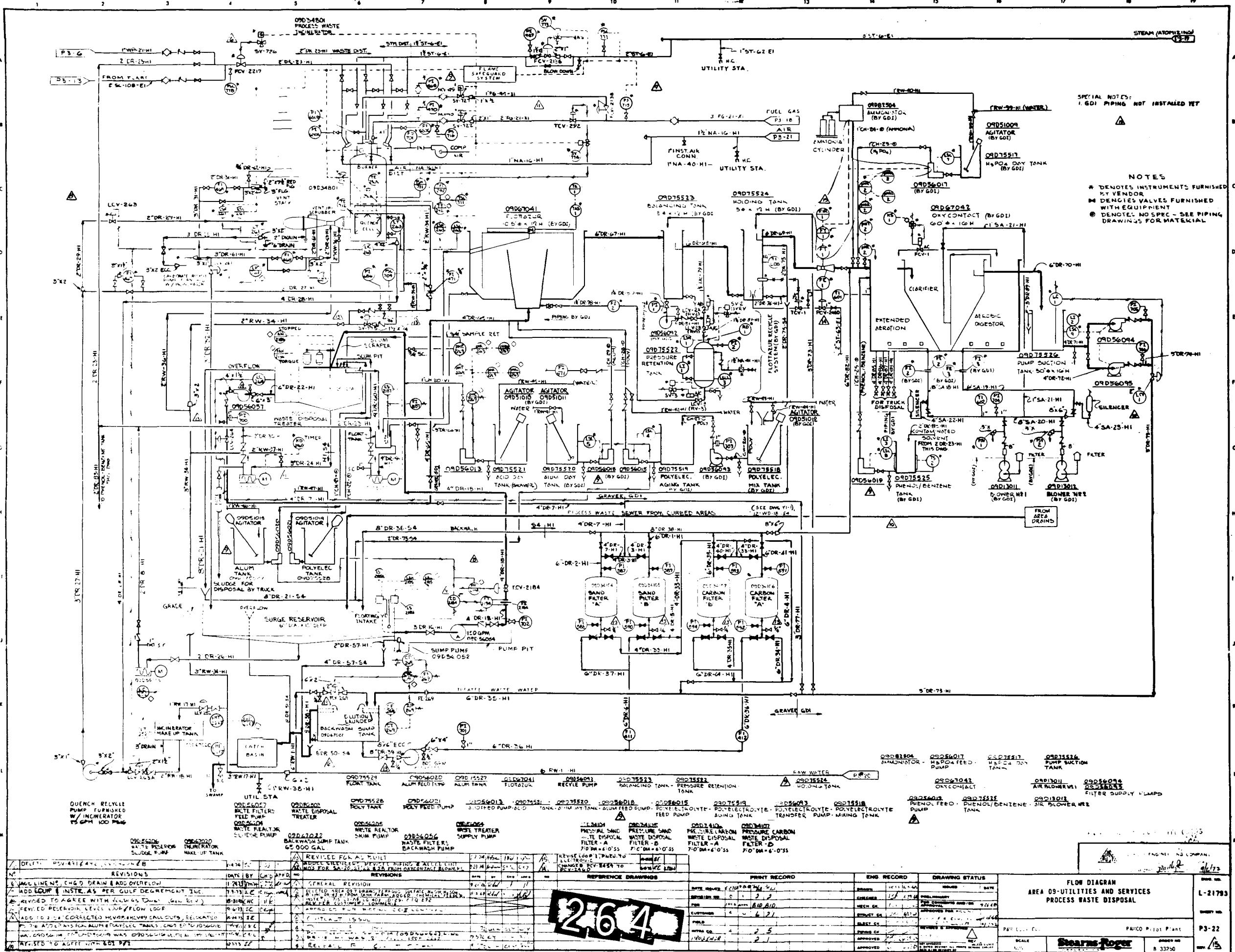


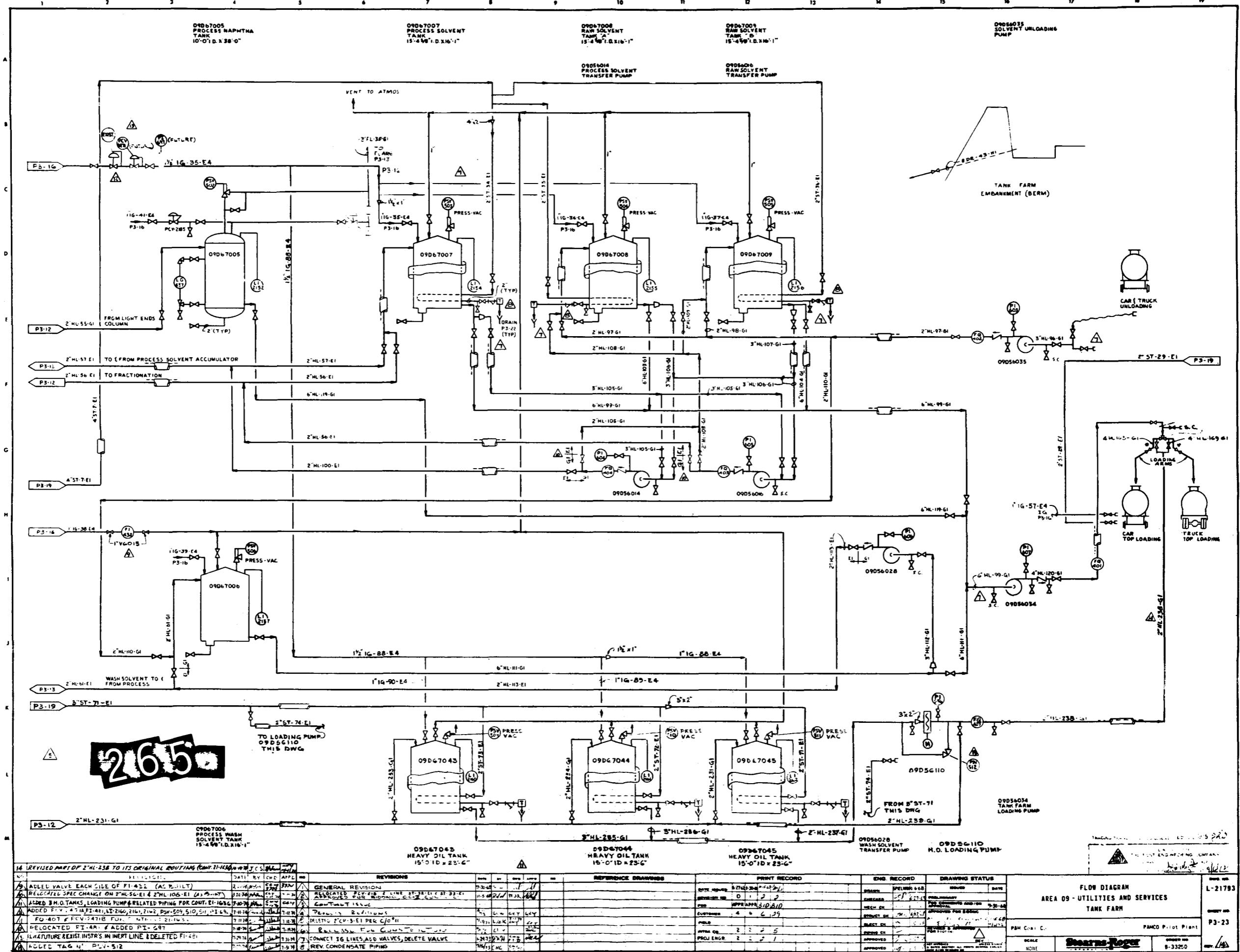


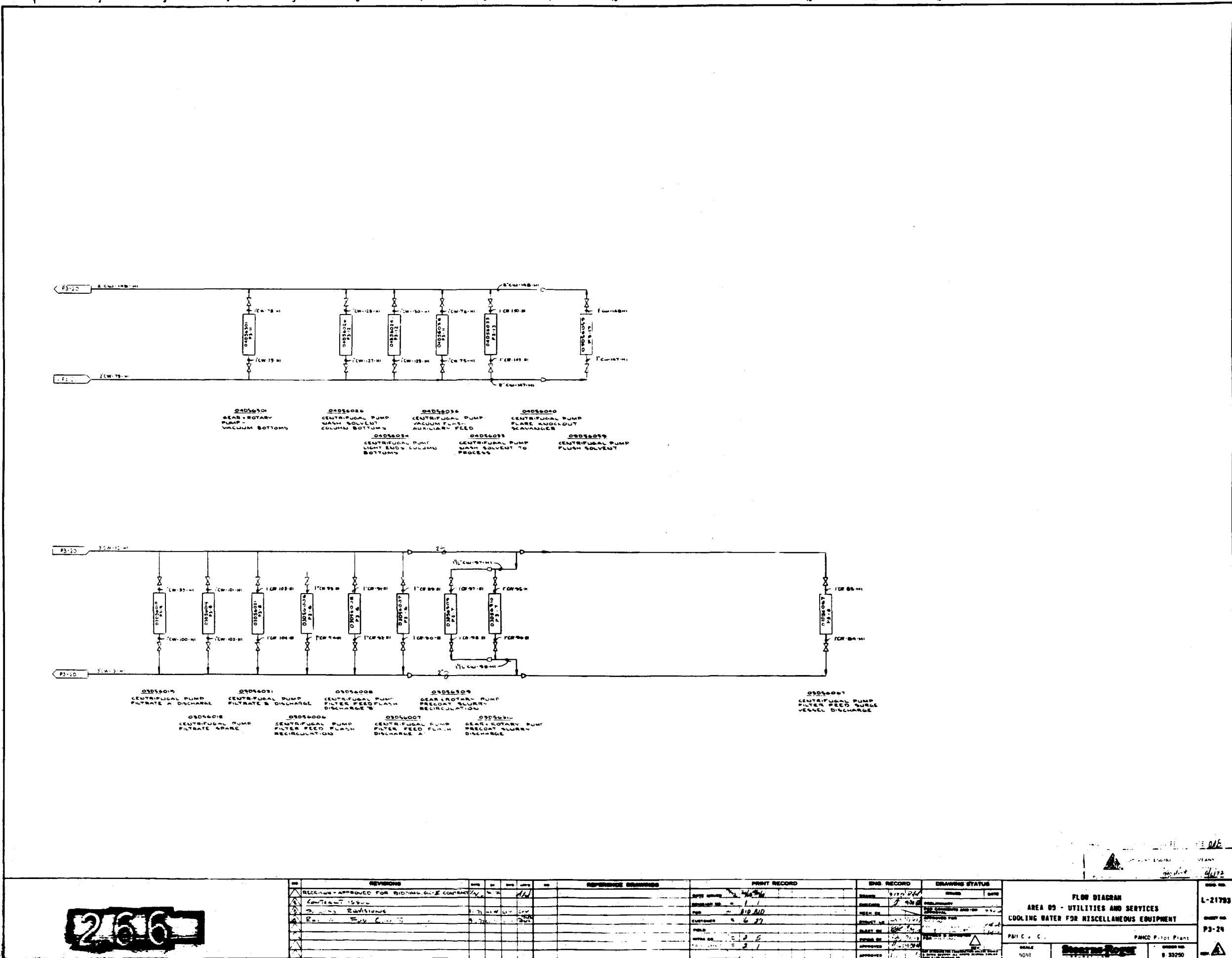



-259

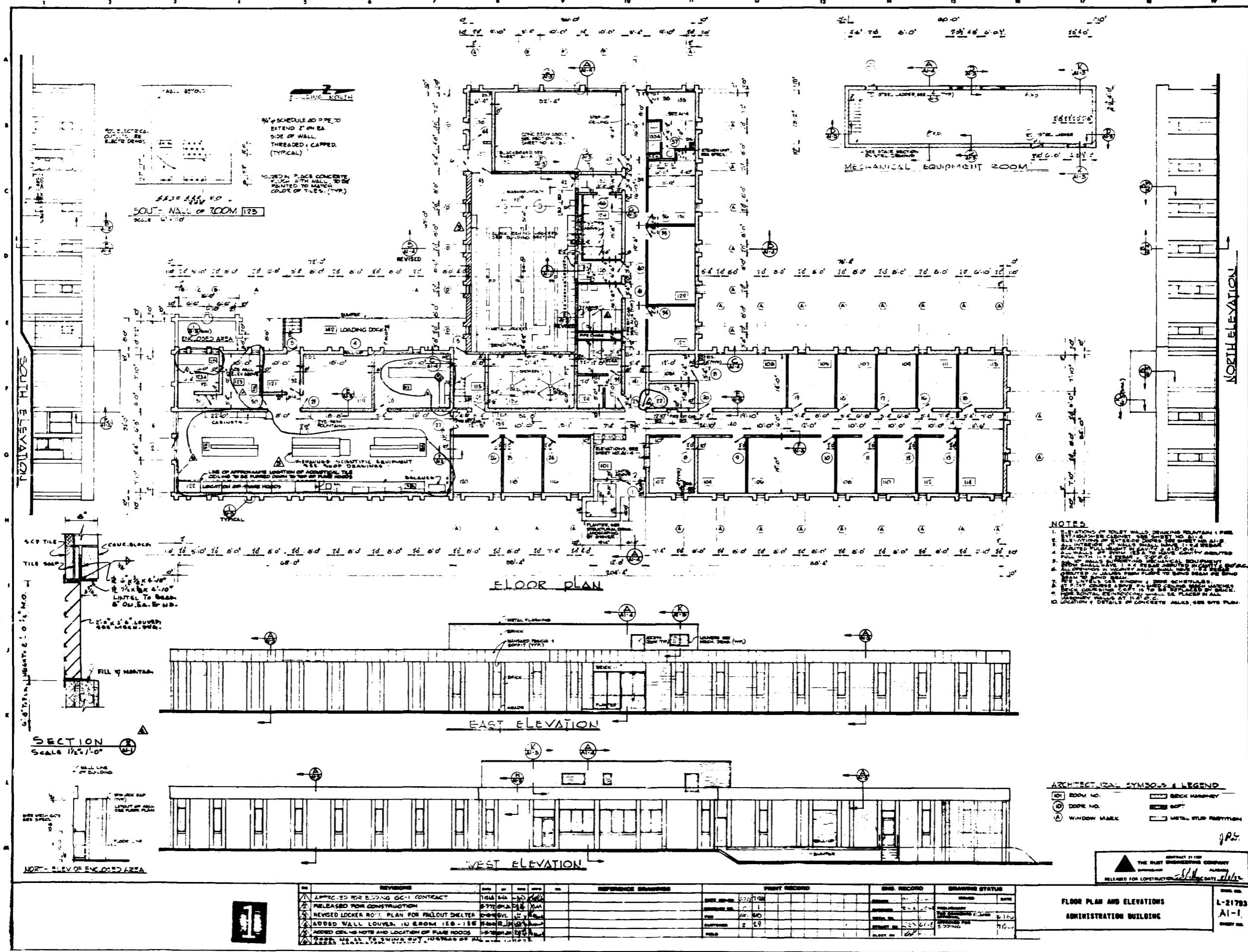
NO.	REVISIONS		DATE	BY	CNC	APP'D	REV.	REVISIONS		DATE	BY	CNC	APP'D	REV.	REFERENCE DRAWINGS		PRINT RECORD	ENG. RECORD	DRAWING STATUS	FLOC DIAGRAM	AREA 09 - UTILITIES AND SERVICES	SEAL FLUSH AND SOLVENT FLUSH SYSTEMS	PROJ. NO.	
	REVISED DISCHARGE FLOC - ELEV PSV-512 EPL-457, LOWER OBB-6407, 9-21-01							GENERAL REVISION							REF ID: 244									
1	REVISED DISCHARGE FLOC - ELEV PSV-512 EPL-457, LOWER OBB-6407, 9-21-01	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	L-21783
2	WHL-164 & 165 WERE STUCK IN THE CEMENTATION	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
3	ADD VALVES	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
4	CHECKING POSITION IN 164-61; DELIVERED PSV-454 & 470 LINES NO	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
5	ADD VALVE EA SIDE OF PSV-454; ADD VA. IN LINE 176-8286 (AS BUILT)	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
6	REVISED FOR AS BUILT	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
7	ADDED LINES 176-244 & 176L-244 (FOR CONTRACT 2H-164-61)	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
8	REMOVED DONTHEM SPE.	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17
9	REMOVED SPE ON LINES 176-244-61 & 176L-244-61	BY: EPL	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	GENERAL REVISION	REF ID: 244	DATE: 9-21-01	BY: EPL	CNC: 1	APP'D: 1	REV: 1	REF ID: 244	DATE: 9-21-01	BY: EPL	APP'D: 1	REV: 1	PRINTED	SPANNED	ISSUED	DATE: 9-21-01	P3-17

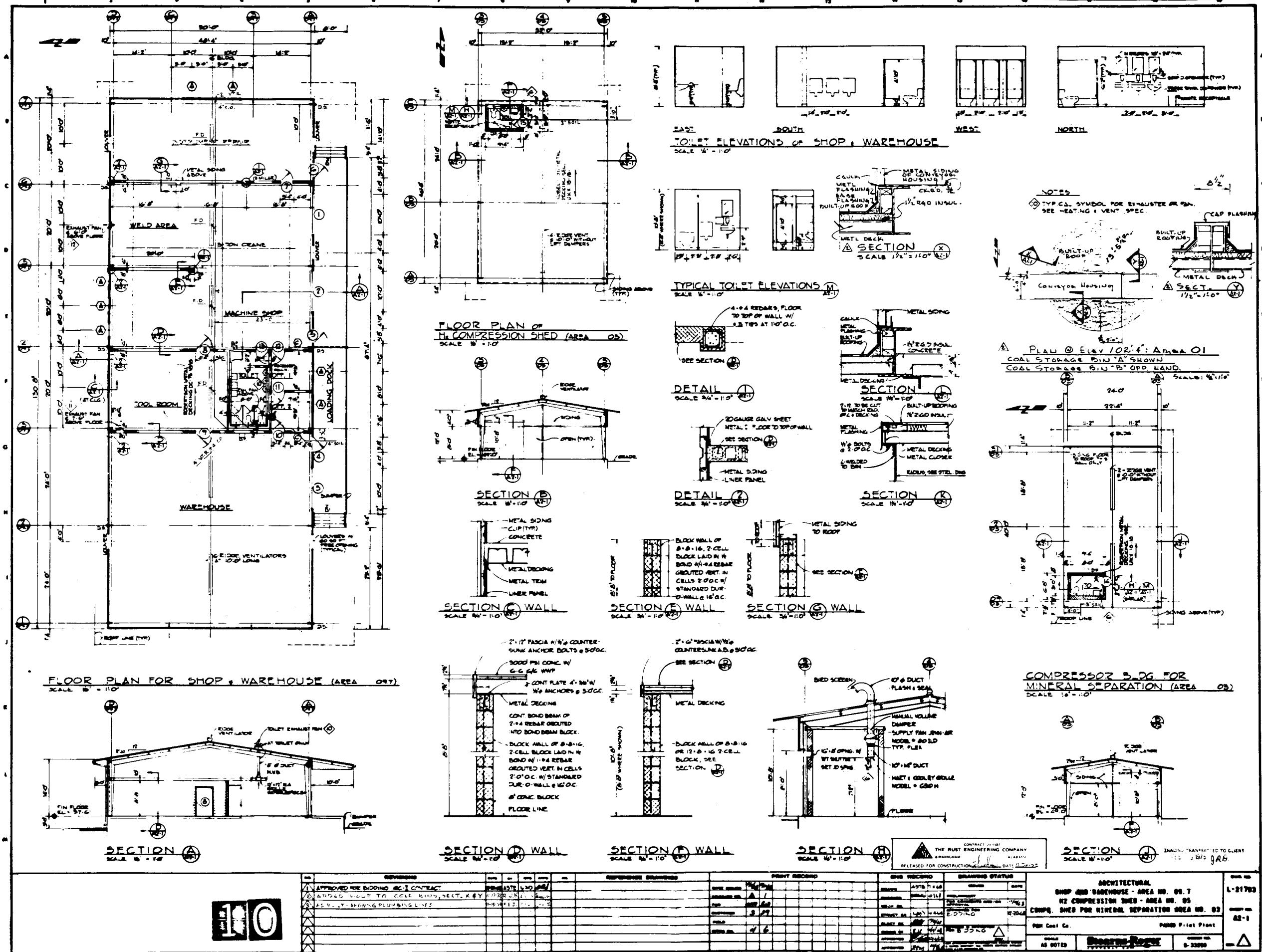


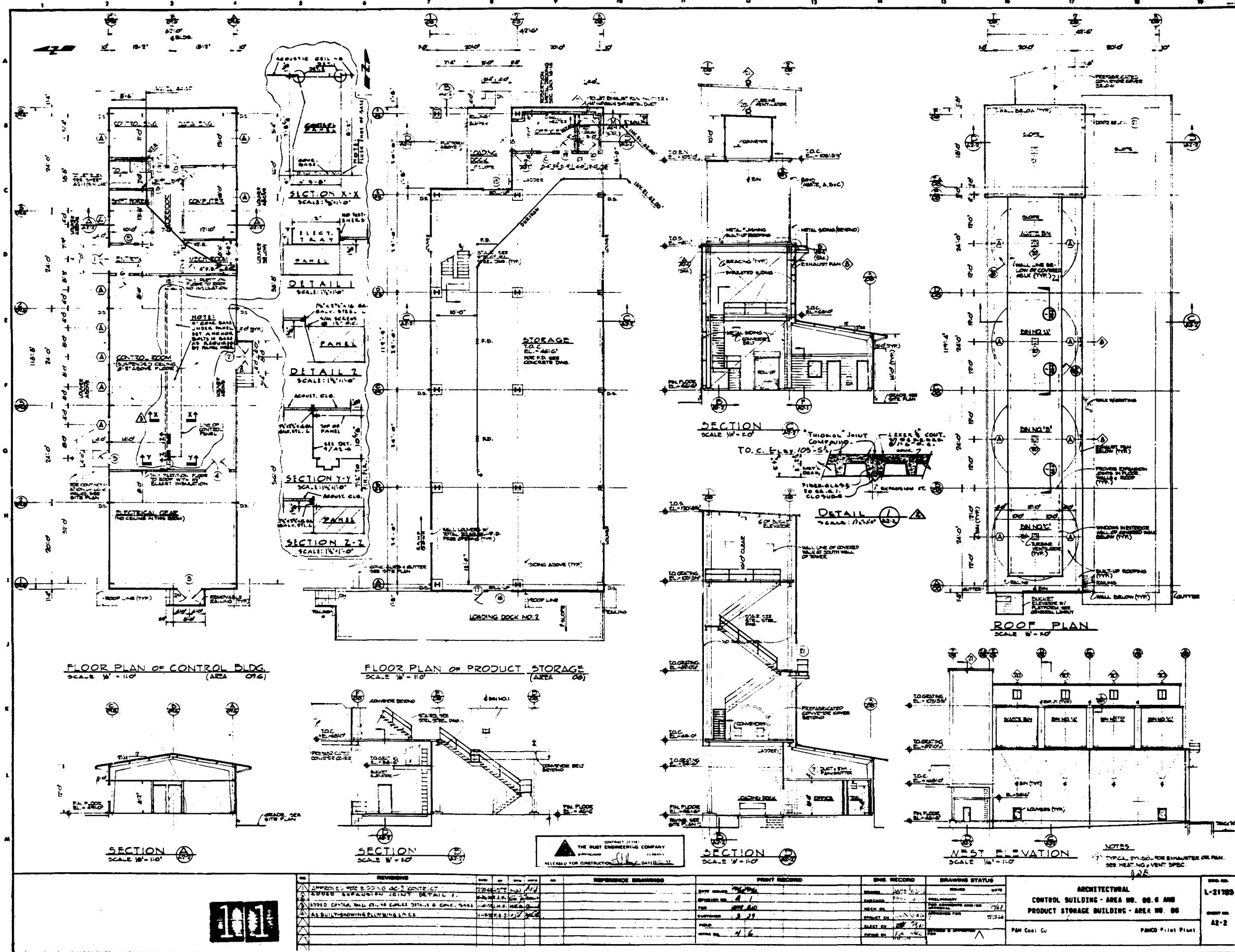


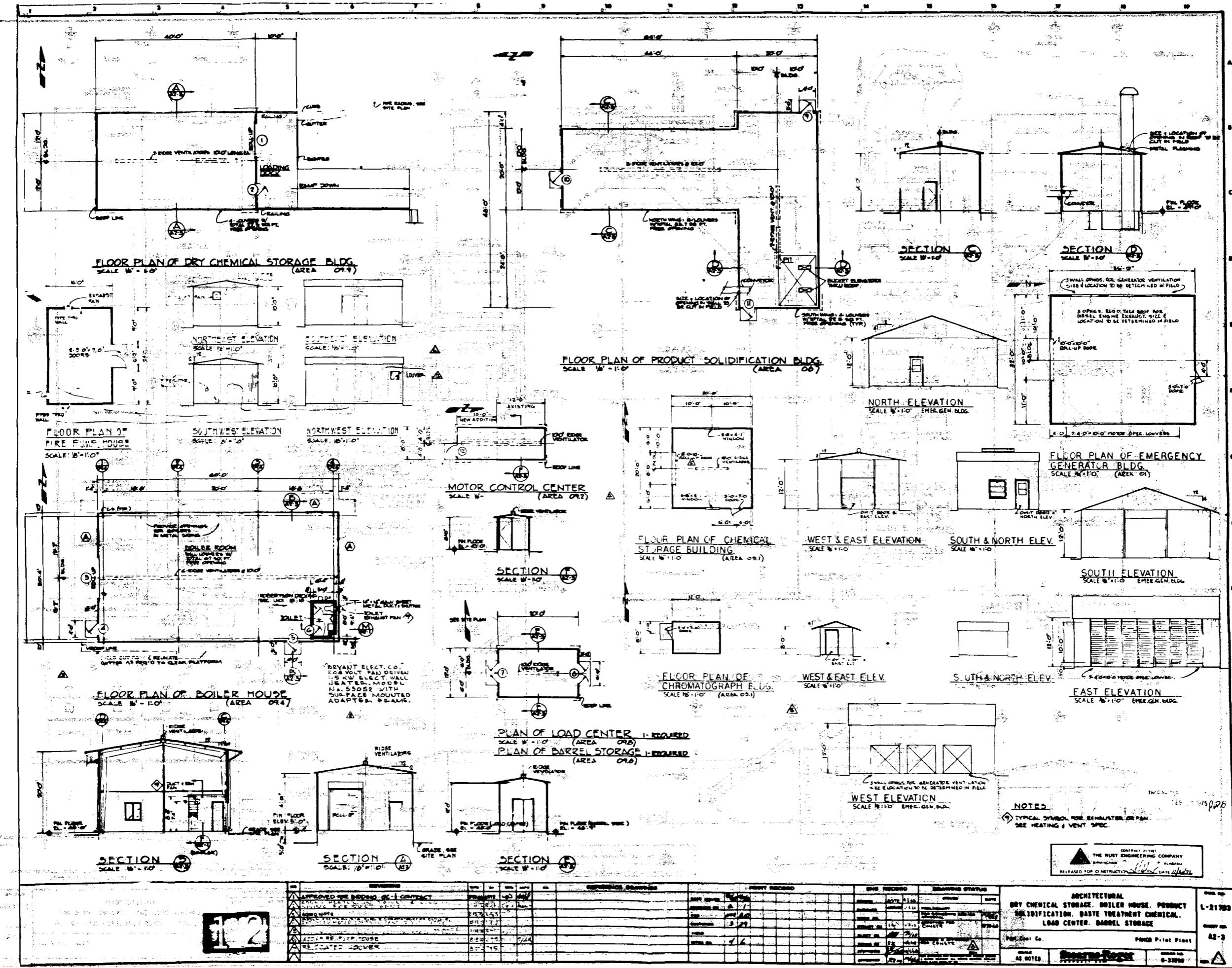

REFERENCE DRAWINGS		DATE REC'D.
		RECEIVED
		RECORDED
		FILED
		CUSTOMER
		FIELD
		ITM CO.

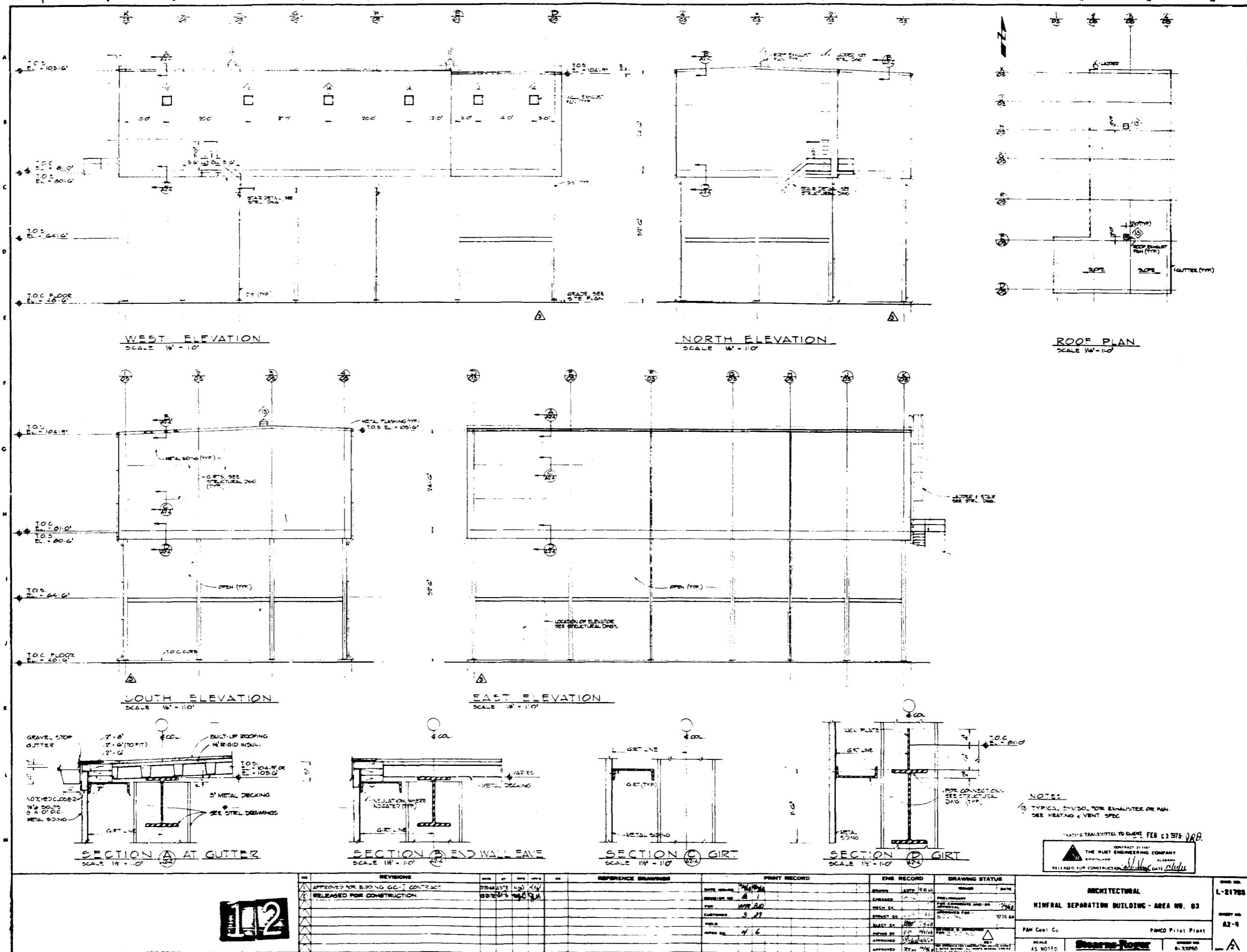
PRINT RECORD	EDING RECORD
Y, Young, You	ED9015 6 F 16-2115
3 3	ED9016 1 F 16-2116
plus APP B10 B10	MECH CL
- 6 21	STRUCT CL
3 5	SAFETY CL
2 2 1	DRIVER CL
	APPROVED

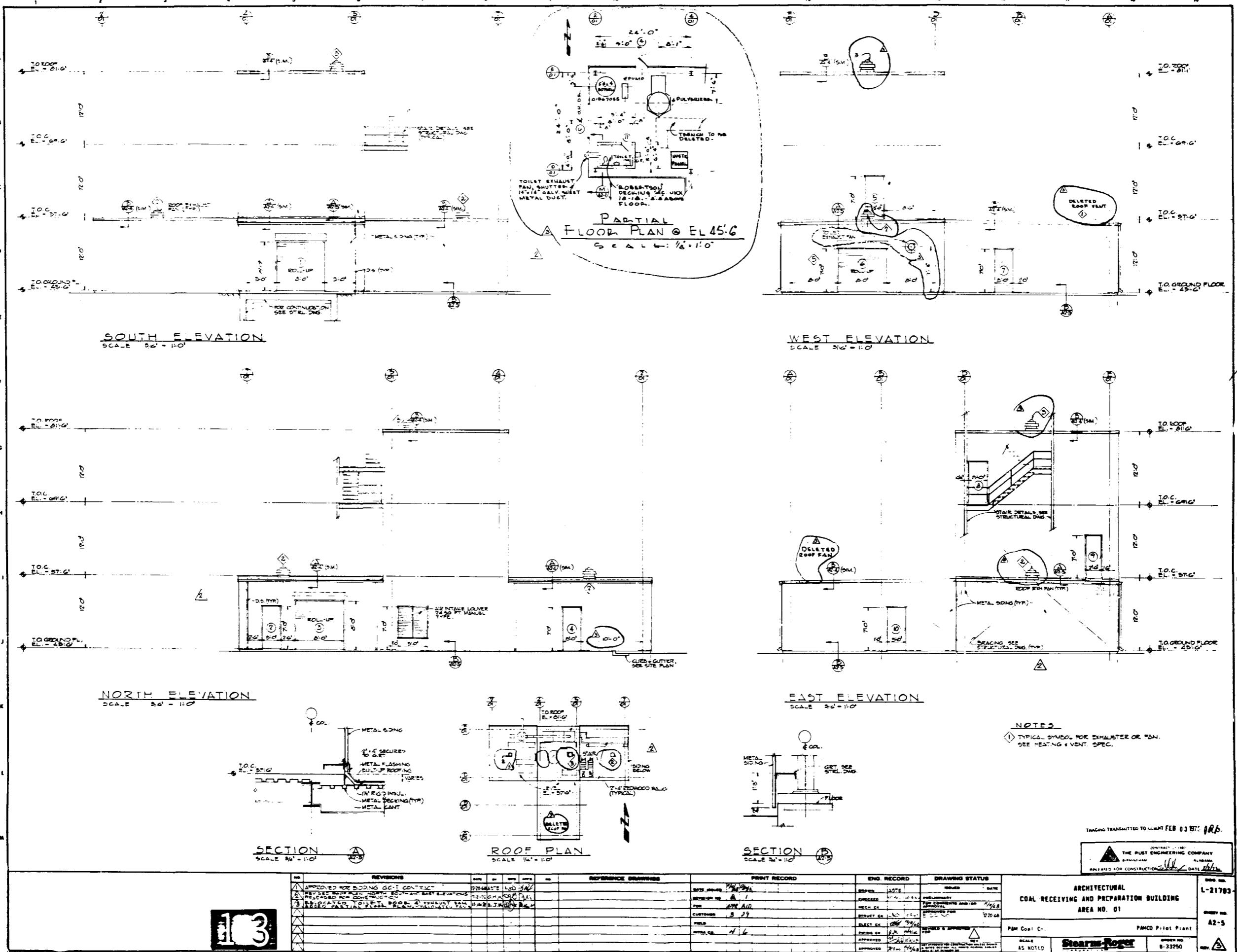

DRAWING STATUS		FLOD DIAGRAM		12
NAME	DATE	AREA 09 - UTILITIES AND SERVICES		
PROBLEMS		PLANT AIR AND INSTRUMENT AIR		
RED COMMENT AND ORIGIN	9-16-68	PBM Ctr. C.		PANCO Pilot Plant
APPROVAL		SCALE	Stearns-Royer	0-33250
APPROVED FOR BIDDING				
REVISIONS				
DATE OF APPROVAL				
DATE OF APPROVAL				
THIS DRAWING IS FOR INFORMATION ONLY. IT IS NOT A CONTRACT DRAWING. IT IS THE PROPERTY OF THE PANCO PETROLEUM COMPANY.				

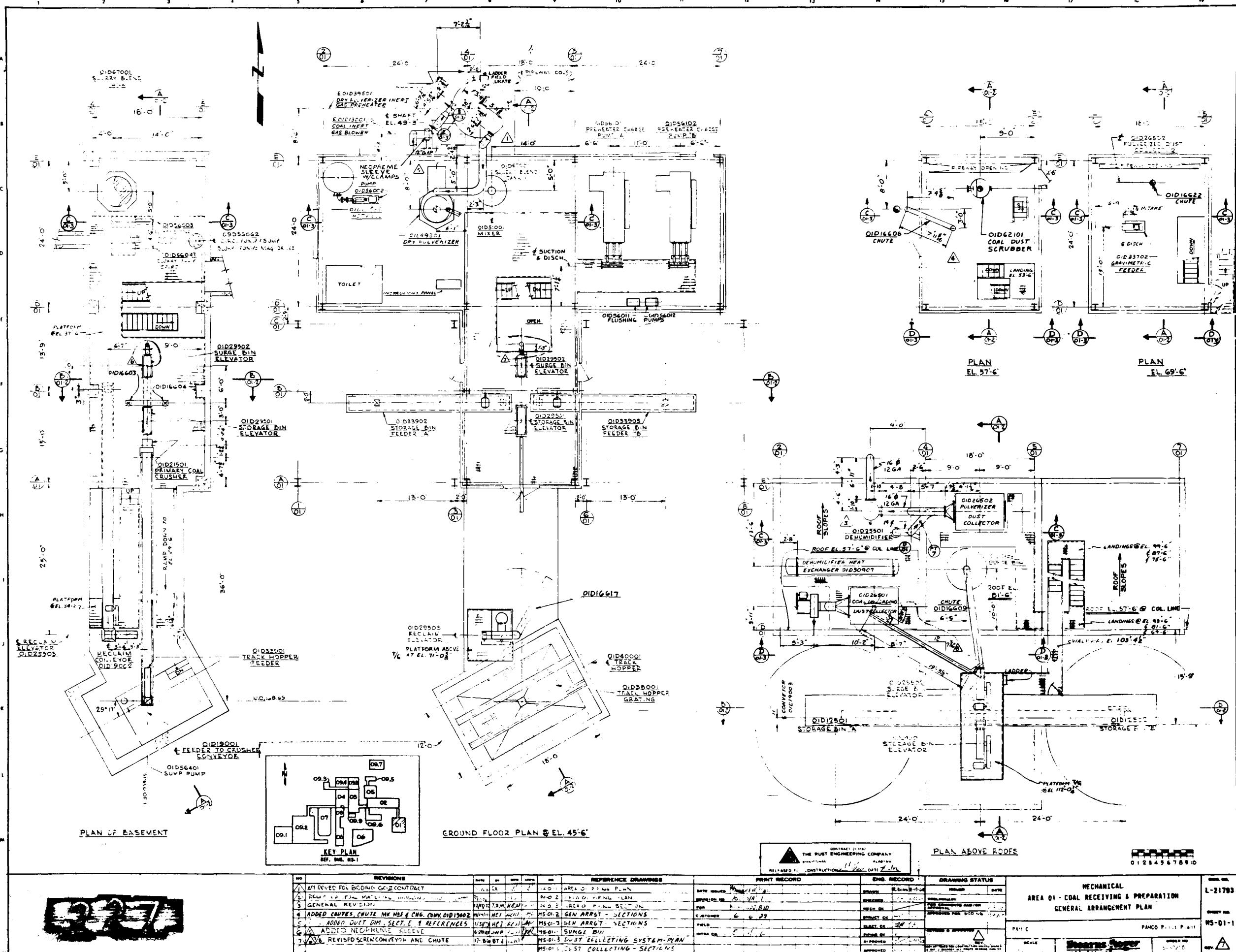


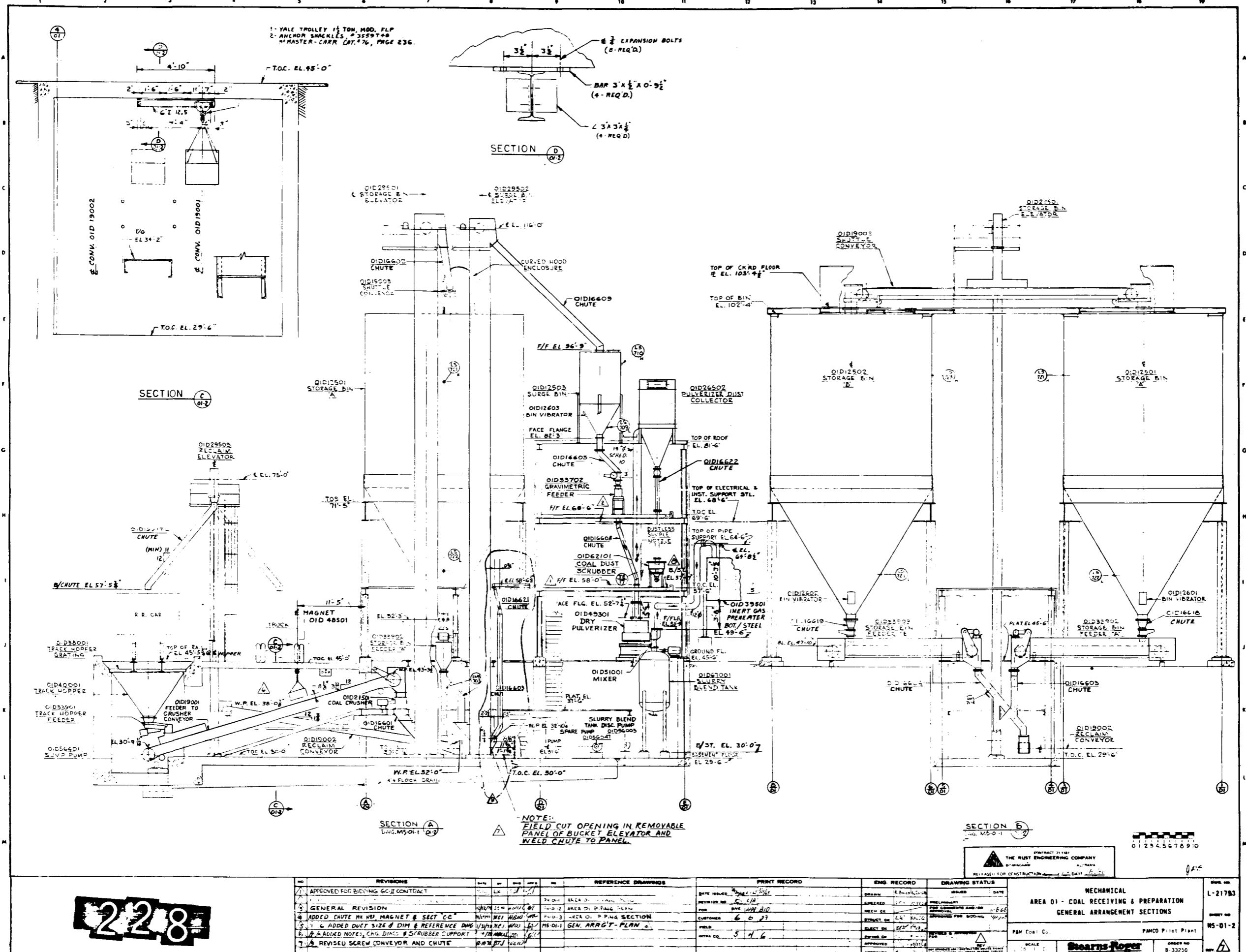












APPENDIX C - MAJOR EQUIPMENT LIST

	<u>Page</u>
A. Coal Receiving and Preparation Area (01)	C-1
B. Slurry Preheating and Dissolving Area (02)	C-7
C. Mineral Separation Area (03)	C-8
D. Solvent Recovery Area (04)	C-16
E. Gas Recovery and Recompression Area (05)	C-25
F. Product Solidification and Storage Area (08)	C-26
G. Utilities Area (09)	C-31

EQUIPMENT LIST BY AREAS

Rev. 4 4/25/74

A. Coal Receiving and Preparation Area (01)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D12501	BIN - Crushed Coal Storage "A"	UNION TANK - 350 Ton, 26' - 5" Ø
01D12502	BIN - Crushed Coal Storage "B"	UNION TANK - 350 Ton, 26' - 5" Ø
01D12503	BIN - Crushed Surge	UNION TANK - 6' - 9½" O.D. x 14' - 6"
01D12601	BIN VIBRATOR - Crushed Coal Storage "A"	SYNTRON - Mod. V-500
01D12602	BIN VIBRATOR - Crushed Coal Storage "B"	SYNTRON - Mod. V-500
01D12603	BIN VIBRATOR - Crushed Coal Surge	SYNTRON - Mod. V-50-B-1
01D13001	BLOWER - Inert Gas	SPENCER TURBINE - Two Stage Centrifugal - 40 HP
01D15601	Car Puller	WEBSTER MFG. CO. - #5000; 5 HP
01D15602	Hayes Derailer	FEDERAL SIGN & SIGNAL CORP. - Hayes Model EB
01D15603	Hayes Derailer	FEDERAL SIGN & SIGNAL CORP. - Hayes Model EB
01D16601	Chute - Primary Crusher to Storage Elev.	WEBSTER MFG. CO. - 24" x 24"
01D16602	Chute - Storage Elevator Discharge	WEBSTER MFG. CO. - 14" x 18"
01D16603	Chute Storage Bin "A"	WEBSTER MFG. CO. - 14" x 14" Bifurcated

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

A. Coal Receiving and Preparation Area (01)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D16605	Chute Storage Bin "B"	WEBSTER MFG. CO. - 14" x 14" Befurcated
01D16605	Chute Surge Bin Discharge	WEBSTER MFG. CO. - 8" Ø
01D16608	Chute Gravimetric Feeder to Pulverizer	WEBSTER MFG. CO. - 6" Ø
01D16609	Chute Elevator Discharge to Surge Bin	WEBSTER MFG. CO. - 14" x 14"
01D16617	Chute Reclaim Elevator Discharge	WEBSTER MFG. CO. - 14" Ø
01D16618	Chute Storage Bin "A"	WEBSTER MFG. CO. - 19" Ø x 12" SQ
01D16619	Chute Storage Bin "B"	WEBSTER MFG. CO. - 19" Ø x 12" SQ
01D16621	Chute Dust Collector Discharge	WEBSTER MFG. CO. - 8" Ø
01D16622	Chute Dust Collector Discharge	WEBSTER MFG. CO. - 8" Ø
01D19001	Conveyor-Hopper Feeder to Crusher	WEBSTER MFG. CO. - 8" Ø
01D19002	Conveyor - Reclaim	WEBSTER MFG. CO. - 9TPH - 18" BW
01D19003	Conveyor Shuttle-Over 350 Tons Bins	WEBSTER MFG. CO. - 35TPH - 18" BW

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

A. Coal Receiving and Preparation Area (01)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D19011	Screw Conveyor from Dust Collector	THOMAS CONVEYOR - 4" Dia. x 24' - 0" Long, Heli-coid
01D21501	Crusher - Primary Coal Drive Motor	WEBSTER MFG. CO. - 35TPH, 15 HP, S/A 18" x 18"
01D25501	Dehumidifier	SCHUTTE-KOERTING - 36" Fig. 598
01D26501	Dust Collector-Coal Unloading Including Air-Lock & Blower	BROWNLEE MORROW - Micro-Pul #130S-6-20; 700 cfm Airlock #6022 - 1/2 HP
01D26502	Dust Collector-Pulverizer Including Airlock & Blower	BROWNLEE MORROW - Micro-Pul #130S-8-20 Airlock #6022, 1/4 HP
01D29501	Bucket Elevator - Storage Bin	WEBSTER MFG. CO. - 35TPH - 48" x 18"
01D29502	Bucket Elevator - Surge Bin	WEBSTER MFG. CO. - 9TPH - 42" x 13"
01D29503	Bucket Elevator - Reclaim	WEBSTER MFG. CO. - 9TPH - 42" x 13"
01D30907	Dehumidifier Exchanger	SOUTHERN HEAT EXCHANGER #29 - 129 BEM
01D33702	Gravimetric Feeder - Dry Grinding Circuits	WALLACE & TIERNAN - 9" - 31130G09V.V

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

A. Coal Receiving and Preparation Area (01)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D33901	Feeder - Track Hopper	WEBSTER MFG. CO. ERIEZ #M653 - 24" x 30"
01D33902	Feeder - Storage Bin "A"	WEBSTER MFG. CO. 9TPH - 18" BW
01D33903	Feeder - Storage Bin "B"	WEBSTER MFG. CO. 9TPH - 18" BW
01D33909	Rotary Valve	WEBSTER MFG. CO. - Sprout-Waldron #14" x 10", 45 RPM
01D38001	Grating - Track Hopper	WEBSTER MFG. CO. - 12' - 0" Wide x 20' - 0" Long
01D39501	Inert Gas Preheater - Dry Pulverizer	BLACK, SIVALLS & BRYSON - 2 MMBTU/HR
01D40001	Track Hopper	WEBSTER MFG. - 12' - 0" x 18' - 0" x 7' - 9" Deep
01D48501	Metal Detector - Tramp Iron	WEBSTER MFG. CO. - Dings 24" x 30" x 13", 1570 W
01D49301	Dry Pulverizer	BABCOCK & WILCOX #EL-29, 50 HP
01D51001	Mixer - Slurry Blend Tank	PRO-QUIP, INC. # 3ZC515, 3HP

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

A. Coal Receiving and Preparation Area (01)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D56002	Centrifugal Pump - Dehumidifier	GOULDS PUMPS - #3196, 3 x 4-13, MT, 400GPM @ 125 TDH
01D56003	Centrifugal Pump - Slurry Tank Discharge	MORRIS PUMPS - #1½ JC 14, 120 GPM @ 150 TDH
01D56011	Pump Flushing (Preheater Charge A)	J.M. FOSTER - Yarway Model C, 60 GPH
01D56012	Pump Flushing (Preheater Charge B)	J.M. FOSTER - Yarway Model C, 60 GPH
01D56052	Cent. Pump - Slurry Magnetic Drives Sump	
01D56047	Centrifugal Pump - Slurry Spare	MORRIS PUMPS - 1½ JC 14, 120 GPM @ 150 TDH
01D56101	Posit. Displ. Pumps Preheater Charge "A"	WILSON-SNYDER PUMPS - #63-10R, 2-1/8 x 6, 35 GPM @ 20 PSIG
01D56102	Posit. Displ. Pumps Preheater Charge "B"	WILSON-SNYDER PUMPS - #63-10R, 2-1/8 x 6, 35 GPM @ 20 PSIG
01D56109	Posit. Displ. Pumps Water Booster "V" Belt Drive w/ multi-pitch motor	UNION PUMP - #TD-30, 1 x 2-3/4, 1-4 GPM
01D56401	Vertical Centrifugal Pump-Sump	GOULDS PUMPS - #3171, 1½ x 3-6, ST, 50 GPM @ 20 TDH

EQUIPMENT LIST BY AREAS

Rev. 4 4/25/74

B. Slurry Preheating and Dissolving (02)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
01D62101	Scrubber - Coal Dust	SCHUTTE & KOERTING - Size SK, Fig. 254
01D67001	Tank - Slurry Blend	UNION TANK - 60 \varnothing x 7' - 0"
01D67035	Dehumidifier Hotwell Tank	UNION TANK WORKS - 5'0" \varnothing x 9' - 0"

EQUIPMENT LIST BY AREAS

Rev. 4 4/25/74

B. Slurry Preheating and Dissolving (02)

Item No.	Description	Manufacturer and Type
01D18702	Condenser - High Pressure Flash Drum	SMITHCO ENGINEERING - #7325 - HGAJ
02D30501	Air Cooled Exchanger - Dissolver Product	HAPPY DIVISION OF ECO - Model 1F-0616-2048MD
02D30502	Air Cooled Exchanger - High Pressure Flash Drum Vapor	HAPPY DIVISION OF ECO - Model 1F-0616-2048MD
01D35101	Preheater - Slurry "A"	FOSTER WHEELER - 14.3 MM Btu
02D62102	Preheater - Decoking Scrubber	UNION TANK WORKS - 48 Dia. x 8' - 0"
02D62013	Purifier - Decoking Vent	ANDERSON IBEC - #HG4L, 25 psig @ 650°F
02D75001	Dissolver "A"	WYATT DIVISION, U.S. INDUSTRIES - 24" I.D. x 30' - 0"
02D75002	Dissolver "B"	WYATT DIVISION, U.S. INDUSTRIES - 24" I.D. x 30' - 0"
02D75101	Separator - Recycle Condensate	WYATT DIVISION, U.S. INDUSTRIES - 24" I.D. x 7' - 0"
02D75201	Drum - High Pressure Flash	WYATT DIVISION, U.S. INDUSTRIES - 24" I.D. x 15' - 0"
02D75202	Drum - Intermediate Pressure Flash	WYATT DIVISION, U.S. INDUSTRIES - 24" I.D. x 11' - 0"

EQUIPMENT LIST BY AREAS

Rev. 4 4/25/74

C. Mineral Separation (03)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
03D12010	Rotary Dryer Exhaust Fan	NEW YORK BLOWER - #192 LB, 2500 CFM @ 1" S.P.
03D12509	Bin - Mineral Residue	UNION TANK WORKS - 20' - 4" I.D.
03D13002	Blower - Exhaust	BARTLETT-SNOW - Lampson #D95, 15 HP
03D16615	Chute - Cooler Outlet	WEBSTER MFG. CO. - 3" Ø
03D16616	Chute - Mineral Residue Bin Outlet	WEBSTER MFG. CO. - 12" Ø
03D16623	Chute - Mineral Residue Bin Outlet	WEBSTER MFG. CO. - 12" Ø
03D16624	Chute - Duct to Dust Collector	WEBSTER MFG. CO. - 6" Ø
03D18101	Gas Compressor - Filter "A"	CHICAGO PNEUMATIC - Class 10-3/4 x 13 TB-125 HP
03D18102	Gas Compressor - Filter "B"	CHICAGO PNEUMATIC - Class 8 x 11 TB-75 HP
03D25901	Dryer - Mineral Residue	BARTLETT-SNOW - 48" OD x 32' - 9 Long, Style D
03D25901	Cylinder Drive	BARTLETT-SNOW - Falk #7527-NF-3-254U-7½HP

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation (03)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
03D25901B	Combustion Blower	BARTLETT-SNOW - North American #2312035-1-7½ Turbo Blower
03D25901C	Rotary Valve	BARTLETT-SNOW - Smoot #FT-12-1/3 HP
03D25902	Cooler - Mineral Residue	BARTLETT-SNOW - 36" O.D. x 15' - 0" Long
03D26503	Dust Collector, Precoat Mixing	WEBSTER MANUFACTURING - 13 Bag, 2 HP
03D26504	Dust Collector - Mineral Residue Bin	BROWNLEE MORROW - Micro-Pul #165-8-30 Cap 1200 cfm
03D29504	Bucket Elevator, Precoat	WEBSTER MFG. CO. - 30 CU. FT/HR - 11-3/4" x 36
03D29510	Bucket Elevator - Mineral Residue Bin	WEBSTER MFG. CO. - 0.5TPH - 12" x 39"
03D29801	Passenger Elevator	EHRSAM No. 200S-1
03D30504	Air Cooled Exchanger - Precoat Solvent Cooler	HAPPY DIV. OF ECO - #1F-0406-1036-MD

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation (03)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
03D30601	Dowtherm Exchanger - Filter Feed Flash Recirculation	SOUTHERN HEAT EXCHANGER - #19-120 BEM
03D30603	Dowtherm Exchanger - Precoat Slurry Pres. Recirculation	SOUTHERN HEAT EXCHANGER - #19-120 BEM
03D30604	Dowtherm Exchanger - Filter Solvent Supply "A"	SMITHCO ENGINEERING - #6310-BCAAA
03D30605	Dowtherm Exchanger - Filter Solvent Supply "B"	SMITHCO ENGINEERING - #3310-BBBBA
03D30607	Dowtherm Exchanger - Filter "A" Gas Heater	SOUTHERN HEAT EXCHANGER - #23-192 BFM
03D30608	Dowtherm Exchanger - Filter "B" Gas Heater	SOUTHERN HEAT EXCHANGER - #17-192 BFM
03D30613	Heat Exchanger - Feed Flash Vapor	SOUTHERN HEAT EXCHANGER - S.H.E. #8-192 BEM
03D30706	Water Cooled Exchanger - Filter "A" Vapor	SOUTHERN HEAT EXCHANGER - #27-192 BEM
03D30707	Water Cooled Exchanger - Filter "B" Vapor	SOUTHERN HEAT EXCHANGER - #31-192 BFM

C-10

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation (03)Item No.DescriptionManufacturer and Type

03D30708	Water Cooled Exchanger - Dryer Gas Condensate Cooler	SOUTHERN HEAT EXCHANGER - #21-192 BEM
03D30713	Water Cooled Exchanger - Precoat Solvent Cooler	SMITHCO ENGINEERING - #6210-HCAA
03D30901	Heat Exchanger - Filter "A" Vapor No. 1	SOUTHERN HEAT EXCHANGER - #44-192-BFM
03D30902	Heat Exchanger - Filter "A" Vapor No. 2	SOUTHERN HEAT EXCHANGER - #44-192-BFM
03D30904	Heat Exchanger - Filter "B" Vapor No. 1	SOUTHERN HEAT EXCHANGER - #31-192 BFM
03D30905	Heat Exchanger - Filter "B" Vapor No. 2	SOUTHERN HEAT EXCHANGER - #31-192 BFM
03D33706	Mineral Residue Weigh Belt	WALLACE TIERNAN - 9" - 31150GD-CS
03D33706A	Weigh Belt Drive	WALLACE TIERNAN - Reeves Varispeed, 10:1 Range, $\frac{1}{2}$ HP
03D33706B	Weigh Belt Rotary Feeder	WALLACE TIERNAN - Sprout Waldron Type 2
03D34101	Filter - Drum Filter "A"	GOSLIN-BIRMINGHAM, (80 Sq. Ft.) 6 \varnothing x 4' - 3" Face - SHP

C-11

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation (03)Item No.DescriptionManufacturer and Type

03D34102	Filter - Precoated Rotary Drums "B"	GOSLIN-BIRMINGHAM - 6' Ø x 2' - 2 Face (40 Sq. Ft.) - 3 HP
03D34103	Filter - Cuno Microklean	GEORGE S. EDWARDS CO. - Cuno #6AX3
03D34104	Filter - Cuno Microklean	GEORGE S. EDWARDS CO. - Cuno #6AX3
03D51004	Filter Feed Surge Vessel Agitator	PRO-QUIP, INC. - #15 THW-30 15 HP
03D51005	Filter Feed Flash Vessel Agitator	PRO-QUIP, INC. - #3ZEW20 3 HP
03D51007	Precoat Slurry Pressure Vessel Agitator	PRO-QUIP, INC. - #ZEW30 3 HP
03D56005	Pump Centrifugal, Cooler Water Recirculation	BARTLETT-SNOW - Goulds - #3196, 1 x 1/2-6, ST, 25 GPM @ 100 TDH
03D56006	Filter Feed Flash Vessel Pump	GOULDS PUMPS - #3735, 3 x 4-11, M, 240 GPM @ 62 TDH
03D56007	Centrifugal Pump - Filter Feed Flash Discharge "A"	GOULDS PUMPS - #3735, 1 x 1½-8, M, 16/60 GPM @ 198 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation Area (03)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
03D56008	Centrifugal Pump - Filter Flash Discharge "B"	GOULDS PUMPS - #3735, 1 x 1½-8, M, 16/60 GPM @ 198 TDH
03D56013	Centrifugal Pump Dryer Condensate	GOULDS PUMPS - #3736, 3 x 4-11, H, 480/500 GPM @ 245 TDH
03D56018	Centrifugal Pump Filtrate Spare	GOULDS PUMPS - #735, 1 x 2011A, M, 2/35 GPM @ 309 TDH
03D56019	Centrifugal Pump Filtrate "A" Discharge	GOULDS PUMPS - #3735, 1 x 2-11A, M, 2/35 GPM @ 309 TDH
03D56020	Centrifugal Pump Filter "A" Condensate	GOULDS PUMPS - #3736, 1 x 1½ -8, M, 51 GPM @ 185 TDH
03D56021	Centrifugal Pump Filtrate "B" Discharge	GOULDS PUMPS - #3735, 1 x 2-11 A.M, 2/35 GPM @ 309 TDH
03D56022	Centrifugal Pump Filter "B" Condensate	GOULDS PUMPS - #3736, 1 x 1½ -8,M, 26 GPM @ 185 TDH
03D56067	Pump Filter Feed Surge Vessel	GOULDS PUMPS - #3735, 1 x 2-11A, M, 2/41/GPM @ 309 TDH
03D56074	Pump Recycle Water	GOULDS PUMPS - #3196, 1 x 2-10, MT, 20 GPM @ 306.5 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation Area (03)Item No.DescriptionManufacturer and Type

03D56201	Pump Filter "A" Cake Pump	SIER BATH PUMP DIV. - #ND, 3 GPM @ 195 PSI
03D56202	Pump Filter "B" Cake Pump	SIER BATH PUMP DIV. - #ND, 3 GPM @ 195 PSI
03D56308	Pump Precoat Solvent Atmos. Tank	SIER BATH PUMP DIV. - #SBD, 25 GPM @ 160 PSI
03D56309	Pump, Precoat Slurry	SIER BATH PUMP DIV. #SBF, 200 GPM @ 25 PSI
03D56310	Pump, Precoat Slurry	SIER BATH PUMP DIV. #SBF, 150 GPM @ 75 PSI
03D62103	Scrubber, Filter Gas Compressor "A"	UNION TANK - 42 Ø x 9'-0"
03D62104	Scrubber, Filter Gas Compressor "B"	UNION TANK - 36 Ø x 9'-0"
03D62112	Ejector Venturi Scrubber	KOERTROL - #7010, 14" - 4" Fig. 622K Nozzle
03D67002	Tank	UNION TANK - 48" Ø x 6'-0"
03D67033	Tank Recycle Water Storage	UNION TANK - 6 Ø x 13' High
03D75103	Separator Oil No. 1	UNION TANK - 24" Ø x 5'-0"
03D75104	Separator Oil No. 2	UNION TANK - 12-3/4 Ø x 5'-6"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4 4/25/74

C. Mineral Separation Area (03)Item No.DescriptionManufacturer and Type

03D75203	Drum, Dryer Condensate	UNION TANK - 7'0" Ø x 10' - 0"
03D75215	Drum, Filter "A" Vapor Surge	UNION TANK - 52" Ø x 11' -0"
03D75216	Drum, Filter "B" Vapor Surge	UNION TANK - 52" Ø x 11' -0"
03D75401	Receiver, Filtrate "A"	UNION TANK - 60" Ø x 8'-0"
03D75402	Receiver, Filtrate "B"	UNION TANK - 48" Ø x 8'-0"
03D75505	Vessel, Filter Feed Surge	UNION TANK - 96" Ø x 32' - 0"
03D75506	Vessel, Filter Feed Flash	UNION TANK - 72" Ø x 9' -0"
03D75508	Vessel, Precoat Slurry Pressure	UNION TANK - 72" Ø x 11' -0"

EQUIPMENT LIST BY AREAS

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D13003	Air Blower "A"	BLACK, SIVALLS & BRYSON - Roots, #74RA1, 30 HP
04D13004	Air Blower "B"	BLACK, SIVALLS & BRYSON - Roots, #74RA1, 30 HP
04D18704	Condenser - Vacuum Flash	SOUTHERN HEAT EXCHANGER - #31-192-AGT
04D18705	Cooler Light Oil Scavenger H _X	SOUTHERN HEAT EXCHANGER - #10-192-BEM
04D30508	Light Ends Condenser (Air) Motor	HAPPY DIV. OF ECO - #1F-0608-1048-MD
04D30509	Condenser - Wash Solvent Column (Air)	HAPPY DIV. OF ECO - #1F-0608-1048-MD
04D30510	Process Solvent H _X (Air)	HAPPY DIV. OF ECO - #1F-1014-1096-MVH
04D30513	Exchanger-Air Cooler Vacuum Flash	HAPPY DIV. OF ECO - #2F-1109-1084-MVH
04D30609	Heater Light Ends Column Feed H _X	SOUTHERN HEAT EXCHANGER - #23-192 BEM

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)Item No.DescriptionManufacturer and Type

04D30714	Cooler Wash Solvent Column Prod. H _X	SMITHCO ENGINEERING - #7120-HBAA
04D30715	Cooler-Hotwell Jetwater H _X	SOUTHERN HEAT EXCHANGER - #17-192 BEM
04D30716	DEA Cooler	BLACK, SIVALLS & BRYSON - BAS-TEX #04300 MTF
04D30717	Reflux Condenser	BLACK, SIVALLS & BRYSON - BAS-TEX #04300 MTB
04D30801	Reboiler Light Ends Column	SOUTHERN HEAT EXCHANGER - #17-102 A-U
04D30802	Reboiler Wash Solvent Column	SOUTHERN HEAT EXCHANGER - #29-102 A-U
04D30804	DEA Reboiler	BLACK, SIVALLS & BRYSON - Sheet & Tube #21-120 Type BU
04D30908	DEA Heat Exchanger	BLACK, SIVALLS & BRYSON - BAS-TEX #04300 MTF
04D30909	Stretford Solution Heater	BLACK, SIVALLS & BRYSON - Sheet & Tube #15-84 Type BEU
04D30910	Sulfur Meter	BLACK, SIVALLS & BRYSON - BAS-TEX #3 x 1½ x 300 Type 1

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D34109	Full Flow Filter	BLACK, SIVALLS & BRYSON - PECO #55-23-336RG
04D34110	Charcoal Filter	BLACK, SIVALLS & BRYSON - 30" OD x 10' - 0"
04D34601	Flare	JOHN ZINK - #STF-C-8, 12' 3½ High
04D35103	Preheater Vacuum Flash	FOSTER-WHEELER - 4.4 MM Btu
04D46701	DEA Plant	BLACK, SIVALLS & BRYSON
04D46702	Stretford Plant	BLACK, SIVALLS & BRYSON
04D56023	Pump Vacuum Flash Cond. Motor	GOULDS PUMPS - #3736, 1 x 1½-8, m, 7/70 GPM @ 142 TDH
04D56024	Pump Light Ends Bottoms Motor	GOULDS PUMPS - #3735, 1 x 1½-8, m, 7/70 GPM @ 122 TDH
04D56025	Pump Light Ends Reflux Motor	GOULDS PUMPS - #3735, 1 x 1½-8, m, 1.25/4 TPM @ 142 TDH
04D56026	Pump Wash Solvent Column Bottoms Motor	GOULDS PUMPS - #3735 1 x 1½-8, m, 5/65 GPM @ 130 TDH
04D56027	Pump Wash Solvent Column Prod. and Reflux	GOULDS PUMPS - #3735, 1 x 1½-8, m, 10/35 GPM @ 110 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D56030	Pump Process Solvent Motor	GOULDS PUMPS - #3736, 1 x 2-11A, m, 5/35 GPM @ 525 TDH
04D56031	Pump Solvent to Storage Motor	GOULDS PUMPS - #3736, 1 x 2-11A, m, 5/35 GPM @ 525 TDH
04D56032	Pump Light Ends Product Motor	GOULDS PUMPS - #3736, 1 x 1½-8, m, 0.5/3 GPM @ 118 TDH
04D56033	Pump Wash Solvent Motor	GOULDS PUMPS - #3736, 1 x 2-13A, m, 1/15 GPM @ 555 TDH
04D56036	Pump Vacuum Flash Feed Accm. Drum Motor	GOULDS PUMPS - #3735, 1 x 2-11A, m, 5/50 GPM @ 420 TDH
04D56039	Pump Hotwell Motor	GOULDS PUMPS - #3735, 2 x 3-9, m, 112/175 GPM @ 162 TDH
04D56040	Pump Flare Knockout Scavenger Motor	GOULDS PUMPS - #3735, 1 x 2-11A, m, 50 GPM @ 346 TDH
04D56043	Centrifugal Pump Light Ends Column Feed	GOULDS PUMPS - #3736, 1 x 1½-8, m, 70 GPM @ 143 TDH
04D56068	Pump Emergency Solvent Motor	UNION PUMP COMPANY - #QD-100, 1-3/8 x 3, 31 GPM

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D56075	DEA Pump "A"	BLACK, SIVALLS & BRYSON - Union Pump #TD-60, 1-7/8 x 3, 33.8 GPM @ 4 PSI
04D56076	DEA Pump "B"	BLACK SIVALLS & BRYSON - Union Pump #TD-60, 1-7/8 x 3, 33.8 GPM @ 4 PSI
04D56077	DEA Booster Pump "A"	BLACK, SIVALLS & BRYSON - Union Pump #1½ x 2 x 7 VCM, 33.8 GPM @ 2.5 TDH
04D56078	DEA Booster Pump "B"	BLACK, SIVALLS & BRYSON - Union Pump #1½ x 2 x 7 VCM, 33.8 GPM @ 2.5 TDH
04D56079	Reflux Pump "A"	BLACK, SIVALLS & BRYSON - Crane Deming, AVS3062, 1½ x 1 x 6, 2 GPM @ 40 PSI
04D56080	Reflux Pump "B"	BLACK, SIVALLS & BRYSON - Crane Deming, AVS3062, 1½ x 1 x 6, 2 GPM @ 40 PSI
04D56081	Desuperheat Water Pump "A"	BLACK, SIVALLS & BRYSON - Worthington #1TCO-E Turbine
04D56082	Desuperheat Water Pump "B"	BLACK, SIVALLS & BRYSON - Worthington #TCO - E, Turbine
04D56083	Stretford Solution Pump "A"	BLACK, SIVALLS & BRYSON - Union Pump #4 x 6 x 9 VCM, 640 GPM @ 14 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D56084	Stretford Solution Pump "B"	BLACK, SIVALLS & BRYSON - Union Pump #4 x 6 x 9 VCM, 640 GPM @ 14 TDH
04D56085	Stretford Slurry Pump "A"	BLACK, SIVALLS & BRYSON - Union Pump #1½ x 2 x 7 VCM, 20 GPM @ 2 TDH
04D56086	Stretford Slurry Pump "B"	BLACK, SIVALLS & BRYSON - Union Pump #1½ x 2 x 7 VCM, 20 GPM @ 2 TDH
04D56087	Stretford Transfer Pump Separator	BLACK, SIVALLS & BRYSON - Union Pump #2 x 3 x 7 VCM, 60 GPM @ 2 TDH
04D56091	Stretford Inlet Pump	GOULDS PUMPS - #3196, 1½ x 1-6, 5 GPM @ 70 TDH
04D56301	Pump Vacuum Flash Bottoms Motor	Sier Bath Pump Div. - #NA, 1-7 GPM @ 92 PSI
04D56404	Centrifugal Pump - Vertical	BLACK, SIVALLS & BRYSON - Lewis #MTS-0752½, 100 GPM @ 52 TDH
04D67003	Wash Solvent Accumulator Tank	UNION TANK WORKS, - 96" Ø x 32' - 0"
04D67004	Process Solvent Accumulator Tank	UNION TANK WORKS - 96" Ø x 32' - 0"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D67011	Hotwell Tank	UNION TANK WORKS - 72" Ø x 6' -0"
04D67034	Stretford Oxidizer Tank	BLACK, SIVALLS & BRYSON - 144" OD x 25' - 0"
04D67035	Stretford Slurry Tank	BLACK, SIVALLS & BRYSON - 42" OD x 10' - 0"
04D67036	Sulfur Separator	BLACK, SIVALLS & BRYSON - 16" OD x 6' - 0"
04D67037	Sulfur Storage Tank	BLACK, SIVALLS & BRYSON - 84" OD x 15' - 0"
04D67038	Stretford Solution Mix Tank	BLACK, SIVALLS & BRYSON - 6' - 0" OD x 6' - 0"
04D67039	Stretford Surge Tank	BLACK, SIVALLS & BRYSON - 90" OD x 12' - 0"
04D71501	Vacuum Jet-Vacuum Flash Drum	SCHUTTE & KOERTING - 150 P.P.H. @ 25 mm Hg
04D75106	DEA Outlet Separator	BLACK, SIVALLS & BRYSON - 12' 3/4" OD x 5' - 0"
04D75107	DEA Flash Separator	BLACK, SIVALLS & BRYSON - 20" OD x 7' - 6"
04D75108	Stretford Inlet Separator	BLACK, SIVALLS & BRYSON - 12' 3/4" OD x 7' - 6"
04D75109	Stretford Outlet Separator	BLACK, SIVALLS & BRYSON - 12' 3/4" OD x 5' - 6"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D75204	Drum-Vacuum Flash	UNION TANK WORKS - 86" Ø x 9' - 0"
04D75206	Drum-Vacuum Flash Condensate	UNION TANK WORKS - 72" Ø x 14' - 0"
04D75207	Drum Light Ends Reflux	UNION TANK WORKS - 36" Ø x 5' - 0"
04D75208	Drum Wash Solvent Column Prod.	UNION TANK WORKS - 48" Ø x 8' - 0"
04D75210	Drum Vacuum Flash Feed Accm.	UNION TANK WORKS - 72" Ø x 28' - 0"
04D75211	Drum Vacuum Flash Decoking	UNION TANK WORKS - 36" Ø x 7' - 0"
04D75212	Drum Light Oil Water Separator	UNION TANK WORKS - 36" Ø x 5' - 0"
04D75214	Drum Flare Knockout	UNION TANK WORKS - 96" Ø x 16' - 0"
04D75215	Purifier Decoking Vent	ANDERSON IBEC - #HG4L, 25 PSIG @ 650°F
04D75221	Tank - Light Ends Column Feed	UNION TANK WORKS - 84" Ø x 17' - 3"
04D75222	Steam Condensate Tank	BLACK, SIVALLS & BRYSON - 12' 3/4" OD x 6' - 0"
04D75224	DEA Surge Tank	BLACK, SIVALLS & BRYSON - 42" OD x 14' - 6"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Solvent Recovery (04)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
04D75301	Light Ends Removal Column Vessel	HOFFMAN ENGR. CO. - (See Dwg.) 15" Ø and 22" Ø
04D75302	Wash Solvent Column	HOFFMAN ENGR. CO. - (See Dwg)
04D75306	DEA Absorber	BLACK, SIVALLS & BRYSON - 20" OD x 51'-0"
04D75307	DEA Still Column & Reflux Drum	BLACK, SIVALLS & BRYSON - 24" ID x 53' -0"
04D75308	Stretford Absorber	BLACK, SIVALLS & BRYSON - 24" ID x 62' -8" Top, 90" ID x 19' - 0" Bottom

EQUIPMENT LIST BY AREAS

E. Gas Recovery and Compression (05)

Rev. 5 4/25/74

Item No.

Description

Manufacturer and Type

05D18104	Compressor "A" Hydrogen Recycle	CHICAGO PNEUMATIC - Class 3½ x 9 TB, 75 HP
05D18106	Compressor Fresh Hydrogen	CHICAGO PNEUMATIC - Class 6½-5½-3 3/4 x 13 TCB-3, 150 HP
05D30701	Recycle Hydrogen By-Pass Loop Exchanger	SMITHCO ENGR. - #7120 - HHAA
05D20704	Fresh Hydrogen ByPass Loop	SMITHCO ENGR. - #3220 - HBABA
05D30705	Fresh Hydrogen ByPass Loop	SMITHCO ENGR. - #7120 - HNBA
05D62105	Scrubber Hydrogen Recycle Compressor	UNION TANK WORKS - 10-3/4 Ø x 8' - 0"
05D62106	Scrubber Fresh Hydrogen First Stage	UNION TANK WORKS - 96 Ø x 20' - 0"
05D62109	Scrubber Recycle Hydrogen	UNION TANK WORKS - 12 3/4' x Ø 8' - 0"
05D75509	Vessel Fresh Hydrogen Storage "A"	UNION TANK WORKS, - 24' Ø x 40' - 2"
05D75512	Vessel Fresh Hydrogen Storage "B"	UNION TANK WORKS - 24' Ø x 40' - 2"

EQUIPMENT LIST BY AREASF. Product Solidification and Storage (08)

Rev. 5 4/25/74

Item No.DescriptionManufacturer and Type

08D12504	Bin Waste Product	UNION TANK WORKS - 20' - 0" centerline to centerline BMS x 35' - 0"
08D12505	Bin De-Ashed Coal Bin "A"	UNION TANK WORKS - 20' - 0" centerline to centerline BMS x 35' - 0"
08D12506	Bin De-Ashed Coal Bin "B"	UNION TANK WORKS - 20' - 0" centerline to centerline BMS x 35' - 0"
08D12507	Bin De-Ashed Coal Bin "C"	UNION TANK WORKS - 20' - 0" centerline to centerline BMS x 35' - 0"
08D13007	Centaxial Fan	Aerovent (McKim & Assoc.) #402 Type C, 32,000 CFM @ 8" S.P.
08D13008	Centaxial Fan	Aerovent (McKim & Assoc.) #402 Type C, 32,000 CFM @ 8" S.P.
08D13009	Conveyor Blower	NEW YORK BLOWER #229-QB, 6500 CFM @ 8" S.P.
08D16610	Chute Product to Rail Cars & Trucks	WEBSTER MFG. CO. 14" Ø
08D16611	Chute Waste Product Bin	WEBSTER MFG. CO. 14" x 14" Bifurcated
08D16612	Chute De-Ashed Coal Bin Outlet (Bin "A")	WEBSTER MFG. CO. 14" x 14" Bifurcated

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 4/25/74

F. Product Solidification and Storage (08)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
08D16613	Chute De-Ashed Coal Bin Outlet (Bin "B")	WEBSTER MFG. CO. 14" x 14" Bifurcated
08D16614	Chute De-Ashed Coal Bin Outlet "Bin "C")	WEBSTER MFG. CO. 14" x 14" Bifurcated
08D16620	Chute De-Ashed Coal Product Elev. Discharge	WEBSTER MFG. CO. 10" x 14"
08D16625	Chute Shipping Feeder Discharge	WEBSTER MFG. CO. Tapered
08D16626	Chute De-Ashed Coal Cooler Belt Discharge	WEBSTER MFG. CO. 3'-6" x 3' - 0"
08D16627	Chute Cooling Conveyor Discharge	WEBSTER MFG. CO. 10" Diameter
08D18001	Prilling Tower - Incl. Basic Equipment	HPD. INC. (Union Tank & Infratrol Oven (Hot Chamber)
08D18002	Elevator Personnel Prilling Tower	EHRSAM COMPANY Overhead Traction
08D19005	Conveyor, De-Ashed Coal Off (Cooling Belt) Drive Motor	WEBSTER MFG. CO. '3 TPH - 18" BW

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

F. Product Solidification and Storage (08)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
08D19006	Conveyor Prilled Product Off Tower Cooling Belt Drive Motor	WEBSTER MFG. CO. 3 TPH - 18" BW
08D19007	Conveyor Transfer De-Ashed Coal to Storage Area Drive Motor	WEBSTER MFG. CO. 3 TPH - 18" BW
08D19009	Conveyor with Plow Product to Bins, Drive Motor	WEBSTER MFG. CO. 3 TPH - 18" BW
08D19010	Conveyor Product to Shipping Drive Motor	WEBSTER MFG. CO. 32 TPH - 18" BW
08D19100	Conveyor Cooler	REX CHAINBELT MODEL QAC-2460S, Cap. 3000#/hr
08D20003	Conveyor De-Ashed Product Cooler Drive Motor	SANDVIK CONVEYORS 300 #/hr, 32" Wide
08D26506	Cyclones Complete Trickle Valves	DUCON TYPE VM #2-455 Series 700/150 Type FA Valve
08D26407	Cyclones Complete Trickle Valves	DUCON TYPE VM #2-455 Series 700/150 Type FA Valve
08D29050	Bucket Elevator De-Ashed Coal to Transfer Belt Drive Motor	WEBSTER MFG. CO. 3 TPH - 14" x 36"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

F. Product Solidification and Storage (08)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
08D29507	Bucket Elevator De-Ashed Coal to Storage Area	WEBSTER MFG. CO. 3 TPH - 12" x 36"
08D29509	Bucket Elevator to Shipping Drive Motor	WEBSTER MFG. CO. 32 TPH - 48" x 19"
08D30514	Dowtherm Air Fin Cooler	INFRATROL OLVEN CORP. 225,000 Bru/hr, 32 gpm
08D30718	Double Pipe Heat Exchanger	BAS-TEX CORP. Heating 150,000 But, Cooling 225,000 Btu, 454 Sq. ft.
08D33703	Gravimetric Feeder De-Ashed Coal Drive and Motor	WALLACE & TIERNAN 9" - 3115069C.S
08D33705	Feeder Product to Shipping Drive Motor	WALLACE & TIERNAN 18" - 31150G18C.S
08D34111	Filter Backwash	ENGINEERED PROCESS EQUIP. #SS-1524-STNG
08D35503	Heater Electric Dowtherm	CHROMALOX (Edwin Weigand Div.) RLDW-800-80-VW-SCR-XX
08D42001	Hydraulic Rail Ramp Dockboard & Motor	KELLY CO. c/o Hill Engr. 20,000 #cap.; 1/3 hp Model 86056

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

F. Product Solidification and Storage (08)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
08D44001	Bagger - Solidified Product Complete	ST. REGIS PAPER CO. 106-FGS, Screw Type Valve Bag Packer
08D56402	Sump Pump Manlift Pit & Motor	GOULDS PUMPS #3171, 1 x 1½-6, ST, 20 gpm @ 20 TDH
08D56403	Sump Pump for Elevator & Motor Pit	GOULDS PUMPS #3171, 1 x 1½-6, ST, 20 gpm @ 20 TDH
08D62110	Scrubber Off Cooling Conveyor 08D2003	KOERTROL CORP. Size 6 #7014
08D67040	Head Tank Prilling Tower	UNION TANK WORKS 3' - 0" Dia. x 5'-0" Long

EQUIPMENT LIST BY AREAS

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D13005	Stripper Blower	SURFACE COMBUSTION
09D13006	Reformer Blower	SURFACE COMBUSTION
09D13001	Air Blower #1	GULF DEGREMONT - Roots Model RASJ, #812, 1600 cfm @ 10 psig
09D13012	Air Blower #2	GULF DEGREMONT - Roots Model RASJ, #812, 1600 cfm @ 10 psig
09D18110	Air Compressor "A"	CHICAGO PNEUMATIC - Class 9 x 7 TUO, 40 hp
09D18111	Air Compressor "B"	CHICAGO PNEUMATIC - Class 9 x 7 TUO, 40 hp
09D18112	Compressor Hydrogen Syn/Gas	SURFACE COMBUSTION
09D18113	Compressor Inert Gas	SURFACE COMBUSTION
09D18114	Compressor Inert Gas	SURFACE COMBUSTION
09D18115	Compressor CO ₂	SURFACE COMBUSTION
09D18706	Stripper Condenser	SURFACE COMBUSTION
09D20101	Cooling Tower	MARLEY COMPANY - Class 500, Model 586-48-1 Cap. 5,000 gpm

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D25701	Air Dryer	C.M. KEMP CO. - Model 75-EA-1, Model PF-10 Prefilter
09D25902	Inert Gas Dryer	SURFACE COMBUSTION
09D30512	Cooler Flush Solvent	HAPPY DIV. OF ECO - #1F-1014-1096-MVH
09D30610	Heater Flush Solvent 25,000#/hr 79 gpm	SOUTHERN HEAT EXCHANGER - #13-96-BFM
09D30611	Exchanger Dowtherm Reclaimer	CHARLES E. SECH ASSOC. INC. - Shell Press. 100 psig @ 750°F
09D30709	Cooler Seal Flush	SOUTHERN HEAT EXCHANGER - #19-192-BFM
09D30711	Air Compressor "A"	CHICAGO PNEUMATIC 9 x 7 TUO, 40 HP
09D30712	Air Compressor "B"	CHICAGO PNEUMATIC 9 x 7 TUO, 40 HP
09D30911	Heat Exchanger MEA to MEA	SURFACE COMBUSTION
09D30912	MEA Cooler	SURFACE COMBUSTION
09D30913	MEA Cooler	SURFACE COMBUSTION
09D30914	Flue Cooler	SURFACE COMBUSTION
09D30915	Converter Cooler	SURFACE COMBUSTION

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D34104	Filter A Pressure Sand Waste Disposal	GRAVER WATER CONDITIONING CO. - 7' Ø x 6" High
09D34105	Filter B Pressure Sand Waste Disposal	GRAVER WATER CONDITIONING CO. - 7' Ø x 6" High
09D34106	Filter A Pressure Carbon Waste Disposal	GRAVER WATER CONDITIONING CO. - 7' Ø x 6" High
09D34107	Filter B Pressure Carbon Waste Disposal	GRAVER WATER CONDITIONING CO. - 7' Ø x 6" High
09D34108	Filter Seal Flush	GEORGE S. EDWARDS CO. - Cuno amf #19563
09D34801	Incinerator Process Waste Complete Unit (includes pump, stack, scrubber, blower & motor)	JOHN ZINK POLLUTION RESEARCH - 2200 #/hr
09D35301	Fired Heater-Dowtherm	FOSTER-WHEELER - 21 MM Btu
09D35302	Reformer	SURFACE COMBUSTION
09D35501	Heater Flush Solvent "A"	EDWIN L. WIEGAND DIV. EMERSON ELECT. CO. - Flow 2500 #/hr., Heat Transferred 260,000 Btu/hr., 300 psig

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. UTILITIES

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D51009	Agitator - H ₃ PO 4 Day Tank	GULF DEGREMONT - 1/4 hp
09D51010	Agitator Acid Day Tank	GRAVER WATER CONDITIONING CO. - 1/4 hp
09D51011	Agitator Alum Day Tank	GULF DEGREMONT - 1/4 hp
09D51012	Agitator Polyelectrolyte Mix Tank	GULF DEGREMONT - 1/2 hp
09D51013	Mixer - Alum Tank	GRAVER WATER CONDITIONING CO. - 1/4 hp
09D51014	Polyelectrolyte Tank Mixer	GRAVER WATER CONDITIONING CO. - Neptune #A-1
09D56013	Pump Acid Feed	GRAVER WATER CONDITIONING CO. - Neptune #525-S-PVC, 6.5 gph
09D56014	Pump Process Solvent Transfer	GOULDS PUMPS - #3736, 1 x 2-11A, m, 60 gpm @ 456 TDH
09D56015	Pump Polyelectrolyte Feed	GULF DEGREMONT - W&T Series A747, 2.08 gph w/Positioner
09D56016	Pump Raw Solvent Transfer & Motor	GOULDS PUMPS - #3736, 1 x 2-11A, m, 60 gpm @ 456 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

D. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D56017	Pump H ₃ PO ₄ Feed	GULF DEGREMONT - W&T Series 44, #44-211, 2.08 gph w/Positioner
09D56018	Alum Feed Metering Pump	GULF DEGREMONT - W&T Series A747, 20.8 gpm w/ Positioner
09D56019	Phenol/Benzine Pump	GULF DEGREMONT - W&T Series 44 - #44-215, 104 gph
09D56020	Pump Alum Feed	GRAVER WATER CONDITIONING CO. - Neptune #535-S-PCV, 18 gph
09D56021	Polyelectrolyte Feed	GRAVER WATER CONDITIONING CO. - Neptune #1505, 4.4 gph
09D56028	Pump Wash Solvent Transfer & Motor	GOULDS PUMPS - #3735, 1 x 1½-8, m, 60 gpm @ 161 TDH
09D56034	Pump Tank Farm Loading & Motor	GOULDS PUMPS - #3736, 1½ x 3-7, m, gpm @ 112 TDH
09D56035	Pump Solvent Unloading & Motor	GOULDS PUMPS - #3736, 1 x 1½-8, m, 60 gpm @ 101 TDH
09D56041	Pump Cooling Water Circ. A & Motor	GOULDS PUMPS - #3405, 8 x 10-14, L, 2500 gpm @ 138 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)Item No.DescriptionManufacturer and Type

09D56042	Pump Cooling Water Circ. B & Motor	GOULDS PUMPS - #3405, 8 x 10-14, L 2500 gpm @ 138 TDH
09D56048	Pump Feed Deaerator A & Motor	GOULDS PUMPS - #3405, 2 x 3011, S, 50 gpm @ 100 TDH
09D56049	Pump Feed Deaerator B & Motor	GOULDS PUMPS - #3405, 2 x 3011, S, 50 gpm @ 728 TDH
09D56050	Pump Feed A & Motor	GOULDS PUMPS - #3316, 2 x 3-11, m, 84 gpm @ 728 TDH
09D56051	Pump Feed B & Motor	GOULDS PUMPS - #3316, 2 x 3-11, m, 84 gpm @ 728 TDH
09D56054	Pump Waste Treater Supply A	GOULDS PUMPS - #3196, 2 x 3-10, mt, 150 gpm @ 69 TDH
09D56056	Pump Waste Filter Backwash & Motor	GOULDS PUMPS - #3195, 4 x 6-10, mt, 800 gpm @ 57 TDH
09D56057	Pump Waste Filter Feed & Motor	GOULDS PUMPS - #3196, 1½ x 3-6, st, 150 gpm @ 69 TDH
09D56059	Pump Flush Solvent & Motor	GOULDS PUMPS - #3735, 1 x 2-13A, m, 30 gpm @ 590 TDH

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D56060	Pump Seal Flush A & Motor	GOULDS PUMPS - #3736, 2 x 4-11, m, 100/150 gpm @ 82 TDH
09D56061	Pump Seal Flush B & Motor	GOULDS PUMPS - #3736, 2 x 4-11, m, 100/150 gpm @ 82 TDH
09D56062	Pump Circulating Slurry & Motor	E.D. GREEN CORP. - Pacific #1570.0, 22½ gpm @ 20 psig
09D56064	Pump Dowtherm Circulating A & Motor	GOULDS PUMPS - #3735, 4 x 6-13, L, 700/1550 gpm @ 320 TDH
09D56069	Pump Sump Cooling Belt Area 01 Motor	E.D. GREEN CORP. - Pacific #2095-D, 90 gpm @ 70 TDH
09D56064	Pump Dowtherm Circulating B & Motor	GOULDS PUMPS - #3735, 4 x 6-13, L, 700/1550 gpm @ 320 TDH
09D56071	Pump Feed C & Motor	GOULDS PUMPS - #3316, 2 x 3-11, m, 84 gpm @ 728 TDH
09D56072	Pump Cooling Water Circulating C & Motor	GOULDS PUMPS - #3405, 8 x 10-14, L, 2500 gpm @ 138 TDH
09D56088	N ₂ Absorber Pump	SURFACE COMBUSTION

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D56089	N ₂ Absorber Pump	SURFACE COMBUSTION
09D56090	Stripper Pump	SURFACE COMBUSTION
09D56092	Pump Flottazure Recycle	GULF DEGREMONT - Aurora Model L5 Turbine 42 gpm @ 116 FT
09D56093	Pump Polyelectrolyte Transfer	GULF DEGREMONT - 1/2 hp
09D56094	Filter Supply Pump No. 1	GULF DEGREMONT - Goulds #3196, 1 x 1½-6, 75 gpm @ 116 FT
09D56095	Filter Supply Pump No. 2	GULF DEGREMONT - Goulds #3196, 1 x 1½-6, 75 gpm @ 116 FT
09D56103	Pump Dowtherm Charge & Motor	FOSTER EQUIPMENT - Yarway #0731-34-3321 Type D, 227, 36 gph @ 290 psig
09D56204	Pump Waste Reaction Sludge &	MOYNO PUMPS, Frame 2L4, Type CDF, 3 gpm
09D56205	Pump Waste Reaction Skim & Motor	MOYNO PUMPS, Frame 2L4, Type CDF, 3 gpm
09D56206	Pump Waste Reservoir Sludge & Motor	MOYNO PUMPS, Frame 2L4, Type CDF, 3 gpm

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. UTILITIES

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D62111	Deoxo Purifier	SURFACE COMBUSTION
09D62112	Desulfurizer	SURFACE COMBUSTION
09D64001	Boiler A	Babcock & Wilcox #FM10-52B, 250 psig 35000 #/hr
09D64002	Boiler B	Babcock & Wilcox #FM10-52B, 250 psig 35000 #/hr
09D67005	Tank Process Naptha	UNION TANK WORKS - 120" Ø x 38' - 0"
09D67006	Tank Process Wash Solvent	UNION TANK WORKS - 15' -4-5/8" Ø x 16' -1"
09D67007	Tank Process Wash Solvent	UNION TANK WORKS - 15' -4-5/8" Ø x 16' -1"
09D67008	Tank Raw Solvent A	UNION TANK WORKS - 15' -4-5/8" Ø x 16' -1"
09D67009	Tank Raw Solvent B	UNION TANK WORKS - 15' -4-5/8" Ø x 16' -1"
09D67017	Tank Storage Deionized Water	UNION TANK WORKS - 18' - 0" Ø x 18' - 0"
09D67020	Tank Incinerator Makeup	UNION TANK WORKS - 72" Ø x 10' - 0"
09D67022	Tank Sump 65,000 Gal.	UNION TANK WORKS - 34' 0" Ø x 10' - 0"

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. Utilities (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D67023	Accumulator Flush Solvent Tank	UNION TANK WORKS - 72" Ø x 22' - 0"
09D67024	Accumulator Seal Flush	UNION TANK WORKS - 60" Ø 12' - 0"
09D67027	Tank Surge Reclaimer	UNION TANK WORKS - 24" Ø x 6' - 0"
09D67028	Tank Surge Dowtherm	UNION TANK WORKS - 96" Ø x 20' - 0"
09D67041	Flottazur	GULF DEGREMONT - 10' - 5" Ø x 12' - 2" w/ Skimmer
09D67053	Oxy Contact Tank	GULF DEGREMONT - 60" Ø x 18' High
09D67501	Chemical Feed Sets for Boiler NaOH & PO ₄	MILTON ROY CO. - 175 Gal Tank - #AR120A Pump - 1/4 hp
09D67502	Chemical Feeds Sets for Boiler Sulfite Na, SO ₃	MILTON ROY CO. - 55 Gal Tank - #AR120 Pump - 1/4 hp
09D67506	Chemical Feeds Sets-Cooling Tower H ₂ SO ₄ w/filter	MILTON ROY CO. - 55 Gal Tank - #AR123A Pump - 1/4 hp
09D67507	Chemical Feed Sets Phosphate Cooling Tower PO ₄	MILTON ROY CO. - 175 Gal Tank - #AR120 Pump - 1/4 hp
09D75110	Hydrogen Absorber Entrainment Separator	SURFACE COMBUSTION (Union Tank)

C-40

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. UTILITIES

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D75111	Nitrogen Absorber Entrainment Separator	SURFACE COMBUSTION (Union Tank)
09D75223	CO ₂ Surge Tank	SURFACE COMBUSTION
09D75309	Stripper	SURFACE COMBUSTION
09D75510	Boiler Blowdown Flash Vessel	UNION TANK WORKS - 36" Ø x 4' - 0"
09D75511	Vessel Air Receiver	UNION TANK WORKS - 48" Ø 12' - 0"
09D75513	Shifter Converter	SURFACE COMBUSTION
09D75514	Hydrogen Absorber	SURFACE COMBUSTION
09D75515	Inert Gas Receiver	SURFACE COMBUSTION
09D75516	Nitrogen Absorber	SURFACE COMBUSTION
09D75517	H ₃ PO ₄ Day Tank	GULF DEGREMONT - 50 Gal.
09D75518	Polyelectrolyte Mix Tank	GULF DEGREMONT - 275 Gal.
09D75519	Polyelectrolyte Aging Tank	GULF DEGREMONT - 275 Gal. 42" ID x 48" High

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. UTILITIES (09)

<u>Item No.</u>	<u>Description</u>	<u>Manufacturer and Type</u>
09D75520	Alum Day Tank	GULF DEGREMONT - 350 Gal 48" ID x 48" High
09D75521	Acid Day Tank	GRAVER WATER CONDITIONING CO. - 100 Gal. Cap
09D75522	Pressure Retention Tank	GULF DEGREMONT - 36" Dia. x 5' - 0" High, 100 psi
09D75523	Balancing Tank	GULF DEGREMONT - 3' - 0" Ø x 12' - 0" High
09D75524	Holding Tank	GULF DEGREMONT - 3' - 0" Ø x 12' - 0" High
09D75525	Penol-Benzine Tank	GULF DEGREMONT - 6' - 0" Ø x 16' - 0" High
09D75526	Pump Suction Tank	GULF DEGREMONT - 2' - 6" Ø x 16' - 0" High
09D75527	Alum Tank	GRAVER WATER CONDITIONING CO. - 260 Gal. 53" High - 38" Ø
09D75528	Polyelectrolyte Tank	GRAVER WATER CONDITIONING CO. - 100 Gal.
09D75529	Float Tank	UNION TANK - 36" Ø x 48" High
09D75530	Syn Gas Water Tank	SURFACE COMBUSTION - (Union Tank) 75 Gal
09D82501	Mineralizer-w/piping & Tank	CALIFORNIA FILTERS - 140,000 Gal Cap @ 50 gpm

EQUIPMENT LIST BY AREAS (cont'd)

Rev. 5 4/25/74

G. UTILITIESItem No.DescriptionManufacturer and Type

09D82503

Disposal Waste Treater

GRAVER WATER CONDITIONING CO. - 20' - 0" Dia.
x 20' High

09D82504

Ammoniator

GULF DEGREMONT - W&T V-800, 240 LB/Day

09D82505

Water Treating

GULF DEGREMONT

APPENDIX D - CONSTRUCTION MILESTONES

CHRONOLOGY OF CONSTRUCTION OF PILOT PLANT

1972:

June 14: Contract signed with Rust Engineering Company for pilot plant construction.

June 26: Field work started with site clearing.

July:

- o Site clearing completed.
- o Site excavation and filling started.
- o Temporary field office erected on job-site.

August:

- o Rough grading of site completed.
- o Installation of underground utilities started.
- o Concrete placement for foundations started in Slurry Dissolving Area.
- o Installation of plant railroads started.

September: Construction of Administration Building started.

October: Ground Breaking Ceremony.

November:

- o Installation of underground utilities essentially completed.
- o Many foundations and floor slabs started.

December:

- o Road paving started.
- o Structural steel erection started.
- o Field fabrication of coal storage bins started.

1973:

January:

- o Structural steel erection in Coal Receiving and in Slurry Dissolving Areas completed.
- o Warehouse and Maintenance Shop prefab buildings erected, interior work started.

February:

- o Installation of prefab buildings continued, boiler house completed.
- o Most foundations and floor slabs completed.
- o Installation of processing equipment such as pumps, feeders, conveyors, and fans started.
- o Mineral Residue dryer installed.
- o Erection of product storage bins completed.
- o Warehouse and Maintenance Shop building interior work completed.
- o Installation of piping in pipe rack started.

March:

- o Road paving, curbs, gutters, and sidewalks completed.
- o Installation of vessels and heat exchangers in Mineral Separation and Solvent Recovery Areas started.
- o Packaged boilers received and installed.

- April:
 - o Dowtherm Heater erected.
 - o Vacuum Flash Preheater erected.
 - o All tanks in Tank Farm erected.
 - o Cooling Water Tower erection started.
 - o Control Room building completed, interior work continued.
 - o Erection of utility bridge structural steel completed.
- May:
 - o Coal Slurry Pumps assembled and installed in Coal Receiving Area.
 - o Light ends and wash solvent columns assembled and installed in Solvent Recovery Area.
 - o SRC product solidification belt installation started.
 - o Control panels installed in Control Room.
- June:
 - o Slurry preheater received and erected.
 - o Cooling water tower erection completed, installation of electrical, control, and piping systems continued.
 - o Inert gas, hydrogen, and carbon dioxide compressors installed.
- July:
 - o Administration building completed and occupied by P&M personnel.
 - o Installation of minor equipment, electrical and piping continued.
 - o Painting of process equipment and piping continued.
- August:
 - o Waste water discharge outfall completed.
 - o Finish grading and installation of gravel blanket completed.
 - o Rotary drum filters received and installed in Mineral Separation Area.
 - o Prilling Tower materials delivered.
- September:
 - o Dust collection system in Coal Receiving Area completed.
 - o Filter gas compressors installed in Mineral Separation Area.
 - o Prilling tower structural steel erection started.
 - o Cooling water tower completed, installation of cooling water piping continued.
 - o DEA assembly #1 skid and vessels received and set.
 - o Hydrostatic testing of piping started on utility bridge.
 - o Final grading and seeding completed in Administration Building Area.
- October:
 - o Electrical, heat tracing, and piping essentially completed in Coal Receiving Area.
 - o SRC product cooling belt installation completed.
 - o Erection of prilling tower structural members completed, piping started.
 - o Waste water incinerator installed in Waste Treatment Area.
 - o Power and lighting and piping in Boiler House completed.
 - o All major equipment for Desulfurization Unit received.
- November:
 - o Dust cyclones installed on prilling tower.
 - o Foundations started for waste water clarifier and filters.
 - o Warehouse occupied by P&M personnel.
 - o All major equipment set for inert and syn gas generators and for the Desulfurization Unit. Piping, structural modifications and instrumentation started.

December: o Erection of waste water clarifier started, filters set and piped in.
 o Hydrostatic testing of piping and X-ray of welds continued.
 o Piping and modifications on inert gas, hydrogen/syn gas, and desulfurization units continued.

1974:

January: o Chromatograph shed erected and chromatograph panels set.
 o Waste treatment and prilling tower work continued.
 o Piping and instrumentation testing continued.
 o Footings for rail and truck loading stations in Tank Farm completed.
 o Piping started on domestic water system.
 o Installation of plant laboratory furniture and equipment completed.

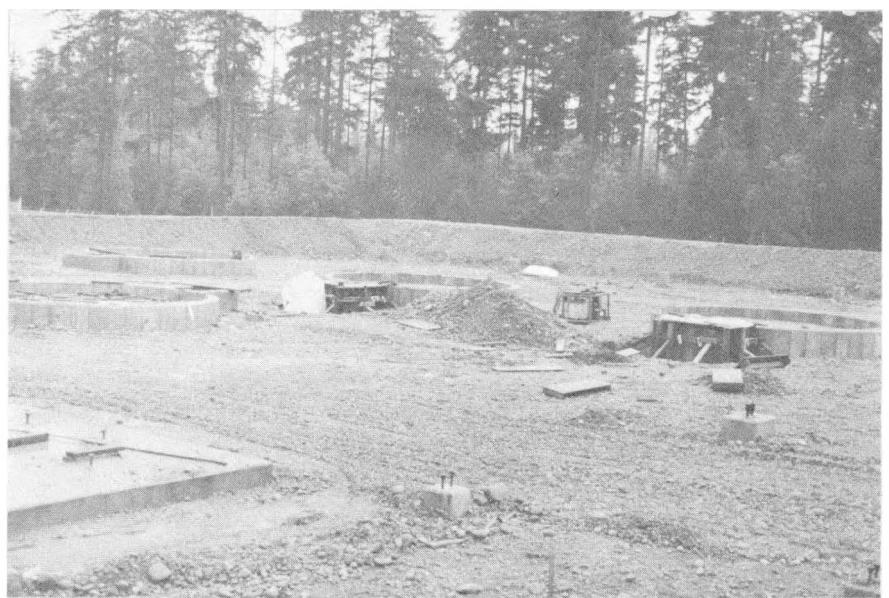
February: o Boilers and instrument air system taken over by P&M.
 o Fuel gas system taken over by P&M.
 o Raw water system taken over by P&M.
 o Warehouse taken over by P&M.
 o Portions of waste water treatment facilities completed and turned over to P&M.
 o Main steam headers taken over by P&M.
 o Piping and instrument checking continued.

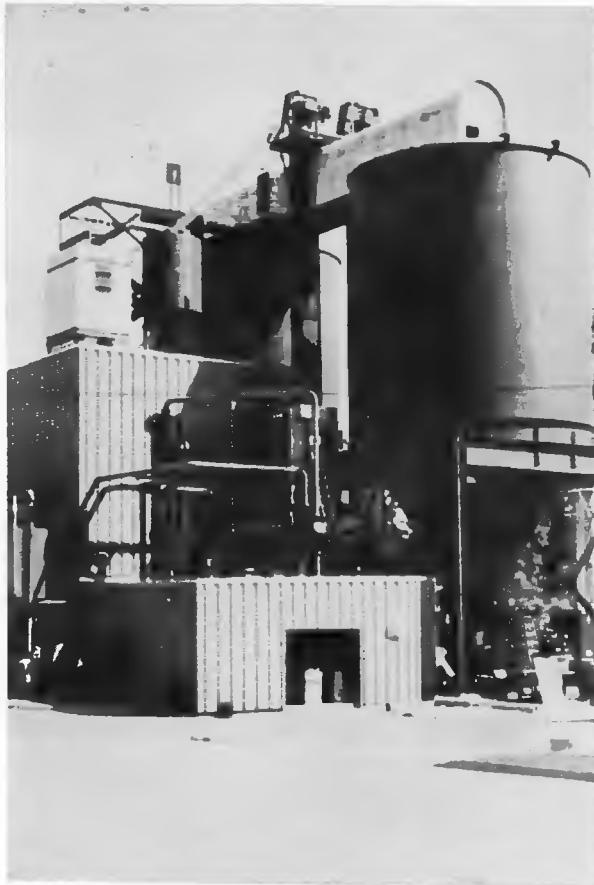
March: o Inert gas generator taken over by P&M.
 o Dissolvers and flash drums received and set in Slurry Preheating and Dissolving Area. Piping and instrumentation installation continued.
 o Domestic water system completed.
 o Tank Farm completed and taken over by P&M.

April: o Dowtherm system taken over by P&M.
 o Inert gas headers taken over by P&M.
 o Seal flush system taken over by P&M.

May: o Coal Receiving and Preparation Area taken over by P&M.
 o Solvent Recovery Area taken over by P&M.
 o Slurry Preheater and Dissolving Area taken over by P&M.

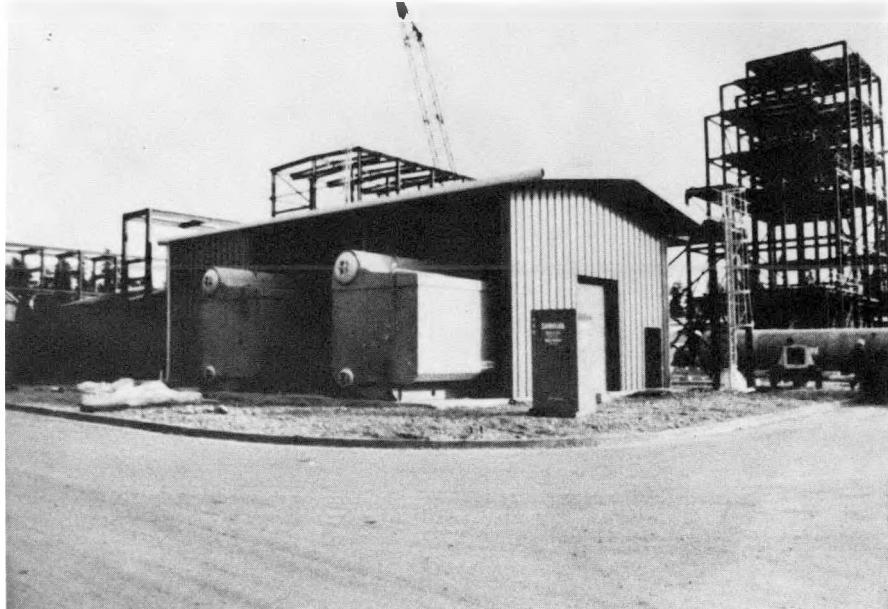
June: o Hydrogen gas generator taken over by P&M.
 o Flare system taken over by P&M.
 o Mineral Separation Area taken over by P&M.
 o Dry Chemical and Mineral Residue Storage Area taken over by P&M.
 o Control Room taken over by P&M.
 o Gas Recovery and Recompression Area taken over by P&M.
 o Desulfurization system taken over by P&M.


September: o Product Solidification and Storage Area taken over by P&M.

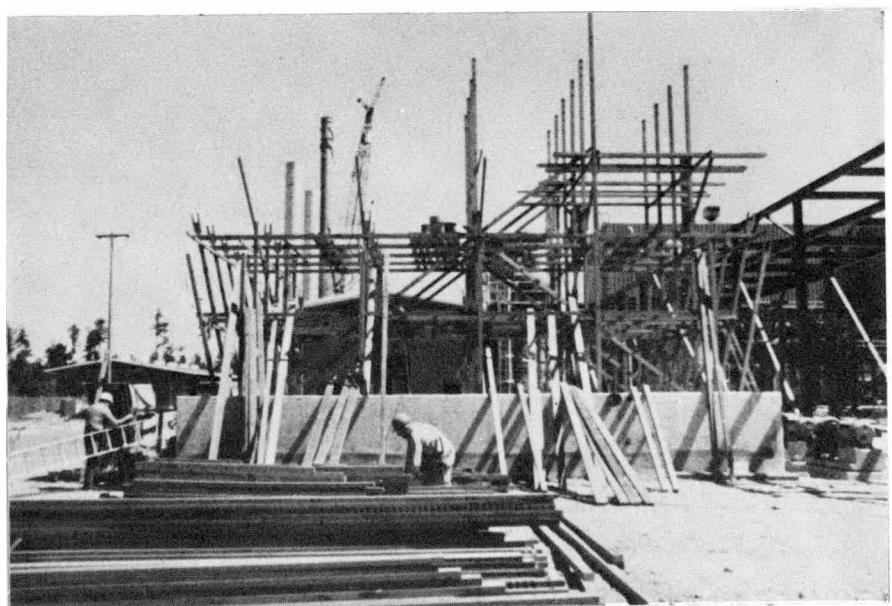

APPENDIX E - PHOTOGRAPHS OF THE PILOT PLANT AT VARIOUS STAGES OF CONSTRUCTION

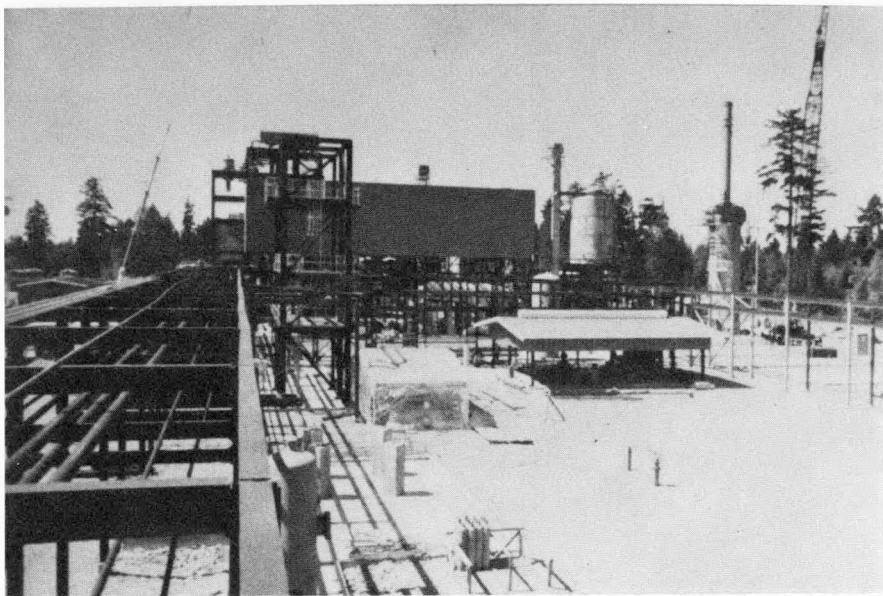
PRODUCT STORAGE BUILDING FOUNDATION
OCTOBER 26, 1972


TANK FARM FOUNDATIONS
DECEMBER 21, 1972

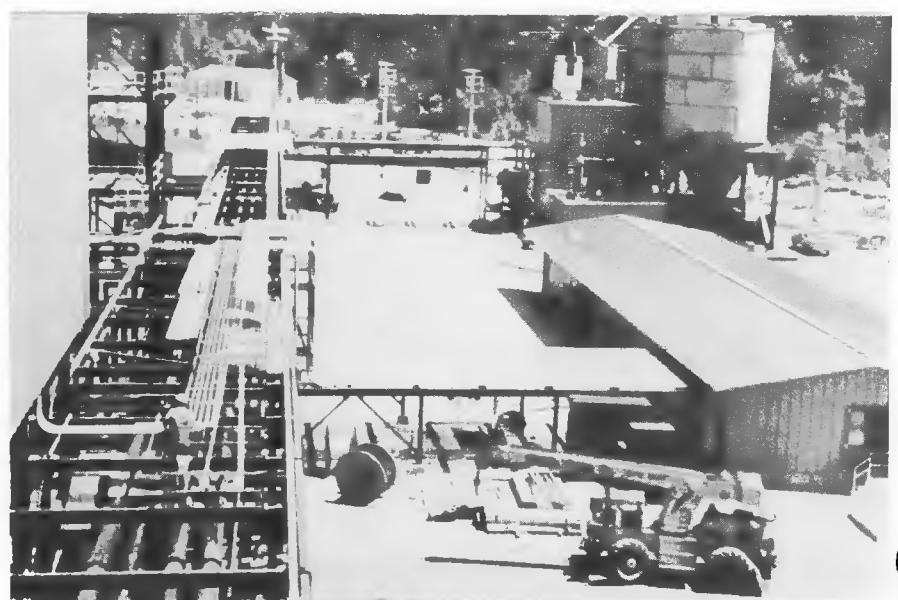


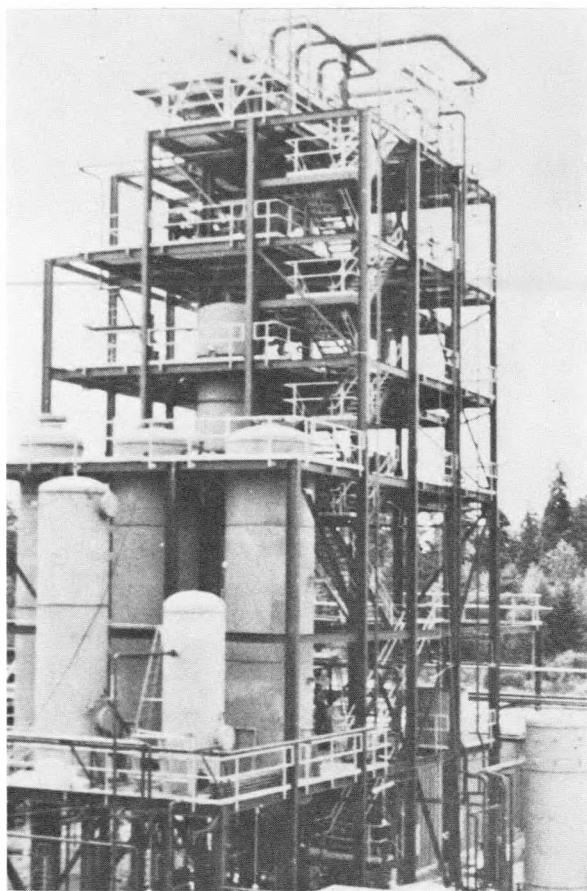
COAL RECEIVING AND SLURRY BLENDING AREA
MARCH 18, 1974


02, 03, 04 and 05 AREAS
VIEWED FROM COAL RECEIVING
MARCH 18, 1974

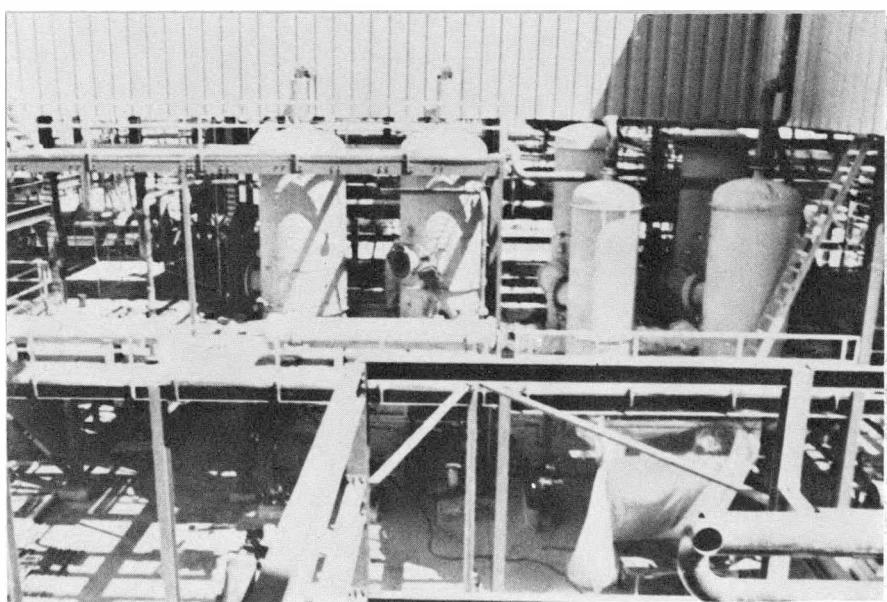


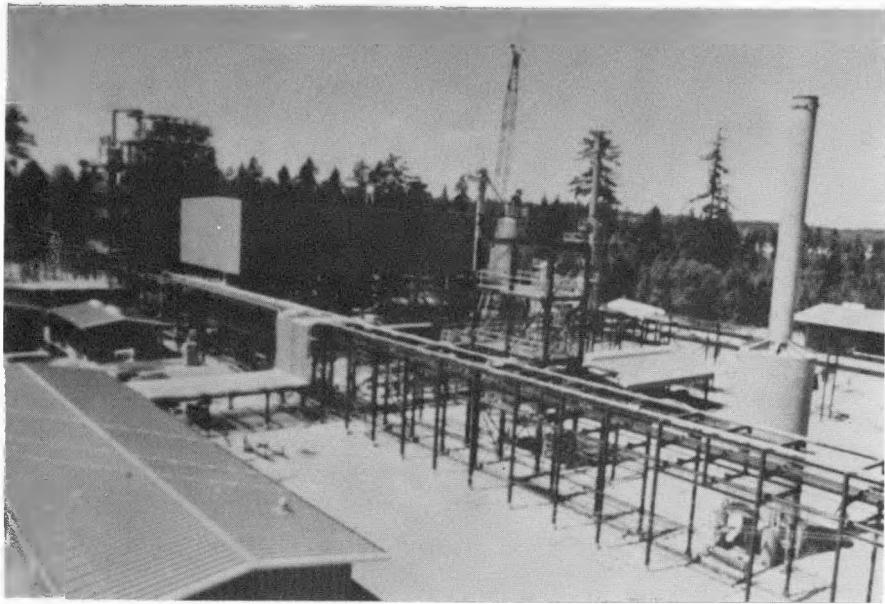
PACKAGE BOILERS
MARCH 16, 1973


COOLING WATER TOWER
MAY 8, 1973

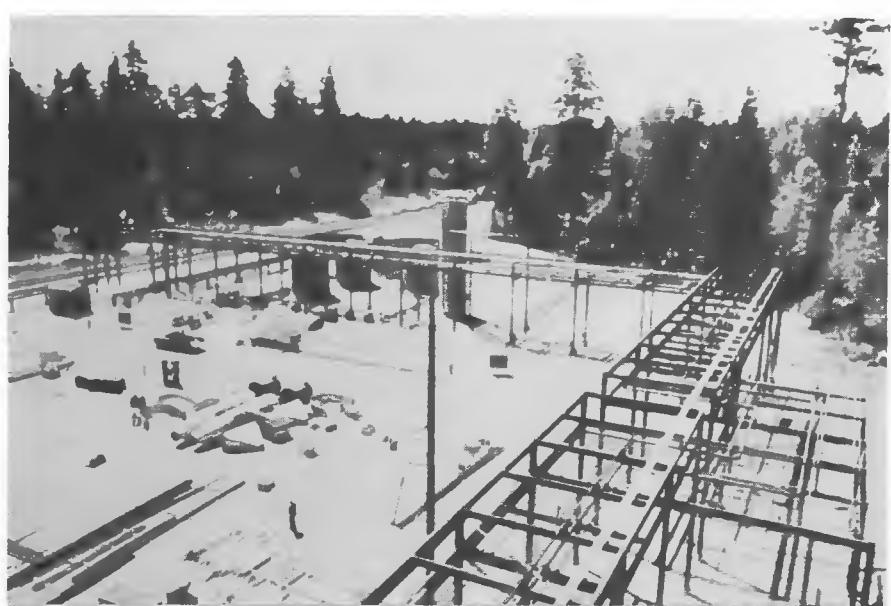


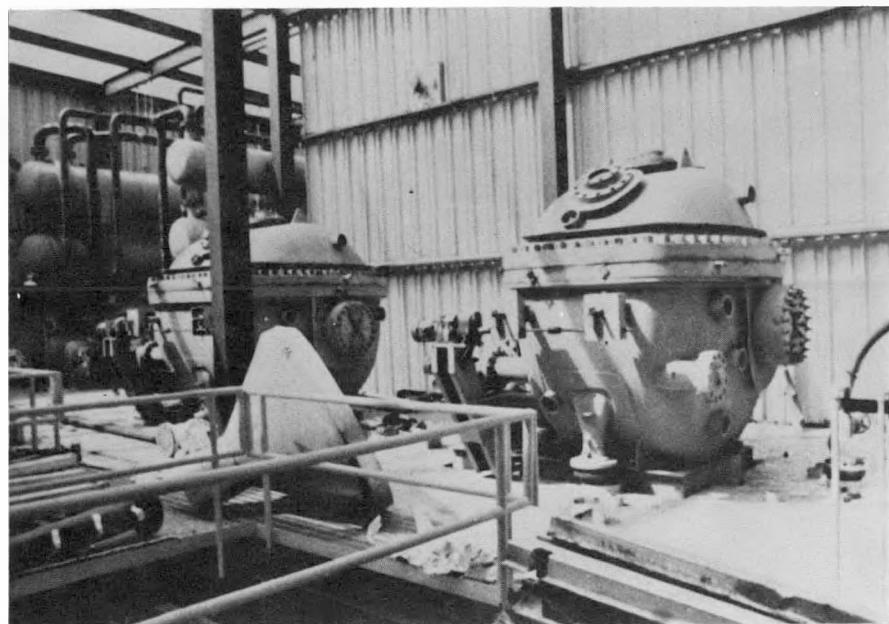
DISSOLVER, MINERAL SEPARATION AND GAS RECOVERY AREAS
MAY 8, 1973


CONTROL ROOM AND COAL RECEIVING AREAS
JUNE 4, 1973

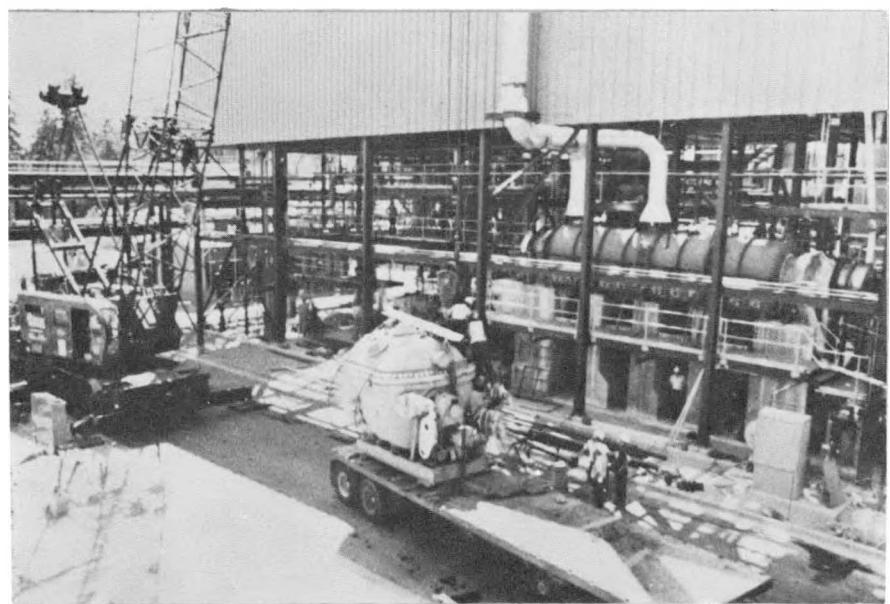


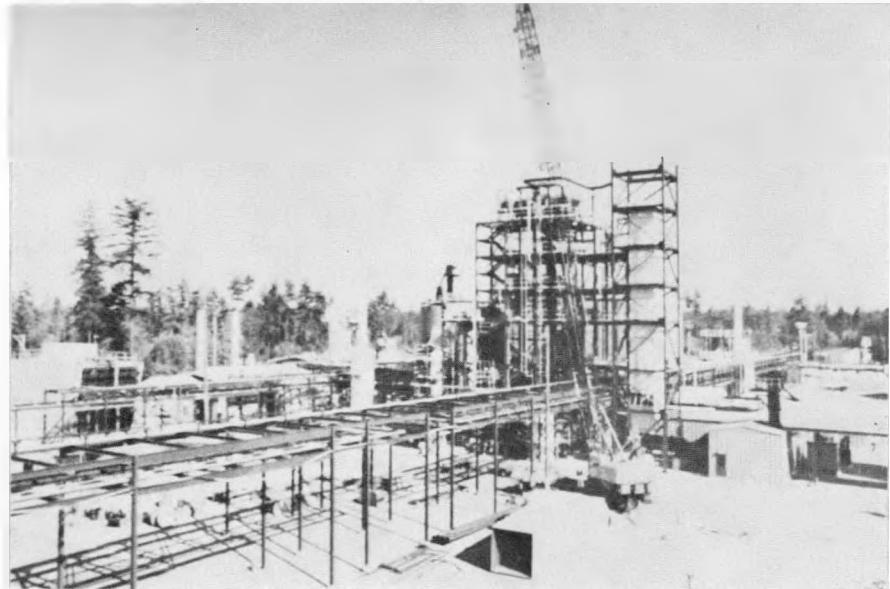
SOLVENT RECOVERY AREA
JUNE 13, 1973


FILTRATION TANKAGE
JULY 9, 1974

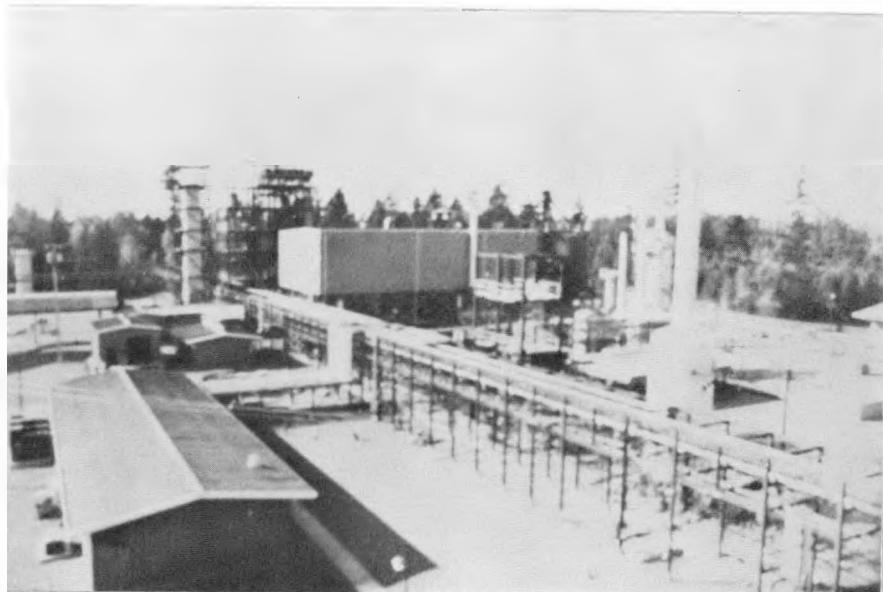


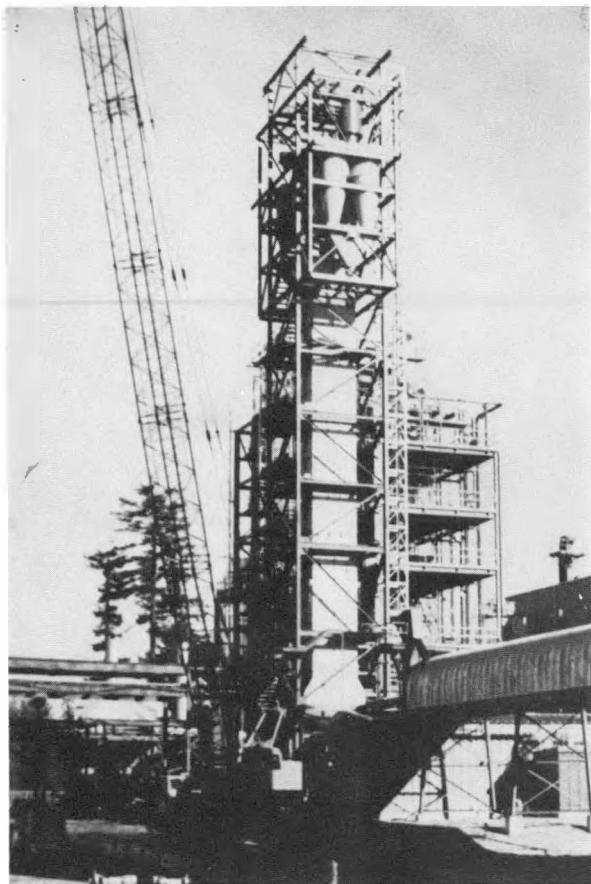
02, 03, 04, and 05 AREAS VIEWED FROM COAL RECEIVING
JULY 9, 1973


TANK FARM
JULY 9, 1973



ROTARY DRUM FILTERS
AUGUST 15, 1973


ROTARY DRUM FILTER AND MINERAL RESIDUE DRYER
AUGUST 15, 1973

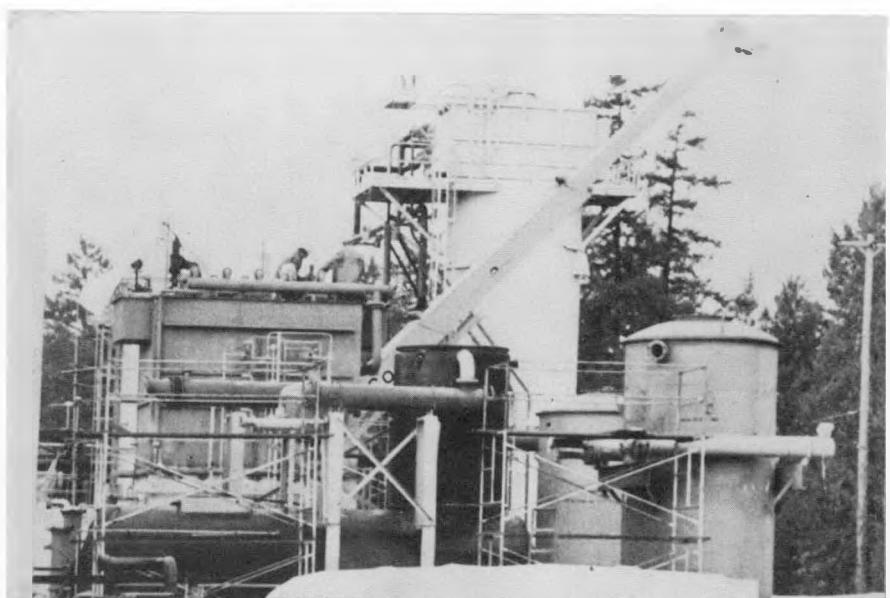


COOLING TOWER, BOILER HOUSE, DOWTHERM HEATER,
SOLVENT RECOVERY AND PRODUCT SOLIDIFICATION
OCTOBER 3, 1973

02, 03, 04 AND 05 AREAS VIEWED FROM COAL RECEIVING
OCTOBER 3, 1973



PRILLING TOWER
NOVEMBER 7, 1973


WASTE WATER TREATMENT AREA
FEBRUARY 20, 1974

SLURRY PREHEATER AND DISSOLVERS
MARCH 18, 1974

HYDROGEN AND INERT GAS UNIT
MARCH 18, 1974

AERIAL VIEW OF PLANT SITE
JULY 12, 1974